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Kurzfassung

Edge Computing ist ein neues Paradigma, welches heterogene Rechen- und Speicherres-
sourcen am Netzwerkrand in unmittelbarer Nahe zu den eigentlichen Datenproduzenten
wie Sensoren und mobilen Gerédten ermdoglicht. Aufgrund ihrer Heterogenitét leiden Edge-
Computing-Umgebungen unter hoher Komplexitét. Diese Komplexitét kann jedoch durch
den Einsatz von Serverless Computing reduziert werden, einem neuen Cloud Computing-
Ausfiithrungsmodell, bei dem die Infrastrukturkomponenten fiir den Anwendungsentwickler
vollig transparent sind. Dariiber hinaus passt der ereignisgesteuerte Charakter des Inter-
net der Dinge — das eines der Hauptanwendungsgebiete von Edge Computing sein wird —
perfekt zum ereignisgesteuerten Charakter von Function-as-a-Service, einer speziellen
Implementierung von Serverless Computing.

Die meisten Function-as-a-Service Plattformen verwenden containerbasierte Virtualisie-
rung. Um Container im grofien Mafistab in einem Cluster zu integrieren und zu verwalten
wurden mehrere Container-Orchestrierungsplattformen eingefiihrt, wobei Kubernetes
zum De-Facto-Standard wurde. Der Kubernetes-Scheduler ist zwar flexibel, basiert aber
auf der Grundannahme, dass die Cluster-Infrastruktur sehr homogen ist.

Diese Arbeit beschreibt das Design, die Implementierung und die Evaluierung eines
integrierten, latenz- und fahigkeitsbewussten Schedulers fiir den Betrieb einer Function-
as-a-Service Plattform in einer gemischten Cloud-Edge-Computerumgebung. Wir stellen
den Skippy-Scheduler vor, der den standardméfliigen Kubernetes-Scheduler um doménen-
spezifische Prioritdtsfunktionen erweitert, um die Platzierungsqualitdt fiir Funktionen in
gemischten Cloud-Edge-Clustern zu erhéhen. Diese doménenspezifischen Prioritatsfunk-
tionen verwenden zusétzliche Metadaten der Funktionen sowie der Knoten im Cluster. Um
das Sammeln dieser Metadaten der Knoten zu automatisieren, wird der Skippy-Daemon
eingefiihrt. Da die Konfiguration der einzelnen Gewichte der Prioritdtsfunktionen nicht
trivial ist, implementieren wir einen Optimierungsansatz.

Unsere Ergebnisse zeigen, dass unser Scheduler den standardméfigen Kubernetes-Scheduler
im Durchschnitt tiber alle getesteten Szenarien tibertrifft. Dariiber hinaus erhéht die Opti-
mierung die Platzierungsqualitit zusatzlich deutlich. Im Vergleich zum standardméfigen
Kubernetes-Scheduler reduziert unser optimierter Scheduler die Bandbreitenauslastung
um 67,52%, senkt die Kosten um 100%, erhoht die Ressourcenauslastung der Edge-Gerate
um 245,37% und reduziert die Task-Ausfithrungszeit um 71,18% im Durchschnitt iiber
alle getesteten Szenarien.
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Abstract

Edge computing is a new paradigm which enables heterogeneous computing and storage
resources located at the network edge, in close proximity to the actual data producers
like sensors and mobile devices. Due to their heterogeneous nature, edge computing
environments are suffering from high complexity. However, this complexity can be
decreased by leveraging serverless computing, a new cloud computing execution model in
which the infrastructure components are entirely transparent to the application developer.
Additionally, the event-centric nature of the Internet of Things — which will be one of
the main application fields of edge computing — fits perfectly to the event-driven nature
of Function-as-a-Service, a specific implementation of serverless computing.

Most Function-as-a-Service platforms are utilizing container-based virtualization. In order
to integrate and manage containers at scale in a cluster, multiple container orchestration
platforms have been introduced, with Kubernetes becoming the de-facto standard. While
the Kubernetes scheduler is flexible, it is based on the basic assumption that the cluster
infrastructure is highly homogeneous.

This thesis describes the design, implementation, and evaluation of an integrated, latency-,
and capability-aware scheduler for running a Function-as-a-Service platform in a mixed
cloud-edge computing environment. We introduce the Skippy scheduler, which extends
the default Kubernetes scheduler with domain-specific priority functions in order to
increase the placement quality for functions in mixed cloud-edge clusters. Those domain-
specific priority functions are utilizing additional metadata of the functions as well as of
the nodes in the cluster. In order to automate the gathering of this metadata of nodes,
the Skippy daemon is introduced. Since the configuration of the individual weights of
the priority functions isn’t trivial, we implement an optimization approach.

Our results show that our scheduler outperforms the default Kubernetes scheduler on
average across all tested scenarios. Furthermore, the optimization additionally increases
its placement quality significantly. Compared to the default Kubernetes scheduler, our
optimized scheduler decreases the bandwidth usage by 67.52%, decreases the cost by
100%, increases the edge device resource utilization by 245.37%, and decreases the task
execution time by 71.18% on average across all tested scenarios.

X1


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung ix
Abstract xi
Contents xiii
1 Introduction 1
1.1 Motivation . . . . . . . . . .. 1
1.2 Problem Statement . . . . . . . ... .. ... 2
1.3 Solution Approach . . . . .. . .. . ... ... . ... ... ... 2
1.4 Structure . . . . . . . . . . 3
2 Fundamentals 5
2.1 Edge Computing . . . . . .. .. .. 5
2.2 Serverless . . . . . .. 8
2.3 Scheduling . . . . . .. . 11
2.4 Container Orchestration . . . . . . . . .. . . . . ... ... ...... 14
2.5 Multi-objective Optimization . . . . . . ... ... ... ... ..... 20
2.6 Machine Learning Workflows . . . . . ... ... ... ... ... ... 21
3 Related Work 25
3.1 Serverlessat the Edge . . . ... ... ... ... ... ... ... 25
3.2 Container Orchestration at the Edge . . . . . .. ... ... ... ... 26
3.3 Scheduling at the Edge . . . . . ... ... ... .. L. 27
4 Methodology 29
4.1 Framework Selection . . . . . . . . ... ... ... 29
4.2 Scenario . . . . . ... e 31
4.3 Testbed . . . . . . . . e 33
4.4 Empirical Measurements . . . . . . . . . ... Lo 40
4.5 Metadata . . . . . .. 41
4.6 Scheduler . . . . . . . . 41
4.7 Simulation . . . . . . . . e e 42
4.8 Optimization . . . . . . . . .. . e 42


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5 Skippy Scheduler
5.1 Overview . . . . . . . e e e e
5.2 Default Scheduler . . . . . . . .. .. .. ... ..
5.3 Skippy Scheduler . . . . . . ... oo
5.4 Skippy Daemon . . . . . . .. ..
5.5 OpenFaaS Modifications . . . . . . . .. .. ... ... ...
5.6 Integration . . . . .. .. ..
5.7 Simulation Environment . . . . . ... ... ... ...

6 Optimization
6.1 Placement Quality . . . . ... ... .. ..o
6.2 Implementation . . . . . . . . .. .. ...
6.3 Usage . . . . . . e

7 Evaluation
7.1 Evaluation Environment . . . . . . . ... ... ... ... .......
7.2 Empirical Experiments . . . . . . .. ... o o
7.3 Placement Quality . . . . . .. . ...
7.4 Scalability . . . . . ...

8 Conclusion
8.1 Contributions . . . . . . . . ..
8.2 Future Work . . . . . . . e

NVidia Jetson TX2 Setup
OpenFaaS Modifications

Empirical Experiment Logs

g aQ w »

Additional Evaluation Results
List of Figures

List of Tables

List of Algorithms

List of Listings

Acronyms

Bibliography

43
43
44
49
53
54
54
o7

65
66
67
68

69
69
71
73
87

91
91
92

95

101

105

113

121

123

125

127

129

131


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Motivation

FEdge computing refers to a new paradigm in which computing and storage resources
located at the network edge, in close proximity to sensors or mobile devices, facilitate
the computation and storage of data close to the actual data source [Sat17; SD16]. The
proximity of these resources brings many benefits. Due to the reduced physical distance
to these nodes the latency can be decreased, scalability and privacy can be increased by
processing data right at the edge, cloud outages can be masked by failover-services thus
increasing resiliance, and already available on-site computing or storage resources can
be better utilized [Sat17; Ska+16]. With the rise of the Internet of Things (IoT), edge
computing will take a key role in the infrastructure, delivering a whole new category of
emerging services and applications [SD16; Bon+12; Bon+14]. The seamless orchestration
and operation of such an infrastructure is hard due to the heterogeneity of the involved
devices and their network connectivity. Accordingly there is no established solution
available yet.

Serverless computing, and more specifically Function-as-a-Service (FaaS), is a new
cloud computing execution model in which the infrastructure components are entirely
transparent to the application developer. Considering the traditional cloud service
models — Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) — FaaS
can be seen as the logical further development of these models towards a cloud-native
environment [Fox+17; Bal+17a]. As the developer only submits stateless functions which
are triggered by events, FaaS facilitates application structures similar to functional reactive
programming [Cas+17]. This model provides seamless and (near) endless scalability of
the application as well as the costs (pay-per-invocation model) without any effort by the
application developer. The first commercial FaaS platform — Amazon’s AWS Lambda
— was introduced in November 2014. FaaS is gaining traction ever since but also still
comes with some restrictions [Lei+19; Hel418]. Especially when it comes to function

1
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1.

INTRODUCTION

composition and the data exchange between these functions, developers are sometimes
facing tedious limitations [Lei+19; Bal+17b].

1.2 Problem Statement

Until now, not much effort has been made to combine these emerging two models by
bringing FaaS platforms to the edge of the network. However the data-centric event-driven
nature of the IoT fits well to the event-driven paradigm inherent in FaaS platforms.
Furthermore, the close proximity of producers (IoT devices) and consumers (functions)
would be beneficial for the latency of such applications.

Scheduling techniques for FaaS in edge environments need to go beyond the current
established methods used in cloud computing, which generally assume a homogeneous
infrastructure within the bounds of a data center. In particular, such scheduling techniques
need to consider the proximity of functions to their data sources and data stores; or the
specific resource capabilities of the available edge nodes, in particular when scheduling
functions that could leverage application specific hardware, such as machine learning
workloads on machine learning accelerators.

From a platform provider’s perspective, the different, possibly conflicting, objectives of
the scheduler — such as the resource utilization of the involved edge devices versus the
overall task execution time — may be prioritized differently for each tenant. Therefore it
is necessary to configure the scheduling algorithm based on these objectives.

1.3 Solution Approach

The aim of this thesis is to design, develop, and evaluate an integrated, optimized,
latency- and capability-aware scheduler for running an FaaS platform in a mixed cloud-
edge computing environment.

Based on the current state of open-source FaaS platforms and their underlying orchestra-
tion systems, a set of extensions needs to be developed and integrated in a pre-selected
open-source technology stack.

Current FaaS platforms focus on homogeneous cloud environments only. They simply
delegate the need for a specific function or runtime deployment to the orchestration
system in place (which in many cases is exchangeable) without defining any constraints
or preferences. In order to allow the orchestration system a (near-)optimal placement of
these newly scheduled function deployments in a mixed environment, it is necessary to
handover additional metadata from the FaaS platform to the orchestration system. This
would give its scheduler the possibility to respect this metadata during the selection of
the node to deploy the function or runtime onto.

To overcome this lack of metadata, additional means of configuration have to be integrated.
First of all, it is necessary to handover the previously mentioned additional information
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1.4. Structure

about the functions from the FaaS platform to the orchestration system. Secondly,
the structure of the network itself needs to be described for the orchestration system.
Thirdly, the metadata about the nodes in the cluster — especially their specific resource
capabilities — needs to be collected and maintained automatically in order to provide
a scalable and easily maintainable platform. This information will then be used by a
specific scheduler implementation within the orchestration system to calculate the best
deployment configuration and finally schedule the function or runtime deployment on
the selected node.

In order to find optimal scheduler configurations for the objective prioritization it is
necessary to utilize multi-objective optimization techniques. This optimized configuration
will then allow the scheduler to maximize the placement quality considering these
individual, pre-selected objectives and their specific trade-offs.

In this mixed cloud-edge computing environment, our scheduler places functions in closer
range to the container image registry and used data stores (from a network perspective),
and explicitly favors edge nodes or nodes with specific hardware accelerators supported
by the function, thus significantly increasing the placement quality.

1.4 Structure

The remainder of this thesis is structured as follows. Initially, Chapter 2 describes
the fundamentals of this work. We give an overview of edge computing and serverless
computing, describe the characteristics of scheduling, outline container orchestration,
introduce the multi-objective optimization problem, and characterize machine learning
workflows. Chapter 3 shows state-of-the-art research and other related work relevant in
the context of this thesis. It focuses on the intersections of serverless computing, container
orchestration, and scheduling with edge computing respectively. Chapter 4 explains the
methodology of this work. It justifies the selection of specific technologies, outlines a
motivational scenario, and describes the methodology behind our empirical measurements.
Furthermore, it specifies the schema of our metadata and briefly outlines the implemented
scheduler, its simulation, and finally its optimization. Chapter 5 elucidates the main
contribution of this work. First, it explains the default scheduler we are competing with.
Then, our specific enhancements are listed and described in-depth. In addition, this
chapter also covers the specification and implementation of our simulation environment.
Chapter 6 shows the implementation of our optimization efforts. The results of the
evaluation of all our contributions are presented in Chapter 7. Finally, Chapter 8
concludes this work and outlines possible future research.
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CHAPTER

Fundamentals

This chapter provides an overview of the fundamental concepts and technologies used in
this thesis. Since this thesis aims on creating a scheduler specifically for serverless edge
computing, Section 2.1 outlines edge computing, its benefits and challenges. Section 2.2
then covers serverless computing in general and Function-as-a-Service in specific. The
process of scheduling itself is described in Section 2.3. Our scheduler is focused on
containers. Therefore, our scheduler will be operating within the boundaries of a
container orchestration system. Section 2.4 explains container orchestration and its
underlying technologies. The configuration and optimization of our scheduler is hard, as it
directly influences the placement decisions and therefore the performance of the scheduler
regarding different conflicting objectives. Section 2.5 gives a description, as well as a
mathematical definition of the multi-objective optimization problem and its terminology,
forming the basis of our optimization efforts. Finally, Section 2.6 characterizes machine
learning workflows, which are essential for our motivational scenario.

2.1 Edge Computing

Cloud computing has had a major impact on software engineering and operations.
Organizations can avoid creating and maintaining their own data center by renting large
amounts of computing and storage resources on demand from cloud service providers
[Arm+10]. Instead of a big up-front commitment, resources are paid on a short-term basis
and only for the time of their allocation. Developers no longer have to manage physical
infrastructure, but the management of virtual resources has proliferated. Due to the
economics of scale the overall costs were significantly reduced as very large data centers
were built by big service providers [Jon+19]. This trend caused a major consolidation of
the global computing capacity into a set of large data centers which are spread across
the globe and operated by those service providers [Sat17].
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2. FUNDAMENTALS
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Figure 2.1: A mixed cloud-edge infrastructure

Traditionally, the devices at the network edge were mostly consuming data. But with the
emergence of the IoT and the continuous evolution of mobile devices and applications
these devices’ role is more and more shifting from data consumer to data producer [SD16].
The Cisco Global Cloud Index predicts that the total amount of data created by any
device will reach 847 zettabytes per year by 2021 [Cis18]. At the same time the annual
global data center IP traffic is predicted to reach 20.6 zettabytes. These numbers clearly
illustrate that the vast majority of the produced data needs to be processed outside of
centralized data centers. There is an increasing need for the decentralization of those
data centers for the sake of scalability.

Edge computing refers to a new paradigm which enables such a decentralization. Com-
puting and storage resources located at the network edge, in close proximity to the
actual data producers, like sensors and mobile devices, facilitate the processing and
storage of data close to the actual data source [Sat+09; Sat17; SD16]. These devices
are often referred to as cloudlets or fog/edge nodes'. Once these edge devices are in-
stalled they can be managed together with traditional cloud resources, forming a mixed
cloud-edge infrastructure. Figure 2.1 illustrates the concept of such a mixed cloud-edge
infrastructure.

!There are efforts for a distinction between the terms cloud-, fog-, and edge computing towards a
three tier architecture [VR14; Bon+12; Bon+14]. We do not consider these subtle differences, instead we
consider edge computing and fog computing as synonyms.
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2.1. Edge Computing

2.1.1 Benefits

Using those newly enabled resources in a mixed cloud-edge-infrastructure could yield
many benefits [Satl7; SD16; Ska+16]. The following four are considered the most
promising.

Reduced Latency

The increased physical proximity of a processing device or storage resource to a user’s
device may decrease the end-to-end latency as well as the requirements for bandwidth to
the cloud. This becomes increasingly necessary for emerging low-latency applications
like augmented reality or self-driving cars.

Increased Scalability

The vast majority of the generated data will not be processed in data centers. Instead
edge devices will preprocess the data and either completely fulfill the user’s request or
only send the results of the preprocessing to the data center. As a result, the ingress
bandwidth into the data center can be reduced by multiple orders of magnitude.

Increased Privacy

If executed in a systematic fashion the preprocessing of generated data on edge devices
could also help enforcing privacy policies. For example, an edge device could anonymize
sensitive health data before it is uploaded to the data center.

Increased Reliability

The increased decentralization may be used to harden the system’s reliability. Outages in
the data center or the intermediate infrastructure could be masked by providing fallback
services on the edge devices.

2.1.2 Challenges

The heterogeneous and decentralized nature of edge computing resources introduces
several new systems engineering challenges [SD16; Shi+16; Ska+16].

Device Heterogeneity

Previously unused available computational and storage resources can be enabled by
registering them as edge devices in a mixed cloud-edge infrastructure. On the one hand
this increases the utilization those otherwise unused resources. On the other hand, the
heterogeneity of edge devices is challenging for application developers as the software
needs to be built and partitioned in a way such that the application can run on different
processor architectures and with different amounts of resources.
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Users of cloud computing services have none or at most partial knowledge of where
and how the application is deployed and running. When creating a mixed cloud-edge
infrastructure, a unifying platform is necessary to create a layer of abstraction over
the heterogeneous and highly distributed edge device infrastructure and thereby allow
the seamless development, orchestration, and operation of software systems in such an
environment.

Privacy and Security

Edge computing could not only be beneficial for data privacy, it also brings some challenges
thereof. The environment on the edge of the network is highly dynamic. This makes
the network more vulnerable to threats. Also there is a lack of efficient tools to secure
devices at the edge of the network.

Scheduling

The heterogeneity of the system also causes challenges when it comes to workload
allocation. The network contains many different devices at different layers with different
resources and capabilities. This makes the allocation of resources for a specific workload
hard, as there are multiple conflicting objectives. With the creation of a scheduler
specifically designed to operate in mixed cloud-edge computing infrastructures, and with
the specific focus on serverless function workloads, in this thesis we aim to make advances
in tackling this problem in our specific domain. Scheduling itself is described in detail in
Section 2.3.

2.2 Serverless

In November 2014, Amazon released AWS Lambda?, drawing large attention to serverless
computing and FaaS in particular. Serverless computing is a new cloud computing
execution model in which the infrastructure components are entirely transparent to the
application developer, releasing them of the burden of managing all the virtual resources.

There are three distinctions between serverless and serverful computing [Jon+19]:

1. Decoupled computation and storage: The computation can be provisioned, scaled and
priced independently from the storage. Because of this decoupling, the computation
is necessarily stateless due to the degree that no ephemeral storage is used.

2. FExecute code without managing resource allocation: The developer only provides a
piece of code and the platform automatically manages the lifecycle and executions
of the code, including the provisioning of the necessary cloud resources.

*https://aws.amazon.com/lambda/ (visited on Nov. 26, 2019)
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2.2. Serverless
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Figure 2.2: Comparison of cloud computing execution models

3. Paying in proportion to resources used instead of for resources allocated: The billing
is not based on the size and number of virtual resources allocated, but is rather
associated with the execution, usually the execution time.

While the terms serverless computing and FaaS are often used as synonyms, there is a
subtle difference. FaaS only refers to the implementation of Item 2, being one of multiple
services in a serverless offering alongside with e.g. storage and authentication solutions.

2.2.1 Function-as-a-Service

FaaS is the abstraction and generalization of cloud services towards the theory of
traditional functional programming [Hel+18]. An application is a composition of multiple
stateless functions. Fach function is a mapping from inputs to outputs. FaaS platforms
allow their users to register functions in the cloud, compose them into applications, and
define execution triggers. The resulting application structures are similar to those in
functional reactive programming [Cas+17].

Considering the traditional cloud service models — IaaS and PaaS — FaaS can be seen
as the logical further development of these models towards a cloud-native environment
[Fox+17; Bal+17a]. Figure 2.2 describes the difference between those three models and
the traditional on-premises infrastructure.

It requires a different mental model when designing systems in a serverless fashion
compared to traditional cloud computing [Lei+19], but serverless computing, and FaaS
in particular, are being adopted heavily and are predicted to grow to dominate the future
of cloud computing [Fox+17; Jon+19].

2.2.2 Benefits

This new execution model has many benefits compared to the traditional cloud computing
offerings [Bal+17a; Hel+18; MB17].
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Scalability

The decoupling of the storage from the computation together with the premise that the
computation has to be stateless — or at least must not use ephemeral storage — allows
(near) endless scalability as new instances of the functions can be spawned and killed
without taking care of any state. Also the storage can be scaled in size and power
independently of the functions. Functions can be scaled to zero if no executions are
requested at the moment.

Pricing

As described in Section 2.2, the billing model is fundamentally different from traditional
cloud computing. Since FaaS platform users are paying in proportion to the actual
resource usage and functions scale to zero, the service is free for periods of time in
which there are no triggers invoking any function executions. If there are executions,
the price scales linearly with the execution time, based on fine-grained execution time
measurements (usually in 100 milliseconds time slices).

No Resource Management

Developers no longer have to manage any resources like servers, virtual machines (VMs)
or even containers. Instead they just focus on the implementation of the business logic
functions and compose them to form the complete application.

Polyglot / Microservice Architecture

FaaS platforms usually support many different programming languages for its functions,
like JavaScript, Go, Python, or Java. Some platforms, like OpenFaaS?, even allow the
creation of custom runtimes or submitting container images as functions. The fine
granularity of those managed polyglot functions maps naturally to the microservice
software architecture.

2.2.3 Challenges

The currently available serverless platforms are coming with several restrictions and
challenges [Bal417a; Lei+19; Hel+18; Bal+17b].

Vendor Lock-In

Currently each platform only supports its own Application Programming Interface (APT).
A function has to have a specific function signature, implement a given interface, or be
reachable via a specific protocol in order to allow the platform to invoke the function.
The platform may also provide a whole ecosystem of services like logging, authentication,

*https://www.openfaas.com/ (visited on Nov. 26, 2019)
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2.3. Scheduling

authorization, state management, or storage. Those factors introduce a high risk of
vendor lock-in for each platform.

Limited Function Lifetimes

All major serverless providers do have hard function lifetime restrictions. For AWS
Lambda a function may not run longer than 15 minutes. Afterwards the function is shut
down by the infrastructure.

Cold Start

Functions can be scaled to zero, which introduces the problem of cold starts. If there are
no running instances of a function available at the time of a trigger execution it takes
some time to spawn a new runtime and trigger the function invocation.

Communication through Slow Storage

Functions are not directly addressable while running. As a result, composed lambda
functions can only communicate through an intermediary storage service. Such storage
systems, like S3, are significantly slower and more expensive than traditional point-to-
point network communication.

No Specialized Hardware

As predicted by Hennessy and Patterson in the Turing Lecture 2018, the development
of domain-specific hardware will be accelerated in the near future [HP18]. Traditional
cloud offerings already allow the provisioning of specialized hardware to some degree,
but there is no serverless product which allows the platform user to select a function’s
hardware accelerators yet.

2.2.4 Serverless at the Edge

Serverless computing was originally created for centralized cloud environments. But due
to their heterogeneous nature, edge computing environments are suffering even more from
high complexity and therefore could also highly benefit from the paradigm of serverless
computing [GND17]. Content Delivery Network (CDN) operators are already providing
services to run functions closer to the actual user [Jon+19]. As edge computing will
focus on events being shared from IoT devices with the edge infrastructure, FaaS with its
event-driven nature perfectly fits into this architecture [Fox+17]. Section 3.1 describes
the current developments in the area of serverless edge computing in detail.

2.3 Scheduling

Scheduling is the process of decision-making on resource allocations to tasks over time
periods. Its goal is to optimize towards different objectives [Pin12]. In a cluster-setting,

11
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there are many different, in some cases conflicting, objectives when it comes to those
resource allocations, for example:

o Resource utilization: The available resources should be utilized as much as possible
in order to execute as many tasks as possible without the need of adding additional
resources.

e (ost: The costs of executing a task should be minimized. The costs depend on
the resources they are allocated to as well as the time the tasks makes use of the
resources (i.e. the task execution time).

o Tuask execution time (TET): The time it takes to execute a task should be minimized.

e Bandwidth usage: The bandwidth usage should be minimized in order to avoid
unnecessary data transfer times.

While optimizing towards those objectives, the scheduler also needs to respect different
constraints. The following are considered the most important:

e Resource requirements: Each workload may have different requirements on CPU or
RAM. The scheduler needs to make sure that a node has enough free resources for
the workload placed onto it.

e Storage requirements: If the workload needs to store data on the node it is running
on, the scheduler needs to make sure that the necessary amount of storage is
available.

o Anti-Affinities: For the sake of reliability and fault-tolerance, some workload may
be configured not to run on the same node as another. The scheduler needs to make
sure that different workload assigned to one node is not violating those configured
anti-affinities.

Increasing the quality of task placements by the scheduler in a cluster can lead to increased
fault tolerance, a decreased TET, and a more predictable system performance [Gog+16].
The costs of running the cluster can be decreased by minimizing the amount of resources
necessary to execute the scheduled tasks as well as their execution time.

Achieving a high task placement quality means solving an algorithmically complex
optimization problem [Gog+16]. In fact, the service placement problem has been shown
to be N'P-complete [Ska+16]. Therefore it is infeasible to solve this problem for each
placement while maintaining a low placement latency. This means that schedulers have
to choose their focus, either a high placement quality by using sophisticated algorithms
and solvers, or a low placement latency by using simple heuristics [Gog+16].
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Figure 2.3: Scheduling architectures according to Schwarzkopf et al. [Sch+13]

2.3.1 Scheduler Architectures

In order to cope with the complexity of the scheduling problem while maintaining a
low placement latency, different scheduler architectures have been used over the years
[Sch+13]. As shown in Figure 2.3, their essential difference is how they handle the cluster
state information.

Monolithic Schedulers

Monolithic schedulers only consist of a single centralized component handling the schedul-
ing of all incoming tasks. As shown in Figure 2.3a, there is no need for the synchronization
or even exchange of any cluster state as it’s only manipulated by this single component.

The default scheduler of Kubernetes is a prominent example of a monolithic scheduler.
In addition to production ready solutions, there are academic developments working
towards optimizing monolithic schedulers, like the Firmament scheduler [Gog+16].

Two-level Schedulers

Two-level schedulers have a single centralized coordinator which is actively managing the
resources. It offers available compute resources to multiple (usually pluggable) schedulers
which in turn are executed in parallel. Figure 2.3b illustrates that the coordinator is
dividing the resources exclusively among the schedulers. This division of the available
resources in disjunct sets completely mitigates any conflicts as no two schedulers are
offered the same resource.

This approach is most prominently used in Apache Mesos [Hin+11].

Shared-state Schedulers

Shared-state schedulers are sharing the cluster state among the distributed scheduler
without any coordinating party. Figure 2.3c shows that each instance of the scheduler

13


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

FUNDAMENTALS

14

has a replica of the complete cluster state. Changes to the state, e.g. task placements,
are done using lock-free optimistic concurrency control.

The scheduler of Omega, the predecessor of Google’s Kubernetes, as well as Microsoft’s
Apollo have sucessfully been structured this way [Sch+13; Bou+14].

Hybrid Schedulers

In addition to these architectures, hybrid solutions have been proposed. Mercury, for
example, allows offloading work from the centralized scheduler by using additional
distributed schedulers [Kar+15].

2.4 Container Orchestration

Virtualization was the key enabling technology for cloud computing. Most of the public
cloud providers as well as private on-premises installations use virtualization technologies
to power their infrastructure. Those VMs are powered by hypervisors, which provide
isolation between the VMs running on top of it and the physical hardware. They allow
running multiple different operating systems (OSs), and kernels respectively, side-by-side
on a single host. On the one hand this approach provides a very strong isolation, on the
other hand however, there is a lot of overhead which makes it expensive and decreases
performance [Joy15].

2.4.1 Containers

Recent advancements in the Linux kernel development, most importantly control groups
(cgroups) and namespaces, led to the creation of Linux Containers (LXC) [Joy15; Bur+16).
LXC allows running multiple isolated Linux systems — named containers — on a single
control host sharing its single Linux kernel instance. This approach brings a major
performance increase compared to classical virtualization as the hardware does not have
to be emulated anymore [Joy15]. Instead all containers on the control host are using one
single host kernel, while nevertheless being isolated from each other. Figure 2.4 compares
the architecture of the hypervisor-based virtualization of VMs with container-based
virtualization.

In addition to the already mentioned performance benefit, containers have a number of
additional advantages [Joyl5; MKK15]:

e Portable deployments: Container images are portable. Applications can be bundled
into a single unit of execution including all their dependencies and runtimes. Hence
they can easily be deployed to various environments.

e Fust application packaging and delivery: Container image formats are standardized
lightweight formats which makes it easy and fast to create new images, thus
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Figure 2.4: Architectural comparison between virtual machines and containers according
to Bernstein [Berl4]

accelerating application development processes and potentially avoiding vendor
lock-ins which accompany proprietary virtualization solutions.

e Higher workload density: Due to the decreased overhead compared to traditional
hypervisor-based virtualizations more workload can be deployed on the same
hardware.

2.4.2 Docker

Docker? is currently one of the most popular container-based virtualization solutions. It
was formerly built on LXC, but is now using another container runtime, containerd.

Containerd® is a container runtime which manages the complete lifecycle of the containers,
from the image transfer and storage to the container execution, it’s supervision, the
container networking, and -storage. In order to spawn new containers, there is another
layer of abstraction. containerd allows using any Open Container Initiative (OCI) runtime
specification® compliant tool.

runC” is the reference implementation of the OCI runtime specification. It is a lightweight
command line interface (CLI) tool to spawn and run containers.

Figure 2.5 shows how these different components are interacting with each other.

‘https://www.docker.com (visited on Nov. 26, 2019)

"https://containerd.io (visited on Nov. 26, 2019)
Shttps://github.com/opencontainers/runtime-spec (visited on Nov. 26, 2019)
"https://github.com/opencontainers/runc (visited on Nov. 26, 2019)
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Figure 2.5: Docker architecture: The user interacts with the Docker Engine, either by
using the Docker CLI or via other tools like a container orchestrator. The Docker Engine
instructs containerd to create the container. containerd is then using runC (or any other
OCI compliant runtime) to actually spawn the container, whose library libcontainer in
turn is then finally using the kernel’s API.

Besides the well structured layered architecture, Docker introduced a lot of new features
[Ber14; Joyl5; TRA15]:

e Layered Filesystem: Docker uses a copy-on-write filesystem. This dramatically
decreases the container image build time, as only changed and subsequent layers
have to be built again. Moreover, this approach allows the usage of base images
which can be shared and built upon by multiple different container images.

e Tooling: Docker provides a sophisticated set of tools. By default the Docker daemon
running on a host machine can be remote controlled via an HTTP API. This API
is used by the Docker CLI as well as lots of other tools.

e FEcosystem: Docker has a very vivid community. With DockerHub, there is a public
registry for sharing Docker container images. As of November 2019, more than 2.8
million images are hosted there®. They can be pulled and instantiated but, due to
the layered filesystem, also being built upon for free.

2.4.3 Orchestration

Mordern microservice-based applications are composed of a lot of small services. Each of
these services should be replicated, potentially in a geographically dispersed manner, to
cope with system failures. The services have to be able to discover each other and the

®https://hub.docker.com/search/ (visited on Nov. 26, 2019)
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network traffic needs to be balanced between multiple instances of the same service. This
results in very complex distributed application configurations which cannot be handled
manually anymore. In fact, the decision making for placing m containers on n nodes has
a complexity of O(n?) [Khal7).

Container orchestration (CO) platforms provide the necessary means of integration and
management of containers at scale. Multiple containers can be managed as one entity,
while the CO platform ensures fault tolerance, availability, scalability, and reliability.

There are a number of different open-source CO platforms. The most prominent ones
are the follows [Tru+19]:

e Docker Swarm?: A CO platform built by the Docker team. It combines multiple
Docker hosts to one virtual Docker host and exposes the default Docker API. This
allows reusing all the tools which can interact with the Docker daemon.

e Marathon'?: A CO platform which is based on Apache Mesos!!. It runs on top of
Mesos and orchestrates the containers on Mesos nodes.

o Kubernetes'?: A CO platform originally developed by Google. Kubernetes is

described in detail in Section 2.4.4.

2.4.4 Kubernetes

Kubernetes (K8s) is a CO platform which has been announced by Google in June 2014
at the Google Developer Forum. It is the third CO platform created by Google. First
there was Borg, then Omega and finally K8s, each heavily influenced by its predecessors
[Bur+16]. K8s, however, was the first to be fully open-sourced.

Since the announcement, the K8s open-source community as well as the amount of users
has grown significantly. As of September 2019, the GitHub project has more than 60,500
stars, 21,400 forks, and 2,300 contributors'®. K8s has become the de-facto standard for
CO [SD19].

At its core, K8s is configured in a declarative manner. Everything in K8s is a declarative

configuration object which represents the desired state of an object within the system.

K8s continuously tries to make sure that the current actual state matches the currently
desired state [HBB17]. This feature also describes the self-healing abilities of K8s as
every single failure of a component is basically just a mismatch of the actual state to the
desired state.

The architecture of a K8s cluster is shown in Figure 2.6. The responsibilities of the
different components are as follows.

‘https://docs.docker.com/engine/swarm (visited on Nov. 26, 2019)
https://mesosphere.github.io/marathon (visited on Nov. 26, 2019)
Myttps://mesos.apache.org (visited on Nov. 26, 2019)
Phttps://kubernetes.io (visited on Nov. 26, 2019)
Bhttps://github.com/kubernetes/kubernetes/ (visited on Nov. 26, 2019)
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Figure 2.6: Kubernetes architecture

Pods

A pod is the smallest and simplest deployable unit in K8s and represents a single instance
of an application or service. It is a group of one or more containers which are always
scheduled together and will be co-located on the same node next to each other in a shared
context.

The shared context of the containers within a single pod shares the configured storage
resources, a unique IP address, and can even find each other via localhost or communicate
using standard inter-process communication like shared memory.

Nodes

A node, previously known as a minion, is a single worker machine in K8s. Depending
on the cluster it can be a physical machine or just a VM. It runs all services necessary
to spawn and manage the pods like the kubelet, kube-proxy, and most importantly a
container runtime like Docker.

kube-apiserver
As the name indicates, the kube-apiserver’s purpose is to serve the K8 HTTP API.

In contrast to its predecessor Omega, K8s is not exposing its shared persistent store
directly to trusted components, but only allows accessing the state through the domain-
specific HTTP API served by this component[Bur+16].
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kube-controller-manager

The kube-controller-manager is running the different controllers which in turn are running
a control-loop for a specific purpose. A control loop is a non-terminating loop which
continuously regulates a system.

Within their control loops, these controllers are continuously watching the shared state
of the cluster — like every component it only accesses the cluster state through the API
server — and, if necessary, invokes changes in order to move the current state towards the
desired state.

An example of such a controller is the replication controller which continuously monitors
the amount of different instances of a pod. If an instance dies or the pod’s replication
count is increased it will spawn new ones, if the replication count is decreased it will
terminate the spare instances.

kube-scheduler

kube-scheduler is the K8s component which performs the scheduling as described in
Section 2.3. It continuously watches for newly created pods that have not been assigned
to a node yet. If a new pod is discovered, the kube-scheduler is responsible for assigning
the pod the best suiting node to run on.

eted

eted' is strongly consistent, distributed key-value store. K8s stores all its management
data in etcd, including the configuration, the desired state, and the actual state of the
cluster.

kubelet

Each node runs a kubelet, which is the primary agent controlling the pods running on
the node. It takes a pod’s specification (primarily) from the API server and ensures that
the container running on the node meets the given specification. E.g. it spawns new
containers if they haven’t been created yet or restarts unhealthy ones.

kube-proxy

kube-proxy is also running on each node and is taking care of the node’s network rules.

These rules are necessary to enable the network communication between the node’s pods
and any other component inside or outside of the cluster. By default it uses the packet
filtering layer of the OS — e.g. iptables — if available.

Mhttps://etcd.io/ (visited on Nov. 26, 2019)
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2.5 Multi-objective Optimization

The optimization problem is the problem of finding the best solution of all feasible
solutions and is defined as follows'® [BV04]:

Problem 1 (Optimization Problem).

min/max  fo(z),

. . (2.1)

subject to  fi(x) <b;, i=1,...,m.
where the vector x = (21, ...,x,) is the optimization variable of the problem, the function
fo: R™ — R is the objective function, the functions f;(z) : R™ — R,i =1,...,m are the
(inequality) constraint functions, and the constants b; ..., by, are the limits, or bounds,

for the constraints.

Definition 1 (Solution). A vector z* is called optimal, or a solution of the Problem 2.1,
if it has the smallest objective value among all vectors that satisfy the constraints: for
any z # x* with f1(2) < b1,..., fim(2) < by, we have fo(2) > fo(x*) where > is > if fj is
to be minimized and > is < if it is maximized.

But in most practical decision-making problems, multiple — sometimes conflicting —
objectives have to be taken into account. Therefore the definition of Problem 2.1
is extended by defining multiple objective functions and introducing more complex
constraints to define the multi-objective optimization problem (MOP) as follows [Deb01]:

Problem 2 (Multi-objective Optimization Problem).

min/max  fi,(x), m=1,...,M;
subject to  gj(x) >0, ji=1,...,J;
ha(x) = 0, k=1, K (2.2)
xl(-L)Sxinz(-U), 1=1,...,n.
where the vector x = (x1,...,x,) is the optimization variable of the problem, the
functions fp,(z) : R — R,m = 1,..., M are the objective functions, the functions

gi(z) :R* =R, j=1,...,J define the inequality constraints, the functions hy(z) : R" —
(U)

R,k =1,..., K define the equality constraints, and 2P <z; <z, ',i=1,...,n define

the variable bounds.

Definition 2 (Feasibility). A solution z = (x1,...,2,) is a feasible solution if it fulfills
all constraints and variable bounds.

15This definition has been extended to allow maximization, which is admissible due to the duality
principle in optimization [Deb01]. It suggests that a minimization problem can be converted into a
maximization problem by multiplying the objective function by —1.
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2.6. Machine Learning Workflows

If you have an optimization problem with only a single objective, the superiority of a
feasible solution over another one is easily determined as the results of their objective
functions can be compared directly. However, if you have more than one objective
function that are to be minimized or maximized the answer is a set of solutions that
define the best trade-off between the competing objectives. It is not beneficial to consider
all feasible solutions, as most of them will be dominated by others.

Definition 3 (Domination). A feasible solution y is said to dominate another feasible
solution z (y > 2), iff f(y) ¥ fm(2) for m =1,..., M and f,(y) < fm(2) for at least
onem € 1,..., M where < is < for the functions f,,, which are minimized and < is > for
those which are maximized.

In other words y dominates z iff y is no worse than z in all objectives and y is strictly
better than z in at least one objective. The following definitions build upon the concept
of domination and lead to the definition of the pareto-optimal front.

Definition 4 (Pareto-optimality). A solution is said to be pareto-optimal iff it is non-
dominated, i.e. there is no other solution which dominates it.

Definition 5 (Pareto-optimal set). The set of all pareto-optimal solutions in the solution
space is called the pareto-optimal set.

Definition 6 (Pareto-optimal front). The boundary which is defined by the set of all
points mapped from the pareto-optimal set is called the pareto-optimal front.

The pareto-optimal front of an MOP with two objectives, each of which to be maximized,
is illustrated in Figure 2.7.

The goal of a multi-objective optimization algorithm is to find non-dominated, feasible
solutions as close to the pareto-optimal front as possible. Each of these solutions constitute
a specific trade-off between the different competing objectives [Deb14]. Users of the
optimization algorithm can then make a choice based on their preferences.

2.6 Machine Learning Workflows

Machine learning (ML) refers to systems used for the automated detection of patterns in
data, which do have the ability to "learn” and adopt [SB14].

In the past decade, there has been a rapid adoption of ML into a variety of applications
and is thereby already influencing a significant portion of our daily lifes [RD19]. This was
possible due to tremendous advances in artificial neuronal networks, an immense growth
of available data, continuous advances in processing power, as well as the development
and usage of specialized hardware and software components [LBH15]. Modern ML
frameworks like Apache MXNet!'6, Tensorflow!”, or PyTorch!'® have greatly reduced the

Ynttps://mxnet.apache.org/ (visited on Nov. 26, 2019)
"https://www.tensorflow.org/ (visited on Nov. 26, 2019)
Bhttps://pytorch.org/ (visited on Nov. 26, 2019)
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fr(x)

\ 4

f1(x)

Figure 2.7: Pareto-optimal front: Assuming fi(z) and f2(x) are to be maximized, the
red line represents the pareto-optimal front. Each dot represents a configuration. Those
configurations located on the pareto-optimal front, here in red, are forming the pareto-
optimal set. All other configurations are Pareto-dominated by at least one configuration
on the frontier.

required effort and skills to implement ML systems [Boa+17].

Even though there are lots of different algorithms and types of ML systems, their simplest
workflow can be broken down to the following three steps as illustrated in Figure 2.8
[Hum+19].

1. Data Preprocessing: ML algorithms are mathematical algorithms which do expect a

certain type of input data. Therefore the raw data usually cannot be used directly
but has to be preprocessed. Typical steps include the handling of null values, data
standardization (i.e. transforming the raw data such that the mean of the values is 0
and the standard deviation is 1), one-hot encoding (i.e. creating one binary column
for each unique value of a nominal variable), or the handling of multicollinearity
(i.e. removing features which are strongly dependent on each other).

. Model Training: This step is the execution of the actual ML algorithm. The

preprocessed data is used to incrementally improve an ML model.

. Model Serving: The trained model is used in order to analyze new data. For

example, a webservice is using the trained model in order to recognize numbers in
an image.

Due to the rapid adoption into production systems, it becomes necessary to operationalize
ML and create platforms handling the ML workflows in production [Hum+19; Li+17;
Bay+17; Boa+17; Car+18].
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2.6. Machine Learning Workflows

Data Preprocessing Model Training Model Serving

Inference

Raw Data processed Results

Figure 2.8: Simple machine learning workflow

The extension of ML systems closer to the user, embracing edge computing, will enable a
new category of applications and could ultimately support the rise of human augmentation
— a field of research that aims to enhance the abilities of human beings through modern
medicine and technology. However, this means moving the automated ML application
lifecycle management from the cloud to the edge of the network [RD19].
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CHAPTER

Related Work

This chapter discusses related work relevant in the context of this thesis. Section 3.1
describes currently existing commercial products as well as academic and experimental
efforts aiming to combine serverless computing with edge computing. In Section 3.2,
current developments on how to manage containers in edge computing are summarized.
Finally, Section 3.3 outlines state-of-the-art work on resource provisioning and deployment
scheduling in edge computing.

3.1 Serverless at the Edge

As an initiative to combine edge computing with serverless computing, Nastic and
Dustdar defined the term Deviceless Edge Computing and proposed a high-level reference
architecture of such systems [ND18|. They introduce the concept of Software-Defined
Gateways and the Intent-based programming model, aiming to facilitate the application
development, and the automated provisioning and management. While these concepts are
defined on a high level, they describe a uniformed platform based on a mixed cloud-edge
infrastructure allowing transparent deployments of functions similar to our platform.

In a previous publication, Nastic et al. presented a serverless edge-data analytics platform
and application model [Nas+17]. The core of the platform is a stream-processing model
abstracting the heterogeneous edge computing infrastructure. It thereby allows the
seamless integration of and deployment on edge devices but is restricted to the domain
of stream-processing.

Cheng et al. proposed a data-centric programming model and an underlying orchestration
mechanism in order to apply the simplicity and flexibility of FaaS on edge computing
[Che+19]. Its orchestrator includes the data contert (metadata of available data), the
system context (available resources at each node), and the usage contert (a high-level
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usage description). The proposed system has been implemented in FogFlow!, and shows
benefits concerning the internal data traffic and ultimately the service latency, however
their scheduling algorithm does not encompass the possibility to utilize the benefits of
specific hardware accelerators.

In another recent effort, Baresi and Mendonga proposed a Serverless Edge Platform
[BM19]. They created a prototype platform based on OpenWhisk. However they do
not handle the scheduling of the function containers at all as they proposed running all
components of the FaaS framework on each node. This is only feasible as they assume to
use less resource constrained nodes, each having 16 GB of RAM and 12 CPU cores.

Currently there are already several commercial products extending their cloud offerings to
the edge. AWS IoT Greengrass?, an extension of AWS Lambda, allows connected devices
to invoke AWS Lambda functions on the AWS IoT Greengrass Core device placed on the
network edge. However the deployment configuration, i.e. the set of functions invokable
by the IoT devices, has to be done manually. The same terms apply for Microsoft’s Azure
IoT Edge?. The IoT products by the two remaining global cloud computing competitors,
Google Cloud IoT Core* and IBM’s Watson IoT Platform®, do not allow any edge-located
devices to execute FaaS functions yet.

OpenWhiskS, a popular open-source Faa$S platform initiated by IBM and now an Apache
project, has been slightly modified by Breitgand to demonstrate an exemplary setup of
OpenWhisk in an edge scenario [Brel8]. Yet, it is just a slimmed version of OpenWhisk
assuming that the complete platform runs on the edge device instead of a mixed cloud-
edge infrastructure. This means that the functions cannot run on different edge devices or
even in the cloud. Our platform however encompasses many nodes in a mixed cloud-edge
cluster and for each workload individually decides where to run the functions.

3.2 Container Orchestration at the Edge

In an evaluation of the usage of Docker containers in an edge computing platform, Ismail
et al. identified several aspects of Docker which would be beneficial when being used in
such a platform, including a) its low footprint, b) its portability, and c¢) its performance
[Ism+15]. All major open-source FaaS platforms are based on Docker for their function
deployments. Therefore a specialized scheduler for Docker containers can easily be
integrated and fits well for edge computing environments.

K8s, initially created by Google, is currently the most popular CO system and has
emerged to a de-facto standard in its domain (see Section 2.4.4). In order to address

"https://github.com/smartfog/fogflow (visited on Nov. 26, 2019)

2https://aws.amazon.com/greengrass/ (visited on Nov. 26, 2019)

3https://azure.microsoft.com/en-us/services/iot—edge/ (visited on Nov. 26, 2019)

Nttps://cloud.google.com/iot-core/ (visited on Nov. 26, 2019)

Shttps://www.ibm.com/internet-of-things/solutions/iot-platform/
watson-iot-platform (visited on Nov. 26, 2019)

®nttps://openwhisk.apache.org/ (visited on Nov. 26, 2019)
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3.3. Scheduling at the Edge

the emerging topic of edge computing a new working group has been instituted in June
2018, focusing on how K8s can be used in such scenarios [Kubb]. One result of the
working group will be a whitepaper on different use-cases, how they can look like from
an infrastructural perspective, and how they can be handled with current and upcoming
features of K8s. Currently, only the work-in-progress document is available yet.

As edge computing enables heterogeneous — often resource-constrained — devices, K3s’
aims to create a lightweight version of K8s. While being a fully certified K8s distribution,
it removes lots of non-mandatory components of a default K8s distribution and specifically
aims at supporting ARM devices. The support of these processors, which are heavily used
in resource constrained devices, as well as the drastically lower resource consumption

perfectly aims on edge devices. However, the project just released its first stable version.

Once the project becomes mature, our scheduler can be integrated in K3s clusters like
in any other K8s cluster. This will ultimately allow the creation of even more resource
preserving clusters without any integration efforts.

There are also some scholarly efforts on using or even extending K8s to handle edge
deployments. Wobker et al. used existing features provided by the K8s Scheduler (namely
labels and nodeSelectors) to define the capabilities of nodes and influence the scheduling
[W6b+18]. As these labels and selectors are assigned in advance and are not adopted,
they do not dynamically adjust to changes in the infrastructure. While we are also using
labels as means of providing scheduling metadata, we additionally replaced the scheduler
itself. This allowed us to implement highly domain-specific scheduling logic.

Xiong et al. implemented a set of extensions to K8s, called KubeFEdge [Xio+18]. Its
most important component, the EdgeCore client running on the nodes, manages the
networking and potentially masks network failures. While this is a promising approach
on extending K8s to handle edge infrastructures, it does not address any changes to
the K8s scheduler in order to include the different network characteristics of such an
infrastructure. As with K3s, once this project becomes mature our scheduler could be
integrated into a KubeFdge cluster.

Due to the different layers of abstraction and its thoughtful design, K8s is highly pluggable
and customizeable. Buzachis et al. compared different K8s overlay networks, responsible
for the networking between the deployed pods, focusing on their usage in an edge
computing environment [Buz+18]. Even though their study does not directly relate
to this thesis, it shows the immense amount of possible layers of optimization and the
benefit of such a well-structured architecture.

3.3 Scheduling at the Edge

Skarlat et al. described a model for automatic Quality-of-Service-aware deployments in
edge infrastructures by taking into account various non-functional requirements relevant
in edge computing infrastructures [Ska+16]. The model has later been refined and they

"https://k3s.1io (visited on Nov. 26, 2019)
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defined a general problem definition based upon it [Ska+17b; Ska+17a]. As the problem
is proven to be N'P-hard, a heuristic was proposed to find near-optimal solutions in
polynomial time. However, the model is highly based on the notion of colonies which form
a three-tier hierarchical architecture, as each colony has its own control node, managing a
set of cells, which in turn is controlled by the cloud middleware. Furthermore, the model
would need to be extended, as it only considered CPU, RAM, and storage constraints.

Scoca et al. proposed a two staged score-based algorithm that considers several hardware
and network metrics in order to find the best deployment configuraton for latency-sensitive
applications in edge computing infrastructures [Sco+18]. First, the eligibility of each
node to host a given workload is determined in the form of a score. The scheduler then
tries to find a configuration which maximizes the score. This approach is actually very
similar to the implementation of the default scheduler in K8s (see Section 5.2).

In an attempt to increase the efficiency of K8s clusters, Ungureanu, Vlideanu, and Kooij
replaced the default scheduler with a hybrid shared-state scheduler [UVK19]. It delegates
most of the tasks to the distributed scheduling agents. A centralized correction function
manages unscheduled and unprioritized pods. The master-state agent is also centralized
and takes care of the cluster state synchronization.
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CHAPTER

Methodology

As stated in Section 1.3, the aim of this thesis is to design, develop, and evaluate
an integrated, optimized, latency- and capability-aware scheduler for running an FaaS
platform in a mixed cloud-edge computing environment. Initially, we specify the platform
to build upon. Section 4.1 describes the software foundation and the motives of their
selection. In Section 4.2, an exemplary scenario is defined and motivated. This leads
to the setup of the testbed, as described in Section 4.3. This test environment is
then used to execute well-defined empirical measurements. Their design is described
in Section 4.4. Our scheduler is using additional function-specific metadata within
its placement algorithm. Section 4.5 defines the schema of the metadata. All those
developments form the foundation for the actual scheduler implementation, which is
briefly outlined in Section 4.6 (see Chapter 5 for the detailed description). In order to
speed up the tests and the following optimizations, it becomes necessary to implement
a simulation environment for the scheduler, which is described in Section 4.7. Finally,
Section 4.8 outlines the usage of the scheduler simulation for the efforts on optimizing
the scheduler configuration.

4.1 Framework Selection

4.1.1 Container Orchestration Platform

The most prominent CO platforms have been listed in Section 2.4.3, namely Docker
Swarm, Marathon, and K8s. In addition to the fact that K8s has emerged to a de-facto
standard when it comes to CO (see Section 2.4.4), its architecture and flexibility brings
several advantages:

Pluggable Scheduler KS8s allows replacing the default scheduler or even running mul-
tiple schedulers side-by-side out-of-the-box.
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Diverse Hardware Support KS8s and its underlying container runtime containerd are
written in Go. Their releases are compiled for Windows, Linux, and lots of different
CPU architectures by default.

Labels In addition to specified resource-limits and -requests for containers, K8s allows
setting additional metadata. These labels are intended to be used to specify
identifying attributes of objects. They allow a structured labeling of any K8s object
in a loosely coupled fashion and they can be read and modified at any time through
the kube-apiserver.

FaaS Integration As stated in Section 4.1.2, all but one of the evaluated FaaS frame-
works either primarily or optionally integrate with K8s as CO for its functions.
Therefore an integration of the selected FaaS platform is trivial.

Scientific Relevance Due to its prominence, K8s is becoming a focal point in research
when it comes to CO.

Due to these advantages of K8s over Docker Swarm and Marathon, K8s has been selected
to be the CO platform of choice for the implementation of our project.

4.1.2 Function-as-a-Service Platform

When selecting the FaaS platform for this project, the following criteria are being
considered:

Is the project open-source? We need full control over the platform, which can only
be guaranteed by using an open-source solution.

Does the open-source license allow usage and modification? The granted priv-
ileges of open-source licenses can vary a lot. The platform needs to be licensed
in a way that allows the usage as well as the modification of its components for
non-commercial usage.

Is it actively developed (is the project ”alive”)? An active community is essen-
tial for an open-source project. It indicates how fast bugs are fixed and how much
help the user can rely on. As there is no universal metric, the amount of GitHub
stars, the latest commit, and the number of contributors are widely used indicators
of open-source project liveliness.

Does it integrate with popular CO platforms? We do not only want to modify
the FaaS platform but also the underlying CO platform. Therefore the CO platform
it integrates with is fundamental for the FaaS platform selection.

Does it support different CPU architectures? As stated in Section 2.1, there is
a high heterogeneity among edge devices. Especially resource constrained edge
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4.2. Scenario

devices usually do not work on the usual AMD64 CPU architecture, but on the
(increasingly prominent) ARM(64) architecture. In order to build our testbed, it is
mandatory that the platform supports those architectures as well.

Table 4.1 shows the most prominent open-source FaaS platforms with their licenses, the
CO platforms they integrate with, their supported CPU architectures, their GitHub stars,
and their GitHub contributor count as of Oct. 16, 2019.

OpenFaaS appears to be one of the most active projects among all of the evaluated
ones. It has recent commits, a high amount of contributors, and by far the most GitHub

stars. Moreover it integrates with K8s and Docker Swarm, and has a very open license.

Mohanty, Premsankar, Di Francesco, et al. found OpenFaaS to be easily extendable with
a flexible architecture [MPD+18]. It also shows a reasonable performance in terms of
request throughput [PKC19]. However, the most important factor is that it is the only
project which supports CPU architectures other than AMDG64.

4.2 Scenario

Possibly the most prominent scenario, and one of the main driver of IoT, is its usage in
the area of manufacturing. As more and more manufacturing machines are equipped with
sensors, measuring all the different runtime properties of the machines, the collected data
holds great potential for a broad range of applications. For example, the sensor data can
be used to draw conclusions about the health or the production efficiency of the system
under consideration. Thereby, the area of predictive maintenance is increasingly becoming
a point of focus. By using these newly available vast amounts of data in combination
with modern ML techniques, it becomes feasible to predict upcoming failures before they
actually happen. This allows the targeted scheduling of maintenance tasks in order to
avoid those failures from actually happening.

The sensors on the machines are continuously read and their data is sent to the predictive
maintenance system. This system, in turn, then a) uses its current ML model to detect
if the data indicates possible upcoming failures, and b) repeatedly re-trains its model
using the latest sensor data as well as reports on failures which have not been detected in
advance. Figure 4.1 illustrates the usage of edge devices on the premises of the factory.

As stated in Section 3.1, there already are commercial products available (like AWS
Greengrass) which allow the execution of FaaS functions on-premises on devices in the
factory itself. However, their configuration is highly static, they do not allow the usage
of specialized hardware, and cannot easily fall back to using cloud-resources in case
of failing nodes or high utilization. Therefore, for the sake of seamless scalability and
failure-safety, it is necessary to avoid separation and manual configuration, but rather
create one heterogeneous cluster reaching to the edge of the network intelligently placing
a new workload on the one node which suits it best.
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Platform GitHub Repo License CcO CPU Latest . Stars | Contr.
Archs | Commit
K8s
OpenWhisk apache/openwhisk | Apache License 2.0 | Docker Compose | AMD64 | 15.10.2019 | 4290
Mesosphere
Kubeless kubeless/kubeless | Apache License 2.0 | K8s AMDG64 | 02.09.2019 | 5128
Fission fission/fission Apache License 2.0 | K8s AMDG64 | 12.10.2019 | 4664
Knative knative/serving Apache License 2.0 | K8s AMDG64 | 16.10.2019 | 2344
Fn Project fnproject/fn Apache License 2.0 | Docker AMDG64 | 03.10.2019 | 4270
K8s AMD64
OpenFaaS openfaas/faas MIT License ARM 15.10.2019 | 15806
Docker Swarm
ARM64
Riff projectriff /system | Apache License 2.0 | K8s AMDG64 | 16.10.2019 | 746
nuclio nuclio/nuclio Apache License 2.0 | K8s AMD64 | 02.10.2019 | 2995
K8s
IronFunctions || iron-io/functions | Apache License 2.0 | Docker Swarm AMDG64 | 20.08.2018 | 2652
Mesosphere

Table 4.1: Comparison of open-source FaaS platforms as of Oct. 16, 2019
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Figure 4.1: Ilustration of a predictive maintenance scenario

4.3 Testbed

In order to perform empirical measurements (as described in Section 4.4) and to show
the feasibility of our scheduler being fully integrated in a running system, a testbed —
running the selected technologies described in the previous sections — has been created.
With the exception of the initial OS setup, all installation steps have been automated
using Ansible! and bash scripts. This enables the scalability in terms of nodes in the
testbed and simplifies setting up or resetting the testbed.

4.3.1 Nodes

The testbed needs to simulate a heterogeneous mixed cloud-edge environment. Therefore
the setup consists if six different nodes. All nodes are interconnected using a 1 GBit/s
Ethernet connection (their connectivity is programmatically limited using a kernel-module
as explained in Section 4.4). Figure 4.2 illustrates the testbed’s node composition.

Five nodes are created using edge hardware, namely four Raspberry Pi 8B+ and one
NVidia Jetson TX2 Developer Kit.

The NVidia Jetson TX2 is available as an integrated module (meant for production
settings) and as a developer kit (as the name suggest for the purpose of creating new

'https://www.ansible.com/ (visited on Nov. 26, 2019)
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Figure 4.2: Illustration of the nodes in the testbed

applications). Even though these two different types differ in their dimensions and the
provided peripherals, their hardware components are equivalent. Therefore, even if we
used the bulky NVidia Jetson TX2 Developer Kit in our testbed, it is substitutable with
its compact module version. It has specifically been created for ML applications at the
edge with a 256-core Graphics Processing Unit (GPU).

The Raspberry Pi 3B+ on the other hand is not equipped with any ML hardware
accelerator. But due to its small dimensions, its very low price, and its open-source
design the different versions of the Raspberry Pi have already been sold more than 25
million times and are heavily used in industry and research [Ols19].

The hardware specifications of the different edge devices are shown in Table 4.2.

The remaining node is the most powerful one and represents a cloud node. It is a VM
instance provisioned in an on-premises cluster featuring a 3 GHz Quad-Core (Intel Core
2 Duo P9xxx) and 8 GB RAM but without any GPU.

On the VM as well as the NVidia device Ubuntu 18.04.3% was installed. The Raspberry
Pi devices were set up with HypriotOS 1.9.0% (a Raspbian-based distribution created to
ease running Docker containers on Raspberry Pi devices).

A picture of the testbed’s edge nodes and their network devices is shown in Figure 4.3.

4.3.2 Kubernetes

Once the nodes are set up and interconnected in a network, they are combined to form a
K8s cluster using kubeadm, a CLI tool helping to bootstrap K8s clusters that conform to
best practices. The VM node has the most resources and thereby acts as master, running
the kube-apiserver, the kube-controller-manager, an etcd instance, and most importantly

*https://ubuntu.com (visited on Nov. 26, 2019)
Shttps://hypriot.com (visited on Nov. 26, 2019)
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4.3.

Testbed

Raspberry Pi 3B+

NVidia Jetson

NVidia Jetson

TX2 Dev Kit TX2 Module
Release date 3.2018 3.2017 3.2017
Price ~35 € ~420 € ~500 €

CPU architecture

ARMvS-A (64/32-bit)

ARMvS-A (64/32-bit)

Number of cores

4

6

1.4 GHz Quad-Core

2 GHz Dual-Core

CPU clock NVidia Denver2

ARM Cortex-Ab3 5 GHz Quad-Core

ARM Cortex-A57

GPU 3?3:282?; v 256-core Pascal GPU
RAM 1 GB 8 GB
Ethernet 1 GBit/s 1 GBit/s
Height 85.6 mm 170 mm 87 mm
Width 56.5 mm 170 mm 50 mm
Depth 17 mm 50 mm 10 mm
Weight 45 g - 88 g

Table 4.2: Edge device hardware comparison

Figure 4.3: Picture of the testbed’s edge nodes and their network devices
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the kube-scheduler (as described in Section 2.4.4). Afterwards, all nodes — including the
VM node — are joining the master as K8s nodes.

Due to the NVidia specific Ubuntu distribution, it is necessary to re-build its Linux
kernel with additional flags in order to enable the cluster networking (managed by the
local kube-prozy instance). Finally, due to NVidia’s lack of support for their own ARM64
devices when it comes to their custom Docker runtime nvidia-docker?, the creation and
usage of a custom runC fork® is required to allow Docker containers, running on the
device, access the GPU. Appendix A lists the necessary kernel flags and the patch for
the container runtime.

4.3.3 Software

Once the K8s cluster is up and running, several other software components are deployed
by either using Helm® (a package manager for K8s) or the CLI tool kubectl:

K8s Dashboard” The official dashboard is a web-based user interface (UI) for K8s
clusters allowing users to manage the cluster itself as well as applications deployed
on it.

Trzefik Ingress Controller® Ingress controllers are responsible for routing traffic to
K8s services and can add additional functionality like Transport Layer Security
(TLS) termination, path rewrites, name based virtual hosts, and TLS certificate
management. Treefik is a cloud-native open-source reverse-proxy and load-balancer.
It fully integrates with K8s by providing a K8s Ingress Controller.

MinIO? As the Faa$S functions need to be stateless, their only possibility to exchange
data is through an external storage system. MinlO is an open-source object storage
server which is fully compatible with Amazon’s S3 cloud storage service.

OpenFaaS Last but not least, the selected FaaS platform is deployed on the cluster by
using a Helm chart in OpenFaaS’ custom Helm repository!?.

As soon as the ingress controller and OpenFaaS have been installed, the FaaS platform
can be accessed and controlled either by using the OpenFaaS API gateway portal — as
pictured in Figure 4.4 — in a browser or the CLI tool of OpenFaaS'!.

‘https://github.com/NVIDIA/nvidia-docker (visited on Nov. 26, 2019)
®https://github.com/alexrashed/runc/ (visited on Nov. 26, 2019)
Shttps://helm.sh/ (visited on Nov. 26, 2019)
"nttps://github.com/kubernetes/dashboard (visited on Nov. 26, 2019)
®https://traefik.io/ (visited on Nov. 26, 2019)

https://min.io/ (visited on Nov. 26, 2019)
https://github.com/openfaas/faas-netes (visited on Nov. 26, 2019)
"https://github.com/openfaas/faas—cli (visited on Nov. 26, 2019)
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e *

<« C A Notsecure | openfaas.thesis.git-init.org/ui/ g

@ OpenFaa$S Portal

You have no functions in OpenFaaS.
g Deploy New Function Start by deploying a new function.

DEPLOY NEW FUNCTION

Or use faas-cli to build and deploy functions:

% curl -sSL https://cli.openfaas.com | sudo sh

Figure 4.4: Screenshot of the OpenFaaS API gateway portal

NP EEEBENNAD

Figure 4.5: MNIST example images [LCB9S|

4.3.4 Test-Workflow

For the simulation and evaluation of our scheduler, it is necessary to create an example
workload for our system. As described in Section 2.6 and Section 4.2, a workflow executing
a series of ML tasks suits the usual requirements of our scenario. For the implementation,
the Modified National Institute of Standards and Technology (MNIST) database of
handwritten digits is utilized [LCB98]. This database is widely used in ML research,
experiments, and teaching. It contains 60,000 images for training a model and additional
10,000 for testing its precision. An example set of digits contained in the MNIST database
is shown in Figure 4.5.

Since the functions need to be able to run on each node, the functions are implemented

using Apache MXNet as it is the only popular ML framework supporting ARM devices.

However, the Python wheel for the usage of MXNet in ARM Docker images has to be

compiled manually. For the serving of the MXNet model, MXNet-Model-Server'? is used.

MXNet-Model-Server does not have any functionality to update currently served models
once they change in their remote storage. Therefore an additional component is used to
watch for changes in the remote storage and updates the served model once it detects
any changes.

2https://github.com/awslabs/mxnet-model-server (visited on Nov. 26, 2019)
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OpenFaas

MinlO storage

Figure 4.6: Execution-graph of a single workflow execution

As illustrated in Figure 4.6, the following steps are performed during one workflow
execution:

10.

11.

38

. OpenFaaS detects a function trigger. There are several ways to trigger a function

execution, for example via an incoming HTTP request, a message on a specific
message queue topic, or by reaching a scheduled task execution using cron-task
syntax.

The FaaS framework triggers the execution of the first workflow step ml-wf-1-pre.

It downloads the MNIST images and converts them to a specific data format. This
task represents the Data Preprocessing as described in Section 2.6.

The preprocessed data is stored in the external storage.
The first workflow step reports its completion to OpenFaaS.
OpenFaaS triggers the execution of the second workflow step ml-wf-2-train.

This function first downloads the preprocessed data from the external storage.

. Afterwards, the data is used to train a model utilizing hardware accelerators (i.e.

the GPU of the node) if possible.
The created model is again stored in the external storage.

In the meantime, the watchdog of the third function — ml-wf-3-serve — is continuously
watching the external storage for changes on the model. Since it detects a change
after the completion of ml-wf-2-train, it downloads the new model.

Finally, the new model is served by the MXNet-Model-Server in ml-wf-3-serve.
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arch:amd64
ml-wf-1-pre:0.33-amd64 [< ml-wf-1-pre:0.33
arch:amd64
ml-wf-2-train:0.33-amd64
arch:amdé4
ml-wf-3-serve:0.33-amd64 <
arch:armé64
ml-wf-1-pre:0.33-armé4 <
arch:armé4
ml-wf-2-train:0.33-arm64

arch:armé4

[ ubuntu:18.04 ]4—[ mxnet:1.5.0-pre-amd64 ]<1—

mxnet-model-server:1.0.4-
amd64

ml-wf-2-train:0.33

mxnet:1.5.0-pre-armé4

A

arm64v8/ubuntu:18.04

mxnet-model-server:1.0.4-
armé4

ml-wf-3-serve:0.33-arm64 ml-wf-3-serve:0.33

arch:armhf
ml-wf-1-pre:0.33-armhf <

arch:armhf

arm32v7/ubuntu:18.04

A

ml-wf-2-train:0.33-armhf

arch:armhf
ml-wf-3-serve:0.33-armhf <

Figure 4.7: Hierarchy diagram of the workflow function Docker images

mxnet-model-server:1.0.4-
armhf

Workflow Step || CPU Architecture | Size (MB) |

armhf 440.10
ml-wf-1-pre arm64 513.09
amd64 505.73
armhf 482.59
ml-wf-2-train arm64 555.83
amd64 522.01
armhf 483.29
ml-wf-3-serve arm64 558.50
amd64 558.79

Table 4.3: Workflow function Docker image sizes per CPU architecture

To create a single Docker tag for a function, which in turn references one Docker image
per CPU architecture, it is necessary to create cross-compiled images which then are
referenced using a — currently experimental — Docker feature called manifest list. This
results in a complex Docker image hierarchy shown in Figure 4.7.

The size of an image impacts the time it takes for the host to pull the image from
the registry. Table 4.3 lists the compressed image sizes for each function and CPU
architecture.
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Download Speed ‘ Delay | Deviation

200 MBit/s 12ms | 1 ms
100 MBit/s 32ms | 3 ms
10 MBit/s 100 ms | 10 ms

Table 4.4: Characteristics of bandwidth presets for the empirical measurements

4.4 Empirical Measurements

Empirical measurements form the basis for the evaluation of the placement quality of
scheduling decisions within the simulator. Therefore it is necessary to measure a broad
range of placements under different configurations of the cluster nodes.

The following variables are considered during the execution of the measurements:

Nodes The placements have to be executed on each node of the testbed.

Workflow Steps Each workflow steps shows different characteristics, therefore each

step has to be measured independently.

Image State The function images are highly specific and use complex frameworks and

libraries, which results in rather large Docker images. If the Docker image of a
function is not present on a node when it’s selected by the scheduler to run the
same function, it needs to be pulled from the registry before the container can be
started. The measurements need to consider both, the image to be present on the
node and the image to be downloaded from the registry.

Bandwidth Each node may have different network characteristics. An edge node does

not have the same network connection to a centralized registry or data storage than
a cloud node. Therefore, the measurements are first run without any bandwidth
restrictions. Furthermore, three different bandwidth presets have been defined to
represent different network characteristics, listed in Table 4.4. These bandwidth
characteristics are individually applied for the inbound and outbound traffic of the
node during the measurements using the Linux utility program traffic control (tc),
which in turn uses several Linux kernel modules.

Startup/Execution For each placement two different times are of interest: a) the time

it takes from the placement decision until the container is running on the selected
node (i.e. the startup time), and b) the time it takes for one single execution of
the already deployed function (i.e. the execution time).

The measurements are implemented using PyTest!3 and are run on an additional Rasp-
berry Pi 3B+. One iteration of these measurements records the times for each permutation

Bhttp://pytest.org/ (visited on Nov. 26, 2019)
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4.5. Metadata

of the described variables, resulting in 288 measurements per iteration. In total, 104 itera-
tions were conducted over a period of 77 days, totaling in 29,952 individual measurements
[Ras19a).

4.5 Metadata

Our specialized scheduler needs to consider additional metadata of the FaaS functions
as well as the nodes in order to make informed placement decisions once the functions
are to be deployed in the mixed cloud-edge cluster. This metadata includes information
regarding a) the requested memory and CPU of the function, b) the available memory
and CPU of the nodes, ¢) the hardware capabilities accelerating a function, d) the
hardware capabilities available on the nodes, e) the locations of the nodes, and f) the
amount of data functions are downloading and uploading.

K8s already provides means of defining the requested memory and CPU resources of
containers and monitors them on the nodes respectively. As described in Section 4.1.1,
K8s allows annotating it’s objects with labels. These labels can be used to annotate the
K8s objects with any additional metadata needed. There is no formal schema for these
labels, but there is a prevailing best-practice:

< topic > . < domain > | < key >:< value >

For example, app.kubernetes.io/name: myservice defines that the annotated object
belongs to the application myservice. The metadata for our scheduler is defined in
compliance with this best-practice.

OpenFaaS already allows settings both, the memory and CPU resource requirements as
well as additional labels, on function deployments. The labels supported by our scheduler,
their usage, as well as our automated capability detection and labeling mechanisms are
described in detail in Chapter 5.

4.6 Scheduler

The main contribution of this thesis is a scheduler specialized for FaaS functions in
mixed cloud-edge clusters. It is plugged into the K8s cluster and becomes responsible for
assigning nodes to the functions at the time of their deployment. In order to make those
specialized decisions, the previously described metadata is used by custom predicate- and
priority functions.

First, the predicate functions are excluding nodes which are violating hard constraints,
for example if they do not have as many available memory or CPU as requested by the
function.

Then, the priority functions are calculating individual scores for each node, for example
they assign a higher score for nodes which provide a hardware capability which accelerates
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the function’s execution. Each score is then multiplied by it’s priority function’s configured
weight.

Finally, the scores are added up and the node with the highest score is selected for the
function to be deployed on. Chapter 5 describes the complete algorithm, the specific
predicate- and priority functions, as well as their implementation in detail.

4.7 Simulation

For the purpose of the execution of the optimization and the thorough evaluation of our
contributions, the scheduling algorithm needs to be executed a vast amount of times.
The execution on our testbed is neither fast enough nor flexible enough for this purpose,
making a simulation environment indispensable.

To simulate different cluster settings it is necessary to define a) the different nodes with
all their important hardware capabilities, b) the connection characteristics between all
those nodes, and ¢) the workload which is deployed onto the simulated cluster during
the whole simulation.

The implementation of the simulation environment is explained in Section 5.7.

4.8 Optimization

Section 4.6 briefly outlines the algorithm of the scheduler. The scores calculated by the
different priority functions are multiplied by their configured weight. For this reason,
these weights do have a direct impact on the placement decisions of the scheduler.

Finding the correct weights is not trivial though, because their selection is an instance
of the MOP as described in Section 2.5. But the MOP is a well-known problem with
prominent solving algorithms. Therefore we are utilizing one of these algorithms to find
near-pareto-optimal solutions for the weights in respect of the different objectives. The
execution of such an algorithm comprises a vast number of executions, thus making it
necessary to use a simulation environment. Once the solutions are found, they can be
used to make an informed decision on the configuration of the scheduler.

A thorough description of the optimization strategy can be found in Chapter 6.
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CHAPTER

Skippy Scheduler

This chapter focuses on the main contribution of this thesis, the Skippy' scheduler. First,
Section 5.1 gives a brief overview of our scheduler and how it fits into the K8s architecture.
Section 5.2 describes the default K8s scheduler in detail, whose reconstruction serves as
a baseline of our evaluation in Chapter 7 and forms the basis of the Skippy scheduler.
Thereafter, Section 5.3 explains the modifications and specifics of the Skippy scheduler.
Section 5.4 describes the role and inner structure of the Skippy daemon. In order to use
those components, the FaaS platform OpenFaaS has been slightly modified. Section 5.5
explains these changes. In Section 5.6, the different components are deployed and
their integration into the FaaS platform and the K8s cluster is demonstrated. Finally,
Section 5.7 outlines the implementation of the simulation environment, which is essential
for the optimization and evaluation.

5.1 Overview

The architecture of K8s and the role of the scheduler has been briefly outlined in
Section 2.4.4. It continuously watches for unassigned pods, searches for the most suitable
node to assign it to, and creates the assignment. Therefore, the scheduler is an essential
component in each K8s cluster without which no workload could actually be deployed.
K8s allows a pod to define the scheduler which should take care of its placement on a
feasible node. This becomes a powerful feature, as it allows us to run our Skippy scheduler
alongside the default scheduler. Then, the Skippy scheduler handles only the function
placements while the default scheduler takes care of any other pods. Theoretically, a
scheduler can run on any node in the K8s cluster, but due to the extensive communication
between the scheduler and the kube-apiserver, it is usually placed on the same (master)

Tt is common for the names of components in the K8s ecosystem to contain nautical references. A
skipper is a person who is in command of a boat, i.e. the current captain in charge. The skipper has
command over the whole crew. Furthermore, the file ending of python modules usually is py.
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Master
skippy-scheduler

kube-controller- kube-scheduler
manager

—
Desired
State

A

Nodes

Figure 5.1: Skippy scheduler in the K8s architecture

node. Figure 5.1 shows how the Skippy scheduler integrates into the K8s architecture.
The Skippy scheduler is built upon the default K8s scheduler. It reuses its basic control
loop and core concept on filtering and scoring the nodes. The following section explains
the inner workings of the default scheduler, and thereby the foundation of the Skippy
scheduler.

5.2 Default Scheduler

The default K8s scheduler — kube-scheduler — is installed by default on each master node.
This scheduler has been recreated in Python? as a foundation for the Skippy scheduler
and subsequently to act as a baseline for the evaluation. In this section, its essential —
and therefore recreated — parts are presented.

Algorithm 5.1 illustrates the control loop of the default K8s scheduler. Once an unassigned
pod is in the queue, it decides if it is responsible, and schedules the pod on the most
suitable node. Afterwards the loop starts over and the scheduler either picks the next
unassigned pod from the queue or waits until a new one arrives.

Algorithm 5.1: Control loop of the scheduler
Result: Unplaced pods are assigned to nodes
1 while true do
pod < wait for next unassigned pod;
if pod wants this scheduler then
schedule pod;
end

(=21 B UV I V)

end

In order to find the most suitable node, the scheduler first calculates the amount of
nodes which should be considered. Section 5.2.1 describes in detail how this amount

*nttps://www.python.org/ (visited on Nov. 26, 2019)
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5.2. Default Scheduler

is calculated. Then, it iterates over the nodes and checks for each node if it passes all

configured predicate functions until the calculated number of feasible nodes is reached.

Predicate functions are hard constraints for scheduling decisions and are explained in
detail in Section 5.2.2. Afterwards, the feasible nodes are individually scored. Each
configured priority function first scores all feasible nodes. In order to avoid dominating
priority functions, the scores for each priority function are normalized by transforming
them on a scale from 0 to 10. Section 5.2.2 describes the different priority functions in
detail. Finally, the different scores for each node are summed up and the pod is assigned

to the node with the highest score. Algorithm 5.2 shows the pseudocode of the algorithm.

Algorithm 5.2: Scoring algorithm of the scheduler

Input: pod
Result: Suggested node for unassigned pod
nodes + getAvailableNodes();
numOfNodes <+ length(nodes);
numOfNodesToFind « calceNumOfNodesToFind (numOfNodes);
for node in nodes do
for predicateFunction in predicateFunctions do
if node passes predicateFunction then
feasibleNodes.add(node);
if length(feasibleNodes) > numOfNodesToFind then
‘ break;
end

© B N O UR WN e

=
=}

end

[a=y
=

end

=
N

end
for priorityFunction in priorityFunctions do
for node in feasibleNodes do
score node with priorityFunction;
end
normalize the scores over all nodes;
multiply each score with the weight of priorityFunction;
add the score to the node’s overall score;

e e e e T
© ® N o otk W

N
[=)

end
assign pod to node with highest overall score;

N N
N =

As stated in Section 2.4.4, the scheduler solely communicates with the cluster through
the kube-apiserver. It provides all contextual information — like newly arrived pods, the
available nodes, and their available resources — and executes the actual binding of the
pod to the node.

45


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

SKIPPY SCHEDULER

46

100 7

75 | 600 |

50 + 400

25 1 200 1

Minimum % of nodes to score

Minimum number of nodes to score

0 ; ' ' ; : : ‘ 0 ; ; w w w i >
0K 1K 2K 3K 4K 5K 6K 7K 0K 1K 2K 3K 4K 5K 6K 7K
Number of nodes Number of nodes

(a) Minimum percentage of nodes to score  (b) Minimum number of nodes to score

Figure 5.2: Minimum nodes to score of the default K8s scheduler

5.2.1 Number of Nodes to Score

The execution of each configured priority function on each node is computationally
expensive. Part of the scheduling logic is a heuristic to reduce the number of nodes
that need to be scored. To find the most suitable node for a pod, the scheduler initially
determines how many of the feasible nodes it should consider for scoring. This algorithm
has been initially introduced in K8s version 1.12 (by using a static percentage of nodes),
and has been refined recently in version 1.16. Equation (5.2) shows the function to
calculate the number of feasible nodes to score as of version 1.16, where x is the number

of nodes in the cluster.
T

"~ 12500

p(z) =0.5 (5.1)

x, if p(z) * x < 100.
f(z) = ¢z %0.05, ifp(z)*z>100A p(x) < 0.05. (5.2)

x*p(x), otherwise.

Once the cluster has more than 100 feasible nodes, the percentage of nodes to consider
for scoring decreases linearly from 50% to 5%, where it hits the lower limit. Figure 5.2a
shows the linear decrease of the percent of nodes to score, while Figure 5.2b shows the
course of the absolute number of nodes to score.

This approach mitigates the problem of scheduler performance degradation in clusters
with a high amount of nodes. On the other hand, when only considering a subset of all
available nodes, there is a risk of not considering a potentially better suiting node for
the current pod, hence decreasing the placement quality. This risk may be low when
considering highly homogeneous clusters, like typical cloud infrastructures, but gets
higher the more heterogeneous the devices in a cluster are.
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5.2. Default Scheduler

5.2.2 Predicate Functions

The predicate functions are used to enforce hard constraints. Even though the default
K8s scheduler implements several predicate functions (e.g., to enforce cloud platform
specifics, mandatory volume mounts, or advanced scheduling features like affinities or
taints and tolerances) the only necessary predicate function for our use-case is the
PodFitsResourcesPred.

PodFitsResourcesPred

This predicate function ensures that a node, which is about to be scored, has enough
resources to cope with the containers in the pod. For this reason, the predicate function
iterates over the pod’s containers and sums up their CPU and RAM requirements
respectively. If a pod’s container does not specify its resource requirements, 0.1 CPU
cores and 200 MB of RAM are assumed. If the node does not have enough of each
resource, it is dropped by the predicate function. Algorithm 5.3 shows the pseudo-code
of the PodFitsResourcesPred.

Algorithm 5.3: PodFitsResourcesPred

Input: pod

Input : node

Result: Nodes with insufficient available resources are discarded
allocatableCPU <« allocatable CPU for node;

allocatableRAM < allocatable RAM for node;

requestedCPU <« 0;

requestedRAM < 0;

for container in pod’s list of containers do

requestedCPU & requested CPU for container or 0.1;

requestedRAM &£ requested RAM for container or 200;
end
return requestedCPU < allocatableCPU A requestedRAM < allocatableRAM;

© O N o s W N =

5.2.3 Priority Functions

Priority functions act as soft constraints, and rate how well the pod fits on the node
considering the priority functions specific purpose. Therefore, priority functions are used

to define soft constraints and to ensure that the cluster converges to a desirable state.

Just as with the predicate functions, the default scheduler implements numerous priority
functions. For our use-case, the BalancedResourcePriority and the ImageLocalityPriority
are important and have been recreated.
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BalancedResourcePriority

This priority function favors nodes with a balanced resource usage rate. It calculates
the difference between the CPU and the RAM fraction of capacity, and prioritizes nodes
based on how close these two fractions are to each other. Algorithm 5.4 contains the
pseudo-code of the BalancedResourcePriority.

Algorithm 5.4: BalancedResourcePriority

Input: pod

Input : node

Result: Score how well a pod balances the resources on the node
allocatableCPU < allocatable CPU for node;

allocatableRAM < allocatable RAM for node;

requestedCPU <« 0;

requestedRAM < 0;

for container in pod’s list of containers do

requestedCPU & requested CPU for container or 0.1;

requestedRAM & requested RAM for container or 200;

end
fractionCPU < requestedCPU / allocatableCPU;
fractionRAM < requestedRAM / allocatableRAM;
if fractionCPU > 1V fractionRAM > 1 then

‘ return 0
end
diff - |fractionCPU - fractionRAM]|;
return (1 — diff) * maxPriority;

© O N O Uk WN =
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ImageLocalityPriority

As mentioned in Section 4.3.4, the container images may become large in size (for example,
the compressed ARM64 model training image of our workflow has 555 MB). If such an
image is not present on the node, it may take a considerable amount of time to pull the
image from the registry. Therefore, the ImageLocalityPriority favors nodes who already
have the images of the containers of the pod on their local storage. In order to mitigate
the "node heating problem” — i.e. pods get assigned to the same nodes over and over
again due to image locality — it is necessary to scale the score based on the ratio of
the amount of nodes the image has already spread to and the total number of nodes.
Additionally, a minimum and maximum value is introduced and the score is transformed
on the scale from 0 to 10 (the maximum score of the priority function). Algorithm 5.5
shows the pseudo-code of the priority function.
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5.3. Skippy Scheduler

Algorithm 5.5: ImageLocalityPriority

Input: pod

Input : node

Result: Score how many of a pod’s container images are present on the node
imageScore < 0;

for container in pod’s list of containers do

if container’s image is present on node then
number of nodes the container’s image is present on ,
Spread = total number of nodes ’

PR CR

imageScore <& size of the container’s image * spread;
end
end
if imageScore < 23 MB then
‘ imageScore < 23 MB;
10 else if imageScore > 1000 MB then
11 ‘ imageScore < 1000 MB;
12 end
13 return maxPriority * (imageScore — 23 MB)/(1000 MB — 23 MB);

© ® N o w»m

5.3 Skippy Scheduler

In comparison to the default scheduler, the Skippy scheduler replaces an existing priority
function and adds several new priority functions. These priority functions are highly
domain-specific and leverage additional metadata as described in Section 4.5. Section 5.4
outlines how node-specific metadata is gathered automatically. Section 5.6.2 shows how
the additional metadata is applied to functions at deploy time. Furthermore, Skippy
uses a bandwidth graph in order to facilitate bandwidth specific priority functions. We
assume this bandwidth graph to be available, as the bandwidth monitoring is out of the
scope of this thesis. Details on how we simulated the bandwidth graph can be found in
Section 5.7.

5.3.1 Number of Nodes to Score

As stated in Section 5.2.1, scoring only a subset of the available nodes may decrease the
placement quality especially in heterogeneous clusters. Therefore, the Skippy scheduler
does not pre-select a certain subset of the nodes but always scores all feasible nodes in
the cluster.

5.3.2 Predicate Functions

No additional predicate functions have been implemented for the Skippy scheduler yet.

The default scheduler’s only predicate function — the PodFitsResourcesPred described in
Section 5.2.2 — is reused.
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5.3.3 Priority Functions

The core of the Skippy scheduler are the additional domain-specific priority functions.
While the default scheduler’s BalancedResourcePriority is reused, the ImageLocalityPri-
ority is replaced with the LatencyAwarelmageLocalityPriority. The remaining three new
priority functions — the Locality TypePriority, the DataLocalityPriority, and the Capabili-
tyPriority — are mere additions. Their individual purpose and operating principles are as
follows.

Latency AwarelmageLocalityPriority

As mentioned in the preceding section, the container images may have a significant
size. While the ImageLocalityPriority takes this size into account, it has no means to
respect the individual network connectivity between the node to score and the container
registry. This is where the LatencyAwareImageLocalityPriority comes in. It replaces
the ImageLocalityPriority and scores the nodes based on how long it would take them
to download all necessary images from the container registry. The lesser the time to
download the necessary images, the higher the node’s score. It is the first priority function
listed here to normalize the scores in a subsequent step, in order to know the upper
boundary for the normalization. The pseudo-code for the priority function is shown in
Algorithm 5.6.

LocalityTypePriority

Based on a predefined mapping, this priority function simply scores nodes according
to their locality. The locality is part of a node’s metadata. Section 5.4 describes
how this data is gathered. In our scenario, we only have two different locality types:
a) cloud, and b) edge. Since the execution on edge devices is beneficial — as described in
Section 2.1.1 — devices on the edge are scored with the maximum value while devices in the
cloud are scored with 0. Algorithm 5.7 shows the pseudo-code of the Locality TypePriority
function.

DataLocalityPriority

In contrast to the Locality TypePriority, the DataLocalityPriority uses the metadata of a
function which is to be deployed. Based on the metadata, it calculates the amount of
data transferred from the next data storage node to the function during its execution.
Analogous to the ImageLocalityPriority, it calculates the amount of time this data needs
to be transferred and normalizes the scores in a subsequent step. The lesser the time to
transfer the data to and from the function, the higher the node’s score. The pseudo-code
for this priority function is shown in Algorithm 5.8.
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Skippy Scheduler

Algorithm 5.6: Latency AwarelmageLocalityPriority

1

© 0w N o kW N
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12
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14

15
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17

Result: Score how long it takes for a node to download a pod’s images

Function score:
Input: pod
Input : node
size < 0;
for container in pod’s list of containers do
if container’s image is not present on node then

size <= size of the container’s image;
end
end
bandwidth < get bandwidth from node to registry;

size

tme < g fuidih
return time;

Function normalize:

Input: pod

Input : nodeScores

minScore < find minimum in nodeScores;
maxScore < find maximum in nodeScores;
for nodeScore in nodeScores do

minScore+maxScore—nodeScore .

. append ..
normalizedNodeScores «+———— maxPriority *
end
return normalizedNodeScores;

maxScore

9

Algorithm 5.7: Locality TypePriority

N o ok W=

Result: Score how long it takes for a node to download a pod’s images

Input: pod
Input: node
priorityMapping < {edge : maxPriority, cloud : 0};
locality Type < get locality.skippy.io/type label of node;
if priorityMapping contains locality Type then
‘ return priorityMapping[locality Type];
else
‘ return 0;
end
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Algorithm 5.8: DatalLocalityPriority
Result: Score how long it takes for a node to transfer runtime data
1 Function score:

Input: pod
Input : node
2 size < 0;
3 if pod has ’data.skippy.io/receives-from-storage’ label then
4 ‘ size <& parsed size of pod’s data.skippy.io/receives-from-storage label;
5 end
6 if pod has ’data.skippy.io/sends-to-storage’ label then
7 ‘ size < parsed size of pod’s data.skippy.io/sends-to-storage label;
8 end
9 nextStorageNode < find nearest storage from node;
10 bandwidth < get bandwidth from node to nextStorageNode;
11 time <+ banf}%;
12 return time;
13 Function normalize:
Input: pod
Input : nodeScores
14 minScore < find minimum in nodeScores;
15 maxScore < find maximum in nodeScores;
16 for nodeScore in nodeScores do
17 normalizedNodeScores append maxPriority * minscore“g;’;sscc‘g;*nOdeS“’re ;
18 end
19 return normalizedNodeScores;
CapabilityPriority

As mentioned in Section 2.2.3, the development of domain-specific hardware will be accel-
erated in the near future. This specific hardware can potentially have a major impact on
the execution time of a suitable task. A classic example is the usage of GPUs to accelerate
the training of ML, models. The purpose of the Capability Priority is the facilitation of such
hardware capabilities available on some of the nodes in the cluster. For this reason, it uses
metadata of both, the function which is to be deployed and the node to score. If the func-
tion is labeled with one or more capabilities, nodes which are labeled with some or all of
those capabilities are favored. These labels being key-value pairs allow it to differ between
the certain versions of capabilities. For example, capability.skippy.io/nvidia-cuda: "10"
is not compatible with capability.skippy.io/nvidia-cuda: "9". Algorithm 5.9 shows the
pseudo-code of the CapabilityPriority.
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5.4. Skippy Daemon

Algorithm 5.9: CapabilityPriority

Result: Score how a pod’s requested capabilities are provided by a node
1 Function score:

Input: pod
Input :node
2 nodeCapabilities < get all of node’s labels starting with capability.skippy.io;
3 podCapabilities < get all of pod’s labels starting with capability.skippy.io;
4 score < 0;
5 for podCapability in podCapabilities do
6 if nodeCapabilities contains podCapability A values are equal then
7 score <= 1
8 end
9 end
10 return score;
11 Function normalize:
Input: pod
Input : nodeScores
12 maxScore < find maximum in nodeScores;
13 for nodeScore in nodeScores do
14 ‘ normalizedNodeScores append maxPriority * %;
15 end
16 return normalizedNodeScores;

5.4 Skippy Daemon

The priority functions described in the previous section depend on the metadata of the
functions and the nodes. While a function’s metadata is maintained by its developer, the
node’s metadata needs to be populated and maintained too. Since there may be a high
fluctuation of devices in a mixed cloud-edge infrastructure, the node label management
has been automated by introducing the Skippy daemon. This small component is deployed
on the cluster as a K8s daemonset, i.e. an instance of the component is deployed on every
single node in the cluster. Once running on the node, the Skippy daemon autonomously
populates and maintains its node’s metadata.

The following capabilities are currently detected by the daemon:
NVidia GPU If the node provides an NVidia GPU, the capability.skippy.io/nvidia-gpu
label is set.

CUDA If the node provides a Compute Unified Device Architecture (CUDA)? in-
stallation, the version string is read, parsed, and set as value for the label

3CUDA is a platform and API by NVidia allowing developers to use their GPUs for general purpose
processing.
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capability. skippy.io/nvidia-cuda.

Locality Type If the node does not have a locality.skippy.io/type label, it is set to
locality.skippy.io/type: edge. This means that new devices are assumed to be edge
devices since we expect a higher fluctuation of these devices and the maintainers of
cloud devices are expected to have a higher degree of control over the cluster (and
therefore can make sure to label new cloud devices responsibly when adding them
to the cluster).

Storage Nodes If the node is running a MinlO pod, it is marked as a storage node by
setting the data.skippy.io/storage-node label.

5.5 OpenFaaS Modifications

Section 5.1 describes how the Skippy scheduler is deployed next to the default K8s
scheduler. This allows us to use our scheduler only for a very specific subset of deployments,
namely the FaaS function deployments. But for these pods to be scheduled by the Skippy
scheduler, they must declare it at deploy time. Since the deployment is created by
OpenFaaS — more specifically a component called faas-netes — a slight modification was
necessary to specify the Skippy scheduler as scheduler for each deployment created by
OpenFaasS.

In addition to this modification, for OpenFaaS to be deployable in our heterogeneous
testbed, it was necessary for each of its components to be available as Docker manifest list
referencing images for each of the CPU architectures used in our cluster. Even though in
Section 4.1.2 we discovered that OpenFaaS claims to be compatible with all of the CPU
architectures in our cluster (AMDG64, ARM, and ARM64), the corresponding images
have not been maintained in quite some time and they were not covered by their build
automation. Therefore it was necessary to cross-compile each of the components and
publish them on DockerHub?.

The patch for both of these changes can be found in Appendix B.

5.6 Integration

Once all components are ready, they can finally be deployed and integrated with each
other in the cluster.

4 https://hub.docker.com/repository/docker/alexrashed/gateway
https://hub.docker.com/repository/docker/alexrashed/openfaas-operator
https://hub.docker.com/repository/docker/alexrashed/faas-idler
https://hub.docker.com/repository/docker/alexrashed/prometheus
https://hub.docker.com/repository/docker/alexrashed/faas—netes
https://hub.docker.com/repository/docker/alexrashed/faas—-netes—skippy
https://hub.docker.com/repository/docker/alexrashed/queue-worker (all visited on
Nov. 26, 2019)
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5.6. Integration

5.6.1 Deploying Skippy

The Skippy scheduler is deployed just as any other deployment in a K8s cluster. Listing
5.1 shows the (truncated) K8s deployment specification for the Skippy scheduler. Line
33 shows how the individual weights for the priority functions are defined during the
deployment as arguments to the scheduler’s container.

apiVersion: apps/vl
kind: Deployment
metadata:
name: skippy-scheduler
namespace: kube-system
labels:
app: skippy-scheduler
spec:
replicas: 1
selector:
matchLabels:
app: skippy-scheduler
template:
metadata:
labels:
app: skippy-scheduler
spec:
# Make sure it’s executed on the master node
nodeSelector:
node-role.kubernetes.io/master: ""
# Tolerate NoExecute taints
tolerations:
- key: "node-role.kubernetes.io/master"
operator: "Exists"

# Set the service name
serviceAccountName: skippy-scheduler

containers:
- name: skippy-scheduler

image: alexrashed/skippy-scheduler:1.0

args: ["--debug", "--weights", "[2.6923720489533647, 2.698796313141462,
5.964581321182787, 4.720991059190411, 9.122271417461349]1"]

Listing 5.1: Skippy scheduler deployment specification

As mentioned in Section 5.4, the Skippy daemon is deployed as a K8s daemonset. In
order to allow the daemon to determine on which node it is running and to detect this
node’s certain hardware capabilities, the daemonset’s deployment specification needs
allow the daemon to access this information as shown in Listing 5.2.

apiVersion: extensions/vlbetal
kind: DaemonSet
metadata:
name: skippy-daemon-daemonset
namespace: kube-system
spec:
template:
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9 metadata:

10 annotations:

11 scheduler.alpha.kubernetes.io/critical-pod: ""

12 labels:

13 name: skippy-daemon

14 spec:

15 priorityClassName: system—node-critical

16 serviceAccountName: skippy-daemon

17 tolerations:

18 0c g

19 containers:

20 - image: alexrashed/skippy-daemon:0.6

21 name: skippy-daemon

22 volumeMounts:

23 — name: cuda

24 mountPath: /usr/local/cuda

25 — name: nvidia-smi-local-bin

26 mountPath: /usr/local/bin/nvidia-smi

27 - name: nvidia-smi-bin

28 mountPath: /usr/bin/nvidia-smi

29 env:

30 — name: NODE_NAME

31 valueFrom:

32 fieldRef:

33 fieldPath: spec.nodeName

34 volumes:

35 — name: cuda

36 hostPath:

37 path: /usr/local/cuda

38 - name: nvidia-smi-local-bin

39 hostPath:

40 path: /usr/local/bin/nvidia-smi

41 — name: nvidia-smi-bin

42 hostPath:

43 path: /usr/bin/nvidia-smi

14

Listing 5.2: Skippy scheduler deployment specification

5.6.2 Deploying a Function
Finally, all components are in place for the FaaS functions with its additional metadata to
be deployed. Listing 5.3 shows the (truncated) function specification file for the training
workflow step which can be deployed using OpenFaaS’ CLI tool faas-cli. While Line 12
defines the RAM resource requirement of 1 GB, all other function specific metadata is
defined in the Lines 14-17 according to the metadata schema described in Section 4.5.

1 |provider:

2 name: openfaas

3 gateway: https://openfaas.thesis.git-init.org

4 | functions:

5 ml-wf-2-train:

6 lang: Dockerfile

7 skip_build: true

8 image: alexrashed/ml-wf-2-train:0.33

9 environment:

10 500

11 requests:
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5.7. Simulation Environment

memory: 1Gi
labels:
capability.skippy.io/nvidia-cuda: "10"
capability.skippy.io/nvidia—-gpu: ""
data.skippy.io/receives-from-storage: 209Mi
data.skippy.io/sends-to-storage: 1500Ki

Listing 5.3: OpenFaaS function specification including Skippy metadata

Figure 5.3 shows the interaction between the different components in the cluster on such
a function deployment. The following steps are executed between the user’s deployment
command and the function’s container being started in a node:

1. Initially, the user initiates the deployment of the function by sending the specification
to the openfaas-gateway.

2. The openfaas-gateway uses our modified component — faas-netes — to create the de-
ployment specification for the newly deployed function and sending the specification
to the kube-apiserver.

3. Since the deployment specification defines the Skippy scheduler as the pod’s sched-
uler, the unassigned pod is picked up by the skippy-scheduler.

4. The Skippy scheduler scores all nodes while taking into account all additional
metadata in its custom priority functions. It selects the highest scoring node and
sends the binding command to the kube-apiserver who takes notice of the binding
in its database.

5. The kubelet running on the selected node realizes that a new pod has been assigned
to its node and starts the pod by instructing the local container runtime to spawn
all containers defined in the pod’s specification.

5.7 Simulation Environment

In order to execute the optimization and to allow a thorough evaluation of our scheduler,
a vast amount of task placements — and thus scheduler runs — need to be executed. As
stated in Section 4.7, our testbed is neither fast enough nor flexible enough for this
purpose, making a simulation environment indispensable. This simulation environment
has been implemented using SimPy®, a Python discrete-event simulation framework.
For a clean separation of concern and to increase code re-usability, the cluster context
has been abstracted — as described in Section 5.7.1. Before starting a simulation, the
following cluster and deployment settings need to be defined:

5https://simpy.readthedocs.io/(visitedonNov.26,2019:
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Figure 5.3: Sequence diagram of a function deployment

e The connection characteristics between all those nodes. Section 5.7.2 describes the
simulated bandwidth graph.

e The tasks which are to be deployed onto the simulated cluster during the whole
simulation. Section 5.7.3 explains the synthetic workload based on our scenario.

e The nodes which form the cluster. Section 5.7.4 discusses the definition of synthetic
nodes for the simulation.

Once all these settings are defined, a simulation runs for a defined simulation runtime.
During such a simulation run, the simulation environment calls the scheduler for as many
task placements — and thereby scheduling algorithm executions — as possible. Once a
scheduling decision has been taken, its quality is estimated by several oracles. These
oracles are heavily based on the empirical measurements, as described in Section 4.4, as
well as on the bandwidth graph. Section 5.7.5 explains the different oracles in detail.

5.7.1 Cluster Abstraction

Figure 5.4 shows a class diagram of the scheduler, its interfaces for predicate and
priority functions, and most importantly the abstraction of the cluster context. This
abstraction is necessary to re-use the same scheduling logic for both, the simulation
and the actual deployment in our K8s cluster. When instantiating the scheduler, the
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{abstract}

KubeClusterContext
ClusterContext

+ max_priority: int

+ images_on_nodes: Dict + max_priority: int

+ images_on_nodes: Dict

+ list_nodes(): List

+ get_image_state(image_name: str): ImageState

+ get_dl_bandwidth(from_node: str, to_node: str): float
+ get_next_storage_node(node: Node): str

+ place_pod_on_node(pod: Pod, node: Node)

+ list_nodes(): List

+ get_image_state(image_name: str): ImageState

+ get_dI_bandwidth(from_node: str, to_node: str): float
+ get_next_storage_node(node: Node): str

+ place_pod_on_node(pod: Pod, node: Node)

SimulationClusterContext

+ max_priority: int

+ images_on_nodes: Dict Scheduler

- cluster_context: ClusterContext

- percentage_of_nodes_to_score: int
- predicates: List

- priorities: List

+ list_nodes(): List

+ get_image_state(image_name: str): ImageState

+ get_dI_bandwidth(from_node: str, to_node: str): float
+ get_next_storage_node(node: Node): str

+ place_pod_on_node(pod: Pod, node: Node)

+ schedule(pod: Pod): SchedulingResult

<<interface>>
Predicate

+ passes_predicate(context: ClusterContext, pod: Pod, node: Node): bool

<<interface>>
Priority

4_

+ map_node_score(context: ClusterContext, pod: Pod, node: Node): int
+ reduce_mapped_score(context: ClusterContext, pod: Pod, node:Node, node_scores: List): List

Figure 5.4: Class diagram of the Scheduler and the ClusterContext

respective ClusterContext for the current purpose, a list of predicate functions, and

a list of tuples of priority functions with their weights are passed to the constructor.

While the KubeClusterContext uses the kube-apiserver to retrieve data about the cluster
and execute task placements, the SimulationClusterContext only uses the predefined
simulation settings. This results in a high degree of code-reuse while enabling a fine
grained configuration of the scheduler for each simulation run.

5.7.2 Bandwidth Graph

Other than in a homogeneous cloud infrastructure, the nodes in a mixed cloud-edge
infrastructure may each have different network connectivity. To be able to take this into
account in our scheduler, it is necessary to define the different bandwidths between each
other — i.e. define the bandwidth graph.

As described in Section 5.7.5, the estimation of the different task placement quality
metrics are based on the empirical measurements described in Section 4.4. Therefore it is
necessary for assumed bandwidth values to be included in the list of bandwidth presets
as defined in Section 4.4. Otherwise, if an assumed bandwidth between two nodes is not
contained in the list of bandwidth presets, the according empirical measurements would
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1 GBIit/s

—100 MBit/s

—10 MBit/s’

docker

Registry

Figure 5.5: Simulated bandwidth graph

be missing.
We assume the following network connectivities between the different device types:
e Edge device to edge device: 10 MBit/s

e Edge device to cloud device: 100 MBit/s

e Edge device to container registry: 10 MBit/s

Cloud device to edge device: 100 MBit/s

Cloud device to cloud device: 1 GBit/s

Cloud device to container registry: 100 MBit/s

e Loop-back for each device: 1 GBit/s

In our testbed, this results in the bandwidth graph shown in Figure 5.5.

5.7.3 Workload

Section 4.3.4 describes the different functions of our scenario workflow. The simulated
workload is aligned on the typical scenario execution by iterating over the steps of the
workflow in a round-robin fashion. The function metadata for each workflow step is
shown in Table 5.1.
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5.7. Simulation Environment

’ Step H Resources Labels

"data.skippy.io/receives-from-storage’: "12Mi’

ml-wh-1-pre memory: 100Mi "data.skippy.io/sends-to-storage’: "209Mi’

‘capability.skippy.io/nvidia-cuda’: ’10’
‘capability.skippy.io/nvidia-gpu’: ”
"data.skippy.io/receives-from-storage’: "209Mi’
'data.skippy.io/sends-to-storage’: '1500Ki’

ml-wf-2-train || memory: 1Gi

ml-wf-3-serve 'data.skippy.io/receives-from-storage’: "1500Ki’

Table 5.1: Metadata of simulated workflow functions

Device Type H Resources Labels

VM cpus: 4 "beta.kubernetes.io/arch’: ’amd64’
memory: 7.79Gi "locality.skippy.io/type’: 'cloud’
cpus: 4 'beta.kubernetes.io/arch’: ’arm’

Raspberry P1 3B+ memory: 975.62Mi | ’locality.skippy.io/type’: ’edge’

"beta.kubernetes.io/arch’: ’arm64’
cpus: 4 ‘capability.skippy.io/nvidia-cuda’: ’10’
memory: 7.67Gi ‘capability.skippy.io/nvidia-gpu’: ”
"locality.skippy.io/type’: ’edge’

NVidia Jetson TX2

Table 5.2: Metadata of simulated cluster nodes

5.7.4 Nodes

For the simulation, we synthesized the same devices as we used in our testbed. Table 5.2
shows the different device types with their characteristics. The resources available on each
device type have been extracted from the node metadata in our testbed using the K8s
CLI kubectl. The percentage distribution of the different devices have a great influence on
the characteristics of the cluster. For the evaluation of our contributions, in Section 7.1
we defined a set of cluster configurations — i.e. the size of a simulated cluster together
with the percentage distributions of the different devices therein.

5.7.5 Oracles

Since we are not actually deploying and executing the tasks in a real cluster, we cannot
measure the different metrics necessary to rate the quality of the task placements, but
have to estimate them. After each simulated task placement, oracle functions are executed
to create informed estimations of the different metrics. Each of the following five oracles
is responsible for the estimation of one specific metric.
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Startup Time

The startup time estimation is solely based on the empirical measurements described
in Section 4.4. Initially, it loads all data sets of the measurements of the startup time.
When estimating a simulated placement, it first determines the following properties:

e Which workflow function has been scheduled?
e Which bandwidth does the selected node have to the container registry?
e Is the workflow function image already present on the node?

e On which of the device types has the function been placed on?

Then, the data set is filtered for matching measurements and a random sample is selected
as estimation.

Execution Time

The execution time estimation works analogous to the startup time estimation, but
instead of the startup time it loads the data set for the execution time measurements.

Bandwidth Usage

In order to estimate the bandwidth usage, the following aspects are taken into account:

e Which workflow function has been scheduled?
e Is the workflow function image already present on the node?

e Does the workflow function define metadata concerning data being transferred?

The estimated bandwidth usage is the sum of data defined in the function metadata and
the size of the workflow function image (if it’s not yet present on the selected node).

Edge Resource Utilization

The resource utilization of the edge devices is estimated using the node’s locality type, the
resource capabilities of the nodes, and the resource requirements of the placed function.
For nodes with locality types other than ”"edge”, the resource utilization 0 is estimated,
as we only want to consider edge devices in this metric. For edge devices, the resource
utilization estimation is the sum of the fraction of the node’s CPU and the fraction of
the node’s RAM needed by the function.
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5.7. Simulation Environment

Cost

The cost estimation is based on the AWS Lambda pricing of function executions on
machines with 1 GB RAMS. If the function is placed on a cloud device, the cost is
estimated by multiplying this price — 0.00001667 USD per second — with the estimated

function execution time. If the function is placed on an edge device, no costs are estimated.

Shttps://aws.amazon.com/lambda/pricing/ (visited on Nov. 26, 2019)
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CHAPTER

Optimization

Section 5.6.1 shows that the Skippy scheduler is configured by defining the weight for
each priority function. As mentioned briefly in Section 4.8, finding these weights is not
trivial. Each weight has a direct impact on the placement decisions of the scheduler, and
thus on the placement quality. Section 6.1 defines the placement quality as well as the
different objectives it is based on.

These objectives represent coarse-grained goals, that are approached by finding the best
set of weights for fine-grained scores. These scores are obtained by the different priority
functions, each responsible to focus on one specific aspect. This abstraction of not
implementing the objectives directly in priority functions, but defining the objectives
outside of the scheduler, is beneficial in several ways:

e It allows defining objectives without changing the source code of the scheduler,
avoiding recompilation and redeployment of the scheduler.

e It ensures a clean separation of concerns. Each priority function defines one
distinctive fine-grained aspect. The coarse-grained objectives are then approximated
by combining these fine-grained priority functions.

e It would still be necessary to run the optimization, as it cannot be guaranteed that
priority functions which are directly representing a specific objective would have
the desired influence. The optimization also ensures that a selected set of weights
is not dominated by another set of weights — i.e. it ensures that there is no other
set of weights which is better in at least one objective but not worse in the others.

When considering these conflicting objectives, the selection of the weights of the priority
functions of the scheduler is an instance of the MOP as described in Section 2.5. Fortu-
nately, MOP is a well-known problem with prominent solving algorithms. Section 6.2
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describes the implementation of our optimization approach. It explains the utilized MOP
solving algorithm, the employed framework implementing the algorithm, as well as the
calculation of the different objective’s estimation values.

Finally, Section 6.3 describes how to interpret and use the results of the optimization
with the Skippy scheduler.

6.1 Placement Quality

A cluster scheduler’s resource allocations should optimize the cluster state towards
different objectives, as described in Section 4.6. These objectives are often conflicting
and the priority of each individual objective differs among different clusters. Therefore,
it is not possible to define the placement quality as a single value. Instead, each of
the different objective values defines one dimension of the placement quality of a single
task placement decision. For our use-case we consider the following four objectives — i.e.
dimensions of the placement quality.

6.1.1 Bandwidth Usage

The bandwidth usage defines how much traffic a placement causes in the cluster. This
includes pulling function images from the container registry, but also runtime data
transferred during a single function execution. This objective is to be minimized, since
each data transfer needs a share of the limited networking resources in a cluster and
blocks the execution of the function.

6.1.2 Task Execution Time

The TET defines the time it takes from the scheduler’s placement decision to the end of
the function’s execution. This may include pulling a function’s image (if it is not already
stored locally on the selected node), starting the container, and the actual execution of
the function’s code. Since the TET defines the latency of a single request, it should be
minimized.

6.1.3 Cost

As stated in Section 2.2.2; the billing model in FaaS platforms is fundamentally different
from traditional cloud computing billing models. The cost of a function execution is
based on the execution time in the cloud, i.e. the amount of time certain resources are
allocated for the execution. In a mixed cloud-edge infrastructure, and especially in the
predictive maintenance scenario described in Section 4.2, edge devices are added by the
customer in addition to the cloud resources and are running on-premises of the customer.
Since the acquisition and the operation of these edge devices are paid by the customer,
the function execution on those devices is not being considered in our pricing model.
Therefore, the cost is defined by the execution time of a function placement on cloud
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6.2. Implementation

resources multiplied with the price per time interval. Obviously, the costs should be
minimized.

6.1.4 Edge Resource Utilization

The edge device resource utilization is defined as the sum of the ratios of resources (CPU
and RAM) a function placed on an edge device is using. While the pricing of cloud
resources is based on the execution time, the edge devices are operated on-premises and
should be utilized as much as possible. Therefore the edge device resource utilization
should be mazimized.

6.2 Implementation

There are several different algorithms aiming to find solutions to the MOP. One of the
most prominent ones is the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[Deb+02]. It is considered a standard solver, is well tested, efficient, and only has a single
parameter (the number of generations) [Deb14; ED18; KCS06].

An implementation of this algorithm is provided by Platypus', a Python framework
focusing on evolutionary algorithms solving the MOP. A benchmark of the implementation
of six algorithms of the Platypus framework has shown that NSGA-II has the best
performance.

For each optimization, we execute the Platypus framework’s NSGA-IT implementation
with 10,000 generations. This explains the need for a simulation environment, as stated
in Section 5.7, since each optimization run comprises 10,000 generations, each executing
a single simulation. During one of those simulation runs, the simulation environment
calls the scheduler for as many task placements as possible.

After each simulation run, the different objective values are estimated as described in
Section 6.2.1. These estimated objectives are then used by the NSGA-IT implementation
in order to decide on the variation of the priority weights for the next generation.

Due to this high amount of generations, and the number of computations in each
generation (i.e. simulation), the optimization is computationally expensive but also
highly parallelizable. The executions were executed on a machine with 16 CPUs.

For the evaluation of our contributions described in Chapter 7, the optimization was
executed once for every cluster configuration described in Section 7.1. The optimization
for a specific cluster configuration took about 22 minutes for the testbed cluster (6 nodes),
about 1 hour and 53 minutes (+ 5 minutes) for clusters comprising 100 nodes, and about
4 hours 15 minutes (+ 8 minutes) in clusters containing 1000 nodes.

'mttps://github.com/Project-Platypus/Platypus (visited on Nov. 26, 2019)

67


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

OPTIMIZATION

68

6.2.1 Objectives

After each generation of the NSGA-II, it is necessary to estimate the quality of the
simulated placements concerning each objective defined in Section 6.1. For this estimation,
we rely on the different metrics estimated by the oracles described in Section 5.7.5. During
a simulation run, these oracles are executed on each task placement and their resulting
metrics are added to the simulation as metadata. The objective estimations utilizing
those metrics are implemented as follows.

Bandwidth Usage is estimated by calculating the mean value of the bandwidth metric
over all task placement decisions of the simulation run.

TET is estimated by summing up the mean value of the startup time metric and the
mean value of the execution time metric over all task placement decisions of the
simulation run.

Cost is estimated by calculating the mean value of the cost metric over all task placement
decisions of the simulation run.

Edge Resource Utilization is estimated by calculating the mean value of the edge
device resource utilization metric over all task placement decisions of the simulation
run.

6.3 Usage

The result of the optimization is a set of solutions. A solution contains exactly one weight
for each priority function. As described in Section 2.5, these solutions are non-dominated
solutions as near to the pareto-optimal front as possible. Each of these solutions therefore
constitute a specific trade-off between the different objectives. A cluster administrator
can now choose between those trade-offs, select the respective solution, and use these
weights to configure the Skippy scheduler in order to optimize the placement decisions in
the cluster towards these trade-offs.

In a future work, this selection could be assisted by utilizing multi-criteria decision-
making (MCDM) methods. For example, Rezaei presents such a decision-making method
in [Rezl5; Rez16]. This would allow the administrator to select the most suitable
optimization solution by identifying the most important objective and the least important
objective. Then all other objectives are rated on a scale from 0 to 9 compared to those
two objectives. Finally, the best suiting solutions could be selected based on those
comparisons using the best-worst method described in [Rez15].
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CHAPTER

Evaluation

In this chapter we present the evaluation of our implemented scheduler as well as our
optimization approach. We have conduct several empirical and simulated experiments in
order to validate the performance of our scheduler in terms of its quality of placement,
its speed, and its scalability. First, Section 7.1 outlines the specifics of our simulation
environment. Then, Section 7.2 shows the results of the deployment of our workflow
functions in our testbed for the different scheduler configurations. Section 7.3 describes
the results of the evaluation of the simulated experiments concerning the placement
quality. Finally, Section 7.4 discusses the performance and scalability characteristics of
our solution.

7.1 Evaluation Environment

Section 6.1 defines the placement quality and the different objectives it is based on.
The metrics used to assess the placement quality of each task placement decision are
defined in Section 5.7.5. Section 6.2.1 shows the method of calculating the different
objectives — namely the TET, the bandwidth usage, the costs, and the edge device
resource utilization — based on those metrics. Each of those four different objective values
defines one dimension of the placement quality for the specific task placement decision.

In order to maximize the placement quality of our scheduler towards a specific trade-off
between the different objectives, the scheduler can be configured by defining individual
weights for each priority function (as described in Section 5.6.1).

But the importance of each priority function, and therefore its optimal weight, may
differ for each cluster configuration. Therefore, a set of cluster configurations which are
representative for our scenario have been defined. As stated in Section 5.7.4, a cluster
configuration defines the size of a cluster and the percentage distributions of the different
device types in that cluster. The three different device types — VM, NVidia Jetson
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7. EVALUATION

Configuration name || % per device model | # of nodes | Simulation
VM ‘ TX2 ‘ RPi runtime (s)

testbed 12.50 | 12.50 | 75.00 | 6 40

equal 100 33.33 | 33.33 | 33.33 | 100 1000

equal__1000 33.33 | 33.33 | 33.33 | 1000 1000

50p_ cloud_ 100 50.00 | 25.00 | 25.00 | 100 1000

50p__cloud_ 1000 50.00 | 25.00 | 25.00 | 1000 1000

edge 100 14.29 | 28.57 | 57.14 | 100 1000

edge 1000 14.29 | 28.57 | 57.14 | 1000 1000

cloud__100 66.67 | 16.67 | 16.67 | 100 1000

cloud__ 1000 66.67 | 16.67 | 16.67 | 1000 1000

Table 7.1: Simulated cluster configurations

TX2 (TX2), and Raspberry Pi 3B+ (RPi) — are described in detail Section 4.3.1 and
Section 5.7.4. Table 7.1 shows the characteristics of each configuration. Afterwards, the
optimization, simulation and evaluation have been conducted for each of those simulated

clusters with its distinctive characteristics.

Testbed The testbed configuration represents our testbed’s cluster node setup as de-
scribed in Section 4.3.1. Our scheduler cannot find a suitable node once the cluster
is over-provisioned. As described in Section 5.7, during a simulation run the simula-
tion environment calls the scheduler for as many task placements as possible using
our synthesized workload defined in Section 5.7.3. In our simulation environment
this small cluster of only 6 nodes becomes fully provisioned in just over 40 seconds.
Afterwards the scheduling fails, since there are no resources left in the cluster for
the pending tasks. Therefore, for the evaluation in the testbed, the simulation
runtime is limited to 40 seconds to avoid failing scheduling attempts in our data.

Equal equal 100 and equal_ 1000 represent configurations where the device types are
equally distributed. When transferred to our scenario, a company operates twice as
many edge devices within the factory as the amount of VMs available in the cloud.

50% 50p_cloud 100 and 50p_ cloud_ 1000 represent configurations where the device
locality types are equally distributed. When transferred to our scenario, a company
operates just as many edge devices within the factory as the amount of VMs

available in the cloud.

Edge edge 100 and edge 1000 represent configurations where the majority of the
devices are edge devices. When transferred to our scenario, the majority of resources
used by a company are edge devices within the factory. Only a small amount of
VMs in the cloud are available.

70



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Empirical Experiments

Cloud cloud 100 and cloud 1000 represent configurations where the majority of the
resources are in the cloud. When transferred to our scenario, the majority of
resources used by a company are in the cloud. Only a small amount of edge devices
are available.

For each of these distributions, with the exception of the testbed, two different configura-
tions have been created. Configurations with 100 nodes over a simulation period of 1000
seconds represent clusters which will become highly utilized. On the other hand, those
configurations with 1000 nodes simulate clusters with a considerable amount of available
resources, allowing the scheduler to easily choose between the different nodes.

7.2 Empirical Experiments

In order to demonstrate the execution of our solution in an actual cluster, and to illustrate
the impact of our scheduler on the scheduling decisions, we conducted an empirical
experiment. We deployed the three different functions of our scenario’s workflow in the
testbed’s idle FaaS platform. The functions are deployed one after another, in the order
of their execution in the workflow. The experiment was repeated for each of the following
scheduler configurations:

1. Default Scheduler: The recreated default scheduler without any weight adjustments.

2. Non-Optimized Skippy Scheduler: The Skippy scheduler with its domain-specific
scoring functions without any weight adjustments.

3. Optimized Skippy Scheduler: The Skippy scheduler with its domain-specific scoring
functions with weights optimized for the TET in the testbed-specific optimization
preset.

The individual result for each configuration is outlined in its respective subsection below.
The logging output of the different experiments are enclosed in Appendix C.

7.2.1 Default Scheduler

As described in Section 5.2, the recreated default scheduler only comprises the predicate
function PodFitsResourcesPred and the two priority functions BalancedResourcePrio and
ImageLocalityPrio. Table 7.2 shows the individual predicates and priorities of the default
scheduler during the deployment of our workflow functions. The predicate function —
PodFitsResourcesPred — results in a boolean value depicting if the node is feasible to run
the pod. The different priority functions each result in a score for each node. The higher
the score, the better the node suits the pod concerning the individual priority function’s
purpose. Each score is multiplied by the priority function’s configured weight. In case of
the default scheduler, all priority functions are weighted by 1 —i.e. there is no individual
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cloudl | tegral | pil | pi2 | pi3 | pid |

v v v v v v PodFitsResourcesPred
1-pre 9 9 9 9 9 9 BalancedResourcePrio

0 0 0 0 0 0 ImageLocalityPrio

9 9 9 9 9 9 Sum

v v X X X X PodFitsResourcesPred
9-train 8 8 BalancedResourcePrio

0 0 ImageLocalityPrio

8 8 Sum

v v v v v v PodFitsResourcesPred
3 serve 9 9 8 8 8 8 BalancedResourcePrio

0 0 0 0 0 0 ImageLocalityPrio

9 9 8 8 8 8 Sum

Table 7.2: Results of the predicate and priority functions for each workflow function
placement of the default scheduler in the testbed

weighting. For each placement, the scheduler finally selects the node which passes the
predicate functions and has the highest sum of priority function scores. Due to the fact
that none of the images are present at any of the nodes, the ImageLocalityPrio does not
have any impact. As the cloud VM node has the most resources, it is favored by the
BalancedResourcePrio for each of the three placements.

7.2.2 Non-Optimized Skippy Scheduler

Compared to the default scheduler, Skippy replaces the ImageLocalityPrio and adds several
domain-specific priority functions. A detailed description of the different functions can
be found in Section 5.3. When executed with the — non-optimized — default configuration,
each priority function is weighted with 1. Table 7.3 shows the individual predicates and
priorities of the non-optimized Skippy scheduler during the deployment of our workflow
functions. All three functions are placed on edge devices. This can be explained by the
the smaller function image sizes for ARM devices — as listed in Section 4.3.4 — which has
an impact on the LatencyAwarelmageLocalityPrio, and the capability provided by the
NVidia Jetson TX2 which impacts the CapabilityPrio score. Therefore the preprocessing
and the serving functions are placed on Raspberry Pi devices while the training function
is placed on the GPU accelerated NVidia Jetson TX2.

7.2.3 Optimized Skippy Scheduler

In comparison to the experiment described in the previous section, the last empirical
experiment uses the Skippy scheduler with optimized priority weights. Therefore the
optimization results with the lowest TET in the testbed configuration — as described in
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7.3. Placement Quality

| cloudl | tegral | pil | pi2 | pi3 | pi4 | \

v v v |v | v | | PodFitsResourcesPred

9 9 9 9 9 9 BalancedResourcePrio

8 8 10 | 10 | 10 | 10 | LatencyAwarelmagelocalityPrio
1-pre 0 10 10 | 10 | 10 | 10 | LocalityTypePrio

10 0 0 0 0 0 DatalL.ocalityPrio

0 0 0 0 0 0 CapabilityPrio

28 28 29 (29 |29 |29 | Sum

v v X X X X PodFitsResourcesPred

8 8 BalancedResourcePrio

10 9 Latency AwareImageLocalityPrio
2-train | 0 10 Locality TypePrio

10 0 DatalLocalityPrio

0 10 CapabilityPrio

28 37 Sum

v v v |v | v | v | PodFitsResourcesPred

9 9 7 8 8 8 BalancedResourcePrio

8 8 10 | 10 | 10 | 10 | LatencyAwarelmageLocalityPrio
3-serve | 0 10 10 | 10 | 10 | 10 | LocalityTypePrio

10 0 0 0 0 0 DatalLocalityPrio

0 0 0 0 0 0 CapabilityPrio

27 27 27 | 28 | 28 | 28 | Sum

Table 7.3: Results of the predicate and priority functions for each workflow function
placement of the non-optimized Skippy scheduler in the testbed

Section 7.1 — have been used. The optimization resulted in the priority weights shown in
Figure 7.1.

Analogous to the two previous experiments, Table 7.4 shows the individual predicates
and priorities of the optimized Skippy scheduler during the deployment of our workflow
functions. In this specific experiment, the priority scores result in the same placement
decisions as with the non-optimized Skippy scheduler. However, the evaluation of the
simulated experiments — described in Section 7.3 — outlines the advantages of the optimized
weights compared to the defaults.

7.3 Placement Quality

In order to evaluate the placement quality of our scheduler, the testbed does not have
the necessary cluster size. Instead we used the simulation environment — described in
Section 5.7 — and conducted one simulated experiment for each cluster configuration
defined in Section 7.2.
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7 cloud1 7 tegral 7 pil 7 pi2 7 pi3 7 pi4

v v v v v v PodFitsResourcesPred

24.23 | 24.23 24.23 24.23 24.23 | 24.23 | BalancedResourcePrio

21.59 | 21.59 26.99 26.99 26.99 | 26.99 | LatencyAwarelmageLocalityPrio
1-pre 0.00 59.65 59.65 59.65 59.65 | 59.65 | LocalityTypePrio

47.21 | 0.00 0.00 0.00 0.00 0.00 DatalLocalityPrio

0.00 0.00 0.00 0.00 0.00 0.00 CapabilityPrio

93.03 | 105.47 | 110.87 | 110.87 | 110.87 | 110.87 | Sum

v v X X X X PodFitsResourcesPred

21.54 | 21.54 BalancedResourcePrio

26.99 | 24.29 Latency AwareImagelLocalityPrio
2-train | 0.00 59.64 Locality TypePrio

47.21 | 0.0 DataLocalityPrio

0.00 91.22 CapabilityPrio

95.74 | 196.69 Sum

v v v v v v PodFitsResourcesPred

24.23 | 24.23 18.84 21.54 | 21.54 | 21.54 | BalancedResourcePrio

21.59 | 21.59 26.99 26.99 | 26.99 | 26.99 | LatencyAwarelmageLocalityPrio
3-serve | 0.00 59.65 59.65 59.65 | 59.65 | 59.65 | LocalityTypePrio

47.21 | 0.00 0.00 0.00 0.00 0.00 DatalocalityPrio

0.00 0.00 0.00 0.00 0.00 0.00 CapabilityPrio

93.03 | 105.47 | 105.49 | 108.18 | 108.18 | 108.18 | Sum

Table 7.4: Results of the predicate and priority functions for each workflow function placement of the optimized Skippy
scheduler in the testbed
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7.3. Placement Quality

BalancedResourcePrio
LatencyAwarelmagelocalityPrio
LocalityTypePrio
DatalocalityPrio

CapabilityPrio

Weight

Figure 7.1: TET optimized priority weights for the testbed configuration

First, we analyzed the results and picked three different configurations to focus on:

1. edge_ 1000 showing the best results of Skippy compared to the default scheduler
2. cloud__100 showing the highest optimization benefits

3. edge 100 showing the worst results of Skippy compared to the default scheduler

The following sections each focus on the evaluation of the results for one of these
configurations. All other placement quality comparison matrix plots can be found in
Appendix D. The complete datasets of the simulation together with all generated plots
are available as open data [Ras19b].

7.3.1 edge_ 1000

In Chapter 6 we identified the following four different objectives: a) the TET, b) the
bandwidth usage, ¢) the cost of running functions on cloud resources, and d) the resource
utilization of the edge devices. Our optimization has been configured towards those
four objectives. The TET, bandwidth, and cost should be minimized while the resource
utilization should be maximized. As the configuration of our scheduler always impacts
its performance on all different objectives, one objective cannot be analyzed without
considering the performance gain or loss on each of the other objectives.

Figure 7.2 shows a matrix of line plots to visualize and compare the placement qualities
of the different scheduler configurations. Each column represents one configuration
of the optimized Skippy scheduler towards one objective. Each row focuses on the
cumulative values for one objective. Therefore each column shows the performance of
one configuration for each of the objectives while each row shows the performance of one
objective across all different configurations.
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Figure 7.2: Placement quality comparison matrix plot for the edge_ 1000 cluster configu-

ration
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7.3. Placement Quality

] H Mean o
Default 0.001179 | 0.001739
Skippy 0.000291 | 0.000639
Optimized Skippy || 0.001396 | 0.001632

Table 7.5: Mean value and standard deviation of the cost objective for different scheduler
configurations in the edge 1000 cluster configuration when optimized towards bandwidth

BalancedResourcePrio
LatencyAwarelmagelocalityPrio
LocalityTypePrio

DatalocalityPrio

CapabilityPrio

0 1 2 3 4 5 6 7
Weight

Figure 7.3: TET optimized priority weights for the edge_ 1000 configuration

In this cluster configuration, the non-optimized Skippy scheduler outperforms the default
scheduler in each objective and optimization. The optimized Skippy scheduler, however,
is outperformed by the default scheduler in one objective and optimization. It has a
slightly worse cost value than the default scheduler when optimized towards lowering the
bandwidth usage. Table 7.5 shows the mean and standard deviation in that case. The

weights calculated by the optimization for this specific setting are visualized in Figure 7.3.

As we can see, the DataLocalityPrio is weighted the highest. As the data store in our
simulation is on a cloud node and the nodes with the highest bandwidth to the data
store are preferred, more cloud nodes are selected leading to higher costs. For all other
objectives and optimizations, the Skippy scheduler outperforms the default scheduler.

For the in-depth analysis of the results for each cluster configuration we focus on the
TET — with the optimization also towards the TET.

Figure 7.4 visualizes the TET per workflow function image for each placement during
the simulation. The results show that the Skippy scheduler generally outperforms the
default scheduler in all cases. Moreover, when comparing the optimized Skippy with
the non-optimized Skippy, the graphs for the second and third workflow function image
illustrate the improvements due to the optimization. While the non-optimized Skippy
causes some peaks in the TET, the optimized Skippy avoids those placements.

This characteristic can also be seen in Figure 7.5, which shows the boxplots for the TET

7
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Figure 7.4: TET per image in the edge_ 1000 cluster configuration over time

for each workflow function image and scheduler configuration. The optimized Skippy
drastically limits the amount of outliers for the aforementioned workflow function images.

Table 7.6 lists statistics for the TET in this cluster configuration for each scheduler
configuration and workflow function image. The optimization reduces the standard
deviation by 84.66% from 49.93 to 7.66 seconds for the second workflow function image,
and by 89.63% from 2.70 to 0.28 seconds for the third workflow function image while also
decreasing the mean value. Compared to the default scheduler, the optimized Skippy
scheduler reduces the mean TET for the second workflow image by 75.90% from 222.17
to 53.54 seconds while the standard deviation decreased by 86.04% from 54.89 to 7.66
seconds. Over all workflow images, when comparing the default scheduler with the
optimized Skippy scheduler, the mean TET decreased by 71.17% from 115.23 to 33.21
seconds, while the standard deviation decreased by 57.77% from 93.14 to 39.33 seconds.

As stated in Section 7.1, this cluster configuration — with a high number of nodes compared
to the scheduled workload — allow the scheduler to choose between lots of feasible nodes.
This is where the benefits of our domain-specific scheduler are most visible. The default
scheduler does not have any knowledge about the location of the devices, their data usage,
or their hardware capabilities. This is aggravated by the default scheduler’s approach
of only scoring a subset of the feasible nodes — as described in Section 5.2.1. In this
cluster configuration, containing 1000 nodes, the default scheduler therefore only scores
420 of the feasible nodes for each placement decision. The Skippy scheduler, on the other
hand, scores all feasible nodes, and utilizes additional node and function metadata in its
domain-specific priority functions.
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Table 7.6: Mean and standard deviation of different scheduler configurations per workflow
function image in the edge 1000 cluster configuration when optimized towards TET
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Figure 7.5: TET per image in the edge 1000 cluster configuration

’ Image \ Scheduler \ Mean \ o ‘

Default 112.94 | 20.09

ml-wi-1-pre Optimized Skippy | 43.50 | 9.93
Skippy 44.78 | 9.32
Optimized Skippy | 43.50 | 9.93
Default 222.17 | 54.89

ml-wf-2-train | Skippy 66.58 | 49.94
Optimized Skippy | 53.54 | 7.66
Default 9.76 4.56

ml-wf-3-serve | Optimized Skippy | 2.51 0.28
Skippy 3.22 | 2.70
Optimized Skippy | 2.51 0.28
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Figure 7.6: Placement quality comparison matrix plot for the cloud_ 100 cluster configu-
ration

7.3.2 cloud__100

In the previous section, we identified that the optimization caused a decrease of the
standard deviation by reducing the amount of placements causing extreme values. The
evaluation of the simulation experiments using the cloud 100 cluster configuration yielded
an even higher potential of our optimization efforts. Analogous to the previous evaluation,
Figure 7.6 shows a matrix of line plots to visualize and compare the placement qualities of
the different scheduler configurations. The plots on the main diagonal of the matrix are
representing the performance of the the default scheduler and the non-optimized Skippy
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Figure 7.7: TET per image in the cloud 100 cluster configuration

scheduler compared to the Skippy scheduler specifically optimized towards the particular
objective. Compared to the previously evaluated cluster configuration, the plots on the
diagonal indicate that the optimization has a higher influence on the placement quality
of the Skippy scheduler.

When analyzing the boxplot for the TET for each workflow function image and scheduler
with the optimization towards the TET, shown in Figure 7.7, it stands out that the
median value of the TET of the second workflow image is significantly lower than those
of the default scheduler and the non-optimized Skippy scheduler.

Table 7.7 shows statistics for the TET in this cluster configuration for each scheduler
configuration and workflow function image. These values underline the impact of the
optimization for the training workflow image, as the mean value dropped by 46.94% from
147.31 to 78.16 seconds while also reducing the standard deviation by 26.18% from 94.33
to 69.63 seconds. Compared to the default scheduler, the optimized Skippy scheduler
even caused a decrease of the mean TET for the training workflow image by 57% from
186.05 to 78.16 seconds while reducing the standard deviation by 16.33% from 83.22 to
69.63 seconds. Over all workflow images, the mean TET decreased by 46.85% from 82.75
to 43.98 seconds, while the standard deviation decreased by 45.56% from 90.64 to 49.34
seconds.

This is also illustrated in Figure 7.8, which shows the TET per workflow function image
for each placement during the simulation. It shows that the optimized Skippy scheduler
places the training workflow step on machines which can execute the specific task very
fast until more than 330 placements have been executed. At this time, the number of
GPU accelerated devices is exhausted which forces the scheduler to use nodes without
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‘ Image ‘ Scheduler Mean ‘ o ‘
Default 53.98 | 26.74
ml-wf-1-pre Skippy 44.68 | 10.08
Optimized Skippy | 44.44 | 9.28
Default 186.05 | 83.22
ml-wf-2-train | Skippy 147.31 | 94.33
Optimized Skippy | 78.16 | 69.63
Default 8.42 5.07
ml-wf-3-serve | Skippy 6.36 4.88
Optimized Skippy | 9.35 4.65

Table 7.7: Mean and standard deviation of different scheduler configurations per workflow
function image in the cloud_ 100 cluster configuration when optimized towards TET

ml-wf-1-pre

—— Default
—— Skippy

TET

—— Optimized Skippy

TET

150 200
Placements

300 350 400

Figure 7.8: TET per image in the cloud 100 cluster configuration over time

a matching capability. This indicates that the performance gain of the optimization in
this cluster configuration is likely to decrease, as it cannot realize its full potential any

further.

7.3.3 edge_100

This cluster configuration shows the least benefits for our solution. Figure 7.9 once more
shows the matrix of line plots to visualize and compare the placement qualities of the
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Figure 7.9: Placement quality comparison matrix plot for the edge 100 cluster configu-
ration

different scheduler configurations. Here most of the devices are edge devices, with a total
of 28.57% of devices having a GPU. The limited number of devices also causes the default
scheduler to always score all nodes. Therefore, the default scheduler is likely to pick an
edge device. However, for most of the objectives and optimizations our optimized Skippy
scheduler still outperforms the default scheduler.

Analogous to the previous sections, Figure 7.10 shows the TET per workflow function
image for each placement during the simulation. It confirms that, in case of the training
workflow image, the default scheduler is more often selecting nodes with a low TET —
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Figure 7.10: TET per image in the edge_ 100 cluster configuration over time

the GPU accelerated NVidia Jetson TX2 — than in the previous cluster configurations.
However, the Skippy scheduler, and especially the optimized version, are outperforming
the default scheduler by further increasing the amount of training workflow image
placements on that particular device type.

The boxplot in Figure 7.11, which shows the TET for each workflow function image and
scheduler with the optimization towards the TET, illustrates that the median value for
each image does not differ quite much among the different scheduler configurations.

As in the previous sections, Table 7.8 lists the numerical values for the mean value
and the standard deviation for the TET in this cluster configuration for each scheduler
configuration and workflow function image. It shows that, when comparing the default
scheduler with the optimized Skippy scheduler, the mean TET for the training image
dropped by 45.20% from 107.61 to 58.96 seconds with a standard deviation decrease by
63.49% from 84.86 to 30.95 seconds.

Over all workflow images, when comparing the default scheduler with the TET optimized
Skippy scheduler, the mean TET decreased by 40.68% from 61.75 to 36.63 seconds, while
the standard deviation decreased by 52.14% from 67.66 to 29.51.

7.3.4 Summary

Figure 7.12 shows the mean values for each of the objectives and schedulers over all sim-
ulated experiments. It shows that even the non-optimized Skippy scheduler outperforms
the default scheduler on average in every objective. When analyzing the results for each
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Figure 7.11: TET per image in the edge_ 100 cluster configuration
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Default Skippy Optimized
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Default Skippy Optimized

Image Scheduler Mean ‘ o ‘
Default 72.71 | 33.57
ml-wf-1-pre Skippy 44.77 | 9.32
Optimized Skippy | 45.46 | 9.59
Default 107.61 | 84.76
ml-wf-2-train | Skippy 96.40 | 81.78
Optimized Skippy | 58.96 | 30.95
Default 4.86 4.18
ml-wf-3-serve | Skippy 4.05 3.50
Optimized Skippy | 5.47 4.24

Skippy

Table 7.8: Mean and standard deviation of different scheduler configurations per workflow
function image in the edge 100 cluster configuration when optimized towards TET
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Figure 7.12: Mean values for each objective over all simulated experiments per scheduler

of the four objectives in each of the nine cluster configurations, the non-optimized Skippy
scheduler causes a better mean objective value in 29 of the 36 combinations.

Once the Skippy scheduler is optimized towards the respective objective, it outperforms
the default scheduler in all cases. This is visualized in the plots on the diagonal of the
matrix plots in the preceding sections and in Appendix D. When comparing the mean
objective values of the default scheduler and the optimized Skippy scheduler per cluster
configuration, the range of performance gain for the different objectives are as follows.

Bandwidth Usage The reduction of the average bandwidth usage ranges from 19.57%
(in equal _100) up to 67.52% (in edge__1000).

Cost The reduction of the average cost ranges from 82.42% (in cloud__100) up to 100%
(in edge__1000). A reduction of 100% is possible if all placements are assigned to
edge devices, resulting in a cost value of 0.

Resource Utilization The increase of the average edge device resource utilization
ranges from 38.9% (in edge_100) up to 411.39% (in cloud_1000). In cloud 1000
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7.4. Scalability

the majority of devices are cloud devices. Therefore the default scheduler most
likely picks those cloud devices resulting in an unprofitable edge device resource
utilization. The Skippy scheduler can specifically choose edge devices due to the
additional locality type metadata.

TET The reduction of the average TET ranges from 37.58% (in testbed) up to 71.18%
(in edge_1000).

Comparing the non-optimized Skippy scheduler with the optimized Skippy scheduler,
the following range of performance gain for the different objectives demonstrate the
performance of the optimization approach.

Bandwidth Usage The reduction of the average bandwidth usage ranges from 18.94%
(in cloud__1000) up to 24.26% (in testbed).

Cost The reduction of the average cost ranges from 78.4% (in cloud_ 100) up to 100% (in
edge__1000, equal 1000 and 50p__cloud__1000). As described previously, a reduction
of 100% is possible if all placements are assigned to edge devices, resulting in a cost
value of 0.

Resource Utilization The increase of the average edge device resource utilization
ranges from 50.63% (in cloud__1000) up to 108.7% (in testbed).

TET The reduction of the average TET ranges from 37.58% (in testbed) up to 71.18%
(in edge_1000).

7.4 Scalability

The scalability of the scheduler highly depends on the number of nodes to score and the
configured priority functions. As presented in Section 5.2.1, the default configuration of
the default K8s scheduler has a very specific algorithm for the calculation of the minimum
percentage of nodes to score. But due to the heterogeneity of the devices in a mixed
cloud-edge infrastructure, Skippy scheduler always scores all available nodes in order to
increase the placement quality. Using our simulation environment, we evaluated the raw
scheduling throughput given different number of nodes and priority functions for both
approaches.

Figure 7.13 and Figure 7.14 show the results, which are nearly identical to previously
published measurements on an early prototype of the scheduler [Rau+19]. These mea-
surements roughly match those of a recent Kubernetes performance evaluation [Denl6].

Figure 7.13 shows that the raw scheduling throughput decreases drastically with the
number of nodes and priority functions. Figure 7.13a shows the results when using the
default algorithm on selecting a subset of the nodes to score for each placement, while
Figure 7.13b shows the results of the same measurements when scoring all available nodes
— i.e. not using the aforementioned algorithm to select a subset of nodes to score.
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As of version 1.16, K8s supports clusters with up to 5000 nodes [Kuba]. A special
interest group (SIG) is working on further increasing this limit [Kubc|. While the default
scheduler in a cluster of this size with 10 priority functions still has a throughput of ~ 60
pod placements per second, the Skippy scheduler’s throughput with the same amount of
priority functions — which scores all available nodes — drastically decreases to ~ 7 pod
placements per seconds.

The cumulative distribution functions (CDFs) in Figure 7.14 clearly visualize the increase
of the task placement latency (TPL) with each priority function. Our reconstruction
of the default scheduler uses one predicate function and two priority functions, each
described in Section 5.2. The Skippy scheduler currently uses one predicate function and
four priority functions, as detailed in Section 5.3.
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7.4. Scalability

As our approach increases the number of priority functions, and mixed cloud-edge clusters
may include huge node populations, the scheduler needs to maintain a high scheduling
throughput. These results highlight the complexity of the scheduling problem, and the
limitations of Kubernetes’ queue-based monolithic scheduler architecture.

As describe in Section 2.3.1, alternative architectures have been proposed to cope with

the complexity of the scheduling problem while maintaining a low placement latency.

Since the default scheduler’s approach on increasing the scheduling throughput by only
scoring a subset of the available nodes has a negative impact on the placement quality in
our heterogeneous cluster, in a future work a possible solution instead could be to move
away from the current queue-based monolithic architecture of the scheduler towards a
distributed architecture.
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CHAPTER

Conclusion

A scheduler that assigns workloads to specific nodes is a key component for resource
management in a cluster. Through experiments, we have uncovered significant limitations
of such schedulers for edge computing scenarios. This thesis describes the design,
implementation, and evaluation of an integrated, optimized, latency-, and capability-aware
scheduler for running an FaaS platform in a mixed cloud-edge computing environment.
Production grade schedulers are flexible, but they are based on the basic assumption
that the cluster infrastructure is highly homogeneous. They need to be extended in order
to efficiently execute workloads in (heterogeneous) mixed cloud-edge clusters. By adding
soft constraints that target edge computing systems, the scheduler can be customized for
this specific domain. The optimization towards high level operational goals determines
weights for the low level scheduler constraints, thereby enabling cluster administrators to
optimally configure the scheduler towards their specifically selected trade-off between
those goals. The individual contributions of this thesis can be summarized as follows.

8.1 Contributions

Skippy Scheduler The Skippy scheduler is the core contribution of this thesis. Based
on the recreated Kubernetes default scheduler, it implements several domain-specific
priority functions leveraging additional metadata assigned to the functions which are being
deployed as well as to the nodes in the cluster. This metadata includes special hardware
capabilities beneficial for a workload’s execution (for example, GPUs accelerating the
training of an ML model), and the amount of data being transferred during the execution
of a function.

Skippy Daemon The domain-specific priority functions of the Skippy scheduler depend
on additional metadata of the functions and the nodes in the cluster. While a function’s
metadata is maintained by its developer, the node’s metadata needs to be populated and
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maintained too. The Skippy daemon is automatically deployed on every single node of
the cluster. Once running on the node, it autonomously detects, populates and maintains
the node’s metadata.

Optimization The configuration of the Skippy scheduler — i.e. defining the individual
weights of the priority functions — is an instance of the multi-objective optimization
problem. We implemented an optimization utilizing an MOP solving algorithm based on
our simulation environment which finds near-pareto-optimal solutions for the configuration
based on several predefined objectives.

The evaluation of our contributions shows that the Skippy scheduler — even when not
optimized — outperforms the recreated default scheduler on average in every objective.
If the Skippy scheduler is optimized towards a specific objective, it clearly outperforms
the recreated default scheduler. The bandwidth usage was reduced by up to 67.52%, the
costs were reduced by up to 100% (since all workloads were executed on edge devices),
the resource utilization of the edge devices was increased by up to 411.39%, and the TET
was reduced by up to 71.18%.

The complete source-code of the Skippy scheduler, the simulation environment, as well
as the optimization are open-source [Ras19c|.

8.2 Future Work

In the course of this thesis we identified several areas which could be further improved.
This section focuses on these challenges and proposes possible future research areas.

8.2.1 Further Development of the Skippy Scheduler
Additional Features

Even though the K8s default scheduler has limited capabilities in mixed cloud-edge
infrastructures, it is a highly complex and mature component with a rich feature-set.
During this thesis, only the essential parts of the default scheduler have been recreated.
For the Skippy scheduler to be production-ready, several features of the default scheduler
are currently missing. This includes the handling of pod preemption — i.e. evicting
running pods from a node to make way for a higher prioritized pod — and several other
scheduling features neglected in the initial prototype, like affinities and anti-affinities, or
taints and tolerances.

Integration

By utilizing MCDM algorithms, the developed optimization approach can be automated
and fully integrated into the system. Such an automated system determines the current
state of the cluster and creates a simulation configuration based on the usually deployed
functions, the nodes within the cluster, and their capabilities. Based on the simulation
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8.2. Future Work

configuration, the optimization is executed. The most suitable solution is selected based
on a minimal initial configuration by the administrator and said MCDM algorithms. This
solution is then used to configure the weights of the priority functions of the scheduler in
the cluster. The resulting system therefore automatically adjust itself to changes in the
function deployment and the nodes in the cluster.

Distributed Skippy

The scalability evaluation has shown that the Skippy scheduler’s additional priority
functions as well as the increased number of scored nodes have a negative influence on
the performance of the scheduler. A possible solution could be to move away from the
current queue-based monolithic architecture of the Skippy scheduler towards a hybrid
architecture.

If the edge devices are provided by the customers of the platform itself, these devices
should be solely used for workloads of this specific customer. We propose one instance of
the Skippy scheduler per tenant. This instance of the scheduler exclusively handles the
edge devices on-premises of the customer using its current monolithic architecture. The
cloud resources, however, are shared among all tenants. These resources are handled by
all schedulers in an optimistic lock-free fashion, resulting in a distributed shared-state
scheduling architecture. This completely prevents collisions for edge devices, since they
are all handled exclusively by the scheduler responsible for the tenant providing the
devices. When competing about shared cloud resources, the optimistic lock-free approach
was shown to be efficient [Sch+13].

8.2.2 Improving Support and Programmability of Edge Devices

Most of the current frameworks and platforms are solely focused on homogeneous cloud
infrastructures. This results in a lack of support for CPU architectures other than
AMDG64. This can be seen in various areas. NVidia does not even provide a Docker
runtime capable of handling its own GPUs on their own edge device — the NVidia Jetson
TX2 — since it’s based on an ARM64 processor. Creating a Docker image supporting
multiple processor architectures is still an experimental feature and the cross-compilation
is most cumbersome. In addition, it’s currently not possible to create a Docker manifest-
list which selects the correct image based on other aspects than the OS and the processor
architecture, like specific hardware capabilities.
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APPENDIX

NVidia Jetson TX2 Setup

A.1 Kernel Flags

A.1.1 kube-proxy

Listing A.1 shows all kernel flags which need to be enabled for kube-proxy to be able to
manage the K8s networking rules based on ¢ptables.

CONFIG_NETFILTER_XT_SET=m
CONFIG_NETFILTER_XT_MATCH_MULTIPORT=m
CONFIG_NETFILTER _XT_MATCH_PHYSDEV=m
CONFIG_NETFILTER_XT_MATCH_RECENT=m
CONFIG_NETFILTER_XT_TARGET_REDIRECT=m
CONFIG_IP_SET=m

CONFIG_IP_SET_MAX=256
CONFIG_IP_SET_HASH_IP=m
CONFIG_IP_SET_HASH_NET=m
CONFIG_NF_NAT_REDIRECT=m
CONFIG_IP_NF_TARGET_REDIRECT=m
CONFIG_NET_SCH_NETEM=m

CONFIG_IFB=m

Listing A.1: NVidia Jetson TX2 kernel flags to enabled kube-proxy iptables management

A.1.2 traffic control

In order to enable a kernel-lavel traffic management used for the empirical measurements
described in Section 4.4, the kernel flags shown in Listing A.2 need to be set.

CONFIG_NET_EGRESS=y
CONFIG_NET_SCH_CBQ=m
CONFIG_NET_SCH_HTB=m
CONFIG_NET_SCH_HFSC=m
CONFIG_NET_SCH_PRIO=m
CONFIG_NET_SCH_RED=m
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CONFIG_NET_SCH_SFQ=m
CONFIG_NET_SCH_TEQL=m
CONFIG_NET_SCH_TBF=m
CONFIG_NET_SCH_GRED=m
CONFIG_NET_SCH_DSMARK=m
CONFIG_NET_SCH_NETEM=m
CONFIG_NET_SCH_DRR=m
CONFIG_NET_SCH_MQPRIO=m
CONFIG_NET_SCH_CHOKE=m
CONFIG_NET_SCH_QFQ=m
CONFIG_NET_SCH_CODEL=m
CONFIG_NET_SCH_FQ_CODEL=m
CONFIG_NET_SCH_FQ=m
CONFIG_NET_SCH_HHF=m
CONFIG_NET_SCH_PIE=m
CONFIG_NET_SCH_TEGRA=m
CONFIG_NET_SCH_INGRESS=m
CONFIG_NET_SCH_PLUG=m
CONFIG_NET_CLS_BASIC=m
CONFIG_NET_CLS_FW=m
CONFIG_CLS_U32_PERF=y
CONFIG_CLS_U32_MARK=y
CONFIG_NET_ACT_MIRRED=y
CONFIG_IFB=m

Listing A.2: NVidia Jetson TX2 kernel flags to enable traffic control

After configuring the kernel modules, the kernel can be rebuilt on the NVidia Jetson
TX2 itself’.

A.2 Container Runtime Patch

The runC container runtime? has been patched using the patch file shown in Listing A.3.
Once the code is patched, the container runtime can be built and the resulting binary
can be linked in the Docker daemon’s configuration file.

diff --git a/spec.go b/spec.go
index 26e9754e..c371dcOa 100644
-—— a/spec.go
+++ b/spec.go
@@ -128,9 +128,145 @@ func loadSpec(cPath string) (spec *specs.Spec, err error) {
if err = json.NewDecoder (cf) .Decode (&spec); err != nil {
return nil, err

}

// add necessary volume mounts
additionalMounts := []specs.Mount {
{
Destination: "/usr/lib/aarché64-linux-gnu",
Source: "/usr/lib/aarch64-linux-gnu",
Type: "bind",
Options: []string{"rbind", "rprivate"},
)7

+ o+ o+ o+ o+ o+

1https://github.com/alexrashed/buildJetsonTXZKernel(visit;ed()nNov.26,2019)
2https://github.com/opencontainers/runc(visitedonNov.26,2019)
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A.2. Container Runtime Patch
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Destination: "/usr/local/cuda/lib64",

Source: "/usr/local/cuda/libé64",

Type: "bind",

Options: []lstring{"rbind", "rprivate"},
}7

spec.Mounts = append (spec.Mounts, additionalMounts.. .

// add necessary devices

fileMode := os.FileMode (int (8624))
uido
gid0 := uint32(0)

gid44 := uint32(44)

additionalDevices := []specs.LinuxDevice

uint32 (0)

{
Path: "/dev/nvhost-ctrl",
Type: nen ,
Major: 242,
Minor: O,
FileMode: &fileMode,
UID: &uido,
GID: &gid4d,
b

Path: "/dev/nvhost-ctrl-gpu",
Type: Tgw,
Major: 506,
Minor: 2,
FileMode: &fileMode,
UID: &uidO,
GID: &gid44,
b

Path: "/dev/nvhost-prof-gpu",
Type: "c",
Major: 506,
Minor: 4,
FileMode: &fileMode,
UID: &uidO,
GID: &gido,
}l

Path: "/dev/nvhost-gpu",
Type: "c",
Major: 506,
Minor: O,
FileMode: &fileMode,
UID: &uido,
GID: &gid44,
}l

Path: "/dev/nvhost-as-gpu",
Type: gl
Major: 506,
Minor: 1,
FileMode: &fileMode,
UID: &uidO,
GID: &gid4d4,
}l
{
Path: "/dev/nvmap",
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80 |+ Type: "c"

81 |+ Major: 10,

82 |+ Minor: 61,

83 |+ FileMode: &fileMode,

84 | + UID: &uido,

85 | + GID: &gid44,

86 |+ 1},

87 |+ 1}

88 |+ spec.Linux.Devices = append (spec.Linux.Devices, additionalDevices...)

89 |+ additionalDeviceResources := []specs.LinuxDeviceCgroup({

90 [+ |

91 |+ Access: "rwm",

92 | + Allow: true,

93 |+ Major: createPointer (242),

94 |+ Minor: createPointer (0),

95 | + Type: "c",

9 [+ ),

97 |+ |

98 | + Access: "rwm",

99 | + Allow: true,

100 |+ Major: createPointer (506),

101 | + Minor: createPointer(2),

102 |+ Type: "c",

103 |+ 1},

104 |+ |

105 | + Access: "rwm",

106 |+ Allow: true,

107 |+ Major: createPointer (506),

108 | + Minor: createPointer (4),

109 |+ Type: "c",

110 |+ 1},

111 |+ |

112 |+ Access: "rwm",

113 | + Allow: true,

114 |+ Major: createPointer (506),

115 |+ Minor: createPointer (0),

116 |+ Type: "c",

117 1+ 1,

118 [+ {

119 |+ Access: "rwm",

120 | + Allow: true,

121 |+ Major: createPointer (506),

122 | + Minor: createPointer(l),

123 |+ Type: "c",

124 |+ '},

125 |+ |

126 |+ Access: "rwm",

127 |+ Allow: true,

128 | + Major: createPointer (10),

129 | + Minor: createPointer (61),

130 | + Type: "c",

131 |+ 1},

132 |+ }

133 |+ spec.Linux.Resources.Devices = append(spec.Linux.Resources.Devices,
additionalDeviceResources...)

134 |+

135 return spec, validateProcessSpec (spec.Process)

136 | }

137

138 | +// Hack Helper Function

139 | +func createPointer (x int64) *int64 {

140 |+ return &x
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143
144
145
146

A.2. Container Runtime Patch

n
+
+

}

func createlibContainerRlimit (rlimit specs.POSIXRlimit) (configs.Rlimit,
:= strToRlimit (rlimit.Type)

rl, err
if err

!'= nil {

error)

{

Listing A.3: runC patch for NVidia Jetson TX2
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APPENDIX

OpenFaaS Modifications

Listing B.1 shows the changes which were necessary to faas-netes. It shows a) the
modifications to the build scripts and Dockerfiles for the cross-compiled build and
manifest list creation, and b) the additions to the deployment specification creation in
order to set the Skippy scheduler for each deployment

From ldbdl4e2fcb3d33f3af34718a47534262d5b4e7d Mon Sep 17 00:00:00 2001
From: Alexander Rashed <alexander.rashed@gmail.com>

Date: Fri, 5 Jul 2019 12:15:05 +0200

Subject: [PATCH] Set skippy-scheduler as scheduler for new function pods,
create multiarch images

Dockerfile.arm64 | 5 +++——

Dockerfile.armhf | 7 ++++———

build.sh | 11 ++++++++++-
handlers/deploy.go | 1 +

4 files changed, 18 insertions(+), 6 deletions(-)

diff --git a/Dockerfile.armé64 b/Dockerfile.armé64
index 6d0f8c61l..1a473510 100644
-—- a/Dockerfile.arm64
+++ b/Dockerfile.armé64
@@ -11,12 +11,13 @@ RUN gofmt -1 -d $(find . -type f -name ’=x.go’ -not -path
"./vendor/+") \
&& go test ./test/ \
&& VERSION=$ (git describe --all --exact-match ‘git rev-parse HEAD' | grep tags |
sed "s/tags\///") \
&& GIT_COMMIT=$ (git rev-list -1 HEAD) \
= && CGO_ENABLED=0 GOOS=linux go build --1ldflags "-s -w \
+ && CGO_ENABLED=0 GOOS=linux GOARCH=arm64 go build --1ldflags "-s -w \
-X github.com/openfaas/faas—netes/version.GitCommit=${GIT_COMMIT}\
-X github.com/openfaas/faas—netes/version.Version=${VERSION}" \
-a -installsuffix cgo -o faas-netes

-FROM alpine:3.9

+FROM arm64v8/alpine:3.9

+COPY —-from=multiarch/gemu-user-static:x86_64-aarch64 /usr/bin/gemu-x /usr/bin
RUN apk —--no-cache add ca-certificates
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WORKDIR /root/

diff --git a/Dockerfile.armhf b/Dockerfile.armhf
index 9cabd907..e38a9669 100644
-—— a/Dockerfile.armhf
+++ b/Dockerfile.armhf
@@ -11,12 +11,13 @@ RUN gofmt -1 -d $(find . -type f -name ’'=x.go’ -not -path
"./vendor/*") \
&& go test ./test/ \
&& VERSION=$ (git describe --all --exact-match ‘git rev-parse HEAD' | grep tags |
sed ’'s/tags\///") \
&& GIT_COMMIT=$ (git rev-1list -1 HEAD) \
= && CGO_ENABLED=0 GOOS=linux go build --1ldflags "-s -w \
+ && CGO_ENABLED=0 GOOS=linux GOARCH=arm go build --ldflags "-s -w \
—X github.com/openfaas/faas—-netes/version.GitCommit=${GIT_COMMIT}\
-X github.com/openfaas/faas-netes/version.Version=${VERSION}" \
—a —-installsuffix cgo -o faas-netes

—-FROM alpine:3.9 as ship
+FROM arm32v7/alpine:3.9 as ship
+COPY --from=multiarch/gemu-user-static:x86_64-arm /usr/bin/gemu-* /usr/bin

RUN apk --no-cache add ca-certificates
WORKDIR /root/

@@ -25,6 +26,6 @@ EXPOSE 8080

ENV http_proxy ""

ENV https_proxy ""

-COPY --from=build /go/src/github.com/openfaas/faas-netes/faas-netes
+COPY —-—-from=0 /go/src/github.com/openfaas/faas-netes/faas-netes

CMD ["./faas-netes"]

diff --git a/build.sh b/build.sh

index 5877£30c..466al13d8 100755

-—— a/build.sh

+++ b/build.sh

@@ -1,6 +1,15 @@

#!/bin/sh

make build

+docker tag openfaas/faas-netes:latest alexrashed/faas-netes-skippy:0.l-amd64

+docker push alexrashed/faas-netes-skippy:0.l-amd64

+make build-arm64

+docker tag openfaas/faas-netes:latest-arm64 alexrashed/faas-netes-skippy:0.l-armé64

+docker push alexrashed/faas-netes-skippy:0.l-arm64

+make build-armhf

+docker tag openfaas/faas-netes:latest-armhf alexrashed/faas-netes-skippy:0.l-armhf

+docker push alexrashed/faas-netes-skippy:0.l-armhf

+docker manifest create -—-amend alexrashed/faas-netes—-skippy:0.1
alexrashed/faas-netes-skippy:0.1-amd64 alexrashed/faas-netes-skippy:0.l-arm64
alexrashed/faas-netes-skippy:0.l-armhf

+docker manifest push alexrashed/faas-netes-skippy:0.1

# o0s="$ (uname -s)"

diff --git a/handlers/deploy.go b/handlers/deploy.go
index b11d5286..£1£f93elb 100644
-—— a/handlers/deploy.go
+++ b/handlers/deploy.go
@@ -195,6 +195,7 @@ func makeDeploymentSpec (request requests.CreateFunctionRequest,
existingSecrets
}I



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

89
90
91
92
93
94

Spec: apivl.PodSpec{
NodeSelector: nodeSelector,
+ SchedulerName: "skippy-scheduler",
Containers: []apivl.Container({
{

Name: request.Service,

Listing B.1: faas-netes patch for cross-compile builds and setting the Skippy scheduler
for function deployments
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APPENDIX

Empirical Experiment Logs

C.1 Default Scheduler

Listing C.1 shows the (truncated) log output of the recreated default scheduler.

DEBUG:root:Loading in-cluster config...
DEBUG:root:Using default scheduler priority functions
DEBUG:root:Watching for new pod events across all namespaces...

DEBUG:root:Watching for new pods with defined scheduler-name ’skippy-

DEBUG:root:Starting liveness / readiness probe...

scheduler’...

INFO:root:Everything is in place for new pods to be scheduled. Waiting for new

events...

DEBUG:root:There’s a new pod to schedule: ml-wf-1-pre-5b64df4£f45-14qwv
DEBUG:root :Received a new pod to schedule: ml-wf-1-pre-5b64df4£f45-14qwv

DEBUG:root:Pod ml-wf-1-pre-5b64df4£f45-14gwv requests 100 / 104857600.

node ara-clustercloudl: 4000 / 8361611264.Passed: True
DEBUG:root :Pod ml-wf-1-pre-5b64df4£f45-14qwv / Node ara-clustercloudl
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-5b64df4f45-14qwv requests 100 / 104857600.

node ara-clusterpil: 4000 / 1023012864.Passed: True
DEBUG:root:Pod ml-wf-1-pre-5b64df4£f45-14gwv / Node ara-clusterpil /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-5b64df4f45-14qwv requests 100 / 104857600.

node ara-clusterpi2: 4000 / 1023012864.Passed: True
DEBUG:root:Pod ml-wf-1-pre-5b64df4f45-14qwv / Node ara-clusterpi2 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-5b64df4£f45-14gwv requests 100 / 104857600.

node ara-clusterpi3: 4000 / 1023012864.Passed: True
DEBUG: root :Pod ml-wf-1-pre-5b64df4f45-14qwv / Node ara-clusterpi3 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-5b64df4£f45-14gwv requests 100 / 104857600.

node ara-clusterpid: 4000 / 1023012864 .Passed: True
DEBUG:root:Pod ml-wf-1-pre-5b64df4£f45-14gwv / Node ara-clusterpid /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-5b64df4f45-14qwv requests 100 / 104857600.

node ara-clustertegral: 4000 / 8240386048.Passed: True

Available

Available

Available

Available

Available

Available

on

on

on

on

on

on
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22 | DEBUG: root:Pod ml-wf-1-pre—5b64df4f45-14qwv / Node ara-clustertegral /
PodFitsResourcesPred: Passed

23 | DEBUG:root:Pod ml-wf-1-pre-5b64df4f45-14qwv / BalancedResourcePriority: [
9.0, 9.0, 9,0, 9,01

24 | DEBUG:root:Pod ml-wf-1-pre-5b64df4£f45-14qgwv / ImageLocalityPriority: [0.0
0.0, 0.0, 0.0]

25 | DEBUG:root:Node scores: [ (ara-clustercloudl, 9.0), (ara-clusterpil, 9.0),
(ara-clusterpi2, 9.0), (ara-clusterpi3, 9.0), (ara-clusterpi4, 9.0),
(ara-clustertegral, 9.0)]

26 | INFO:root:Creating namespaced binding: Pod ml-wf-1l-pre-5b64df4f45-14gwv o
ara—-clustercloudl

27 | DEBUG: kubernetes.client.rest:response body:

{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success","
28 | DEBUG:root :Found best node. Remaining allocatable resources after schedul
Capacity (CPU: 3900 Memory: 8256753664)

29 | DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clustercloudl,
feasible_nodes=6, needed_images=[’alexrashed/ml-wf-1-pre:0.33"1])

30 | DEBUG:root:There’s a new pod to schedule: ml-wf-2-train-5£57856bfc-2mxrb
31 | DEBUG:root:Received a new pod to schedule: ml-wf-2-train-5£57856bfc-2mxrb
32 | DEBUG:root:Pod ml-wf-2-train-5f57856bfc-2mxrb requests 100 / 1073741824.
node ara-clustercloudl: 3900 / 8256753664.Passed: True

33 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

34 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb requests 100 / 1073741824.
node ara-clusterpil: 4000 / 1023012864.Passed: False

35 | DEBUG: root:Pod ml-wf-2-train-5f57856bfc—2mxrb / Node ara-clusterpil /
PodFitsResourcesPred: Failed

36 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb requests 100 / 1073741824.
node ara-clusterpi2: 4000 / 1023012864.Passed: False

37 | DEBUG: root:Pod ml-wf-2-train-5£57856bfc-2mxrb / Node ara-clusterpi2 /
PodFitsResourcesPred: Failed

38 | DEBUG:root:Pod ml-wf-2-train-5f57856bfc-2mxrb requests 100 / 1073741824.
node ara-clusterpi3: 4000 / 1023012864.Passed: False

39 | DEBUG:root:Pod ml-wf-2-train-5f57856bfc-2mxrb / Node ara-clusterpi3 /
PodFitsResourcesPred: Failed

10 | DEBUG: root :Pod ml-wf-2-train-5£57856bfc-2mxrb requests 100 / 1073741824.
node ara-clusterpi4: 4000 / 1023012864.Passed: False

41 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb / Node ara-clusterpid /
PodFitsResourcesPred: Failed

42 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb requests 100 / 1073741824.
node ara-clustertegral: 4000 / 8240386048.Passed: True

43 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb / Node ara-clustertegral /
PodFitsResourcesPred: Passed

44 | DEBUG: root :Pod ml-wf-2-train-5£57856bfc-2mxrb / BalancedResourcePriority:
45 | DEBUG:root:Pod ml-wf-2-train-5£57856bfc-2mxrb / ImageLocalityPriority: [0
46 | DEBUG: root :Node scores: [ (ara-clustercloudl, 8.0), (ara-clustertegral, 8.
AT | INFO:root:Creating namespaced binding: Pod ml-wf-2-train-5f57856bfc-2mxrb
ara-clustercloudl

48 | DEBUG:kubernetes.client.rest:response body:

49 | DEBUG: root :Found best node. Remaining allocatable resources after schedul
Capacity (CPU: 3800 Memory: 7183011840)

50 | DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clustercloudl,
feasible_nodes=2, needed_images=[’alexrashed/ml-wf-2-train:0.33"])

51 | DEBUG:root:There’s a new pod to schedule: ml-wf-3-serve-689094855-vn5n5
52 | DEBUG:root:Received a new pod to schedule: ml-wf-3-serve-689b94855-vn5n5
53

node ara-clustercloudl: 3800 / 7183011840.Passed: True
54 | DEBUG: root :Pod ml-wf-3-serve-689b94855-vn5n5 / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

9.0, 9.0,

, 0.0, 0.0

n Node

code":201}
ing:

Available

Available

Available

Available

Available

Available

[8.0, 8.0
.0, 0.0]
0)1]

on Node

{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

ing:

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 requests 100 / 209715200. Available on

55 | DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 requests 100 / 209715200. Available on

node ara-clusterpil: 4000 / 1023012864.Passed: True
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DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 / Node ara-clusterpil /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 requests 100 / 209715200. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 / Node ara-clusterpi2 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 requests 100 / 209715200. Available on
node ara-clusterpi3: 4000 / 1023012864 .Passed: True

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 / Node ara-clusterpi3 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 requests 100 / 209715200. Available on
node ara-clusterpid4: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-3-serve-689094855-vn5n5 / Node ara-clusterpid /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 requests 100 / 209715200. Available on
node ara-clustertegral: 4000 / 8240386048.Passed: True

DEBUG:root :Pod ml-wf-3-serve—689b94855-vn5n5 / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-689094855-vn5n5 / BalancedResourcePriority: [9.0, 8.0,
8.0, 8.0, 8.0, 9.0]

DEBUG:root:Pod ml-wf-3-serve-689b94855-vn5n5 / ImagelocalityPriority: [0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

DEBUG:root:Node scores: [ (ara-clustercloudl, 9.0), (ara-clusterpil, 8.0),
(ara-clusterpi2, 8.0), (ara-clusterpi3, 8.0), (ara-clusterpi4, 8.0),
(ara-clustertegral, 9.0)]

INFO:root:Creating namespaced binding: Pod ml-wf-3-serve-689094855-vn5n5 on Node
ara-clustercloudl

DEBUG:kubernetes.client.rest:response body:

{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root:Found best node. Remaining allocatable resources after scheduling:
Capacity (CPU: 3700 Memory: 6973296640)

DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clustercloudl,
feasible_nodes=6, needed_images=[’alexrashed/ml-wf-3-serve:0.33"1])

Listing C.1: Testbed log output - Default scheduler

C.2 Non-Optimized Skippy Scheduler

Listing C.2 shows the (truncated) log output of the Skippy scheduler without any
optimized priority weights.

DEBUG:root:Loading in-cluster config...

DEBUG:root:Watching for new pod events across all namespaces...

DEBUG:root :Watching for new pods with defined scheduler-name ’skippy-scheduler’...

DEBUG:root:Starting liveness / readiness probe...

INFO:root:Everything is in place for new pods to be scheduled. Waiting for new
events...

DEBUG:root:There’s a new pod to schedule: ml-wf-1-pre-569555f£f57-55hzz
DEBUG:root:Received a new pod to schedule: ml-wf-1-pre-569555f£f57-55hzz

DEBUG:root :Pod ml-wf-1-pre-569555£f£57-55hzz requests 100 / 104857600. Available on
node ara-clustercloudl: 4000 / 8361611264.Passed: True

DEBUG:root :Pod ml-wf-1-pre-569555£f£57-55hzz / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz requests 100 / 104857600. Available on
node ara-clusterpil: 4000 / 1023012864.Passed: True
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38

39
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41

43

44

DEBUG: root:Pod ml-wf-1-pre-569555££57-55hzz / Node ara-clusterpil /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz requests 100 / 104857600. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: True

DEBUG: root :Pod ml-wf-1-pre-569555f£f57-55hzz / Node ara-clusterpi2 /
PodFitsResourcesPred: Passed

DEBUG:root :Pod ml-wf-1-pre-569555£f£57-55hzz requests 100 / 104857600. Available on
node ara-clusterpi3: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz / Node ara-clusterpi3 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz requests 100 / 104857600. Available on
node ara-clusterpid: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz / Node ara-clusterpi4d /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-569555ff57-55hzz requests 100 / 104857600. Available on
node ara-clustertegral: 4000 / 8240386048.Passed: True

DEBUG: root :Pod ml-wf-1-pre-569555f£f57-55hzz / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz / BalancedResourcePriority: [9.0, 9.0,
9.0, 9.0, 9,0, 9.0]

DEBUG:root:Pod ml-wf-1-pre-569555£f£57-55hzz / LatencyAwareImageLocalityPriority: [8.0,
10.0, 10.0, 10.0, 10.0, 8.0]

DEBUG:root:Pod ml-wf-1-pre-569555££57-55hzz / LocalityTypePriority: [0.0, 10.0, 10.0,
10.0, 10.0, 10.0]

DEBUG:root:Pod ml-wf-1-pre-569555ff57-55hzz / DatalocalityPriority: [10.0, 0.0, 0.0,
0.0, 0.0, 0.0]

DEBUG:root:Pod ml-wf-1-pre-569555ff57-55hzz / CapabilityPriority: [0.0, 0.0, 0.0, 0.0,
0.0, 0.0]

DEBUG:root :Node scores: [ (ara-clustercloudl, 27.0), (ara-clusterpil, 29.0),
(ara-clusterpi2, 29.0), (ara-clusterpi3, 29.0), (ara-clusterpi4, 29.0),
(ara-clustertegral, 27.0)]

INFO:root:Creating namespaced binding: Pod ml-wf-1-pre-569555ff57-55hzz on Node
ara-clusterpil

DEBUG:kubernetes.client.rest:response body:

{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root :Found best node. Remaining allocatable resources after scheduling:
Capacity (CPU: 3900 Memory: 918155264)

DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clusterpil,
feasible_nodes=6, needed_images=[’alexrashed/ml-wf-1-pre:0.33"1])

DEBUG:root:There’s a new pod to schedule: ml-wf-2-train-66777dccf7-rfqg9

DEBUG:root :Received a new pod to schedule: ml-wf-2-train-66777dccf7-rfqg9

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 requests 100 / 1073741824. Available on
node ara-clustercloudl: 4000 / 8361611264.Passed: True

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 requests 100 / 1073741824. Available on
node ara-clusterpil: 3900 / 918155264.Passed: False

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / Node ara-clusterpil /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 requests 100 / 1073741824. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: False

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / Node ara-clusterpi2 /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 requests 100 / 1073741824. Available on
node ara-clusterpi3: 4000 / 1023012864.Passed: False

DEBUG: root :Pod ml-wf-2-train-66777dccf7-rfqg9 / Node ara-clusterpi3 /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 requests 100 / 1073741824. Available on
node ara-clusterpi4: 4000 / 1023012864.Passed: False

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / Node ara-clusterpi4d /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 requests 100 / 1073741824. Available on
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node ara-clustertegral: 4000 / 8240386048.Passed: True

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / BalancedResourcePriority: [8.0, 8.0]

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / LatencyAwareImagelocalityPriority:
[10.0, 9.0]

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / LocalityTypePriority: [0.0, 10.0]

DEBUG:root :Pod ml-wf-2-train-66777dccf7-rfqg9 / DatalocalityPriority: [10.0, 0.0]

DEBUG:root:Pod ml-wf-2-train-66777dccf7-rfqg9 / CapabilityPriority: [0.0, 10.0]

DEBUG:root :Node scores: [ (ara-clustercloudl, 28.0), (ara-clustertegral, 37.0)]

INFO:root:Creating namespaced binding: Pod ml-wf-2-train-66777dccf7-rfqg9 on Node
ara-clustertegral

DEBUG:kubernetes.client.rest:response body:

{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root :Found best node. Remaining allocatable resources after scheduling:
Capacity (CPU: 3900 Memory: 7166644224)

DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clustertegral,
feasible_nodes=2, needed_images=[’alexrashed/ml-wf-2-train:0.33"1])

DEBUG:root:There’s a new pod to schedule: ml-wf-3-serve-56ddbcb9fc-kgépqg

DEBUG:root :Received a new pod to schedule: ml-wf-3-serve-56ddbcb9fc-kgbpg

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgbpg requests 100 / 209715200. Available on
node ara-clustercloudl: 4000 / 8361611264.Passed: True

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgébpg / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kg6pg requests 100 / 209715200. Available on
node ara-clusterpil: 3900 / 918155264.Passed: True

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kg6pg / Node ara-clusterpil /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgbpg requests 100 / 209715200. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: True

DEBUG: root:Pod ml-wf-3-serve-56ddbcb9fc-kgépg / Node ara-clusterpi2 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgbpg requests 100 / 209715200. Available on
node ara-clusterpi3: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgébpg / Node ara-clusterpi3 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgbpg requests 100 / 209715200. Available on
node ara-clusterpid: 4000 / 1023012864 .Passed: True

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgbpg / Node ara-clusterpid /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kg6pg requests 100 / 209715200. Available on
node ara-clustertegral: 3900 / 7166644224 .Passed: True

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kg6pg / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgébpg / BalancedResourcePriority: [9.0, 7.0,
8.0, 8.0, 8.0, 9.0]

DEBUG:root :Pod ml-wf-3-serve-56ddbcb9fc-kg6pg / LatencyAwareImagelLocalityPriority:
[8.0, 10.0, 10.0, 10.0, 10.0, 8.0]

DEBUG:root :Pod ml-wf-3-serve-56ddbcb9fc-kg6pg / LocalityTypePriority: [0.0, 10.0,
10.0, 10.0, 10.0, 10.0]

DEBUG:root :Pod ml-wf-3-serve-56ddbcb9fc-kg6pg / DatalocalityPriority: [10.0, 0.0, O.
0.0, 0.0, 0.0]

DEBUG:root:Pod ml-wf-3-serve-56ddbcb9fc-kgébpg / CapabilityPriority: [0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

DEBUG:root :Node scores: [ (ara-clustercloudl, 27.0), (ara-clusterpil, 27.0),
(ara-clusterpi2, 28.0), (ara-clusterpi3, 28.0), (ara-clusterpi4, 28.0),
(ara-clustertegral, 27.0)]

INFO:root:Creating namespaced binding: Pod ml-wf-3-serve-56ddbcb9fc-kgbpg on Node
ara-clusterpi2

DEBUG:kubernetes.client.rest:response body:

{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root:Found best node. Remaining allocatable resources after scheduling:
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Capacity (CPU: 3900 Memory: 813297664)
DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clusterpi?,
feasible_nodes=6, needed_images=[’alexrashed/ml-wf-3-serve:0.33"1])

Listing C.2: Testbed log output - Non-Optimized Skippy Scheduler

C.3 Optimized Skippy Scheduler

Listing C.3 shows the (truncated) log output of the Skippy scheduler with testbed specific
TET optimized priority weights.

DEBUG:root:Loading in-cluster config...

INFO:root:Using custom weights: [2.6923720489533647, 2.698796313141462,
5.964581321182787, 4.720991059190411, 9.122271417461349]

DEBUG:root:Watching for new pod events across all namespaces...

DEBUG:root:Watching for new pods with defined scheduler-name ’skippy-scheduler’...

DEBUG:root:Starting liveness / readiness probe...

INFO:root:Everything is in place for new pods to be scheduled. Waiting for new
EVEINES - o o

DEBUG:root:There’s a new pod to schedule: ml-wf-1-pre-644£8966dc-rx7nb
DEBUG:root :Received a new pod to schedule: ml-wf-1-pre-644f8966dc-rx7nb

DEBUG: root:Pod ml-wf-1-pre—-644£f8966dc-rx7nb requests 100 / 104857600. Available on
node ara-clustercloudl: 4000 / 8361611264.Passed: True

DEBUG:root:Pod ml-wf-1-pre-644£8966dc-rx7nb / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre—-644£8966dc—-rx7nb requests 100 / 104857600. Available on
node ara-clusterpil: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-1-pre-644£8966dc-rx7nb / Node ara-clusterpil /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-644£8966dc-rx7nb requests 100 / 104857600. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-1-pre-644£f8966dc-rx7nb / Node ara-clusterpi2 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-644£8966dc-rx7nb requests 100 / 104857600. Available on
node ara-clusterpi3: 4000 / 1023012864.Passed: True

DEBUG: root:Pod ml-wf-1-pre-644£f8966dc-rx7nb / Node ara-clusterpi3 /
PodFitsResourcesPred: Passed

DEBUG: root:Pod ml-wf-1-pre—-644£f8966dc—-rx7nb requests 100 / 104857600. Available on
node ara-clusterpi4: 4000 / 1023012864 .Passed: True

DEBUG: root :Pod ml-wf-1-pre-644£8966dc-rx7nb / Node ara-clusterpid /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-644£8966dc-rx7nb requests 100 / 104857600. Available on
node ara-clustertegral: 4000 / 8240386048.Passed: True

DEBUG:root :Pod ml-wf-1-pre-644£8966dc-rx7nb / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-1-pre-644£8966dc-rx7nb / BalancedResourcePriority:
[24.231348440580284, 24.231348440580284, 24.231348440580284, 24.231348440580284,
24.231348440580284, 24.231348440580284]

DEBUG:root:Pod ml-wf-1-pre-644£8966dc—-rx7nb / LatencyAwareImagelLocalityPriority:
[21.590370505131695, 26.987963131414617, 26.987963131414617, 26.987963131414617,
26.987963131414617, 21.590370505131695]

DEBUG:root :Pod ml-wf-1-pre-644£8966dc-rx7nb / LocalityTypePriority: [0.0,
59.64581321182787, 59.64581321182787, 59.64581321182787, 59.64581321182787,
59.64581321182787]

DEBUG:root:Pod ml-wf-1-pre-644f8966dc-rx7nb / DatalocalityPriority:
[47.20991059190411, 0.0, 0.0, 0.0, 0.0, 0.0]
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C.3. Optimized Skippy Scheduler

DEBUG:root:Pod ml-wf-1-pre-644£f8966dc-rx7nb / CapabilityPriority: [0.0, 0.0, 0.0, O.
0.0, 0.0]

DEBUG:root :Node scores: [ (ara-clustercloudl, 93.03162953761608), (ara-clusterpil,
110.86512478382278), (ara-clusterpi2, 110.86512478382278), (ara-clusterpi3,
110.86512478382278), (ara-clusterpid4, 110.86512478382278), (ara-clustertegral,

105.46753215753985) 1

INFO:root:Creating namespaced binding: Pod ml-wf-1-pre-644£8966dc-rx7nb on Node
ara-clusterpil

DEBUG:kubernetes.client.rest:response body:
{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root :Found best node. Remaining allocatable resources after scheduling:
Capacity (CPU: 3900 Memory: 918155264)

DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clusterpil,
feasible_nodes=6, needed_images=[’alexrashed/ml-wf-1-pre:0.33'1])

DEBUG:root:There’s a new pod to schedule: ml-wf-2-train-£fd88fdd5c-98g7d

DEBUG:root:Received a new pod to schedule: ml-wf-2-train-£fd88£fdd5c-98g7d

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d requests 100 / 1073741824. Available on
node ara-clustercloudl: 4000 / 8361611264 .Passed: True

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-2-train-£fd88£fdd5c-98g7d requests 100 / 1073741824. Available on
node ara-clusterpil: 3900 / 918155264.Passed: False

DEBUG:root:Pod ml-wf-2-train-£fd88£fdd5c-98g7d / Node ara-clusterpil /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d requests 100 / 1073741824. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: False

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d / Node ara-clusterpi2 /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-fd88fdd5c-98g7d requests 100 / 1073741824. Available on
node ara-clusterpi3: 4000 / 1023012864.Passed: False

DEBUG:root:Pod ml-wf-2-train-fd88fdd5c-98g7d / Node ara-clusterpi3 /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d requests 100 / 1073741824. Available on
node ara-clusterpid: 4000 / 1023012864.Passed: False

DEBUG:root :Pod ml-wf-2-train-fd88fdd5c-98g7d / Node ara-clusterpid /
PodFitsResourcesPred: Failed

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d requests 100 / 1073741824. Available on
node ara-clustertegral: 4000 / 8240386048.Passed: True

DEBUG:root:Pod ml-wf-2-train-fd88£fdd5c-98g7d / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d / BalancedResourcePriority:
[21.538976391626917, 21.538976391626917]

DEBUG:root:Pod ml-wf-2-train-£fd88fdd5c-98g7d / LatencyAwarelImagelLocalityPriority:
[26.987963131414617, 24.289166818273156]

DEBUG:root:Pod ml-wf-2-train-fd88fdd5c-98g7d / LocalityTypePriority: [0.0,
59.64581321182787]

DEBUG:root:Pod ml-wf-2-train-fd88fdd5c-98g7d / DatalLocalityPriority:
[47.20991059190411, 0.0]

DEBUG:root:Pod ml-wf-2-train-fd88£fdd5c-98g7d / CapabilityPriority: [0.0,
91.22271417461349]

DEBUG:root :Node scores: [ (ara-clustercloudl, 95.73685011494564), (ara-clustertegral,
196.69667059634145) ]

INFO:root:Creating namespaced binding: Pod ml-wf-2-train-fd88£fdd5c-98g7d on Node
ara-clustertegral

DEBUG:kubernetes.client.rest:response body:
{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root:Found best node. Remaining allocatable resources after scheduling:
Capacity (CPU: 3900 Memory: 7166644224)

DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clustertegral,
feasible_nodes=2, needed_images=[’alexrashed/ml-wf-2-train:0.33"1])

DEBUG:root:There’s a new pod to schedule: ml-wf-3-serve-566c4b9b97-s6bvm

DEBUG:root:Received a new pod to schedule: ml-wf-3-serve-566c4b9b97-s6bvm

0,
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DEBUG: root:Pod ml-wf-3-serve-566c4b9b97-s6bvm requests 100 / 209715200. Available on
node ara-clustercloudl: 4000 / 8361611264 .Passed: True

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / Node ara-clustercloudl /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm requests 100 / 209715200. Available on
node ara-clusterpil: 3900 / 918155264 .Passed: True

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / Node ara-clusterpil /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm requests 100 / 209715200. Available on
node ara-clusterpi2: 4000 / 1023012864.Passed: True

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / Node ara-clusterpi2 /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm requests 100 / 209715200. Available on
node ara-clusterpi3: 4000 / 1023012864 .Passed: True

DEBUG: root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / Node ara-clusterpi3 /
PodFitsResourcesPred: Passed

DEBUG: root:Pod ml-wf-3-serve-566c4b9b97-s6bvm requests 100 / 209715200. Available on
node ara-clusterpi4: 4000 / 1023012864.Passed: True

DEBUG: root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / Node ara-clusterpi4d /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm requests 100 / 209715200. Available on
node ara-clustertegral: 3900 / 7166644224 .Passed: True

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / Node ara-clustertegral /
PodFitsResourcesPred: Passed

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / BalancedResourcePriority:
[24.231348440580284, 18.84660434267355, 21.538976391626917, 21.538976391626917,
21.538976391626917, 24.231348440580284]

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / LatencyAwareImagelocalityPriority:
[21.590370505131695, 26.987963131414617, 26.987963131414617, 26.987963131414617,
26.987963131414617, 21.590370505131695]

DEBUG: root :Pod ml-wf-3-serve-566c4b9b97-s6bvm / LocalityTypePriority: [0.0,
59.64581321182787, 59.64581321182787, 59.64581321182787, 59.64581321182787,
59.64581321182787]

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / DatalocalityPriority:
[47.20991059190411, 0.0, 0.0, 0.0, 0.0, 0.0]

DEBUG:root:Pod ml-wf-3-serve-566c4b9b97-s6bvm / CapabilityPriority: [0.0, 0.0, 0.0,
0.0, 0.0, 0.0]

DEBUG:root :Node scores: [ (ara-clustercloudl, 93.03162953761608), (ara-clusterpil,
105.48038068591603), (ara-clusterpi2, 108.1727527348694), (ara-clusterpi3,
108.1727527348694), (ara-clusterpi4d4, 108.1727527348694), (ara-clustertegral,

105.46753215753985) ]

INFO:root:Creating namespaced binding: Pod ml-wf-3-serve-566c4b9b97-s6bvm on Node
ara-clusterpiz

DEBUG:kubernetes.client.rest:response body:
{"kind":"Status", "apiVersion":"v1l", "metadata":{}, "status":"Success", "code":201}

DEBUG:root:Found best node. Remaining allocatable resources after scheduling:
Capacity (CPU: 3900 Memory: 813297664)

DEBUG:root:Pod yielded SchedulingResult (suggested_host=ara-clusterpi?,
feasible_nodes=6, needed_images=[’alexrashed/ml-wf-3-serve:0.33"1])

Listing C.3: Testbed log output - TET Optimized Skippy Scheduler
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APPENDIX

Additional Evaluation Results

The following figures each show a matrix of line plots to visualize and compare the
placement qualities of the different scheduler configurations — one for each of the cluster
configurations which have not been covered in detail in Section 7.3. Each column
represents one configuration of the optimized Skippy scheduler towards one objective.
Each row focuses on the cumulative values for one objective. Therefore each column
shows the performance of one configuration for each of the objectives while each row
shows the performance of one objective across all different configurations. The plots on
the diagonal of the matrix always show the performance of the Skippy scheduler when
optimized towards the respective objective, revealing the highest potential of the Skippy
scheduler.
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D. ADDITIONAL EVALUATION RESULTS
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Figure D.1: Placement quality comparison matrix plot for the testbed cluster configuration
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