
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Abstraction for Reasoning about
Agent Behavior with Answer Set

Programming

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der Technischen Wissenschaften

eingereicht von

Zeynep Gözen Sarıbatur

Matrikelnummer 01428912

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter

Zweitbetreuung: Assoc. Prof. Dipl.-Ing. Georg Weissenbacher, D.Phil.

Diese Dissertation haben begutachtet:

João Leite Tran Cao Son

Wien, 8. August 2019

Zeynep Gözen Sarıbatur

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstraction for Reasoning about
Agent Behavior with Answer Set

Programming

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Zeynep Gözen Sarıbatur

Registration Number 01428912

to the Faculty of Informatics

at the TU Wien

Advisor: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter

Second advisor: Assoc. Prof. Dipl.-Ing. Georg Weissenbacher, D.Phil.

The dissertation has been reviewed by:

João Leite Tran Cao Son

Vienna, 8th August, 2019

Zeynep Gözen Sarıbatur

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Zeynep Gözen Sarıbatur

Obere Amtshausgasse 46/4/53, 1050, Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. August 2019

Zeynep Gözen Sarıbatur

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

First and foremost, I would like to thank my supervisor Thomas Eiter, for his continuous
support, guidance and patience throughout my PhD studies. He never failed to surprise
me with his ability to always find time and energy (sometimes even more than me) for
our meetings and to give scrupulous attention to the details. It was truly inspirational to
see him always find a charm in what he does, so that it worths to put an effort and to
use valuable time. I would also like to thank my co-supervisor Georg Weissenbacher for
providing insight and a different perspective to the problems we were tackling.

A special thanks goes to DK LogiCS for giving me the opportunity to continue my
academic journey in the lovely city of Vienna and in a friendly atmosphere. This would
not have been possible without the passion of Anna Prianichnikova to make us feel like a
family, and, of course, the founder Helmut Veith, who we miss dearly. Also big thanks to
Eva Nedoma and Beatrix Buhl, for always being there to help out.

My PhD journey would not have been so smooth without having Peter Schüller come
on board in the last two years. He will always have a special place as my non-official
co-advisor with his invaluable support, witty remarks, inspiring comments, and realistic
perspective to research that has helped me keep my feet on the ground. I am also very
thankful to Stefan Woltran for our pleasant conversations and for his inspiring remarks
to my work, and to Magdalena Ortiz for the friendliness and for being a great example of
balancing family life and work. Also thanks to Johannes Wallner for his help and advice
in the last years.

Warm thanks to Chitta Baral for hosting me at Arizona State University, which helped
in expanding my horizons in research and life, and to Torsten Schaub for hosting me at
University of Potsdam in a great team environment and for always making me feel more
than welcome.

Throughout my studies I was lucky to meet inspiring colleagues and friends, who were
always open to spend quality time together. Special thanks to Shqiponja Ahmetaj, Harald
Beck, Gerald Berger, Wolfgang Dvořák, Adrian Haret, Tobias Kaminski, Thomas Lins-
bichler, Neha Lodha, Anna Lukina, Jan Maly, Matthias Schlaipfer, and Ilina Stoilkovska,
for our coffee breaks, lunch meet-ups, hiking trips, excursions, and all other non-scientific
activities. A warm hug goes to Giray Havur for being an amusing comrade during this
Viennese life.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Last but most importantly, I am deeply grateful to my family: my mother Ayşe for her
constant love, support and encouragement throughout my life, for always wishing me the
best even though that may mean spending less time together, and for her heart-warming
enthusiasm for even the tiniest accomplishments in this journey, my uncle Mehmet and
aunt Inga-lill, for their loving support and for always reminding me the possibility to
just leave everything and visit my second home in Sweden, and, finally, Erdem for being
my solid rock throughout this journey.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Fortschritte im Bereich der Künstlichen Intelligenz (KI) machen es immer wichtiger, das
Verhalten von künstlichen Agenten zu verstehen und wesentliche Elemente von deren
Modellen strukturiert beschreiben zu können, insbesondere jene die deren Verhalten
beeinflussen. Ein logikbasierter Ansatz für den Entwurf von KI Agenten beschreibt deren
Wissen über die Welt als mathematisches Modell in einer expressiven Repräsentationss-
prache mit präzise definierter Syntax und Semantik. Solch ein Modell beschreibt die
Fähigkeiten des Agenten und erlaubt es, Schlussfolgerungen über zukünftige Aktionen
durchzuführen. Der Wunsch solch eine Repräsentationssprache zu entwickeln ufert in
Herausforderungen, Weltwissen und die nichtmonotone Natur menschlichen Schlussfol-
gerns zu repräsentieren. Dies führte zur Entwicklung vieler Formalismen im Bereich der
Wissensrepräsentation und des Automatischen Schlussfolgerns. Bis heute ist das Verste-
hen von Schlüsseleigenschaften im Verhalten von Agenten die auf logischen Formalismen
aufbauen, ein herausforderndes Problem.

Antwortmengenprogrammierung (ASP) is solch ein Formalismus, der breite Anwendung
findet, nicht zuletzt dank seiner hohen Ausdrucksstärke und der Verfügbarkeit von effi-
zienten Softwaretools. Ein besonderes Anwendungsgebiet von ASP ist die Darstellung
des Verhaltens von Agenten, da es eine ausdrucksstarke Umgebung zur Repräsentation
von Handlungen und Veränderungen in der Welt. Dies macht ASP zu einem wünschens-
werten Instrument zum Schlussfolgern über das Verhalten eines künstlichen Agenten.
Existierende Arbeiten zum Verständnis von ASP-Programmen existieren, aber sie liefern
oft Erklärungen mit zu vielen Details, welche verhinern, die entscheidenden Teile des
Verhaltens eines Programmes zu erkennen.

Abstraktion ist ein Prozess, der von Menschen permanent zur Problemlösung und Er-
mittlung der wesentlichen Elemente einer Fragestellung verwendet wird. Dies führte dazu,
die Verwendung von Abstraktion in der KI zu untersuchen, insbesondere um Probleme
yu vereinfachen und beim Entwurf intelligenter Agenten und für die automatisierter Pro-
blemlösung. Durch das Weglassen von Details werden Szenarien auf diejenigen reduziert,
die einfacher zu handhaben und zu verstehen sind. Details werden nur dann wieder zum
Szenario hinzugefügt, wenn dies erforderlich ist. Überraschenderweise wurde Abstraktion,
abgesehen von einigen Vereinfachungsmethoden, im Kontext der nichtmonotonen Wis-
sensrepräsentation bisher nicht berücksichtigt, und insbesondere nicht im Bereich von
ASP.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Diese Dissertation befasst sich mit der Herausforderung, die Schlüsselelemente im Verhal-
ten eines Agenten mithilfe von Abstraktion und in einer ASP-Perspektive zu verstehen.
Wir nähern uns dieser Herausforderung aus zwei Richtungen. Zunächst untersuchen wir
eine Abstraktionsmethode, die das Verhalten des ursprünglichen Programms beibehält
und gleichzeitig Details, die irrelevant für das Verhalten sind, aus der Problembeschrei-
bung beseitigt. Zu diesem Zweck beschreiben wir eine formale Semantik für Agenten
deren Verhalten auf einer vordefinierten Policy basiert mithilfe von Abstraktion über
nicht-unterscheidbare Details. Zweitens machen wir den ersten Schritt um Abstraktion
auch im Kontext von ASP einsetzen zu können. Wir konzentrieren uns auf zwei Ansätze
für Abstraktion: (1) Abstraktion durch Auslassung und (2) Domänenabstraktion. Für
beide Ansätze beschreiben wir eine neuartige Methode zur Erstellung einer Zusammen-
fassung des Originalprogrammes basierend auf einem reduzierten Symbolinventar. Unsere
Methode stellt sicher, dass die Antwortmengen des Originalprogramms durch das abstrak-
te Programm überschätzt werden und so keine Lösungen verloren gehen können. Wir
beschreiben eine Methodik, die es ermöglicht mit einer anfänglichen Abstraktion zu be-
ginnen und automatisch eine verfeinerte Abstraktion zu finden, die eine konkrete Lösung
des Originalproblems erzielt. Eine Evaluierung der implementierten Werkzeuge und der
Methodik zeigen das Potenzial dieses neuartigen Ansatzes für die Problemanalyse, wo es
darauf ankommt sich auf die wesentlichen Teile eines Programms zu konzentrieren die ein
Problem unerfüllbar machen, sowie für die Berechnung von konkreten Antwortmengen
eines ASP-Programms die nur relevante Details der Problembeschreibung widerspiegeln.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Recent advances in the field of AI aggravate the challenge of understanding the behavior
of the designed agent and distinguishing the core elements in the designed model that
plays a role in the behavior. A logic-based approach for designing AI agents is about
representing their knowledge of the world as a mathematical model through a powerful
representation language with precisely defined syntax and semantics, that describes the
capabilities of the agent and allows it to reason about the next course of actions. The
desire to develop such a representation language emerges the challenges of representing
commonsense knowledge and the nonmonotonic nature of human reasoning, which has
led to the invention of many formalisms in the field of Knowledge Representation and
Reasoning. However, understanding the key elements in the behavior of an agent that is
designed using such formalisms remains to be a challenging problem.

Answer Set Programming (ASP) is one such formalism which is recognized as a knowledge
representation and reasoning paradigm, currently widely used in problem solving thanks
to its expressive power and the availability of efficient solvers. One particular application
area of ASP is the representation of agent behavior, as it offers an expressive setting
which is convenient for representing and reasoning about actions and change. This makes
ASP a desirable tool for reasoning about the behavior of the agent. There have been
investigations on understanding how ASP programs work, which however may lead to
obtaining explanations with too many details that prevent one from seeing the crucial
parts of the behavior.

Abstraction is a process that is unwittingly used by humans for problem solving and figur-
ing out the key elements. This observation has led to investigations of using abstraction
in Computer Science and AI to simplify problems, especially, in the design of intelligent
agents and automated problem solving. By omitting details, scenarios are reduced to ones
that are easier to deal with and to understand, by adding back further details only when
necessary. Surprisingly, other than some simplification methods, abstraction has not
been considered in the context of nonmonotonic knowledge representation and reasoning,
and specifically not in ASP.

This thesis tackles the challenge of understanding the key elements in the behavior of an
agent with an ASP perspective, by employing abstraction. We approach the challenge
from two directions. First, we investigate the representation of an abstraction that
preserves the behavior of the original program while getting rid of details irrelevant to the

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

behavior. For this, we introduce a formal semantics for describing agent behavior following
a designed policy by abstracting over the indistinguishable details, while preserving the
behavior. Second, we make the initial step for employing abstraction in the context of
Answer Set Programming, to be able to abstract over the irrelevant details of answer set
programs. We focus on two approaches of abstraction: (1) abstraction by omission, and
(2) domain abstraction, and introduce a method to construct an abstract program with
a smaller vocabulary, by ensuring that the original program is over-approximated. We
introduce an abstraction-&-refinement methodology that makes it possible to start with
an initial abstraction and automatically achieve an abstraction with a concrete solution.
The evaluations of the implemented tools of the methodology reveal the potential of
the approach for problem analysis by focusing on the parts of the program that cause
the unsatisfiability and by achieving concrete abstract answer sets that reflect relevant
details only.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Contributions . 4
1.3 Thesis Structure . 7

1.3.1 Publications . 8

2 Background 11
2.1 Agents, Actions and Change . 11
2.2 Answer Set Programming . 16

2.2.1 Actions and ASP . 20
2.3 Abstraction . 23
2.4 Computational Complexity . 25

I Behavior-Preserving Abstraction 27

3 Semantics for Reactive Agent Policies using Abstraction 29
3.1 Modeling Policies in Transition Systems 29

3.1.1 State Profiles According to the Policy 31
3.1.2 Components of the Policy . 32
3.1.3 Transition Systems According to the Policy 33
3.1.4 Complexity Issues . 37
3.1.5 Constraining Equalization . 40

3.2 Bridging to Action Languages . 43
3.3 Reactive Maintenance Policies . 45

3.3.1 Behavior of a Policy in Dynamic Environments 47
3.3.2 Omitting Unnecessary Information 52
3.3.3 Computational Complexity . 59

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4 Discussion . 60

II Exploiting Over-Approximation 63

4 Abstraction for Answer Set Programs 65

4.1 Introducing Abstraction in ASP . 66
4.2 Omission-based Abstraction . 69

4.2.1 Program Abstraction . 71
4.2.2 Properties of Omission Abstraction 75
4.2.3 Computational Complexity . 78
4.2.4 Extensions . 80
4.2.5 Satisfiability Blockers of Programs 82

4.3 Domain Abstraction . 85
4.3.1 Towards an Abstract Program 86
4.3.2 Lifted Built-in Relations . 88
4.3.3 Abstract Program Construction 90
4.3.4 Syntactic Extensions and Further Considerations 100
4.3.5 Properties of Domain Abstraction 103
4.3.6 Computational Complexity . 107
4.3.7 Existential Abstraction on Relations 111

4.4 Refinement by Debugging . 116
4.4.1 Bad Omission of Ground Atoms 118
4.4.2 Non-Ground Spuriousness . 130

4.5 Overall Methodology . 143
4.5.1 Omission Abstraction and Refinement 143
4.5.2 Domain Abstraction and Refinement 144

4.6 Multi-Dimensional Domain Abstraction 146
4.7 Discussion . 150

4.7.1 Other Abstraction Possibilities 151
4.7.2 Related Work in ASP . 153

5 Applications in Problem Analysis 159

5.1 Implementation . 159
5.1.1 ASPARO . 160
5.1.2 DASPAR . 161

5.2 Evaluation . 163
5.2.1 Finding Satisfiability Blockers of Programs 163
5.2.2 Obtaining Abstract Solutions 169

5.3 Abstraction in ASP Planning . 174
5.3.1 Abstracting over Irrelevant Details 175
5.3.2 Computing Abstract Plans . 177

5.4 Discussion . 180

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6 Abstracting Problems over Grid-Cells 181
6.1 Problems in Focus . 181
6.2 Quad-tree Abstraction . 183
6.3 mDASPAR . 185

6.3.1 Debugging and Refinement . 187
6.3.2 Incremental Concreteness Checking 190

6.4 Evaluation: Unsolvable Problem Instances 193
6.4.1 User Study on Unsatisfiability Explanations 196

6.5 Abstraction for Policy Refutation . 199
6.6 Discussion . 202

7 Conclusion 205
7.1 Summary . 205
7.2 Related Work . 207
7.3 Future Work . 210

Bibliography 213

A Encodings 231

B Further Computational Details 235

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

1.1 Motivation and Background

There is an increasing need in understanding the behavior of an AI agent that is designed
to perform a certain task. These autonomous agents are capable of reasoning about their
actions and acting in the environment in order to satisfy their design objectives. One of
the very first papers in AI [McC59] suggested a logic-based approach for designing such
agents by representing their knowledge of the world as a mathematical model through
a collection of formulas, which is viewed as the knowledge base (KB). Such a KB is to
be constructed using a powerful representation language with precisely defined syntax
and semantics, that allows to describe the capabilities of the agent, represent facts
about the world and help the agent in reasoning about its course of actions. Starting
with this groundbreaking view on the problem, the field of Knowledge Representation
and Reasoning (KR) [VHLP08] has come a long way in addressing the challenges of
representing knowledge and empowering the agents with reasoning capabilities. However,
designing an agent that is capable of performing a particular activity then introduces
the challenge of reasoning about the behavior of the agent in the environment in order
to check whether it progresses as desired and to understand the core elements of the
described model that plays a role in the behavior, which is the challenge that is tackled
in this thesis.

One key issue in building a KB with a representation of the world has been to represent
commonsense knowledge. The common tools that are used for formalizing mathematical
reasoning fails in representing such knowledge, due to the need to represent the non-
monotonic nature of human reasoning. Nonmonotonic reasoning [BMT11] refers to being
able to withdraw previous conclusions about the world when receiving new information.
For example, you know that standing in the rain gets you wet, but having an umbrella
will keep you dry. If however you find out that the umbrella has holes, you can no longer
conclude that you will stay dry. Expressing commonsense reasoning and nonmonotonicity

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

has been the challenge that is tackled for many years which has led to the invention
of many formalisms. The most famous of these are circumscription [McC81a, McC86],
default logic [Rei80], and nonmonotonic modal logics [MD80, McD82, Moo85]. Bringing
ideas for representing nonmonotonic reasoning into logic programming has led to the
development of nonmonotonic logic programming semantics, and in particular answer
sets [GL91, Bar03].

Answer Set Programming (ASP) [Lif08b, BET11] is a knowledge representation and
reasoning paradigm widely used in problem solving thanks to its expressive power and the
availability of efficient solvers. ASP has been applied in many areas of AI [EGL16], such
as to represent knowledge (e.g., mathematical models of problems, behaviour of dynamic
systems, beliefs and actions of agents) and to solve combinatorial search problems (e.g.,
planning, diagnosis) and knowledge-intensive problems (e.g., query answering, explanation
generation). The idea is to declaratively represent a problem as a “program” whose
models (called “answer sets” [GL91]) correspond to the solutions of the problem. One
particular application area of ASP is the representation of agent behavior. ASP can
be used to formalize actions, planning, and agent policies, in an expressive setting (e.g.
direct and indirect action effects) [Lif99b, Bar03, EGL16], and has led to dedicated action
languages [Lif99a, GL98a], which are a useful tool for defining actions and reasoning
about them, by modeling dynamic systems as transition systems. The declarative setup
of action languages helps in describing dynamic systems in an understandable, concise
language. They also address the problems encountered when reasoning about actions,
e.g., the frame problem [MH69], ramifications [GS88], and the qualification problem
[McC81b]. As action languages are closely related to classical logic and ASP, they can
be translated into logic programs and queried for computation.

The expressivity and representation power makes ASP a convenient tool for problem
solving and for investigating ways to help in understanding the problem with its key
elements. There have been studies in understanding how ASP programs find a solution
(or none) to a problem which mainly focus on debugging answer sets [BGP+07, GPST08,
OPT10] or finding justifications [PSE09, ST13, CFF14].These approaches could also be
used in understanding the problem at hand. However, as noted in [FS19], the obtained
explanations may contain too many details which prevent one from seeing the crucial
parts. This is where some notion of abstraction would come in handy.

Abstraction is a process that is exploited in human reasoning and understanding, by
reasoning over the models of the world that are built mentally [Cra52, JL83]. Although the
word itself comes from the meaning of “to draw away”, there is no precise definition that is
able to cover all meanings that it gains depending on its utilizations. Various meanings of
abstraction are interpreted in different disciplines such as Philosophy, Cognitive Science,
Art, Mathematics and Artificial Intelligence, with the shared consensus of the aim
to “distill the essential” [SZ13]. Among the several interpretations on the meaning of
abstraction, one that comes up is the capability of abstract thinking. This is achieved
by removing the irrelevant details and identifying the “essence” of the problem [Kra07].
The notion of relevance is especially important in problem solving, since the problem

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation and Background

at hand may become too complex to solve if every detail is taken into account. A good
strategy to solve a complex problem is to start with a coarse solution and then refine it
by adding back more details. For example, when planning a trip, first the destination is
picked and a coarse travel plan is determined. Thinking about the precise details of the
travel, such as taking the subway to the airport, comes later. This gives a hierarchy of
levels of abstraction, with the lowest level containing all of the details. Another view
on abstraction is the generalization aspect, which is the process of distinguishing the
common properties among the objects. For example, the physical attributes of the plane,
e.g., color and size, and their possible differences are irrelevant to the travel plan. We
are (mostly) only interested in the fact that there is a plane that takes us from Vienna
to Naples. Overall, the general aim of abstraction is to simplify the problem at hand to
one that is easier to deal with and to understand.

For solving a problem and figuring out the key elements, humans unwittingly make use of
abstraction. In AI and related combinatorial problems, such problems vary from moving
blocks in a certain order to achieve a final configuration to finding a plan for an agent in
an environment under constraints, and to constraint problems such as coloring the nodes
of a given graph. Human problem solving typically relies on a more high-level/abstract
view and focuses on certain details of a problem only when necessary. In graph coloring,
for instance, isolated nodes can be viewed as one node and colored the same without
thinking about the specific details. If a given graph is non-colorable, then we may try to
find some subgraph (e.g., a clique) of it which causes the unsolvability, and would not
care about other nodes in the graph. Similarly with blocks, if, for example, the labels of
the blocks are not of importance, we would not take them into account when figuring
out the actions. If from the given initial layout of the blocks the final configuration
can not be achieved, we would try to find the particular blocks that cause this. As for
figuring out the agent’s behavior in an environment, we can look at the given constraints
to predict what will happen. For example, if we know that the agent will traverse the
environment by always moving to the farthest point it can observe, we can then deduce
the path the agent will take by omitting the rest of the details in the environment and
conclude whether the agent will manage to achieve its goal.

As it is commonly agreed that abstraction plays a key role in representing knowledge and
in reasoning, the usage of the concept has also been investigated in the design of intelligent
agents and automated problem solving. From the early days of AI research, abstraction
has been a useful heuristic for problem solving. First the problem is solved in an
abstracted space, and then the abstract solution is used to guide the search for a solution
in the original space [NS72, Sac74, Kno94]. This idea has been used by the Planning
community especially for computing heuristic functions to guide the plan search in the
state space. Several abstraction methods were introduced towards this direction, especially
to automatically compute abstractions that give a good heuristic [Ede01, HHH+07, SH13].
However, it is well known that the success in solving a problem relies on how “good” the
abstraction is. For this, theoretical approaches for defining abstractions with desired
properties have been investigated [Hob90, GW92, NL95]. Apart from gaining efficiency

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

which is shown to be not always the case [BJ95, HSD06], abstraction forms a basis to
obtain high-level explanations and an understanding of the problem at hand.

The use of abstraction is of interest in other areas of Computer Science as well. Particularly
interesting research has been taking place for Model Checking, an automated verification
technique where the desired behavioral properties are checked over the model of a program
[BK08, CHVB18]. This technique is applied for checking the behavior of reactive systems
which interact with the environment according to their designed program and that usually
display nondeterministic behavior. Such a behavior is modeled by a transition system that
reflects all possible behaviors of the program, which then gives rise to the infamous state
explosion problem. One way to tackle this is to define property preserving abstractions,
such that if the desired property holds in the constructed abstract model then it also holds
in the original model [CGL94, LGS+95, DGG97]. The seminal counterexample guided
abstraction refinement (CEGAR) method [CGJ+03] is on automatically generating such
abstractions. The method starts with an initial abstraction that over-approximates the
behavior and then refines the abstraction upon encountering spurious violations, i.e.,
counterexamples, of the desired property. The process continues by achieving more precise
abstractions until the property is proved or disproved by a concrete counterexample.

Surprisingly, abstraction has not been considered much in the context of nonmonotonic
knowledge representation and reasoning. Simplification methods such as equivalence-
based rewriting [GKK+08, Pea04], partial evaluation [BD97, JNS+06], or forgetting
[Lei17], have been extensively studied. However, they strive for preserving the semantics,
while abstraction may change it and lead to an over-approximation of the models (answer
sets) of a program, in a modified language. The notion of abstraction could be useful for
focusing on the relevant details in an answer set program for finding an answer set, or for
realizing that no answer set exists, and disregarding the irrelevant ones. Once a notion
of over-approximation is introduced, a CEGAR-style approach can be used to start with
a highly coarse abstraction and automatically search for such an abstraction. This thesis
makes the initial step of employing the notion of abstraction in the context of Answer
Set Programming.

1.2 Contributions

The dissertation focuses on two forms of abstraction. First, we investigate the represen-
tation of an abstraction that preserves the behavior of the original program while getting
rid of details irrelevant to the behavior. For this, we take an ASP-based perspective to
the representation of reactive agents, by describing an iterative behavior that perceives
the current state of the world, figures out the next actions, executes them and observes
the outcomes. When employed in real world domains, these agents are expected to
handle the changes in the environment or to fill the gaps in their incomplete knowledge
while interacting with the environment, and still be able to achieve their goals. Usually
these agents are provided with a policy that guides them in making decisions about their
next actions. As these agents behave according to the policy, the behavior of the agent

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Contributions

depends entirely on the information that the policy uses in the state and the successor
state reached after executing the determined actions. Depending on the policy, not every
information in the state may be relevant to the agent’s behavior or the states that are
passed through while executing the actions. We address the shortage of representations
that are capable of modeling reactive policies which distinguishes relevant details of the
states and the transitions.

We introduce a formal semantics for describing policies that express a reactive behavior for
an agent, and connect our framework with the representation power of ASP-based action
languages. In this framework, we combine components that are efficient for describing
reactivity such as target establishment and (online) planning. Our representation allows
one to analyze the flow of executing the given reactive policy, and lays foundations
for checking properties of policies. Additionally, we recognize the issue of keeping
irrelevant information in the state which the policy does not use, as having to represent
such information adds to the state explosion problem when reasoning about the agent’s
behavior. For this, we consider a state clustering through the notion of indistinguishability
that abstracts over such information, while preserving the behavior of the policy. This
helps in checking the properties over the policy with a guarantee that the result also holds
in the original system. The flexibility of the representation opens a range of possibilities
for designing behaviors.

Second, we consider abstraction as an over-approximation, and employ the notion of
abstraction in the context of Answer Set Programming, to be able to abstract over the
irrelevant details of answer set programs. We introduce an abstraction from a program
by constructing an abstract program with a smaller vocabulary, and ensuring that the
original program is over-approximated, i.e., every original answer set can be mapped to
some abstract answer set. We focus on two approaches of abstraction: (1) abstraction
by omission, and (2) domain abstraction. The former is about omitting atoms from a
program, i.e., to cluster them into ⊤ (truth), and consider the abstract program which
is over the remaining atoms, while the latter investigates abstraction over non-ground
ASP programs given a mapping over their domain (i.e., the Herbrand universe) that
singles out domain elements. We study the properties of the introduced abstractions,
and provide complexity results.

As spurious answer sets can be introduced by the over-approximation, one may need to
go over all abstract answer sets until a concrete one is found. If the original program
has no answer sets, all encountered abstract answer sets will be spurious. Eliminating
the spurious answer sets is possible by refining the abstraction. However, checking the
concreteness of an abstract answer set returns unsatisfiability, if it is spurious, without
any reason on why this is the case. In order to obtain hints on spuriousness, we make use
of ASP debugging approaches [BGP+07, OPT10], by altering them to be able to debug
checking the existence of an original answer set that can be mapped to the abstract
answer set. The refinement decisions are then made using the debugging hints obtained
from the checking.

Inspired from CEGAR [CGJ+03], we introduce an abstraction-&-refinement methodology

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

that starts with an initial abstraction and refines it repeatedly using hints that are obtained
from checking the abstract answer sets, until a concrete solution (or unsatisfiability)
is encountered. This makes it possible to automatically achieve an abstraction with
a concrete solution. We have implemented the approach in the tools ASPARO, for
omission-based abstraction, and DASPAR, for domain abstraction. Given an answer
set program and an initial abstraction, these tools are able to automatically achieve an
abstraction mapping that creates an abstract program where either a concrete answer
set is encountered, or unsatisfiability is achieved.

We have conducted experimental evaluations to observe the achievement of abstract
solutions to the problems. We evaluate the omission-based abstraction approach for
unsatisfiable problems to observe its use in finding the unsatisfiability reason of a problem
by keeping the atoms relevant for the unsatisfiability. For this, we introduce the notion of
blocker sets as sets of atoms such that abstraction to them preserves unsatisfiability of a
program. A minimal program is then a minimal cause of unsatisfiability. For unsatisfiable
ASP programs, we observe that automatic abstraction refinement is able to catch the
unsatisfiability without refining back to the original program. The evaluation of the
domain abstraction approach focuses on the achieved abstractions on which a concrete
solution to the problem is encountered. We compare the effects of different variations
of the methodology with respect to the abstract answer sets picked, different forms of
concreteness determination and the refinement decisions. The experiments show the
potential of the approach to aid (in) program analysis as it allows for problem solving
over abstract notions, by achieving concrete abstract answer sets that reflect relevant
details only.

In order to handle problems that involve multi-dimensional structures, such as grid-cells,
a differentiated view of an abstraction is needed for being able to provide insight that is
similar to humans, by focusing on certain areas and abstracting away the rest. For this,
we empower the domain abstraction to handle such a hierarchical view of abstraction
that automatically adjusts the granularity towards the relevant details of the problem.

We have implemented the tool mDASPAR, which is an extension of DASPAR that handles
multi-dimensional abstractions. We evaluate the approach in detecting the unsolvability
of benchmarks problems involving grid-cells. In that we observe the capability of zooming
in to the area which shows the reason for unsolvability of a problem instance. This
becomes the machine’s way of explanaining unsolvability, which is then compared with
how humans provide explanations. A user experiment is conducted to compare the
resulting abstractions with human explanations, which shows that such a hierarchic
abstraction can provide intuitive and “to the point” explanations of unsolvability. The
user experiment on human explanations also reveals the implicit abstraction capabilities
of humans and the acknowledged need for studying the meaning of explanation.

Furthermore, we utilize mDASPAR for the problem of refuting policies in grid-cells. We
observe that for a given instance, an abstraction is obtained that focuses on the area
which shows a counterexample path that refutes the policy or which proves that the
policy works.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Thesis Structure

1.3 Thesis Structure

The thesis is structured as follows.

• In Chapter 2, we provide an overview on representing agents and their actions
(Section 2.1), Answer Set Programming (Section 2.2), the notion of abstraction
(Section 2.3), and computational complexity (Section 2.4);

• in Chapter 3, we describe a formal semantics for describing policies that express a
reactive behavior for an agent:

– In Section 3.1, we introduce the general framework for modeling policies, where
we consider components for describing reactivity such as target establishment
and planning. We apply an indistinguishability notion on the states w.r.t. the
behavior of the policy, and show the properties necessary to guarantee the
preservation of the behavior in the abstract system;

– in Section 3.2, we show the relation with ASP-based action languages;

– Section 3.3 shows an extension of the framework to dynamic environments by
employing the notion of maintenance.

• in Chapter 4, we make the first step towards employing the concept of abstraction
in ASP as an over-approximation that achieves abstraction over the irrelevant
aspects of answer set programs:

– In Section 4.1, we introduce the abstraction notion to ASP, describe possible
approaches and the CEGAR-style methodology that is considered;

– Section 4.2 introduces abstraction by omitting atoms from the program and
constructing over-approximations. For an application in unsatisfiable ASP
programs, we introduce the notion of blocker sets as sets of atoms such that
abstraction to them preserves unsatisfiability of a program;

– Section 4.3 introduces abstraction over the domain of the program;

– in order to handle the unavoidably introduced spurious abstract answer sets,
in Section 4.4, we propose a method for determining refinements for the
abstractions by employing ASP debugging methods.

– the overall abstraction and refinement methodology is described in Section 4.5;

– Section 4.6 points out the possibility to extend the domain abstraction to
consider a multi-dimensionality in order to describe more sophisticated ab-
stractions;

– in Section 4.7, we address related work in ASP on simplification methods.

• Chapter 5 investigates possible applications of abstraction in understanding the key
elements of problems, by abstracting away as many irrelevant details as possible
that may be traced before finding a solution of a problem or realizing that it is
unsolvable:

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

– In Section 5.1, we describe the implementations for the abstraction and
refinement methods;

– Section 5.2 shows the evaluation results by focusing on the achievement
of abstract solutions to the problems. Section 5.2.1 shows the results of
using omission abstraction in finding satisfiability blockers of programs, and
Section 5.2.2 reports about the achieved non-trivial domain abstractions and
the results of having variations in the methodology;

– in Section 5.3, we discuss the use of domain abstraction in understanding
planning problems expressed in ASP.

• in Chapter 6, we focus on problems involving grid-cell structures to observe the use
of a two-dimensional abstraction over the grids in focusing on the essential parts of
the problem and achieving abstract solutions;

– we begin by describing the problem types that we focus on in Section 6.1;

– in Section 6.2, we define the 2-dimensional abstraction on grid-cells based on
quad-trees;

– Section 6.3 describes the implementation mDASPAR;

– in Section 6.4, we evaluate the approach on unsatisfiable problems and conduct
a user experiment for comparing the obtained abstract explanations;

– in Section 6.5, we discuss the application of abstraction to the problem of
policy refutation.

• We conclude in Chapter 7, by summarizing our contributions. We discuss related
work and possible future directions.

1.3.1 Publications

Parts of the results in this thesis have been published. In the following we list the
relevant publications and indicate which chapters or sections contain the corresponding
contributions.

[SE16a] Zeynep G. Saribatur and Thomas Eiter. Reactive policies with planning for
action languages. In Loizos Michael and Antonis Kakas, editors, Proceedings of
the 15th European Conference On Logics In Artificial Intelligence (JELIA), vol.
10021 of Lecture Notes in Computer Science, pages 463–480. Springer, 2016.

Sections 3.1 and 3.2

[SBE17] Zeynep G. Saribatur, Chitta Baral, and Thomas Eiter. Reactive maintenance
policies over equalized states in dynamic environments. In Eugénio Oliveira,
Joao Gama, Zita Vale, and Henrique Lopes Cardoso, editors, Proceedings of the
18th EPIA Conference on Artificial Intelligence, vol. 10423 of Lecture Notes in
Computer Science, pages 709–723. Springer, 2017. Section 3.3

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Thesis Structure

[SE18a] Zeynep G. Saribatur and Thomas Eiter. Omission-based abstraction for answer
set programs. In Proceeding of the 16th International Conference on Principles
of Knowledge Representation and Reasoning (KR), pages 42–51. AAAI Press,
2018.

Chapters 4 and 5

[SSE19] Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter. Abstraction for non-
ground answer set programs. In Francesco Calimeri, Nicola Leone, and Marco
Manna, editors, Proceedings of the 16th European Conference on Logics in
Artificial Intelligence (JELIA), vol. 11468 of Lecture Notes in Computer Science,
pages 576–592. Springer, 2019. Chapters 4 and 5

[ESS19] Thomas Eiter, Zeynep G. Saribatur, and Peter Schüller. Abstraction for zooming-
in to unsolvability reasons of grid-cell problems. In Proceedings of the Workshop
on Explainable Artificial Intelligence (XAI), 2019. To appear.

Section 4.6 and Chapter 6

Preliminary versions of [SE16a, SE18a, SSE19] have been published in the following
venues.

[SE16b] Zeynep G. Saribatur, Thomas Eiter. Reactive policies with planning for action
languages. In Proceedings of the 16th International Workshop on Non-Monotonic
Reasoning (NMR). 2016.

[SE18c] Zeynep G. Saribatur, Thomas Eiter. Towards abstraction in ASP with an appli-
cation on reasoning about agent policies. In Proceedings of the 12th Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP), 2018.

A longer version of [SE18a] is published as a technical report [SE18b] and has been
invited for submission to Theory and Practice of Logic Programming as a result of KR
2018 paper evaluations.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Background

In this chapter, we give an overview of the concepts and notions that the thesis is built
upon.

Outline In Section 2.1 we provide some background information on representing agents
and their actions, and the challenges of reasoning about action and change. Section 2.2
presents the syntax and semantics of Answer Set Programming, and its use in representing
actions. In Section 2.3 we give an overview on the notion of abstraction as used in the
model checking community. Finally, we briefly recall the concepts of computational
complexity in Section 2.4.

2.1 Agents, Actions and Change

We give overview on representing agents and their actions; for further details, see
[RN03, GNT04].

An agent is an autonomous system the observes its environments through its sensors
and acts upon that environment through its actuators. The agent’s choice of actions
for an observation relies on an agent function that maps any given observation to an
action, which defines the agent’s behavior. AI is about designing the agent program that
implements the agent function mapping. A model-based agent maintains an internal state
which is built and updated from the observations and the knowledge that is described in
the agent program. This knowledge needs to contain some information of how the world
evolves independently of the agent, and how the agent’s actions affect the world, which
is referred to as the model of the world. This way the agent uses the given model of the
world to decide on its actions with the new observations.

There can be different properties of the environment in which the agent acts. The
environment is fully observable if the agent can observe the complete state of the

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.1: Blocksworld

A
CB

s1

A
BC

s2

B
CA

s3

BA C
s4

B
C

A

s5

environment; it is partially observable if parts of the state remains unobserved. If the next
state of the environment can be completely determined by the current state and the action
executed by the agent, then the environment is deterministic. The environment can also
change independently from the agent’s actions, which may cause nondeterminism of the
actions’ outcome or the need to always check the current state of the environment while
deciding on an action. Such environments are called to be dynamic. Static environments
are the ones where the environment keeps still.

The behavior of an agent is usually represented by a state transition system.

Definition 2.1. A transition system is a tuple T = 〈S,A,Φ〉 where

- S is the finite set of states,
- A is the finite set of possible actions, and
- Φ : S×A → 2S is the transition function, which returns the set of possible successor

states after applying a possible action in the current state.

An action a is applicable in a state s if there is at least one state s′ such that s′ ∈ Φ(s, a)
and a is deterministic at state s, if there is at most one such state. A transition system
is deterministic if there is only one initial state and all actions are deterministic.

For any states s, s′ ∈ S, we say that there is a trajectory between s and s′, denoted
by s →σ s′ for some action sequence σ = 〈a1, . . . , an〉 where n ≥ 0, referred to as a
plan, if there exist s0, . . . , sn ∈ S such that s = s0, s

′ = sn and si+1 ∈ Φ(si, ai+1) for all
0 ≤ i < n. Both the sequence 〈s0, . . . , sn〉 of states and the sequence 〈s0, a0, . . . , an−1, sn〉
of alternating states and actions are referred as a trajectory.

Example 2.1 (Blocksworld Domain). The blocksworld domain consists of 3 blocks,
A,B,C, where the agent can move the blocks on top of each other (by respecting the
alphabetical order, i.e., B can not be on top of A) and move them to the table. Figure 2.1
shows the transition system of this problem.

For (classical) planning problems, additionally an initial state and a (finite) set of goal
states are given. Then the aim is to find a sequence of actions in a transition system
that leads from the initial state to a given goal state.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Agents, Actions and Change

Definition 2.2. A (classical) planning problem is a tuple P = 〈T , s0, G〉 where

- T is a deterministic transition system,
- s0 is the initial state, and
- G is the finite set of goal states.

A solution to P is a plan 〈a1, . . . , an〉 such that there exist a trajectory s0, a1, s1, . . . , an, sn

where sn ∈ G.

An overview of the classical representation

The classical representation of the transition system and the planning problem uses
first-order predicate logic. Each state of the world is described using a set of logical
atoms that are true or false under some interpretation, and the actions are represented
in terms of changes to the truth values of these atoms.

Let L denote a first-order language with finitely many predicate symbols and constant
symbols, without function symbols. A state is a set of ground atoms of L. An atom p
holds in s iff p ∈ s. For a set g of literals, s satisfies g, denoted s |= g, when there is a
substitution θ such that every positive literal of θ(g) is in s and no negated literal of θ(g)
is in s.

Example 2.2 (ctd). The blocksworld domain can be described using three blocks a, b, c
and the predicates on(X,Y), onTable(X), free(X). Concrete representations of states s1

and s5 in Figure 2.1 are

s1 = {on(a, c), onTable(c), onTable(b), free(a), free(b)}

s5 = {on(a, b), on(b, c), onTable(c), free(a)}.

The predicate symbols of which the truth value of the atoms vary from state to state
are referred to as fluents. For example, the blocksworld domain has fluents on, onTable.
Notice that the atoms that do not hold in the states are not explicitly specified. This is
due to the closed-world assumption which assumes that any atom that is not mentioned
at a state is assumed to be false.

An action of the transition system is represented in terms of the preconditions that must
hold before it can be executed and the effects that occur after it has been executed.
Actions are also referred to as operators.

Example 2.3 (ctd). The actions of the blocksworld domain are described as below.

moveBTB(b1,b2)

;; move block b1 from the table on to block b2

precond: onTable(b1), free(b1), free(b2)

effect: on(b1,b2), -onTable(b1), -free(b2)

moveBBB(b1,b2,b3)

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

;; move block b1 from block b2 to block b3

precond: on(b1,b2), free(b1), free(b3)

effect: on(b1,b3), free(b2), -on(b1,b2), -free(b3)

moveBBT(b1,b2)

;; move block b1 from block b2 to the table

precond: on(b1,b2), free(b1)

effect: onTable(b1), -on(b1,b2)

An action is applicable in any state that satisfies its precondition. The result of executing
an applicable action a in a state s is a state s′ which the same as s except that any
positive literal p in the effect of a is added to s′ and any negative literal ¬p is removed
from s′. A plan is then a sequence of actions, when executed in the initial state, results
in a state that satisfies the goal.

Example 2.4 (ctd). For the transition system described as in Figure 2.1, a plan from s1

to G = {s5} is the action sequence 〈moveBBT(a,c),moveBTB(b,c),moveBTB(a,b)〉.

The classical representation can also be extended to talk about disjunctive preconditions,
quantified expressions which are considered in the planning language PDDL. However,
the representation only works for problems with restrictive assumptions, such as fully
observability, determinism, and having time implicitly defined.

Beyond classical planning

In real-world scenarios, it is rarely the case such a restricted representation is sufficient.
Partial observability in an environment leads to having multiple initial states, over which
a classical planning problem can not be defined. The nondeterminism in the effects of
actions is another challenge of applications in real-world scenarios.

The problem of planning for nondeterministic and partially observable domains gave rise
to different classes of planning problems. One interesting planning problem is conformant
planning, which is on finding a plan that achieves the goal from all possible initial states
and through all possible transitions caused by nondeterminism.

Definition 2.3. A conformant planning problem is a tuple P = 〈T , S0, G〉 where

- T is a transition system,
- S0 is the finite set of initial states, and
- G is the finite set of goal states.

A solution to P is a plan 〈a1, . . . , an〉 such that for all trajectories s0, a1, s1, . . . , an, sn

with s0 = s for some s ∈ S0, it holds that sn ∈ G.

Because of the uncertainty, all possible trajectories have to be taken into account, which
makes the search much more difficult than classical planning. Different approaches have

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Agents, Actions and Change

been proposed to tackle this problem; [SW98] proposed to develop separate plan graphs,
extending the ideas of the classical planner Graphplan [BF97], for each possible world and
search all graphs simultaneously, [Rin99] extended the approach of expressing planning
problems as satisfiability problems [KS96] to QBFs, and [BG00b, HB06] proposed to
encode conformant planning as heuristic search. Representing the problem using symbolic
model checking techniques has also been considered [CR00, CRB04]. As an alternative,
an approximation-based approach was introduced [STGM05, TSGM11] that is based
on theory of action and change, and a technique to compile the problem into classical
planning was proposed [PG09].

Conditional planning is another type planning problem which searches for a plan that
conditions over the possible observations that can be made under the partial observability.
A famous approach is to model this problem in Partially Observable Markov Decision
Processes (POMDPs) [KLC98] which allows to assign probabilities to transitions. Strong
cyclic plans [CPRT03] extend such a notion of finding “safe plans” with an iterative trial-
and-error strategy that has the possibility of terminating and, once it has terminated,
is guaranteed to achieve the goal. The problem of strong planning [BCRT06] is on
generating conditional plans that are guaranteed to achieve the goal in spite of the
nondeterminism and partial observability of the domain, which can be solved by turning
the problem into a non-deterministic search problem in the belief space [HB05, BKS06], or
alternatively, by compiling into a non-deterministic problem in the state space [APG09].

In order tackle these problems efficiently, the focus has been mainly on formalisms with
limited expressive power.

Need for more expressiveness

Expressing reasoning about actions and change in a logical formalism gives rise to various
challenges. The most famous one is the frame problem [MH69] which is the problem of
representing what does not change in the world when an action is made. For example,
moving a block will not change the positions of all of the remaining blocks. A closely
related challenge is the ramification problem [GS88] which is about representing all the
consequences of an action execution. For example, moving the table causes all of the
blocks on top to move along with it. Depending on the level of details represented in the
state, expressing all such indirect effects can become a difficult task. The qualification
problem [McC81b] is the problem of specifying when an action qualifies for execution.
For example, to be able to succesfully move the table, the table should not be too heavy,
it should not be glued to the floor, it should be in one piece, etc. Fully representing the
conditions for a successful execution of an action may require to consider many possible
scenarios.

Humans approach such problems by disregarding the unlikely situations unless there are
hints to their presence. For example, as it is unlikely that tables get glued to the floor
such a scenario does not come to mind when deciding to lift the table. However, when
such situations do occur, then some of the previous conclusions about the world will get

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

retracted, since the new information shows the change. When representing change, this
is referred to as the commonsense of inertia; the state of the object remains the same
unless there is evidence that it changed.

The above problems showed that expressing the human reasoning view over the changes
in the world requires nonmonotonicity. Motivated by this observation, nonmonotonic
formalisms have been developed, the most famous ones being circumscription [McC81a,
McC86], default logic [Rei80], and nonmonotonic modal logics [MD80, McD82, Moo85]. In
the meantime, a separate research direction have been focusing on developing declarative
programming languages, particularly logic programming [Llo87, CR96], with the idea
of combining logical knowledge representation with the theory of automated deduction.
Investigating ways to extend this language with nonmonotonic features resulted in the
proposal of stable-model semantics [GL88] and well-founded semantics [VGRS91], then
led to the proposal of an extended logic programming language [GL91] which is now
known as Answer Set Programming.

2.2 Answer Set Programming

Answer Set Programming is a declarative problem solving paradigm oriented towards
difficult search problems. The basic idea of ASP is to encode the problem through a
non-monotonic logic program in a declarative manner so that rather than specifying a
concrete algorithm that solves the problem, one describes the solutions in terms of rules
and constraints. Then, an ASP solver is used to compute the models (i.e., answer sets or
stable models) of this problem encoding, which show the solutions to the problem. The
success of ASP in many practical applications has been encouraged by the availability of
efficient ASP solvers, such as DLV [LPF+06], Smodels [SNS02], and Clasp [GKNS07].

Next, we present the formal syntax and semantics of ASP, and remark about further
notions. We then show how ASP can be used in representing actions and change.

Syntax

We have a function-free first order vocabulary L = (P, C) consisting of non-empty finite
sets P of predicates and C of constants. Let V represent the (finite) set of variable
symbols. A term is either a constant from C or a variable from V. An atom is defined
as p(t1, . . . , tn) where p ∈ P, each ti is a term, and k is called the arity of p. Atoms are
called propositional if k = 0 and ground if they do not contain variables. A literal l is an
atom a or a strongly (“classically”) negated atom ¬a, and a default-negated literal is a
literal of the form not l, which evaluates to true if the truth of l cannot be proven.

The intuitive meaning of not a evaluating to true is that “a cannot be proved (derived)
using rules and is false by default (or believed to be false)”. This is different from proving
that a is false, which is expressed by ¬a.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Answer Set Programming

A rule r is an expression of the form

α0 ← α1, . . . , αm,not αm+1, . . . ,not αn, 0≤m≤n, (2.1)

where each αi is a literal. We refer to α0 as the head of r, and α1, . . . , αm,not αm+1, . . . ,
not αn as the body or r. A rule is called a constraint if α0 is falsity (⊥, then omitted)
and a fact, if n= 0.

We also write r as α0←B(r), such that H(r) = α0 denotes the head and B(r) denotes
the set of all the body literals B+(r) ∪ B−(r), where B+(r) = {α1, . . . , αm} is the
positive body and B−(r) = {αm+1, . . . , αn} is the negative body of r; thus, we have
H(r)← B+(r),not B−(r). Furthermore, we let B±(r) = B+(r)∪B−(r). We occasionally
omit r from B±(r), B(r) etc. if r is understood.

A program Π is a finite set of rules. A program Π is a called positive program if for all
r ∈ Π, n = m, i.e., B−(r) = ∅. If, additionally, no classical negation occurs in Π, then
Π is called a normal program. A rule is ground if all literals in H(r) ∪B(r) are ground,
and a program is ground if all its rules are ground.

Semantics

The answer set semantics is defined via ground programs. For a program Π, we define its
ground instantiation as follows.

Given a program Π, its Herbrand universe, denoted by HU Π, is the set of all constant
symbols C ⊆ C appearing in Π; in case there is no constant symbol, then HU Π = {c} for
some arbitraty constant symbol. The Herbrand base of a program Π, denoted by HBΠ, is
the set of all ground literals constructed using predicates from P and constants from C.

The ground instances of a rule r ∈ Π, denoted by grd(r), is obtained by replacing all
variables in r with constant symbols in HU Π. The grounding of a program Π then
becomes grd(Π) =

⋃
r∈Π grd(r). To group the rules in grd(Π) with the same head q, we

use def (q,Π) = {r ∈ Π | H(r) = q}.

Let Π be a ground program. A set L ⊆ HBΠ of literals is consistent, if p,¬p * L for every
atom p ∈ HBΠ. An interpretation I is a consistent subset of HBΠ. An interpretation
I satisfies a rule r ∈ Π, denoted by I |= r, if H(r) ⊆ I whenever B+(r) ⊆ I and
B−(r) ∩ I = ∅. An interpretaion is a model of Π, denoted by I |= Π, if I |= r for all
r ∈ Π. A model I is minimal, if there is no model J of Π such that J ⊂ I.

Example 2.5. Consider the program Π below and the interpretation I = {a, b, d}.

c←not d.

d←not c.

a←not b, c.

b←d.

I is a model of Π, but it is not minimal, since the interpretation I ′ = {b, d} is also a
model of Π.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Definition 2.4 (GL-reduct). The Gelfond-Lifschitz (GL-)reduct of a program Π relative
to an interpretation I ⊆ HBΠ, denoted by ΠI , is the ground positive program obtained
from grd(Π) when each rule H(r)← B+(r),not B−(r)

(i) with B−(r) ∩ I 6= ∅ is deleted, and
(ii) is replaced by H(r)← B+(r), otherwise.

Informally, the first step is to remove the rules where I contradicts a default negated
literal, and from the remaining rules, the second step removes their negative body. An
interpretation I is an answer set of Π, if it is the minimal model of the GL-reduct ΠI .

Apart from the GL-reduct which is considered to be the standard definition for stable
models (i.e., answer sets), a collection of other definitions can be found in [Lif08a].

An alternative formulation introduced in [FLP04] considers a different definition of the
reduct.

Definition 2.5 (FLP-reduct). The FLP-reduct of a program Π relative to an interpre-
tation I, denoted by fΠI , is the program

fΠI = {r ∈ grd(Π) | I |= B(r)}

which is obtained by removing the rules whose body is not satisfied by I.

An interpretation I is an answer set of Π, if it is the minimal model of the FPL-reduct
fΠI . The answer sets according to both definitions coincide for the programs that we
consider in this work.

The set of answer sets of a program Π is denoted as AS(Π). A program Π is unsatisfiable,
if AS(Π) = ∅.

Example 2.6 (ctd). Π has two answer sets, viz. I1 = {c, a} and I2 = {d, b}; indeed,

- ΠI1 = {c← not d.; a← not b, c.} and I1 is a minimal model of ΠI1 ; similarly,
- ΠI2 = {d← not c.; b← d.} has I2 among its minimal models.

The main reasoning tasks related with programs under the answer set semantics are as
follows:

• Answer set existence: decide whether a given program Π has an answer set, i.e.,
decide if AS(Π) = ∅;

• Answer set checking: decide whether a given interpretation I is an answer set of a
given program Π, i.e., decide if I ∈ AS(Π);

• Brave (resp. Cautious) reasoning: decide whether a given ground formula ϕ holds
in some (resp. every) answer set of a given Π.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Answer Set Programming

Further notions and extensions

The dependency graph of a program Π, denoted GΠ is a directed graph (V,E), where
the vertices V equals HBΠ, and the edges E = E+ ∪ E− consist of positive edges E+

from any q=H(r) to any p1 ∈ B
+(r) and negative edges E− from any q=H(r) to any

p2 ∈ B
−(r), for all r ∈ grd(Π).

Example 2.7 (ctd). GΠ has positive edges a→ c and b→ d and negative edges c→ d,
d→ c and a→ b.

A non-empty set L of ground literals describes an odd loop of Π if for each pair p, q ∈ L
there is a path τ from p to q in GΠ with odd number of negative edges. Constraints are
viewed as simple odd loops. As well-known, Π is satisfiable, if it contains no odd loop.

Example 2.8 (ctd). The program Π has no odd loop, and thus has some answer set.

The positive dependency graph is the dependency graph containing only the positive
edges, denoted by G+

Π. A program Π is tight if G+
Π is acyclic. A non-empty set L of

ground literals describes a positive loop of Π if for each pair p, q ∈ L there is a path τ
from p to q in G+

Π such that each literal in τ is in L.

An alternative characterization of answer sets is defined in [Lee05], by using a notion of
externally supportedness as follows. A set L of ground literals is externally supported by
Π w.r.t. an interpretation I if there is a rule r ∈ grd(Π) such that (i) H(r) ∩ L 6= ∅, (ii)
I |= B+(r) and B−(r) ∩ I = ∅ and (iii) B+(r) ∩ L = ∅. The third condition ensures that
the support for H(r) in L comes from outside of L.

Proposition 2.1. I is an answer set of Π iff I |= Π and every loop L of Π such that
L ⊆ I is externally supported by Π w.r.t. I.

This characterization corresponds to one by Leone et al. [LRS97] in terms of unfounded
sets where a set L of ground literals is unfounded w.r.t. an interpretation I iff L is not
externally supported by Π w.r.t. I, i.e., literals in L only have support by themselves.
A literal q is unsupported by an interpretation I if for each r ∈ def (q,Π), B+(r) * I or
B−(r) ∩ I 6= ∅ [VGRS91].

Stratified programs have the property that an ordering for the evaluation of the rules in the
program can be found, through which the value of negative literals can be predetermined.
More formally, a program Π is stratified, if a set Σ can be defined as a partitioning
Σ1, . . . ,Σk of ground atoms in Π, such that for each p ∈ Σi and q ∈ Σj (i) if there
exists a rule r such that q ∈ H(r) and p ∈ B+(r) then j ≥ i, and (ii) if there exists a
rule r such that q ∈ H(r) and p ∈ B+(r) then j < i. Such a partitioning Σ is called
a stratification of Π. The stratification specifies an evaluation order by which one can
evaluate the program using an iterative minimal model computation along the partitions.
This sequential evaluation can be used to compute a stable model; notably, a stratified

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

program has a unique stable model. A program is stratified iff its dependency graph
contains no cycles with a negative edge [ABW88].

Choice rules are a syntactic extension that are of the form {α} ← B, which stands for the
rules α← B,not α and α← B,not α, where α is a new atom. Cardinality constraints
and conditional literals are further common syntactic extensions [SNS02]; in particular,
iℓ{ a(X) : b(X) }iu is true whenever at least iℓ and at most iu instances of a(X) subject
to b(X) are true.

Example 2.9. Consider the following rules.

1{a(X,Y, Z) : b(X), c(Y)}1← d(Z). (2.2)

{a(X) : b(X); c(X,Y) : b(X), d(Y)}1. (2.3)

Rule (2.2) states that exactly one instance of a(X,Y, Z) subject to b(X) and c(Y) has to
be true, where the value of Z depends on the instance of d(Z) that is true, and rule (2.3)
states that at most one instance of either a(X) subject to b(X) or c(X,Y) subject to
b(X) and d(Y) has to be true.

A weak constraint [LPF+06] is of the form

:∼ α1, . . . , αm,not αm+1, . . . ,not αn.[w : l]

where w (the weight) and l (the level) are positive integer constants or variables. This is
a constraint that can be violated with a cost w. When assigning a cost to an answer set,
the costs of all violated (instances of) weak constraints (grouped by levels of priorities
l) are added up. Among all answer sets, those whose cost vector is lexicographically
smallest are chosen as optimal answer sets. Using weak constraints is a convenient way
of performing optimizations.

ASP solvers first generate a grounding of the given program, and then a search for
an answer set is conducted over the ground program. In order to help with efficient
grounding, some syntactic restrictions are imposed on the rules of the input program.
Rule safety [LPF+06] is obtained by having every variable in a rule occur in some positive
body literal, and domain-restriction [SN01] is on ensuring that every variable in a rule
occurs in a positive domain predicate, which are predicates not defined via negative
recursion or using choice rules.

The syntax of the input program for the ASP solvers contains :- instead of ← and -

for strong negation ¬. The constraint ⊥ ← B(r) is represented by omitting ⊥ in the
corresponding rule. Each rule must be terminated with a dot.

2.2.1 Actions and ASP

Representing actions and change in ASP is achieved by adding a time variable to the
atoms, and introducing action atoms that cause changes over time, where the actions
are defined by their preconditions and effects over the atoms. ASP can then be used

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Answer Set Programming

to the describe the dynamic domain by a “history program” [Lif99b] whose answer sets
represent possible evolutions of the system over a time interval.

For illustration, the following rule describes a direct effect of the action goTo(X ,Y) over
the robot’s location rAt(X,Y).

rAt(X,Y, T+1)← goTo(X,Y, T). (2.4)

Actions can also have indirect effects over the state (rules not mentioning actions); e.g.,
the robot location is visited:

visited(X,Y, T)← rAt(X,Y, T). (2.5)

Inertia laws (unaffectedness) can be elegantly expressed, e.g.

rAt(X ,Y ,T+1) ← rAt(X,Y, T),not ¬rAt(X,Y, T+1).

says that the robot location remains by default the same. One can also give further
restrictions on the state, e.g., the robot and an obstacle can never be in the same cell.
place:

← rAt(X,Y, T), obsAt(X,Y, T). (2.6)

Example 2.10 (ctd). An ASP encoding for the blocksworld problem is shown in
Figure 2.2. The planning problem is then expressed by defining the initial state as a set
of facts

on(a, c, 0).

on(c, table, 0).

on(b, table, 0).

and the goal state through additional constraints

⊥←not on(a, b, tmax).

⊥←not on(b, c, tmax).

⊥←not on(c, table, tmax).

that the answer set should satify. The answer set for setting tmax = 3 contains the action
atoms {move(a, table, 0),move(b, c, 1),move(a, b, 2)} which describes the solution plan.

Notice that the encoding shown in Example 2.10 can be used to find plans of different
lengths and/or of different number of blocks by only modifying the facts and the goal
constraints. The description of the planning problem can easily be modified by adjusting
the constraints and/or adding new ones if necessary e.g., no more than two blocks can
be on the table at the same time.

Its elegant way of expressing direct/indirect effects of actions, and addressing the frame
and ramification problems makes ASP a suitable representation model for problems
regarding dynamic domains [BG00a, GK14]. The notions behind the expressive power of
ASP has also led to dedicated action languages [GL98a] which are higher-level languages
designed for specifying state-action-state transition diagrams.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.2: Blocksworld for one gripper (slightly modified from [Lif02])

time(0 . . . tmax).timea(0 . . . tmax− 1).block(a).block(b).block(c).loc(table).

loc(B)← block(B).

% guess

{move(B,L, T) : block(B), loc(L)}← timea(T).

% effect of moving a block

on(B,L, T + 1)←move(B,L, T), block(B), loc(L), timea(T).

% inertia

on(B,L, T + 1)← on(B,L, T),not ¬on(B,L, T + 1), loc(L), block(B), timea(T).

% uniqueness of location

¬on(B,L1, T)← on(B,L, T), L 6= L1, block(B), loc(L), loc(L1), time(T).

% two blocks cannot be on top of the same block

⊥← 2{on(B1, B, T) : block(B1)}, block(B), time(T).

% a block can’t be moved unless it is clear

⊥←move(B,L, T), on(B1, B, T), block(B), block(B1), loc(L), timea(T).

% no concurrent actions

⊥←move(B,L, T),move(B1, L1, T), B 6= B1.

⊥←move(B,L, T),move(B1, L1, T), L 6= L1.

Action languages

The aim to describe actions and their effects with a formal language that is inspired from
the use of natural language has led to dedicated high-level action languages. This line of
research started with the investigation of using ASP for representing actions and their
effects by introducing the action language A [GL93]. Later, considering further extensions
and properties has led to the invention of the action languages B (having indirect effects)
[GL98a], C (a view of causality) [GL98b], K [EFL+03] (incomplete knowledge) and many
more.

These languages are based on formalizing actions by describing a particular type of
transition systems based on action signatures. An action signature consists of a set V of
value names, a set F of fluent names and a set A of action names.

Definition 2.6. A transition system 〈S, V,Φ〉 of an action signature 〈V,F,A〉 consists
of

- a set S of states,
- a function V : F× S → V, and
- a subset Φ of ⊆ S ×A× S

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Abstraction

Any fluent P has a value V (P, s) in any state s of the world. The states s′ such that
〈s, a, s′〉 ∈ Φ are the possible results of the execution of the action a in the state s. An
action a is executable at a state s, if there is at least one state s′ such that 〈s, a, s′〉 ∈ Φ
and a is deterministic at state s, if there is at most one such state.

A transition system can be thought as a labeled directed graph, where a state s is
represented by a vertex labeled with P → V (P, s), that gives the value of the fluents.
Every triple 〈s, a, s′〉 ∈ Φ is represented by an edge leading from a state s to s′ and
labeled by a.

Concurrent execution of actions can be defined by considering transitions 〈s,A, s′〉 with
a set A ⊆ A of actions, where each action a∈A is executable at s. Here we confine to
propositional action signatures, which have truth values as value names, V={f, t}.

The action language C [GL98b] is based on causality, where one distinguishes the cases
that a fact “holds” and that it is “caused”. Its syntax consists of static and dynamic laws
of the form

caused F if G,
caused F if G after U

respectively, where F and G are formulas of fluents, and U is a formula containing fluents
and elementary actions.

A translation of C into ASP has been shown in [LT99], and an implementation using
satisfiability solvers led to the causal calculator (CCALC) [MT98, McC99]. In this thesis,
we focus on a fragment of the language C where the heads of the static and dynamic
laws only consist of literals. This restriction on the laws reduces the cost of evaluating
the transitions to polynomial time.

2.3 Abstraction

In this section, we give an overview of the notion of abstraction as over-approximation,
commonly used in model checking (for further details, see [CGL94, CGJ+03]).

We extend the transition system in Definition 2.1 to also contain a set S0 ⊆ S of initial
states, i.e., T = 〈S, S0,A,Φ〉. An abstraction mapping is a surjection h : S → Ŝ that
induces an equivalence relation ∼ ⊆ S × S by

d ∼ e iff h(d) = h(e).

Definition 2.7. Let T = 〈S, S0,A,Φ〉 and T̂ = 〈Ŝ, Ŝ0,A, Φ̂〉 be transition systems, and
h be an abstraction mapping h : S → Ŝ. T̂ over-approximates T if

(1) for all d ∈ S such that d ∈ S0, h(d) ∈ Ŝ0 holds; and
(2) for all d, e ∈ S such that e ∈ Φ(d, a), for some a ∈ A, h(e) ∈ Φ̂(h(d), a) holds.

In [CGL94], the over-approximation is denoted by T ⊑h T̂ . By definition, a state ŝ of T̂
represents all those states s of T for which h(s) = ŝ, and it simulates each such s, so if s

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.3: A spurious abstract trajectory

ŝ1 ŝ2 ŝ3 ŝ4

s1

s2

s3

has a transition to some s′, then ŝ will have a transition to ŝ′ = h(s′). Similarly, if T has
s as an initial state, then T̂ also has ŝ as an initial state. Thus, we obtain the following
result.

Proposition 2.2 (Lemma 5.5 in [CGL94]). Assume T ⊑h T̂ . If τ = 〈s0, . . . , sn〉 is a
trajectory of T , then there exists a trajectory τ̂ = 〈ŝ0, . . . , ŝn〉 in T̂ , where h(si) = ŝi, 0 ≤
i ≤ n.

Knowing that each trajectory is preserved in the over-approximation, we get the following
result.

Corollary 2.3. If T̂ contains no trajectory from Ŝ to a set Ŝ′ of states, then for all
s ∈ S and s′ such that h(s′) ∈ Ŝ′, T does not contain a trajectory from s to s′.

The result in Corollary 2.3 is used for checking universal properties over the abstract
model. These properties are expected to hold for all paths starting from S0. If the
abstract model satisfies the property, i.e., no trajectory that refutes the property exists,
then by Corollary 2.3, we can conclude that the original model also satisfies the property.
The reverse of these results however is not guaranteed, unless T̂ is an exact approximation
of T [CGL94]. The over-approximation may cause in obtaining spurious trajectories in
T̂ , which do not have a corresponding original trajectory in T .

Definition 2.8. Let T̂ be an over-approximation of T . A trajectory τ̂ = 〈ŝ0, . . . , ŝn〉 of
T̂ is spurious if there exists no trajectory τ = 〈s0, . . . , sn〉 such that h(si) = ŝi, 0 ≤ i ≤ n.

The reason for spuriousness is not being able to trace the abstract trajectory in the
original model.

Example 2.11. Figure 2.3 shows a part 〈. . . , ŝ1, ŝ2, ŝ3, ŝ4, . . . 〉 of an abstract trajectory,
which is spurious due to the state ŝ3, since no original trajectory can be found that
matches the transition from ŝ3 to ŝ4 once some state in ŝ3 is reached from a state in ŝ2.
Here, s2 is a dead-end state which is reachable from the initial state of the trajectory
but has no outgoing transitions to match the abstract trajectory, and s1 is a bad state
which is not reachable but has an outgoing transition that caused to have the spurious
trajectory.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Computational Complexity

Eliminating spurious trajectories can be done by refining the abstract mapping h to a
more fine-grained abstraction. The refinement methodoloy introduced by [CGJ+03] is
based on refining the abstraction so that the dead-end states and the bad-states are no
longer mapped to the same abstract state.

The well-known counterexample guided abstraction refinement (CEGAR) method [CGJ+03]
starts with an initial abstraction on a given program and checks the desired property over
the abstract program. Upon encountering spurious solutions, the abstraction is refined
by removing the spurious transitions observed through the solution, so that the spurious
solution is eliminated from the abstraction. This iteration continues until a concrete
solution is found.

2.4 Computational Complexity

We assume familiarity with basic concepts of complexity theory, e.g., Turing machines,
complexity classes and reductions. For comprehensive details we refer to [Pap03] and
[AB09]. In the following, we briefly recall some notions needed in this work.

We denote by P (resp. NP) the classes of decision problems (i.e., computational problems
with yes/no answer) which can be solved in polynomial time by deterministic (resp.
nondeterministic) Turing machines. For a complexity class C, class co-C denotes all the
decision problems whose complement is in C. Given a complexity class C, a C-oracle
models computations with calls to subroutines and decides a given problem from C in a
single step. For a complexity class C and an oracle A, CA denotes a class of problems
that can be decided by a Turing machine within the time bound of C, by invoking an
A-oracle. The polynomial hierarchy consists of complexity classes ΣP

k ,Π
P

k and ∆P

k defined
by

ΣP

0 = ΠP

0 = ∆P

0 = P

∆P

k+1 = P
ΣP

k

ΣP

k+1 = NP
ΣP

k

ΠP

k+1 = co− ΣP

k+1

for all k ≥ 0. Note that ΣP
1 = NP,ΠP

1 = coNP and ∆P
1 = P.

PSPACE (resp. NPSPACE) is the class of decision problems solvable by deterministic
(resp. nondeterministic) Turing machines in polynomial space. The complexity class
EXP (resp. NEXP) consists of decision problems which can be solved in exponential time
by deterministic (resp. nondeterministic) Turing machines. Figure 2.4 illustrates the
relationships between the complexity classes used in our results.

Planning. Plan existence in a propositional domain with deterministic actions (i.e.,
deterministic transition relation) and fully observable initial states is PSPACE-complete

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Background

Figure 2.4: Relationships between complexity classes (according to current complexity
hypotheses)

P

NP
co

NP

∆P
2

Σ P
2Π

P
2

...
PSPACE

EXP

NEXP
co

NEXP

...
EXPSPACE

[Byl94]. Conformant planning in an unobservable propositional domain is EXPSPACE-
complete [HJ99] and in partially-observable domains it is 2EXPSPACE-complete [Bon10].
For polynomial-length plans, with partial information on the initial state, an unobservable
(resp. fully observable) domain leads to ΣP

2 (resp. ΠP
2)-completeness [BKT00].

ASP. The complexity of various problems in Answer Set Programming has been
extensively studied. Consistency checking (i.e., answer set existence) for ground normal
programs is NP-complete [DEGV01] and for the non-ground case it is NEXP-complete,
informally, due to the need to ground the program. However, if the arities of the predices
are bounded, then the complexity gets reduced to ΣP

2 -complete [EFFW07].

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
. Part I

Behavior-Preserving Abstraction

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Semantics for Reactive Agent

Policies using Abstraction

In this chapter, we describe a formal semantics for describing policies that express a
reactive behavior for an agent, by using the representation power of transition systems. We
combine components that are efficient for describing reactivity such as target establishment
and (online) planning.

One concern of representing an agent’s behavior for a given policy is the issue of keeping
irrelevant information in the state which the policy does not use; having to represent such
information does not help when reasoning over the policy’s behavior, as many details
are considered. For this, we consider a state clustering as a form of abstraction that
omits such information, while ensuring that the behavior of the policy is preserved and
no additional features are introduced. This helps in checking the properties over the
policy with a guarantee that the result also holds in the original system.

Outline In Section 3.1, we introduce the general framework for modeling policies.
Then, in Section 3.2, we show the relation with action languages by considering (a
fragment of) the action language C as a particular application. We then extend the
framework to dynamic environments in Section 3.3 with the notion of maintenance. We
conclude in Section 3.4 with some discussion.

3.1 Modeling Policies in Transition Systems

We consider policies that have a main goal µ in mind, and guide the agent with action
sequences that are computed according to the knowledge base KB, which is the formal
representation of the world’s model with a transition system view.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Figure 3.1: (a),(b),(c): Possible instances, (d): Agent’s observation, ✷:agent, •:person,
×:obstacle, ?:unknown

1 2 3
1

2

3

(a)

1 2 3
1

2

3

(b)

1 2 3
1

2

3

(c)

?

??

?

1 2 3
1

2

3

(d)

Definition 3.1 (Policy). Given a system A = 〈S,S0,A,Φ〉, a goal µ, and a set Σ of
plans with actions A, a policy is a function Pµ,KB : S→2Σ s.t. Pµ,KB(s) ⊆ Σ(s).

The policy guides the agent by setting up targets and determining the course of actions
to bring about these targets. The determination of targets for a given state is done by a
target component, while the (higher level) transition between states is determined by the
course of actions computed by some (online) planner component.

For illustration, below describes the running example.

Example 3.1. Consider a memoryless agent that can sense horizontally and vertically,
in an unknown n×n grid cell environment with obstacles, where a missing person needs
to be found. Figures 3.1(a-c) show some instances for n=3. Suppose we are given a
policy of “always go to the farthest reachable point in visible distance (until a person is
found)”.

Target determination at the states according to the given policy can be done using a
logic program as shown below.

targetCell(X1 ,Y1)← farthest(X ,Y ,X1 ,Y1), rAt(X ,Y),not personDetected. (3.1)

personDetected ← personDetected(X ,Y). (3.2)

targetPerson(X ,Y)← personDetected(X ,Y). (3.3)

personFound ← personDetected(X ,Y), rAt(X ,Y). (3.4)

The farthest reachable point in these states is (3,1), which is determined as the target.
Then the policy computes the course of actions to reach this target. Clearly, in Figure 3.1a
the person will be found when moved to (3,1). However, in Figure 3.1b after reaching
(3,1), the agent/policy will decide to move to (1,1) again, which results in a loop. Also,
in Figure 3.1c, after reaching (3,1), the agent/policy can either choose to move to (3,3)
(which results in seeing the person), or to move back to (1,1). So there is a possibility for
the agent to go in a loop. Hence, the policy does not work for the last two instances.

Notice that these initial states provide the same observations for the agent, which is
shown in Figure 3.1d, since it can only observe horizontally and vertically. In these
states, the agent only sees that the first column is clear of obstacles, and the first row

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Modeling Policies in Transition Systems

has one obstacle. Since the rest of the environment can not be observed, these states are
indistinguishable to the agent, and the policy determines in all these initial states the
same target and plan.

Our aim is to define a transition system that shows the policy execution, while also
employing the notion of indistinguishability to do state clustering. Having a classification
on states and defining higher level transitions helps in abstraction and allows one to
emulate a modular hierarchic approach, in which a higher level (macro) action, expressed
by a target, is realized by a sequence of (micro) actions that is compiled by the external
planner, which may use different ways (planning on the fly, using scripts etc.)

3.1.1 State Profiles According to the Policy

Large state spaces are a major issue for the (original) transition system when dealing
with large environments. However, depending on the agent’s designed behavior, and
its determination of its course of actions at a state, some information in the state may
not be necessary, relevant or even observable. In this sense, the states that contain
different facts about such information can be seen as indistinguishable to the agent. Such
indistinguishable states can be clustered into one with respect to the profiles they provide
and only the relevant information to the agent/policy can be kept.

Definition 3.2. A profile scheme is a tuple p = 〈a1, .., an〉 of attributes ai that can take
values from a set Vi; a (concrete) profile is a tuple 〈v1, ..., vn〉 of values.

A profile at a state consists of values of attributes that are partitioned as currently relevant,
irrelevant and not yet observed, depending on the observability of the environment and
the policy. Currently relevant attributes at a state can be regarded as the active profile.

Example 3.2 (ctd). Reconsider Figure 3.1. Due to partial observability, the agent is un-
able to distinguish its state, and the policy does not consider the unobservable parts. The
agent’s observation, “rAt(1, 1), obstacleAt(1, 3), reachable(1, 2), reachable(2, 1), reachable
(3, 1)” that is currently relevant and the rest of the environment that is not yet observed,
is viewed as a profile, and the states with this profile can be clustered in one group
(Figure 3.1d).

The profile of a state is determined by evaluating a set of formulas that yield the attribute
values. We consider a classification function, h : S→Ωh, where Ωh is the set of possible
state clusters with respect to the profiles. For partially observable environments, the
information relevant to the policy can correspond to the observations at the state, thus
same observations can yield the same profiles. However, in fully observable environments,
observability is not of concern. One needs to check the policy to determine profiles.

Example 3.3 (ctd). The policy uses the information of the robot’s location rAt(X,Y),
the farthest points from the robot’s location farthest(X,Y,X1, Y1) and whether or not

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

the person is detected. Additionally, the computation of the farthest points requires the
use of the observed points from X,Y .

Definition 3.3 (Equalized state). An equalized state relative to the classification function
h is a state ŝ∈Ωh.

The term equalized comes from the fact that the states in the same cluster are considered
as the same, i.e., equal. We abuse the notation s∈ ŝ when talking about a state s that
is clustered into an equalized state ŝ, and identify ŝ with its pre-image (i.e., the set of
states that are mapped to ŝ according to h).

3.1.2 Components of the Policy

We consider two components for describing reactivity by the policy such as target
establishment and (online) planning. The behavior of the policy over an equalized state
is defined as follows.

Definition 3.4 (Policy behavior). Given a set of equalized states Ŝ, for an equalized
state ŝ ∈ Ŝ, the policy Pµ,KB uses a target function B(ŝ) to determine a target gB from
a set of possible targets, GB, and then an outsourced planner Reach(ŝ, gB) to compute a
plan to reach the target from the current equalized state, i.e.,

Pµ,KB = PB,Reach
µ,KB (ŝ) = {σ | σ ∈ Reach(ŝ, gB), gB ∈ B(ŝ)}.

The target function B(ŝ) gets the equalized state as input and produces the possible
targets to achieve. These targets may be expressed as formulas over the states (in
particular, of states that are represented by fluents or state variables), or in some other
representation.

Definition 3.5 (Appropriateness). The clustering function h is appropriate for B, if for
each state s ∈ S, it holds that for all s1, s2 ∈ h(s) and gB ∈ B(h(s)), s1 |= gB ⇔ s2 |= gB.

If a clustering is appropriate, then for any equalized state ŝ, we have

ŝ|=gB ⇔ ∀s∈ ŝ : s|=gB. (3.5)

This makes it possible to talk about targets over the equalized states and define the
behavior of the policy over the equalized system. Here, we focus on appropriate clusterings.

The aim of the policy is to intend to reach a state that satisfies the conditions of the
target. For this we make use of an outsourced planner Reach(ŝ, gB) component.

Definition 3.6 (Reach and Res). Reach is an outsourced function that returns a set of
plans needed to reach a state that meets the target condition gB from the current equalized
state ŝ ∈ Ŝ:

Reach(ŝ, gB) ⊆ {σ | ∀ŝ′ ∈ Res(ŝ, σ) : ŝ′ |= gB}

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Modeling Policies in Transition Systems

and Res gives the resulting states of executing a sequence of actions at a state ŝ:
Res(ŝ, 〈〉) = {ŝ}, and

Res(ŝ, 〈a1, . . . , an〉) =

{ ⋃
ŝ′∈Φ̂(ŝ,a1) Res(ŝ′, 〈a2, . . . , an〉) Φ̂(ŝ, a1)6=∅

{ŝerr} Φ̂(ŝ, a1)=∅

for n ≥ 1. Here ŝerr is an artifact state that does not satisfy any target, and Φ̂ is a
transition relation of executing an action at a state ŝ:

Φ̂(ŝ, a) = {ŝ′ | ∃s′ ∈ ŝ′ ∃s ∈ ŝ : s′ ∈ Φ(s, a)}. (3.6)

Example 3.4 (ctd). For the equalized state in Figure 3.1d, say ŝ, the target is deter-
mined as targetCell(3, 1). Thus, the policy needs to find a plan that reaches a state
to achieve gB = rAt(3, 1). The resulting state ŝ′ ∈ Res(ŝ, σ) for sequence of actions
σ= 〈goTo(2, 1), goTo(3, 1)〉 satisfies the condition ŝ′ |= gB.

3.1.3 Transition Systems According to the Policy

We now define the notion of a transition system that is able to represent the evaluation
of the policy on the state clusters.

Equalized transition system The transition system that represents the policy evalu-
ation is defined over the original transition system by taking into account the classification
function and the policy.

Definition 3.7 (Equalized TS). An equalized (higher level) transition system Th,Pµ,KB
,

with respect to the classification function h and the policy Pµ,KB, is defined as Th,Pµ,KB
=

〈Ŝ, Ŝ0,Σ, GB, B,ΦB〉, where

- Ŝ is the finite set of equalized states;

- Ŝ0 ⊆ Ŝ is the finite set of initial equalized states, where ŝ ∈ Ŝ0 if there is some
si ∈ ŝ such that si ∈ S0 holds;

- Σ is the set of possible plans σ=〈a1, a2, . . . , an〉 where ai ∈A, for all i, 1≤ i≤n.

- GB is the finite set of possible targets relative to the behavior, where a target can
be satisfied by more than one equalized state;

- B : Ŝ → 2GB , is the target function that returns the possible targets to achieve from
the current equalized state, according to the policy;

- ΦB : Ŝ ×Σ→ 2Ŝ is the transition function according to the policy, called the policy
execution function, where

ΦB(ŝ, σ) = {ŝ′ | ŝ′ ∈ Res(ŝ, σ), σ ∈ Reach(ŝ, gB), gB ∈ B(ŝ)};

it returns the possible resulting equalized states after applying the plan determined
by the policy in the current equalized state.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Figure 3.2: A transition in the equalized transition system

ŝ

gB

...

ŝ′

t̂1

t̂2

ΦB(ŝ, σ)Φ̂(ŝ, a1)

Φ̂(t̂1, a2)

Φ̂(t̂2, a3)

Figure 3.3: Parts of an equalized transition system w.r.t. different state classifications

?

??

?

1 2 3
1

2

3

?

????

? ? ??

(a) w/o knowledge gain

?

??

?

1 2 3
1

2

3

?

????

(b) w/ knowledge gain

?

?

?

??

?

1 2 3
1

2

3

ŝ1

ΦB(ŝ1)

ŝ′
1

ŝ′
2 ŝ′

3
ŝ′
4

(c) observation while moving

The equalized transition system 〈Ŝ, Ŝ0,Σ,ΦB〉 can be viewed as a transition system
〈S, S0,A,Φ〉 with an infinite set of actions. Additionally, it contains auxiliary definitions
〈GB,B〉 that are used in defining the policy.

Figure 3.2 demonstrates a transition in the equalized transition system. Depending on
the current state, ŝ, a plan σ can be executed if it is returned by Reach to reach the
target gB that is determined by the policy. There may be more than one equalized
state satisfying gB, and the policy execution function ΦB(ŝ, σ) executes σ and finds a
transition into one of these states, ŝ′. In our case, the actions taken in the transitions do
not matter Therefore, we project away the knowledge of the executed action sequences,

and only consider ΦB : Ŝ → 2Ŝ . Thus, the transition ΦB becomes a big jump between
states, where the actions taken and the states passed in between are omitted.

Example 3.5. Figure 3.3 shows a part of the equalized transition system constructed
according to the policy w.r.t. different state classification h. In all three versions the
indistinguishable states due to partial observability are clustered into one. The policy is
applied according to current observations (targeting the farthest reachable point, which

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Modeling Policies in Transition Systems

〈1, 0, 1, 0〉

〈0, 2, 0, 0〉

〈2, 1, 0, 0〉

〈2, 1, 0, 0〉

〈1, 0, 1, 0〉

〈0, 0, 0, 1〉

Phase 1 Phase 2

〈4, 0, 0, 0〉

Figure 3.4: Equalized transition system of blocksworld (n= 4)

for ŝ1 is (3, 1)), and the possible successor states are shown. There are several possibilities
for the resulting state that satisfy the target gB=rAt(3, 1).

Figure 3.3a shows a classification that only takes into account the current observations
in the state, while the classification in Figure 3.3b also distinguishes the knowledge of
the observations made in the previous states. Figure 3.3c shows a classification that
distinguishes the knowledge gained while moving in the environment and observing the
surroundings.

Example 3.6. Let us consider a simple blocksworld example where a policy (of two
phases) is defined as follows:

• if in phase 1 and not all the blocks are on the table, move one free block on a stack
with highest number of blocks to the table.

• if all the blocks are on the table, move to phase 2.

• if in phase 2 and not all the blocks are on top of each other, move one of the free
blocks on the table on top of the stack with more than one block (if exists any,
otherwise move the block on top of some block).

Since the policy does not take labels of the blocks into consideration, a classification
can be of the following form: We introduce an n-tuple 〈b1, . . . , bn〉 to denote equalized
states such that for i ≤ n, bi would represent the number of stacks that have i blocks.
For example, for 4 blocks, a state 〈1, 0, 1, 0〉 where b1 = 1, b2 = 0, b3 = 1, b4 = 0 would
represent all the states in the original transition system with the profile “contains a stack
of 1 block and a stack of 3 blocks”. Notice that in the original transition system for four
labeled blocks, there are 24 possible states that have this profile and if the blocks need
to be in order, then there are four possible states.

Figure 3.4 demonstrates the corresponding equalized transition system for the case of
four blocks. The equalized transition system for this example is in the following form:

- Ŝ is the set of equalized states according to the abstraction as described above.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

- Ŝ0 ∈ Ŝ is the initial equalized states (all elements of Ŝ except 〈0, . . . , 0, 1〉).

- GB = Ŝ, since the policy is related with all the blocks, it can determine targets as
the whole states.

- B : Ŝ → Ŝ is the target function.

- ΦB : Ŝ → Ŝ is the policy execution function, returning the resulting successor state
after applying one action desired by the behavior, shown as in Figure 3.4.

Notice that we assume that the outsourced Reach function is able to return conformant
plans that guarantee to reach a state that satisfies the determined targets. For practical
reasons, we consider Reach to be able to return a subset of all conformant plans. The
maximal possible Reach, where we have equality, is denoted with Reach0.

Consider the case of uncertainty, where the agent requires to do some action, e.g.,
checkDoor , to gain further knowledge about its state. The target function can be
modified to return dummy fluents as targets to ensure that the action is made, e.g.,
doorIsChecked, and given this target, the Reach function can return the desired action
as the plan. The nondeterminism of the environment is modeled through the possible
outcomes of Res.

Our generic definition allows for the possibility of representing well-known concepts like
purely reactive systems or conformant planning. Reactive systems can be represented
with the policy “pick some action”, which models systems that immediately react to the
environment without reasoning. As for conformant planning, one can set the target as the
main goal. Then, Reach would have the difficult task of finding a plan that quarantees
reaching the main goal. If however, such a plan is available, then we have the following.

Proposition 3.1. Let P = 〈a1, . . . , an〉,n ≥ 1, be a conformant plan that reaches a goal
state g from the initial states s01, . . . , s0r in the original transition system. The plan P
can be polynomially expressed in an equalized transition system.

One can mimic the plan by modifying the targets GB and the target function B in a
way that at each point in time the next action in the plan is returned by Reach, and the
corresponding transition is made. For that, one needs to record information in the states
and keep track of the targets.

Proof. For the conformant plan sequence S0, a1, S1, . . . , an, Sn, where Si = {si,1, . . . , si,ri
},

0 ≤ i ≤ n, the classification function h is defined as h(si,j) = ŝi for 1 ≤ j ≤ ri. We show
that for the policy Pµ,KB defined as follows we obtain Pµ,KB(ŝi−1) = ai, 1 ≤ i ≤ n. We
set µ as the goal condition g reached after applying P , i.e., s |= µ,∀s ∈ Sn.

Now let AP be the set of actions in P . For each action a ∈ AP the set GB of targets
consists of dummy fluents made(a), and the target function B decides on a target gB ∈ GB

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Modeling Policies in Transition Systems

to pick depending on which dummy target is satisfied in the current state, i.e.,

B(ŝ) =

{
made(a1) if ŝ = S0

made(ai) if ŝ |= made(ai−1), i > 1

Additionally, each state contains the information reached(s′, a) for s′ ∈ S, a ∈ AP denoting
from which state it can be reached with which action, i.e., s |= reached(s′, a) if s ∈ Φ(s′, a).
Then whether or not a state s satisfies a target is defined as follows.

s |= made(a1) if s |= reached(s′, a1) ∧ s′ ∈ S0

s |= made(ai) if s |= reached(s′, ai) ∧ s′ |= made(ai−1), i > 1

Due to the definition of h, we have ŝi |= made(ai) ⇐⇒ ∀s ∈ ŝi : s |= made(ai). Thus,
we obtain ai ∈ Reach(ŝi−1,made(ai)), 1 ≤ i ≤ n.

3.1.4 Complexity Issues

As the function Reach is outsourced, we rely on an implementation that returns con-
formant plans to achieve transitions in the equalized transition systems. This raises
the issue whether a given such implementation is suitable, and leads to the question of
soundness (only correct plans are output) and completeness (some plan will be output,
if one exists). We next assess how expensive it is to test this, under some assumptions
about the representation and computational properties of (equalized) transition systems,
which will then also be used for assessing the cost of policy checking.

Assumptions We assume that given a state s ∈ S, which is implicitly given using a
binary encoding, the cost of evaluating the classification h(s), the (original) transition
Φ(s, a) for some action a, and recognizing the initial state, say with Φinit(s), is feasible in
polynomial time. The cost could also be in NP, if projective (i.e., existentially quantified)
variables are allowed. Furthermore, we assume that the size of the representation of a
“target” in GB is polynomial in the size of the state, so that given a string, one can check
in polynomial time whether it is a correct target description gB. This test can also be
relaxed to be in NP by allowing projective variables.

Given these assumptions, we have the following two results on the cost of checking
whether a given implementation of Reach is sound and complete; we assume here that
testing whether σ ∈ Reach(ŝ, gB) is feasible in Πp

2 (i.e., it is no worse than a naive guess
and check algorithm that verifies conformant plans).

Theorem 3.2 (Checking soundness of Reach). Let Th=〈Ŝ, Ŝ0, GB,B,ΦB〉 be a transition
system w.r.t. a classification function h. Checking whether every transition found by the
policy execution function ΦB induced by a given implementation Reach is correct is in
Πp

3.

Proof. According to Definition 3.21, every transition from a state ŝ to some state ŝ′

corresponds to some plan σ returned by Reach(ŝ, gB). Thus first one needs to check

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

whether each plan σ = 〈a1, a2, . . . , an〉 returned by Reach given some ŝ and gB is correct.
For that, we need to check two conditions on the corresponding trajectories of the plan: (i)
for all partial trajectories ŝ0, ŝ1, . . . , ŝi−1 it holds that for the upcoming action ai from the
plan σ, Φ̂(ŝi−1, ai) 6= ∅ (i.e., the action is applicable). (ii) for all trajectories ŝ0, ŝ1, . . . , ŝn,
ŝn |= gB. Condition (i) can be checked by guessing a trajectory ŝ0, ŝ1, . . . , ŝi−1 and
checking if Φ̂(ŝi−1, ai) = ∅, which can be done with a coNP oracle that checks if for all
s ∈ ŝi−1, Φ(s, ai) = ∅ holds; thus condition (i) checking is in Πp

2. Condition (ii) can be
checked by guessing a trajectory ŝ0, ŝ1, . . . , ŝn and checking if ŝn 2 gB , which can be done
with a NP oracle that checks if there exists s ∈ ŝn such that s2 gB; thus condition (ii)
checking is in Πp

2.

Now, to decide whether for some state ŝ and target gB the function ΦB(ŝ, gB) does not
work correctly, we can guess ŝ (resp. s∈ ŝ), gB , a plan σ, and verify that σ ∈Reach(ŝ, gB)
and that σ is not correct. As we can do the verification with an oracle for Σp

2 in polynomial
time, correctness can be refuted in Σp

3; thus the problem is in Πp
3.

The result for soundness of Reach is complemented with another result for completeness
with respect to short (polynomial size) conformant plans that it returns.

Theorem 3.3 (Checking completeness of Reach). Let Th = 〈Ŝ, Ŝ0, GB, B,ΦB〉 be
a transition system w.r.t. a classification function h. Deciding whether for a given
implementation Reach, ΦB fulfills ŝ′ ∈ΦB(ŝ) whenever a short conformant plan from ŝ
to some gB ∈ B(ŝ) exists and ŝ′ is the resulting state after the execution of the plan in
Th, is in Πp

4.

Proof. For a counterexample, we can guess some ŝ and ŝ′ (resp. s∈ ŝ, s′ ∈ ŝ′) and some
short plan σ = 〈a1, a2, . . . , an〉 and verify that (i) σ is a valid conformant plan in Th to
reach ŝ′ from ŝ, and (ii) that a target gB exists such that Reach(ŝ, gB) produces some
output.

In order to verify (i) we can guess a sequence ŝ0, a1, ŝ1, . . . , an, ŝn and check if it is a
valid plan sequence, which we can check with an Πp

2 oracle (condition (i) of the proof of
Theorem 3.2). To verify (ii) we need to check if for all guesses of targets gB and short
plans σ′, either (ii-a) gB is not a target for ŝ or (ii-b) σ′ is not produced by Reach(ŝ, gB).
Condition (ii-a) is a simple checking of gB /∈ B(ŝ). As for (ii-b) we need to check if for
all plans σ′ produced by Reach(ŝ, gB) we have σ′ 6= σ. For this we can guess some σ′

and check if σ′ ∈ Reach(ŝ, gB) and σ′ = σ. By assumption, checking (ii-b) can be done
using an Πp

2 oracle. Thus, checking (ii) can be done using an Πp
3 oracle. This establishes

membership in Πp
4.

The complexities drop if checking the output of Reach is lower (e.g., it drops to Πp
2 for

soundness and to Πp
3 for completeness, if output checking is in co-NP).

In this work, we assume that Reach is complete. We also restrict the plans σ that
are returned by Reach to have polynomial size. This constraint would not allow for

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Modeling Policies in Transition Systems

exponentially long conformant plans (even if they exist). Thus, the agent is forced to
develop targets that it can reach in polynomially many steps. This does not limit the
capability of the agent in general. The “long” conformant plans can be split into short
plans with a modified policy and by encoding specific targets into the states, such that at
each state, one chooses the next action with respect to the conformant plan. The targets
can be encoded to give the stage of the plan execution so that the respective action is
taken, or they can be encoded to assign the latest action in the conformant plan that is
done from the current state.

The following proposition states that the original transitions according to the policy are
preserved in the equalized transition system. For a plan σ = 〈a1, . . . , an〉, we use the
notation Φ(s, σ) as a shorthand for Φ(. . .Φ(Φ(s, a1), a2) . . . , an).

Proposition 3.4. Given a state s ∈ S, we have

{h(s′) | s′ ∈ Φ(s, σ), σ ∈ P (s)} ⊆ {ŝ′ | ŝ′ ∈ ΦB(h(s), σ), σ ∈ Σ}.

Proof. Towards a contradiction, assume there exists a transition 〈s, σ, s′〉 in T where
ŝ′ /∈ ΦB(h(s), σ′) for all σ′ ∈ Σ. This means that no σ′ was determined from Pµ,KB(h(s)).
From the definition of the policy components, we know that if the policy P chooses to
move to s′, then this behavior can be defined through some target gB where s′ |= gB , i.e.,
ŝ′ |= gB, that the policy is aiming for, i.e., gB ∈ B(h(s)). Our assumption yields that
there exists no plan σ′ ∈ Σ such that σ′ ∈ Reach(h(s), gB). This however brings us to a
contradiction due to the assumption that Reach is complete, because it is clear that the
plan σ achieves a transition from s to s′.

This brings us the result that the behavior of the policy in the original transition system
is preserved in the equalized transition system.

Proposition 3.5. A trajectory s0, s1, . . . , sn in T where s0 ∈ S0 and si+1 ∈ Φ(si, σ) for
some σ ∈ P (si), i > 1, has a corresponding trajectory ŝ0, ŝ1, . . . , ŝn in Th,P where ŝ0 ∈ Ŝ0

and ŝi+1 ∈ ΦB(ŝi), i > 1.

Thus, for appropriate clusterings we achieve the following corollary. The main goal µ
that the policy is aiming for can be expressed as a formula that should be satisfied at a
state.

Corollary 3.6. If all trajectories in Th,P achieve µ, then all trajectories that follow the
policy in T achieve µ.

This result allows us to define the working of the policy over the equalized transition
system. Note that the policy could be easily modified to stop or to loop in any state ŝ
that satisfies the goal.

Definition 3.8. The policy works w.r.t. the main goal µ, if for each run ŝ0, ŝ1, . . . such
that ŝ0 ∈ Ŝ0 and ŝi+1 ∈ΦB(ŝi), for all i ≥ 0, there is some j ≥ 0 such that ŝj |=µ.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

One can also make use of temporal operators, and define µ by a temporal formula (e.g.,
AF(personFound)) and then check whether the initial states in Ŝ0 satisfy the formula.

Under the assumptions from above, we obtain the following.

Theorem 3.7. Given a policy P for a goal µ, the main problem of determining whether
the policy works is in PSPACE.

Proof. One needs to look at all runs ŝ0, ŝ1, . . . from every initial state ŝ0 in the equalized
transition system and check whether each such run has some state ŝj that satisfies the
main goal µ. Given that states have a representation in terms of fluent or state variables,
there are at most exponentially many different states.

To find a counterexample, it is sufficient to build a run of at most exponential length
in which µ is not satisfied, since like mentioned in the PSPACE membership proof of
classical planning [Byl94] any plan beyond that length must have loops. Such a run can
be nondeterministically built by picking a first state ŝ0 among all possible initial states
in Ŝ0, then picking a second state ŝ1 among all possible ones in ΦB(ŝ0), then picking a
third state ŝ2 among all possible ones in ΦB(ŝ1), etc. until either some picked state ŝi

has been picked before (which is guessed as well), which shows that there is a possibility
to loop, or a trajectory of exponential length is built where the final state ŝn 2µ. As
NPSPACE = PSPACE, the result follows.

Note that in this formulation, we have tacitly assumed that the main goal can be
established in the original system, thus at least some trajectory from some initial state
to a state fulfilling the goal exists. In a more refined version, we could define the working
of a policy relative to the fact that some abstract plan would exist that makes µ true;
naturally, this may impact the complexity of the policy checking.

3.1.5 Constraining Equalization

Until now, we focused on over-approximating the behavior of the policy to ensure that all
possible executions of the policy are preserved. However, our aim is not to introduce new
features with an over-approximation, but to keep the structure of the original transition
system and discard the unnecessary parts with respect to the policy. In this section, we
discuss the conditionthat the classification function h needs to satisfy in order to achieve
this.

For deciding on a plan σ with Reach(ŝ, gB) from a state ŝ for some target gB , the existence
of some plan that is able to achieve some state s′ |= gB from s ∈ ŝ is enough. However, it
is not guaranteed that any state mapped to h(s′) can be reached by σ. The definition of
Φ̂ (3.6) allows for certain transitions that do not have corresponding concrete transitions
in the original transition system.

In order to have the capability of backtracking the plans determined in the equalized
transition system, the classification function should satisfy the following condition.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Modeling Policies in Transition Systems

• A transition between equalized states ŝ and ŝ′, i.e., ŝ′ ∈ Φ̂(ŝ, a) should have a
corresponding original transition from any state mapped to ŝ′.

∀s′
1, s

′
2 ∈ ŝ

′ : ∃s1 ∈ ŝ, s
′
1 ∈ Φ(s1, a)⇔ ∃s2 ∈ ŝ, s

′
2 ∈ Φ(s2, a) (3.7)

When the classification function h satisfies (3.7), then we can obtain the following
property.

ŝ′ ∈ Φ̂(ŝ, a)⇔ ∀s′ ∈ ŝ′, ∃s ∈ ŝ : s′ ∈ Φ(s, a) (3.8)

The clustering h is called proper if condition (3.8) is satisfied.

Theorem 3.8. Let Th=〈Ŝ, Ŝ0, GB,B,ΦB〉 be a transition system w.r.t. a classification
function h. Let Φ̂ be the transition function that the policy execution function ΦB is based
on. The problem of checking whether Φ̂ is proper is in Πp

2.

Proof. As a counterexample, one needs to guess ŝ, a, ŝ′ ∈ Φ̂(ŝ, a) and s′ ∈ ŝ′ such that for
all s∈ ŝ has s′ /∈ Φ(s, a), which can be checked with a coNP oracle. Thus, the properness
checking is in Πp

2.

For the next property we need the notion of reachability among the equalized states. A
state ŝ is reachable from an initial state in the equalized transition system if and only if
s ∈ Ri for some i ∈ N where Ri is defined as follows.

R0 = Ŝ0, Ri+1 =
⋃

ŝ∈Ri
ΦB(ŝ), i ≥ 1, and R∞ =

⋃
i≥0Ri.

Under the assumptions that apply to the previous results, we can state the following.

Theorem 3.9. The problem of determining whether a state in an equalized transition
system is reachable is in PSPACE.

Proof. For some state s, we can nondeterministically build a run, similar to the proof of
Theorem 3.7, to check whether s can be reached.

The notions of soundness and completeness of an outsourced planning function Reach
could be restricted to reachable states; however, this, would not change the worst case cost
of testing these properties in general (assuming that ŝ ∈ R is decidable with sufficiently
low complexity).

The following proposition shows that the policy execution function is sound.

Proposition 3.10 (soundness). Let Th=〈Ŝ, Ŝ0, GB,B,ΦB〉 be a transition system w.r.t.
a classification function h that satisfies (3.7). Let ŝ1, ŝ2 ∈ Ŝ be equalized states that are
reachable from some initial states, and ŝ2 ∈ ΦB(ŝ1). For any concrete state s2 ∈ ŝ2, there
is a concrete state s1 ∈ ŝ1 such that s1 →

σ s2 for some action sequence σ ∈ P (s1).

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Proof of Proposition 3.10 is based on the possibility of backward tracking with any of
the plans σ executed to reach ŝ2 from ŝ1 and knowing that the tracking can begin with
any s ∈ ŝ2 as s |= gB holds.

Proof. For equalized states ŝ1, ŝ2, having ŝ2 ∈ΦB(ŝ1) means that ŝ2 satisfies a target
condition that is determined at ŝ1, and is reachable via executing some plan σ. Let s2 ∈ ŝ2,
since (3.8) holds, we can apply backwards tracking from s2 following the transitions Φ
corresponding to the actions in the plan σ backwards. By (3.5), we know that s2 satisfies
the required target condition, and since it reaches some s1 ∈ ŝ1 with σ, we can see that
σ ∈ P (s1) would hold. In the end, we can find a concrete state s1 ∈ ŝ1 from which one
can reach the state s2 ∈ ŝ2 by applying the plan σ ∈ P (s1) in the original transition
system.

Thus, we obtain the following corollary, with the requirement of only having initial states
clustered into the equalized initial states (i.e., no “non-initial” state is mapped to an
initial equalized state). Technically, it should hold that ∀s ∈ S0 : h−1(h(s)) ⊆ S0.

Corollary 3.11. If there is a trajectory in the equalized transition system with initial
state clustering from an equalized initial state ŝ0 to some ŝn, then for any s∈ ŝn a
trajectory that follows the policy can be found in the original transition system from some
concrete initial state s0 ∈ ŝ0.

Proof. For the trajectory ŝ0, . . . , ŝn we can backtrack from ŝi to ŝi−1, for 1 < i ≤ n,
knowing that by Proposition 3.10 we have a concrete transition to any s ∈ ŝi from some
s′ ∈ ŝi−1. We eventually reach some initial state s0 ∈ ŝ0.

Our aim is to analyze the reactive policy through the equalized transition system. If the
policy does not work as expected, there will be trajectories showing the failure. Knowing
that any such trajectory found in the equalized transition system exists in the original
transition system is enough to conclude that the policy indeed does not work in the
original system.

Example 3.7. The trajectory ŝ1, ŝ2, ŝ3, ŝ2 of Th,P in Figure 3.5a shows a path in which
the policy does not reach the goal condition and a loop occurs. Notice that the abstract
transitions satisfy the properness condition. This trajectory can also be mapped to a
trajectory in T involving s1 ∈ ŝ1 shown in Figure 3.1b.

Observe that the properness condition forces to keep the information gain in the state to
hold in the successor state in order to ensure that any state mapped to the equalized
state can be reached from the predecessor equalized state. This can also be seen in
Figure 3.5. The trajectory in Figure 3.5b does not satisfy the condition and although it
describes a loop over the equalized transition system, this loop can not be mapped back
to the original transition system.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Bridging to Action Languages

Figure 3.5: A loop trajectory in the equalized transition system

?

??

? ??

?

?

?

?

ŝ1 ŝ2 ŝ3

??

?

ŝ2

(a) w/ properness property

?

??

? ??

?

?

?

?

ŝ1 ŝ2 ŝ3

??

?

ŝ2? ? ? ?

?

?

(b) w/o properness property

The assumptions so far can not avoid the case where a plan σ returned by Reach from
some state ŝ on the equalized transition system does not have a corresponding trajectory
from an original state s ∈ ŝ in the original transition system, since the main focus was to
ensure the existence of at least one such state with a corresponding trajectory. Thus,
a trajectory found in the equalized transition system from an initial state ŝ0 is not
guaranteed to exist from all initial states s ∈ ŝ0. In order to achieve this the transition Φ̂
needs to satisfy an additional condition such as

ŝ′ ∈ Φ̂(ŝ, a)⇔ ∀s ∈ ŝ, ∃s′ ∈ ŝ′ : s′ ∈ Φ(s, a). (3.9)

Under this condition, every plan returned by Reach from some state ŝ can be successfully
executed from any state s ∈ ŝ in the original transition system T .

However, still we may lose trajectories of T as clustering the states might restrain
conformant plans; for this, also stronger conditions like exact approximation [CGL94],
ŝ′ ∈ Φ̂(ŝ, a)⇔∀s∈ ŝ, ∀s′ ∈ ŝ′ : s′ ∈Φ(s, a), is not enough. One would need to modify the
target determination, i.e., the set of targets GB and the function B.

3.2 Bridging to Action Languages

We now describe how our representation of the behavior of the policy can fit into action
languages. Given a domain description defined by an action language and its respective
(original) transition system, modeling a reactive policy and constructing the corresponding
equalized transition system can be done as follows.

Classifying the State Space The approach to classify the (original) state space relies
on defining a function that classifies the states. There are at least two kinds of such
classification; one can classify the states depending on the observed values of the fluents,
or introduce a new set of fluents and classify the states depending on their values:

Type 1: Extend the set of truth values by V′ = V∪{u}, where u denotes the value to be
unknown. Consider an observability relation O : F× S → V′ which returns how

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

the fluents’ values are observed at the states. Then, consider a set of clusters, Ŝ,
where a cluster ŝi ∈ Ŝ contains all the states s ∈ S that have the same observed
values, i.e., Ŝ = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ⇐⇒ ∀p ∈ F : O(p, d)=O(p, e) }. The
value function for the clusters is V̂ : F× Ŝ → V′.

Type 2: Consider a set of (auxiliary) fluent names Fa, where each fluent p ∈ Fa is
related with some fluents of F. The relation can be shown with a mapping
∆ : 2F×V → Fa ×V. Then, consider a new set of clusters, Ŝ, where a cluster
ŝi ∈ Ŝ contains all the states s ∈ S that give the same values for all p ∈ Fa, i.e.,
Ŝ = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ⇐⇒ ∀p ∈ Fa : V (p, d)=V (p, e) }. The value function
for the clusters is V̂ : Fa × Ŝ → V.

We can consider the states in the same classification to have the same profile, and the
classification function h as a membership function that assigns the states to groups.

Remarks: (1) In Type 1, introducing the value unknown allows for describing sensing
actions and knowing a fluent’s true value later. Also, one needs to impose constraints;
e.g., a fluent related to a grid cell can not be unknown while the robot can observe it.
(2) In Type 2, one needs to modify the action descriptions according to the newly defined
fluents and define abstract actions. However, this is not necessary in Type 1, assuming
that the action descriptions only use fluents that have known values.

Example 3.8. In the action language C, we introduce unknown values by auxiliary
fluents as follows.

caused uReachable(X ,Y) if not reachable(X ,Y) ∧ not ¬reachable(X ,Y).

i.e. if it is not known that a grid cell is reachable or not, then the fluent uReachable
becomes true. Additional rules are added to express that it becomes false otherwise.

Defining a Target Language A policy is defined through a language which figures
out the targets and helps in determining the course of actions.

Definition 3.9. A target language of a policy is a tuple 〈F̂,FB(F̂),FGB
(F̂)〉 where

- F̂ is the set of fluents that the equalized transition system is built upon,

- FB(F̂) is the set of target determination formulas constructed over F̂, and

- FGB
(F̂) is the set of possible targets determined via the evaluation of FB(F̂).

Example 3.9 (ctd). FB(F̂) corresponds to the set of causal laws in (3.1)-(3.4) and
FGB

(F̂) consists of all atoms targetCell(X,Y) and targetPerson(X,Y) for 1≤X ≤n,
1≤Y ≤n.

Notice that the separation of formulas FB(F̂) and the targets FGB
(F̂) is to allow for

outsourced planners that understand simple target formulas. These planners need no
knowledge to find plans. However, if one is able to use planners that are powerful enough,

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

then the target language can be given as input to the planner, so that the planner
determines the target and finds the corresponding plan.

Transition Between States The transitions in the (projected) equalized transition
system can be denoted with R̂ ⊆ Ŝ×Ŝ, where R̂ corresponds to the projection of the
policy execution function ΦB that uses

(a) the target language to determine targets,
(b) an outsourced planner (corresponding to the function Reach) to find conformant
plans and
(c) the computation of executing the plans (corresponding to the function Res).

Thus, R̂ shows the resulting states after applying the policy.

Equalized Transition System over Action Language C An equalized transition
system that describes the behavior of a given policy can be defined over the action
language C as follows.

Definition 3.10. Given a policy with a target language 〈F̂,FB(F̂),FGB
(F̂)〉, an equalized

transition system 〈Ŝ, V̂ , R̂〉 that describes the policy consists of:

(i) a set Ŝ of all interpretations of F̂ such that, ŝ satisfies every static law in FB(F̂).

(ii) a function V̂ (P, ŝ) = ŝ(P), where P ∈ F̂,

(iii) a transition relation R̂ ⊆ Ŝ × Ŝ which consists of 〈ŝ, ŝ′〉 such that

a) for every s′ ∈ ŝ′ there is a trajectory from some s ∈ ŝ of the form s,A1, s1, . . . ,
An, s

′ in the original transition system;

b) for static laws f1, f2, . . . , fm ∈FB(F̂) for which ŝ satisfies the body, it holds
that ŝ′ |= g for some g ∈ M(f1, . . . , fm), where M is a mapping M :

2FB(F̂)→2FGB
(F̂), that gives the relation between the formulas and the targets.

Notice that R̂ in (iii) has no prescription of (a) how a trajectory is computed or (b) how
a target is determined. This makes the implementation of these components flexible.

By focusing on a fragment of C, we match the above conditions on complexity. Further-
more, by results on the complexity of action language C [Tur02, EFL+04], the results
in Theorems 3.2-3.8 can be turned into completeness results already for this fragment.
Other languages can be similarly used to describe the equalized transition system, as
long as they are powerful enough to express the concepts in the previous section.

3.3 Reactive Maintenance Policies

The notions introduced in the previous sections are for agents acting in static environments,
or in environments that do not interfere with the agent’s actions. However, an interesting

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Figure 3.6: Supermarket example

?

?

?

? ? ? ?

?

?

? ?

?

?

? ? ? ?

?

?

?

A

B

extension to the notions would be to consider the dynamicity of the environment, as
dynamic environments may change the state of the world and interfere with the behavior
of a reactive agent that follows a given policy.

In this section, we investigate the representation of reactive policies in such dynamic
environments. During the execution of a plan given by the policy, a state change may
require the agent to stop and examine the current situation, to determine the next steps.
In such cases, rather than “achieving” certain conditions of a main goal, the focus is more
on “maintaining” the conditions. Baral et al. [BEBN08] introduced maintenance given a
window of opportunity, a respite from the environment actions. This notion enables us to
distinguish the agent following a policy and doing its best to maintain the goal, if the
environment does not interfere during a time period.

Different from [BEBN08], we are interested in policies that yield sequences of actions,
which requires awareness of environment actions that may concurrently be made. Fur-
thermore, while [BEBN08] considers explicit states, our focus is on implicit state repre-
sentations, which allows for the use of logical formalisms to represent transitions.

We consider the below example, where the environment is playing a role in the agent’s
achievement to the goal condition when following the policy.

Example 3.10 (Supermarket example). Consider an agent that is looking for a person
in a supermarket with a layout shown in Figure 3.6. Although the agent knows the
layout, it does not know where the person might be, and is given the below policy to
follow.

(1) If at row A: walk towards right to the next aisle.
(2) If reached the end of row A: walk towards row B.
(3) If at row B: walk towards left to the next aisle.
(4) If reached the end of row B: walk towards row A.
(5) If observed the person: move towards the person.

If the agent observes the person at any time step, then it stops and moves towards the
person. If the environment is static, i.e., the person does not move, then the agent’s
behavior following the policy can be represented as in Section 3.1. However, our focus
is on the dynamic nature of the environment; the person may also be moving, while
the agent executes its actions. Thus, the environment actions play a role in the agent’s
behavior and need to be distinguished.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

3.3.1 Behavior of a Policy in Dynamic Environments

We first define a system that represents dynamic environments and extend the definition
of a policy by also including environment actions. We then describe a system that
represents possible outcomes of executing a policy plan in a dynamic environment, and
define the maintenance by the policy.

Definition 3.11 (Dynamic system). A dynamic system is a quadruple A=〈S,S0,A,Φc〉,
where

- S is the finite set of states;

- S0 ⊆ S is the set of initial states;

- A = Aa ∪ Ae is the finite set of agent (Aa) and environment (Ae) actions;

- Φc : S ×Aa ×Ae → 2S is a non-deterministic transition function.

We assume that the idle action anop (resp. enop) is included in Aa (resp. Ae) and Φc

considers concurrent actions, where for all s ∈ S, Φc(s, anop, enop) = {s}. A sequence
a = a1, a2, . . . , an of agent actions is executable if

∃s0, . . . , sn : ∀i < n, si+1 ∈Φc(si, ai+1, enop) ∧ ai+1 6= anop.

We denote such (potential) plans by Σa, and by Σa(s) ⊆ Σa those that are executable
from s. We use the notation Σ′

a = Σa ∪ {anop} to also consider the idle agent action.

A policy is defined similarly as in Definition 3.1 over the possible plans of the agent at a
state.

Definition 3.12 (Policy). Given a system A = 〈S,S0,A,Φc〉 and a set Σa of plans with
actions of Aa⊆A, a policy is a function Pµ,KB : S→2Σ′

a s.t. Pµ,KB(s) ⊆ Σa(s) ∪ {anop}.

For any state s, {anop} ⊆ Pµ,KB(s) should hold, for the cases of a moving environment
while the agent is idle. We say that Pµ,KB is undefined for a state s, if Pµ,KB(s) = {anop}.
For readability, we omit subscripts of P , as they are considered to be fixed.

Notice that a plan given by the policy might become inexecutable if the environment acts.
In order to consider environments that may interfere with the agent’s plan execution, we
will express possible outcomes of the desire towards executing the policy plans.

Transitions as action sequences We extend the definition of the system A =
〈S,S0,A,Φc〉 to represent execution of action sequences.

Definition 3.13 (Dynamic system over action sequences). Given a dynamic system
A = 〈S,S0,A, Φc〉 with the set Σ′

a of potential plans for the agent and the set Σe = A∗
e

of sequences of environment actions, the system A is extended with action sequences as
AΣ = 〈S,S0,Σ,ΦΣ〉 where

- Σ = Σ′
a ∪ Σe, and

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Figure 3.7: Dynamic system of the sliding door example

s11s9

s2

s1

s3

s4

s5

s6

s7

s8 s10 s12

- ΦΣ : S×Σ′
a×Σe → 2S is the transition function, where for a = 〈a1, . . . , an〉 and

e = 〈e1, . . . , en〉, if |a|= |e|,

ΦΣ(s, a, e)={s′ | ∃s0, . . . , sn : ∀i < n, si+1 ∈Φc(si, ai+1, ei) ∧ s0 = s ∧ sn = s′};

and undefined, otherwise.

The transition function ΦΣ yields the states from executing concurrent action sequences.
We use ΦΣ(s, P (s), e) as a shorthand for

⋃
a∈P (s) ΦΣ(s, a, e).

The evolution of the world described by the system is characterized by trajectories and
the closure of a system is defined using these trajectories as follows.

Definition 3.14 (Trajectory and Closure). In a system AΣ=〈S,S0,Σ,ΦΣ〉, an alter-
nating sequence of states and action sequences s0, σ1, s1, . . . , σn, sn is a trajectory if
si ∈ ΦΣ(si−1, ai, ei), i ≥ 0, for σi = (ai, ei) ∈ Σ. The closure w.r.t. a set S⊆S is

ClΣ(S,AΣ)=
⋃

s∈S

{sn | some trajectory s0, σ1, s1, . . . , σn, sn ∈ AΣ, n ≥ 0, exists s.t. s0 = s}.

For illustration of the concepts we use a basic scenario, since even a simplified (yet still
interesting) supermarket example has quite a number of states and is difficult to visualize.

Example 3.11 (Sliding door example). Consider a sliding door scenario, where an agent,
initially located at (0,0), can move right (r), down (d) or up (u), and a sliding door,
located between columns 1-2, can move up (dU), down (dD) or remain still (dN). The
goal is to reach (0,2). The dynamic system is shown in Figure 3.7, where S0 = {s1, s2}.
The action labels are omitted for clarity. The dashed arrows represent the transitions

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

in which the agent moves and the environment (i.e., the door) remains idle, the dotted
arrows are the transitions in which the agent is idle, and the lines represent the transitions
in which both the agent and the environment moves.

The closure w.r.t. S0 contains each state in the system, as each state can be reached
by a trajectory from the initial states. For example, s9 ∈ ClΣ(S0, AΣ) since there is a
trajectory 〈s1, (r, dD), s5, (d, dU), s8, (r, dD), s9〉 from s1 ∈ S0.

Following the policy in a dynamic environment

We consider three outcomes of executing a policy plan in the dynamic environment:

(1) The environment’s actions may not interfere with the execution of the plan, and
the agent can execute the whole plan and reach the state that the policy was aiming for.

(2) The environment may act in a way that a state is reached, from which the
remainder of the plan becomes non executable (even if the environment does no longer
move).

(3) The agent may reach a state that has a possibility to reach the main goal, so that,
instead of executing the remaining plan, a new plan can be determined towards the goal.

We describe a transition function that yields the states by executing some plan returned
by P as follows.

Definition 3.15 (Policy transition). Given a dynamic system AΣ = 〈S,S0,Σ,ΦΣ〉 and
a policy P , the policy transition function is defined as ΨP,Σe : S × Σ′

a → 2S with
ΨP,Σe(s, a) = S1 ∪ S2 ∪ S3, where

S1 = {s′ | a ∈ P (s),∃e ∈ Σe : s′ ∈ ΦΣ(s, a, e)}} (3.10)

S2 =
⋃

a=a′a′′∈P (s)

{s′ | ∃e ∈ Σe, s
′ ∈ ΦΣ(s, a′, e) ∧ ΦΣ(s′, a′′, enop) |= ⊥} (3.11)

S3 =
⋃

a=a′a′′∈P (s)

{s′ | ∃e∈Σe, s
′ ∈ΦΣ(s, a′, e) ∧ ∃s′′ ∈ΦΣ(s′, P (s′), enop) : s′′ |=µ} (3.12)

where for a set S of states, S|=α⇔∀s∈S : s|=α and enop ∈{enop}
∗. The notation

a = a′a′′ is used to distinguish a prefix a′ of a, and the remaining action sequence a′′.

The states reachable from s if all of the plan a can be executed are computed in (3.10).
In (3.11) and (3.12), we focus on prefixes a′ of a to compute the (middle) states reached
while executing a. The states in (3.11) are those reached due to some environment actions
e during the execution of a, where the remaining plan a′′ is no longer executable, even if
the environment is idle after this point. From the middle states in (3.12), the main goal
µ can be reached with a new policy plan (if the environment remains idle).

We represent the case when the environment remains idle with ΨP,enop , where

ΨP,enop(s, a) = {s′ | a ∈ P (s), s′ ∈ ΦΣ(s, a, enop)} ∪

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Figure 3.8: Closure w.r.t. the initial states in the sliding door example

r, dN d, dD u, dU

r, dN u, dD

r, dU

r, dN

r, dD

r, dU

d, dN

r, dD

u, dN

u, dN

(r, dN), (r, dU)

s2

s1

(r, dN), (r, dN)

s4

s5

s7

s8

s9

s10

s11

s12

u, dN

⋃

a=a′a′′∈P (s)

{s′ ∈ ΦΣ(s, a′, enop) | ∃s′′ ∈ΦΣ(s′, P (s′), enop) : s′′ |=µ}.

Informally, the agent will either execute the plan determined by the policy or if it realizes,
while executing the plan, that there is a possibility to reach the main goal, it determine a
new plan. As there is no interference from the environment, we do not need to take into
account possible environment actions, and the case (3.11) will not occur. Notice that
ΨP,enop(s, a) ⊆ ΨP,Σe(s, a).

From a state s, a state s′ reached after trying to execute a plan a, i.e., s′ ∈ΨP,Σe(s, a), is
referred as a checkpoint state from s, where the agent determines its next policy actions.
A trajectory that follows the policy passes through these states. The set of all checkpoint
states from a set S of states is similar to Definition 3.14 when the closure ClP,Σe is
defined over the trajectories of ΨP,Σe .

Definition 3.16 (Policy Trajectory and Policy Closure). Given a system AΣ=〈S,S0,Σ,ΦΣ〉,
and a policy P with a policy transition function ΨP,Σe , a policy trajectory is a trajectory
s0, σ1, s1, . . . , σn, sn in AΣ where si ∈ ΨP,Σe(si−1, ai), i ≥ 0, for σi = (ai, ei) ∈ Σ and
ai ∈ P (si−1). The policy closure w.r.t. a set S⊆S is

ClP,Σe(S,AΣ)=
⋃

s∈S

{sn |
some policy trajectory s0, σ1, s1, . . . , σn, sn ∈ AΣ, n ≥ 0,
exists s.t. s0 = s

}.

We sometimes represent policy trajectories with s0, s1, . . . , sn instead of s0, σ1, s1, . . . , σn, sn

by projecting away the action sequences, in order to emphasize the behavior of the policy.

Example 3.12 (Sliding door example ctd). Consider a policy P that tells to move right
whenever possible and if not possible then to move up/down (depending on which one is
executable). In case (0,2) is observable (say, the agent can detect that the door is located
in its row), the policy returns the plan to reach that cell. Once the agent reaches (0,2),
no more action is taken.

Figure 3.8 shows possible policy trajectories from the initial states s1, s2. We have
ΨP,Σe(s1) = {s3, s4, s5} and ΨP,Σe(s2) = {s4, s11, s12}. Notice that in state s2 the cell
(0,2) is observable, as the door is not at the same row. Thus, P (s2) = 〈r, r〉. If the door

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

remains still in the first step, i.e., 〈dN, dN〉 or 〈dN, dU〉, the policy plan can be executed
without interference (3.10) and the goal position can be reached. However, if the door
moves up in the first step, then this interferes with the agent’s plan (3.11) as it can no
longer move right in the second step due to the door (i.e., the remainder of the plan is
not executable). Thus, the policy transition ends up in state s4, where a new policy plan
is decided.

All shown states in Figure 3.8 constitute the policy closure w.r.t. the initial states.

Maintenance

The idea is to keep track of the checkpoint states when the policy is followed, and define
the maintenance over them. First, the notion of unfolding a policy is defined as a sequence
of states the system may go through if it follows the policy, while the environment remains
idle, for at most k steps, where k is a constant.

Definition 3.17 (Unfold). For a system AΣ=〈S,S0,Σ,ΦΣ〉 and s∈S, Unfoldk(s,AΣ,
P) is the set of all sequences s = s0, . . . , sl where l ≤ k and s0 = s s.t. P (sj) is defined
for all j < l, sj+1 ∈ ΨP,enop(sj , P (sj)\{anop}), and if l < k, then P (sj) is undefined.

Example 3.13 (Sliding door example ctd). In Figure 3.8, the trajectories in which the
environment remains still give the unfolding trajectories from the initial states (shown
with thick arrows).

Based on this, we define the k-maintainability.

Definition 3.18 (k-Maintainability). For a system AΣ = 〈S,S0,Σ,ΦΣ〉, the policy P
k-maintains S ⊆ S w.r.t. a goal condition µ, if for each state s ∈ ClP,Σe(S,AΣ) and
sequence s0, s1 . . . , sl in Unfoldk(s,AΣ, P) some j ≤ l exists such that sj |= µ.

We say that the original system AΣ is k-maintained by policy P w.r.t. µ, if P k-maintains
the initial states S0 w.r.t. µ.

Example 3.14 (Sliding door example ctd). As seen in Figure 3.8, the system is 4-
maintained by the policy, since from any state in the closure w.r.t. the initial states, the
agent reaches the goal position in at most 4 steps if the environment remains idle.

The door scenario is simplistic, and as one adds new properties of the agent, the environ-
ment, or a more involved policy, the state space immediately gets larger. Furthermore, as
in the supermarket example, the state may contain information irrelevant to the agent’s
behavior, which leads to a large number of states with unnecessary information.

Modeling alternating execution In the original definition of maintenance [BEBN08],
the system is considered to have alternating execution of agent and environment actions,
in the following form.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Definition 3.19 ([BEBN08]). A system is a quadruple A0 = 〈S,A,Φ, poss〉, where

- S is a finite set of system states;
- A = Aag ∪ Aenv is a finite set of agent (Aag) and environment (Aenv) actions;
- Φ : S ×A → 2S is a non-deterministic transition function;
- poss : S → 2A is a function representing possible actions.

They define a control function (i.e. policy) as P : S → Aag such that P (s) ∈ poss(s)
whenever P (s) is defined.

Note that if we restrict the concurrent action transition function Φc to only allow for
execution of (a, enop) and (anop, e), this can model an alternating execution of agent
and environment actions. The transition (anop, enop) then corresponds to having no
possible actions for the agent or the environment at a state. Thus, we have the following
proposition when only policies with 1-step plans are considered.

Proposition 3.12 (Connection to Baral et al. [BEBN08]). A system AΣ = 〈S,S0,Σ,ΦΣ〉,
where ΦΣ is built over a restricted Φc, is k-maintained by a 1-step policy P w.r.t. µ
iff the corresponding system A0 defined as in Definition 3.19 is k-maintainable for the
set S0 of initial states, due to existence of P , w.r.t. the set E ⊆ S of states where
E = {s | s ∈ S, s |= µ}.

Proof. For 1-step policies, the transition function ΨP,Σe gets simplified to considering
only one-step transitions (3.10), which then makes it possible to compare with the
transitions in A0. (⇒) By definition, we have for each state s ∈ ClP,Σe(S0, AΣ) and
sequence s0, s1 . . . , sl in Unfoldk(s,AΣ, P) that some j ≤ l exists such that sj |= µ, i.e.,
{s0, s1 . . . , sl} ∩ E 6= ∅. This achieves k-maintainability of the set S0 of states in the
system A0.

(⇐) The control function P witnesses the k-maintainability of the set S0 of states in
the system A0. Given that the set E of desired states is defined according to a desired
condition µ, P can be used as a 1-step policy that k-maintains AΣ.

3.3.2 Omitting Unnecessary Information

In Section 3.1, we considered state clustering by getting rid of irrelevant information w.r.t.
the policy or the observability of the environment with a focus on static environments.
However, in case of dynamic environments, such a clustering idea is unable to distinguish
the environment’s movement in a state’s irrelevant/unobserved part.

Figure 3.9 shows some part of the system when the notion in Section 3.1 is applied to
the supermarket example; the states where the agent observes the person are omitted for
simplicity. The agent only knows that the environment did some actions e. Therefore,
whenever the person is not observed, the unobserved part is considered to be unknown,
because the dynamic nature can not guarantee that some information gained holds in
the next state.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

Figure 3.9: Equalization is unable to distinguish the unobserved environment movements

?

?

?

?

?? ?

?

?? ?

? ? ?

? ? ? ?

?

? ? ?

?

?

.....
?? ?

? ?

?

a, e a, e a, e a, e

a, e

To define maintenance, we must be able to distinguish the transitions where the environ-
ment does not move (especially, in the unobserved parts) and represent how this affects
the knowledge about the state clusters. To this end, we use equalized d-states.

Definition 3.20. An equalized dynamic (d-) state is a pair 〈ŝ, θ̂〉, where

(1) the equalized state, ŝ, contains the indistinguishable states w.r.t. the policy, and

(2) the inferred state, θ̂, contains the states which are inferred to possibly hold by using
the knowledge of the environment’s movements.

The state ŝ contains the information relevant to the policy or the observability of the
environment, while the state θ̂ makes further inferences to represent the effect of the
environment’s movements; in particular, whether the environment moved or not. Thus,
there can be multiple pairs with identical equalized states, but different inferred states.

Building the clusters We consider two classification functions described by surjec-
tions:

• h : S→Ω, where Ω is the set of possible equalized states, and

• hr : S→2Θ, where Θ is the set of possible inferred states.

Necessarily, h and hr should satisfy that for every 〈ŝ, θ̂〉, we have h−1
r (θ̂) ⊆ h−1(ŝ). A

state may be mapped to more than one inferred state cluster, as these clusters depend
on the previous states and the movement of the environment.

The classification function h is based on the notion of indistinguishability, as in Section 3.1.
The state clustering is done only to omit the irrelevant information w.r.t. the policy, so
that P returns the same output for the cluster. Without going into the details of the
policy’s components, we assume for simplicity that the clustering satisfies the condition

∀s ∈ S, P (s) = P (h(s)) (3.13)

which makes sure that for states that are mapped to the same cluster, the policy returns
the same plans, i.e., ∀d, e ∈ S, h(d) = h(e)⇒ P (d) = P (e).

As said, inferred states depend on the previous states and the taken environment actions.
In detail,

• the initial set of inferred states is Θ0 = {h(s) | s ∈ S0}, and

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

• the clustering satisfies the following constraint: for all d, e ∈ S such that hr(d) =
hr(e) it holds that

– h(d) = h(e) and

– ∃d′, e′: d ∈ ΨP,Σe\enop
(d′, P (d′)), e ∈ ΨP,Σe\enop

(e′, P (e′)) with hr(d′) = hr(e′).

In other words, only the states that can be reached from a previous state, due to some
sequence of environment actions, are mapped into the inferred states. This is similarly
done for the case of enop, to distinguish the states reached only by enop.

It was shown in Section 3.2, how to do state clustering h for action languages such that
the set Ŝ of state clusters is achieved. Inferred state clustering hr is possible along the
same lines. For this, we need to take into account the transitions ΦP,Σ′

e
⊆ S×Σ′

a×Σe×S
restricted to the policy P and the environment actions Σ′

e = Σe \ enop, defined as

ΦP,Σ′
e

= {(s, a, e, s′) | (s, a, e, s′) ∈ ΦΣ, a ∈ P (s), e ∈ Σ′
e}.

The clustering can then be defined as follows:

Ŝr = {ŝr | ∀d1, d2 ∈ S, d1, d2 ∈ ŝr ⇐⇒ (∃ŝ ∈ Ŝ, d1, d2 ∈ ŝ) ∧ (3.14)

(∃d′
1, d

′
2 : (d′

1, P (d′
1), e1, d1), (d′

2, P (d′
2), e2, d2) ∈ ΦP,Σ′

e
)} (3.15)

In order to map two states to the same inferred state, first both of these states should be
mapped to the same equalized state (3.14) and these states should be reachable from a
previous state when the policy is followed (3.15). The clustering definition is similar for
enop.

Abstract environment actions Clustering the states by omitting the information
about the irrelevant part of the state leads to abstracting the irrelevant environment
actions. Since the main aim is to represent whether or not the environment concurrently
moved, we distinguish between the actions enop and ê which is an abstraction of all other
environment actions; we let Âe={enop, ê} and consider the mapping φh :Ae→Âe.

Such an abstraction can be seen as the coarsest one possible, as it only distinguishes
whether the environment moved or not. It is sufficient for defining maintenance, since
the focus is on cases in which the environment does not move.

Example 3.15 (Supermarket example ctd). Figure 3.10 shows an example of equalized
d-states. As expected, the inferred states have less possible locations for the person than
the equalized states, since the possible locations are inferred more precisely depending
on whether he/she moved or not.

Furthermore, whether or not the person concurrently moves results in different inferred
states. From state 〈s1, θ1〉, the action enop causes the cells observed at θ1 to remain the
same in θ21 , although to the agent’s view, s21 , they become unknown. If the person
executes some actions ê, his possible locations in θ22 are inferred from θ1. Notice that θ22

is not the same as s22 , as it shows the locations the person can move to in the same time
steps as the agent. A transition may also lead to a state where the agent observes the
person; then s23=θ23 holds, since the person is obviously not in the unobserved parts.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

Figure 3.10: Pair states with inferred states that distinguish if the environment moved or
not

?

?

?? ?

?

?

?

??

? ?

? ? ? ?

?

s1 s21

? ?

? ? ? ?

?

? ?

?

s22 s23

a, ê

θ1 θ21 θ22 θ23

a, enop

Equalized Dynamic Systems and Maintenance

A system that represents the policy execution in a dynamic environment is defined over
the original system by taking the classification functions and the policy into account.

Definition 3.21. Given a dynamic system AΣ = 〈S,S0,Σ,ΦΣ〉, a policy P with the policy

transition function ΨP,Σe, an equalized dynamic system Ah,hr

P , w.r.t. the classification

functions h, hr and the policy P , is defined as Ah,hr

P = 〈Ŝ, Ŝ0,Σ′
a, Σ̂e, Ψ̂P,Σe〉, where

- Ŝ is the finite set of equalized d-states;

- Ŝ0 ⊆ Ŝ is the set of initial equalized d-states, if h−1(θ̂) ∩ S0 6= ∅;

- Σ′
a = Σa ∪ {anop} is the possible plans with agent actions;

- Σ̂e=Â∗
e is the set of sequences of abstract environment actions (for Âe={enop, ê});

- Ψ̂
P,Σ̂e

: Ŝ×Σ′
a→2Ŝ is the policy transition function in the dynamic environment, i.e.,

Ψ̂
P,Σ̂e

(〈ŝ, θ̂〉, a) = {〈h(s′), hr(s′)〉 | a ∈ P (ŝ),∃s ∈ h−1
r (θ̂), s′ ∈ ΨP,Σe(s, a)}.

The transitions Ψ̂P,enop show an idle environment. For simplicity, 〈ŝ, θ̂〉 is denoted as ŝθ̂.

The equalized dynamic system is defined over the state clusters of the checkpoint states
in the original system. A small set of states and transitions help to focus on the details
important for the policy, without losing any property of the behavior.

Proposition 3.13. A policy trajectory s0, s1, . . . , sn in AΣ where s0 ∈ S0 and si+1 ∈
ΨP,Σe(si, a) for some a ∈ P (si), i > 1, has a corresponding trajectory ŝθ̂0, ŝθ̂1, . . . , ŝθ̂n in

Ah,hr

P where ŝθ̂0 ∈ Ŝ0 and ŝθ̂i+1 ∈ Ψ̂
P,Σ̂e

(ŝθ̂i, a) for some a ∈ P (ŝi), i > 1.

Proof. Towards a contradiction assume that there is a trajectory s0, s1, . . . , sn in AΣ

which does not have a corresponding trajectory in Ah,hr

P . This means that some transition

si, si+1, i < n is not represented in Ah,hr

P . So, there exists no a ∈ P (h(si)) such

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

that h(si+1)hr(si+1) ∈ Ψ̂
P,Σ̂e

(h(si)hr(si), a). In other words, it holds that for every

a ∈ P (h(si)), for all s ∈ h−1
r (hr(si)) there does not exist some s′ ∈ ΨP,Σe(s, a) such that

s′ ∈ h−1
r (hr(si+1)).

However, with the assumption on the clustering (3.13), we know that P (h(si)) = P (si)
and since si ∈ h

−1
r (hr(si)) and si+1 ∈ h

−1
r (hr(si+1)), we obtain that a transition among

si, si+1 is not possible in AΣ, which is a contradiction.

Knowing that every policy trajectory in the original system is preserved in the equalized
dynamic system, we can move on to define the maintenance over the equalized dynamic
system. For that, we first need to lift the previous definitions.

The closure Ĉl(Ŝ, Ah,hr

P) is defined akin to Definition 3.14, using the trajectories of Ψ̂
P,Σ̂e

.

Definition 3.22 (Closure over equalized d-states). The closure of an equalized dynamic

system Ah,hr

P w.r.t. a set S⊆ Ŝ is

Ĉl(S,Ah,hr

P)=
⋃

ŝθ̂∈S

{ŝθ̂n |
some trajectory ŝθ̂0, ŝθ̂1, . . . , ŝθ̂n ∈ A

h,hr

P , n ≥ 0,
exists s.t. ŝθ̂0 = ŝ

}.

Proposition 3.13 gives us the following result.

Lemma 3.14. For a given set S of states, any state s in ClP,Σe
(S ,AΣ) has a corre-

sponding state ŝθ̂ in Ĉl(Ŝ ,Ah,hr

P), where ŝ = h(s) and θ̂ = hr(s).

The result holds since for every pair of successor states in AΣ, there is a corresponding
pair of equalized d-states in Ah,hr

P . So any sequence of states considered in the closure of

AΣ w.r.t. a set S, has a corresponding sequence in the closure of Ah,hr

P w.r.t. Ŝ.

Maintenance over the equalized dynamic system.

We define the unfolding of the policy over the equalized d-states, similar to Definition 3.23,
by considering Ψ̂P,enop .

Definition 3.23 (Unfolding over equalized d-states). Let Ah,hr

P be an equalized dynamic

system. For ŝ∈ Ŝ, Unfoldk(ŝ, Ah,hr

P) is the set of all sequences ŝ = ŝ0, . . . , ŝl where ŝ0 = ŝ
and l ≤ k s.t.

(i) P (ŝj) is defined for all j < l,

(ii) ŝj+1 ∈ Ψ̂P,enop(ŝj , P (ŝj)\{anop}), and
(iii) if l < k, then P (ŝj) is undefined.

The clustering condition (3.13) ensures that no transitions will be introduced different
from how the policy behaves in the original system. By Proposition 3.13, we get the
following result.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

Lemma 3.15. For some k, for each sequence s0, . . . , sl in Unfoldk(s,AΣ, P), some

sequence ŝθ̂0, . . . , ŝθ̂l in Ûnfoldk(ŝθ̂, Ah,hr

P) exists with ŝi=h(si) and θ̂i=hr(si), 0≤ i≤ l.

Similar to Section 3.1, we focus on appropriate clusterings (Definition 3.5) of the states
which ensures that we have ŝ |= µ ⇐⇒ ∀s ∈ h−1(ŝ) : s |= µ for the equalized states. For
equalized d-states, let ŝθ̂ |= µ denote ŝ |= µ.

We define the k-maintainability of the equalized dynamic system as follows.

Definition 3.24 (Equalized k-Maintainability). An equalized system Ah,hr

P = 〈Ŝ, Ŝ0,Σ′
a,

Σ̂e, Ψ̂P,Σe〉 is k-maintainable, if the policy P k-maintains Ŝ0 w.r.t. µ: For each state ŝθ̂

in Ĉl(Ŝ0, A
h,hr

P) and sequence ŝθ̂0, ŝθ̂1, . . . , ŝθ̂l in Ûnfoldk(ŝθ̂, Ah,hr

P) some j ≤ l exists s.t.

ŝθ̂j |= µ.

Example 3.16 (Supermarket example ctd). In the supermarket example for environment
size 5× 9 (Figure 3.6), the given policy 9-maintains the set of initial states. At any state
in the closure, the person may be located at the farthest possible point, and if he does
not move for at least 9 steps, then the agent will eventually observe the person and catch
him.

The following theorem shows that the clustering does not introduce false positives.

Theorem 3.16 (Soundness). If Ah,hr

P is k-maintainable, then AΣ is k-maintained by P .

Proof. Assume that AΣ is not k-maintained by P . Let s∈ClP,Σe(S0, AΣ) be a state
and τ=s0, s1 . . . , sl in Unfoldk(s,AΣ, P) such that sl 2µ. By Lemma 3.14-3.15, we know
that some ŝθ̂∈ Ĉl(Ŝ0, A

h,hr

P) exists with ŝ = h(s) and that some τ̂=ŝθ̂0, ŝθ̂1 . . . , ŝθ̂l in

Ûnfoldk(ŝθ̂, Ah,hr

P) exists with ŝi=h(si), 0≤ i≤ l. By assumption on sl, ŝθ̂l 2µ. Hence,

Ah,hr

P is not k-maintainable.

In order to have completeness, we need further restrictions on the state clustering h, to
avoid introducing spurious trajectories. We consider the properness condition (similar to
condition (3.8) from Section 3.1.5):

ŝθ̂′ ∈ Ψ̂
P,Σ̂e

(ŝθ̂, a) ⇐⇒ ∀s′ ∈ h−1(ŝ′),∃s ∈ h−1(ŝ) : ΨP,Σe(s, a) (3.16)

This condition ensures that if Ah,hr

P has a transition from ŝθ̂1 to ŝθ̂2, then any state
mapped to ŝθ̂2 has a transition from some state mapped to ŝθ̂1. This allows for the
possibility of backtracking any trajectory found in Ah,hr

P and map it back to AΣ.

We then obtain the completeness result with the requirement that no “non-initial” states
are mapped to initial equalized d-states, i.e., it should hold that ∀s ∈ S0, h

−1(h(s)) ⊆ S0.

Theorem 3.17 (Completeness). If AΣ is k-maintained by P and h is proper, then Ah,hr

P

is k-maintainable.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

Proof. Towards a contradiction assume Ah,hr

P is not k-maintainable, i.e., there exists

a state ŝθ̂ ∈ Ĉl(Ŝ0, A
h,hr

P) and a sequence ŝθ̂0, ŝθ̂1, . . . , ŝθ̂l in Ûnfoldk(ŝθ̂, Ah,hr

P) with
ŝθ̂0 = ŝθ̂ such that for all j ≤ l we have ŝθ̂j 2µ. Let sl ∈ h

−1(ŝl). By condition (3.16),
we can go from sl through the sequence back to some s ∈ h−1(ŝ). We claim that
s ∈ ClP,Σe(S0, AΣ); it follows then that AΣ is not k-maintained by P , which reaches a
contradiction.

Proof of claim: ŝθ̂∈ Ĉl(Ŝ0, A
h,hr

P) means that there is a trajectory in Ah,hr

P from some
ŝθ̂0 ∈ Ŝ0. So, by condition (3.16), we can go from s to some s0 ∈ h−1(ŝ0). Since
∀s ∈ S0, h

−1(h(s)) ⊆ S0 holds, we have s0 ∈ S0. Hence, s ∈ ClP,ΣeS0, AΣ.

The equalized dynamic system can represent static environments by only allowing enop

and can be related to the equalized static system (Section 3.1). If the actions are reversible
(as in the supermarket example) and the agent’s observations during a plan execution
contribute to the decision making in the next state, we obtain the following.

Corollary 3.18. If the equalized dynamic system Ah,hr

P is k-maintainable, then the policy
P works in at most k steps in the equalized static system Ah,P .

Proof. Assume for a contradiction that Ah,hr

P is k-maintainable, but the policy P does
not work within k steps in Ah,P . This means that in Ah,P there is a trajectory σ̂ =
ŝ0, . . . , ŝn, n ≤ k with ŝ0 ∈ Ŝ0 where for any j ≤ n, ŝj 2µ. We will show that both
forms of transitions (3.10) and (3.12) can be emulated for the enop case, thus causing

a contradiction with the assumed behavior of Ah,hr

P . Notice that the transition (3.11)
is not considered, as it requires to have a non-idle environment action, which does not
occur in the static case.

The transitions of form (3.10) reach the states that the policy aims for without interruption,
which is the same as the definition of ΦB in Ah,P . Now consider the case of making
an observation during execution of the transitions in σ̂ of a possibility to achieve the
goal. Formally, this means that there exists a plan a ∈ P (ŝi) with ŝi+1 ∈ ΦB(ŝi, a) for
some i < n that contains a prefix a′ = a1, . . . , ai where there exists ŝ′ ∈ Φ̂(ŝi, a

′) with
ŝ′′ ∈ ΦB(ŝ′, P (ŝ′)) such that ŝ′′ |= µ. Remember that we assumed that the actions in
Ah,P are reversible and the agent’s observations during a plan execution can contribute
to the policy’s decision making in the next state. Thus, from ŝi+1 the policy P can decide
on a plan that consists of the reversed action sequence of a′′ for a = a′a′′ and a plan from
P (ŝ′) to reach ŝ′′ with ŝ′′ |= µ in the next state. This way (3.12) can be emulated.

The result follows, since the assumptions ensure that if the agent reaches a state while
also observing the main goal on the way, then the policy will have the agent reach the
main goal in the next state. However, the reverse of the corollary may not hold, as the
dynamic nature of the environment may have the agent end up in a state that was not
considered in the static environment.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Reactive Maintenance Policies

3.3.3 Computational Complexity

In this section, we consider the computational complexity of k-maintainability.

Assumptions. We assume that given states s, s′ ∈ S, which are given in a binary encoding,
and (a, e) ∈ Σ′

a×Σe, deciding Φc(s, (a, e), s′) is in Σp
i , for some i ≥ 0; this reflects theory-

based specification by action theories, logic programs, or QBFs possibly with projective
auxiliary variables.

Proposition 3.19. Checking executability of any sequences ā, ē on A∗
a, resp. A∗

e, at a
state s is in Σp

j , where j = max(1, i).

Proof. For sequences ā = a1, a2, . . . , an and ē = e1, e2, . . . , en, we need to guess a
sequence of states s1, . . . , sn and check whether s1 = s and Φc(st−1, (at, et), st) holds for
all t > 1.

Consequently, deciding whether a sequence ā ∈ A∗
a may occur in P (s) such that a

successor state exists for a suitable ē has the same complexity as deciding executability
of ā, ē at s. We (reasonably) assume that P (s) selects among those ā only polynomially
many and of polynomial length (in the state size), called p-jump plans. Furthermore,
we assume that recognizing plans ā in P (s) and deciding P (s) 6= {anop} is feasible in
polynomial time (this holds e.g. if P (s) is computable in logspace), and that the goal
test s |= µ is also in polynomial time. Then we obtain:

Lemma 3.20. Deciding (i) given s, ā and s′ whether ΨP,Σe(s, ā, s′) holds is in Σp
j+1 and

(ii) given a sequence s̄ whether s̄ ∈ Unfoldk(s,AΣ, P) is in Σp
j .

Proof. For deciding (i), we need to check if ΨP,Σe(s, ā, s′) satisfies one of the cases (3.10)-
(3.12). For checking (3.10), we can guess an environment action sequence ē. For (3.11),
we additionally guess a prefix ā′ of ā, and for (3.12) an additional guess of a state s′′ to
check for s′′ ∈ ΦΣ(s′, P (s′), enop) is needed. For deciding (ii), we need to guess an action
sequence ā to check if the policy P decides these actions and satisfy the conditions in
Definition 3.23.

The lemma also holds for goal tests in Πp
i . If the initial state check s ∈ S0 is in Πp

j , we
obtain the following result.

Theorem 3.21 (k-Maintaining Check). Deciding whether a system AΣ=〈S,S0,Σ,ΦΣ〉
is k-maintained, k≥ 0, by a given policy P w.r.t. a goal µ is PSPACE-complete.

Proof. By Lemma 3.20(i), deciding s ∈ ClP,Σe(S0, AΣ) is in NPSPACE. We can check the
existence of a counterexample to k-maintenance by guessing a state s ∈ ClP,Σe(S0, AΣ)
and checking if the condition of Definition 3.18 is violated, by guessing the sequence
s̄ = s0, s1, . . . , sl in s̄ ∈ Unfoldk(s,AΣ, P) stepwise. As NPSPACE = PSPACE, this yields
the upper bound. On the other hand, the problem is PSPACE-hard already in plain

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Semantics for Reactive Agent Policies using Abstraction

settings, with deterministic actions and simple policies, due to the PSPACE-completeness
of succinct graph reachability [Bal96].

The complexity is lowered, if we assume that for deciding s ∈ ClP,Σe(S0, AΣ)? an oracle
in some class of the Polynomial Hierarchy is available and that k is polynomially bounded;
in particular, we have the following.

Theorem 3.22 (Bounded k-Maintaining Check). If deciding whether s ∈ ClP,Σe(S0, AΣ)
is in Σp

i and k ≥ 0 is polynomially bounded, then deciding whether a system AΣ=〈S,S0,Σ,
ΦΣ〉 is k-maintained, k≥ 0, by a given policy P w.r.t. a goal µ is Πp

j -complete.

Proof. In order to check the existence of a counterexample to k-maintenance, for a
guessed state s ∈ ClP,Σe(S0, AΣ), we guess a sequence s̄ = s0, s1, . . . , sl, l ≤ k in s̄ ∈
Unfoldk(s,AΣ, P). By assumption and Lemma 3.20, both checks are feasible in Σj .
Furthermore, testing sl |= µ is polynomial. Thus, we get Πp

j -membership. The matching
lower bound Πj is easily established by a transition relation with Σj complexity.

3.4 Discussion

In this chapter, we described a formal semantics to represent the behavior of a reactive
agent that follows a given policy. The notions of profiles and state clustering help in
omitting irrelevant information. This also comes in handy when dealing with partial
observability, since it omits the unobservable information that is irrelevant to the policy.
In the equalized transition system, the trajectories from the initial states correspond
to the policy execution, where one can check and verify properties of the policy. The
properness condition ensures that any counterexample found in the equalized transition
system stating a failure of the policy has a concrete trajectory in the original transition
system. This way, the shortcomings of the policy can be detected, and thus improved.

For target language definitions, we can use other formalisms with different expressiveness
capabilities, e.g., answer set programming. Target descriptions can be made more complex
by considering formulas. In particular, target formulas with disjunctions would express
nondeterminism in the environment that affects the target determination. Handling this
within the framework requires further study.

It is also possible to use other plans, e.g., short conditional plans, in the planner
component. Furthermore, this component can be extended by considering a plan library
of precomputed plans. This offline planning component can provide the frequently used
plans and reduce the calls to the online planner.

The policies described in the static setting determine targets with some target function
and call a planner for a conformant plan that guarantees reaching the target. In the
dynamic setting, plans need not be conformant, as no targets are considered and all
states reached by trying to execute the plan occur in the closure, and thus matter for
defining the maintenance.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Discussion

ASP and action languages with incomplete knowledge

Representing incomplete information about the states and formalizing sensing actions
have been investigated in order to compute conformant [EFL+03, STB04, TSGM11] or
conditional plans [SB01]. The notion of combined states introduced in [SB01] consists
of the real state and the state in which the agent thinks it may be in. In our case
the dynamic state is defined over two types of state clusters; one showing what can be
distinguished over the state and the other showing what is possible to hold. The notions
of approximation considered in [TSGM11, SB01] are sound and thus makes it possible to
search for a solution of a planning problem over the approximation. In [TSGM11] they
also study further conditions to obtain completeness over the approximation, applicable
to action theories whose static causal laws are of a special form. Such approximation
notions could be useful in distinguishing the relevant details to the policy behavior to
construct the equalizations.

Having a three-valued semantics helps in reflecting undefinedness of the truth values of
literals. Such a semantics has been investigated in ASP, where the notion of partial stable
models was introduced [Prz90]. In [JNS+06], a translation to a disjunctive program was
shown that preserves the partial stable models semantics. This allows to compute the
partial stable models of a program by computing the stable models of the translated
program. Such a notion can be handy in defining the unknown values when describing
sensing actions, and singling out the details relevant to the policy in the ASP program.
Reasoning about the behavior of the policy can then be done over the partial models of
the program.

Further investigations in this direction are not conducted in this thesis, as the focus is
shifted to the unexplored area of considering abstraction as an over-approximation that
reduces the vocabulary of the program and the problem size.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
. Part II

Exploiting Over-Approximation

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Abstraction for Answer Set

Programs

In this chapter, we make the first step towards employing the concept of abstraction in
ASP, with the aim of computing over-approximations and abstracting over the irrelevant
aspects of answer set programs.

We focus on abstraction from a program by constructing an (abstract) program with a
smaller vocabulary and ensuring that the original program is over-approximated, i.e.,
every original answer set can be mapped to some abstract answer set. The smaller
vocabulary simplifies the search for some answer set in the abstract program, but then
the computed abstract answer set needs to be checked for concreteness. As spurious
answer sets can be introduced, one may need to go over all abstract answer sets until a
concrete one is found. If the original program has no answer set, all encountered abstract
answer sets will be spurious. We introduce a CEGAR [CGJ+03] inspired methodology
that starts with an initial abstraction and upon encountering spurious answer sets, refines
the abstraction until a concrete solution is found. Deciding on a refinement is done by
finding a cause of the spuriousness using ASP debugging approaches (e.g., [BGP+07]).

Outline In Section 4.1, we introduce the abstraction notion to ASP, describe possible
approaches and the CEGAR-style methodology that is considered. We then describe
two main abstraction approaches for answer set programs. Section 4.2 introduces
abstraction by omitting atoms from the program and constructing over-approximations,
while Section 4.3 introduces abstraction over the domain of the program. In order to
handle the unavoidably introduced spurious abstract answer sets, in Section 4.4 we
propose a method for determining refinements for the abstractions by employing ASP
debugging methods. We then describe the overall abstraction and refinement methodology
in Section 4.5. Before we conclude, Section 4.6 points out the possibility to extend the
domain abstraction to consider a multi-dimensional abstraction mapping in order to

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

describe more sophisticated abstractions. We conclude in Section 4.7 with a discussion
and address related work in ASP on simplification methods.

4.1 Introducing Abstraction in ASP

The well-known notion of abstraction is about intentionaly discarding some of the details
of a problem in order to take a more high-level view in finding a solution. Abstracting
over the details can be done in a way that the problem is over-approximated, which
means all original solutions have a corresponding solution in the abstraction. This way
of abstraction also makes it possible to encounter spurious abstract solutions, which do
not have a corresponding concrete solution at the original level.

Our aim is introduce such a notion of abstraction in ASP, which means to introduce
a method that over-approximates a given program Π, with vocabulary A, through
constructing a simpler program Π′ with a vocabulary reduced to A′, i.e., |A| ≥ |A′|, and
ensuring that the results of reasoning on the original program are not lost, at the cost of
obtaining spurious answer sets. With this aim, we propose the following definition for
abstraction of answer set programs.

Definition 4.1. Given two (ground or non-ground) programs Π and Π′ on atoms A ⊆
HBΠ and A′ ⊆ HBΠ′ , respectively, with |A| ≥ |A′|, Π′ is an abstraction of Π if there exists
a mapping m : A → A′ ∪ {⊤} such that for any answer set I of Π, I ′ = {m(α) | α ∈ I}
is an answer set of Π′.

We refer to m as an abstraction mapping. This notion of abstraction gives us the
possibility to do clustering over atoms of the program. This way, an abstract program
with a smaller vocabulary can be used to compute some abstract answer set. The reduced
vocabulary simplifies the search for an abstract answer set I ′ at the abstract level, while
an additional check has to be done to see whether an original answer set can be computed
in Π that maps to I ′.

In the thesis, we introduce approaches for two kinds of abstraction mappings: (1)
abstraction by omission, and (2) domain abstraction. The former is about omitting
atoms from a program, i.e., clustering them into ⊤, and considering an abstract program
over the remaining atoms, while the latter investigates abstraction over non-ground ASP
programs given a mapping over their domain (i.e., the Herbrand universe) that singles
out the domain elements.

Next example illustrates the abstraction types.

Example 4.1. Consider the program that describes the graph 3-coloring problem below
(adapted from the coloring encoding in the ASP Competition 2013) and the graphs shown
in Figure 4.1.

color(red). color(green). color(blue).

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Introducing Abstraction in ASP

Figure 4.1: Graph coloring instances

1

2

3

64 5

1
red

2 blue

3

green

64 5 red

(a) 3-coloring of a graph

1

2 3

4

5

6

7

8

1

2 3

4

(b) Non-3-colorable graph

{chosenColor(N,C)} ← node(N), color(C).

colored(N)← chosenColor(N,C).

⊥ ← not colored(N),node(N). (4.1)

⊥ ← chosenColor(N,C1), chosenColor(N,C2), C1 6= C2.

⊥ ← chosenColor(N1, C), chosenColor(N2, C), edge(N1, N2).

The graph instance in Figure 4.1a has 162 possible 3-colorings of the nodes, while there are
6 possible colorings of nodes 1-2-3. The graph instance in Figure 4.1b is not 3-colorable
due to the clique 1-2-3-4.

We consider two possible abstractions over the nodes in the problem. One possibility is
to omit the details of certain nodes in the instance, and to focus on the coloring of the
remaining nodes. The other possibility is to cluster certain nodes into one node and to
consider the coloring of the abstracted instance.

For Figure 4.1b, omitting all the nodes except 1-2-3-4 would still give the uncolorability
result. As for Figure 4.1a clustering the nodes 4-5-6 into one abstract node, say 4̂, would
result in 3-coloring the nodes 1-2-3 and assigning some colors to the cluster node 4̂, e.g.,
chosenColor(1, red), chosenColor(2, blue), chosenColor(3, green), chosenColor(4̂, red).

In the following sections, we describe methods to construct an abstract ASP program for
a given ASP program and an abstraction mapping of the above two kinds, by ensuring
that the original program is over-approximated.

Due to its definition, an over-approximation of a program gives us the following property.

Proposition 4.1. Let Π′ be an abstraction of Π. If AS(Π′) = ∅, then we have AS(Π) = ∅.

In Example 4.1, the abstract program constructed from the encoding (4.1) with the
instance shown in Figure 4.1b by omitting all the nodes except 1-2-3-4 should return no
abstract answer set.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.2: Abstraction refinement upon spurious graph colorings

1

2

3

blue

64 5

1

2
blue

3

64 5

red

1
red

2
blue

3

64 5

red

1
red

2
blue

3

green

64 5 red

(a) Dividing abstract node clusters

1 red 1 red

2 green

1 red

2
green

3
blue

1

2 3

4

uncolorable

(b) Adding back omitted nodes

The over-approximation can also cause to encounter abstract answer sets that do not
have a corresponding original answer set.

Definition 4.2 (Spurious & concrete answer sets). Let Π′ be an abstraction of Π for
the mapping m. The answer set I ′ ∈ AS(Π′) is concrete if there exists an answer set
I ∈ AS(Π) such that m(I) = I ′; otherwise, it is spurious.

In Example 4.1, the abstract program constructed from the encoding (4.1) with the
instance shown in Figure 4.1a by clustering the nodes 4-5-6 into one abstract node should
only consist of concrete abstract answer sets, since any coloring of the cluster node will
be concrete.

In order to get rid of spurious abstract answer sets, the abstraction mapping m needs
to be refined to a more fine-grained abstraction. In case of omission abstraction, the
refinement would be to add back some of the omitted atoms, while in domain abstraction
it would be to divide the clusters.

Abstraction Refinement Methodology We consider a CEGAR-style abstraction
refinement approach, by starting with an initial abstraction and then refining the ab-
straction until a concrete solution is achieved. Before describing the general methodology,
we first illustrate the idea with the graph coloring example.

Example 4.2 (ctd). Consider the original graph instances shown in Figure 4.1 and a
coarse abstraction shown in the left-most parts of Figure 4.2. Figure 4.2a shows an
abstraction that clusters all the nodes into one abstract node to decide on a coloring.
When there is only one node, then an assignment of one color, say blue, can be decided.
However, in the original graph, not all nodes mapped to the abstract node can be colored
to the same color due to the existence of edges between some nodes. A refinement would

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

be to divide the abstract clusters into a finer-grained domain. Until an abstraction is
achieved where the nodes with edges between them are distinguished, a spurious graph
coloring is always possible to occur.

Figure 4.2b shows the abstraction of omitting the knowledge of the nodes in the graph
except one. Then it is again easy to decide on a color for the node. However, in the
original domain, there is no coloring that can match node 1 being colored to red, since
originally the graph is uncolorable. The refinement of this abstraction would be to add
back some of the nodes and the knowledge about the edges. Until an abstraction is
achieved where the four nodes causing the uncolorability is distinguished, a spurious
graph coloring always occurs.

We now describe the methodology illustrated in Figure 4.3.

For a program Π, we start with an initial abstraction mapping m to construct an
abstract program Π̂m (Step 1) that over-approximates the original program Π with the
methods introduced in Sections 4.2-4.3 and then compute the abstract answer sets. The
over-approximation condition guarantees that in case Π has a answer set I then it will
have a corresponding abstract answer set m(I) in the abstract program Π̂m. However,
there can also be some abstract answer sets which are spurious. If however the abstract
program Π̂m does not have an answer set (Step 2), by Proposition 4.1 this shows that Π
is unsatisfiable, then the abstract program Π̂m and the mapping m that achieved the
unsatisfiability are returned. When we pick an abstract answer set I ′ ∈ AS(Π̂m) (Step
3), we check for its concreteness (Step 4). If I is concrete, then it shows a solution to Π.
Thus, the abstract program Π̂m, the mapping m and the concrete abstract answer set I
are returned. If I ′ is spurious, then we decide to refine the abstraction mapping m to m′

(Step 5) in order to construct a more fine-grained abstract program Π̂m′ according to the
updated mapping. We then compute the answer sets of the updated abstract program
Π̂m′ and continue as above. The abstraction refinement loop continues until either a
picked abstract answer set is concrete, or the abstract program returns no answer sets.
The procedure eventually stops as once the mapping m is refined back to the trivial
mapping, i.e., all elements of the original domain are mapped to themselves, Π̂m will
be the same as Π. Thus, if Π is unsatisfiable then the procedure will stop at Step 2,
otherwise any answer set picked in Step 3 will be concrete, thus the procedure will stop
at Step 4.

The abstraction methods used in Step 1 are introduced in Section 4.2 and Section 4.3 for
omission abstraction and domain abstraction, respectively. The correctness checking of
an abstract answer set (Step 4) and then deciding on a refinement (Step 5) is done using
a debugging approach which is introduced in Section4.4.

4.2 Omission-based Abstraction

Abstraction by omission is on omitting a set of atoms from a program to obtain an
over-approximation. The abstraction mapping that describes omission is as follows.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.3: Abstraction & Refinement Methodology

Input:
Π,m

Construct Πm

Step 1

AS(Πm)
6= ∅?

Step 2

Output:
Πm,m

Get I from
AS(Πm)

Step 3

I is
concrete?

Step 4

Output:
Πm,m, I

Refine m

Step 5

yes

no yes

no

Definition 4.3. Given a set A ⊆ A of atoms, an omission (abstraction) mapping is
mA :A→A∪ {⊤} such that mA(α) =⊤ if α∈A and mA(α) = α otherwise.

An omission mapping removes the set A of atoms from the vocabulary and keeps the
rest. We refer to A as the omitted atoms.

Example 4.3. Consider the programs Π1,Π2 and Π3 below and let the set A of atoms
to be omitted to be {b}.

Π1 Π2 Π3

c← not d. c← not d. {a}.
d← not c. d← not c. {c} ← a.
a← not b, c. {a} ← c. d← not a.
b← d.

AS {c, a}, {d, b} {c, a}, {d}, {c} {c, a}, {d}, {a}

Observe that for I ′
1 = {mA(c),mA(a)} = {c, a} we have I ′

1 ∈ AS(Π2) and I ′
1 ∈ AS(Π3)

and for I ′
2 = {mA(d),mA(b)} = {d} we have I ′

2 ∈ AS(Π2) and I ′
2 ∈ AS(Π3). Thus,

according to Definition 4.1, both of the programs Π2 and Π3 are an abstraction of
Π1. Moreover, they are over-approximations, as they have answer sets {c} and {a},
respectively, which cannot be mapped back to the answer sets of Π1.

Although both Π2 and Π3 are abstractions, notice that the structure of Π2 is more similar
to Π1, while Π3 has an entirely different structure of rules.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

Next we show a systematic way of building, given an ASP program and a set A of atoms,
an abstraction of Π by omitting the atoms in A that we denote by omit(Π, A). The aim
is to ensure that every original answer set of Π is mapped to some abstract answer set of
omit(Π, A), while (unavoidably) some spurious abstract answer sets may be introduced.
Thus, an over-approximation of the original program Π is achieved.

4.2.1 Program Abstraction

The basic method is to project the rules to the non-omitted atoms and introduce choice
when an atom is omitted from a rule body, in order to make sure that the behavior of
the original rule is preserved.

We build from Π an abstract program omit(Π, A) according to the abstraction mA. For
every rule r : α←B(r) in Π,

omit(r,A)=

r if A ∩B± = ∅ ∧ α /∈ A, (a)
{α} ← B+(r) \A,not (B−(r) \A) if A ∩B± 6= ∅ ∧ α /∈ A ∪ {⊥}, (b)

∅ otherwise. (c)

In (a), we keep the rule as it is, if it does not contain any omitted atom. Item (b) is for
the case when the rule is not a constraint and the rule head is not in A. Then the body
of the rule is projected onto the remaining atoms, and a choice is introduced to the head.
Note that we treat default negated atoms, B−(r), similarly, i.e., if some α∈B−(r) ∩A,
then we omit not α from B(r). As for the remaining cases (either the rule head is in A
or the rule is a constraint containing some atom from A), the rule is omitted by item (c).
We use ∅ as a symbol for picking no rule.

We sometimes denote omit(Π, A) as Π̂A, where A = A \ A, to emphasize that it is an
abstract program constructed with the remaining atoms A. For an interpretation I and
respectively a set S of atoms, I|A and S|A denotes the projection to the atoms in A.
For a rule r, we use mA(B(r)) as a shorthand for B(omit(r,A)) to emphasize that the
mapping mA is applied to each atom in the body.

Example 4.4. Consider a program Π and its abstraction Π̂A for A = {b, d}, according
to the above steps.

Π Π̂A
c← not d. {c}.
d← not c.
a← not b, c. {a} ← c.
b← d.

AS {c, a}, {d, b} {}, {c}, {c, a}

For I ′
1 = {mA(c),mA(a)} = {c, a} we have I ′

1 ∈ AS(Π̂A) and for I ′
2 = {mA(d),mA(b)} =

{} we have I ′
2 ∈ AS(Π̂A). Thus, every answer set of Π can be mapped to some answer

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

set of Π̂A, when the omitted atoms are projected away, i.e., AS(Π)|A = {{c, a}, {}} ⊆

{{c, a}, {}, {c}} = AS(Π̂A).

Notice that in Π̂A, constraints are omitted if the body contains an omitted atom (item
(c)). If instead the constraint gets shrunk by just omitting the atom from the body, then
for some interpretation Î, the body may be satisfied, causing Î /∈AS(Π̂A), while this

was not the case in Π for any I ∈AS(Π) with I|A = Î. Thus I cannot be mapped to an

abstract answer set of Π̂A, i.e., Π̂A is not an over-approximation of Π. The next example
illustrates this.

Example 4.5 (Example 4.4 ctd). Consider an additional rule {← c, b.} in Π, which does
not change its answer sets. If however in the abstraction Π̂A this constraint only gets

shrunk to {← c.}, by omitting b from its body, we get AS(Π̂A) = {}. This causes Π̂A
to have no abstract answer set to which the original answer set {c, a} can be mapped
to. Omitting the constraint from Π̂A as described above avoids such cases of losing the
original answer sets in the abstraction.

Abstracting choice rules We focused above on rules of the form α ← B only.
However, the same principle is applicable to choice rules r : {α} ← B(r). When building
omit(r,A), item (a) keeps the rule as it is, item (b) removes the omitted atom from B(r)
and keeps the choice in the head, and item (c) omits the rule. This would be syntactically
different from considering the expanded version (1) α← B(r),not α. (2) α← B(r),not α.
where α is an auxiliary atom. If α is omitted, the rule (2) turns into a guessing rule, but
it is irrelevant as α occurs nowhere else. If α is not omitted but some atom in B, both
rules are turned into guessing rules and the same answer set combinations are achieved
as with keeping r as a choice rule in item (b). However, the number of auxiliary atoms
would increase, in contrast to treating choice rules r genuinely.

Over-Approximation

The following result shows that omit(Π, A) can be seen as an over-approximation of Π.

Theorem 4.2. For every answer set I ∈ AS(Π) and atoms A ⊆ A, it holds that
I|A ∈ AS(omit(Π, A)).

Proof. Towards a contradiction, assume I is an answer set of Π, but I|A is not an
answer set of omit(Π, A). This can occur because either (i) I|A is not a model of

Π′ = omit(Π, A)I|
A or (ii) I|A is not a minimal model of Π′.

(i) If I|A is not a model of Π′, then there exists some rule r ∈ Π′ such that I|A |= B(r)
and I|A 2H(r). By the construction of omit(Π, A), r is not obtained by case (b), i.e.,
by modifying some original rule to get rid of A, because then r would be a choice rule
with head H(r) = {α}, and r would be satisfied. Consequently, r is a rule from case (a),
and thus r ∈ Π. We note that I|A and I coincide on all atoms that occur in r. Thus,

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

I|A |= B(r) implies that I |= B(r), and as I |= r, it follows I |= H(r), which then means
I|A |= H(r); this is a contradiction.

(ii) Suppose I ′ ⊂ I|A is a model of Π′. We claim that then J = I ′ ∪ (I ∩ A) ⊂ I is a
model of ΠI , which would contradict that I ∈ AS(Π). Assume that J 6|= ΠI . Then J
does not satisfy some rule r : α← B(r) in ΠI , i.e., J |= B(r) but J 2α, i.e., α /∈ J . The
rule r can either be (a) a rule which is not changed for Π′, (b) a rule that was changed
to {α} ← B̂ in Π′, or (c) a rule that was omitted, i.e., α ∈ A. In each case (a)-(c), we
arrive at a contradiction:

(a) Since r ∈ ΠI and r involves no atom in A, we have r ∈ Π′. As I|A |= r and J |A
coincides with I ′|A, we have that J |A |= r, and thus J |= r; this contradicts J 2α.

(b) By definition of J , we have α ∈ I|A \ I
′. Since J |= B(r), it follows that J |A |= B̂

and since I ′ = J |A that I ′ |= B̂. As I ′ is a model of Π′, we have that I ′ satisfies the
choice atom {α} in the head of the rewritten rule, i.e., either (1) α ∈ I ′ or (2) α /∈ I ′;
but (1) contradicts α ∈ I|A \ I

′, while (2) means that I ′ is not a smaller model of
Π′ than I|A, as then α′ ∈ I ′ \ I|A would hold, which is again a contradiction.

(c) As r is in ΠI , we have I |= B(r) and since I is an answer set of Π, that I |= α. As
α /∈ J , by construction of J it follows that α /∈ I, which contradicts I |= α.

By introducing choice rules for any rule that contains an omitted atom, all possible cases
that would be achieved by having the omitted atom in the rule are covered. Thus, the
abstract answer sets cover the original answer sets. On the other hand, not every abstract
answer set may cover some original answer set, which motivates the following notion.

Definition 4.4 (cf. Definition 4.2). Given a program Π and a set A of atoms, an answer
set Î of omit(Π, A) is concrete, if Î ∈ AS(Π)|A holds, and spurious otherwise.

In other words, a spurious abstract answer set Î cannot be completed to any original
answer set, i.e., no extension I = Î ∪X of Î to all atoms (where X ⊆A) is an answer set
of Π.

Example 4.6 (Example 4.4 ctd). The program Π̂A constructed for A = {a, c} has the

answer sets AS(Π̂A)={{}, {c}, {c, a}}. The abstract answer sets Î1 = {} and Î2 = {c, a}
are concrete since they can be extended to the answers sets I1 = {d, b} and I2 = {c, a}
of Π, as I1|A = Î1 and I2|A = Î2, respectively. On the other hand, the abstract answer

set Î = {c} is spurious: as a is false in Î, it must be false in Π, but c being true in turn
affects that b and d must be false in Π as well; this violates rule a← not b, c. in Π.

In Section 4.4, we show an alternative way of checking the spuriousness of an abstract
answer set, which we then use in determining a refinement of the abstraction mapping.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Refining abstractions

Upon encountering a spurious answer set, one can either continue checking other abstract
answer sets until a concrete one is found, or refine the abstraction in order to reach an
abstract program with less spurious answer sets. Formally, refinements are defined as
follows.

Definition 4.5. Given a omission mapping mA = A → A ∪ {⊤}, a mapping mA′ =
A → A∪ {⊤} is a refinement of mA if A′ ⊆ A.

Intuitively, a refinement is made by adding some of the omitted atoms back.

Example 4.7 (Example 4.4 ctd). A mapping that omits the set A′ = {b} is a refinement
of the mapping that omits A = {b, d}, as d is added back. This affects that in the
abstraction program the choice rule {c}. is turned back to c ← not d. and the rule
d ← not c. is undeleted, i.e., omit(Π, A′) = {c ← not d.; d ← not c.; {a} ← c}, which
has the abstract answer sets Ĵ1 = {d}, Ĵ2 = {c, a} and Ĵ3 = {c}. Note that while Ĵ1 and
Ĵ2 are concrete, Ĵ3 is spurious; intuitively, adding d back does not eliminate the spurious
answer set {c} of omit(Π, A).

The previous example motivates us to introduce a notion for sets of omitted atoms that
need to be added back in order to get rid of a spurious answer set.

Definition 4.6 (Put-back set). Let Î ∈ AS(omit(Π, A)) be any spurious abstract answer
set of a program Π for omitted atoms A. A put-back set for Î is any set PB ⊆ A of
atoms such that no abstract answer set Ĵ of omit(Π, A′) where A′ = A \ PB exists with
Ĵ |A = Î.

That is, re-introducing the put-back atoms in the abstraction, the spurious answer set Î
is eliminated in the modified abstract program. Notice that multiple put-back sets (even
incomparable ones) are possible, and the existence of some put-back set is guaranteed, as
putting all atoms back, i.e., setting PB = A, eliminates the spurious answer set.

Example 4.8 (Example 4.4 ctd). The discussion in Example 4.7 shows that {d} is not
a put-back set for the spurious answer set Î = {c} ∈ Π̂A, and neither {b} is a put-back
set: the abstract program for A′ = A \ {b} = {d} is omit(Π, A′) = {{c}.; a ← not b, c.;
{b}.}, which has {b, c} with {b, c}A = Î among its abstract answer sets. Thus, Î has only
the trivial put-back set {b, d}.

In practice, small put-back sets are intuitively preferable to large ones as they keep higher
abstraction; we consider such preference in [SE18b].

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

4.2.2 Properties of Omission Abstraction

We now consider some basic but useful semantic properties of our formulation of program
abstraction. Notably, it amounts to the original program in the extremal case and reflects
the inconsistency of it in properties of spurious answer sets.

Proposition 4.3. For any program Π,

(i) omit(Π, ∅) = Π and omit(Π,A) = ∅.

(ii) AS(Π) = ∅ iff I = {} is spurious w.r.t. A = A.

(iii) AS(omit(Π, A)) = ∅ implies AS(Π) = ∅.

(iv) AS(Π) = ∅ iff some A ⊆ A has only spurious answer sets iff every omit(Π, A),
A ⊆ A, has only spurious answer sets.

Proof. (i) Omitting the set ∅ from Π causes no change in the rules, while omitting the
set A causes all the rules to be omitted.

(ii) Since Î = {} and A = A, we have QA
Î

= {}. Thus, by the alternative definition,

I = {} is spurious w.r.t. A = A iff AS(Π ∪QA
Î

) = ∅ iff AS(Π) = ∅.

(iii) Corollary of Theorem 4.2.

(iv) If AS(Π) = ∅, then no Î ∈ AS(omit(Π, A)) for any A ⊆ A can be extended to an
answer set of Π; thus, all abstract answer sets of omit(Π, A) are spurious. This in
turn trivially implies that omit(Π, A) has for some A ⊆ A only spurious answer
sets. Finally, assume the latter holds but AS(Π) 6= ∅; then Π has some answer
set I, and by Theorem 4.2, I|A ∈ AS(omit(Π, A)), which would contradict that
omit(Π, A) has only spurious answer sets.

The abstract program is built by a syntactic transformation, given the set A of atoms to
be omitted. It turns out that we can omit the atoms sequentially, and the order does not
matter.

Lemma 4.4. For any program Π and atoms a1, a2 ∈ A,

omit(omit(Π, {a1}), {a2}) = omit(omit(Π, {a2}), {a1}).

Proof. The rules of Π that do not contain a1 or a2 remain unchanged, and the rules that
contain one of a1 or a2 will be updated at the respective abstraction steps. The rules
that contain both a1 and a2 are treated as follows:

• Consider a rule a1 ← B with a2 ∈ B (w.l.o.g.). Omitting first a2 from the rule
causes to have {a1} ← B \ {a2}, and omitting then a1 results in omission of the
rule. Omitting first a1 from the rule causes the omission of the rule at the first
abstraction step.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

• Consider a rule α ← B, with a1, a2 ∈ B and α 6= a1, a2. Omitting first a2 from
the rule causes to have {a} ← B \ {a2}, and omitting then a1 causes to have
{a} ← B \ {a1, a2}. The same rule is obtained when omitting first a1 and then a2.

An easy induction argument shows then the property mentioned above.

Proposition 4.5. For any program Π and set A = {a1, . . . , an} of atoms,

omit(Π, A) = omit(omit(· · · (omit(Π, {aπ(1)}), · · · {aπ(n−1)}), {aπ(n)})

where π is any permutation of {1, . . . , n}.

Thus, the abstraction can be done one atom at a time.

Omitting atoms in a program means projecting them away from the answer sets. Thus,
for a mapping mA, the concrete answer sets in omit(Π, A) always have corresponding
answer sets in the programs computed for refinements of mA.

Proposition 4.6. Suppose Î is a concrete answer set of omit(Π, A) for a program Π
and a set A of atoms. Then for every A′ ⊆ A some answer set Î ′ ∈ AS(omit(Π, A′))
exists such that Î ′|A = Î.

Proof. By Definition 4.4, Î ∈ AS(Π)|A, i.e. there exists some I ∈ AS(Π) s.t. I|A = Î.
By Theorem 4.2, for every B ⊆ A, I|B ∈ AS(omit(Π, B)) holds, and in particular for

B ⊆ A; we thus obtain (I|B)|A = I|A = Î.

The next property is convexity of spurious answer sets.

Proposition 4.7. Suppose Î ∈ AS(omit(Π, A)) is spurious and that omit(Π, A′), where
A′⊆A, has some answer set Î ′ such that Î ′|A = Î. Then for every A′′ such that

A′ ⊆ A′′ ⊆ A, it holds that Î ′|A′′ ∈ AS(omit(Π, A′′)) and Î ′|A′′ spurious.

Proof. We first note that Î ′ is spurious as well: if not, some I ∈ AS(Π) exists such
that I|A′ = Î ′; but then I|A = (I|

A
′)|A = Î ′|A = Î, which contradicts that Î is spurious.

Applying Theorem 4.2 to omit(Π, A′) and A′′, we obtain that Î ′|A′′ is an answer set of
omit(omit(Π, A′), A′′), which by Proposition 4.5 coincides with omit(Π, A′′). Moreover,
Î ′|A′′ is spurious, since otherwise Î would not be spurious either, which would be a
contradiction.

The next proposition intuitively shows that once a spurious answer set is eliminated by
adding back some of the omitted atoms, no extension of this answer set will show up
when further omitted atoms are added back.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

Proposition 4.8. Suppose that Î ∈ AS(omit(Π, A)) is a spurious answer set and
PB ⊆ A is a put-back set for Î. Then for every A′ ⊆ A \ PB and answer set Î ′ ∈
AS(omit(Π, A \ (PB ∪A′)) it holds that Î ′|A 6= Î.

Proof. Towards a contradiction, assume that for some A′ ⊆ A \ PB and answer set
Î ′ ∈ AS(omit(Π, A \ (PB ∪ A′)) it holds that Î ′|A = Î. By Proposition 4.7, we obtain

that Î ′ is spurious and moreover that Î ′|
A\P B

∈ AS(omit(Π, A \ PB)) is spurious.

However, as (Î ′|
A\P B

)|A = Î|A, this contradicts that PB is a put-back set for Î.

Faithful Abstractions

Ideally, abstraction simplifies a program but does not change its semantics. Our next
notion serves to describe such abstractions.

Definition 4.7. An abstraction omit(Π, A) is faithful, if it has no spurious answer sets.

Faithful abstractions are a syntactic representation of projected answer sets, since we
obtain AS(omit(Π, A)) = AS(Π)|A. They fully preserve the information contained in
the answer sets, and allow for reasoning (both brave and cautious) that is sound and
complete over the projected answer sets.

Example 4.9 (Example 4.4 ctd). Consider omitting the set A = {a, c} from Π. The
resulting Π̂A is faithful, since its answer sets {{}, {b, d}} are the ones obtained from
projecting {a, c} away from AS(Π).

Π Π̂A
c← not d.
d← not c. {d}.
a← not b, c.
b← d. b← d.

AS {c, a}, {d, b} {}, {d, b}

However, while an abstraction may be faithful, by adding back omitted atoms the
faithfulness might get lost. In particular, if the program Π is satisfiable, then A = A
is a faithful abstraction; by adding back atoms, spurious answer sets might arise. This
motivates the following notion.

Definition 4.8. A faithful abstraction omit(Π, A) of a program Π w.r.t a set A of atoms
is refinement-safe, if for all A′⊆A, the abstract program omit(Π, A′) has no spurious
answer sets.

In a sense, a refinement-safe abstraction allows us to zoom in details without losing
already established relationships between atoms, as they appear in the abstract answer
sets, and no spuriousness check is needed. In particular, this applies to programs that

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

are unsatisfiable. By Proposition 4.3-(iii), unsatisfiability of an abstraction omit(Π, A)
implies that the original program is unsatisfiable, and hence the abstraction is faithful.
Moreover, we obtain:

Proposition 4.9. Given a program Π and a set A of atoms, if omit(Π, A) is unsatisfiable,
then it is refinement-safe faithful.

Proof. Assume that A is refined to some A′ ⊂ A, where some atoms are added back in the
abstraction, and the constructed omit(Π, A′) is not unsatisfiable, i.e., AS(omit(Π, A′)) 6=
∅. By Theorem 4.2, it must hold that AS(omit(Π, A′))|A ⊆ AS(omit(Π, A)), which
contradicts to the fact that omit(Π, A) is unsatisfiable.

4.2.3 Computational Complexity

In this section, we turn to the computational complexity of reasoning tasks that are
associated with program abstraction. We start with noting that constructing the abstract
program and model checking on it is tractable.

Lemma 4.10. Given Π and A, (i) the program omit(Π, A) is constructible in logarithmic
space, and (ii) checking whether I ∈ AS(omit(Π, A)) holds for a given I is feasible in
polynomial time.

As for item (i), the abstract program omit(Π, A) is easily constructed in a linear scan of
the rules in Π; item (ii) reduces then to answer set checking of an ordinary normal logic
program, which is well-known to be feasible in polynomial time (and in fact P-complete).

However, tractability of abstract answer set checking is lost if we ask in addition for
concreteness or spuriousness.

Proposition 4.11. Given a program Π, a set A of atoms, and an interpretation I,
deciding whether I|A, is a concrete (resp., spurious) abstract answer set of omit(Π, A) is
NP-complete (resp. coNP-complete).

Proof. Indeed, we can guess an interpretation J of Π such that (a) JA = IA, (b)
JA ∈ AS(omit(Π, A)), and (c) J ∈ AS(Π). By Lemma 4.10, (b) and (c) are feasible in
polynomial time, and thus deciding whether IA is a concrete abstract answer set is in
NP. Similarly, IA is not a spurious abstract answer set iff for some J condition (a) holds
and either (b) fails or (c) holds; this implies coNP membership.

The NP-hardness (resp. coNP-hardness) is immediate from Proposition 4.3 and the
NP-completeness of deciding answer set existence.

Thus, determining whether a particular abstract answer set causes a loss of information
is intractable in general. If we do not have a candidate answer set at hand, but want to
know whether the abstraction causes a loss of information with respect to all answer sets
of the original program, then the complexity increases.

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

Theorem 4.12. Given a program Π and a set A of atoms, deciding whether some answer
set Î ∈ AS(omit(Π, A)) exists that is spurious is Σp

2-complete.

Proof. As for membership in Σp
2, some answer set Î ∈ omit(Π, A) that is spurious

can be guessed and checked by Proposition 4.11 with a coNP oracle in polynomial
time. The Σp

2-hardness is shown by a reduction from evaluating a QBF ∃X∀Y E(X,Y),
where E(X,Y) =

∨k
i=1Di is a DNF of conjunctions Di = li1 ∧ · · · ∧ lini

over atoms
X = {x1, . . . , xn} and Y = {y1, . . . , ym} where without loss of generality in each Di some
atom from Y occurs.

We construct a program Π as follows;

xi ←not xi. (4.2)

xi ←not xi. for all xi ∈ X (4.3)

yj ←not yj ,not sat. (4.4)

yj ←not yj ,not sat. for all yj ∈ Y (4.5)

sat←l∗i1
, . . . l∗ini

. (4.6)

where X = {x1, . . . xn} and Y = {y1, . . . ym} are sets of fresh atoms and for each atom
a ∈ X ∪ Y , we let a∗ = a and (¬a)∗ = a. Furthermore, we set A = Y ∪ Y ∪ {sat}.

Intuitively, the answer sets Î of omit(Π, A), which consists of all rules (4.2)-(4.3), cor-
respond 1-1 to the truth assignments σ of X. A particular such Î = Îσ = {xi ∈ X |
σ(xi) = true} ∪{xi | xi ∈ X,σ(xi) = false} is spurious, iff it can not be extended after
putting back all omitted atoms to an answer set J of Π. Any such J must not include
sat, as otherwise the rules (4.4) and (4.5) would not be applicable w.r.t. J , which means
that all yj and Yj would be false in J ; but then sat could not be derived from Π and J ,
as no rule (4.6) is applicable w.r.t. J by the assumption on the Di.

Now if Îσ is not spurious, then some answer set J of Π as described exists. As sat /∈ J ,
the rules (4.4) and (4.5) imply that exactly one of yj and yj is in J , for each yj , and
thus J induces an assignment µ to Y . As no rule (4.6) is applicable w.r.t. J , it follows
that E(σ(X), µ(Y)) evaluates to false, and thus ∀Y E(σ(X), Y) does not evaluate to true.
Conversely, if ∀Y E(σ(X), Y) does not evaluate to true, then some answer set J of Π
that coincides with Î_σ on X ∪X exists, and hence Î_σ is not spurious. In conclusion,
it follows that omit(Π, A) has some spurious answer set iff ∃X∀Y E(X,Y) evaluates to
true.

An immediate consequence of the previous theorem is that checking whether an abstraction
omit(Π, A) is faithful has complementary complexity.

Corollary 4.13. Given a program Π and a set A ⊆ A of atoms, deciding whether
omit(Π, A) is faithful is Πp

2-complete.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Further complexity results are presented in Appendix B. Computing a minimal put-back
set and some refinement-safe faithful abstraction, that does not remove a given set A0

of atoms, each shown to be in FPΣP
2 [log, wit]-complete. Here, the class FPΣP

k [log, wit],
for k ≥ 1, contains all search problems that can be solved in polynomial time with a
witness oracle for Σp

k [BKT93]; a witness oracle for Σp
k returns in case of a yes-answer to

an instance a polynomial size witness string that can be checked with a Σp
k−1 oracle in

polynomial time.

4.2.4 Extensions

In this section, we discuss possible extensions of the approach to more expressive programs,
in particular to non-ground programs and to disjunctive logic programs.

Note that lifting the framework to programs with strong negation is easily possible, where
as usual negative literals ¬p(~t) are viewed as atoms of a positive predicate ¬p and with
an additional constraint ← p(~t),¬p(~t).

Non-Ground Case

In case of omitting atoms from non-ground programs, a simple extension of the method
described above is to remove all non-ground atoms from the program that involve a
predicate p that should be omitted. This, however, may require to introduce domain
variables in order to avoid the derivation of spurious atoms. Specifically, if in a rule
r : α ← B(r) a non-ground atom p(V1, . . . , Vn) that is omitted from the body shares
some arguments, Vi, with the head α, then α is conditioned for Vi with a domain atom
dom(Vi) in the constructed rule, so that all values of Vi are considered.

Example 4.10. Consider the following program Π with domain predicate int for an
integer domain {1, ..., 5}:

a(X1, X2)← c(X1), b(X2). (4.7)

d(X1, X2)← a(X1, X2), X1≤X2. (4.8)

In omitting c(X), while rule (4.8) remains the same, rule (4.7) changes to

{a(X1, X2) : int(X1)} ← b(X2).

From Π and the facts c(1), b(2), we get the answer set {c(1), b(2), a(1, 2), d(1, 2)}, and
with c(2), b(2) we get {c(2), b(2), a(2, 2), d(2, 2)}. After omitting c(X), the abstract
program with fact b(2) has 32 answer sets. Among them are {b(2), a(1, 2), d(1, 2)} and
{b(2), a(2, 2), d(2, 2)}, which cover the original answer sets, i.e., each original answer set
can be mapped to some abstract one.

For a more fine-grained omission, let the set A consist of the atoms α = p(c1, . . . , ck)
and let Ap ⊆ A denote the set of ground atoms with predicate p that we want to omit.
Consider a k-ary predicate θp such that for any c1, . . . , ck, we have θp(c1, . . . , ck) = true iff

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

p(c1, . . . , ck) ∈ Ap; for a (possibly non-ground) atom α = p(t1, . . . , tk), we write θ(α) for
θp(t1, . . . , tk). We can then build from a non-ground program Π an abstract non-ground
program omit(Π, A) according to the abstraction mA, by mapping every rule r : α←B
in Π to a set omit(r,A) of rules such that

omit(r,A) includes

r if Apred(β) = ∅ for all β ∈ {α} ∪B±,

α←B,not θ(β) if Apred(β) 6= ∅ ∧ β ∈ {α} ∪B±,

{α} ← B \ {β}, θ(β) if β ∈ B ∧ α 6= ⊥ ∧ θ(β) is satisfiable,
∅ otherwise,

and no other rules. The steps above assume that in a rule a most one predicate to
omit occurs in a single atom β. However, the steps can be readily lifted to consider
omitting a set {β1, . . . , βn} of atoms with multiple predicates from the rules. For
this, α←B,not θ(β) will be converted into α←B,not θ(β1), . . . ,not θ(βn) and {α} ←
B \ {β}, θ(β) gets converted into a set of rules {α} ← B \ {β1, . . . , βn}, θ(β1); . . . ; {α} ←
B \ {β1, . . . , βn}, θ(βn).

Example 4.11 (Example 4.10 ctd). Suppose we want to omit c(X) for X<3, i.e.,
A = {c(1), c(2)} = Ac. We have θ(c(1)) = θ(c(2)) = true and θ(c(X)) = false, for
X ∈ {3, ..., 5}. The abstract non-ground program omit(Π, A) is

a(X1, X2)← c(X1), b(X2),not θ(c(X1)).

{a(X1, X2)} ← b(X2), θ(c(X1)).

d(X1, X2)← a(X1, X2), X1≤X2.

The abstract answer sets with facts b(2), θ(c(1)), θ(c(2)) are {{b(2)}, {b(2), a(2, 2), d(2, 2)},
{b(2), a(1, 2), d(1, 2)}, and {b(2), a(1, 2), a(2, 2), d(1, 2), d(2, 2)}}. The program omit(Π, A)
is over-approximating Π while not introducing that many abstract answer sets as in the
coarser abstraction in Example 4.10.

Disjunctive Programs

For disjunctive programs, splitting the disjunctive rules yields an over-approximation.

Proposition 4.14. For a program Π′ constructed from a given Π by splitting rules of form
α01 ∨ · · ·∨α0k

← B(r) into {α01} ← B(r); . . . ; {α0k
} ← B(r), we have AS(Π) ⊆ AS(Π′).

The current abstraction method can then be applied over Π′. However, it is possible that
for an unsatisfiable Π the constructed Π′ becomes satisfiable; the reason for unsatisfiability
of Π can then not be grasped.

The approach from above can be extended to disjunctive programs Π, by injecting
auxiliary atoms to disjunctive heads in order to cover the case where the body does not
fire in the original program. To obtain with a given set A of atoms an abstract disjunctive

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.4: Graph coloring instances

1

2

3

45

6

7 8

9

(a) A non 2-colorable graph

1

2 3

4

5

6

7

8

(b) A non 3-colorable graph

program omit(Π, A), we define abstraction of disjunctive rules r : α1 ∨ · · · ∨αn←B in Π,
where n ≥ 2 and all αi 6= ⊥ are pairwise distinct, as follows.

omit(r,A) =

r if A ∩B± = ∅ ∧ A ∩ {α1, . . . , αn} = ∅,
α1 ∨ · · · ∨ αk ∨ x← mA(B) if A ∩ {α1, . . . , αn} = {αk+1, . . . , αn} ∧

k ≥ 1,
α1 ∨ · · · ∨ αn ∨ x← mA(B) if A ∩B± 6= ∅ ∧ A ∩ {α1, . . . , αn} = ∅,

∅ otherwise.

where x is a fresh auxiliary atom. Further development of the approach for disjunctive
programs in a syntax preserving manner remains as future work.

4.2.5 Satisfiability Blockers of Programs

An interesting application area for an omission-based abstraction in ASP is finding an
explanation for unsatisfiability of programs. We approach the unsatisfiability of an ASP
program with the aim to obtain a projection of the program that shows the cause of
the unsatisfiability. For example, consider the graphs shown in Figure 4.4. The one in
Figure 4.4a is not 2-colorable due to the subgraph induced by the nodes 1-2-3, while the
one in Figure 4.4b is not 3-colorable due to the subgraph of the nodes 1-2-3-4. From
the original programs that encode this problem, abstracting away the rules that assigns
colors to the nodes not involved in these subgraphs should still keep the unsatisfiability,
thus showing the actual reason of non-colorability of the graphs.

To obtain an explanation of unsatisfiability, we introduce the notion of blocker sets as
sets of atoms such that abstraction to them preserves unsatisfiability of a program. After
describing the implementation, we report about our experiments where the aim was
to observe the use of abstraction and refinement for achieving an over-approximation
of a program that is still unsatisfiable and to compute the ⊆-minimal blockers of the
programs, which projects away the part that is unnecessary for the unsatisfiability.

Blocker Sets If a program Π has no answer sets, we can obtain by omitting sufficiently
many atoms from it an abstract program that has some abstract answer set. By

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Omission-based Abstraction

Proposition 4.3-(iv), any such answer set will be spurious. On the other hand, as long
as the abstracted program has no answer sets, by Proposition 4.3-(iii) also the original
program Π has no answer set. This motivates us to use omission abstraction in order
to catch a “real” cause of inconsistency in a program. To this end, we introduce the
following notion.

Definition 4.9. A set C ⊆ A of atoms is an (answer set) blocker set of Π, if
AS(omit(Π,A \ C)) = ∅.

In other words, when we keep the set C of atoms and omit the rest from Π to obtain the
abstract program Π′, then the latter is still unsatisfiable. This means that the atoms
in C are blocking the occurrence of answer sets: no answer set is possible as long as all
these atoms are present in the program, regardless of how the omitted atoms will be
evaluated in building an answer set.

Example 4.12 (Example 4.4 ctd). Modify Π by changing the last rule to b ← not b.,
in order to have a program Π′ which is unsatisfiable. Omitting the set A = {d}
from Π′ creates the abstract program Π̂′

{d}
which is still unsatisfiable. Thus, the set

C = A\A = {a, b, c} is a blocker set of Π′. This is similar for omitting the set A = {a, c},
which then causes to have C = {d, b} as a blocker set of Π′.

Π′ Π̂′
{d}

Π̂′
{a,c}

c← not d. {c}.
d← not c. {d}
a← not b, c. a← not b, c.
b← not b. b← not b. b← not b.
unsatisfiable unsatisfiable unsatisfiable

Notice that C = A, i.e., no atom is omitted, is trivially a blocker set if Π is unsatisfiable,
while C = ∅, i.e., all atoms are omitted, is never a blocker set since AS(omit(Π,A)) = {∅}.

We can view a blocker set as an explanation of unsatisfiability; by applying Occam’s razor,
simpler explanations are preferred, which in pure logical terms motivates the following
notion.

Definition 4.10. A blocker set C ⊆ A is ⊂-minimal, if for all C ′ ⊂ C, AS(omit(Π,A\
C ′)) 6= ∅.

By Proposition 4.9, in order to test whether a blocker set C is minimal, we only need
to check whether for no C ′ = C \ {c}, for c ∈ C, the abstraction omit(Π,A \ C ′) has
an answer set. That is, for a minimal blocker set C, we have that A \ C is a maximal
unsatisfiable abstraction, i.e., a maximal set of atoms that can be omitted while keeping
the unsatisfiability of Π.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.5: Blocker rule set for 2-colorability of Figure 4.4a

{chosenColor(1, red)}. ⊥←not colored(1).
{chosenColor(2, red)}. ⊥←not colored(2).
{chosenColor(3, red)}. ⊥←not colored(3).
{chosenColor(1, green)}. ⊥← chosenColor(1, red), chosenColor(1, green).
{chosenColor(2, green)}. ⊥← chosenColor(2, red), chosenColor(2, green).
{chosenColor(3, green)}. ⊥← chosenColor(3, red), chosenColor(3, green).
colored(1)← chosenColor(1, red). ⊥← chosenColor(2, red), chosenColor(1, red).
colored(2)← chosenColor(2, red). ⊥← chosenColor(3, red), chosenColor(1, red).
colored(3)← chosenColor(3, red). ⊥← chosenColor(3, red), chosenColor(2, red).
colored(1)← chosenColor(1, green). ⊥← chosenColor(2, green), chosenColor(1, green).
colored(2)← chosenColor(2, green). ⊥← chosenColor(3, green), chosenColor(1, green).
colored(3)← chosenColor(3, green). ⊥← chosenColor(3, green), chosenColor(2, green).

Example 4.13 (Example 4.12 ctd). The program Π′ has the single minimal blocker set
C = {b}. Indeed, the rule b← not b does not admit an answer set. Thus, every blocker
set must contain b, and C is the smallest such set.

We remark that the atoms occurring in the blocker sets are intuitively the ones responsible
for the unsatisfiability of the program. In order to observe the reason of unsatisfiability,
one has to look at the remaining abstract program. For this, we consider the notion
of blocker rule set associated with a blocker set C, which are the rules that remain in
omit(Π,A \ C). For example, the programs Π′, Π̂′

{d}
and Π̂′

{a,c}
in Example 4.12 contain

the blocker rule sets associated with {a, b, c, d}, {a, b, c} and {b, d}, respectively. Here,
the abstract programs contain choice rules due to the omission in the body, and the
unsatisfiability of the programs shows that the evaluation of the respective rule does not
make a difference for unsatisfiability. In other words, whether these rules are projected to
the original rules by removing the choice, e.g. {c}. in Π̂′

{d}
gets changed to c., or whether

they are converted into constraints, e.g. ← not c, the program will still be unsatisfiable.

Example 4.12 illustrated a simple reason for unsatisfiability. However, the introduced
notion is also able to capture more complex reasons of unsatisfiability that involve multiple
rules related with each other, which is illustrated in the next example.

Example 4.14 (Graph coloring). Consider coloring the graph shown in Figure 4.4 with
two colors green and red. Due to the clique formed by the nodes 1, 2, 3, it is not 2-colorable.
The 3-coloring encoding (4.1) of Example 4.1 is altered to 2-colorability by omitting
the fact color(green). For the given graph, by grounding and elimination of facts, this
encoding reduces to the following rules, where n∈{1, . . . , 9}, and c, c1, c2∈{red, green}:

{chosenColor(n, c)}.

colored(n)← chosenColor(n, c).

⊥ ← not colored(n).

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

⊥ ← chosenColor(n, c1), chosenColor(n, c2), c1 6=c2.

⊥ ← chosenColor(n1, c), chosenColor(n2, c). nodes n1, n2 are adjacent

Omitting a node n in the graph means to omit all ground atoms related to n; omitting all
nodes except 1, 2, 3 gives us a blocker set with the corresponding blocker rule set shown
in Figure 4.5. This abstract program is unsatisfiable and omitting further atoms in the
abstraction yields spurious satisfiability. The set of atoms that remain in the program is
actually the minimal blocker set for this program. We can also observe the property of
unsatisfiable programs being refinement-safe faithful (Proposition 4.9), as refining the
shown abstraction by adding back atoms relevant with the other nodes will still yield
unsatisfiable programs.

4.3 Domain Abstraction

The approach we presented in the previous section is propositional in nature and does
not account for the fact that in ASP, non-ground rules talk about a domain of discourse,
where for the (non)existence of an answer set, the precise set of elements may not matter,
but rather how certain elements are related. For example, the graph coloring problem
encoding (4.1) expresses that each node should be colored to a color that its neighbor does
not have. The names of the neighbor nodes are not relevant to the color determination,
rather the relation of having a neighbor with a certain chosen color.

In this section, we tackle the issue of automatically constructing and evaluating a suitable
abstract program Π′ for a given non-ground ASP program Π with an abstraction over its
domain.

To illustrate the abstraction and its various challenges, we use the following example.

Example 4.15 (Running example). Consider the following example program Π with
domain predicate int/1 for an integer domain D = {0, . . . , 5}.

c(X)← not d(X), X < 5, int(X). (4.9)

d(X)← not c(X), int(X). (4.10)

b(X,Y)← a(X), d(Y), int(X), int(Y). (4.11)

e(X)← c(X), a(Y), X ≤ Y, int(X), int(Y). (4.12)

⊥ ← b(X,Y), e(X), int(X), int(Y). (4.13)

We furthermore have facts a(1), a(3), int(0), . . . , int(5).

We take a first-order view in which A is the Herbrand base of Π, which results from the
available predicate symbols and the constant symbols (the domain D of discourse, i.e.,
the Herbrand universe), which are by default those occurring in Π. Domain abstraction
induces abstraction mappings in which constants are merged.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Definition 4.11. Given a domain D of Π, a domain (abstraction) mapping is a function
m :D→ D̂ for a set D̂ (the abstracted domain) with |D̂| ≤ |D|.

Thus, a domain mapping divides D into clusters of elements {d∈D |m(d) = d̂}, where
d̂∈ D̂, seen as equal; if unambiguous, we also write d̂ for its cluster m−1(d̂).

Example 4.16 (ctd). A possible abstraction mapping for Π with D̂1 = {k1, k2, k3}
clusters 1, 2, 3 to the element k1 and 4 and 5 to singleton clusters, i.e., m1 = {{1, 2, 3}/k1,
{4}/k2, {5}/k3}. A naive mapping is m2 = {{1, .., 5}/k} with D̂2={k}.

Each domain mapping m naturally extends to ground atoms a= p(v1, . . . , vn) by

m(a) = p(m(v1), . . . ,m(vn)).

To obtain for a program Π and a Herbrand base A an induced abstraction mapping
m : A → A′ where A′ = m(A) = {m(a) | a ∈ A}, we need an abstract program Π′

as in Definition 4.1. However, simply applying m to Π does not work. Moreover, we
want domain abstraction for non-ground Π that results in a non-ground Π′. Building
a suitable Π′ turns out to be challenging and needs to solve several issues, which we
gradually address in the next section.

4.3.1 Towards an Abstract Program

For a program Π, given a mapping m that describes an abstraction over its domain, we
start with the intuition of applying m to each rule, i.e., each atom in the rule is modified
according to m, in order to obtain a non-ground program Π′ which is an abstraction of
Π. By taking a look at the cases where simply applying this intuition fails to achieve the
desired outcome, we gradually present the approach that addresses these challenges.

Standardizing apart. Firstly, the common use of a variable in the rule as arguments
of different atoms in the positive body has to be treated before an abstraction is applied.

Example 4.17 (ctd). The constraint (4.13)

⊥ ← b(X,Y), e(X), int(X), int(Y)

contains the common use of the variable X. If this rule is lifted with no change by
following the intuition, then b(k, k) and e(k) would never occur in the abstract answer
sets, while in the original program, answer sets can contain b(x1, y) and c(x2) as long as
x1 6= x2. If the variables in the rule are standardized apart as

⊥ ← b(X,Y), e(X1), X = X1, int(X), int(X1), int(Y),

then the focus of the abstraction can be directed towards the relation, i.e., X = X1, in
the rule, which is covered next.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Furthermore, the occurrence of constants in the arguments of atom needs to be represented
using variables: If a literal l(t1, . . . , tn) in a rule has a constant as one of its arguments,
i.e., ti = c, then the rule is modified by having l(t1, . . . , ti−1, X, ti+1, . . . , tn), X = c.

Example 4.18 (ctd). If the constraint (4.13) is of form ⊥ ← b(2, 3), e(1)., then it needs
to be changed to the form

⊥ ← b(X,X1), e(X2), X = 2, X1 = 3, X2 = 1, int(X), int(X1), int(X2).

This way, the effect of the abstraction over the domain can be treated more easily through
the relations in the rules.

Handling built-ins and (in)equalities. Original rules may rely on certain built-in
relations involving variables, such as <,≤ in (4.9) and (4.12), or = and 6=. Simply
lifting the rule in the abstraction by also lifting these relations prevents achieving an
over-approximation due to the behavior of the relations over the abstract clusters. Thus,
dealing with the uncertainty caused by the domain clustering by the mapping becomes
necessary.

Example 4.19 (ctd). We abstract from Π using m2. The rule (4.11) has no built-in
relation and it does not cause a trouble to lift it with no change:

b(X,Y)← a(X), d(Y), înt(X), înt(Y);

however, lifting rule (4.12) simply to

e(X)← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

does not work, as X ≤Y behaves differently over the cluster k. As k≤ k under m2,
whenever c(k) and a(k) holds the lifted rule derives e(k). This applies, e.g., to the
abstraction of I = {a(1), a(3), c(4), d(0), . . . , d(3)}, where (4.12) derives no e-atom as
4� 3 and 4� 1. However, I is an answer set of Π and must not be lost in the abstraction.
Thus, when a cluster causes uncertainties over built-ins, we permit e(k) to be false even
if c(k) and a(k) holds by creating instead the following rule:

{e(X)} ← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

Negation. A naive abstraction approach then could be to turn all rule heads into
choices. However, negative literals or certain built-ins (e.g., 6=, <) may cause a loss of
original answer sets in the abstraction.

Example 4.20 (ctd). We change in (4.12) the symbol ≤ to 6= and consider

{e(X)} ← c(X), a(Y), X 6=Y, înt(X), înt(Y).

As k= k, the abstract body is never satisfied and e(k) is never derived. However, Π has
answer sets containing c(2), a(3), and thus also e(2), as 2 6= 3; they are all lost. Adding a
choice rule with a flipped relation, X =Y , catches such cases.

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Similarly, let us change a(Y) in (4.12) to not a(Y). When the rule is lifted to

{e(X)} ← c(X),not a(Y), X ≤ Y, înt(X), înt(Y),

e(k) is not derived as a(k) holds and originally a holds only for 1 and 3. Thus, original
answer sets I may contain e(2) or e(4) but they are lost in the abstraction. Such cases
are caught by additional rules with reversed negation for a(Y):

{e(X)} ← c(X), a(Y), X ≤ Y, înt(X), înt(Y).

Constraints. Naively lifting the constraints to the abstract rules results in losing
answer sets for the non-singleton domain clusters.

Example 4.21 (ctd). After standardizing apart, if the constraint (4.13) is lifted with
no change with the lifted relation, this would again result in losing original answer sets
in which b(x1, y) and c(x2) occur together for x1 6= x2.

In conclusion, only creating choices is not enough to preserve all original answer sets; we
need a fine-grained systematic approach to deal with uncertainties.

4.3.2 Lifted Built-in Relations

As shown before, for the aim of lifting the original rules in the abstraction to be applied
over the abstract domain, the built-in relations in the rules need special treatment, and
so do multiple usages of a variable in the rules. To unify both issues, we focus on rules of
form

r : l← B(r),Γrel(r)

where the variables in B(r) are standardized apart and Γrel consists of built-in atoms
that constrain the variables in B(r).

Example 4.22 (ctd). The rule (4.11) has Γrel(r) =⊤ while the rule (4.13) must be
standardized apart into ⊥ ← b(X,Y), e(X1),Γrel with Γrel = (X =X1).

The uncertainty that arises during the abstraction is caused by relation restrictions over
non-singleton clusters (i.e., |d̂| > 1) or by negative literals mapped to non-singleton
abstract literals. In order to address the uncertainty due to relation restrictions in the
rules, we consider a notion of relation types with respect to the abstraction. For simplicity,
we first focus on binary built-ins, e.g., =, <,≤, 6=, and a Γrel(r) of the form rel(X, c) or
rel(X,Y). Later in Section 4.3.4, we show how other forms of relations can be addressed.

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Table 4.1: Cases for lifting a binary relation rel

τ rel
I (d̂1, d̂2): rel(d̂1, d̂2)∧∀x1 ∈ d̂1,∀x2 ∈ d̂2. rel(x1, x2)

τ rel
II (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∀x1 ∈ d̂1,∀x2 ∈ d̂2.¬rel(x1, x2)

τ rel
III (d̂1, d̂2): rel(d̂1, d̂2)∧∃x1 ∈ d̂1,∃x2 ∈ d̂2.¬rel(x1, x2)

τ rel
IV (d̂1, d̂2): ¬rel(d̂1, d̂2)∧∃x1 ∈ d̂1,∃x2 ∈ d̂2. rel(x1, x2)

Lifted relation types When the relation rel is lifted to the abstract domain, the cases
τI–τIV for rel(d̂1, d̂2) occur in a mapping as shown in Table 4.1.

If rel(d̂1, d̂2) holds for some d̂1, d̂2 ∈ D̂, type III is more common in domain abstractions
with clusters, while type I occurs for singleton mappings (i.e., |d̂1| = |d̂2| = 1) or for
relations such as 6= or < when d̂1 6= d̂2.

Example 4.23. Consider a mapping m= {{1}/k1, {2, 3}/k2, {4, 5}/k3}. For the relation
“=”, k1 = k1 holds and for any x1, x2 ∈ k1 = {1}, x1 =x2 holds and type I applies. In
contrast, k2 = k2 holds while 2, 3 ∈ k2 and 2 6= 3; so type III applies. Further, k2<k3

holds and for any x ∈ k2 = {2, 3} and y ∈ k3 = {4, 5}, we have x<y and so type I applies.

If rel(d̂1, d̂2) does not hold for some d̂1, d̂2 ∈ D̂, type II is common, e.g., =,≤, whereas
type IV may occur for 6= or <.

Example 4.24 (ctd). Reconsider m. Then k2 6= k2 does not hold while k2 = {2, 3} has
different elements 2 6= 3 (type IV). Moreover, k1 = k2 does not hold in D̂ nor does x= y
for every x ∈ k1 = {1} and y ∈ k2 = {2, 3} (type II).

Note that for an abstraction m, we let Tm be the set of all atoms τ rel
ι (d̂1, d̂2) where

ι ∈ {I, . . . , IV} is the type of the built-in instance rel(d̂1, d̂2) for m; note that Tm is easily
computed.

Respecting the order relation Notice that if the original domain D contains an
order relation among its elements, i.e., rel(x1, x2) where rel ∈ {<,≤}, then in order to be
able to talk about the relation rel(d̂1, d̂2) for the abstract elements d̂1, d̂2, in the abstract
domain D̂ the relation rel should be defined. Furthermore, the abstraction mapping
should respect the order relation among the elements to avoid unnecessary uncertainty.

Example 4.25 (ctd). In Example 4.23, the abstract elements k1, k2, k3 were assumed to
have the order relation k1 < k2 < k3. If the mapping m was done to arbitrary abstract
elements a, b, c the relation types could not have been determined due to i < j for
i, j ∈ {a, b, c} being undefined.

Now consider the mapping m′ = {{4}/k1, {1, 5}/k2, {2, 3}/k3}, which does not respect
the order relation of the elements in D for the abstraction. The relation types could still
be defined for m′, however for the relation < the relation types will mostly be of type III
and IV, resulting in many uncertainties.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

4.3.3 Abstract Program Construction

We next formally define how to construct an abstract program.

By our analysis shown in Section 4.3.1, the basic idea to construct an abstract program
for a program Π with a domain mapping m is as follows. We either just abstract each
atom in a rule, or in case of uncertainty due to domain abstraction, we guess rule heads
to catch possible cases, or we treat negated literals by shifting their polarity depending
on the abstract domain clusters.

For a ground literal l, we say that l is mapped to a non-singleton cluster if |m−1(m(l))| > 1,
and it is mapped to a singleton cluster otherwise. We use auxiliary facts isCluster(d̂)
(resp. isSingleton(d̂)) for the abstract domain elements d̂ ∈ D̂ to denote |m−1(d̂)| > 1
(and |m−1(d̂)| = 1). These atoms can also be used to represent whether an abstract
literal is a singleton or non-singleton cluster. For the abstract literal m(l), if there exists
some term t ∈ arg(m(l)) for which isCluster(t) holds, then this means that m(l) is a
non-singleton cluster. Otherwise, it is a singleton cluster.

Example 4.26 (Example 4.15 ctd). Consider the domain mappingm= {{1}/k1,{2, 3}/k2,
{4, 5}/k3}. For the abstract domain, we have isSingleton(k1), isCluster(k2), isCluster(k3).
For the literals, the singleton clusters are a(k1), c(k1), d(k1), e(k1) and b(k1, k1), while the
remaining literals are non-singletons.

We remark that due to their definition, if either τ rel
III (d̂1, d̂2) or τ rel

IV (d̂1, d̂2) holds true for
some d̂1, d̂2 ∈ D̂, this means that either d̂1 or d̂2 is mapped to a cluster, i.e., isCluster(d̂i)
for some i ∈ {1, 2}.

As we consider non-ground program, we need to take care of cyclic dependendencies of
literals at the non-ground level. A negative dependency cycle of length n ≥ 2 is of the
form

a1(x1)→ a2(x2)→ . . .→ an(xn)→ an+1(xn+1)

with an+1(xn+1) = a1(x1), where ai(xi)→ ai+1(xi+1) denotes that ai(xi) is in the head
of a rule ri, and ri has in its negative body some literal ai+1(x′

i+1) that unifies with
ai+1(xi+1). For example, a choice rule consists of a negative cyclic dependency chain of
length 2, and a rule of form p(X)←not p(X), q(X) contains a cycle of length 1.

Definition 4.12 (ctd). The rules (4.9)- (4.10) describe a cyclic dependency of d(X)→
c(X)→ d(X).

In this work, we focus on the predicates of the literals to determine the dependency,
thus consider negative cyclic dependency chains of form a1 → a2 → . . . → an → an+1

where an+1 = a1. Later, when we handle a cyclic dependency of the program Π, we will
consider a set Lc of literals whose predicates are involved in a cyclic dependency, i.e., for
each pair l1, l2 ∈ Lc there exists a chain pred(l1)→ . . .→ pred(l2).

Note that determining cyclicity through the predicates is an over-approximated view of
cyclic dependency. The cyclic dependency determination can be made more fine grained

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

by also taking into account the arguments and applying unification. Further information
on the variables and their restrictions by the relation atoms in the rules can also be
employed in finding cyclic dependencies.

Restricted Case For ease of presentation, we first consider programs Π with rules
having

(i) at most one negative body literal,

(ii) a single, binary built-in literal, and

(iii) no cyclic dependencies between non-ground literals.

Example 4.27 (ctd). The program Π only adheres to the restrictions (i)-(ii). However
the non-ground atoms d(X) and c(X) negatively depend on one another.

Definition 4.13 (rule abstraction). Given a rule r : l← B(r), rel(t1, t2) as above and
a domain mapping m, the set rm contains the following rules:

(a) m(l)←m(B(r)), rel(t̂1, t̂2), τ rel
I (t̂1, t̂2).

(b) {m(l)}←m(B(r)), rel(t̂1, t̂2), τ rel
III (t̂1, t̂2).

(c) {m(l)}←m(B(r)), rel(t̂1, t̂2), τ rel
IV (t̂1, t̂2).

(d) For li ∈B
−(r):

(i)
⋃

j∈arg(li)

{
{m(l)}←m(Bsh

li
(r)), rel(t̂1, t̂2), isCluster(ĵ).

}

(ii)
⋃

j∈arg(li)

{
{m(l)}←m(Bsh

li
(r)), rel(t̂1, t̂2), τ rel

IV (t̂1, t̂2), isCluster(ĵ).
}

where Bsh
li

(r)=B+(r) ∪ {li},not B−(r)\{li}, rel denotes the complement of rel, and for

k∈{1, 2}, if tk is a constant then t̂k =m(tk), else t̂k = tk, i.e., variables are not mapped.
Similarly, if j ∈ arg(li) is a constant then ĵ=m(ĵ), else ĵ = j.

In step (a), the case of having no uncertainty due to abstraction is applied. Steps (b)
and (c) are for the cases of uncertainty. The head becomes a choice, and for case IV,
we flip the relation, rel, to catch the case of the relation holding true (which is causing
the uncertainty). No rules are added for case II, since the body of the rule will never
be satisfied due to the relation not holding true in the abstract domain (similar as in
the original domain). Constraints (e.g., (4.13)) are omitted in the cases with uncertainty
(i.e., all steps except (a)), since converting them into choice rules becomes ineffective.

Example 4.28 (ctd). Consider the domain mapping m= {{1}/k1,{2, 3}/k2, {4, 5}/k3}.
We have τ≤

I (x, y) true for (x, y)∈{(k1, k1), (k1, k2), (k1, k3), (k2, k3)}, and τ≤
III(x, y) true

for (x, y)∈{(k2, k2), (k3, k3)}, and only type II for all other tuples (x, y). The abstract
rules for (4.12) are:

e(X)← c(X), a(Y), X ≤ Y, τ≤
I (X,Y), înt(X), înt(Y).

{e(X)}← c(X), a(Y), X ≤ Y, τ≤
III(X,Y), înt(X), înt(Y).

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

In step (d) of Definition 4.13, we grasp the uncertainty arising from negation by adding
rules that shift the negative literal only if it shares arguments mapped to a non-singleton
cluster.

Example 4.29 (ctd). Rule (4.9) has a negative literal, not d(X), and the relation X < 5
with shared argument X. When it is lifted to X <k3, it has τ<

II (a, b) true for (a, b)∈
{(k3, k1), (k3, k2)}, τ<

IV(k3, k3), and type I for all other tuples (a, b).

By case (a), it is abstracted without change for τI abstract values, and by case (c) the
relation is flipped for τIV. Furthermore, a shift on the polarity of the negative literal is
made:

c(X)← not d(X), X < k3, τ
<
I (X, k3), înt(X).

{c(X)}← not d(X), X ≥ k3, τ
<
IV(X, k3), înt(X).

{c(X)}← d(X), X < k3, isCluster(X), înt(X).

{c(X)}← d(X), X ≥ k3, τ
<
IV(X, k3), isCluster(X), înt(X).

Notice that the case of having rel=⊤ is covered by step (a). For this case, the lifted
relation will only have type I, thus the rules from the remaining steps need not be added.

Example 4.30 (ctd). In Example 4.15, for any mapping m, the rule (4.11) gets lifted
to the abstract rule

b(X,Y)← a(X), d(Y), înt(X), înt(Y).

Semantically, the rules added in steps (a)-(b) are to ensure that m(I) is a model of Πm,
as either the original rule is kept or it is changed to a choice rule. Steps (c)-(d) serve to
catch the cases that may violate the minimality of the model due to a negative literal or
a relation over non-singleton clusters. The abstract program is now as follows.

Definition 4.14 (Abstract program Πm). Given a program Π as above and a domain
abstraction m, the abstract program for m consists of the rules

Πm ={rm | r : l← B(r), rel(t1, t2) ∈ Π}

∪ {x. |x∈Tm}

∪ {m(p(~c)). | p(~c). ∈ Π}

Notably, the construction of Πm is modular, rule by rule.

Theorem 4.15. Let m be a domain mapping of a program Π under the above assumptions
(i)–(iii). Then for every I ∈ AS(Π), m(I) ∪ Tm ∈ AS(Πm).

Proof. Let Î and Π̂ denote m(I) and Πm, respectively. Towards a contradiction, assume
that there exists some I ∈ AS(Π) s.t. Î ∪ Tm /∈ AS(Π̂). This can occur either because (i)

Î ∪ Tm is not a model of Π̂Î∪Tm or (ii) Î ∪ Tm is not a minimal model of Π̂Î∪Tm .

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

(i) Suppose Î ∪ Tm is not a model of Π̂Î∪Tm . Then there exists some rule r̂ ∈ Π̂Î∪Tm

where Î ∪ Tm |= B(r̂) and Î ∪ Tm 2H(r̂). By construction of Π, r̂ is only obtained by
step (a), otherwise r̂ would be a choice rule with head H(r̂) = {m(l)}, and r̂ would be
satisfied. Consequently r̂ is a rule from step (a) for r in Π.

Since Î ∪ Tm |= m(B(r)), rel(d̂1, d̂2), τ rel
I (d̂1, d̂2), we have Î ∪ Tm |= m(B(r)). If we have

p(ê1, . . . , ên) ∈ m(B+(r)), some ei ∈ êi exists such that p(e1, . . . , en) ∈ I as all variables
are standardized apart, I |= B+(r) for this choice. As for p(ê1, . . . , ên) ∈ m(B−(r)), then
p(e1, . . . , en) /∈ I for all ei ∈ êi. So we can instantiate the abstract body m(B(r)) to some
original body B(r) where I |= B(r). Also having Î |= rel(d̂1, d̂2), τ rel

I (d̂1, d̂2) means I |=
rel(d1, d2) for all di ∈ d̂i, thus we have I |= B(r), rel(d1, d2). So r : l←B(r), rel(d1, d2)
is in ΠI . As I is a model, it follows that I |= l, which then means Î |= m(l); this is a
contradiction.

(ii) Suppose there exists some Ĵ ⊂ Î such that Ĵ ∪Tm is a model of Π̂Î∪Tm . We claim that
J = m−1(Ĵ) ∩ I is a model of ΠI ; as J ⊂ I holds, this would contradict that I ∈ AS(Π).
Assume J 2ΠI . Then J does not satisfy some rule r : l ← B(r), rel(d1, d2) in ΠI , i.e.,
J |= B(r), rel(d1, d2) but J 2 l. As J ⊂ I and I is a model of ΠI , we have I |= l, thus,
l ∈ I \ J .

Now, we look at the cases for applying the mapping m to r, by considering the abstractions
m(B(r)) and rel(d̂1, d̂2), and show that a contradiction is always achieved.

First, assume that Î |= m(B(r)). There are the following cases for m(J): (1-1) m(J) |=
m(B(r)), or (1-2) m(J)2m(B(r)).

(1-1) As m(J) |= m(B(r)), we look at rel(d̂1, d̂2). We know that J |= rel(d1, d2).

• If rel(d̂1, d̂2) has the relation type τ rel
I (d̂1, d̂2), this means that we have m(J) |=

rel(d̂1, d̂2), and thus m(J) ∪ Tm |= rel(d̂1, d̂2), τ rel
I (d̂1, d̂2). As Ĵ = m(J) and

Ĵ ⊂ Î, we also get Î ∪ Tm |= rel(d̂1, d̂2), τ rel
I (d̂1, d̂2), thus the non-ground

rule created by step (a) has an instantiation m(l) ← m(B(r)), rel(d̂1, d̂2),

τ rel
I (d̂1, d̂2) in Π̂Î∪Tm . As Ĵ and Î are models of Π̂Î∪Tm , we have Ĵ |= m(l) and
Î |= m(l). Thus, l ∈ m−1(Ĵ) and l ∈ I; by definition of J , we get l ∈ J thus
J |= l, which is a contradiction.

• If rel(d̂1, d̂2) has the relation type τ rel
III (d̂1, d̂2), this again means that we

have m(J) |= rel(d̂1, d̂2), and thus m(J) ∪ Tm |= rel(d̂1, d̂2), τ rel
III (d̂1, d̂2) and

Î ∪ Tm |= rel(d̂1, d̂2), τ rel
III (d̂1, d̂2). Thus, as m(l) ∈ Î the non-ground choice

rule created by step (b) amounts to m(l)← m(B(r)), rel(t̂1, t̂2), τ rel
III (t̂1, t̂2) in

Π̂Î∪Tm , which again achieves Ĵ |= m(l), thus J |= l, a contradiction.

• If rel(d̂1, d̂2) has the relation type τ rel
IV (d̂1, d̂2), then we have m(J)2 rel(d̂1, d̂2),

i.e., m(J) |= rel(d̂1, d̂2), and thus m(J) ∪ Tm |= rel(d̂1, d̂2), τ rel
IV (d̂1, d̂2). With

similar reasoning as above, we find an instantiation of the non-ground rule
created by step (c) and achieve J |= l, a contradiction.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

(1-2) We show that there is no possibility to have Ĵ 2m(B(r)), for Ĵ = m(J), while
Î |= m(B(r)). In order to have Ĵ 2m(B(r)), some positive literal l̂i ∈ m(B+(r))
must occur in Î\Ĵ so that Ĵ 2m(B+(r)). However, this contradicts with J |= B+(r).

Now, assume that Î 2m(B(r)). As I |= B(r), we know that Î |= m(B+(r)) holds. So
we have the rule r in the form l←B+(r),not li, rel(d1, d2) (according to restriction (i)
on having at most one negative literal) where li 6= l and Î 2m(B(r)) means Î |= m(li)
for li ∈ B−(r) while I 2 li, i.e., li /∈ I. So we get Î |= m(Bsh

li
(r)). Then there are the

following cases for m(J): (2-1) m(J) |= m(Bsh
li

(r)), or (2-2) m(J)2m(Bsh
li

(r)).

(2-1) As we have m(J) |= m(Bsh
li

(r)), we look at rel(d̂1, d̂2). We know that J |= rel(d1, d2).

• For cases τ rel
I (d̂1, d̂2) and τ rel

III (d̂1, d̂2), as we have J |= rel(d1, d2), we get
Ĵ |= rel(d̂1, d̂2) and Î |= rel(d̂1, d̂2). Notice that since m(li) ∈ Î, there must
be some l′i ∈ I such that m(li) = m(l′i), thus li is mapped to a non-singleton
cluster m(li). So the atom isCluster(ĵ) holds true in Ĵ and Î for some

j ∈ arg(li) for which |m−1(m(j))| > 1. Thus in Π̂Î∪Tm we get an instantiation
m(l)←m(Bsh

li
(r)), rel(d̂1, d̂2), isCluster(ĵ) of the non-ground rule created by

(step d-i), and again achieve J |= l, which is a contradiction.

• For the case τ rel
IV (d̂1, d̂2), with similar reasoning as in (1-1), we find instantia-

tions of the non-ground rules created by (step d-ii) and achieve J |= l, which
is a contradiction.

(2-2) We show that there is no possibility to have m(J)2m(Bsh
li

(r)), while Î |= m(Bsh
li

(r)).

As J |= B(r), we know that m(J) |= m(B+(r)) holds. So m(J)2m(Bsh
li

(r))

means m(J)2m(li) while Î |= m(li). Now, we take a look at ΠI . As there must
be some l′i ∈ I (such that m(li) = m(l′i)), this means that there is some rule
r′ : l′i←B(r′), rel(d′

1, d
′
2) in ΠI . We then take a look at the abstraction of r′. By

doing the same case analysis of (1-1), (1-2) and (2-1), we achieve m(J) |= m(l′i),
i.e., m(J) |= m(li), which yields a contradiction. As for (2-2), this means the rule r′

is of form r′ : l′i←B+(r′),not li2 , rel(d′
1, d

′
2), where we want to claim m(J)2m(li2).

For this, we take a look at another rule r′′ in ΠI of form r′′ : l′i2
←B(r′′), rel(d′′

1, d
′′
2)

with m(l′i2
) = m(li2). By restriction (iii) on no negative cyclic dependency among

the literals, this recursive process eventually ends, say, after n steps, at some rule
r′n : l′in

←B(r′n), rel(d′n
1 , d

′n
2) where case (2-2) is not applicable, and m(J) |= l′in

is achieved. Then by tracing the rules back to r we get m(J) |= m(li). Thus
m(J)2m(Bsh

li
(r)) is not possible.

Abstract Program (General Case)

We now describe how to remove the restrictions (i)–(iii) on programs from above.

(G-i) Multiple negative literals. If rule r has |B−(r)|>1, we shift each negative
literal that shares arguments mapped to a non-singleton cluster. Thus, instead of shifting

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

one literal li ∈ B−(r), we consider the shifting of multiple literals L ⊆ B−(r) at a time
and all combinations of (non-)shifting of the literals in B−(r).

Definition 4.15 (Treating multiple negative literals). Step (d) of Definition 4.13 is
modified as

(d) For ∅ ⊂ L ⊆ B−(r):

(i)
⋃

j∈arg(li),li∈L

{
{m(l)}←m(Bsh

L (r)), rel(t̂1, t̂2), isCluster(ĵ).
}

(ii)
⋃

j∈arg(li),li∈L

{
{m(l)}←m(Bsh

L (r)), rel(t̂1, t̂2), τ rel
IV (t̂1, t̂2), isCluster(ĵ).

}

where Bsh
L (r)=B+(r) ∪ L,not B−(r)\L.

This definition allows us to discard the restriction that all negative literals must share
a variable with the relation atom, by shifting them to ensure that the case of having
a non-singleton mapping is considered. Step (d-i) coincides to steps (d-i) and (d-iii) of
Definition 4.13 and step (d-ii) coincides to step (d-ii) of Definition 4.13.

Example 4.31. Consider the rule (4.10) modified as

d(X)← not c(X),not a(X), int(X).

The constructed non-ground abstract rules by following step (d-i) of Definition 4.15 will
be

{d(X)} ←c(X),not a(X), isCluster(X), înt(X), înt(X1).

{d(X)} ←not c(X), a(X), isCluster(X), înt(X), înt(X1).

{d(X)} ←c(X), a(X), isCluster(X), înt(X), înt(X1).

Step (d-ii) is similarly applied.

(G-ii) Multiple relation literals. A simple approach to handle a built-in part

Γrel = rel1(t1,1, t2,1), .. , relk(t1,k, t2,k), k > 1,

is to view it as literal of an 2k-ary built-in rel ′(X1,1, X2,1, .. , X1,k, X2,k). The abstract
version of such rel ′ and the cases I-IV are lifted from x1, x2 to x1, .. , xn as in Table 4.2.

Example 4.32. For Γrel = (X1=X2, X3=X4), we use a new relation rel ′(X1, X2, X3, X4).
For abstract values d̂1, .. , d̂4 such that d̂1 = d̂2 ∧ d̂3 = d̂4 holds. We have type τI if all d̂i

are singleton clusters and τIII if some d̂i is non-singleton; otherwise (i.e., rel ′(d̂1, d̂2, d̂3, d̂4)
holds) type τII applies.

(G-iii) Cyclic dependencies. Rules which are involved in a negative cyclic dependency
need special consideration.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Table 4.2: Cases for lifting an n-ary relation rel ′

τ rel′

I (d̂1, . . . , d̂n): rel ′(d̂1, . . . , d̂n)∧∀x1 ∈ d̂1, . . . ,∀xn ∈ d̂n. rel ′(x1, . . . , xn)
τ rel′

II (d̂1, . . . , d̂n): ¬rel ′(d̂1, . . . , d̂n)∧∀x1 ∈ d̂1, . . . ,∀xn ∈ d̂n.¬rel ′(x1, . . . , xn)
τ rel′

III (d̂1, . . . , d̂n): rel ′(d̂1, . . . , d̂n)∧∃x1 ∈ d̂1, . . . ,∃xn ∈ d̂n.¬rel ′(x1, . . . , xn)
τ rel′

IV (d̂1, . . . , d̂n): ¬rel ′(d̂1, . . . , d̂n)∧∃x1 ∈ d̂1, . . . ,∃xn ∈ d̂n. rel ′(x1, . . . , xn)

Example 4.33 (ctd). Consider the rules (4.9)-(4.10) (Example 4.15) and the mapping
{{1, . . . , 5} /k}. The abstract rules for them are

{c(X)} ← not d(X), X ≥ k, τ<
IV(X, k), înt(X). (4.14)

{c(X)} ← d(X), X < k, isCluster(X), înt(X). (4.15)

{c(X)} ← d(X), X ≥ k, τ<
IV(X, k), isCluster(X), înt(X). (4.16)

{d(X)} ← c(X), isCluster(X), înt(X). (4.17)

in addition to the abstracted rules due to step (a). Consider the answer set I =
{c(0), d(1), c(2), d(3), c(4), d(5)} of Π. We have Î = m(I) = {c(k), d(k)}. Although Î is
a model of (Πm)I , either c(k) or d(k) is unfounded, thus Î is not minimal, i.e., not an
answer set of Πm. The negative cyclic dependency (i.e., “choice") of c- and d-atoms does
not occur for c(k) and d(k) in the constructed Πm.

To resolve this, the literals of Π that are involved in a negative loop need to be specially
treated.

Definition 4.16 (Treating cyclic dependency). Given a set Lc of literals involved in a
negative cyclic dependency, Definition 4.13 is modified by redefining Bsh

li
(r) as

Bsh
li,Lc

(r)=

{
B+(r) ∪ {li},not B−(r)\{li} li /∈ Lc

B+(r),not B−(r)\{li} li ∈ Lc

In step (d) of Definition 4.13, the newly defined Bsh
li,Lc

(r) eliminates the literals li that
are involved in a loop from the body instead of shifting their polarity.

Example 4.34 (ctd). For the program Π in (4.9)-(4.13) with the mapping m =
{{1, . . . , 5}/k}, the constructed program Πm becomes as below.

c(X)← not d(X), X < k, τ<
I (X, k), înt(X). (4.18)

{c(X)} ← not d(X), X ≥ k, τ<
IV(X, k), înt(X). (4.19)

{c(X)} ← X ≥ k, τ<
IV(X, k), isCluster(X), înt(X). (4.20)

{c(X)} ← X < k, isCluster(X), înt(X). (4.21)

d(X)← not c(X), înt(X). (4.22)

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

{d(X)} ← isCluster(X), înt(X). (4.23)

b(X,Y)← a(X), d(Y), înt(X), înt(Y). (4.24)

e(X)← c(X), a(Y), X ≤ Y, τ≤
I (X,Y), înt(X), înt(Y). (4.25)

{e(X)} ← c(X), a(Y), X ≤ Y, τ≤
III(X,Y), înt(X), înt(Y). (4.26)

⊥ ← b(X,Y), e(X1), X = X1, τ
=
I (X,X1), înt(X), înt(X1), înt(Y). (4.27)

with Tm = {τ≤
III(k, k), τ=

III(k, k), τ<
IV(k, k)} and abstract facts {a(k), înt(k)}.

Notice that when the rules are grounded to the relation type facts Tm, only the rules
(4.19)-(4.24) and (4.26) remain to be used for the answer set computation.

Treating cyclic dependency with multiple negative literals can then be done by modifying
the shifting procedure Bsh

L (r) in Definition 4.15 with Bsh
li,Lc

(r) of Definition 4.16 as

Bsh
L,Lc

(r) =B+(r) ∪ (L \ Lc),not B−(r) \L (4.28)

where the negative literals in L are omitted from the negative body, and those that do
not occur in Lc get their polarity shifted.

Handling multiple cycles Lc1 , . . . , Lcn can be done by defining the set Lc in Definition 4.16
as the union of all the cycles, i.e., Lc =

⋃
Lci

. This way Bsh
li,Lc

(r) will eliminate all the
literals involved in some loop.

Let Πm denote the program obtained from a general program Π with the generalized
abstraction procedure. Then:

Theorem 4.16. Let m be a domain mapping of a program Π. Then for every I ∈AS(Π),
the abstract interpretation Î =m(I)∪Tm is an answer set of Πm.

Proof. Similar to proof of Theorem 4.15, we assume towards a contradiction that there
exists some I ∈ AS(Π) such that Î ∪ Tm /∈ AS(Π̂). This can occur either because (i)

Î ∪ Tm is not a model of Π̂Î∪Tm or (ii) Î ∪ Tm is not a minimal model.

(i) Let Î ∪ Tm be not a model of Π̂Î∪Tm , then there exists some rule r̂ ∈ Π̂Î∪Tm where Î ∪
Tm |= B(r̂)∧Î∪Tm 2H(r̂). For cases (G-i) and (G-iii), the contradiction is achieved similar
to the proof of Theorem 4.15, since r̂ is a rule from step (a). As for case (G-ii), we will
have Î ∪Tm |= m(B(r)), rel ′(d̂), τ rel

I (d̂), where d̂ is a shorthand for d̂1,1, d̂2,1, . . . , d̂1,k, d̂2,k;
then by definition of rel ′ this means I |= B(r), rel1(d1,1, d2,1), . . . , relk(d1,k, d2,k) of r in
ΠI . This reaches a contradiction as I is a model and I |= l, which means Î |= m(l).

(ii) Now let there be Ĵ ⊂ Î such that Ĵ ∪ Tm is a model of Π̂Î∪Tm . We claim that
J = m−1(Ĵ) ∩ I ⊂ I is a model of ΠI ; which would contradict that I ∈ AS(Π).
Assume J 2ΠI . J does not satisfy some rule r : l ← B(r), rel(d1, d2) in ΠI , i.e.,
J |= B(r), rel1(d1,1, d2,1), . . . , relk(d1,k, d2,k) but J 2 l, i.e., l /∈ J . As J ⊂ I and I is a

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

model of ΠI , we have I |= l, i.e., l ∈ I \ J . We consider the abstractions m(B(r)) and
rel1(d̂1,1, d̂2,1), . . . , relk(d̂1,k, d̂2,k).

First, assume Î |= m(B(r)). There are the following cases for m(J): (1-1) m(J) |=
m(B(r)), or m(J)2m(B(r)).

(1-1) As m(J) |= m(B(r)), we look at rel1(d̂1,1, d̂2,1), . . . , relk(d̂1,k, d̂2,k). We know that
J |= rel1(d1,1, d2,1), . . . , relk(d1,k, d2,k).

(1-1-a) If all reli(d̂1,i, d̂2,i) have the relation type τ reli

I (d̂1,i, d̂2,i), this means that we
have m(J) |= rel1(d̂1,1, d̂2,1), . . . , relk(d̂1,k, d̂2,k), and thus

m(J) ∪ Tm |= rel ′(d̂), τ rel′

I (d̂). (4.29)

As Ĵ = m(J) and Ĵ ⊂ Î, we also get Î ∪ Tm |= rel ′(d̂), τ rel′

I (d̂), thus the non-
ground rule created by step (a) has an instantiation m(l)← m(B(r)), rel ′(d̂),

τ rel′

I (d̂) in Π̂Î∪Tm . As Ĵ and Î are models of Π̂Î∪Tm , we have Ĵ |= m(l) and
Î |= m(l). Thus, by definition of J , we get J |= l, which is a contradiction.

(1-1-b) If at least one reli(d̂1,i, d̂2,i) has the relation type τ reli

III (d̂1,i, d̂2,i), while no
rel(d̂1,j , d̂2,j) has the relation type τ rel

IV (d̂1,j , d̂2,j), above (4.29) is achieved for
τ rel′

III (d̂) in place of τ rel′

I (d̂).

(1-1-c) If at least one reli(d̂1,i, d̂2,i) has the relation type τ reli

IV (d̂1,i, d̂2,i), this means that
we have m(J) |= . . . , rel(d̂1,i, d̂2,i), Thus, for rel ′(d̂) we have m(J)2 rel ′(d̂)
but m(J) |= rel ′(d̂), and

m(J) ∪ Tm |= rel ′(d̂), τ rel′

IV (d̂). (4.30)

By the same reasoning in (1-1-a), we get that the non-ground choice rule

created by step (c) amounts to m(l)←m(B(r)), rel ′(d̂), τ rel′

IV (d̂) in Π̂Î∪Tm , and
thus we reach a contradiction.

(1-2) This case is handled the same as in proof (1-2) of Theorem 4.15.

Now, we focus on the case I 2m(B(r)). As I |= B(r), we know that Î |= m(B+(r))
should hold. Then Î 2m(B(r)) means that for a non-empty set L ⊆ B−(r) of negative
literals Î |= li for each li ∈ L, while I 2 li, i.e., li /∈ I. So we get Î |= m(Bsh

L (r)).
Assume we further have a set Lc of literals involved in a negative loop. We also get
Î |= m(Bsh

L,Lc
(r)) (4.28), since the set L′ = L ∩ Lc of literals gets omitted from B−(r),

and we get Î |= not B−(r) \ L′.

Then there are the following cases for m(J): (2-1) m(J) |= m(Bsh
L,Lc

(r)), or (2-2)

m(J)2m(Bsh
L,Lc

(r)).

(2-1) As m(J) |= m(Bsh
L,Lc

(r)), similar to proof (1-1) above and (2-1) of Theorem 4.15,

the abstraction rel1(d̂1,1, d̂2,1), . . . , relk(d̂1,k, d̂2,k) on relations is considered, and the
contradiction J |= l is achieved.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

(2-1-a) By (1-1-a) and (1-1-b), we get the case (4.29) and same for τ rel′

III (d̂). We know
that as m(J) |= m(li) and as li /∈ J (since J ⊆ I and li /∈ I, this means that
isCluster(ĵ) holds true in m(J) and Î for some j ∈ arg(li). Thus we have
m(J) ∪ Tm |= rel ′(d̂), isCluster(ĵ), which means that m(l) ∈ Î, thus l ∈ I and
by definition of J , l ∈ J , which is a contradiction.

(2-1-b) By (1-1-c), we get the case (4.30) and by a similar reasoning as in (2-1-a) we also
have m(J) |= isCluster(ĵ), hence m(J) ∪ Tm |= rel ′(d̂), τ rel′

IV (d̂), isCluster(ĵ).
Thus we similarly achieve a contradiction.

(2-2) We show that there is no possibility to have m(J)2m(Bsh
L,Lc

(r)), while Î |=

m(Bsh
L,Lc

(r)). As J |= B(r), we know that m(J) |= m(B+(r)) should hold. So

m(J)2m(Bsh
L,Lc

(r)) means m(J)2m(li) for some li ∈ L \ Lc, while Î |= m(li). We
do the same recursive reasoning as in proof (2-2) of Theorem 4.15 over the literals
not in Lc. Thus, the process eventually ends and achieves that m(J) |= m(li)
actually holds, and that m(J)2m(Bsh

L,Lc
(r)) is not possible.

Example 4.35 (ctd). The original program Π has the below answer sets (with facts
omitted).

I1 ={c(2), c(4), d(1), d(3), d(5), e(2))} ∪ Sb

I2 ={c(2), d(1), d(3), d(4), d(5), e(2), b(1, 4), b(3, 4)} ∪ Sb

I3 ={c(4), d(1), d(2), d(3), d(5), b(1, 2), b(3, 2)} ∪ Sb

I4 ={d(1), d(2), d(3), d(4), d(5), b(1, 2), b(1, 4), b(3, 2), b(3, 4)} ∪ Sb

where Sb = {b(1, 1), b(1, 3), b(1, 5), b(3, 5), b(3, 1), b(3, 3)}. The constructed abstract pro-
gram Πm has the answer sets (with abstract facts omitted)

Î1 ={d(k), b(k, k)} Î2 = {c(k)} Î3 = {c(k), d(k), b(k, k)}

Î4 ={c(k), e(k)} Î5 = {c(k), d(k), e(k), b(k, k)}

where m(I1) = m(I2) = Î5, m(I3) = Î3, m(I4) = Î1.

The abstraction yields in general an over-approximation of the answer sets of a program.
This motivates the following notion.

Definition 4.17 (cf. Definition 4.2). An abstract answer set Î ∈AS(Πm) is concrete, if
there exists an answer set I ∈AS(Π) such that Î =m(I)∪Tm, else it is spurious.

A spurious abstract answer set has no corresponding concrete answer set.

Example 4.36 (ctd). The abstract answer sets Î2 = {c(k)} and Î4 = {c(k), e(k)} are
spurious.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Refining Abstractions After checking an abstract answer set, one can either continue
finding other abstract answer sets and check their correctness, or refine the abstraction
to reach an abstraction where less spurious answer sets occur.

Definition 4.18. Given a domain mapping m : D → D′, a mapping m′ : D → D′′ is a
refinement of m if for all x ∈ D, m′−1(m′(x)) ⊆ m−1(m(x)).

That is, refinement is on dividing the abstract clusters to a finer grained domain.

Example 4.37 (ctd). The mapping m′ = {{1}/k1, {2, 3, 4}/k2, {5}/k3} is a refinement
of mapping m. Furthermore, there does not exist an answer set I ′ ∈ AS(Πm′

) such that
m(m′−1(I ′)) = Î2, thus the spurious answer set Î2 of Πm is eliminated.

Faithful abstraction An abstract program that does not have a spurious answer set
is a faithful abstraction of the original program.

Example 4.38 (Example 4.1 ctd). In the graph coloring problem for the graph in
Figure 4.1a, the mapping m = {{4, 5, 6}/4̂} which maps nodes 1,2,3 to singleton clus-
ters constructs an abstract program Πm that has 42 answer sets which consists of
the combination of 6 possible correct colorings of nodes 1-3 with 7 possible color-
ings {{red}, {blue}, {green}, {red, blue}, {red, green}, {green, blue}, {red, green, blue}}
of the node cluster 4̂, thus resulting in a faithful abstraction.

Ideally, we have faithfulness, but this is hard to achieve in general (see Section 4.3.6 on
complexity).

4.3.4 Syntactic Extensions and Further Considerations

Treating Choice Rules

Choice rules are treated specially by ensuring that the abstraction is done on the body,
and the choice over the head is kept.

Definition 4.19. Given a rule r : {l} ← B(r), rel(t1, t2) and a domain mapping m, the
set rm contains the rules of Definition 4.13 for steps (b)-(d), and for step (a), it contains

{m(l)}←m(B(r)), rel(t̂1, t̂2), τ rel
I (t̂1, t̂2).

More sophisticated choice rules that involve cardinality constraints, e.g., m ≤ {l} ≤
n←B(r), can not immediately be treated similarly. Lifting the cardinality constraints
the same to the abstract rule causes to force the occurrence of abstract atoms to ensure
the lower bound.

Example 4.39 (ctd). Consider instead of (4.11) the rule

2 ≤ {b(X,Y) : d(Y)} ≤ 4← a(X), dom(X).

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

which gets lifted to the same abstract rule. However, for the mappingm = {{1, 2, 3, 4, 5}/k},
if a(k) and d(k) holds true, this would cause to have b(k, k) hold true and no other atoms
with the same predicate. Thus, the lower bound can not be satisfied, causing the abstract
program to become unsatisfiable.

The issue arises from the fact that if the atom in the choice head is involved with some
non-singleton cluster, then it is possible that more than one original atom can be mapped
to it, thus still satisfying the lower bound constraint in the original program. Such choice
rules can be treated by modifying the lower bound of the choice rule in the abstract
program and adding a constraint to ensure that the original lower bound is met if the
atom is only involved with singleton clusters.

Definition 4.20. Given a rule r : m ≤ {l} ≤ n← B(r), rel(t1, t2), in the abstraction
procedure the choice head is changed to {m(l)} ≤ n, and an additional constraint of the
following form is added.

⊥←{m(l) : isSingleton(t̂1), . . . , isSingleton(t̂n)} < m, (4.31)

{m(l) : isCluster(t̂1); . . . ;m(l) : isCluster(t̂n)} < 1. (4.32)

where arg(l) = {t1, . . . , tn},

The idea with the additional constraint is to ensure that if the lower bound m is not
satisfied through literals mapped to singleton clusters (4.31), then some literal with a
non-singleton cluster (4.32) should also occur.

Example 4.40 (ctd). Instead of lifting the choice rule as in Example 4.39, we add in
the abstract program the below rules.

{b(X,Y) : d(Y)} ≤ 4← a(X), dom(X).

⊥←{b(X,Y) : isSingleton(X), isSingleton(Y)} < 2,

{b(X,Y) : isCluster(X); b(X,Y) : isCluster(Y)} < 1.

This way there is no lower bound on the number of occurrence of b(X,Y) that causes unsat-
isfiability at the abstract program. Furthermore, for mappingm = {{1}/k1, {2, 3, 4, 5}/k2},
if an answer set contains b(k1, k1), then the constraint ensures that the answer set also
contains some b(d̂1, d̂2), where d̂1 or d̂2 is a cluster, so that the original lower bound is
met.

Other Forms of Relations

The programs can also consist of relations that are not binary, such as addition, multi-
plication. These relations can be treated as follows: (1) rewrite the relations by adding
instead auxiliary atoms to represent the relations, (2) standardize apart the auxiliary
atoms arguments similarly as the remaining atoms, and (3) add to the original program

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

facts of the auxiliary atom to show for which domain elements the relation holds true.
In the abstraction procedure, the introduced facts will be lifted to the abstract domain,
and the abstraction is handled over relations for the arguments which were standardized
apart.

Example 4.41. Consider the rule

b(X,Y)← a(X), d(Y), X + 1 = Y, int(X), int(Y).

For the addition relation, an auxiliary atom plusOne(X,Y) is introduced by adding the
set {plusOne(1, 2), plusOne(2, 3), plusOne(3, 4), plusOne(4, 5)} of facts to Π to show on
which domain elements this relation holds.

The respective rule gets standardized apart into the following form.

b(X,Y)← a(X), d(Y), plusOne(X1, Y1), X=X1, Y=Y1, int(X), int(Y), int(X1), int(Y1).

The requirement for being able to lift the relations to the abstract domain is to have
the built-in relations also defined over the abstract domain. For example, if an ordered
domain {1, 2, 3, 4, 5} is mapped to some domain {a, b, c} where the relation < is undefined,
then lifting the relation < to the abstract domain will not be feasible. For such cases,
the above approach of introducing auxiliary atoms must be taken.

Concreteness with Projection

Usually the problem encodings contain auxiliary atoms that are not significant in the
computed answer set. When constructing the abstract program, such auxiliary rules are
also treated the same, by introducing choices whenever there is an uncertainty. However,
this then causes to have many spurious guesses over the auxiliary atoms, and making sure
that the abstract answer set is concrete w.r.t. all of these atoms becomes too ambitious,
as encountering a concrete abstract answer set among many spurious ones is more difficult.
For this reason, we consider a projected notion of determining concreteness of an abstract
answer set by only focusing on a certain set of atoms.

Definition 4.21. For a set A of atoms, an abstract answer set Î ∈AS(Πm) is concrete
w.r.t. A, if Î|Â =m(I|A)∪Tm for an answer set I ∈AS(Π), where Â = m(A).

Example 4.42. Consider a modified instance for the graph coloring problem where the
isolated nodes are connected with edges as shown in Figure 4.6. For the abstraction, the
abstract coloring is spurious since the nodes in the cluster {4, 5, 6} cannot all be colored
to red in the original graph due to the edges. However, the abstract coloring is concrete
w.r.t. the nodes {1, 2, 3}.

Such a notion of concreteness becomes useful when abstraction is applied to analyze
problems as one can focus on the atoms that are believed to be of importance. For this,
the user should have an idea of the significant atoms in the problem description that

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Figure 4.6: Concreteness w.r.t. projection over nodes {1, 2, 3}

1
red

2
blue

3

green

64 5
red

are used in determinining a valid solution. For example, when considering an planning
problem, this notion can help in focusing on the actions and the directly affected objects,
which are used in describing a solution, and obtaining abstract answer sets that have
concrete truth assignments of these atoms, while the auxiliary atoms and their concrete
truth assignments becomes irrelevant.

4.3.5 Properties of Domain Abstraction

We now consider some basic semantic properties of our formulation of program abstraction.
(Non-)existing spurious answer sets allow us to infer properties of the original program.

Proposition 4.17. For any program Π,

(i) AS(Πmid) = {I ∪Tmid
| I ∈AS(Π)} for identity mid = {{x}/x |x∈D}.

(ii) AS(Πm) = ∅ implies that AS(Π) = ∅.

(iii) AS(Π) = ∅ iff some Πm has only spurious answer sets.

Proof. (i) Having the identity mapping id causes to only have singletom clusters in the
abstract domain, thus resulting in only τI and τII type facts in Tmid

. This causes
for only the rules of step (a) in Definitions 4.13 and 4.19 to remain when the rules
are grounded to the relation types. Hence, the same answer sets are obtained.

(ii) Corollary of Theorem 4.16.

(iii) Similar to the proof of Proposition 4.3(iv) (in omission abstraction). If AS(Π) = ∅,
then no Î ∈ AS(Πm) for any m has a concrete answer set in Π; thus, all abstract
answer sets of Πm are spurious. Now assume the latter holds but AS(Π) 6= ∅. Then
Π has some answer set I, and by Theorem 4.16 m(I)∪Tm ∈ AS(Πm), which would
contradict that Πm has only spurious answer sets.

The abstract program is built by a syntactic transformation. The abstraction over
the domain can also be done incrementally which in the end amounts to the overall
abstraction.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Lemma 4.18. For any program Π and mapping m for which there are two mappings
m1,m2 such that m2(m1(D)) = m(D), we have grdTm2,m1

((Πm1)m2) = grdTm(Πm),
where grdT denotes the grounding of the program to the relation type facts T .

For proving Lemma 4.18, we need to have the following result.

Lemma 4.19. For a relation rel(d1, d2) and a mapping m for which there are two
mappings m1,m2 such that m2(m1(D)) = m(D), we have T rel

m2,m1
= T rel

m .

Proof. The relation type computation T rel
m1

is done for rel(m1(d1),m1(d2)), and then the
relation type computation T rel

m2,m1
is done for rel(m2(m1(d1)),m2(m1(d2))) = rel(m(d1),

m(d2)), resulting in the same relation type facts of T rel
m .

Proof of Lemma 4.18. From the rules of Πm1 , the rules for (Πm1)m2 will be constructed
according to Definitions 4.13 and 4.19. Consider a rule r with body B(r), rel(t1, t2) in
Π. The set rm1 ∈ Πm1 contains rules with body m1(B(r)), rel(t̂1, t̂2), τ rel

i (t̂1, t̂2) where
t̂k = m1(tk) if tk is a constant; t̂k = tk otherwise.

For the set rm1 of rules, a new set (rm1)m2 will be constructed. Let r′ ∈ rm1 , its body
will be abstracted to

m2(B(r′)), rel(ˆ̂t1,
ˆ̂t2), τ rel

j (ˆ̂t1,
ˆ̂t2) (4.33)

where m2(B(r′)) = m2(m1(B(r))),m2(τ rel
i (t̂1, t̂2)) and ˆ̂tj = m2(m1(tk)) if tk is a constant;

ˆ̂tk = tk otherwise. Since m2(τ rel
i (t̂1, t̂2)) = τ rel

i (m2(t̂1),m2(t̂2)) = τ rel
i (ˆ̂t1,

ˆ̂t2), (4.33) will
take the form

m(B(r)), τ rel
i (ˆ̂t1,

ˆ̂t2), rel(ˆ̂t1,
ˆ̂t2), τ rel

j (ˆ̂t1,
ˆ̂t2).

where ˆ̂tk = m(tk) if tk is a constant; ˆ̂tk = tk otherwise.

The rules in (rm1)m2 where types of the relation differs, i.e., i 6= j for τ rel
i (ˆ̂t1,

ˆ̂t2), τ rel
j (ˆ̂t1,

ˆ̂t2),
are insignificant as the atoms can not both hold true in Tm2,m1 , i.e., they do not appear in
grdTm2,m1

((rm1)m2). As for the remaining rules in (rm1)m2 , they correspond to the rules
in rm. Thus, by Lemma 4.19 and {m2(m1(p(~c))). | p(~c). ∈ Π} = {m(p(~c)). | p(~c). ∈ Π},
we obtain grdTm2,m1

(Πm1)m2) = grdTm(Πm).

Example 4.43 (Example 4.15 ctd). Applying first the mappingm1 = {{1, 2}/k0, {3, 4}/k1,
{5}/k2} and then the mapping m2 = {{k0, k1}/a0, {k2}/a1} obtains the mapping m= {{1,
2, 3, 4}/a0, {5}/a1}. Figure 4.7 shows the constructed abstract programs. Notice that the
program in Figure 4.7b is the same as the non-ground program in Example 4.34 updated
for the mapping m, i.e., k is replaced with a1, when it is grounded to Tm2,m1 .

An easy induction argument shows then the possibility of doing abstraction sequentially,
by having abstract mappings defined over previously abstracted domains.

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Figure 4.7: Abstract programs of Example 4.43

c(k0)← k0 < k2,not d(k0).

c(k1)← k1 < k2,not d(k1).

{c(X)}←X < k2, dom(X), isCluster(X).

d(X)← dom(X),not c(X).

{d(X)}← dom(X), isCluster(X).

b(X,Y)← a(X), d(Y), dom(X), dom(Y).

{e(k0)}← c(k0), a(k0), k0 ≤ k0.

{e(k1)}← c(k1), a(k1), k1 ≤ k1.

e(k0)← c(k0), a(k1), k0 ≤ k1.

e(k0)← c(k0), a(k2), k0 ≤ k2.

e(k1)← c(k1), a(k2), k1 ≤ k2.

e(k2)← c(k2), a(k2), k2 ≤ k2.

⊥← b(k2, k2), e(k2), k2 = k2.

(a) grdTm1
(Πm1)

c(a0)← a0 < a1,not d(a0).

{c(X)}←X < a1, dom(X), isCluster(X).

d(X)← dom(X),not c(X).

{d(X)}← dom(X), isCluster(X).

b(X,Y)← a(X), d(Y), dom(X), dom(Y).

{e(a0)}← c(a0), a(a0), a0 ≤ a0.

e(a0)← c(a0), a(a1), a0 ≤ a1.

e(a1)← c(a1), a(a1), a1 ≤ a1.

⊥← b(a1, a1), e(a1), a1 = a1.

(b) grdTm2,m1
((Πm1)m2)

Proposition 4.20. For any program Π and mapping m for which there are mappings
m1, . . . ,mn such that mn(. . . (m1(D))) = m(D), we have grdTmn,...,m1

(((Πm1)...)mn) =
grdTm(Πm).

In Chapter 6, we demonstrate further uses of having a hierarchy of abstractions.

Note that properties of spurious answer sets such as their convexity and the non-
reoccurrence after elimination, mentioned for omission abstraction (Proposition4.7-4.8)
also apply in domain abstraction, as these are general properties of over-approximation.

Abstraction over Sorts

Applications of ASP usually contain sorts that form subdomains of the Herbrand universe.
For example, in graph coloring there are sorts for nodes and colors. We define an
abstraction over a sort as follows.

Definition 4.22. An abstraction is limited to a sort Di ⊆ D, if all elements x∈D \Di

form singleton clusters {x}/x.

Example 4.44. In the graph coloring problem, we have sorts node and color in the do-
main {1, . . . , 6, red, green, blue} for the instance in Figure 4.1a. An abstraction mapping
m limited to the sort node means m(x) = {x} for x ∈ {red, blue, green}.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

In order to obtain much coarser abstractions, applying abstraction over multiple sorts is
also possible, given that the individual sorts fulfill the following property.

Definition 4.23 (Sort independence). For a program Π and domain D, subdomains
D1, . . . , Dn ⊆D are independent, if Di ∩Dj = ∅ for all i 6= j.

For independent sorts, abstractions can be composed.

Proposition 4.21. For domain mappings m1 and m2 over independent domains D1

and D2, grdTm1,m2
((Πm2)m1) = grdTm2,m1

((Πm1)m2).

Proof. The mapping mi : D 7→ D̂ is of form {{x}/x | x ∈ D \ Di} ∪mDi
, i ∈ {1, 2},

where mDi
describes the mapping over Di to the abstract domain D̂i. We know that

mi(D \Di) = D \Di, and since D1 and D2 are independent, we have D1 ⊆ m2(D) and
D2 ⊆ m1(D). Knowing this, we can apply the mappings independently from each other as

m2(m1(D)) = m1(m2(D)) to achieve an abstract domain ˆ̂
D = (D \ (D1 ∪D2))∪ D̂1 ∪ D̂2.

Another mapping m can then be defined to map D to ˆ̂
D. By Lemma 4.18 we get the

result.

Cartesian Abstraction

Given domain mappings m1, . . . ,mn limited to subdomains D1, . . . , Dn, respectively, a
cartesian abstraction of the mappings corresponds to the abstract domain m(D1)× · · · ×
m(Dn). Assuming that the subdomains D1, . . . , Dn are independent, Definition 4.13 can
be altered to be applied over a rule of form

r : l← B(r), relD1(t1, t2), . . . , relDn(t1, t2)

by considering all possible combinations of τ relDi

j (t̂1, t̂2), j ∈ {1, . . . , n}. Alternatively, we
can define cartesian abstraction by applying abstraction over each subdomain one step
at a time, by extending Proposition 4.21 to multiple sorts.

Proposition 4.22. For domain mappings m1, . . . ,mn over independent domains D1, . . . ,
Dn, Πm1×...×mn = ((Πmπ(1))...)mπ(n) where π is any permutation of {1, . . . , n}.

Example 4.45 (Example 4.1 ctd). In the graph coloring problem for the graph in Fig-
ure 4.1a, consider the mappingsmn = {{4, 5, 6}/4̂} andmc = {{red}/r̂, {green, blue}/ĝb}
over the sorts nodes and colors, respectively. The abstract program (Πmn)mc has the
concrete answer set (shown in Figure 4.8a)

{chosenColor(1, r̂), chosenColor(2, ĝb), chosenColor(3, ĝb), chosenColor(4̂, r̂)}

that chooses the color cluster ĝb for nodes 2 and 3, which matches the intuition of coloring
the neighbor nodes of node 1 to some color different than its own color.

Notably, (Πmn)mc also has the spurious answer set (shown in Figure 4.8b)

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Figure 4.8: Abstraction over nodes and colors

1
red

2

{green,blue}

3

{green,blue}

64 5 red

(a) A concrete answer set

1

{green,blue}

2

{green,blue}

3

{green,blue}

64 5 red

(b) A spurious answer set

{chosenColor(1, ĝb), chosenColor(2, ĝb), chosenColor(3, ĝb), chosenColor(4̂, r̂)}

due to the guesses introduced for the uncertainty.

In Chapter 5 we demonstrate further uses of such an multi-step abstraction over the
subdomains in analyzing problems.

4.3.6 Computational Complexity

In this section, we turn to the computational complexity of reasoning tasks that are
associated with program abstraction. We build on the complexity results in [DEGV01,
EFFW07].

Lemma 4.23. Given an arbitrary non-ground program Π, a mapping m, and an abstract
interpretation I, checking whether I ∈ AS(Πm) holds is feasible and in ∆p

2.

Proof. By definition, we need to check (1) that I is a model of (Πm)I and (2) that I is
minimal, no J ⊂ I is a model of (Πm)I .

As for (1), we can refute the property by guessing a rule r ∈ Πm and a variable substitution
θ and verifying that I does not satisfy (rθ)I , where rθ denotes the ground instance of r
obtained by applying θ to its variables; note that in this case (rθ)I ∈ (Πm)I holds.

Each rule r ∈ Πm has polynomial size in the input. Checking whether r ∈ Πm holds is
feasible in polynomial time, as computing the set of atoms that occur in negative cycles
is feasible in polynomial time as well. Furthermore, checking whether r′ = rθ is in (Πm)I

is feasible in polynomial time. Overall, refuting (1) is in NP.

As for (2), I is minimal if each atom a ∈ I has a proof, given by a sequence r1, r2, . . . rk

of applications of rules from ri ∈ (Πm)I where each positive body literal of ri occurs in
some head of rj , j < i. Note that w.l.o.g. I = {a1, . . . , ak} and ai has as proof r1, . . . , ri,
i = 1, . . . , k. As the proof can be guessed and nondeterministically verified in polynomial
time, it follows that (2) is in NP. Hence it follows that the problem is in ∆p

2 (more
precisely, in the class DP).

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Next we consider the problem of identifying concrete abstract answer sets.

Theorem 4.24. Given a program Π, a domain mapping m, and an abstract interpretation
Î, deciding whether Î is a concrete abstract answer set of Πm is NEXP-complete in general
and Σp

2-complete for bounded predicate arities. Furthermore, the complexity remains
unchanged if Î ∈ AS(Πm) is asserted.

Proof. To show that Î is a concrete abstract answer set of Πm, we can guess an interpre-
tation J of Π and check that (a) m(J) = Î, (b) m(J) ∈ AS(Πm), and (c) J ∈ AS(Π).
Testing (a) is clearly polynomial in the size of J , and by Lemma 4.23, (b) and (c) are
feasible in ∆p

2 in the size of J and Π (and thus in exponential time in the size of Î and
Π); consequently, deciding whether Î is a concrete abstract answer set of Πm is in NEXP.
For bounded predicate arities, the guess for J has polynomial size in the input, and we
can check the conditions (b) and (c) by Lemma 4.23 with an NP oracle in polynomial
time; this establishes Σp

2 membership.

The matching lower bounds are shown by a reduction from deciding whether a given
non-ground program Π has some answer set, which is NEXP-complete in the general case
and Σp

2-complete for bounded predicate arities [DEGV01, EFFW07].

Without loss of generality, Π involves a single predicate p (which can be achieved by
reification and padding arguments) and contains some fact p(~d). The mapping we
define is m = {{d1, . . . , dn}/d̂} where d1, . . . , dn form the Herbrand domain. Then
Î = {p(d̂, . . . , d̂)} is a concrete abstract answer set of Πm iff Π has some answer set. Note
that actually Î ∈ AS(Πm) holds; thus the overall complexity does not change if this
property is asserted. This proves the result.

That is, the worst case complexity is the one of answer set existence for non-ground
programs; the two problems can be reduced to each other in polynomial time. However,
it drops to Σp

2 if the domain size |D| is polynomial in the abstracted domain size |D̂|;
e.g., if each abstract cluster is small (and multiple clusters exist).

The following result is on deciding whether the constructed abstract program has a
spurious answer set.

Theorem 4.25. Given a program Π and a domain mapping m, deciding whether some
Î ∈ AS(Πm) exists that is spurious is NEXPNP-complete in general and Σp

3-complete for
programs with bounded predicate arities (i.e., bounded by a constant).

Proof. For the membership, one can guess an interpretation Î of Πm such that Î is
an answer set of Πm, and then check whether Î is spurious. By Theorem 4.24, the
spuriousness check can be done with a coNEXP oracle in general and with a Σp

2 oracle
in the bounded predicate case. However, by applying standard padding techniques,1 it

1The input x to the oracle is changed to (x, y), where y is an (exponentially) long string y, and the
oracle query considers x from the input only. This artificially lowers the time bound within the query
(measured in the size of (x, y)) can be answered.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

follows that a coNP oracle is sufficient in the general case. This proves membership of
the problem in coNEXP

NP in the general case and in Σp
3 in the bounded predicate case,

respectively.

The coNEXP
NP-hardness in the general case is shown by a reduction from evaluating

second-order logic formulas of a suitable form over finite relational successor structures,
i.e., relational structures S = (D,RS) with a universe D and interpretations RS

i for the
relations Ri in R = R1, . . . , Rk, which include the relations first(x), next(x, y) and last(x)
associated with a linear ordering ≤ of D.

Lemma 4.26. Given a second-order (SO) sentence of the form Φ = ∃P∀Q.ϕ where
P = P1, . . . , Pm1 and Q = Q1, . . . , Qm2 are predicate variables and ϕ =

∨
j ϕj is FO

such that each ϕj is of the form ϕj = ∃x1, . . . , xnlj,1 · · · ∧ · · · ∧ lj,k where each li,j is
a FO-literal, and a finite relational successor structure S, deciding whether S |= Φ is
NEXP

NP-complete.

This lemma can be obtained from the facts that (1) evaluating SO-sentences of the form
Ψ∃P∀Q.ϕ, where ψ is a first-order formula, over finite relational successor structures
is NEXP

NP-complete, cf. [GLV99], and (2) that Ψ can be transformed into some Φ
of the form described in polynomial time; the latter is possible using second-order
skolemization and auxiliary predicates for quantifier elimination, cf. [EGG96] and for
denoting subformulas, such that ϕ(~x) ≡ Pϕ(~x) and ϕ(~x) = ϕ1(~x) ∧ ϕ2(~x) is expressed by
Pϕ(~x) ≡ Pϕ1(~x) ∧ Pϕ2(~x) etc.

We first describe how to encode evaluating the sentence Φ′ = ∃P∃Q¬ϕ into an ordinary
program Π0, and then extend the encoding to prove the result. We define the rules of Π0

as follows:

Pj,i(X1, . . . , Xn)← not Pj,i(X1, . . . , Xn), D(X1), . . . , D(Xn). for each Pj,i ∈ P

(4.34)

Pj,i(X1, . . . , Xn)← not Pj,i(X1, . . . , Xn), D(X1), . . . , D(Xn). for each Pj,i ∈ P
(4.35)

Qj,i(Y1, . . . , Yn)← not Qj,i(Y1, . . . , Yn), D(Y1), . . . , D(Yn). for each Qj,i ∈ Q (4.36)

Qj,i(Y1, . . . , Yn)} ← not Qj,i(Y1, . . . , Yn), D(Y1), . . . , D(Yn). for each Qj,i ∈ Q (4.37)

sat← l
¬/not
j,1 ∧ · · · ∧ l

¬/not

j,k . (4.38)

ok ← not ok. (4.39)

ok ← not sat. (4.40)

where l¬/not denotes the replacement of ¬ in l by not .2

Informally, the rules (4.34),(4.35) and (4.36),(4.37) guess extensions for the predicates
in P and Q, respectively, while the rules (4.38) evaluate the formula ϕ. A guess for P

2To make the rules safe, domain predicates D(X) can be added for unsafe variables X.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

and Q yields an answer set of Π0 augmented with S (provided as positive facts) iff ϕ
evaluates over S to false; in this case, no rule (4.38) fires and thus sat can not be derived,
which means in turn that ok can be derived by (4.40) and thus the constraint (4.39) is
satisfied. On the other hand, deriving ok is necessary to have an answer set, which means
that sat must not be derived from the guess for P and Q.

We extend the program Π0 now for spuriousness checking. To this end, we introduce for
the domain D = {x1, . . . , xn} at hand a copy D′ = {y1, . . . , yn} and link xi to yi via a
predicate eq(x, y) that holds for x, y ∈ D ∪D′ iff x = xi ∧ y = yi for some i = 1, . . . , n.
The idea is to use D and D′ in the predicates from P and Q, respectively, and to abstract
D′ into a single element, such that for every guess χ for P , some abstract answer set Îχ

of the abstract program Πm will exist; and that, moreover, Îχ will be concrete if for some
guess for Q, we have an answer set of Π, where the latter program is equivalent to Π0;
thus Îχ will be spurious iff no guess for Q will yield an answer set of Π0, which means
that the formula ∃P∀Q.ϕ evaluates to true.

We make the following adjustments.

1. First, we replace in (4.36) and (4.37) the predicate D with D′.

2. Next, for each rule r from (4.38) we add for each term t that occurs in the rule
body a “typing” atom D(t), we replace each term t that occurs in a Q-literal with
a fresh variable Xt and add the atoms D′(Xt) and eq(t,Xt).

3. To each rule r obtained from the previous step we add not succ(y1, y1) in the body
(this literal evaluates to true with no abstraction).

4. We add facts eq(xi, yi), for i = 1, . . . , n.

5. We add facts Qj,i(y0, . . . , y0), Qj,i(y0, . . . , y0) for all Qj,i ∈ Q, where y0 is a fresh
constant.

It is not hard to establish that the answer sets I of the resulting program Π (over S)
correspond to the answer sets I0 of Π0 over S; each I is obtained from some I0 by
replacing in the Qj,i- and Qj,i-atoms the constant xl with the corresponding yl, adding
all facts Qj,i(y0, . . . , y0), Qj,i(y0, . . . , y0) and stripping off the eq-atoms.

The mapping that we construct is m = {{x1}/x1, . . . , {xn}/xn} ∪ {{y0, y1, . . . , yn}/ŷ}.
In the abstract program Πm, the rules (4.34), (4.35) are carried over, while the modified
rules (4.36), (4.37) are turned into rules to derive abstract atoms over Qj,i resp. Qj,i.
However, since Πm contains the abstracted facts Qj,i(ŷ, . . . , ŷ), Qj,i(ŷ, . . . , ŷ), these rules
are redundant.

The modified rules (4.38) are turned into guessing rules for sat, while the other rules
(4.39) and (4.40) remain unchanged. The abstract answer sets of Πm correspond to
guesses χ for P to which ok and all Qj,i(ŷ, . . . , ŷ), Qj,i(ŷ, . . . , ŷ) are added (sat is guessed
false); denote this answer set by Iχ.

The answer set Iχ is concrete, if there is some guess µ for Q such that we obtain an
answer set I of the program Π that is mapped to Iχ, i.e., m(I1) = Iχ; this I1 corresponds

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

to some answer set I0 as described above. Thus Iχ is spurious, if no such guess µ for Q
exists.

Putting it all together, it holds that Π has with respect to the mapping m = {{x1}/x1, . . . ,
{xn}/xn} ∪ {{y0, y1, . . . , yn}/ŷ} some spurious answer iff the formula Φ in Lemma 4.26
evaluates over S to true. Since Π and m are constructable in polynomial time from Φ
and S, this proves coNEXP

NP hardness in the general case.

For the bounded predicate arities case, the evaluation of a formula Φ as in Lemma 4.26
is Σp

3-complete; furthermore, all steps in producing the program Π preserves bounded
arities. Thus with the same argument, we obtain Σp

3-hardness for deciding whether some
spurious answer set exists for bounded predicate arities. This proves the result.

As for testing faithfulness, we note the following result that is an immediate consequence.

Corollary 4.27. Given a program Π and a domain mapping m, deciding whether Πm is
faithful, i.e., has no spurious abstract answer set, is coNEXPNP-complete in general and
Πp

3-complete for bounded predicate arities (i.e., bounded by a constant).

4.3.7 Existential Abstraction on Relations

Until now, we focused on constructing an abstract program by lifting the built-in relations
of the original program and treating the uncertainties among the behavior of the relations
due to the abstraction over the domain elements. Section 4.3.4 described how to handle
the cases that do not adhere to the restricted case of having binary built-in relations
defined over the abstract domain. In this section, we introduce a different way of
constructing the abstract programs in order to avoid having such a restriction over the
given program.

The idea is to apply abstraction over the relations in the spirit of existential abstraction.
For this, we introduce an abstract relation r̂el for a relation rel as follows:

(∀d̂i ∈ D̂)r̂el(d̂1, . . . , d̂k)⇔∃xi ∈ m
−1(d̂i).rel(x1, . . . , xk). (4.41)

(∀d̂i ∈ D̂)neg_r̂el(d̂1, . . . , d̂k)⇔∃xi ∈ m
−1(d̂i).¬rel(x1, . . . , xk). (4.42)

I.e., r̂el(d̂1, . . . , d̂k) is true if for some corresponding original values the original relation
holds; the negation of r̂el(d̂1, . . . , d̂k) is true otherwise. Notably, both versions may hold
simultaneously, depending on the abstract domain clusters.

Example 4.46 (Example 4.15 ctd). For the mapping {1, . . . , 5}/k, the abstract relation
k≤̂k holds true, since X ≤ Y for all X,Y mapped to k. The abstract relation k=̂k and
its negation both hold true, since X1 = X2 holds only for some X1, X2 values mapped to
k.

Notice that having both rel and neg_rel hold means an uncertainty on the truth value
of the relation in the abstract clusters. This brings us to determining the types of the
relations over the abstract clusters, similar as before.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Abstract relation types. The following cases τI − τIII occur in a mapping for the
abstract relation predicates r̂el(d̂1, . . . , d̂k) and neg_r̂el(d̂1, . . . , d̂k):

τ r̂el
I (d̂1, . . . , d̂k): r̂el(d̂1, . . . , d̂k) ∧ not neg_r̂el(d̂1, . . . , d̂k)

τ r̂el
II (d̂1, . . . , d̂k): neg_r̂el(d̂1, . . . , d̂k) ∧ not r̂el(d̂1, . . . , d̂k)

τ r̂el
III (d̂1, . . . , d̂k): r̂el(d̂1, . . . , d̂k) ∧ neg_r̂el(d̂1, . . . , d̂k)

(4.43)

Type I is the case where the abstraction does not cause uncertainty for the relation,
thus the rules that contain r̂el with type I can remain the same in the abstract program.
Type II shows the cases where r̂el does not hold in the abstract domain. Type III is
the uncertainty case, which needs to be dealt with when creating the abstract rules. To
ensure that an over-approximation is achieved, the head of the respective rule will be
changed into a choice.

For an abstraction m, we compute the set Tm of all atoms τ r̂el
ι (d̂1, . . . , d̂k) where ι ∈

{I, II, III} is the type of r̂el(d̂1, . . . , d̂k) for m.

Abstraction procedure

For simplicity and ease of presentation, we consider programs with rules having (i) a
single relation atom; and (ii) no cyclic dependencies between non-ground literals.

Definition 4.24 (rule abstraction). Given a rule r : l← B(r), rel(t1, . . . , tk) and a
domain mapping m, the set rm contains the following rules.

(a) m(l)← m(B(r)), τ r̂el
I (t̂1, . . . , t̂k).

(b) {m(l)} ← m(B(r)), τ r̂el
III (t̂1, . . . , t̂k).

(c) For all L ⊆ B−(r):
⋃

j∈arg(li),li∈L

{
{m(l)}←m(Bsh

L (r)), τ r̂el
I (t̂1, . . . , t̂k), isCluster(ĵ).

}

⋃
j∈arg(li),li∈L

{
{m(l)}←m(Bsh

L (r)), τ r̂el
III (t̂1, . . . , t̂k), isCluster(ĵ).

}

where Bsh
L (r)=B+(r)∪L,not B−(r)\L.

The idea is to introduce guesses when there is an uncertainty over the relation holding in
the abstract domain (b), or over the negated atoms due to the abstract clusters (c) (by
considering all combinations of the negative literals), and otherwise just abstracting the
rule (a).

The abstraction procedure introduced in Definition 4.24 obtains semantically the same
abstract program as in Definition 4.13 for rules of form

l←B(r), rel(t1, t2).

with binary relations =, 6=,≤, <. We denote the latter by Πm
0 .

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Proposition 4.28. For any domain mapping m of a program Π, AS(Πm) and AS(Πm
0)

coincide (modulo auxiliary atoms).

Proof. For an assignment I, we need to show that I ∪ Tm is a minimal model of (Πm)I if
and only if I ∪ Tm0 is a minimal model of (Πm

0)I .

(⇒) Towards a contradiction, assume I ∪ Tm is a minimal model of (Πm)I but I ∪ Tm0 is
not a minimal model of (Πm

0)I . Then either (i) I ∪ Tm0 is not a model of (Πm
0)I , or (ii)

I ∪ Tm0 is not a minimal model of (Πm
0)I .

(i) There is a rule r̂ ∈ (Πm
0)I such that I∪Tm0 |= B(r̂) but I 2H(r̂). By construction of

Πm
0 , r̂ is only obtained by step (a) of Definition 4.13, otherwise r̂ would be a choice

rule with head H(r̂) = {m(l)}, and r̂ would be satisfied. Consequently r̂ is a rule
from step (a) for r in Π. Thus, we have I ∪ Tm0 |= m(B(r)), rel(d̂1, d̂2), τ rel

I (d̂1, d̂2).
Since the definitions of relation type I for lifted relations and abstract relations

correspond to each other, we have Tm0 |= τ rel
I (d̂1, d̂2) ⇐⇒ Tm |= τ r̂el

I (d̂1, d̂2).

This means we get I ∪ Tm |= m(B(r)), τ r̂el
I (d̂1, d̂2) which is the abstract rule of r

constructed by step (a) of Definition 4.24. Since I ∪ Tm is a minimal model of
(Πm)I , I |= H(r̂). Hence, we reach a contradiction.

(ii) Let there be J ⊂ I such that J ∪Tm0 is a model of (Πm
0)I . We claim that J ∪Tm is a

model of (Πm)I , which would contradict I∪Tm ∈ AS(Πm). Assume J ∪Tm 2 (Πm)I .
Then there is a rule r̂ ∈ (Πm)I such that J ∪ Tm |= B(r̂) but J 2H(r̂), while
I |= H(r̂).We need to show that there is a corresponding rule in (Πm

0)I for r̂, which
would then achieve the contradiction that is J |= H(r̂). Below, we denote by
B(r̂) \ Γ̂r, the abstract body excluding the abstracted relation (and its relation
type atom).

• If r̂ contains τ r̂el
I (d̂1, d̂2) (step (a) or (c) of Definition 4.24), then since we

know Tm0 |= τ rel
I (d̂1, d̂2) ⇐⇒ Tm |= τ r̂el

I (t̂1, t̂2), we achieve J ∪ Tm0 |=
rel(d̂1, d̂2), τ rel

I (d̂1, d̂2) (also J ∪ Tm0 |= rel(d̂1, d̂2)). Since r̂ ∈ (Πm)I , we
know that I |= B(r̂) and also I |= B(r̂) \ Γ̂r. Thus we get H(r̂)←B(r̂) \
Γ̂r, rel(d̂1, d̂2), τ rel

I (d̂1, d̂2) (also H(r̂)←B(r̂) \ Γ̂r, rel(d̂1, d̂2)) in (Πm
0)I . Since

J ∪ Tm0 is a model of (Πm
0)I , we get J |= H(r̂), which is a contradiction.

• If r̂ contains τ r̂el
III (d̂1, d̂2) (step (b) or (c) of Definition 4.24), then J ∪ Tm |=

τ r̂el
III (d̂1, d̂2) means that there exist some d11, d12 ∈ m

−1(d̂1), d21, d22 ∈ m
−1(d̂2)

and some J ′ ∈ m−1(J) such that J ′ |= rel(d11, d21) and J ′ 2 rel(d12, d22). There
are the following cases for rel(d̂1, d̂2): (1) J |= rel(d̂1, d̂2), or (2) J 2 rel(d̂1, d̂2).

(1) Since we know J ′ 2 rel(d12, d22), this case obtains τ rel
III (d̂1, d̂2), thus J ∪

Tm0 |= rel(d̂1, d̂2), τ rel
III (d̂1, d̂2). With similar reasoning as above on ob-

taining H(r̂)← B(r̂) \ Γ̂r, rel(d̂1, d̂2), τ rel
III (d̂1, d̂2) in (Πm

0)I (also H(r̂)←
B(r̂) \ Γ̂r, rel(d̂1, d̂2) in (Πm

0)I), we achieve J |= H(r̂), a contradiction.

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

(2) Since we know J ′ |= rel(d11, d21), this case obtains τ rel
IV (d̂1, d̂2), thus

J ∪ Tm0 |= rel(d̂1, d̂2), τ rel
IV (d̂1, d̂2). With similar reasoning as above we

reach a contradiction.

(⇐) Towards a contradiction, assume I ∪ Tm0 is a minimal model of (Πm
0)I but I ∪ Tm is

not a minimal model of (Πm)I . Then either (i) I ∪ Tm is not a model of (Πm)I , or (ii)
I ∪ Tm is not a minimal model of (Πm)I .

(i) There is a rule r̂ ∈ (Πm)I such that I∪Tm |= B(r̂) but I 2H(r̂). By construction of
Πm, r̂ is only obtained by step (a) of Definition 4.24. With an analogous reasoning
as above item (i), we achieve a contradiction.

(ii) Let there be J ⊂ I such that J ∪Tm is a model of (Πm)I . We claim that J ∪Tm0 is a
model of (Πm

0)I , which would contradict I∪Tm0 ∈ AS(Πm
0). Assume J∪Tm0 2 (Πm

0)I .
Then there is a rule r̂ ∈ (Πm

0)I such that J ∪ Tm0 |= B(r̂) but J 2H(r̂), while
I |= H(r̂). We need to show that there is a corresponding rule in (Πm)I for r̂,
which would then achieve the contradiction that J |= H(r̂).

• If r̂ contains rel(d̂1, d̂2), τ rel
I (d̂1, d̂2) (step (a) of Definition 4.13), an analogous

reasoning as above item (ii) obtains H(r̂)←B(r̂) \ Γ̂r, τ
r̂el
I (d̂1, d̂2) in (Πm)I

which achieves J |= H(r̂) a contradiction.

• If r̂ contains rel(d̂1, d̂2), τ rel
III (d̂1, d̂2) (step (b) of Definition 4.13), then J ∪

Tm0 |= rel(d̂1, d̂2), τ rel
III (d̂1, d̂2) means that J |= rel(d̂1, d̂2) and there exist some

d1 ∈ m
−1(d̂1), d2 ∈ m

−1(d̂2) and some J ′ ∈ m−1(J) such that J ′ 2 rel(d1, d2).

This obtains abstract relation type τ r̂el
III (d̂1, d̂2), thus J ∪ Tm |= τ r̂el

III (d̂1, d̂2).
Notice that also J |= isCluster(d̂i) holds for some i ∈ {1, 2}. With similar

reasoning as above on obtaining H(r̂)←B(r̂) \ Γ̂r, τ
r̂el
III (d̂1, d̂2) in (Πm)I , we

achieve J |= H(r̂), a contradiction.

• If r̂ contains rel(d̂1, d̂2), τ rel
IV (d̂1, d̂2) (step (c) or (d-ii) of Definition 4.13), then

J ∪ Tm0 |= rel(d̂1, d̂2), τ rel
IV (d̂1, d̂2) means that J 2 rel(d̂1, d̂2) and there exist

some d1 ∈ m
−1(d̂1), d2 ∈ m

−1(d̂2) and some J ′ ∈ m−1(J) such that J ′ |=

rel(d1, d2). This again obtains abstract relation type τ r̂el
III (d̂1, d̂2), i.e., J ∪Tm |=

τ r̂el
III (d̂1, d̂2), thus reaches a contradiction as above.

• If r̂ contains only rel(d̂1, d̂2) (step (d-i) of Definition 4.13), then this means
either J ∪ Tm |= τ rel

I (d̂1, d̂2) or J ∪ Tm |= τ rel
III (d̂1, d̂2) holds. Also we know that

J |= isCluster(d̂i) holds for some i ∈ {1, 2}. So similar as above, we achieve a
contradiction.

Generalization to multiple relation atoms and handling cyclic dependencies by removing
the restrictions (i)-(ii) can be done similarly as in cases (G-ii) and (G-iii) of Section 4.3.3.

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Domain Abstraction

Example 4.47 (Example 4.15 ctd). For the program Π in (4.9)-(4.13) with the mapping
m = {{1, . . . , 5}/k}, the constructed program Πm becomes as below.

c(X)← not d(X), τ<
I (X, k), înt(X).

{c(X)} ← not d(X), τ<
III(X, k), înt(X).

{c(X)} ← τ<
I (X, k), isCluster(X), înt(X).

{c(X)} ← τ<
III(X, k), isCluster(X), înt(X).

d(X)← not c(X), înt(X).

{d(X)} ← isCluster(X), înt(X).

b(X,Y)← a(X), d(Y), înt(X), înt(Y).

e(X)← c(X), a(Y), τ≤
I (X,Y), înt(X), înt(Y).

{e(X)} ← c(X), a(Y), τ≤
III(X,Y), înt(X), înt(Y).

⊥ ← b(X,Y), e(X1), τ=
I (X,X1), înt(X), înt(X1), înt(Y).

with Tm = {τ≤
III(k, k), τ=

III(k, k), τ<
III(k, k)} and abstract facts {a(k), înt(k)}. Note that

the atom d(X) is omitted instead of shifting the polarity.

The abstract program consists of the same answer sets as the one constructed by lifting
the relations in Example 4.34.

When treating n-ary relations for n > 2, it is possible to modify Definition 4.24 to create
finer abstractions.

Example 4.48. Consider the argument Z of the following rule involving addition:

r : e(Z)← c(X), a(Y), Z = X + Y. (4.44)

We denote Z = X + Y with the relation plus(X,Y, Z). Regarding the arguments, we
have arg(e(Z))∩ arg(plus(X,Y, Z)) = {Z} 6= ∅ while arg(e(Z))∩{X,Y }= ∅, where X,Y
are the shared arguments of the body literals with the relation plus, i.e., arg(B(r)) ∩
arg(plus(X,Y, Z)) = {X,Y }. Consider the mapping m : {1} 7→ a1, {2, 3} 7→ a23,
{4, 5} 7→ a45 and X=a1, Y=a1. For the abstract relation ˆplus, both ˆplus(a1, a1, a23) and
neg_ ˆplus(a1, a1, a23) hold true, due to 1 + 1 = 2 and 1 + 1 6= 3. As Z is not used in the
body literals, it does not cause uncertainties for applying the rule in the abstraction,
which is caught by

e(Z)← c(X), a(Y), τ r̂el(X,Y,Z)
III , isSingleton(X), isSingleton(Y).

By adding in Definition 4.24 the rule

• m(l)← m(B(r)), τ r̂el
III (t̂1, . . . , t̂k),

∧
t̂i∈argi(rel)\arg(l) isSingleton(t̂i).

if arg(l) ∩ arg(rel) 6= ∅ and arg(l) ∩ (arg(B(r)) ∩ arg(rel)) = ∅.

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

the guess in (b) can be avoided, when all arguments of rel that are not involved with the
head l are singleton clusters.

The use of abstract relations opens a wide range of possible applications, as it simplifies
the use of a given program without preprocessing it to match the restrictions over the
forms of the relations for the previous abstraction method.

4.4 Refinement by Debugging

Over-approximation of an answer set program unavoidably introduces spurious answer
sets, which makes it necessary to have an abstraction refinement method. In CEGAR,
the decision in a refinement step depends on the correctness checking of the spurious
abstract solution, through which the problematic part of the abstraction is detected.
Inspired from this, we define an alternative way of checking the correctness of an abstract
answer set which can then be used in determining how the refinement should be made.

Correctness checking using constraints For an abstract answer set Î to be spurious
means that the original program does not contain an answer set that matches Î. In other
words, querying the original program for a match to an abstract answer set Î would
return unsatisfiable if Î is spurious.

Definition 4.25 (Query of an answer set). Given an abstract answer set Î and a mapping
m, a query Qm

Î
for an answer set that matches Î is described by the following constraints.

⊥←{α |m(α) = α̂} ≤ 0. α̂∈ Î (4.45)

⊥←α. α̂ /∈ Î ,m(α) = α̂ (4.46)

Here (4.45) ensures that a witnessing answer set I of Π (i.e., m(I) = Î) contains for every
abstract atom in Î some atom that is mapped to it. The constraint (4.46) ensures that I
has no atom that is mapped to an abstract atom not in Î.

The query Qm
Î

is slightly syntactically modified for the two different abstraction ap-
proaches:

• For the omission mapping m that omits A, the query Qm
Î

gets the following set of
constraints for A:

QA
Î

= {⊥←not α |α∈ Î} ∪ {⊥←α | α∈A \ Î}. (4.47)

in order to enforce an answer set that concides on the non-omitted atoms with Î.

• If m is a domain mapping, then the set of atoms Î in (4.45) and (4.46) is changed
to Î \ Tm to ensure that the check is done only for non-τι abstract atoms.

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

The following is then easy to establish.

Proposition 4.29. Suppose m is an abstraction mapping for a program Π.

(i) If m is an omission mapping that omits a set A of atoms, then an abstract answer

set Î ∈ AS(omit(Π, A)) is spurious iff Π ∪QA
Î

is unsatisfiable.

(ii) If m is a domain mapping, then an abstract answer set Î ∈ AS(Πm) is spurious iff
Π ∪Qm

Î
is unsatisfiable.

Proof. (i) As Î is spurious, there exists no I ∈ AS(Π) such that I = Î ∪X for X ⊆ A,
i.e., there is no match of an original answer set for Î with the atoms from A
contained in it and excluded from it. QA

Î
enforces such a match, thus returns

unsatisfiability.

Having no match for Î means that no extension of it will make an answer set of Π,
thus Î is spurious.

(ii) As Î is spurious, there exists no I ∈ AS(Π) such that m(I) = Î \ Tm, i.e., there is
no match of an original answer set I for Î where the atoms in I can be mapped to
the abstract atoms contained in Î \ Tm and the atoms not in I can be mapped to
the abstract atoms not contained in Î \ Tm. QÎ enforces such a match, thus returns
unsatisfiability.

Having no match for Î means that no original answer set can be mapped to it, thus
Î is spurious.

Debugging the correctness checking In this section, we show how to employ an
ASP debugging approach in order to debug the inconsistency of the original program Π
caused by checking a spurious answer set Î, referred to as inconsistency of Π w.r.t. Î,
in order to get hints for refining the abstraction. Different from a usual ASP program
debugging approach, we need to shift the focus of the debugging from “debugging the
original program” to “debugging the inconsistency caused by the spurious answer set”.
Unfortunately an immediate application of the available ASP debugging tools is not
possible. For our purposes, we make use of the meta-level debugging language introduced
by [BGP+07] which is based on a tagging technique that allows one to control the building
of answer sets and to manipulate the evaluation of the program.

The meta-program constructed by spock [BGP+07] introduces tags to control the
building of answer sets. Given a program Π over A and a set N of names for all rules
in Π, it creates an enriched alphabet A+ obtained from A by adding atoms such as
ap(nr), bl(nr), ok(nr), ko(nr) where nr ∈ N for each r ∈ Π. The atoms ap(nr), bl(nr)
express whether a rule r is applicable or blocked, respectively, while ok(nr), ko(nr) are
used for manipulating the application of r.

For omission-based abstraction, we alter the meta-program so that through debugging,
some of the atoms can be determined as badly omitted and thus should be added back

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

in the refinement. As for domain abstraction, debugging the non-ground program has
its own difficulties. The approach in [BGP+07] is on the propositional level, thus can
not be immediately applied. However, non-ground program debugging approaches such
as [OPT10, DGM+15] are not easily adjustable due to the need for shifting the focus
towards debugging the correctness checking. In addition, such a meta-programming
approach gives the power of choosing the importance of the type of violations which
becomes useful in getting hints for the refinement of the domain abstraction.

4.4.1 Bad Omission of Ground Atoms

For omission abstraction, we describe the constructed debugging program that is able to
shift the focus to the omitted atoms, and how we use it in determining bad omission of
atoms.

Debugging Meta-Program

The (altered) meta-program with an enriched vocabulary A+ (by omitting the atoms
ok(nr) of [BGP+07], as they are not needed) that is created is as follows.

Definition 4.26. Given Π, the program Tmeta[Π] consists of the following rules for
r ∈ Π, α1 ∈ B

+(r), α2 ∈ B
−(r):

H(r)← ap(nr),not ko(nr).

ap(nr)← B(r).

bl(nr)← not α1.

bl(nr)← not not α2.

Here the last rule uses double (nested) negation not not α2 [LTT99], which in the reduct
w.r.t. an interpretation I is replaced by ⊤ if I |= α2 and by ⊥ otherwise. The role of
ko(r) is to avoid the application of the rule H(r)← ap(r),not ko(r) if necessary. We use
it for the rules that are changed due to some atom omitted from the body.

The following properties follow from [BGP+07].

Proposition 4.30 ([BGP+07]). For a program Π over A, and an answer set X of
Tmeta[Π], the following holds for any r ∈ Π and a ∈ A:

1. ap(nr) ∈ X iff r ∈ ΠX iff bl(nr) /∈ X;

2. if a ∈ X, then ap(nr) ∈ X for some r ∈ def (a,Π);

3. if a /∈ X, then bl(nr) ∈ X for all r ∈ def (a,Π).

The relation between the auxiliary atoms and the original atoms are described below.

Theorem 4.31 ([BGP+07]). For a program Π over A, the answer sets AS(Π) and
AS(Tmeta[Π]) satisfy the following conditions:

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

1. If X ∈ AS(Π), then X ∪{ap(nr) | r ∈ ΠX}∪{bl(nr) | r ∈ Π\ΠX} ∈ AS(Tmeta[Π]).

2. If Y ∈ AS(Tmeta[Π]), then Y ∩ A ∈ AS(Π).

Abnormality atoms are introduced to indicate the cause of inconsistency: abp(r) signals
that rule r is falsified under some interpretation, abc(α) points out that α is true but has
no support, and abl(α) indicates that α may be involved in a faulty loop (unfounded or
odd).

Definition 4.27. Given a program Π over A, and a set A ⊆ A of atoms, the following
additional meta-programs are constructed:

1. TP [Π]: for all r ∈ Π with B(r) ∩A 6= ∅, H(r) * A and H(r) 6= ⊥:

ko(nr).

{H(r)} ← ap(nr).

abp(nr)← ap(nr),not H(r).

2. TC [Π,A]: for all α∈A\A with the defining rules def (α,Π)={r1, ...,rk}:

{α} ← bl(nr1), ..., bl(nrk
).

abc(α)← α, bl(nr1), ..., bl(nrk
).

3. TA[A]: for all α ∈ A:

{abl(α)} ← not abc(α).

α← abl(α).

The difference from the abnormality atoms in [BGP+07] is that the auxiliary atoms
abp(nr) are only created for the rules which will be changed in the abstraction (but not
omitted) due to A, denoted by Πc

A = {r | r ∈ Π, B(r) ∩ A 6= ∅, H(r) * A,H(r) 6= ⊥},
and the auxiliary atoms abc(a) are created only for the non-omitted atoms. This helps
the search of a concrete interpretation for the partial/abstract interpretation by avoiding
“bad” (i.e., non-supported) guesses of the omitted atoms. Notice that for the rules ri with
H(ri) = α and empty body, we also put bl(nri

) so that abc(α) does not get determined,
since one can always guess over α in Π.

Having abl(α) indicates that α is determined through a loop, but it does not necessarily
show that the loop is unfounded (as described through loop formulas in [BGP+07]). By
checking whether α only gets support by itself, the unfoundedness can be caught. In
some cases, α could be involved in an odd loop that was disregarded in the abstraction
due to omission, which requires an additional check.

The basic properties of the abnormality atoms follows from [BGP+07].

Proposition 4.32 ([BGP+07]). Consider a program Π over A, a set A ⊆ A of atoms,
and an answer set X of Tmeta[Π] ∪ TP [Π] ∪ TC [Π,A] ∪ TA[A].

For each rule r ∈ Πc
A:

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

1. abp(nr) ∈ X iff ap(nr) ∈ X, bl(nr) /∈ X, and H(r) /∈ X;

2. abp(nr) /∈ X if abc(H(r)) ∈ X or abl(H(r)) ∈ X.

Moreover, for every a ∈ A \A, it holds that:

1. abc(a) ∈ X and abl(a) /∈ X iff a ∈ X and (X ∩A)2 (
∨

r∈def (a,Π)B(r));

2. abc(a) /∈ X if a ∈ X and (X ∩A) |= (
∨

r∈def (a,Π)B(r));

3. abc(a) /∈ X and abl(a) /∈ X if a /∈ X;

4. abc(a) /∈ X if abl(a) ∈ X.

The next result shows that the answer sets of the translated program that are free
from abnormality atoms correspond to the answer sets of the correctness checking of
an abstract answer set Î over Π using the query QA

Î
. We denote by ABA(Π) the set of

abnormality atoms according to the omitted atoms A, i.e., ABA(Π) = {abp(nr) | r ∈
Π, B(r) ∩A 6= ∅, H(r) * A,H(r) 6= ⊥} ∪ {abc}.

Theorem 4.33. For a program Π over A, a set A ⊆ A of atoms and answer set Î of
omit(Π, A), the following holds.

1. If X is an answer set of Π ∪QA
Î

, then

X ∪ {ko(nr) | r ∈ Πc
A} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ΠX}

is an answer set of Tmeta[Π] ∪ TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪QA
Î

.

2. If Y is an answer set of Tmeta[Π] ∪ TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪ QA
Î

such that

(Y ∩ABA(Π)) = ∅, then (Y ∩ A) is an answer set of Π ∪QA
Î

.

Proof. 1. Assume towards a contradiction that X ′ = X ∪ {ko(nr) | r ∈ Πc
A} ∪ {ap(nr) |

r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ ΠX} is not answer set of Π′ ∪ QA
Î

, where Π′ = Tmeta[Π] ∪

TP [Π] ∪ TC [Π,A] ∪ TA[A]. This means that either (i) X ′ is not a model of (Π′ ∪QA
Î

)X′

,

or (ii) X ′ is not a minimal model of (Π′ ∪QA
Î

)X′

.

(i) There is some rule r ∈ (Π′ ∪QA
Î

)X′

such that X ′ |= B(r), but X ′ 2H(r). We know

that X is an answer set of Π ∪QA
Î

, and thus X ∈ AS(Π). By Theorem 4.31, we

know that X ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ ΠX} is an answer set of
Tmeta[Π]. As X ′ contains no ab atoms, r can not be in TP [Π] ∪ TC [Π,A] ∪ TA[A].

So r must be in QA
Î

.

The rule r can be in two forms: (a) ⊥←not α. for some α ∈ Î, or (b) ⊥←α. for
some α ∈ A \ Î.

(a) As X ′ |= B(r), then α /∈ X ′ which means α /∈ X. However having r ∈

(Π ∪QA
Î

)X contradicts that X is an answer set of Π ∪QA
Î

.

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

(b) Similarly as (a), we reach a contradiction.

(ii) Let Y ′ ⊂ X ′ be a model of (Π′ ∪ QA
Î

)X′

, for some Y ′ = Y ∪ {ko(nr) | r ∈

Πc
A} ∪ {ap(nr) | r ∈ ΠX} ∪ {bl(nr) | r ∈ Π \ΠX}. As the auxiliary atoms are fixed,

Y ⊂ Y ′ must hold. We claim that Y is then a model of (Π ∪ QA
Î

)X , which is a

contradiction. Assume Y is not such a model. Then there is a rule r ∈ (Π ∪QA
Î

)X

such that Y |= B(r) but Y 2H(r). There are two cases: (a) r ∈ Π, or (b) r ∈ QA
Î

.

(a) By definition of Y ′, this means that Y ′ |= B(r) and Y ′ 2H(r). However, this

contradicts that Y ′ is a smaller model of (Π′∪QA
Î

)X′

than X ′ since H(r)′ ∈ Y ′.

(b) In both versions of r in QA
Î

, we get that r ∈ (Π′ ∪QA
Î

)X′

which contradicts

that Y ′ is a model of (Π′ ∪QA
Î

)X′

.

2. Assume towards a contradiction that (Y ∩ A) is not an answer set of Π ∪QA
Î

. This

means that either (i) (Y ∩ A) is not a model of (Π ∪QA
Î

)(Y ∩A), or (ii) (Y ∩ A) is not a

minimal model of (Π ∪QA
Î

)(Y ∩A).

(i) There is some rule r ∈ (Π∪QA
Î

)(Y ∩A) such that (Y ∩A) |= B(r) but (Y ∩A)2H(r).

As we have (Y ∩ A+) ∈ AS(Tmeta[Π]), by Theorem 4.31, we get (Y ∩ A) ∈ AS(Π),

thus r can not be in Π. However, r ∈ QA
Î

also can not hold, since then r will be in

(QA
Î

)Y and we know that Y |= QA
Î

. Thus (Y ∩A) must be a model of (Π∪QA
Î

)(Y ∩A).

(ii) Assume there exists some Z ⊂ (Y ∩ A) such that Z |= (Π ∪QA
Î

)(Y ∩A). We claim

that then Z ′ = Z∪{ko(nr) | r ∈ Πc
A}∪{ap(nr) | r ∈ Π′Y }∪{bl(nr) | r ∈ Π′\Π′Y } is

a model of (Π′ ∪QA
Î

)Y , which achieves a contradiction. Now let us assume that this

is not the case. Then there is some rule r ∈ (Π′ ∪QA
Î

)Y such that Z ′ |= B(r) and

Z ′ 2H(r). The rule r can not be in (QA
Î

)Y , since it contradicts that Y |= (QA
Î

)Y .
The rest of the cases for r also results in a contradiction.

(a) If r ∈ Tmeta[Π]Y , then r can only be of form H(r)← ap(nr),not ko(nr), where
H(r) 6= ⊥. So we have ap(nr) ∈ Z ′, ko(nr) /∈ Z ′ and H(r) /∈ Z ′. For rule
r, rules of form 1 in Definition 4.27 are created in TP [Π]. However, since
having H(r) /∈ Y causes to have the rule abp(nr)← ap(nr),not H(r) in TP [Π]Y ,
H(r) ∈ Y \ Z ′ should hold, which however contradicts that Z ⊂ (Y ∩ A), as
then H(r)′ ∈ Z ′ would hold.

(b) If r ∈ TP [Π]Y , then r can only be of form H(r)← ap(nr). As Z ′ 2H(r) we
have H(r)′ ∈ Z ′ which contradicts that Z ⊂ (Y ∩ A). A similar contradiction
is reached if r ∈ TC [Π,A]Y , since that means α ∈ Z ′ while α /∈ Y .

(c) Having r ∈ TA[A]Y means that Z ′ 2 abl(α)′ for some α ∈ A, i.e., abl(α) ∈ Z ′,
which contradicts Y ∩ABA(Π) = ∅.

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Determining Bad-Omission Atoms

Whether or not the program Π is consistent, our focus is on debugging the cause of
inconsistency introduced through checking for a spurious answer set Î, i.e., evaluating
the program Π ∪QA

Î
. We reason about the inconsistency by inspecting the reason for

having Î ∈ AS(omit(Π, A)) due to some modified rules.

Definition 4.28. Let r : α ← B be a rule in Π such that B ∩ A 6= ∅ and α /∈ A. The
abstract rule r̂ : {α} ← mA(B) in omit(Π, A) introduces w.r.t. an abstract interpretation
Î ∈ AS(omit(Π, A))

(i) a spurious choice, if Î |= mA(B) and Î |= α, i.e., Î 6|= α, but some model I of
Π \ {r} exists s.t. I|A = Î and I |= B.

(ii) a spurious support, if Î |= mA(B) and Î |= α, but some model I of Π exists s.t.
I|A = Î and for all r′ ∈ def (α,Π), I 2B(r′).

Any occurrence of the above cases shows that Î is spurious. In case (i), due to Î 6|= α,
the rule r is not satisfied by I while I is a model of the remaining rules. In case (ii), an
I that matches Î |= α does not give a supporting rule for α.

Definition 4.29. Let r : α← B be a rule in Π such that B ∩A 6= ∅. The abstract rule
r̂ = omit(r,A) introduces a spurious loop-behavior w.r.t. Î, if some model I of Π exists
s.t. I|A = Î and I |= r, but α is involved in a loop that is unfounded or is odd, due to
some α′ ∈ A ∩B.

The need for reasoning about the two possible faulty loop behaviors is shown by the
following examples.

Example 4.49. Consider the programs Π1,Π2 and their abstractions Π̂1 = Π̂
1{a}

,

Π̂2 = Π̂
2{a,b}

.

Π1 Π̂1 Π2 Π̂2

r1 : a← b. r1 : a← b.
r2 : b← not c, a. {b} ← not c. r2 : b← not a, c.

r3 : c. c.

The program Π1 has the single answer set ∅, and omitting a creates a spurious answer
set {b} disregarding that b is unfounded. The program Π2 is unsatisfiable due to the odd
loop of a and b. When both atoms are omitted, this loop is disregarded, which causes a
spurious answer set {c}.

Bad omission of atoms are then defined as follows.

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Definition 4.30 (bad omission atoms). An atom α ∈ A is a bad omission w.r.t. a
spurious answer set Î of omit(Π, A), if some rule r∈Π with α∈B(r) exists s.t. r̂ =
omit(r,A) introduces either (i) a spurious choice, (ii) a spurious support or (iii) a
spurious loop-behavior w.r.t. Î.

Intuitively, for case (i) of Definition 4.28, as α was decided due to choice in H(r̂), we infer
that the omitted atom which caused r to become a choice rule is a bad omission. Also for
case (ii), as α is decided with Î |= B(r̂), we infer that the omitted atom that caused B(r)
to be modified is a bad omission. As for case (iii), it shows that the modification made
on r (either omission or change to choice rule) ignores an unfoundedness or an odd loop.
Case (i) also catches issues that arise due to omitting a constraint in the abstraction.

We now describe how we determine when an omitted atom is a bad omission.

Definition 4.31 (bad omission determining program). The bad omission determining
program Tbo is constructed using the abnormality atoms obtained from TP [Π], TC [Π,A]
and TA[A] as follows:

1. A bad omission is inferred if the original rule is not satisfied, but applicable (and
satisfied) in the abstract program:

badomit(X, type1)← abp(R), absAp(R), changed(R), omittedAtomFrom(X,R).

2. A bad omission is inferred if the original rule is blocked and the head is unsupported,
while it is applicable (and satisfied) in the abstract program:

badomit(X, type2)← bl(R), head(R,H), abc(H), absAp(R), changed(R),

omittedAtomFrom(X,R).

3. A bad omission is inferred in case there is unfoundedness or an involvement of an
odd loop, via an omitted atom:

faulty(X)← abl(X), inOddLoop(X,X1), omittedAtom(X1).

faulty(X)← abl(X), inPosLoop(X,X1), omittedAtom(X1).

badomit(X1, type3)← faulty(X), head(R,X),modified(R), absAp(R),

omittedAtomFrom(X1, R).

where absAp(r) is an auxiliary atom to keep track of which original rule becomes applicable
with the remaining non-omitted atoms for the abstract interpretation, changed(r) shows
that r is changed to a choice rule in the abstraction, and modified(r) shows that r is
either changed or omitted in the abstraction, and omittedAtomFrom(x, r) is an auxiliary
atom that states which atoms are omitted from a rule.

For defining type3 , we check for loops using the encoding in [Syr06] and determine
inOddLoop and (newly defined) inPosLoop atoms of Π (see Figure 4.9).

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.9: Loop checking

posEdge(H,A) ← head(R,H), posBody(R,A).
negEdge(H,B) ← head(R,H),negBody(R,B).
even(X,Y) ← posEdge(X,Y).
odd(X,Y) ←negEdge(X,Y).
even(X,Z) ← posEdge(X,Y), even(Y,Z), atom(Z).
odd(X,Z) ← posEdge(X,Y), odd(Y,Z), atom(Z).
odd(X,Z) ←negEdge(X,Y), even(Y, Z), atom(Z).
even(X,Z) ←negEdge(X,Y), odd(Y,Z), atom(Z).
inOddLoop(X,Y) ← odd(X,Y), even(Y,X).

posDep(X,Y) ← posEdge(X,Y).
posDep(X,Z) ← posEdge(X,Y), posDep(Y, Z), atom(Z).
inPosLoop(X,Y) ← posDep(X,Y), posDep(Y,X).

The cases for type2 and type3 introduce as bad omissions the omitted atoms of all the
rules that add to abc(H) being true, or of all rules that have X in the head for abl(X),
respectively. Modifying badomit determination to have a choice over such rules to be
refined (and their omitted atoms to be badomit) and minimizing the number of badomit
atoms reduces the number of added back atoms in a refinement step, at the cost of
increasing the search space.

In order to avoid the guesses of abl for omitted atoms even if there is no faulty loop behavior
related with them (i.e., this is not the cause of inconsistency of Î), we add the constraint
← abl(X),not someFaulty. with the auxiliary definition someFaulty ← faulty(X).

With all this in place, the program for debugging a spurious answer set is composed as
follows.

Definition 4.32 (spurious answer set debugging program). For an abstract answer set

Î, we denote by T [Π, Î] the program Tmeta[Π] ∪ TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪ Tbo ∪Q
A
Î

.

We denote by A∗
A the vocabulary of T [Π, Î] which consists of A+ ∪ABA(Π) ∪HBTbo

.

From the answer sets of T [Π, Î], we can see bad omissions and their types.

Example 4.50. For the following program Π, Î = {b} is a spurious answer set of the
abstraction for A = {a, d}:

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Figure 4.10: Meta-programs for Example 4.50

c ← ap(r1),not ko(r1).
ap(r1)←not d.
bl(r1) ←not not d.

d ← ap(r2),not ko(r2).
ap(r2)←not c.
bl(r2) ←not not c.

a ← ap(r3),not ko(r3).
ap(r3)←not d, c.
bl(r3) ←not c.
bl(r3) ←not not d.

b ← ap(r4),not ko(r4).
ap(r4)← a.
bl(r4) ←not a.
⊥ ← falsum.

(a) Tmeta[Π]

ko(r1).
{c} ← ap(r1).
abp(r1) ← ap(r1),not c.
ko(r4).
{b} ← ap(r4).
abp(r4) ← ap(r4),not b.

{b} ← bl(r4).
abc(b) ← bl(r4), b.
{c} ← bl(r1).
abc(c) ← bl(r1), c.

{abl(a)}←not abc(a).
a ← abl(a).
{abl(b)} ←not abc(b).
b ← abl(b).
{abl(c)} ←not abc(c).
c ← abl(c).
{abl(d)}←not abc(d).
d ← abl(d).

(b) TP [Π] ∪ TC [Π,A] ∪ TA[A]

Π Π̂a,d

r1 : c← not d. {c}.
r2 : d← not c.
r3 : a← not d, c.
r4 : b← a. {b}.

Figure 4.10 shows the constructed meta programs of Π. T [Π, Î] gives the answer set that
contains {ap(r2), bl(r1), bl(r4), bl(r3), abc(b), badomit(a, type2)}. The answer set shows
that since c /∈ Î, the rule r1 gets blocked and the rule r2 becomes applicable (which
means d is derived). However as the rule r3 is blocked, a can not be derived, and thus
the occurrence of b is unsupported in Π (w.r.t {b, d}), which was avoided in Π̂a,d due to
(badly) omitting a from the body of r4.

The next example shows the need for reasoning about the disregarded positive loops and
odd loops, due to omission.

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.11: Meta-programs for Example 4.51

a ← ap(r1),not ko(r1).
ap(r1) ← b.
bl(r1) ←not b.

b ← ap(r2),not ko(r2).
ap(r2) ←not c, a.
bl(r2) ←not a.
bl(r2) ←not not c.

ko(r2).
{b} ← ap(r2).
abp(r2) ← ap(r2),not b.

{b} ← bl(r2).
abc(b) ← bl(r2), b.
{c}.
abc(c) ← c.

{abl(a)}←not abc(a).
a ← abl(a).
{abl(b)} ←not abc(b).
b ← abl(b).
{abl(c)} ←not abc(c).
c ← abl(c).

(a) Tmeta[Π1] ∪ TP [Π1] ∪ TC [Π1,A] ∪ TA[A]

a ← ap(r1),not ko(r1).
ap(r1) ← b.
bl(r1) ←not b.

b ← ap(r2),not ko(r2).
ap(r2) ←not a, c.
bl(r2) ←not c.
bl(r2) ←not not a.

c ← ap(r3),not ko(r3).
ap(r3).
⊥ ← falsum.

{c} ← bl(r3).
abc(c) ← bl(r3), c.

{abl(a)}←not abc(a).
a ← abl(a).
{abl(b)} ←not abc(b).
b ← abl(b).
{abl(c)} ←not abc(c).
c ← abl(c).

(b) Tmeta[Π2] ∪ TP [Π2] ∪ TC [Π2,A] ∪ TA[A]

Example 4.51 (Example 4.49 ctd). Recall that the program Π1 has an unfounded loop
between a and b, and the abstraction Π̂1 = Π̂

1{a}
has the spurious answer set {b}. Fig-

ure 4.11a shows the constructed meta-programs Tmeta[Π1]∪TP [Π1]∪TC [Π1,A]∪TA[A]. The
overall program T [Π1, {b}] yields inPosLoop(b, a), ap(r1), ap(r2), abl(b), badomit(a, type3).
Omitting from the program Π2 the loop atoms a, b causes the spurious answer set {c}.
Figure 4.11b shows the constructed meta-programs for Π2. Accordingly, T [Π2, {c}]
yields ap(r3), inOddLoop(b, a), inOddLoop(a, b), abl(b), ap(r1), bl(r2), badomit(a, type3),
badomit(b, type3), as desired.

The program T [Π, Î] always returns an answer set for Î, due to relaxing Π by tolerating
abnormalities that arise from checking the concreteness for Î.

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Proposition 4.34. For each abstract answer set Î of omit(Π, A), the program T [Π, Î]
has an answer set I such that I ∩A = Î.

Proof. Let X be an interpretation over A∗
A with X ∩A = Î. We will show that with the

help of the auxiliary rules/atoms, some interpretation X ′ which is a minimal model of
(T [Π, Î])X′

can be reached starting from X. We have the cases (i) X 2 (T [Π, Î])X , and
(ii) X |= (T [Π, Î])X .

(i) Let r be a ground unsatisfied rule in (T [Π, Î])X . This means that X |= B(r) and
X 2H(r). We show that X can be changed to some interpretation X ′ that avoids
the condition for X not satisfying r. First, observe that since X ∩A = Î we have
X |= (QA

Î
)X .

(a) Assume r is in T ′X = (TP [Π] ∪ TC [Π,A] ∪ TA[A] ∪ Tbo)X . The rule r can not
be an instantiation of the choice rules in TP [Π]∪TC [Π,A]∪TA[A], as it would
be instantiated for X, and hence be satisfied. Thus r can either (a-1) have
H(r) ∈ ABA(Π) and be in (TP [Π] ∪ TC [Π,A])X , (a-2) have H(r) = ko(nr′)
for some r′ ∈ Π and be in TP [Π]X , (a-3) be in (Tbo)X , or (a-4) be of form
α ← abl(α) for some α ∈ A in TA[A])X . For cases (a-1),(a-2),(a-3) we can
construct X ′ = X ∪ {H(r)} so that X ′ |= H(r) and the reduct T ′X′

will not
have further rules.

As for case (a-4), if α ∈ A, this means α is determined to be false by Î, so we
construct X ′ = (X \ {abl(α)})∪ {abl(α)′} so that r does not occur in T ′X′

. If
α /∈ A, then we construct X ′ = X ∪ {α}.

(b) Assume r is in (Tmeta[Π])X .

(b-1) If the rule is of form H(r′)← ap(nr′),not ko(nr′). where B(r′) ∩ A 6= ∅,
H(r′) * A and H(r′) 6= ⊥ for some r′ ∈ Π, this means ko(nr′) /∈ X.
However, rules for r′ are added in TP [Π] which uses the rule ko(nr′). to
deactivate the meta-rule in Tmeta[Π], which is then also unsatisfied in the
reduct (TP [Π])X . So we construct X ′ = X \ ∪{ko(nr′)}. Thus, the rule r
does not appear in (Tmeta[Π])X′

.
(b-2) Let the rule be of form H(r′) ← ap(nr′),not ko(nr′). for some r′ ∈ Π

different than the one in (b-1). We have ap(nr′) ∈ X. Assume X |= B(r′).
If H(r′) = ⊥, then we must have B(r′) ∩A 6= ∅, since otherwise r′ would
occur in omit(Π, A) and contradicts that Î is an answer set. Then if
B−(r′) ∩ A 6= ∅, we construct X ′ = X ∪ {α} for some α ∈ B−(r′) ∩ A;
otherwise, we X ′ = X \ {α} for some α ∈ B+(r′) ∩ A. If X 2B(r′), we
construct X ′ = X \ ap(nr′).

(b-3) If r is of form ap(n′
r) ← B(r′) for some r′ ∈ Π, then we construct

X ′ = X ∪ {ap(n′
r)}. If r is of the remaining forms with bl(n′

r), we
construct X ′ = X ∪ {bl(n′

r)}
(ii) If X is a minimal model, then X is an answer set of T [Π, Î], which achieves the

result. We assume this is not the case, and that there exists Y ⊂ X such that
Y |= (T [Π, Î])X . So, we have Y ∩A = Î. Thus, there exists α ∈ X \ Y such that

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

α ∈ A∗
A \ A. Assume α ∈ A. Then ap(nr) /∈ Y should hold for all r ∈ def (α,Π)

(to satisfy the corresponding meta-rules in Tmeta[Π]X). Also (TA[A])Y does not
contain the rule α← abl(α) (since otherwise it would not be satisfied). So we have
abl(α) /∈ Y , but then we get abl(α)′ ∈ Y \X which is a contradiction.

If the case α ∈ A∗
A\A occurs, then we pick Y as the interpretation. If α ∈ ABA(Π)∪

HBTbo
, then the reduct (T [Π, Î])Y will not have further rules. If α ∈ A+ \ A, then

we apply the above reasoning for Y . When we recursively continue with this
reasoning, eventually, this case will not be applicable, and thus we would construct
a minimal model.

The following result shows that T [Π, Î] flags in its answer sets always bad omission of
atoms, which can be utilized for refinement.

Proposition 4.35. If the abstract answer set Î is spurious, then for every answer set
S ∈ AS(T [Π, Î]), badomit(α, i) ∈ S for some α ∈ A and i∈{type1 , type2 , type3}.

Proof. Note that by Proposition 4.29 we know that the program Π ∪ QA
Î

is unsatisfiable.

Thus S ∩ A is not an answer set of Π ∪ QA
Î

. By Theorem 4.33, we know that having

S ∩ABA(Π) = ∅ contradicts with the spuriousness of Î. Thus, we have S ∩ABA(Π) 6= ∅.

(a) If abp(nr) ∈ S for some rule r ∈ Π, then the rule ap(nr)← ap(nr),not H(r) is
in (T [Π, Î])S , i.e., ap(nr) ∈ S and H(r) /∈ S. This unsatisfied rule is then a

reason for S ∩ A not being an answer set of Π ∪QA
Î

. Since B(r) ∩A 6= ∅, for the
changed rule r̂ ∈ omit(Π, A), we have B(r̂) = B(r) \ A and thus S |= B(r̂), i.e.,
the auxiliary atom absAp(nr) is true. Then by definition, badomit(α, type1) ∈ S
for α ∈ B(r) ∩A.

(b) If abc(α) ∈ S for some atom α ∈ A, then the rule abc(α)←α, bl(nr1), . . . , bl(nrk
),

for def (α,Π) = {r1, . . . , rk}, is in (T [Π, Î])S , i.e., α ∈ S and bl(nr1), . . . , bl(nrk
) ∈ S.

This unsupported atom α is then a reason for S ∩ A not being an answer set of
Π ∪ QA

Î
. We know that α is also in Î, due to S |= (QA

Î
)S . This means that the

abstraction r̂i of some rule ri is in omit(Π, A)Î , i.e., the auxiliary atom absAp(nri
)

is true, while bl(nri
) ∈ S. Thus B(r) ∩ A 6= ∅ must hold. Then by definition,

badomit(α′, type2) ∈ S for α′ ∈ B(r) ∩A.
(c) If abl(α) ∈ S for some atom α ∈ A, then α ∈ S and abc(α) /∈ S. Assume that S∩A

is not an answer set of Π ∪QA
Î

due to an odd or unfounded loop L containing α.

We distinguish the cases for α. Let α ∈ A. As abc(α) /∈ S, for some rule ri in
def (α,Π) we have bl(nri

) /∈ S, i.e., ap(nri
) ∈ S and thus S |= B(ri). We know that

α is also in Î, and since Î is an answer set of omit(Π, A), we conclude that there
exists some α′ ∈ B(r) ∩A such that α′ ∈ L. This way, for the abstract rule r̂i we
have Î |= B(r̂i), i.e., the auxiliary atom absAp(nri

) is true. By definition, we get
badomit(α′, type3) ∈ S.

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Now, let α ∈ A. Then the rule ri in def (α,Π) with B(nri
) ∩ L 6= ∅ is omitted. Say

α′ ∈ B(nri
) ∩ L. If α′ ∈ A, by the above reasoning we get badomit(α′′, type3) ∈ S

for some α′′ ∈ B(r′) ∩A, for r′ ∈ def (α′,Π). If α′ ∈ A, we recursively do the same
reasoning. Since L is a loop, eventually we reach a rule r

′m
i with α ∈ B(r

′m
i), and

thus get badomit(α, type3) ∈ S.

If there is no such loop L with α ∈ L, then cases (a) or (b) applies for S ∩ A not

being an answer set of Π ∪QA
Î

.

The badly omitted atoms Ao ⊆ A w.r.t. a spurious Î ∈ AS(omit(Π, A)) are added
back to refine mA. If Î still occurs in the refined program omit(Π, A \ Ao), i.e., some
Î ′∈AS(omit(Π, A \ Ao)) with Î ′|A=Î exists, then T [Π, Î ′] finds another possible bad

omission. In the worst case, all omitted atoms A are put back to eliminate Î.

Let A0 = A and Ai+1 = Ai \BAi, where BAi are the badly omitted atoms for omit(Π, Ai)
w.r.t. an abstract answer set Îi of omit(Π, Ai).

Corollary 4.36. For a spurious answer set Î, after at most k = |A| steps, omit(Π, Ak)
will have no answer set that matches Î.

Adding back a badly omitted atom may cause a previously omitted rule to appear as a
changed rule in the refined program. Due to this choice rule, the spurious answer set
might not get eliminated. To give a (better) upper bound for the number of required
iterations in order to eliminate a spurious answer set, a trace of the dependencies among
the omitted rules is needed.

The rule dependency graph of Π, denoted Grule
Π = (V,E), shows the positive/negative

dependencies similarly as in GΠ, but at a rule-level, where the vertices V are the rules
r ∈ Π and an edge from r to r′ exists in E if H(r′) ∈ B±(r) holds, which is called
negative if H(r′) ∈ B−(r) and positive otherwise. For a set A of atoms, let nA denote
the maximum length of a (non-cyclic) path in Grule

Π from some rule r with B(r) ∩A 6= ∅
backwards through rules r′ with H(r′) ∈ A. The number nA shows the maximum level
of direct or indirect dependency between omitted atoms and their respective rules.

Proposition 4.37. Given a program Π, a set A of atoms, and a spurious Î ∈ AS(omit(Π,
A)), omit(Π, Ai) will have no abstract answer set matching Î after at most i = nA

iterations.

Proof. Let r0 be a rule with α ∈ B(r0) ∩A that is changed to a choice rule due to mA.
Let r0, r1, . . . , rnA

be a dependency path in Grule
Π where H(ri)∩A 6= ∅ and B(ri)∩A 6= ∅,

0≤ i<nA. Let Î∈AS(omit(Π, A)), assume r0 has spurious behavior w.r.t. Î, and w.l.o.g.
assume Î |= B(ri) \A for all i≤nA.

Due to inconsistency via r0, badomit(α, i) ∈ AS(T [Π, Î]) for some i ∈ {type1 , type2 , type3}.
For A′=A\{α}, omit(r0, A

′) is unchanged, while omit(r1, A
′) becomes a choice rule (with

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

nA−1 dependencies left). Thus, some I ′ ∈ AS(omit(Π, A′)) with I ′|A = Î can still ex-
ist. Since r1 introduces spuriousness w.r.t. I ′, there is badomit(α′) ∈ AS(T [Π, I ′]) for
α′ ∈ B(r1) ∩A′.

By iterating this process nA times, all omitted rules on which r0 depends are traced and
eventually no abstract answer set matching Î occurs.

We remark that in case more than one dependency path r0, . . . , rnA
with several rules

causing inconsistencies exists, the returned set of badomits from T [Π, Î] allows one to
refine the rules in parallel.

Recall that Proposition 4.8 ensures that adding back further omitted atoms will not
reintroduce a spurious answer set. Further heuristics on the determination of bad omission
atoms can be applied in order to ensure that a spurious answer set is eliminated in one
step.

4.4.2 Non-Ground Spuriousness

Debugging non-ground programs is not as straightforward as in the propositional case.
Moreover, there is the additional need to debug the checking for an original answer set
that can be mapped to the given abstract answer set. After discussing the inapplicability
of the available non-ground ASP program debuggers, we describe our approach to help
with debugging the checking and determining a refinement of a mapping.

On using available debuggers Debugging non-ground ASP programs through a
meta-programming [GPST08] approach has been studied by [OPT10], with the drawback
of considering all possible explanations for a given answer set I not being an answer
set of the program Π. For the given input I, in order to prove that I is not an answer
set of Π, the debugging considers many possible guesses of variable assignments that
matches I with a faulty behavior. In our case, the input I is an abstract answer set
stating that there should be some original answer set I ′ of Π such that each atom in I ′

can be mapped to some abstract atom α̂ in I. This adds an additional guess of some
original atom that could be mapped to α̂. However, since the debugging aims at showing
that I is not an answer set of Π, when this additional guessing comes into play, the
debugging makes guesses of original atoms to create some faulty behavior for I even if
these atoms do not even occur in an original answer set. Thus, an immediate application
of the meta-programming approach is not possible.

In order to use the available non-ground debugging tools off-the-shelf, one possibility is
to first guess all possible combinations of the original atoms to match the abstract I, and
then separately debug each of them. If I is in fact spurious, this will be caught as all
possible guesses would return some inconsistency. If I is concrete, then at some point
some guess will correspond to an original answer set, with no inconsistency. However,
this approach is too cumbersome, as there can be many possible concrete guesses for an

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

abstract I and checking each of them one by one until a concrete one is found (if exists)
is highly inefficient.

Our approach to debugging As the existing non-ground debugging tools are not
immediately applicable, we approach the debugging of the unsatisfiability of Π∪Qm

Î
for a

spurious abstract answer set Î by following the debugging approach based on [BGP+07]
from the previous section.

• As a first step, we consider a simplified debugging approach inspired from the
ko atoms of [BGP+07], which is based on detecting the rules that have to be
deactivated in order to keep the satisfiability while checking the concreteness of
an abstract answer set Î, in case it is spurious. We discuss how the debugging
information can be used for refinement, which later in Section 5.2.2 we show on
some benchmark problems.

• As the naive debugging can not address all debugging cases, we also show an exten-
sion of the refinement method by lifting the spock [BGP+07] debugging approach
to the non-ground case, confining to tight programs (i.e., we omit unfounded loop
checking).

When demonstrating the different debugging approaches, we use a non-ground version of
Qm

Î
.

Definition 4.33 (Non-ground query). Given an abstract answer set Î and a mapping
m expressed as a set of facts of form m(x, a) (where m(x) = a), a (non-ground) query
for an answer set that matches Î is described by the following constraints

⊥← in(α̂), {α : m(X1, X̂1), . . . ,m(Xk, X̂k)} ≤ 0. (4.48)

⊥←α,not in(α̂),m(X1, X̂1), . . . ,m(Xk, X̂k). (4.49)

where α = p(X1, ..., Xk) and α̂ = p(X̂1, ..., X̂k), and m(Xi, X̂i) expresses the abstract
mapping, plus the facts

in(α̂)., α̂ ∈ Î \ Tm. (4.50)

Example 4.52 (Example 4.15 ctd). For the program Π and the mapping m = {{1, 2, 3, 4,
5}/k} expressed with facts {m(1, k),m(2, k),m(3, k),m(4, k),m(5, k), the abstract pro-
gram Πm has an answer set Î = {a(k), c(k)}. The query Qm

Î
is as follows:

⊥ ← not in(d(A1)), d(X1),m(X1, A1). ⊥ ← in(d(A1)), {d(X1) : m(X1, A1)} ≤ 0.

⊥ ← not in(c(A1)), c(X1),m(X1, A1). ⊥ ← in(c(A1)), {c(X1) : m(X1, A1)} ≤ 0.

⊥ ← not in(a(A1)), a(X1),m(X1, A1). ⊥ ← in(a(A1)), {a(X1) : m(X1, A1)} ≤ 0.

⊥ ← not in(e(A1)), e(X1),m(X1, A1). ⊥ ← in(e(A1)), {e(X1) : m(X1, A1)} ≤ 0.

⊥ ← not in(b(A1, A2)), b(X1, X2),m(X1, A1),m(X2, A2).

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

⊥ ← in(b(A1, A2)), {b(X1, X2) : m(X1, A1),m(X2, A2)} ≤ 0.

in(a(k)). in(c(k)).

Naive Non-ground Debugging

We approach the debugging of Π ∪ Qm
Î

through catching the rules that need to be

deactivated in order to keep satisfiability of the correctness checking, in case Î is spurious.
For this, we add abnormality atoms, abnr(t1, . . . , tn), in the rules of Π that contain
arguments from the domain.

Definition 4.34. Let Π be a non-ground program and a set N of names for all non-
ground rules in Π. For each r ∈ Π, the program Πab consists of the following rule:

r′ =

H(r)←B(r),not abnr (c1, . . . , cn) B(r) 6= 0 ∧ arg(H(r)) = {c1, . . . , cn} 6= ∅
H(r)←B(r),not abnr (c1, . . . , cn) H(r) = ⊥ ∧ arg(B(r)) = {c1, . . . , cn} 6= ∅
r otherwise

where nr ∈ N . Additionally, for each abnr (c1, . . . , cn), Πab contains:

{abnr (c1, . . . , cn)}.

Having additional rules to assign costs for the existence of the ab atoms in the answer
set, e.g., as

⊥ :∼ abnr (c1, . . . , cn).[1, c1, . . . , cn],

helps in obtaining the debugging answer set with the minimal number of ab atoms.

Example 4.53 (ctd). The program Π in Example 4.15 is converted into Πab:

c(X)← not d(X), X < 5, int(X),not abr1(X).

d(X)← not c(X), int(X),not abr2(X).

b(X,Y)← a(X), d(Y), int(X), int(Y),not abr3(X,Y).

e(X)← c(X), a(Y), X ≤ Y, int(X), int(Y),not abr4(X,Y).

⊥ ← b(X,Y), e(X), int(X), int(Y),not abr5(X,Y).

{abr1(X)}. {abr2(X)}. {abr3(X,Y)}. {abr4(X,Y)}. {abr5(X,Y)}.

and an additional set of constraints are added:

⊥ :∼ abr1(X).[1, X] ⊥ :∼ abr3(X,Y).[1, X, Y]

⊥ :∼ abr2(X).[1, X] ⊥ :∼ abr4(X,Y).[1, X, Y]

⊥ :∼ abr5(X,Y).[1, X, Y]

Checking the spuriousness of Î by Πab ∪Q
m
Î

gives an optimum answer set

{abr4(1, 1), abr4(1, 3), abr4(2, 3), abr4(3, 3), abr2(5)},

132

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Figure 4.12: A graph coloring instance

1

2

3 4

5

(a) Original graph

1̂

2̂

red
blue

green

(b) Abstract graph coloring

showing that the rules r4 and r2 that derive the atoms e and d, respectively, are actually
involved in the computation of the original answer sets and had to be deactivated for
certain domain elements so that a match to the spurious Î could be computed.

The obtained debugging atoms during a correctness check gives hints on which domain
elements should not be involved in a cluster.

Definition 4.35. Given a set AB of (non-ground) abnormality atoms used in the program
Πab, the refinement-hint gathering (non-ground) program Πhint(AB) contains for each
abnr (c1, . . . , cn) ∈ AB and ci ∈ arg(abnr (c1, . . . , cn)), the rule

refine(c1, . . . , cn)← abnr (c1, . . . , cn),m(ci, aci), isCluster(aci).

We discuss later how to make use of these refine atoms to determine a refinement. First,
we show that for the constructed Πab, we can not guarantee that the correctness checking
Πab ∪Q

m
Î

always returns some ab atom if Î is spurious, and thus, the need for a more
sophisticated debugging approach.

Shortcomings Although this debugging can be used for common benchmark problems
(which we demonstrate in Section 5.2.2), the approach to focus on finding rules to
deactivate during the correctness checking is unable to address all debugging cases.

Example 4.54. Consider the graph coloring example with an additional set of rules
requiring that there must be a node that is colored to red and has two neighbors which
are colored to blue and green, so that all three colors are used in the coloring.

The below encoding defines an auxiliary atom usedRedGreenBlue and ensures with a
constraint that the atom must hold.

usedRedGreenBlue← color(X, red), hasEdgeTo(X, green), hasEdgeTo(X, blue).

⊥←not usedRedGreenBlue.

For the graph instance shown in Figure 4.12a, the mapping {{1}/1̂, {2, 3, 4, 5}/2̂} gives
the abstract graph shown in Figure 4.12b. For the coloring shown in Figure 4.12b, the
node 1̂ has possible edges to a node which is colored to blue and also to a node which

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

is colored to green, thus an abstract answer set contains usedRedGreenBlue. However,
when the abstract coloring is mapped back to the original graph, since node 1 only has
one edge, the condition usedRedGreenBlue can not hold true.

However, due to the constraint (4.48) which aims to ensure that all occurring atoms in
Î should have a corresponding original atom, the query Πab ∪Q

m
Î

returns unsatisfiable,
since the rule that defines usedRedGreenBlue can not be applicable.

The case shown in Example 4.54 is caused by the need to activate some original atoms,
even if all the rules that can derive them are not applicable, in order to match the spurious
abstract answer set. Next, we introduce a more sophisticated debugging approach to be
able to address the shortage of the naive debugging.

Non-Ground Debugging using Tagging

We extend the refinement method by lifting the “tagging” approach of spock [BGP+07] to
the non-ground case, confining to tight programs (i.e., we omit unfounded loop checking).
Given Π, we construct the meta program Tmeta[Π] similar to spock [BGP+07], but with
an extension of having arguments in the apnr

, blnr atoms to have information for which
constants the rules are applicable and blocked.

Definition 4.36. Given a non-ground program Π, the program Tmeta[Π] consists of the
following rules for r ∈ Π with arg(H(r)) = {c1, . . . , cn} and arg(B(r)) = {d1, . . . , dm}:

If B(r) = ∅ : r

If H(r) 6= ⊥ ∧ n > 0 :
H(r)← apnr

(c1, . . . , cn),not konr .
apnr

(c1, . . . , cn)← B(r).
blnr (c1, . . . , cn)← not apnr

(c1, . . . , cn).

If H(r) = ⊥ ∨ n = 0 :

H(r)← apnr
(d1, . . . , dm),not konr .

apnr
(d1, . . . , dm)← B(r).

apnr
← apnr

(d1, . . . , dm).
blnr ← not apnr

.

In case the head of rule r is ⊥ or does not contain arguments in the atom, we use the
arguments from the body to know whether r is applicable.

We have abnormality atoms to indicate the actions to avoid the inconsistency:

• ab_deactnr
signals that r was applicable under some interpretation, but had to be

deactivated;

• similarly for ab_deactConsnr
which only talks about the constraints; and

• ab_act(α) says that atom α has to made true although it had no support.

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Definition 4.37. Given a non-ground program Π over A, the following additional
meta-programs are constructed:

1. Tdeact[Π]: for all r ∈ Π with B(r) 6= ∅ and H(r) 6= ⊥:

konr .

{H(r)} ← apnr
(c1, . . . , cn).

ab_deactnr
(c1, . . . , cn)← apnr

(c1, . . . , cn),not H(r).

2. TdeactCons[Π]: for all r ∈ Π with H(r) = ⊥:

{konr}.

ab_deactConsnr
(c1, . . . , cn)← apnr

(c1, . . . , cn), konr .

3. Tact[Π,A]: for all α∈A, with def (α,Π)={r1, ..., rk}:

{α} ← blnr1
(c1, . . . , cn), ..., blnrk

(c1, . . . , cn).

ab_act(α)← α, blnr1
(c1, . . . , cn), ..., blnrk

(c1, . . . , cn).

Notice the similarity of the ab_deact atom to the ab atom from the naive debugging
(Definition 4.34). The difference of these atoms is in their arguments. The ab atoms of
Definition 4.34 contain arguments related with the body of the rule, while the arguments
of ab_deact only contain the ones from the head of the rule. This is a representation
choice, to avoid dealing with many variables involved in the body while only few of
them are used in the head of the rule. For the definition of ab_deactCons however, the
variables of the body must be used. Having a different representation for the deactivation
of the constraints will allow to steer the debugging towards the constraints by assigning
different costs for their occurrence when computing the answer sets with the smallest
number of ab atoms.

Definition 4.38. For a program Π over atoms A, we denote by Πdebug the program
Tmeta[Π] ∪ Tdeact[Π] ∪ TdeactCons[Π] ∪ Tact[Π,A].

We denote by A∗ the vocabulary of Πdebug which consists of A+ ∪AB(Π).

We use Πdebug for checking the correctness of an abstract answer set and then deciding
on the refinement. Adding weak constraints over the abnormality atoms yields an answer
set with fewest ab atoms.

Example 4.55 (Example 4.52 ctd). The programs Tmeta[Π] and Tdeact[Π] with additional
weak constraints over the abnormality atoms are shown in Figures 4.13a and 4.13b,
respectively. The minimal answer set of Tmeta[Π] ∪ Tdeact[Π] ∪Qm

Î
is then

{ab_deactr2(5), ab_deactr4(1), ab_deactr4(3), ab_deactr4(2)}.

Observe that this is similar to the debugging output achieved with the naive approach in
Example 4.53.

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.13: Debugging programs for Example 4.52

c(X) ← apr1(X),not kor1.
apr1(X) ←X < 5,not d(X).
blr1(X) ←not apr1(X).

d(X) ← apr2(X),not kor2.
apr2(X) ←not c(X).
blr2(X) ←not apr2(X).

b(X,Y) ← apr3(X,Y),not kor3.
apr3(X,Y)← a(X), d(Y).
blr3(X,Y) ←not apr3(X,Y).

e(X) ← apr4(X),not kor4.
apr4(X) ← c(X), a(Y), X ≤Y.
blr4(X) ←not apr4(X).

falsum ← apr5(X,Y),not kor5.
apr5(X,Y)← b(X,Y), e(X).
apr5 ← apr5(X,Y).
blr5 ←not apr5.
⊥ ← falsum.

(a) Tmeta[Π]

kor1.
{c(X)} ← apr1(X).
ab_deactr1(X) ← apr1(X),not c(X).
⊥ :∼ ab_deactr1(X).

kor2.
{d(X)} ← apr2(X).
ab_deactr2(X) ← apr2(X),not d(X).
⊥ :∼ ab_deactr2(X).

kor3.
{b(X,Y)} ← apr3(X,Y).
ab_deactr3(X,Y)← apr3(X,Y),not b(X,Y).
⊥ :∼ ab_deactr3(X,Y).

kor4.
{e(X)} ← apr4(X).
ab_deactr4(X) ← apr4(X),not e(X).
⊥ :∼ ab_deactr4(X).

(b) Tdeact[Π] with weak constraints

This debugging approach is also able to handle the mentioned shortcomings of the naive
approach in Example 4.12, as Tact[Π,A] is used to activate original atoms if it is necessary
for achieving satisfiability for Πdebug ∪Q

m
Î

.

We show that Πdebug ∪Q
m
Î

always returns an answer set for Î, with a similar reasoning
as in Proposition 4.34 for debugging bad omission.

Proposition 4.38. Given a tight program Π and a mapping m, for each answer set
Î ∈ AS(Πm), Πdebug ∪Q

m
Î

has an answer set.

Proof. Let X be an interpretation over A∗. We will show that with the help of the
auxiliary rules/atoms, some interpretation X ′ which is a minimal model of (Πdebug∪Q

m
Î

)X′

can be reached starting from X. We have the cases (i) X 2 (Πdebug ∪ Q
m
Î

)X , and (ii)

X |= (Πdebug ∪Q
m
Î

)X .

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

(i) We show that X can be changed to some interpretation X ′ that avoids the conditions
for X not satisfying a rule (Πdebug ∪Q

m
Î

)X , by doing a case analysis on where the
rule may occur.

(a) Let r be an unsatisfied rule in (Tdeact[Π] ∪ TdeactCons[Π] ∪ Tact[Π,A])X . This
means that X |= B(r) and X 2H(r). The rule r can not be an instantiation
of the choice rules in Tdeact[Π] ∪ TdeactCons[Π] ∪ Tact[Π,A], as it would be
instantiated for X, and hence be satisfied. Thus r can either (a-1) have
H(r) ∈ AB(Π) or (a-2) have H(r) = konr′

for some r′ ∈ Π and be in
Tdeact[Π]X . For both of these cases, we construct X ′ = X ∪ {H(r)}, and the
reduct (Tdeact[Π] ∪ TdeactCons[Π] ∪ Tact[Π,A])X′

will not have further rules,
since the added H(r) does not occur in the body of any auxiliary rule. Note
that adding konr′

also avoids having the corresponding meta-rule of r′ in the

reduct (Tmeta[Π])X′

. So no further rules will be added in (Πdebug ∪Q
m
Î

)X′

.

(b) Let r be an unsatisfied rule in (Tmeta[Π])X .

(b-1) If B(r) = ∅, we construct X ′ = X ∪H(r). Thus, we get X ′ |= H(r).
(b-2) If the rule is of form H(r′)← apnr′

(c1, . . . , cn),not konr′
. where H(r′) 6= ⊥

for some r′ ∈ Π, this means konr′
/∈ X. However, rules for r′ are added in

Tdeact[Π] which uses the rule konr′
. to deactivate the meta-rule in Tmeta[Π],

which is then also unsatisfied in the reduct (Tdeact[Π])X . So we construct
X ′ = X \ ∪{konr′

}. Thus, the rule r does not appear in (Tmeta[Π])X′

.
(b-3) Let the rule be of formH(r′)← apnr′

(d1, . . . , dm),not konr′
., whereH(r′) =

⊥ for some r′ ∈ Π. The rules in TdeactCons[Π] are added for r′. X |= B(r)
means that konr′

/∈ X ′. So the choice rule {konr′
}. in TdeactCons[Π] gets

instantiated to ko′
nr′
. in (TdeactCons[Π])X , i.e., ko′

nr′
∈ X. Now consider

the interpretation X ′ = (X \ {ko′
nr′
}) ∪ {konr′

}. Since konr′
∈ X ′, the

rule r does not appear in Tmeta[Π]X
′

.
(b-4) If r is of form apnr′

(c1, . . . , cn) ← B(r′) (or apnr′
(d1, . . . , dm) ← B(r′))

for some r′ ∈ Π, then we construct X ′ = X ∪ {apnr′
(c1, . . . , cn)} (or

X ′ = X ∪ {apnr′
(d1, . . . , dm)}). If r is of the remaining forms involving

ab and bl, for some r′ ∈ Π, we first check if X |= B(r′), then either add
the respective ab atoms or the respective bl atom to X ′.

(c) Assume X 2 (Qm
Î

)X . As Qm
Î

has two forms of rules, X not satifying a rule in

(Qm
Î

)X means that either (a) some α ∈ X ∩ A exists while m(α) /∈ Î, or (b)

for some α̂ ∈ Î, no α ∈ X ∩ A exists such that m(α) = α̂.

(c-1) The literal m(α) not occurring in Î means that all rules in def (m(α),Πm)
are not applicable for Î. This means that for each r ∈ def (α,Π) we have
B(r) 6= ∅, and for some r ∈ def (α,Π) the choice rule {α}← apnr

(c1, . . . , cn)
in Tdeact[Π] gets instantiated to α← apnr

(c1, . . . , cn) in ΠX
debug. Now con-

sider the interpretation X ′ = (X \ {α}) ∪ {α′}, for which the choice rule
gets instantiated to α′← apnr

(c1, . . . , cn) in ΠX′

debug. Thus an interpretation
X ′ is constructed where case (c-1) is avoided.

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

(c-2) Similarly as above, depending on whether the original rules in def (α,Π)
for all α ∈ m−1(α̂) are applicable or blocked for X, using the auxiliary
choice rules in Tdeact[Π] and Tact[Π,A] some X ′ can be constructed that
avoids the case of having no α ∈ X ′ with m(α) = α̂.

For the constructed X ′ case (a-1) may occur, and can be avoided as shown by
adding ab atoms to the interpretation.

By iterating the reasoning on the constructed X ′, since none of the cases will undo
a construction step that is previously made, some interpretation X ′′ that satisfies
(Πdebug ∪Q

m
Î

)X will eventually be achieved.

(ii) If X is a minimal model, then X is an answer set of Πdebug ∪Q
m
Î

, which achieves
the result. We assume this is not the case, and that there exists Y ⊂ X such that
Y |= (Πdebug ∪ Q

m
Î

)X . As Y |= (Qm
Î

)X , we have m(Y ∩ A) = Î. Let α ∈ X \ Y ,

then we have two cases: (a) α ∈ A, (b) α ∈ A∗ \A, i.e., α is an auxiliary debugging
atom.

(a) Let α = p(c1, . . . , cn). As α ∈ X \ Y and α ∈ A, this means that there is
some α̂ = p(ĉ1, . . . , ĉn) in Î and some α1 = p(c′

1, . . . , c
′
n) in Y (and α1 ∈

X) such that m(α1) = m(α) = α̂. However, since α̂ ∈ Î and Î is an

answer set of Πm, there exists a rule instantiation r̂ ∈ (Πm)Î such that
H(r̂) = α̂. Then, since α, α1 ∈ X the abstract rule r̂ has corresponding
rules r, r1 ∈ Tmeta[Π]X where r : p(c1, . . . , cn)← apnr′

(c1, . . . , cn),not konr′
.

and r1 : p(c′
1, . . . , c

′
n)← apnr′′

(c′
1, . . . , c

′
n),not konr′′

for some r′, r′′ ∈ Π.

Now, as we assume α /∈ Y , then apnr′
(c1, . . . , cn) /∈ Y should hold (to satisfy

the rule r ∈ Tmeta[Π]X). Then in order to avoid not satisfying the rule
apnr′

(c1, . . . , cn)←B(r′)|c1,...,cn in Tmeta[Π]X , where B(r′)|c1,...,cn denotes that

B(r′) is instantiated over c1, . . . , cn, either (a-1) for some β ∈ B+(r′)|c1,...,cn

we must have β /∈ Y or (a-2) for some β ∈ B−(r′)|c1,...,cn we must have β ∈ Y .
As case (a-2) contradicts Y ⊂ X, let us consider case (a-1). For β /∈ Y , we
do the same reasoning as above. By doing this recursive reasoning, since Π
is tight, we eventually reach a rule in which case (a-1) is not applicable, and
thus by case (a-2) we reach a contradiction.

(b) Let α ∈ A∗ \ A. If α is in AB(Π), then we pick Y as the interpretation, and
the reduct (Πdebug ∪Q

m
Î

)Y will not have further rules, since the ab atoms of

AB(Π) do not occur in body of any auxiliary rule. If α is in A+ \ A, then we
pick Y as the interpretation and apply the above reasoning for Y . When we
recursively continue with this reasoning, eventually, the case (ii-b) will not be
applicable, and thus we would construct a minimal model.

Note that in the proof of Proposition 4.38, since the auxiliary programs Tdeact[Π] ∪
TdeactCons[Π]∪Tact[Π,A] can always have a model (as they do not contain constraints), one
can start with an interpretation X which models (Tdeact[Π]∪ TdeactCons[Π]∪ Tact[Π,A])X .

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

However, since we construct another interpretation Y from X, a check on whether Y
models (Tdeact[Π] ∪ TdeactCons[Π] ∪ Tact[Π,A])Y then becomes necessary.

The following result shows that we can use Πdebug∪Q
m
Î

to obtain hints for the spuriousness

reason of Î.

Proposition 4.39. Given a tight program Π and a mapping m, if an answer set
Î ∈ AS(Πm) is spurious, then for every answer set S ∈ AS(Πdebug ∪ Q

m
Î

) either (i)

ab_deactnr(c1, . . . , cn) ∈ S or ab_deactConsnr(c1, . . . , cn) ∈ S for some r ∈ Π, or (ii)
ab_act(α(c1, . . . , cn)) ∈ S.

Proof. If Î is spurious, by Proposition 4.29 the program Π ∪ Qm
Î

is unsatisfiable. We
focus on debugging the cause of inconsistency introduced by Qm

Î
. Since Π is tight, this

inconsistency can either be due to (i) an unsatisfied rule or (ii) an unsupported atom.

(i) Let r ∈ Π be an unsatisfied rule w.r.t. S. This means that the constraints in
Qm

Î
is causing H(r) to be false while B(r) is satisfied. By the program Tmeta[Π],

depending on r, either apnr
(c1, . . . , cn) or apnr

(d1, . . . , dm) is true. By Tdeact[Π],
we get ab_deact(r, c1, . . . , cn) ∈ S. If H(r) = ⊥, then by TdeactCons[Π], we have
konr ∈ S (else ⊥ ∈ S by Tmeta[Π]), and we get ab_deactCons(r, c1, . . . , cn) ∈ S.

(ii) Let α = α(c1, . . . , cn) ∈ S be an unsupported atom in Π w.r.t S for the do-
main elements c1, . . . , cn. Then, for each rule instance r deriving α, we have
blnr (c1, . . . , cn) ∈ S and by Tact[Π,A], we have ab_act(α) ∈ S.

Indeed for non-tight programs, debugging the corretness checking could result in unsatis-
fiability.

Example 4.56. Consider the below program which is unsatisfiable and also contains a
positive loop.

a(X)←not a(X), int(X).

a(X)← a(X), int(X).

int(1). int(2). int(3).

For the mapping m = {{1, 2, 3}/k}, the constructed abstract program Πm becomes

a(X)←not a(X), înt(X).

{a(X)}← isCluster(X), înt(X).

a(X)← a(X), înt(X).

înt(k).

causing to have the abstract answer set Î = {a(k)}. Checking the correctness using
Πdebug∪Q

m
Î

results in unsatisfiability, because it requires to have some a(c) for c ∈ m−1(k)
to hold true through a loop, which is not covered in the definition of Πdebug.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Handling the unfounded loop checking can be done by introducing an additional ab-
normality atom, say abloop as in [BGP+07] and lifting it to the non-ground settings as
follows:

{abloop(α)}←not ab_act(α).

α← abloop(α).

However, this solution causes to have further guessing rules involved in the non-ground
debugging. Also the existence of abloop(α) sometimes does not even indicate that a
violation of a loop formula exists and just makes the search more difficult due to
considering many possibilities of the guesses. Therefore, we choose to focus only on tight
programs and concentrate on the determination of a refinement.

Definition 4.35 on obtaining refinement hints then gets updated to use the newly intro-
duced ab atoms.

Definition 4.39. The refinement-hint gathering program Πhint(AB) contains the follow-
ing rules:

• For ci ∈ arg(ab_deactnr
(c1, . . . , cn)):

{refine(c1, . . . , cn)← ab_deactnr
(c1, . . . , cn),m(ci, ai), isCluster(ai).}

• For ci ∈ arg(ab_deactConsnr
(c1, . . . , cn)):

{refine(c1, . . . , cn)← ab_deactConsnr
(c1, . . . , cn),m(ci, ai), isCluster(ai).}

• For ci ∈ arg(α(c1, . . . , cn)):

{refine(c1, . . . , cn)← ab_act(α(c1, . . . , cn)),m(ci, ai), isCluster(ai).}

By using Πhint, we get as hints the domain elements that are mapped to cluster abstract
elements and that cause to obtain ab atoms in the debugging.

Deciding on a Refinement

The introduced debugging approaches find a set of abnormality atoms in case the abstract
answer set is spurious. We consider two forms of using the obtained debugging output
for deciding on a refinement.

(v1) The number of ab atoms occurring in the answer set with the smallest number of
ab atoms is assigned as a cost to the corresponding mapping.

(v2) The inferred refine atoms are used to decide on a refinement of the abstraction.

In approach (v1), the assigned costs are then used for a local search among the possible
refinements of an abstraction, where the mapping with the minimum cost is picked as the
refinement. Approach (v2) is more closer to the CEGAR-like approach [CGJ+03], where
a refinement is determined from the spuriousness check. We now describe the approaches
in more detail, and then in Section 5.2.2 we report on their comparisons.

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. Refinement by Debugging

Algorithm 4.1: decideRefinement with Search
Input: Π, m
Output: m′

1 if m has non-singleton clusters then
2 refinecosts = []; allrefs = [];

/* compute all 1-distance refinements of m */

3 refs = computeRefinements(m, 1)
4 forall m′ ∈ refs do
5 c = getCostOfMapping(Π,m′);
6 if c = 0 then /* found a concrete abstract answer set */

7 return m′;
8 else
9 refinecosts.append(c); allrefs.append(m′)

10 minrefs = getRefsMinCost(refinecost, allrefs)
11 m′ = pickRandomRef (minrefs)
12 return m′

13

14 def getCostOfMapping(Π,m)
15 Π′ = constructAbsProg(Π,m);
16 Πdebug = constructDebugProg(Π);
17 Pick some I ∈ AS(Π′)
18 Find optimum answer set I ′ of Πdebug ∪Qm(I)
19 return |I ′|ab|

(v1) Local Refinement Search The idea is to search among possible refinements
of a mapping for deciding on a refinement. For this, we consider a notion of distance
between an abstraction and its refinement, which is the difference in the number of
abstract clusters.

Definition 4.40. A distance of a mapping m1 to a refinement m2 is |D2| − |D1| for the
corresponding abstract domains Di, i ∈ {1, 2}.

Example 4.57. Each mapping m′ ∈
⋃

d∈{{1},{1,2},{1,2,3},{1,2,3,4}}{d/k1, {1, . . . , 5} \ d/k2}
is a 1-distance refinement of m = {{1, 2, 3, 4, 5}/k}.

Algorithm 4.1 shows the procedure of deciding on a refinement for a given mapping m by
doing a distance-based search among all possible refinements of the mapping and picking
the one with the least cost. All 1-distance refinements of m are computed, and then the
cost of each of the refinements is determined, by calling the function getCostOfMapping.
This function first constructs the abstract program Π′ according to the mapping, and
then picks an abstract answer set I. It then finds the answer set with smallest number of
ab atoms of the program Πdebug ∪Qm(I) and returns the number of occurring ab atoms.
If some refinement has cost 0, the mapping is returned. Otherwise, all the costs of the

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

refinements are collected. In Line 10 the refinements with minimum cost are gathered,
and then a random pick is made over them. If the given mapping contains only singleton
clusters, this means the original domain has been reached.

Example 4.58 (ctd). Running Algorithm 4.1 to decide on a refinement for m of Ex-
ample 4.53 (using the implementation explained in the upcoming Section 5.1) results
in the following steps. The algorithm starts computing the cost of each refinement
(Example 4.57) one by one. The cost of refinement m′ = {{1}/k1, {2, 3, 4, 5}/k2} is 3 due
to the picked answer set of Πm′

being

{a(k1), a(k2), d(k1), c(k2), b(k1, k1), b(k2, k1)}.

For the refinement m′′ = {{1, 2}/k1, {3, 4, 5}/k2} the picked answer set of Πm′′

is

{a(k1), a(k2), d(k1), d(k2), b(k1, k1), b(k2, k1), b(k1, k2), b(k2, k2)},

which is concrete, thus m′′ has cost 0. Hence, the refinement m′′ is chosen without
continuing further.

(v2) Abstraction Refinement Using Hints The abstract answer set correctness
checking returns ab-atoms that contain the domain elements involved in the debugging
of the unsatisfiability. These domain elements can be used as hints on which part of
the mapping to refine. The idea of the refine atoms is to get the hints about which
domain elements should not be involved in a cluster. For a mapping m, given a hint
atom refine(c1, . . . , cn), we consider two actions to describe a refinement m′:

(1) For refine(c1, . . . , cn) with ci, 1 ≤ i ≤ n, such that m−1(m(ci)) > 1, the refinement
m′ satisfies m′−1(m′(ci)) = 1.

(2) For refine(c1, . . . , cn) with ci 6= cj , 1 ≤ i ≤ j ≤ n, and m(ci) = m(cj), the refinement
m′ satisfies m′(ci) 6=m′(cj).

Example 4.59 (ctd). For Example 4.53, the hint atoms are {refine(1, 1), refine(1, 3),
refine(2, 3), refine(3, 3), refine(5)}. Applying refinement action (1) means to map the
elements 1, 2, 3, 5, which are mapped to the cluster k in m, to singletons in m′. Thus,
we obtain the refinement mapping m′ = {{1}/k1, {2}/k2, {3}/k3, {4}/k4, {5}/k5}. It is
clear that with this trivial abstraction mapping the spurious answer set Î is removed.

If we apply refinement action (2), we need to separate the clusters of 1, 3 and 2, 3. The
refinement m′ = {{1, 2}/k1, {3, 4, 5}/k2 satisfies this. The answer sets of Πm′

do not
contain a match to Î, i.e., ∄I ′ ∈ AS(Πm′

) such that I ′ ∈ m′(m−1(Î)).

The obtained hint atoms from Example 4.55 are {refine(1), refine(2), refine(3), refine(5)}
on which refinement action (2) would not result in a refinement, as there are no pairs to
separate.

Note that it is not guaranteed to always obtain some refine atom during the correctness
checking whenever Î is spurious, since sometimes the ab atoms can contain only domain
elements that are mapped to singleton clusters. In this case, another abstract answer set
Î ′ ∈ Π̂m can be picked for the correctness checking.

142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Overall Methodology

Algorithm 4.2: Omission-Abs&Ref

Input: Program Π, set Ainit of atoms to omit
Output: Π′ = omit(Π, A′), A′, and either an abstract answer set I of Π′, or Π′ is

unsatisfiable
1 A′ = Ainit;
2 Π′ = constructAbsProg(Π, A′);
3 while AS(Π′) 6= ∅ do
4 Get I ∈ AS(Π′);
5 Πdebug = constructDebugProg(Π, A′, I);
6 S = getASWithMinBadOmit(Πdebug);
7 if S|badomit = ∅ then /* I concrete */

8 return Π′, A′, I
9 else /* refine the abstraction */

10 A′ = A′ \ S|badomit ;
11 Π′ = constructAbsProg(Π, A′);

/* reached an unsatisfiable Π′
*/

12 return Π′, A′, ∅

4.5 Overall Methodology

As seen in the previous sections, the methods to construct the abstract program and
decide on a refinement by checking the correctness of an abstract answer set differs for
the two abstraction methods. We now describe in more detail how the methods work for
the particular abstractions.

4.5.1 Omission Abstraction and Refinement

For omission abstraction, the mapping m is represented with the set A of atoms to be
omitted by m and the input program Π is ground. Algorithm 4.2 shows the abstraction
refinement method for omission abstraction. Given a ground program Π and a set Ainit

of atoms to be omitted, first the abstract program Π′ = omit(Π, Ainit) is constructed
(Line 2). If the abstract program is unsatisfiable, the program and the set of omitted
atoms are returned (Line 12). Otherwise, an answer set I ∈ AS(omit(Π, Ainit)) is
computed. In the implementation, the first answer set is picked. In order to check
whether I is concrete, the meta-program Πdebug = T [Π, Î] as described in Section 4.4.1
is constructed (Line 5). Then a search over the answer sets of T [Π, Î] for a minimum
number of badomit atoms is carried out (Line 6). If an answer set with no badomit
atoms exists, then this shows that I is concrete, and the abstract program and the set of
omitted atoms are returned (Line 8). Otherwise, the set of omitted atoms is refined by
removing the atoms that are determined as badly omitted, and a new abstract program is
constructed with the refined abstraction A′. This loop continues until either the abstract
program Π′ constructed at Line 11 is unsatisfiable or its first answer set is concrete.

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Algorithm 4.3: Domain-Abs&Ref

Input: Program Π, domain mapping minit

Output: Πm, a mapping m that refines minit, and either an abstract answer set Î
of Πm, or Πm is unsatisfiable.

1 m = minit;
2 Πm = constructAbsProg(Π);
3 Tm = computeRelTypes(Π,m);
4 Πdebug = constructDebugProg(Π);
5 while AS(Πm, Tm) 6= ∅ do
6 Get I ∈ AS(Πm, Tm);
7 C = getASWithMinAbAtoms(Πdebug,m, I);
8 if C|ab = ∅ then /* I concrete */

9 return Πm,m, I
10 m = decideRefinement(m,C);
11 Πm = constructAbsProg(Π);
12 Tm = computeRelTypes(Π,m);
13 return Πm,m, ∅

4.5.2 Domain Abstraction and Refinement

The abstraction and refinement method for domain abstraction is shown in Algorithm 4.3.
For domain abstraction, additionally, the relation type computation of the relations
according to the abstraction m is conducted (Line 3). The construction of the debugging
program does not depend on the abstract answer set as in omission abstraction, thus,
is done before an abstract answer set is computed (Line 4). The concreteness checking
(Line 7) is conducted with getASWithMinAbAtoms which uses the non-ground query Qm

Î
(Definition 4.33) constructed for m and I, and searches for an answer set of Πdebug ∪Q

m
Î

with minimal number of ab atoms. The refinement step (Line 10) is done by deciding
on a refinement for m given the ab atoms occurring in the concreteness checking if I is
spurious.

If the rules in Π do not contain constants from the domain to be abstracted, then it
is enough to construct the abstract program Πm once and only recompute the relation
types Tm according to the new mapping m, since the constructed Πm is non-ground.
Thus, for such cases Line 11 can be omitted. We remark that if a rule contains a constant
c, it can be replaced with a variable X by also adding a new auxiliary atom pc(X) to the
rule body and using the additional fact pc(c).

In order to apply abstraction over a particular subdomain/sort by keeping the rest of
the domain elements untouched, Algorithm 4.3 can be extended to consider as input
the domain predicate name s for the sort. This way the relation type computation, the
abstract program and the debugging program construction can only focus on the domain
elements related with s.

144

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Overall Methodology

Algorithm 4.4: Domain-Abs&Ref-Diverse

Input: Program Π, domain mapping minit

Output: Πm, a mapping m that refines minit, and either an abstract answer set Î
of Πm, or Πm is unsatisfiable.

1 m = minit;
2 Πm = constructAbsProg(Π);
3 Tm = computeRelTypes(Π,m);
4 Πdebug = constructDebugProg(Π);
5 while AS(Πm, Tm) 6= ∅ do
6 A = getDiverseAnsSets(Πm, Tm);
7 Clist = [];
8 for I ∈ A do
9 C = getASWithMinAbAtoms(Πdebug,m, I);

10 if C|ab = ∅ then /* I concrete */

11 return Πm,m, I
12 else
13 Clist.append(C);
14 m = decideRefinement(m,Clist);
15 Πm = constructAbsProg(Π);
16 Tm = computeRelTypes(Π,m);
17 return Πm,m, ∅

Projecting correctness checking to relevant atoms Projecting the correctness
checking of abstract answer sets to the relevant atoms that describe the solution is
achieved by constructing Qm

Î
only for these atoms. Thus an abstract answer set will then

be decided to be concrete as long as it describes a concrete solution with respect to these
relevant atoms.

Diverse abstract answer sets The refinement step can also be extended to checking
multiple abstract answer sets before deciding on a refinement. That is, a refinement
decision is not made by checking one answer set, but by gathering the results of checking
multiple answer sets. Algorithm 4.4 shows an updated version of Algorithm 4.3 by
collecting the results of checking a set of abstract answer sets. An additional function
getDiverseAnsSets is used to pick a set of abstract answer sets. Then decideRefinement
uses the collected results for deciding on a refinement. For refinement approach v1, the
cost of a mapping is determined by checking multiple abstract answer sets and then
picking the one with the least cost. Refinement approach v2 decides on the domain to
refine by choosing the most occurring refine atom.

145

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Figure 4.14: Joint abstraction of nodes and colors

1
red

2
blue

3

green

64 5 {red,green,blue}

4.6 Multi-Dimensional Domain Abstraction

As we have seen from Proposition 4.22, it is possible to construct an abstract program
over multiple sorts in the manner of cartesian abstraction. This is achieved by doing
abstraction over the sorts one at a time, which means one can not adhere to structure
during the abstraction. However, in certain cases an abstraction mapping that takes into
account certain interdependency among the sorts may be needed.

Example 4.60 (Example 4.45 ctd). An interesting abstraction would be to assign a
color cluster ˆrgb only for the nodes {4, 5, 6} while for nodes {1, 2, 3} the original colors
are considered and also having a node cluster {4, 5, 6}/4̂ as shown in Figure 4.14. Such an
abstraction can not be achieved with a cartesian style abstraction, since the color cluster
ˆrgb is only meant to be considered for the node cluster 4̂. Thus, the desired abstraction

can only be defined with a multi-dimensional mapping m : Dn × Dc → D̂n × D̂c as
follows:

m(i, j) =

{
(i, j) i ∈ {1, 2, 3}, j ∈ {red, green, blue}
(4̂, ˆrgb) i ∈ {4, 5, 6}, j ∈ {red, green, blue}

.

Grid-Cell Domains To further motivate the need for multi-dimensionality, let us
consider a representation of grid-cell domains which is commonly used in problems.
Usually the grid-cells are represented by using two sorts row and column. For example,
the following rules show the part of a Sudoku encoding that guesses an assignment of
symbols to the cells, and ensures that each cell has a number.

{sol(X,Y,N)}←not occupied(X,Y), num(N), row(X), column(Y).

hasNum(X,Y)← sol(X,Y,N), row(X), column(Y). (4.51)

⊥←not hasNum(X,Y), row(X), column(Y).

Further constraints ensure that cells in the same column (4.52) or same row (4.53) do
not contain the same symbol.

⊥← sol(X,Y1,M), sol(X,Y2,M), Y1 < Y2. (4.52)

⊥← sol(X1, Y,M), sol(X2, Y,M), X1 < X2. (4.53)

146

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.6. Multi-Dimensional Domain Abstraction

Figure 4.15: Abstractions over grid-cells

A

1 2 3 4
1
2
3
4 B

x
y

(a)

A

1 2 3 4
1
2
3
4

B

x
y

(b)

A
1 2 3 4

1
2
3
4

B

x
y

(c)

An additional more involved constraint (see Appendix A) ensures that the cells in the
same sub-region also satisfies this condition.

An abstraction over the grid-cells would be to cluster the rows and columns together in
order to define an abstract grid-cell. Although abstraction over the sorts one at a time is
able to achieve certain abstract cell structures, to obtain more sophisticated abstractions
these sorts must be jointly abstracted.

Example 4.61. Consider the abstractions in Figure 4.15. Achieving those in Fig-
ures 4.15a-4.15b is possible by a mapping over the rows and columns independently
such as mrow = mcol = {{123}/a123, {4}/a4} and mrow = mcol = {{12}/a12, {34}/a34}.
For a given program Π, one can construct the abstract program (Πmrow)mcol . However
to achieve Figure 4.15c, rows and columns must be jointly abstracted. While the cells
(ai, bj), 1≤ i, j≤ 2 are singletons mapped from (i, j), the other abstract regions are only
given by

mrow,col(x, y) =

(a12, b34) x ∈ {1, 2}, y ∈ {3, 4}
(a34, b12) x ∈ {3, 4}, y ∈ {1, 2}
(a34, b34) x ∈ {3, 4}, y ∈ {3, 4}

(4.54)

Observe that the abstract row a12 describes a cluster that abstracts over the individual
abstract rows a1, a2. The original rows {1, 2} are mapped to {a12} only in combination
with columns {3, 4}, otherwise they are mapped to {a1, a2}.

Need for existential abstraction Consider the rule (4.52) standardized apart over
rows and columns, to have the relations X1 = X2 and Y1 < Y2. For the mapping mrow,col

(Fig. 4.15c), if these relations are lifted following Section 4.3.2, although the relation
over the y-axis is still defined (as A is located above of B), i.e., AY ≤ BY , AX = BX

is unclear as the abstract clusters for X-values are different due to different levels of
abstraction.

An existential abstraction over the relations as described in Section 4.3.7 gives the ability
to introduce domain mappings over multiple sorts such as

m :D1× . . . ×Dn → D̂1× . . . × D̂n,

and to handle relations over different levels of abstraction.

147

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Computing Joint Abstract Relation Types

Abstract relations can be easily employed with abstraction mappings over several sorts
in the domain as m : D1 × · · · ×Dn → D̂1 × · · · × D̂n. If a rule has relations over the
sorts, a joint abstract relation combining them must be computed. We show an example
of grid-cell abstraction for illustration and then extend to the multi-dimensional case.

Example 4.62 (Abstracting grid-cells). Consider the relations rel1(X1, X2): X1 =X2

and rel2(Y1, Y2):Y1<Y2 for X1, X2 ∈ row, Y1, Y2 ∈ column, from standardizing apart the

variables in (4.52). The rules to compute the types τ r̂el
I , τ r̂el

III , where r̂el combines rel1
and rel2, are as follows:

1. Define the abstract relations. This step corresponds to the existential abstraction
(4.41).

r̂el1((X̂1, Ŷ1), (X̂2, Ŷ2))← rel1(X1, X2),m((X1, Y1), (X̂1, Ŷ1)),m((X2, Y2), (X̂2, Ŷ2)).

r̂el2((X̂1, Ŷ1), (X̂2, Ŷ2))← rel2(Y1, Y2),m((X1, Y1), (X̂1, Ŷ1)),m((X2, Y2), (X̂2, Ŷ2)).

Similarly, the negations ¬r̂el1,¬r̂el2 are computed as (4.42).

¬r̂el1((X̂1, Ŷ1), (X̂2, Ŷ2))←¬rel1(X1, X2),m((X1, Y1), (X̂1, Ŷ1)),m((X2, Y2), (X̂2, Ŷ2)).

¬r̂el2((X̂1, Ŷ1), (X̂2, Ŷ2))←¬rel2(Y1, Y2),m((X1, Y1), (X̂1, Ŷ1)),m((X2, Y2), (X̂2, Ŷ2)).

2. Compute the types of each abstract relation r̂eli, i ∈ {1, 2} with the objects
Ĉi = (X̂i, Ŷi), i ∈ {1, 2} as (4.43).

τ r̂eli
I (Ĉ1, Ĉ2)← r̂eli(Ĉ1, Ĉ2),not ¬r̂eli(Ĉ1, Ĉ2).

τ r̂eli
II (Ĉ1, Ĉ2)← not r̂eli(Ĉ1, Ĉ2),¬r̂eli(Ĉ1, ĉ2).

τ r̂eli
III (Ĉ1, Ĉ2)← r̂eli(Ĉ1, Ĉ2),¬r̂eli(Ĉ1, Ĉ2).

3. Compute the types of the joint abstract relation r̂el over r̂eli, i ∈ {1, 2}:

τ r̂el
I (Ĉ1, Ĉ2)← τ r̂el1

I (Ĉ1, Ĉ2), τ r̂el2
I (Ĉ1, Ĉ2).

τ r̂el
III (Ĉ1, Ĉ2)← not τ r̂el1

II (Ĉ1, Ĉ2), τ r̂el2
III (Ĉ1, Ĉ2).

τ r̂el
III (Ĉ1, Ĉ2)← τ r̂el1

III (Ĉ1, Ĉ2),not τ r̂el2
II (Ĉ1, Ĉ2).

The mapping (4.54) shown in Figure 4.15c gives the types τ r̂el
I ((a1, b1), (a1, b2)), τ r̂el

I ((a2, b1),

(a2, b2)) and τ r̂el
III for the remaining abstract pairs.

Note that for the joint abstract relation r̂el, type τ r̂el
II computation is not needed, as the

abstract rule construction only deals with types I and III.

148

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.6. Multi-Dimensional Domain Abstraction

Multi-dimensional relation types Computing relation types is easily lifted to rela-
tions rel1, ... , reln over variables from D̂1, . . . , D̂n, respectively. Assuming for simplicity
a uniform arity k, the abstract k-tuple relations are computed by

r̂eli((d̂
1
1, ... , d̂

n
1), ... , (d̂1

k, ... , d̂
n
k))←reli(d

i
1, ... , d

i
k),

∧k
j=1m(((d1

j , ... , d
n
j)), ((d̂1

j , ... , d̂
n
j))).

for i = 1, . . . , n. We compute the types of these auxiliary abstract relations, for objects
ĉj = (d̂1

j , . . . , d̂
n
j), 1 ≤ j ≤ k, as follows:

τ r̂eli

I (ĉ1, . . . , ĉk)← r̂eli(ĉ1, . . . , ĉt),not ¬r̂eli(ĉ1, . . . , ĉt).

τ r̂eli

II (ĉ1, . . . , ĉt)← not r̂eli(ĉ1, . . . , ĉt),¬r̂eli(ĉ1, . . . , ĉt).

τ r̂eli

III (ĉ1, . . . , ĉt)← r̂eli(ĉ1, . . . , ĉt),¬r̂eli(ĉ1, . . . , ĉt).

The types of the joint abstract relation r̂el over the objects ĉj = (d̂1
j , . . . , d̂

n
j), 1 ≤ j ≤ k

(i.e. τ r̂el
I and τ r̂el

III), are then computed as below.

τ r̂el
I (ĉ1, . . . , ĉk)← τ r̂el1

I (ĉ1, . . . , ĉk), . . . , τ r̂eln

I (ĉ1, . . . , ĉk).

τ r̂el
III (ĉ1, . . . , ĉk)← τ r̂eli

III (ĉ1, . . . , ĉk),
∧n

j=1:j 6=inot τ
r̂elj

II (ĉ1, . . . , ĉk), 1 ≤ i ≤ n.

To emphasize on the abstracted relations, we sometimes denote r̂el in τ r̂el with the
combination of the relations that the abstract relation is built on; e.g., for Example 4.62
we have τ=,<

I , τ=,<
III .

The multi-dimensional abstraction constructs an abstract structure, i.e., object, over the
abstracted sorts where not all combinations of the abstract sorts yields a valid object.
For example, in Example 4.60 the color cluster ˆrgb can only be considered with the
node cluster 4̂. This also needs to be taken into account when constructing the abstract
program.

Example 4.63. The abstract program for Sudoku (4.51)-(4.53), where the occurrences
of row(X), column(Y) are replaced by cell(X,Y), is as follows.

hasNum(X,Y)← sol(X,Y,N), cell(X,Y).

{sol(X,Y,N)}←not occupied(X,Y), num(N), cell(X,Y).

{sol(X,Y,N)}← occupied(X,Y), num(N), isCluster(X), cell(X,Y).

{sol(X,Y,N)}← occupied(X,Y), num(N), isCluster(Y), cell(X,Y).

⊥←not hasNum(X,Y), cell(X,Y).

⊥← sol(X1, Y1,M), sol(X2, Y2,M), τ=,<
I (X1, Y1, X2, Y2), cell(X,Y1), cell(X2, Y2).

⊥← sol(X1, Y1,M), sol(X2, Y2,M), τ<,=
I (X1, Y1, X2, Y2), cell(X1, Y), cell(X2, Y2).

149

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Different abstraction levels on variables Remember that the bodies of the original
rules have to be standardized apart over the sorts on which the abstraction is made, in
order to ensure that over-approximation is achieved. However, when the variables can
get involved with different levels of abstraction, further adjustments on the rule has to
be made.

For example, consider an additional rule for the Sudoku encoding as below

middle(X,Y3,M1,M2)← sol(X,Y1,M1), sol(X,Y2,M2), Y2 < Y3, Y3 < Y1.

which distinguishes the cells between (X,Y1) and (X,Y2). When the variables in the
body are standardized apart over row and column, we get

middle(X,Y3,M1,M2)← sol(X,Y1,M1), sol(X1, Y2,M2), X = X1, Y2 < Y3, Y3 < Y1.

where the head atom contains the variable X while also the variable X1 occurs in the body
due to the standardization. For regions B and A in Figure 4.15c, type τ=

III(a12, a1) holds
for the X values, and for the region that is below A and above B, type τ<,<

I (b1, b2, b34)
holds for the Y values. If the atoms sol(a12, b34,m1) and sol(a1, b1,m2) hold true for
some numbers m1,m2, then the atom middle(a1, b2,m1,m2) is expected to hold true.
However, since the head of the rule only contains the variable X and (a12, b2) is not a
valid cell, this rule is unable to derive the expected atom; an over-approximation can not
be obtained.

There are different ways to overcome this issue. One way is to apply standardization
apart over the whole rule (with the head), and to treat the uncertainty over the relations.
An alternative way is to add additional symmetric rules for the other variables that occur
in the body due to the standardization. For the above example, the additional rule

middle(X1, Y3,M1,M2)← sol(X,Y1,M1), sol(X1, Y2,M2), X = X1, Y2 < Y3, Y3 < Y1.

gets added to also have the variable X1 in the head. This way no possible valuation of
the (non-ground) head atom is lost in the abstraction process.

In Chapter 6, we describe in detail the implementation for this type of abstraction and
investigate its use in understanding problems over grid-cells.

4.7 Discussion

In this chapter, we have introduced two notions of abstraction to Answer Set Programming
and we have defined methods to apply them on a given answer set program in order
to achieve an over-approximation of the original program. Such an abstraction notion
opens a wide-range of applications, as it can be used in getting rid of irrelevant details
of a program by preserving its original behavior. Depending on the abstraction, the
over-approximation may result in obtaining spurious abstract answer sets. To tackle this,
we have described a CEGAR-style abstraction refinement methodology that starts with
a coarse abstraction and refines the abstraction upon encountering spurious abstract
answer sets. This way, one can start with some initial abstraction in mind, and then let
the method find a refinement of it which returns a concrete solution.

150

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Discussion

Two Forms of Relation Types In domain abstraction, we introduced two approaches
in applying abstraction to the rules. The first approach is more intuitive in the sense that
the built-in relations in the rules are meant to be kept when constructing the abstract
rules. This requires to lift the relations to the abstract domain, and the result of this
lifting has to be taken into account to achieve an over-approximation. The steps needed
to achieve this as described in Section 4.3.1 are intuitive. With this approach, the abstract
program still contains the built-in relations in the rules, which keeps the similarity for
the original rules.

The existential abstraction approach takes a more straightforward view on abstracting
the relations. Given that there are fewer relation types to consider, we conducted
experiments to observe whether there is any gain in computation. The experiments
showed no improvement in the computation effort, since type III for abstract relations is
a combination of type III and IV of lifted relations. With this approach, the constructed
abstract program loses the format of the relations in the rules by only keeping the auxiliary
relation type atom. However, such an existential abstraction gives the ability to handle
different levels of abstractions among the abstract elements as shown in Section 4.6.

4.7.1 Other Abstraction Possibilities

Composing the Abstractions

The two abstraction notions can easily be combined to obtain an abstraction that omits
certain details and also abstracts over some part of the domain. This can be achieved
with the current definitions, by first applying the desired domain abstraction to the
program and then grounding the constructed non-ground abstract program to omit some
of the atoms from it. After constructing the abstract ground program and computing an
answer set, the correctness checking would have to be done on the original non-ground
program. However, since some of the atoms are omitted, the abstract answer set will
not contain these atoms. Thus, the correctness checking needs to take into account the
omitted atoms, and check for the concreteness only over the remaining atoms.

Deciding on a refinement can still be achieved by non-ground debugging, where there
will be two main causes for abnormalities. One will be the bad clustering of domain
elements, while the other one will be the bad omission of atoms. Thus, obtaining the
refinement hints has to be altered to take into account these both cases. Depending on
the outcome of debugging the correctness checking, a decision can be made either to
refine the domain, or to add back some atoms, or to do both.

Predicate Abstraction

Applying predicate abstraction to ASP would be to introduce new literals that desribe an
abstraction of some of the original literals, and rewriting the given answer set program
to only mention the newly introduced literals. The naive way of replacing the literals
with the abstract ones would not always achieve an over-approximation, due to the same
reasoning as for domain abstraction.

151

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

Example 4.64 (Example 4.15 ctd). Consider a predicate abstraction that maps the
atoms a(X) and d(X) to ad(X), i.e., if a(d) or d(d) holds true for some d ∈ D, then ad(d)
holds true. When we replace the a- and d-atoms in Example 4.15, we get the following
program:

c(X)← not ad(X), X < 5, int(X).

ad(X)← not c(X), int(X).

b(X,Y)← ad(X), ad(Y), int(X), int(Y).

e(X)← c(X), ad(Y), X ≤ Y, int(X), int(Y).

⊥ ← b(X,Y), e(X), int(X), int(Y).

ad(1). ad(3). int(0), . . . , int(5).

However, in all of the answer sets of this program b(5, 1) and b(5, 3) holds true, and none
of the original answer sets has a matching abstract answer set.

Further considerations are necessary according to the types of the abstract literals due
to the abstraction, similar to how it is done for domain abstraction.

A simple way to achieve predicate abstraction is to apply reification of predicates of the
original program. E.g., p(X,Y) gets written into x(p,X, Y). Then one considers the
constants for the predicate names as a sort. By standardizing apart the variables, the
clustering of the predicate names can be handled over the relations.

Example 4.65 (ctd). A rewriting of the atoms a(X) and d(X) to the form x(a,X) and
x(d,X) achieves the program

c(X)← not x(d,X), X < 5, int(X).

x(d,X)← not c(X), int(X).

b(X,Y)← x(P1, X), x(P2, Y), P1 = a, P2 = d, pred(P1), pred(P2), int(X), int(Y).

e(X)← c(X), x(P, Y), P = a, pred(P), X ≤ Y, int(X), int(Y).

⊥ ← b(X,Y), e(X), int(X), int(Y).

x(a, 1). x(a, 3). int(0), . . . , int(5).

pred(a). pred(d).

Then an abstraction m over the sort pred such as {a, d}/ad can be applied.

This works for predicate abstraction where the corresponding literals have arguments
from the same sort in the same index. In case a literal contains fewer arguments, then
dummy values can be used to fill in the remaining indices.

Another possibility to achieve predicate abstraction is by following the motivation behind
existential abstraction of the relations and to introduce a new set of predicates by also
introducing their relation types according to the abstraction. Then the abstract rules

152

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Discussion

will be formed for all combinations of the types of the abstract predicates, i.e., no choice
in the head for having only type I relations of all abstract predicates, and adding choice
to the head for the remaining cases.

Example 4.66 (ctd). Similar to Example 4.64 the abstract predicate name ad is in-
troduced with the relation type τad

III and the additional fact isClusterad. Note that the
arguments of the literal are not of importance, as the abstraction is over the predicate
name, not on a domain element. The constructed abstract program then becomes as
follows.

c(X)← not ad(X), X < 5, int(X).

{c(X)} ← ad(X), isClusterad, X < 5, int(X).

ad(X)← not c(X), int(X).

{b(X,Y)} ← ad(X), ad(Y), τad
III , int(X), int(Y).

{e(X)} ← c(X), ad(Y), τad
III , X ≤ Y, int(X), int(Y).

⊥ ← b(X,Y), e(X), int(X), int(Y).

ad(1). ad(3). int(0), . . . , int(5).

We remark that this approach is similar to using the rewriting of the original program
with reification of predicates and applying existential abstraction on the relations.

4.7.2 Related Work in ASP

The most related work to abstraction in ASP are the simplification methods that strive
for preserving the semantics. These methods have been extensively studied over the years,
here we give an overview of the notions. Notice that, different from these simplification
methods, abstraction may lead to an over-approximation of the models (answer sets) of
a program, which changes the semantics, in a modified language.

Over-approximation by abstraction reduces the vocabulary which makes it different than
the relaxation methods [LZ04, GLM04]. These methods translate a ground program into
its completion [Cla78] and search for an answer set over the relaxed model. As they focus
only on ground programs, they can be compared with the abstraction that omits atoms
from the program, which does not need to take into account the computation of the loop
formulas when searching for a concrete abstract answer set. However, finding the reason
for spuriousness of an abstract answer set is trickier than finding the reason for a model
of the completion not being an answer set of the original program, since the abstract
answer set contains fewer atoms and a search over the original program is needed to
detect the reason why no matching answer set can be found.

Equivalence-based rewriting

The equivalence of logic programs is considered in the sense of the answer set semantics:
a program Π1 is equivalent to a program Π2 if AS(Π1) = AS(Π2). Strong equivalence

153

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

[LPV01] is a much stricter condition over the two programs: Π1 and Π2 are strongly
equivalent if, for any set R of rules, the programs Π1 ∪R and Π2 ∪R are equivalent. This
is the notion that makes it possible to simplify a part of a logic program without looking
at the rest of it: if a subprogram Q of Π is strongly equivalent to a simpler program Q′,
then the Q is replaced by Q′. The works [ONA02, Tur03, EFTW04, Pea04] show ways
of transforming programs by ensuring that the property holds. A more liberal notion
is uniform equivalence [Mah86, Sag87] where R is restricted to a set of facts. Then, a
subprogram Q in Π can be replaced by a uniformly equivalent program Q′ and the main
structure will not be affected [EF03].

In terms of abstraction, there is the abstraction mapping that needs to be taken into
account, since the constructed program may contain a modified language and the mapping
makes it possible to relate it back to the original language. Thus, in order to define
equivalence between the original program Π and its abstraction Π̂m according to a
mapping m, we need to compare m(AS(Π)) with AS(Πm). The equivalence of Π and
Π̂m then becomes similar to the notion of faithfulness. However, as we have shown, even
if the abstract program Π̂m is faithful, refining m may lead to an abstract program that
contains spurious answer sets. Thus, simply lifting the current notions of equivalence to
abstraction may not achieve useful results.

Refinement-safe faithfulness however is a property that would allow one to make use of
Π̂m instead of Π, since it preserves the answer sets. This property can immediately be
achieved when a constructed abstract program is unsatisfiable (which then shows that
original program was unsatisfiable). However, for original programs that are consistent,
reaching an abstraction that is refinement-safe faithful is not easy; adding an atom back
or dividing the domain cluster may immediately cause to reach a guessing that introduces
spurious solutions.

Other program transformations

Other transformation methods, especially to help with the grounding and solving of
the programs, have also been investigated. A preprocessing technique was considered
in [GKNS08] which transforms a program into a simpler one, along with an assignment
and a relation expressing equivalences among the assignable constituents of the program.
Another form of preprocessing in [MW12] (later extended to full ASP syntax [BMW16])
was applied to each rule of a program by computing the tree decomposition of a rule, and
then splitting the rule up into multiple, smaller rules according to this decomposition.

The unfolding method for disjunctive programs in [JNS+06] is similar in spirit to our
approach of introducing choice to the head for uncertainties. For a given disjunctive
program P , the authors create a generating program that preserves completeness. With
this program they generate model candidates (but they may also get “extra” candidate
models, which do not match the stable models of P). Then they test for stability of
these candidates. For testing a candidate model M , another normal program Test(P,M)
is built such that Test(P,M) has no stable models if and only if M is a stable model

154

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Discussion

of the original disjunctive program P . Thus, testing the stability is reduced to testing
the nonexistence of stable models for Test(P,M). However, this approach does not
consider omission of atoms from the disjunctive rules when creating the new program;
the authors further extend the vocabulary with auxiliary atoms. They build the model
candidate gradually by starting from an empty partial interpretation and extending it
step by step. For this, they use the observation that if for the extension M of the partial
interpretation by assigning false to the undefined atoms, Test(P,M) has a stable model,
then P has no stable model M ′ ⊃M . When compared with the notions introduced in
the omission-based abstraction, this technique would give a more restricted notion of
spuriousness of an abstract answer set, since the omitted atoms would be assigned to
false.

Forgetting

Forgetting is an important operation in knowledge representation and reasoning, which
has been studied for many formalisms and is a helpful tool for a range of applications,
cf. [Del17, EKI18]. The aim of forgetting is to reduce the signature of a knowledge
base, by removing symbols from the formulas in it (while possibly adding new formulas)
such that the information in the knowledge base, given by its semantics that may be
defined in terms of models or a consequence relation, is invariant with respect to the
remaining symbols; that is, the models resp. consequences for them should not change
after forgetting.

Due to nonmonotonicity and minimality of models, forgetting in ASP turned out to be
a nontrivial issue. It has been extensively studied in the form of introducing specific
operators that follow different principles and obey different properties; we refer to
[GKLW17, Lei17] for a survey and discussion. The main aim of forgetting in ASP as such
is to remove/hide atoms from a given program, while preserving its semantics for the
remaining atoms. As atoms in answer sets must be derivable, this requires to maintain
dependency links between atoms. For example, forgetting the atom b from the program
Π = {a← b.; b← c.} is expected to result in a program Π′ in which the link between a
and c is preserved; this intuitively requires to have the rule a ← c in Π′. The various
properties that have been introduced as postulates or desired properties for an ASP
forgetting operator mainly serve to ensure this outcome; forgetting in ASP is thus subject
to more restrictive conditions than abstraction.

Relation with omission abstraction Atom omission as we consider it is different
from forgetting in ASP as it aims at a deliberate over-approximation of the original
program that may not be faithful; furthermore, our omission does not resort to language
extensions such as nested logic programs that might be necessary in order to exclude
non-faithful abstraction; notably, in the ASP literature under-approximation of the
answer sets was advocated if no language extensions should be made [EW08].

Only more recently, over-approximation has been considered as a property of forgetting
in ASP in [DW15], which was later named Weakened Consequence (WC) in [GKL16]:

155

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Abstraction for Answer Set Programs

(WC) Let Π be a disjunctive logic program, let A be a set of atoms, and let X be an
answer set for Π. Then X \A is an answer set for forget(Π, A).

That is, AS(Π)|A ⊆ AS(forget(Π, A)) should hold. This property amounts to the notion
of over-approximation that we achieve in Theorem 4.2. However, according to [GKL16],
this property is in terms of proper forgetting only meaningful if it is combined with
further axioms. Our results may thus serve as a base for obtaining such combinations; in
turn, imposing further properties may allow us to prune spurious answer sets from the
abstraction.

Unsatisfiable Cores in ASP

Before we conclude, we remark the relation of unsatisfiable cores with our notion of
abstraction and its use in finding the cause for unsatisfiability.

A well-known notion for unsatisfiability are minimal unsatisfiable subsets (MUS), also
known as unsatisfiable cores [LS08, LS04]. The latter are based on computing, given a set
of constraints respectively formulas, a minimal subset of the constraints that explains why
the overall set is unsatisfiable. Unsatisfiable cores are helpful in speeding up automated
reasoning, but have beyond many applications and a key role e.g. in model-based diagnosis
[Rei87] and in consistent query answering [ABC99].

In ASP, unsatisfiable cores have been used in the context of computing optimal answer
sets [AD16, AKMS12], where for a given (satisfiable) program, weak constraints are
turned into hard constraints; an unsatisfiable core of the modified program that consists
of rewritten constraints allows one to derive an underestimate for the cost of an optimal
answer set, since at least one of the constraints in the core can not be satisfied. However,
if the original program is unsatisfiable, such cores are pointless. In the recent work
[ADJ+18], unsatisfiable core computation has been used for implementing cautious
reasoning. The idea is that modern ASP solvers allow one to search, given a set of
assumption literals, for an answer set. In case of failure, a subset of these literals is
returned that is sufficient to cause the failure, which constitutes an unsatisfiable core.
Cautious consequence of an atom amounts then to showing that the negated atom is an
unsatisfiable core.

Relation to spurious answer sets in omission abstraction Intuitively, unsatisfi-
able cores are similar in nature to spurious abstract answer sets, since the latter likewise
to not permit to complete a partial answer set to the whole alphabet. More formally,
their relationship is as follows.

Technically, an unsatisfiable (u-) core for a program Π is an assignment I over a subset
C ⊆ A of the atoms such that Π has no answer set J that is compatible with I, i.e., such
that J |C = I holds. We then have the following property.

Proposition 4.40. Suppose that for a program Π and a set A of atoms Î ∈ AS(omit(Π, A))
holds. If Î is spurious, then Î is a u-core of Π (w.r.t. A \ A). Furthermore, if A is

156

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.7. Discussion

maximal, i.e., no A′ ⊃ A exists such that omit(Π, A′) has some spurious answer set Î ′

such that Î|A′ = Î ′, then Î is a minimal core.

Proof. The abstract answer set Î describes an assigment over A \ A; Î being spurious
means that there is no answer set J in Π such that J |A\A = Î, thus Î is a u-core. Now

assume A is maximal, and that there exists an assignment Î ′ ⊂ Î which is a u-core
for Π w.r.t. A \ A′ for some A′ ⊃ A. Let α ∈ Î \ Î ′, then α ∈ A′ \ A. Thus, by
over-approximation, we know that Î|A′ = Î ′ ∈ AS(omit(Π, A′)) must hold. Since Î ′ is an

answer set of AS(omit(Π, A′)), the fact that it is a u-core means that Î ′ is spurious. By
this, we reach a contradiction to the assumption that A is maximal.

That is, spurious answer sets are u-cores; however, the converse fails in that cores C are
not necessarily spurious answer sets of the corresponding omission A = A \ A(C), where
A(C) are the atoms that occur in C. E.g., for the program with the single rule

r : a← b,not a.

the set C = {b} is a core, while C is not an answer set of omit({r}, {a})) = ∅. Intuitively,
the reason is that C lacks foundedness for the abstraction, as it assigns b true while there
is no way to derive b from the rules of the program, and thus b must be false in every
answer set. As C is a minimal u-core, the example shows that also minimal u-cores may
not be spurious answer sets.

Thus, spurious answer sets are a more fine-grained notion of relative inconsistency than
(minimal) u-cores, which accounts for a notion of weak satisfiability in terms of the
abstracted program. In case of an unsatisfiable program Π, each blocker set C for Π
naturally gives rise to u-cores in terms of arbitrary assignments I to the atoms in A \ C;
in this sense, blocker sets are conceptually a stronger notion of inconsistency explanation
than u-cores, in which minimal blocker sets and minimal u-cores remain unrelated in
general.

157

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Applications in Problem Analysis

In this chapter, we investigate possible applications of abstraction in understanding the
key elements of problems, by abstracting away as many irrelevant details as possible that
may be traced before finding a solution of a problem or realizing that it is unsolvable.

Outline In Section 5.1, we provide details of our implementations for the abstraction
and refinement methods introduced in Chapter 4 for different types of abstractions.
Section 5.2 shows the evaluation results by focusing on the achievement of abstract
solutions to the problems. Section 5.2.1 shows the results of using omission abstraction
in finding satisfiability blockers of programs, and Section 5.2.2 reports about the achieved
non-trivial domain abstractions and the results of having variations in the methodology.
In Section 5.3, we discuss the use of domain abstraction in understanding planning
problems expressed in ASP. We conclude with a discussion in Section 5.4.

5.1 Implementation

We have implemented the following three prototypical systems to instantiate and experi-
ment with the abstraction and refinement methods described in Chapter 4:

1. ASPARO - Omission Abstraction and Refinement for ASP Programs
2. DASPAR - Domain Abstraction for ASP Programs
3. mDASPAR - Multi-dimensional Domain Abstraction for ASP Programs

The systems are implemented using Python and Clingo, and are available at http:
//www.kr.tuwien.ac.at/research/systems/abstraction/.

Figure 5.1 shows the system structure of the tools according to procedures shown in
Section 4.5, with the respective components (for ASPARO and (m)DASPAR, they are
slightly different). The arcs model both control and data flow within the tool. The

159

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Π

m

Π

ˆ

m′

m′

ASP Solver

Spock

ControlAbstraction
Creator

Refinement

Checker
Creator

1

4

2

3

5

6

7

S

(M-)DASPAR

ASPARO

Meta
Translator
(M-)DASPARASPARO

Figure 5.1: System structure of the implementation

general workflow of the tools is as follows. First, the input program Π and the mapping
m are read. For (m)DASPAR an additional input S of which sorts to do the abstraction
is given. Then the control component calls the abstraction creator component which
uses Π and m to create the abstract program Π̂m 1 . The controller then calls the ASP

Solver to get an answer set of Π̂m 2 . If the solver finds no answer set, the controller
outputs the abstract program and m. Otherwise, it calls the refinement component
with the abstract answer set Î to check spuriousness and to decide whether or not to
refine the abstraction 3 . The refinement component calls the checker creator 4 to create
the debugging program, which for ASPARO uses Spock 5 and for (m)DASPAR uses a
MetaTranslator to obtain the reification of the program. Then the ASP solver is called
to check whether Î is concrete 6 . If not, i.e., when Î is spurious, it refines the abstraction
by updating m 7 . Otherwise, the controller returns the outputs.

For further implementation issues considered in mDASPAR and its use for problem
solving, we refer to Chapter 6.

5.1.1 ASPARO

ASPARO is called with two parameters, the ground program Π and a set A of atoms to be
omitted from Π, describing m. The format of Π should adhere to the input requirements

160

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Implementation

of SPOCK1.

Given the input, ASPARO first creates the abstract program as described in Section 4.2
and gets an abstract answer set. In order to check the correctness of the answer set, it
calls SPOCK to get the debugging program and alters it as described in Section 4.4.1.
In case the answer set is spurious, the debugging program determines some atoms to
be badly omitted, then updates the abstraction by adding them back to the vocabulary
in the next iteration. The loop continues until either unsatisfiability is observed, or a
concrete abstract answer set is encountered.

Example 5.1. Consider the program Π = {c ← not d., d ← not c., a ← not b, c., b ←
d, e., e← not a.} and an initial omission abstraction of {b, e}. The input program (say
ex.lp) of ASPARO would be

r1: c :- not d.

r2: d :- not c.

r3: a :- not b,c.

r4: b :- d,e.

r5: e :- not a.

ASPARO is called with

python asparo.py ex.lp b,e.

An example run of the system is as follows. First the abstract program Π|
{b,e}

= {c←

not d., d ← not c., {a} ← c.} is created, and the (spurious) abstract answer set {c} is
computed. When checking its correctness, the atom b is determined as badly omitted.
Then the abstraction is refined by adding b back to the vocabulary. In the new abstract
program Π|

{e}
= {c← not d., d← not c., a← not b, c.{b} ← d.}, the concrete abstract

answer set {c, a} is encountered, which ends the run.

5.1.2 DASPAR

DASPAR consists of three separate Python scripts. There is a script that creates the
abstract program following the method described in Sections 4.3.2-4.3.3, which is called
with three parameters: a non-ground program Π, the abstraction mapping m described
as facts, and the name of the sort to be abstracted. Another script is used to create
the debugging program following Section 4.4.2. The main script applies the overall
abstraction refinement methodology.

In order to guarantee obtaining an over-approximation, the format of the input program
Π should adhere to certain restrictions. Each variable in a rule should be guarded by a
domain predicate. If there are several sorts in the program and the abstraction should

1http://www.kr.tuwien.ac.at/research/systems/debug/index.html. The most impor-
tant restriction is to have a labelling of the rules, to allow the debugging mechanism to explicitly refer to
rules.

161

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

be done on some subset S of sorts, then the variables in the rules referring to the sorts in
S have to be standardized apart. For example, a rule of form

a(X)← b(X,X1), c(X2), d(X2), X ≤ X1.

needs to be converted into

a(X)← b(X,X1), c(X2), d(X3), X ≤ X1, X2 = X3.

where each variable is supported by the domain predicate dom. In order to support the
case of having more than one relation, a syntactic change on the rule has to be made.
These relations need to be combined into an auxiliary relation atom which represents the
combination of the relations. The above rule needs to be converted into

a(X)← b(X,X1), c(X2), d(X3), leqEqu4 (X,X1, X2, X3).

where leqEqu4 (X,X1, X2, X3) is an auxiliary atom which holds true whenever the respec-
tive relation holds true for its arguments. The supported auxiliary relation combinations
can be found in the description, and more can easily be added.

The abstraction mapping m needs to be described in a separate file. This file should
contain facts of the form dom(sort,original element) describing the original do-
main and mapTo(sort,original element,abstract element) describing the
mapping. For example, the mapping m = {{1, 2, 3}/a0, {4, 5}/a1} is described as

dom(dom,1..5). mapTo(dom,1..3,a_0).2 mapTo(dom,4..5,a_1).

When DASPAR applies an abstraction mapping over a sort, it does not consider the
full mapping over the whole domain (i.e. Herband universe) that maps the remainder
elements different from the sort elements to singletons. Therefore, DASPAR currently
only supports programs with rules that contain no relation atoms with arguments as
constants or variables from different sorts.

Initially, in v0.1, DASPAR was built following the naive debugging method. In v0.2, the
sophisticated debugging method is considered. For this, DASPAR uses the MetaTranslator
of the debugging tool Ouroboros [OPT10] to obtain the reification of the program, and
then constructs the debugging program.

DASPAR is invoked as follows.

python daspar.py prog mapping pred ref_type <focus_atoms>

Here prog should contain the original program in the input format and the mapping
should contain the abstraction mapping information. Currently, DASPAR supports
abstraction on one sort, thus pred should be the name of the sort to the abstracted.
The parameter ref_type is the option of specifying whether the refinement should
respect an order (1) or not (0). If 1 is given, the refinement step considers only splitting
the domain, while when 0 is given the refinement step is not restricted. The parameter
<focus_atoms> is an optional input in which one can give the predicate names of
the atoms that are of importance. DASPAR uses this information when checking the

2One can use 1..3 (a range) to compactly state facts.

162

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Evaluation

correctness of the abstract answer sets by projecting the checking only to these focus
atoms.

There are different settings of DASPAR for picking abstract answer sets and for deciding
on a refinement. For picking an abstract answer set to check for correctness, the default
setting is to pick the first computed answer set. It is also possible to change this setting
to consider a diverse set of abstract answer sets. To foster diversity a Clingo API is
used to guide the answer set seach by randomly picking one atom in an answer set and
adding it as nogood, which excludes re-occurrence of the atom. In case focus_atoms is
provided, the diversity is done only on these atoms. With the diverse setting, DASPAR
computes at most 50 diverse abstract answer sets, and randomly picks 5 of them for
checking. For deciding on a refinement, the two forms mentioned in Section 4.4.2 are
implemented. Either a search over the cost of the refinements is done and the refinement
with the minimum cost is picked, or hints are obtained from the debugging and refinement
is made according to the hints. Later, we evaluate the effects of having these different
settings in the methodology on the achieved resulting abstractions.

For practical purposes, sorts can use overlapping elements of the domain, provided that all
occurrences of the sort are guarded by domain predicates. For example, the blocksworld
problem contains sorts block and time where both sorts can use integers. Note that this
restriction is to help the machine know about the relations of the arguments, which is
something that the user implicitly knows when encoding the problem. With this guidance,
it becomes clear over which arguments in the rule the abstraction should focus on.

5.2 Evaluation

The assessment of the introduced abstraction and refinement procedure focuses on
the achievement of abstract solutions to the problems. We evaluated the omission-
based abstraction approach for unsatisfiable problems to observe its use in finding the
unsatisfiability reason of a problem by keeping the atoms relevant for the unsatisfiability.
The evaluation of the domain abstraction approach focuses on the achieved (non-trivial)
abstractions on which a concrete solution to the problem is encountered.

5.2.1 Finding Satisfiability Blockers of Programs

The computation of a ⊆-minimal blocker set of an unsatisfiable program (introduced
in Section 4.2.5), given an initial set of omission atoms A, is shown in Algorithm 5.1.
It takes into account that minimal blocker sets amount to minimal put-back sets for
unsatisfiability. The procedure checks whether omitting an atom α ∈ A \ A from Π
preserves unsatisfiability. If yes, the atom is added to A and the search continues from the
newly constructed abstract program omit(Π, {α}). Once all the atoms are examined, the
atoms that are chosen not to be omitted, A \A, form a ⊆-minimal blocker set, provided
that AS(Π, A) is unsatisfiable.

163

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Algorithm 5.1: ComputeMinBlocker

Input: Π, A, A s.t. AS(Π, A) = ∅
Output: a ⊆-minimal blocker set Cmin⊆A\A

1 forall α ∈ A \A do
2 Π′ = constructAbsProg(Π, {α});
3 if AS(Π′) = ∅ then
4 A = A ∪ {α};
5 Π = Π′;
6 return Cmin = A \A

Experiments

In our experiments, we wanted to observe the use of abstraction in catching the part of
the program which causes unsatisfiability. We aimed at studying how the abstraction
and refinement method behaves in different benchmarks in terms of the computed final
abstractions and the needed refinement steps, when starting with an initial omission of a
random set of atoms.

For the refinement step, we used the debugging approach described in Section 4.4.1
and searched for an answer set with minimum number of badomit atoms, which are the
debugging atoms that tell which omitted atoms should be added back in the refinement.
As we expected this search to be difficult, we wanted to investigate whether different
minimizations over the badomit atom number makes a difference in the final abstractions
reached.

Additionally, we were interested in computing the ⊆-minimal blocker sets of the programs
and observing the difference in size of the ⊆-minimal blocker sets depending on the
problems. For finding ⊆-minimal blocker sets, we moreover compared a top-down method
to a bottom-up method, to see their effects on the quality of the resulting ⊆-minimal
blocker sets:

• The top-down method proceeds by calling the function ComputeMinBlocker with
the original program Π, the set A of atoms and A = {}, so that the search for a
⊆-minimal blocker set starts from the top.

• The bottom-up method initially chooses a certain percentage of the atoms to omit,
Ainit, and calls the function Omission-Abs&Ref with Π and Ainit to refine the
abstraction and find an unsatisfiable abstract program, omit(Π, Afinal). Then, a
search for ⊆-minimal blocker sets is done with the remaining atoms, by calling the
function ComputeMinBlocker with omit(Π, Afinal), A and Afinal.

We wanted to observe whether there are cases where the bottom-up method helps in
reaching ⊆-minimal blocker sets of better quality in terms of smaller size than those
obtained with the top-down method.

164

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Evaluation

Benchmarks We considered five benchmark problems with a focus on the unsatisfiable
instances. Two of the problems are based on graphs, two are scheduling and planning
problems, respectively, and the fifth one is a subset selection problem.

Graph Coloring (GC). We obtained the generator for the graph coloring problem3 that
was submitted to the ASP Competition 2013 [ACC+13], and we generated 35 graph
instances with node size varying from 20 to 50 with edge probability 0.2 to 0.6, which
are not 2 or 3-colorable. The respective colorability tests are added as superscripts to
GC, i.e, GC2, GC3.

Abstract Argumentation (AA). Abstract argumentation frameworks are based on graphs
to represent and reason about arguments [Dun95]. The abstract argumentation research
community has a broad collection of benchmarks with different types of graph classes,
which are also being used in competitions [GLMW16]. We obtained the Watts-Strogatz
(WS) instances [WS98] that were generated by [CGV16] and are unsatisfiable for existence
of so called stable extensions.4 We focused on the unsatisfiable (in total 45) instances
with 100 arguments (i.e., nodes) where each argument is connected (i.e., has an edge) to
its n ∈ {6, 12, 18} nearest neighbors with probability 1 and to the remaining arguments
with a probability β ∈ {0.10, 0.30, 0.50, 0.70, 0.90}.

Disjunctive Scheduling (DS). As a non-graph problem, we considered the task scheduling
problem from the ASP Competition 2011 [CIR+11] and generated 40 unsatisfiable
instances with t ∈ {10, 20} tasks within s ∈ {20, 30} time steps, where d ∈ {10, 20} tasks
are randomly chosen to not to have overlapping schedules.

Strategic Companies (SC). We considered the strategic companies problem with the
encoding and simple instances provided in [ELM+98]. In order to achieve unsatisfiability,
we added a constraint to the encoding that forbids having all of the companies that
produce one particular product to be strategic. SC is a canonic example of a disjunctive
program that has presumably higher computational cost than normal logic programs,
and no polynomial time encoding into such programs is feasible. We have thus split rules
with disjunctive heads, e.g., a∨ b← c, into choice rules {a} ← c; {b} ← c at the cost of
introducing spurious guesses and answer sets. The resulting split program can be seen as
an over-approximation of the original program, and thus causes for unsatisfiability of
the split program can be seen as approximative causes for unsatisfiability of the original
program.

15-puzzle (PZ). Inspired from the Unsolvability International Planning Competition,5 we
obtained the ASP encoding for the Sliding Tiles problem from the ASP Competition 2009
[DVB+09], which is named as 15-puzzle. We altered the encoding in order to avoid having
cardinality constraints in the rules, and to make it possible to solve also non-square

3www.mat.unical.it/aspcomp2013/GraphColouring
4www.dbai.tuwien.ac.at/research/project/argumentation/systempage/Data/

stable.dl
5https://unsolve-ipc.eng.unimelb.edu.au/

165

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Figure 5.2: Experimental results for the base case (i.e., with upper limit on badomit #

per step). The three entries in a cell, e.g., 0.49 / 0.74 / 1.00 in cell (GC2, |Ainit |
|A|), are for

50% / 75% / 100% initial omission.

Π
|Ainit |

|A|

|Afinal |

|A|
Ref # t (sec)

|Cmin|

|A|
t (sec)

GC2

0.49 0.49 0.02 0.81 0.10 0.80
0.74 0.63 0.51 1.13 0.10 0.51
1.00 0.18 3.03 3.60 0.10 1.63

top-down 0.10 2.30

GC3

0.49 0.40 0.82 1.83 0.17 1.68
0.72 0.31 2.46 5.87 0.16 2.04
1.00 0.11 4.18 6.54 0.17 3.47

top-down 0.16 4.32

AA

0.50 0.19 3.70 7.20 0.38 8.90
0.75 0.20 4.19 8.41 0.37 8.67
1.00 0.01 2.00 4.07 0.38 11.74

top-down 0.38 11.75

DS

0.50 0.39 1.62 3.36 0.10 1.89
0.72 0.40 3.49 6.77 0.09 2.09
1.00 0.45 4.90 9.57 0.07 1.99

top-down 0.09 4.15

SC

0.49 0.48 0.03 0.59 0.10 0.34
0.74 0.42 0.65 1.14 0.10 0.41
1.00 0.43 1.00 2.65 0.11 0.40

top-down 0.12 0.82

PZ

0.36 0.32 3.76 65.10 0.29 150.10
0.54 0.45 8.47 154.10 0.27 103.70
0.76 0.54 22.85 448.60 0.26 80.00

top-down 0.30 281.40

instances. We used the 20 unsolvable instances from the planning competition, which
consist of 10 instances of 3x3 and 10 instances of 4x3 tiles.

The collection of all encodings and benchmark instances can be found at http://www.
kr.tuwien.ac.at/research/systems/abstraction/

Results The tests were run on an Intel Core i5-3450 CPU @ 3.10GHz machine using
Clingo 5.3, under a 600 secs time limit and 7 GB memory limit. The initial omission,
Ainit, is done by choosing randomly 50%, 75% or 100% of the nodes in the graph problems
GC, AA, of the tasks in DS, of the companies in SC, and of the tiles in PZ, as well as by
omitting all the atoms related with the chosen objects. We show the overall average of

166

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Evaluation

10 runs for each instance in Figure 5.2.

The first three rows under each category show the bottom-up approach for 50%, 75%,
and 100% initial omission, respectively. The columns |Ainit |/|A| and |Afinal |/|A| show
the ratio of the initial omission set Ainit and the final omission set Afinal that achieves
unsatisfiability after refining Ainit (with shown number of refinement steps and time). The
second part of the columns is on the computation of a ⊆-minimal blocker set Cmin. For
the bottom-up approach, the search starts from Afinal while for the top-down approach,
it starts from A. In each refinement step, the number of determined badomit atoms is
minimized to be at most |A|/2; Figure 5.3 shows results for different upper limits and its
full minimization.

Figure 5.2 shows that, as expected, there is a minimal part of the program which contains
the reason for unsatisfiability of the program by projecting away the atoms that are not
needed (sometimes more than 90% of all atoms). Observe that when 100% of the objects
in the problems are omitted, refining the abstraction until an unsatisfiable abstract
program is obtained takes the most time. This shows that a naive way of starting with
an initial abstraction by omitting every relevant detail is not efficient in reaching an
unsatisfiable abstract program. We can observe that larger Afinal results in having less
time spent in computing ⊆-minimal blocker sets, as a smaller number of atoms must
be checked. For example, for PZ, starting with 32% of omitted atoms takes longer to
compute a ⊆-minimal blocker set compared to starting with 54% of omitted atoms.
Additionally, with a bottom-up method it is possible to reach a ⊆-minimal blocker set
which is smaller in size than the ones obtained with the top-down method.

The graph coloring benchmarks (GC2,3) show that more atoms are kept in the abstraction
to catch the non-3-colorability than the non-2-colorability, which matches our intuition.
For example, in GC2 omitting 50% of the nodes (49% of the atoms in Ainit) already
reaches an unsatisfiable program, since no atoms were added back in Afinal. However, for
GC3 an average of only 9% of the omitted atoms were added back until unsatisfiability is
caught.

For the GC2,3, SC and PZ benchmarks, we can observe that omitting 50% of the objects
ends up easily in reaching some unsatisfiable abstract program, with refinements of the
abstractions being relatively small. For example, for GC2 the size of Afinal is the same
as for Ainit, and for PZ an average of only 4% of the atoms is added back in Afinal.
However, this behavior is not observed when initially omitting 75% of the objects.

We can also observe that some problems (AA and PZ) have larger ⊆-minimal blocker sets
than others. This shows that these problems have a more complex structure than others,
in the sense that more atoms are related with each other and have to be considered
together for obtaining unsatisfiability.

Badomit minimization In a refinement step, minimizing the number of badomit
atoms gives the smallest set of atoms to put back. However, the minimization makes
the search more difficult, hence it may hit a timeout; e.g., no optimal solution for 45

167

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Figure 5.3: Experimental results with different upper limits on badomit #. The three

entries in a cell, e.g., 0.21 / 0.24 / 0.23 in cell (AA,
|Afinal |

|A|) of badomit # ≤ |A|/5, are for

50% / 75% / 100% initial omission.

badomit # ≤ |A|/5 badomit # ≤ |A|/10

Π
|Afinal |

|A|
Ref # t (sec)

|Cmin|

|A|
t (sec)

|Afinal |

|A|
Ref # t (sec)

|Cmin|

|A|
t (sec)

AA
0.21 4.84 9.49 0.37 8.93 0.23 6.90 13.59 0.36 8.69
0.24 5.93 11.92 0.36 8.38 0.29 8.61 17.84 0.35 7.86
0.23 5.87 11.93 0.36 8.88 0.33 10.27 22.30 0.34 7.36

min_badomit #

Π
|Afinal |

|A|
Ref # t (sec)

|Cmin|

|A|
t (sec)

AA
0.24 7.89 15.20 0.36 8.06
0.30 10.65 34.10 (2) 0.34 7.06
0.44 17.48 62.46 (1) 0.34 5.86

nodes in GC was found in 10 mins. Figure 5.3 shows the results of giving different upper
bounds on the number of badomit atoms and also applying the full minimization in the
refinement for the AA instances. The numbers in the parentheses show the number of
instances that reached a timeout. As more minimization is imposed, we can observe an
increase in the size of the final omissions Afinal and also a decrease in the size of the
⊆-minimal blocker set. For example, for 75% initial omission, we can see that the size
of the computed final omission increases from 0.20 (Figure 5.2) to 0.24, 0.29 and finally
to 0.30. Also the size of the ⊆-minimal blocker set decreases from 0.37 (Figure 5.2) to
0.36, 0.35 and finally to 0.34. As expected, adding the smallest set of badomit atoms
back makes it possible to reach a larger omission Afinal that keeps unsatisfiability (e.g.,
min_badomit# third row (100% Ainit): Afinal is 44% instead of 0.01% as in Figure 5.2).
On the other hand, such minimization over the number of badomit atoms causes to have
more refinement steps (Ref #) to reach some unsatisfiable abstract program, which also
adds to the overall time.

The ⊆-minimal blocker search algorithm relies on the order of the picked atoms. We
considered the heuristics of ordering the atoms according to the number of rules in which
each atom shows up in the body, and starting the minimality search by omitting the
least occurring atoms. However, this did not provide better results than just picking an
atom arbitrarily.

Sliding Tiles (15-puzzle) Studying the resulting abstract programs with ⊆-minimal
blockers showed that finding out whether the problem instance is unsolvable within the

168

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Evaluation

Figure 5.4: Unsolvable sliding tiles problem instance

0 3 2
8 5 4
1 6 7

Initial State

0 1 2
3 4 5
6 7 8

Goal State

0 3 *
* 5 4

* * *

Initial state

0 * *
3 4 5

* * *

Goal State

given time frame does not require to consider every detail of the problem. Omitting the
details about some of the tiles still reaches a program which is unsolvable, and shows
the reason for unsolvability through the remaining tiles. Figure 5.4 shows an instance
from the benchmark, which is unsolvable in 10 steps. Applying omission abstraction
achieves an abstract program that only contains atoms relevant with the tiles 0,3,4,5 and
is still unsatisfiable; this matches the intuition behind the notion of pattern databases
introduced in [CS98].

Summary The results show that the notion of abstraction is useful in computing
the part of the problem which causes unsatisfiability, as all of the benchmarks contain
a blocker set that is smaller than the original vocabulary. We observed that different
program structures cause the ⊆-minimal blocker sets to be different in size with respect to
the original vocabulary size. Computation of these ⊆-minimal blocker sets can sometimes
result in smaller sizes with the bottom up approach. However, starting with an 100%
initial omission to use the bottom-up approach appears to be unreasonable due to the
time difference compared to the top-down approach, even though sometimes it computes
⊆-minimal blocker atoms sets of smaller size. The abstraction & refinement approach
can also be useful for finding some (not necessarily minimal) blocker, as most of the time,
starting with an initial omission of 50% or 75% results in computing some unsatisfiable
abstraction in few refinement steps.

5.2.2 Obtaining Abstract Solutions

The main aim of this evaluation was to see whether the introduced domain abstraction
and refinement method automatically finds non-trivial domain abstractions that yield
concrete answer sets. We also wanted to observe the effect of having variations over
the method w.r.t. the picked abstract answer sets (mentioned in Section 4.5.2) or the
refinement decisions (shown in Section 4.4.2).

Experiments

We used DASPAR v0.2 for the experiments, which uses the sophisticated debugging
program for concreteness checking.6 The variations we considered are as follows.

6The results from version v0.1 were reported in [SSE19].

169

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

• When computing answer sets of the abstract program to be submitted for con-
creteness checking, we either (s) pick a single abstract answer set or (div) pick a
(diverse) set of answer sets w.r.t. the focus atoms.

• Deciding on a refinement is either done by (v1) assigning costs to possible re-
finements and picking the one with the smallest cost or by (v2) using the hints
obtained from the debugging atoms while checking. For (v2), it is ensured in the
refinement that the domain elements occurring in the picked debugging atom do
not occur in the same cluster.

We conducted experimens on two benchmark problems from ASP competitions, viz.
graph coloring and disjunctive scheduling. For graph coloring, we randomly generated 20
graphs on 10 nodes with edge probability 0.1, 0.2, . . . , 0.5 each; out of the 100 graphs, 74
were 3-colorable. We used two different graph coloring encodings shown in Figure 5.5, to
see their effect in the resulting abstractions. In the first encoding GCenc1 (Figure 5.5a),
guessing a color assignment to each node is done as (5.1)-(5.3) with the common approach
of using default negation and the auxiliary atom hasEdgeTo(X,C) shows which colors
C the node X has as its neighbors. The second encoding GCenc2 (Figure 5.5b) uses a
choice rule (5.8) to make a guess of an assignment and then ensures that a node is not
assigned more than one color with (5.9). The rules (5.10)-(5.11) are an alternative way of
writing the rule ⊥ ← chosenColor(X1, C), chosenColor(X2, C), edge(X1, X2), X1 < X2.
so that when the variables are standardized apart for the sort node, fewer relation atoms
occur in one rule. Also notice that GCenc2 imposes an order relation among the nodes,
to reduce duplications of the constraints.

For disjunctive scheduling, for each t∈{10, 20, 30}, we generated 20 instances with 5
tasks over time {1, . . . , t}. We used the encoding 7 from ASP Competition 2011 and
precomputed deterministic part (i.e., not involved in unstratified negation resp. guesses)
of the program, so that they are lifted to the abstract program without introducing (un-
necessary) nondeterminism (see Appendix A). The initial abstraction mapping provided
to DASPAR is the single-cluster abstraction, i.e., clustering all nodes into one for graph
coloring and all time points into one for disjunctive scheduling.

Results

We report the average results over 10 runs for each variation. For simplicity of the
presentation, we discuss the results for each benchmark separately by concentrating on
the different observations made throughout the experimental evaluation.

Graph coloring. The evaluation results of the obtained abstractions are presented
in Table 5.1. The first two rows show the average number of refinement steps and the
average domain size (i.e., the number of clusters) of the resulting abstractions. The best
abstraction (i.e., with smallest domain size) found for each instance in the runs is further

7https://www.mat.unical.it/aspcomp2011/files/DisjunctiveScheduling/

disjunctive_scheduling.enc.asp

170

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Evaluation

Figure 5.5: Two encodings of the Graph Coloring problem

chosenColor(X, r)←not chosenColor(X, g),not chosenColor(X, y),node(X). (5.1)

chosenColor(X, g)←not chosenColor(X, r),not chosenColor(X, y),node(X). (5.2)

chosenColor(X, y)←not chosenColor(X, g),not chosenColor(X, r),node(X). (5.3)

hasEdgeTo(X,C)← edge(X,Y), chosenColor(Y,C). (5.4)

⊥← hasEdgeTo(X,C), chosenColor(X,C). (5.5)

colored(X)← chosenColor(X,C). (5.6)

⊥←node(X),not colored(X). (5.7)

(a) GCenc1

{chosenColor(X,C)}←node(X), color(C). (5.8)

⊥← chosenColor(X,C1), chosenColor(X,C2), C1 6= C2. (5.9)

adj(X,Y)← edge(X,Y), X < Y. (5.10)

⊥← adj(X,Y), chosenColor(X,C), chosenColor(Y,C). (5.11)

colored(X)← chosenColor(X,C). (5.12)

⊥←node(X),not colored(X). (5.13)

(b) GCenc2

checked for faithfulness, to observe whether the corresponding abstract program only
contains concrete answer sets. The domain size of the abstractions which are faithful is
shown in the third row. The percentage distribution of the abstractions which are trivial
(thus faithful), non-trivial and faithful, and non-faithful is shown in the last three rows.

The left column shows the results of full concreteness checking with different variations.
We can observe that picking a single abstract answer set to decide on a refinement results
in finer abstractions (i.e., with larger domain size) when compared to making a decision
according to a set of abstract answer sets. The percentage of the trivial abstractions
obtained also decreases when (div) is considered, due to making better decisions and
the increase in the chance of encountering a concrete abstract answer set. The latter
feature also causes to obtain more non-faithful abstractions, since a concrete answer set is
encountered within the diverse answer sets (by chance) without refining the abstraction to
a finer one with less spurious answer sets. As for using hints (v2) to decide on refinements,
we can observe that it does not help in obtaining coarser abstractions than using the
minimal cost (v1) method. Also more trivial abstractions are obtained with (v2), since
splitting the domain in each refinement step to ensure certain abstract elements are no
longer clustered together quickly ends up with the original domain.

171

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Table 5.1: Experimental results for graph coloring

full projected
(s) (div) (s) (div)

(v1) (v2) (v1) (v2) (v1) (v2) (v1) (v2)

GCenc1

number of steps 7.38 7.83 7.04 7.69 5.24 6.48 4.83 6.14
abs. domain size 8.38 8.84 8.04 8.69 6.24 7.48 5.83 7.14
faithful abs. dom. size 6.84 8.04 6.12 7.51 6.02 5.71 5.65 5.82
trivial abstractions (id) 13% 23% 4% 12% 2% 1% 2% 2%
faithful & non-id abs. 30% 32% 29% 27% 56% 61% 50% 47%
non-faithful abs. 57% 45% 67% 61% 42% 38% 48% 51%

GCenc2

number of steps 7.01 6.40 6.56 6.37 3.53 3.76 3.40 3.52
abs. domain size 8.01 8.64 7.56 8.29 4.53 6.73 4.40 6.36
faithful abs. dom. size 8.88 8.62 7.97 8.66 4.86 5.44 4.75 5.72
trivial abstractions (id) 19% 13% 5% 13% 3% 2% 3% 2%
faithful & non-id abs. 22% 24% 25% 22% 54% 59% 54% 48%
non-faithful abs. 59% 63% 70% 65% 43% 39% 43% 50%

The right column shows the results of considering a projected notion of concreteness
that limits the checking to a set of relevant atoms. We picked the nodes 1,2,3 and
their assigned colors to be the focus elements, to observe how it affects the obtained
abstractions. As expected, a concrete abstract answer set is encountered in much coarser
abstractions, since the color assignment of the remaining nodes are not of relevance.
In case of projection, the trivial abstraction is reached much less than in the full case;
moreover, more non-trivial faithful abstractions are reached, which is beneficial, as the
computed abstractions can be used to obtain (concrete) solutions over the focused nodes.

The main difference of the various encodings is on the size of the achieved abstract
domains. GCenc2 requires less number of refinement steps to achieve an abstraction with
a concrete solution, as the need to preserve the order relation among the nodes creates
less number of refinement possibilities. The average resulting abstractions are coarser
than GCenc1, however the domain sizes of the faithful abstractions are larger. This can
be due to the choice rule in GCenc2 causing to obtain spurious answer sets which have to
be treated by further refining the abstraction.

Disjunctive scheduling. We compared the effects of the variations w.r.t. the resulting
abstractions and the calls to the ASP solver to obtain an abstract answer set or to check
concreteness with debugging. Table 5.2 shows the collected results. For the refinement
search, we considered besides (v1) and (v2), an alteration of (v2), called (v2’), where each
abstract element appearing in the obtained debugging atom is mapped to a singleton
cluster in the refinement.

As expected, the minimal cost method (v1) causes to have much more calls to the ASP
solver, due to the need to compute the cost for each possible refinement. Although
in some cases, it achieves coarser abstractions, having such large number of calls is a

172

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Evaluation

Table 5.2: Experimental results for scheduling

(s) (div)
time (v1) (v2) (v2’) (v1) (v2) (v2’)

t = 10

number of steps 7.22 4.81 3.56 6.04 4.81 3.54
abs. domain size 8.22 8.48 8.46 7.04 8.38 8.35
call abs. prog. 41.35 5.81 4.56 40.72 5.81 4.54
call debug prog. 40.90 5.36 4.11 56.30 6.87 5.44

t = 20

number of steps 14.71 7.65 5.47 12.00 7.53 5.33
abs. domain size 15.71 14.16 14.12 13.00 14.16 13.81
call abs. prog. 168.48 8.65 6.47 157.41 8.53 6.33
call debug prog. 168.28 8.45 6.27 244.45 12.08 8.74

t = 30

number of steps 22.82 9.57 7.76 20.57 9.56 7.68
abs. domain size 23.82 19.02 19.12 21.57 19.07 18.68
call abs. prog. 391.88 10.57 8.76 366.09 10.56 8.68
call debug prog. 391.43 10.12 8.31 580.23 14.59 12.24

disadvantage. For example, for t = 20 - (div), (v1) achieves the average abstract domain
of 13.00 clusters while calling the ASP solver over 400 times, while (v2’) achieves an
average of 13.81 clusters with only around 15 calls.

For the instances with t = 20, refinement through hints (v2) achieves coarser abstractions
than (v1) when single abstract answer sets are picked. This is due to the hints guiding
the refinement much better than the assigned cost according to a single abstract answer
set. When the costs are assigned according to a diverse set of abstract answer sets,
then much coarser abstractions are achieved. However, for the instances with t = 30,
we can observe that the cost approach results in much finer abstractions. This shows
that making a local search over the 1-step refinements does not always provide the best
outcome. A refinement using hints can obtain much finer abstractions in one step which
shows to guide the method much better.

We can also observe that (v2’) mostly achieves much coarser abstractions than (v2);
immediately singling out the domain elements connected with the spuriousness helps. It
also causes to have smallest number of refinement steps compared to other approaches,
as it reaches a concrete solution much faster with the refinement decisions.

The results show that with larger domains, the effect of the abstraction can be seen much
better, e.g., the average abstract domain size reached for t= 30 is 62% (=18.68/30) of
the original domain, while for t= 10, it shrinks to 70.4%.

Summary. The results show that with domain abstraction it is possible to achieve
concrete solutions while abstracting over some of the details of the program. Reaching
faithful abstractions is desired, however does not occur often, unless a projected notion of
concreteness check is considered, that only distinguishes the details relevant to describing
the solution to the problem. Deciding on a refinement by obtaining hints from a set of

173

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

abstract spurious answer sets, instead of just one, results in better decisions, and thus
coarser abstractions. Investigating more sophisticated refinement methods that achieve
better abstractions would be an interesting research direction.

5.3 Abstraction in ASP Planning

In this section, we discuss further on the use of domain abstraction in understanding
planning problems expressed in ASP, by abstracting over the unnecessary details.

Planning problems in ASP are represented by having a time sort to describe the sequence
of states and the changes according to the taken actions. These problems usually contain
two types of objects, represented with different sort types:

• certain objects on which the actions have direct effect on, e.g., the blocks in the
blocksworld which can be moved, and

• the remaining objects which are not affected by the actions, but are involved in the
decision making, e.g., the table in the blocksworld on which a block can be moved
to.

We discuss how domain abstraction can be used for abstracting over these objects to be
able to talk about abstract states and abstract plans.

Describing actions in ASP

First, we emphasize the different ways of expressing planning problems in ASP, through
the blocksworld problem. For example, the effects of moving a block on top of another
block can be expressed with the following rules

onB(B,B1, T + 1)←moveToBlock(B,B1, T). (5.14)

¬onB(B,B2, T)← onB(B,B1, T), B1 6= B2. (5.15)

where 5.14 shows the direct effect and 5.15 shows the indirect effect. Alternatively, the
following rules can also be used to express all the effects as direct effects.

onB(B,B1, T + 1)←moveToBlock(B,B1, T). (5.16)

¬onB(B,B2, T)←moveToBlock(B,B1, T), B1 6= B2. (5.17)

The preconditions of an action can either be described through constraints, or as a
condition for an action to become applicable. For example, the condition that a block
cannot sit on a block which is smaller can be expressed as a constraint

⊥← onB(B,B1, T), B1 ≤ B.

174

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Abstraction in ASP Planning

Figure 5.6: Initial state of a blocksworld with multiple tables (concrete
m
→ abstract).

b

1
 t

1

b

3

 t

2

b

2

 t

10

b

1

b

3

 t

ˆ

2

b

2

m

 t

ˆ

1

which forbids that a block can be located on smaller block. Alternatively, the respective
action can be forbidden to apply in case the condition is not satisfied using the following
rules.

⊥←moveToBlock(B,B1, T),not precondmtb(B,B1, T).

precondmtb(B,B1, T)←B < B1, block(B), block(B1).

Note that the alternative version is much closer to the PDDL-style encoding. Remember
that the law of inertia is then descibed by the rule

onB(B,B1, T+1)← onB(B,B1, T),not ¬onB(B,B1, T).

5.3.1 Abstracting over Irrelevant Details

We first show the abstraction possibility over the details of objects that are indirectly
affected by the actions. For demonstration, we consider two planning problems, that are
well-known problems extended with objects out of main focus for the plan computation.

• Multi-table blocksworld: The Blocksworld problem extended with multiple tables,
where the blocks can be moved on to any of the tables. A plan needs to be found
that piles up the blocks on a given specific table.

• Package delivery with checkpoints: The Package Delivery problem of carrying
packages from an initial location to a goal location, while also passing through
some checkpoint reachable from the initial location.

Multi-table blocksworld. Figure 5.6 illustrates an example instance, where the blocks
need to piled up on table t1. From the given initial state, reaching the goal state does
not rely on which table the blocks are moved to in between. However, when computing a
plan in the original program, the planner has to consider all possible movements.

Figure 5.7 shows a (natural) encoding of the problem which contains the actions
moveToT(B,Ta, T) and moveToB(B,B′, T) that represent moving block B onto ta-
ble Ta and onto block B′, resp., at time T . Consider the initial state shown in Figure 5.6:

onT (b1, t1), onB(b2, b3), onT (b3, t2), chosenTable(t1).

175

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Figure 5.7: Encoding for Multi-table Blocksworld

% action choice

{moveToB(B,B1, T) : bl(B), bl(B1); moveToT (B,L, T) : bl(B), tbl(L)} ≤ 1←T < tmax .

% no gaps between moves

done(T)←moveToB(B,B1, T).

done(T)←moveToT (B,L, T).

⊥← done(T+1),not done(T).

% preconditions

⊥←moveToB(B,B2, T), onB(B1, B, T).

⊥←moveToB(B1, B2, T), onB(B1, B2, T).

⊥←moveToT (B,L, T), onB(B1, B, T).

⊥←moveToT (B,L, T), onT (B,L, T).

% effects

onB(B,B1, T+1)←moveToB(B,B1, T), T<tmax .

onT (B,L, T+1)←moveToT (B,L, T), T<tmax .

¬onB(B,B2, T)← onB(B,B1, T), B1 6=B2.

¬onT (B,L, T)← onB(B,B1, T).

¬onB(B,B1, T)← onT (B,L, T).

¬onT (B,L1, T)← onT (B,L2, T), L1 6=L2.

% inertia

onB(B,B1, T+1)← onB(B,B1, T),

not ¬onB(B,B1, T+1), T<tmax .

onT (B,L, T+1)← onT (B,L, T),

not ¬onT (B,L, T+1), T<tmax .

% state constraints

⊥← onB(B1, B, T),

onB(B2, B, T), B1 6=B2.

⊥← onB(B,B1, T),

onB(B,B2, T), B1 6=B2.

⊥← onB(B,B1, T), onT (B,L, T).

⊥← onB(B,B1, T), B1 ≤ B.

% goal constraints

notblockgoal(T)← onT (B,L, T),

onT (B1, L1, T), B 6=B1.

⊥←notblockgoal(T),maxT ime(T).

⊥←not notblockgoal(T), onT (B,L, T),

not chosenTable(L).

After ensuring that all of the variables are guarded by domain predicates and that the
variables related with the table sort are standardized apart, we run DASPAR with the
initial mapping {{t1, . . . , tn}/t̂}. The abstraction reached is the one shown in Figure 5.6,
which distinguishes the chosen table t̂1 and clusters the remaining tables into t̂2. This
makes it possible to compute a concrete abstract answer set

{moveToT (b2, t̂2, 0),moveToT (b3, t̂1, 1),moveToB(b2, b3, 2),moveToB(b1, b2, 3)}.

that describes a plan without going into detail on which table the blocks are moved.
The abstraction shows that, for solving the problem, it is essential to distinguish the
picked table from all others and that the number of tables is irrelevant. Furthermore, this
abstraction is a faithful abstraction when the answer sets are projected to the actions
moveToB,moveToT .

176

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Abstraction in ASP Planning

Figure 5.8: Initial state of a package delivery with checkpoints (concrete
m
→ abstract).

l

1

l

2

l

10

l

9

...
m

p

1

p

2

p

3

p

4

l

ˆ

1

p

1

p

2

p

3

p

4

l

ˆ

3

l

ˆ

2

Package delivery with checkpoints Figure 5.8 illustrates an example instance,
where the packages in location l1 need to be carried to location l10. As these locations
are not connected, the truck has to pass through a middle point; through which point
the truck passes does not make a difference in reaching the goal state.

For this problem, we used the Nomystery encoding from ASPCOMP2015 and altered
it to have no fuel computation. Furthermore, for a drive(T, L1, L2, S) action to be
possible we added an additional condition that the locations L1 and L2 should be
connected by an edge, edge(L1, L2). Consider the initial state shown in Figure 5.8:
atT (t, l1, 0). atP (p1, l1, 0). atP (p2, l1, 0). atP (p3, l1, 0). atP (p4, l1, 0). goal(p1, l10). goal(p2,
l10). goal(p3, l10). goal(p4, l10). with the demonstrated edge facts. Running DASPAR with
the mapping {{l1, . . . , l10}/l̂} over the sort location results in the abstraction mapping
{{l1}/l̂1, {l2, . . . , l9}/l̂2, l10/l̂3} (shown in Figure 5.8). With this abstraction, the below
concrete abstract answer set is computed:

{load(d, t, l̂1, 1), load(c, t, l̂1, 2), load(a, t, l̂1, 3), load(b, t, l̂1, 4),

drive(t, l̂2, l̂1, 5), drive(t, l̂1, l̂3, 6),

unload(p3, t, l̂3, 7), unload(p1, t, l̂3, 8), unload(p4, t, l̂3, 9), unload(p2, t, l̂3, 10)}

which describes a plan that loads all the packages, moves to the middle cluster location,
moves to the goal location, and unloads the packages. Furthermore, this abstraction
is a faithful abstraction when the abstract answer sets are projected to the actions
load, unload, drive.

The abstraction we demonstrated was over details that are not of importance for the
plan computation. The faithful abstraction gives an understanding of the problem by
realizing its focus points. If however there are further constraints over these details which
need to be distinguished to compute a plan, then faithfulness might not be achieved.

5.3.2 Computing Abstract Plans

Abstracting over the objects that are directly affected by the actions would make it
possible to talk about abstract plans. However, in ASP-style encodings, abstracting only
over the object sort causes the abstract program to compute plans with the original
time sort over the abstracted object sort. For example, say in the Package Delivery

177

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

Figure 5.9: Encoding for Package Delivery

% action choice

{unload(P, T, L, S) : package(P), truck(T), loc(L);

load(P, T, L, S) : package(P), truck(T), loc(L);

drive(T, L1, L2, S) : edge(L1, L2), loc(L1), loc(L2), truck(T)} ≤ 1← step(S), S > 0.

% no gaps between moves

done(S)← unload(P, T, L, S).

done(S)← load(P, T, L, S).

done(S)← drive(T, L1, L2, S).

⊥← done(S+1),not done(S).

% effects

atP (P,L, S)← unload(P, T, L, S).

¬in(P, T, S)← unload(P, T, L, S).

¬atP (P,L, S)← load(P, T, L, S).

in(P, T, S)← load(P, T, L, S).

¬atT (T, L1, S)← drive(T, L1, L2, S).

atT (T, L2, S)← drive(T, L1, L2, S).

% precondition check

⊥ ← unload(P, T, L, S),not precondu(P, T, L, S).

precondu(P, T, L, S)← atT (T, L, S−1),

in(P, T, S−1).

⊥ ← load(P, T, L, S),not precondl(P, T, L, S).

precondl(P, T, L, S)← atT (T, L, S−1),

atP (P,L, S−1).

⊥ ← drive(T, L1, L2, S),not precondd(T, L1, L2, S).

precondd(T, L1, L2, S)← atT (T, L1, S−1).

% inertia

atT (T, L, S)← atT (T, L, S−1),not ¬atT (T, L, S).

atP (P,L, S)← atP (P,L, S−1),not ¬atP (P,L, S).

in(P, T, S)← in(P, T, S−1),not ¬in(P, T, S).

% goal check

⊥ ← goal(P,L),not atP (P,L, S),maxstep(S).

problem (without checkpoints and only two locations l1, l2) we cluster the packages into
one abstract package, p̂0. Then, the abstract program will contain the abstract actions
load(p̂0, t, l, s), unload(p̂0, t, l, s) which then causes to find a plan

load(p̂0, t, l1, 1), drive(t, l1, l2, 2), unload(p̂0, t, l2, 3).

However, this plan is immediately spurious since it is not possible to find an original
action to match load(p̂0, t, l1, 1) that loads all the packages in one step. Thus, doing
abstraction only on one sort results in the occurrence of many spurious answer sets. In
order to avoid this, an additional abstraction over the time sort becomes necessary.

By abstracting over different sorts in the program, it becomes possible to talk about
abstract instances of actions that abstract from the concrete order of applications. Given
that the sorts are independent, i.e., blocks, time or packages, time, multiple calls of
DASPAR to abstract over each sort one-by-one achieves the desired abstract program.

For the Package Delivery problem, consider two abstraction mappings mpackage =
{{p1, p2, p3, p4}/p̂} and mtime = {{1, 2, 3, 4}/t̂1, {5}/t̂2, {6, 7, 8, 9}/t̂3}. The constructed

178

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Abstraction in ASP Planning

Figure 5.10: Abstract and concrete plan of Example 5.2

 bˆ bˆ

 moveToT

(

,

)

b

ˆ

t

ˆ moveToB

(

, , ′

)

b

ˆ

b

ˆ

t

ˆ

b

2

b

1

b

3

b

2

b

1

 moveToT(, 1)b

1

 moveToT(, 2)b

2

 moveToB(, , 3)b

3

b

4

 moveToB(, , 4)b

2

b

3

 moveToB(, , 5)b

1

b

2

b

4

b

4

b

3

abstract program contains the abstract plan

load(p̂, t, l0, t̂1), drive(t, l1, l2, t̂2), unload(p̂, t, l2, t̂3)

which abstracts over the order of the package loading/unloading by talking about the
abstract actions over the time clusters.

Unfortunately, achieving an abstraction over multiple sorts, especially if one sort is over
the time domain, is not trivial. The abstraction over time with the time clusters steers
the plan computation and the determination of the action orders. For example, a time
mapping as {{1}/t̂1, {2, 3, }/t̂2, {4, 5, 6, 7, 8, 9}/t̂3} will be unable to obtain an abstract
plan as shown before.

A policy as discussed in Chapter 3 can also be used to help with the decision making for
the next sequence of actions, which we demonstrate in the next example.

Example 5.2 (Blocksworld with a Policy). Consider the blocksworld problem with a
single table in Figure 5.10. The encoding in Figure 5.7 is modified by removing the table
argument from onT and is standardized apart according to the block sort and the time
sort. Suppose further rules realize a policy that first puts all blocks on the table and
piles them up in a second phase.

existsOnBlock(T)← onB(B,B1, T).

allOnTable(T)← not existsOnBlock(T), time(T).

atPhase2 (T1)← allOnTable(T), T < T1.

1{moveToT (B, T) : onB(B,B1, T)} ← T < tmax ,not atPhase2 (T),not allOnTable(T).

1{moveToB(B,B1, T) : onT (B, T), block(B1)} ← T < tmax , allOnTable(T).

1{moveToB(B,B1, T) : onT (B, T), onB(B1, B2, T)} ← T < tmax , atPhase2 (T).

Given the initial state {onT (b4,1),onT (b3,1),onB(b2, b3,1), onB(b1, b2, 1)} and time domain
{1, . . . , 6}, we abstract using the block mapping {{b1, . . . , b4}/b̂} and the time mapping
{{1, 2}/t̂, {3, . . . , 6}/t̂′}. The abstract program has 8 answer sets, including

{moveToT (b̂, t̂), onT (b̂, t̂), onB(b̂, b̂, t̂), onT (b̂, t̂′), onB(b̂, b̂, t̂′),moveToB(b̂, b̂, t̂′)},

which contains abstract actions: moveToT (b̂, t̂) and moveToB(b̂, t̂′) (Figure5.10).

179

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Applications in Problem Analysis

5.4 Discussion

In this chapter, we described the implemented systems for the abstraction and refinement
method. We conducted experiments with different problems to observe the use of our
method in achieving an abstraction that permits to find a concrete solution without the
need to refine back to the original domain. For omission abstraction, we investigated the
computation of blocker sets for unsatisfiable problems, and for domain abstraction, we
investigated different approaches of refinement decision making and their effects in the
resulting abstractions.

The experiments show that by using domain abstraction, it is possible to achieve abstract
solutions to the problem which are concrete, without having to refine the abstraction
back to the original domain. The rules that occur in the abstract program w.r.t. the
mapping and the abstracted facts of the program show the possibility to achieve a
concrete solution. For unsolvable problems, detecting the unsolvability in the abstraction
immediately results in faithfulness. The abstract program then contains the reason for
unsolvability of the original program. An ASP debugging technique can then be used
in finding the particular reason for not computing an answer set at this abstract level.
For satisfiable problems, if a concrete abstract answer set is computed in the abstract
program, then a justification technique in ASP can be used to understand why that
answer set is computed at the abstract level. If a faithful abstraction is achieved, such a
justification technique can help in distinguishing the unnecessary details of the domain
that are irrelevant while finding concrete solutions to the problem.

Our focus here is on evaluating the usefulness of the abstraction approach for ASP, and
not as a scalability technique. Further implementation improvements and optimization
techniques in future work will make it possible to argue about efficiency. On the other
hand, as the state-of-the-art ASP solvers are quite efficient in solving problems, it can not
be expected to out perform these solvers in all problems with the abstraction refinement
methodology. The methodology may require many checking and refinement steps until a
concrete abstract solution is found. Nevertheless, there are problems that the current
ASP solvers also fail to solve efficiently, such as optimization problems or problems that
create huge search spaces. For such problems, abstraction could be useful, but achieving
a good abstraction that could help with solving is not trivial. In the method presented
here, some initial mapping is provided to the system, which then automatically finds an
abstraction that provides a concrete solution. One interesting aspect would be to find a
good initial abstraction to start with, which could help in reaching a concrete solution is
few steps. For this, one needs to investigate properties of the programs needed to obtain
such abstractions.

We perform the abstract answer set checking externally, using a debugging program. An
improvement of this process could be to embed this check into the ASP solver while also
obtaining hints during the check. However, doing this is not trivial, especially for the
non-ground case, since the checking involves a guess of an answer set over the original
program to could match with the abstract answer set w.r.t. the abstraction mapping.

180

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Abstracting Problems over

Grid-Cells

In this chapter, we focus on problems involving grid-cell structures to observe the use
of a two-dimensional abstraction over the grids in focusing on the essential parts of the
problem and achieving abstract solutions.

Outline We begin by describing the problem types that we focus on in Section 6.1. In
Section 6.2, we define the 2-dimensional abstraction on grid-cells based on quad-trees.
Section 6.3 describes mDASPAR and considered implementation issues. We evaluate
our approach in Section 6.4 on unsatisfiable problems and conduct a user study for
comparing the obtained abstract explanations. In Section 6.5 we discuss the application
of abstraction to the problem of policy refutation. We conclude with a discussion in
Section 6.6.

6.1 Problems in Focus

As we have shown in Chapter 5, abstraction can become handy when finding the cause
for unsatisfiability by abstracting over the irrelevant details and also for finding abstract
solutions to the problems that help in having an understanding of the problem. Grid-cell
environments are a particular type of environment which describes a structure. For
problems over grid-cells, it is often the case that certain parts of the environment are
crucial to finding a solution to the problem. For example, suppose one wants to check
whether all cells are reachable from a given starting point in a grid with obstacles. In
case there are unreachable cells, this is due to the obstacles surrounding them. It would
be enough for a person to look at the area with the obstacles to realize that there are
unreachable cells. As another example, consider the problem of checking whether the
agent always manages to find a missing person with a given policy. If the policy does not

181

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

work, then a counterexample trajectory over some part of the environment will show this.
By looking at the area which shows the trajectory, one can conclude that the policy does
not work. Depending on the problem, the focus points may have different nature. For
the reachability example, the focused area in the environment remains can remain local,
while for the person search example the path of a trajectory needs to be distinguished.

Inspired from the capability of humans in focusing on certain areas in a grid-cell environ-
ment, by abstracting away the rest of the details, when solving a problem or realizing
that there is no solution, we investigate the application of domain abstraction to such
problems. We aim to observe the abstractions the machine can automatically obtain given
the capability of doing abstraction over the grid-cells. For this, we consider problems of
two types:

(i) Problems that are unsolvable for a given instance, due to some facts causing to
violate some constraints.

(ii) Problems with constraints/restrictions that steer the solution finding.

For problems of type (i), we investigate whether a domain abstraction over the grid-cell
can focus on the parts of the problem instance that are essential to reach unsatisfiability.
For problems of type (ii), we investigate whether an abstraction can put the focus on
where the constraints/restrictions cause to achieve a solution.

For demonstration we have the following running example.

Example 6.1 (Reachability). Below encoding computes the obstacle-free cells (i.e.,
points) that are reachable from the starting point.

point(X,Y)←not obsAt(X,Y), row(X), column(Y). (6.1)

reachable(X,Y)← start(X,Y). (6.2)

reachable(X1, Y)← reachable(X,Y), point(X1, Y),neighbor(X,Y,X1, Y). (6.3)

neighbor(X,Y,X1, Y)←|X −X1|= 1, column(Y). (6.4)

neighbor(X,Y,X, Y1)←|Y −Y1|= 1, row(X). (6.5)

Consider two versions of the reachability problem.

(i) Having an additional constraint to check if all points are reachable.

⊥← point(X,Y),not reachable(X,Y), row(X), column(Y). (6.6)

(ii) Redefining reachability (6.3-6.5) by prioritizing the east neighbor over the rest, and
in case the east neighbor has an obstacle, choosing the south neighbor.

neighborE(X,Y,X1, Y)←X1−X = 1, column(Y). (6.7)

neighborS(X,Y,X, Y1)←Y1−Y = 1, row(X). (6.8)

reachableE(X,Y,X1, Y)← reachable(X,Y), point(X1, Y), (6.9)

neighborE(X,Y,X1, Y).

182

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Quad-tree Abstraction

Figure 6.1: Original domain

•

hasNeighborE(X,Y)← reachableE(X,Y,X1, Y1). (6.10)

reachable(X1, Y1)← reachableE(X,Y,X1, Y1). (6.11)

reachable(X,Y1)← reachable(X,Y), point(X,Y1), (6.12)

neighborS(X,Y,X, Y1),not hasNeighborE(X,Y).

Figure 6.1 shows an instance of a grid-cell domain with obstacles. For this instance,
Problem-(i) is unsatisfiable, due to the unreachable cells in the lower left area. As for
Problem-(ii), the reachable cells are determined in the order →2↓→5↓6.

6.2 Quad-tree Abstraction

Multi-dimensional abstraction allows us to express abstractions where one domain (e.g.,
an X coordinate) is abstracted depending on its context, i.e., depending on a second
domain it occurs with (e.g., a Y coordinate). For a systematic refinement of abstractions
on grid-cell environments, we consider a generic quad-tree representation (Figure 6.2),
which is a concept used, e.g., in path planning [KD86].

Initially, an environment may be abstracted to four regions of n/2× n/2 grid-cells each.
This amounts to a tree with four leaf nodes that correspond to the main regions, with
level log2(n). Each region then contains 4 leaves of smaller regions. The leaves of the
quad-tree are then the original cells of the grid-cell. A refinement of a region amounts
to dividing the region into four subregions, i.e., expanding the representing leaf with
its four leaves. Given the original X and Y coordinates {a1, . . . , an} and {b1, . . . , bn}
respectively, we represent the coordinates of an abstract region with level log2(k+1), for
0≤ k <n, defined over the cells within the coordinates ai, . . . , ai+k and bj , . . . , bj+k, by
the shorthand notation (ai...i+k, bj...j+k).

Example 6.2. Figure 6.3 shows different abstractions over the grid-cells. The facts that
represent the original instance also get lifted to the abstract domain. Figure 6.3a is the
initial abstraction of dividing the grid-cell into 4 regions. Figure 6.3b shows an abstraction
that distinguishes the area which shows the obtacles that cause to have unreachable cells
in the lower-left corner (Problem (i)). The abstraction shown in Figure 6.3c singles out

183

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Figure 6.2: Quad-tree representation for regions

(4)

(1) (2)

(3)

a1 a2 a34 a5 a6 a78

b1

b2

b3

b4

b5678

b34

b12

b5678

a1234 a5678

Figure 6.3: Abstractions over the grid-cell domain with obstacles in Figure 6.1

(a) Initial abstraction

•
start(a1234, b1234).

obsAt(a1234, b1234).

obsAt(a1234, b5678).

obsAt(a5678, b1234).

obsAt(a5678, b5678).

(b) Distinguishing the obstacles that cause
unreachability

•

start(a12, b12).

obsAt(a1, b4).

obsAt(a2, b4).

obsAt(a3, b5).

obsAt(a4, b6).

obsAt(a3, b7).

obsAt(a4, b8).

obsAt(a12, b12).

obsAt(a5678, a1234).

obsAt(a5678, a5678).

(c) Distinguishing the cells reachable w.r.t.
the restrictions

•

start(a1, b1).

obsAt(a4, b1).

obsAt(a6, b1).

obsAt(a2, b2).

obsAt(a7, b4).

obsAt(a12, a34).

obsAt(a56, a34).

obsAt(a56, a56).

obsAt(a1234, a5678).

the area that contains the cells that are reachable according to the restrictions (Problem
(ii)).

Starting with an initial abstraction of level log2(n), using quad-tree split operations
as abstraction refinement operations, we can automatically search for suitable quad-
tree-structured abstractions in grids (see Section 6.3). Importantly, multi-dimensional

184

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. mDASPAR

abstraction refinement is structure aware: refining one of the squares of a quad-tree (e.g.,
area (3) in Figure 6.2) maintains the structure of the abstraction of all other squares.

6.3 mDASPAR

In this section, we describe implementation details of mDASPAR, which is an extension
of DASPAR (described in Chapter 5) that applies a multi-dimensional domain abstrac-
tion. Currently, mDASPAR handles 2-dimensional abstractions with a quad-tree style
refinement process, and it can be applied to problems described over grid-cells. The input
format described for DASPAR also applies to mDASPAR. We discuss several challenges
of multi-dimensional abstractions that are tackled in the system.

Abstract objects A multi-dimensional abstraction creates abstract objects and not all
combinations of the abstracted sorts, e.g., row and column, correspond to a valid object.
To avoid non-valid combinations, the constructed abstract program should comply to only
using the abstract objects in the rules. For this, mDASPAR applies a post-processing over
the constructed abstract program by going over each rule and replacing the occurrence
of the abstracted sorts with a new object name.

We remark that in order to have the objects “grouped” automatically and, most impor-
tantly, correctly, the system needs some guidance. For a given encoding, humans are
capable of detecting the cells implicitly, whereas the machine can not do this. The user
has to provide some guidelines for the machine to recognize the objects, by adjusting
the encoding so that the grids are explicitly shown. For this, we impose some syntactic
restrictions on the input program, on which the post-processing technique relies.

Given two sorts s1, s2 over which a 2-dimensional abstraction is desired, in order to achieve
a correct object naming in the rules, i.e., row(X1), column(Y1) changed to cell(X1, Y1),
the input program should adhere to following restrictions:

(1) The rules should have atoms that contain pairsX,Y of variables whereX ∈ s1, Y ∈ s2,
and

(2) the domain predicates for sorts s1, s2 should be written in the order of the pairs.

If these restrictions are satisfied, then mDASPAR is able to correctly convert the sort
names to the abstract object name cell.

Example 6.3 (ctd). The rule (6.3) will be standardized apart into

reachable(X1, Y1)← reachable(X,Y), point(X1, Y1),neighbor(X2, Y2, X3, Y3),
X = X2, X1 = X3, Y = Y2, Y1 = Y3.

Then the multiple relations related with a sort needs to be converted into an auxiliary
relation atom, similarly as described in the input format for DASPAR (Section 5.1.2):

reachable(X1, Y1)← reachable(X,Y), point(X1, Y1),neighbor(X2, Y2, X3, Y3),
equEqu4 (X,X2, X1, X3), equEqu4 (Y, Y2, Y1, Y3).

185

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Figure 6.4: Input program with the rules 6.1-6.6

point(X,Y) :- not obsAt(X,Y), row(X), column(Y).

reachable(X,Y) :- start(X,Y), row(X), column(Y).

reachable(X1,Y1) :- reachable(X,Y), point(X1,Y1), neighbor(X2,Y2,X3,Y3),

equEqu4(X,X2,X1,X3), equEqu4(Y,Y2,Y1,Y3),

row(X), column(Y), row(X1), column(Y1),

row(X2), column(Y2), row(X3), column(Y3).

:- point(X,Y), not reachable(X1,Y1), X=X1, Y=Y1,

row(X), column(Y), row(X1), column(Y1).

neighbor(X,Y,X1,Y1) :- dist1(X,X1), Y=Y1,

row(X), column(Y), row(X1), column(Y1).

neighbor(X,Y,X1,Y1) :- X=X1, dist1(Y,Y1),

row(X), column(Y), row(X1), column(Y1).

The domain predicates for the rule above also need to be written in a format where the
pairs X,Y , X1, Y1, X2, Y2, and X3, Y3 appear together. Figure 6.4 shows the resulting
rule in the input program.

Relation type computation When constructing an abstract rule, mDASPAR gathers
the relations in the original rule related with the abstracted sorts and creates an abstract
relation atom with arguments from the original relations, following the description in
Section 4.6. Auxiliary programs are used to compute the relation type facts.

mDASPAR is invoked as follows

python mdaspar.py prog mapping pred size ref_type <focus_atoms>

Different from DASPAR, there is also the parameter size which is the number n = 2k,
for k ≥ 2, representing a grid of size n× n.

The next example shows the input format of mDASPAR and the created abstract program.

Example 6.4 (ctd). The rules (6.4)-(6.5) contain a relation that is not supported by
the current approach. As shown in Section 4.3.4, a rewriting of the relation needs to
be done, by introducing an auxiliary atom, say dist1(X,X1), and adding facts for the
domain elements for which the relation X + 1 = X1 holds true.

Figure 6.4 shows the input program of mDASPAR with the rules (6.1)-(6.6) where
the variables are standardized apart. The constructed abstract non-ground program
for abstracting over the sorts row, column becomes as shown in Figure 6.5, where the
occurrence of the sorts are renamed with a new object cell. Also the rules of the original
program get numbered and in the abstract program the relation atoms are named w.r.t.
the rule number. For example, for the rule (6.6), the standardization creates the relations
X = X1 and Y = Y1, and in the abstraction the joint relation type atom becomes
τ=,=

I (X,Y,X1, Y1) for type I. Type III relation atom, i.e., τ=,=
III (X,Y,X1, Y1), is not

important as the abstracted constraint containing this atom in its body gets omitted in

186

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. mDASPAR

Figure 6.5: Non-ground abstract program constructed by mDASPAR

point(X,Y) :- cell(X,Y), not obsAt(X,Y).

{point(X,Y)} :- cell(X,Y), obsAt(X,Y), isCluster(X).

{point(X,Y)} :- cell(X,Y), obsAt(X,Y), isCluster(Y).

reachable(X,Y) :- start(X,Y), cell(X,Y).

reachable(X1,Y1) :- reachable(X,Y), point(X1,Y1), neighbor(X2,Y2,X3,Y3),

cell(X2,Y2), cell(X3,Y3), cell(X,Y), cell(X1,Y1),

relr3(X,Y,X2,Y2,X1,Y1,X3,Y3,i).

{reachable(X1,Y1)} :- reachable(X,Y), point(X1,Y1), neighbor(X2,Y2,X3,Y3),

cell(X2,Y2), cell(X3,Y3), cell(X,Y), cell(X1,Y1),

relr3(X,Y,X2,Y2,X1,Y1,X3,Y3,iii).

:- point(X,Y),cell(X,Y),cell(X1,Y1),not reachable(X1,Y1),relr4(X,Y,X1,Y1,i).

neighbor(X,Y,X1,Y1) :- dist1(X,X1), cell(X,Y), cell(X1,Y1), relr5(Y,Y1,i).

{neighbor(X,Y,X1,Y1)} :- dist1(X,X1), cell(X,Y), cell(X1,Y1), relr5(Y,Y1,iii).

neighbor(X,Y,X1,Y1) :- dist1(Y,Y1), cell(X,Y), cell(X1,Y1), relr6(X,X1,i).

{neighbor(X,Y,X1,Y1)} :- dist1(Y,Y1), cell(X,Y), cell(X1,Y1), relr6(X,X1,iii).

the abstraction. For the input program (Figure 6.4) the rule (6.6) gets the rule name r4
and thus the abstracted rule contains the relation atom relr4(X,Y,X1,Y1,i).

Observe that rule (6.1), which has a deterministic computation of point atoms, gets
abstracted to choice rules and causes to have further guesses. To avoid such unnecessary
guessing, (6.1) can be removed from the input program and instead the point atoms can
be precomputed to be added as facts.

Furthermore, by standardizing apart the variable of the negative literal in the constraint
(6.6), its aim of making sure that all points are reachable gets relaxed to hold only
when the abstraction on the domain elements is fine enough to satisfy the relation atom
relr4(X,Y,X1,Y1,i). Having the rule (6.6) without standardization would ensure
that the constraint holds in coarser abstractions. For application on grid-cell problems,
we applied standardization on the variables of the negative literals as well to obtain more
fine-grained abstractions that distinguish the original cells to reach a concrete solution.
This makes it easier to visualize the resulting abstractions and understand the found
solutions.

6.3.1 Debugging and Refinement

The method for debugging and refinement is the same as with DASPAR, with further
considerations and slight alterations.

Two-phase debugging The multi-dimensionality of the domain mapping causes to
have many possibilities of a cause for spuriousness of an abstract answer set. Debugging
the non-ground spuriousness by searching for the answer set with minimum number
of ab atoms can become more difficult. To handle this, we implemented a two-phase
debugging approach. In the first phase the debugging program Πdebug is created by

187

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

modifying the debugging atoms ab_deact, ab_deactCons of Definition 4.37 to only have
the rule name as arguments. We denote this program by Πdebug0

. This then results in
an easier computation of an answer set with minimal ab atoms. Once such an answer
set I is computed, in the second phase, a new program Πdebug is created according to
the original definition, but the ab atoms are only created for the rule names or atoms
occurring in the ab atoms of I. This way, the search for an optimal answer set focuses on
the trouble making rules/atoms.

Steer debugging towards constraints In problems we focus on, the constraints in
the program cause to have unsatisfiability or to obtain a particular solution for a given
instance. In order to help with reaching abstractions where the relevant constraints are
distinguished, we give in the search for an optimal answer set during debugging less cost
to obtaining answer sets with ab_deactCons atoms.

Getting hints Since the refinement of a region means to split it into four subregions,
we only need to get the hint of which region to refine. This is different from the hints
obtained for DASPAR, as there a decision of how the refinement should be relies on the
domain elements occurring in the debugging atoms. We alter the refine atoms to get the
information of which abstract domain occurs as a reason for spuriousness.

For demonstration, we show an example run of mDASPAR.

Example 6.5 (ctd). We run mDASPAR with the input program (Figure 6.4) and the
instance shown in Figure 6.1, with the initial mapping m of clustering the grid-cell into
four regions (Figure 6.3a).

step 1 After constructing the non-ground abstract program (Figure 6.5) and computing
the relation types, mDASPAR computes an abstract answer set

{reachable(a1234, b1234), reachable(a5678, b1234), reachable(a1234, b5678)}.

step 2 The correctness checking is first done with Πdebug0
where the ab atoms only

contain rule names (Figure 6.6) to obtain the optimal answer set

{ab_deactConsr3, ab_deactr2.}

step 3 Πdebug is constructed only for r2 and r3 where now the variables in the rule are
also taken into account, by defining ab_deactr2(X1, Y1) as

ab_deactr2(X1, Y1)← apr2(X1, Y1),not reachable(X1, Y1).

⊥ :∼ ab_deactr2(X1, Y1).[1, X1, Y1]

⊥ :∼ ab_deactr2(X1, Y1),mapTo(X1, Y1, A1, B1),

isSingleton(A1), isSingleton(B1).[20, X1, Y1]

refine(A1, B1)← ab_deactr2(X1, Y1),mapTo(X1, Y1, A1, B1), isCluster(A1).

188

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. mDASPAR

Figure 6.6: Constructed debugging program Tdeact[Π] ∪ TdeactCons[Π] ∪ Tact[Π,A]

kor1.
{reachable(X,Y)} ← apr1(X,Y).
ab_deactr1 ← apr1(X,Y),not reachable(X,Y).
⊥ :∼ ab_deactr1.[1]
kor2.
{reachable(X1, Y1)} ← apr2(X1, Y1).
ab_deactr2 ← apr2(X1, Y1),not reachable(X1, Y1).
⊥ :∼ ab_deactr2.[1]
kor3.
ab_deactConsr3 ← kor3, apr3(X,Y,X1, Y1).
⊥ :∼ ab_deactConsr3.[1]
kor5.
{neighbor(X,Y,X1, Y1)} ← apr5(X,Y,X1, Y1).
ab_deactr5 ← apr5(X,Y,X1, Y1),not neighbor(X,Y,X1, Y1).
⊥ :∼ ab_deactr5.[1]
kor6.
{neighbor(X,Y,X1, Y1)} ← apr6(X,Y,X1, Y1).
ab_deactr6 ← apr6(X,Y,X1, Y1),not neighbor(X,Y,X1, Y1).
⊥ :∼ ab_deactr6.[1]

{neighbor(X,Y,X1, Y1)} ← blr5(X,Y,X1, Y1), blr6(X,Y,X1, Y1).
ab_act(neighbor(X,Y,X1, Y1))← blr5(X,Y,X1, Y1), blr6(X,Y,X1, Y1),

neighbor(X,Y,X1, Y1).
⊥ :∼ ab_act(neighbor(X,Y,X1, Y1)).[1, X, Y,X1, Y1]

{reachable(X,Y)} ← blr1(X,Y), blr2(X,Y).
ab_act(reachable(X,Y)) ← blr1(X,Y), blr2(X,Y), reachable(X,Y).
⊥ :∼ ab_act(reachable(X,Y)).[1, X, Y]

refine(A1, B1)← ab_deactr2(X1, Y1),mapTo(X1, Y1, A1, B1), isCluster(B1).

and similarly ab_deactConsr3(X,Y,X1, Y1). The correctness checking finds an
optimal answer set with the atoms

{refine(a1234, b5678), refine(a5678, b5678)}.

step 4 The region (a1234, b5678) is randomly picked to refine to {(a12, b56), (a12, b78),
(a34, b56), (a34, b78)} by updating the corresponding mapping m.

step 5 Relation types according to the new mapping are computed and the loop goes
back to step 1 to compute a new abstract answer set.

189

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

The loop continues until unsatisfiability is achieved. The abstraction shown in Figure 6.3b
is one such abstraction where unsatisfiability is observed.

6.3.2 Incremental Concreteness Checking

In some cases, even the two-phase checking may not help with easily finding the optimal
answer set during the debugging step as the original domain is large or many atoms with
arguments cause to consider many possible concretizations of the abstract elements. To
help with the difficulty of correctness checking on the original domain, we considered two
approaches:

(1) For problems that contain a clear order on the atoms for the solution, checking is
done incrementally over the order.

(2) If no such clear order exists, the checking is done via incrementally concretizing
the abstract domain, following an iterative deepening style.

Approach (2) is applied to avoid making the concreteness check directly at the original
domain. If the abstract answer set is spurious, this could be detected in the partially
concretized domain, without the need to do the full check. The aim of Approach (1) is
to avoid checking the whole ordered sequence of atoms, and catching the spuriousness in
some of its prefix. To do this in the context of ASP, we require the following notion over
the program.

Ordered modularity An incremental approach proposed by [GKK+08], that builds
on the concept of modules [OJ06], is on gradually increasing the bound to the solution
size, represented by a parameter k, to help with both grounding and solving. In their
case, they are searching for an answer set with minimum size over k, thus they increment
the parameter until an answer set is computed. We use a similar idea to detect the
spuriousness of an abstract answer set by gradually increasing the parameter. However,
in our case, the increment is done until the spuriousness is realized with debugging, i.e.,
an answer set with an abnormality atom is obtained. We take a simpler view by limiting
the generated grounding of the program to the parameter.

Let Π be a program with the Herbrand base HBΠ = LB∪Lk, for parameter k ranging over
the natural numbers, where LB represents the static literals with arguments independent
of parameter k, and Lk represents the dynamic literals which have an argument k. For
a set X of literals, we denote by grd(Π)|X the set {r | H(r) ∪ B(r) ⊆ X} of rules in
grd(Π) that contain only literals from X. Let Xi ⊆ HBΠ denote the set of literals until
the parameter value i, i.e., Xi = LB ∪

⋃i
j=0 Lk/j , where Lk/j denotes the set of literals

with the respective argument of value j. The rules of grd(Π) until parameter value i
then are given by grd(Π)|Xi

, simply denoted grd(Π)|i.

Let I≤i denote the projection of an interpretation I to the literals related with the
parameter value i, i.e., I≤i = I ∩ (LB ∪

⋃
0≤j≤i Li). We say that Π is ordered modular

if for each I ∈ AS(Π), I≤i ∈ AS(grd(Π)|i) for all 0 ≤ i ≤ k. This property means that

190

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. mDASPAR

determination of the occurrence of a literal l in an answer set I≤i relies only on the
decisions made until point i.

Proposition 6.1. Let Π be an ordered modular program, m a domain mapping for Π,
and let Î ∈ AS(Πm). If Î≤i ⊆ Î is spurious for some i ≤ n, then Î is spurious.

Proof. Assume Î is concrete. This means that there exists some I ∈ Π such that m(I) = Î.
As Π is ordered modular, I≤i ∈ AS(grd(Π)|i). Thus, m(I≤i) = Î≤i is concrete.

We describe in detail the implementation of these approaches.

Incrementing time

Approach (1) is implemented in mDASPAR to handle planning problems with atoms
having time arguments. By Proposition 6.1, we know that for a sequence of actions
described in the abstract answer set, if the first few actions do not have a corresponding
original plan, one can conclude that the plan described in the abstract answer set is
spurious.

A common description of the planning problem in ASP uses two sorts time,timea, where
time has the domain {0, . . . , n} and timea has the domain {0, . . . , n− 1}. The sort timea
is used for action atoms, while time is used to define the rest of the fluents. For a given
program Π with such a description of a planning problem that contains facts for time sort
with domain {0, . . . , n}, mDASPAR is implemented as follows. We denote by Tmeta[Π]|i
the meta-program Tmeta[Π] which contains time facts (resp. timea) until domain element
i (resp. i− 1), and by Πdebug|i we denote the similar restricted version of Πdebug. For a
computed abstract answer set Î, which shows a plan 〈s0, a0, s1, . . . , sn−1, an−1, sn〉 where
the states si are described by a set of fluents that have a time argument and the actions
ai are described using action atoms that have a timea argument, we denote by Î|i the
part of the plan until time point i.

Starting with i = 1, we continue the below iteration while i ≤ n.

step (1) Create Tmeta[Π]|i−1 and Πdebug|i.

step (2) Check correctness of Î|i with Πdebug|i ∪ Tmeta[Π]|i−1 ∪Q
m
Î|i

.

step (3) If spurious, exit loop; otherwise, increase i by 1.

This way, we check the correctness of Î for the action made at time i, by doing the
debugging only for time point i as the guessing for time points t < i is restricted by
using Tmeta[Π]|i−1. The time is increased incrementally while the partial solution gives a
concrete partial plan. Once spuriousness is observed, the checking is stopped.

191

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Figure 6.7: Step-wise partial concretization of a grid-cell abstraction

Partial concretization

For Approach (2), we make use of the possibility to have a hierarchy of abstractions
mentioned in Proposition 4.20. The idea is to partially concretize the abstract domain, by
fully concretizing certain regions and keeping the remaining regions at the abstract level.
Figure 6.7 shows the hierarchy of some partial concretizations of the initial mapping. For
a given mapping m, we consider a set of possible partial concretizations. We then check
the correctness of an abstract answer set I over the program with partially concretized
domain. Since the partially concretized domain still describes an abstraction compared
to the original domain, this check can not be immediately done over the original program.
For that, we have to do the correctness checking with the debugging over the abstract
program w.r.t. the partial concretization.

The approach is implemented in mDASPAR as follows. For a given mapping m, starting
with j = 1, the iteration focuses on concretizing j regions at a time, and checks the
correctness in each such j-region combination. The iteration continues until spuriousness
is detected or m = mid:

step (1) Compute j-region concretizations of m, say m1, . . . ,mn.

step (2) For every mi ∈ {m1, . . . ,mn};

1. Create Πmi with Tmi
and the set {mi(p(c)).|p(c). ∈ Π} of facts, and Πmi

debug.
2. Create the mapping m′ such that m′(mi(D)) = m(D).
3. Check correctness of I with Πmi

debug ∪Q
m′

I .
4. If spurious, exit loop with debug answer C.

step (3) If C 6= ∅, refine m according to C and go back to step (1); otherwise, increase j
by 1, and go back to step (1)

We do the correctness checking on the abstract level mi by making use of Πmi . If I is
concrete w.r.t. the partially concretized abstraction, this does not immediately guarantee

192

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation: Unsolvable Problem Instances

that I is concrete; thus, the concretization is increased to redo the check. If however,
spuriousness is detected, the mapping is refined and the partial concretization continues
from the updated mapping.

6.4 Evaluation: Unsolvable Problem Instances

We investigate getting explanations of unsatisfiable grid-cell problems by achieving an
abstraction over the instance to focus on the troubling area. We consider the following
benchmark problems:

• Reachability (R): This problem needs the neighboring cell information and can be
encoded without introducing guesses. We check whether every cell is reachable in
the given instance. The unsatisfiability can occur due to the layout of the obstacles.

• Knight’s Tour (KT): This problem is on finding a tour on which a knight visits
each square of a board once and returns to the starting point. It is commonly
used in ASP Competitions, with possible addition of forbidden cells. The cause
of unsolvability is due to having forbidden cells that prevent the knight from
moving. In ASP competitions, this problem is encoded by guessing a set of
move(X1, Y1, X2, Y2) atoms and ensuring that each cell has only one incoming and
one outgoing movement.1 There is no time sort (as in planning) which would
describe an order.

• Visitall: We extended the planning problem of visiting every cell (without revisiting
a cell) with obstacles. This problem needs the neighboring cell information and it
can be encoded in two forms;

(V) as a planning problem, in order to find a sequence of actions that visits every
cell, or

(VKT) as a combinatorial problem similar to the Knight’s Tour encoding.

In order to have smaller time domains, we encoded V by defining go(X,Y, T) actions
that can move horizontally/vertically to a cell X,Y (without passing through an
obstacle) and the passed cells become visited. We set the time limit to be 30 time
steps.

• Sudoku (S): This problem has also been used in ASP competitions.2 Its encoding
consists of a guess of numbers in the cells combined with simple constraints such
as one symbol per column, one symbol per subregion etc. The unsolvability occurs
due to violation of these constraints.

We generated 10 unsatisfiable instances complying to the following properties so that the
unsolvability can be explained by focusing on a trouble making area:

1https://www.mat.unical.it/aspcomp2013/KnightTour
2https://dtai.cs.kuleuven.be/events/ASP-competition/Benchmarks/Sudoku.

shtml

193

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Figure 6.8: Measure for quality of a quadtree abstraction

(a) cm = 4∗2+3∗1

64∗2+16∗1
= 0.076 (b) cm = 20∗2+3∗1

64∗2+16∗1
= 0.299

• In Reachability instances, a group of neighboring cells are unreachable due to the
obstacles surrounding them.

• For Knight’s Tour instances, one or two cells are picked to have only one valid
movement to an obstacle-free cell. This way, these cells and the obstacles that do
not allow the valid movements become a reason for unsolvability.

• The Visitall instances consist of either two dead-end cells or areas with only one
cell passage, so that one is forced to pass some cells more than once, which is not
allowed.

• For Sudoku, we generated a layout of numbers that force to violate the constraints
when solving the problem.

Measuring abstraction quality We consider a quality measure of the quad-tree
abstraction by normalizing the number of abstract regions of a certain size and their
level in the quadtree. The cost of a mapping m over an n×n grid is

c(m) =
∑ℓ

i=0 r2i(m)(ℓ− i)
/ ∑ℓ

i=0 n
22−i2

(ℓ− i),

where ℓ = log2(n)− 1, r2i(m) is the number of abstract regions of size 2i× 2i in m, and
n22−i2

is the number of abstract regions of size 2i× 2i in the n×n-sized cell. The factor
ℓ−i is a weight that gives higher cost to abstractions with more low-level regions. The
abstraction mapping with the smaller cost, i.e., the smaller level of detail, is considered
to be of better quality.

Figure 6.8 shows measures of two abstraction mappings. The abstraction in Figure 6.8a
is coarser than the one in Figure 6.8b, and this is reflected in the computed measures.
Assigning more weight to having coarser regions would stress the importance of having a
coarse abstraction even more. The computation of the measure is purely structural and
domain-independent. Other measures can be defined that are dependent on the domain
which considers further aspects, e.g., an abstraction that singles out smallest number of
cells with obstacles is preferred.

194

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation: Unsolvable Problem Instances

Table 6.1: Evaluation results of applying different debugging approaches

debugging average minimum best

type steps cost steps cost steps cost

R
default 5.4 0.227 5.4 0.227

5.0 0.208
2-phase 5.5 0.233 5.3 0.222

S
default 6.5 0.696 5.1 0.550

3.2 0.371
2-phase 4.3 0.476 3.4 0.391

KT
2-phase 14.3 0.643 10.4 0.460

5.6 0.245
grid-inc 10.1 0.442 6.3 0.277

V
2-phase3 16.2 0.708 13.9 0.608

8.7 0.360
time-inc 16.3 0.712 13.5 0.569

VKT
2-phase 15.7 0.693 13.0 0.572

7.6 0.317
grid-inc 13.0 0.569 10.3 0.449

Evaluation Results

We compare different debugging approaches described in Section 6.3.1 in order to observe
their effects in the resulting abstractions and the taken refinement steps. Due to their
encodings and constraints, the Knight’s Tour and Visitall problems are the challenging
ones. To observe whether an incremental checking (Section 6.3.2) could help in deciding
on a refinement and achieve better abstractions, we applied partial concretization for KT
and VKT, and incremental time checking for V. To evaluate the quality of the resulting
abstraction on how far it is from the best possible abstraction that shows the unsolvability,
we also checked the existence of a coarser abstraction that still preserves unsatisfiability.

Table 6.1 shows the main evaluation results. We compare different debugging approaches
in terms of the average refinement steps and average costs of the resulting abstractions
over 10 runs, and also on the best outcome obtained (with minimum refinement steps
and minimum mapping cost) among the 10 runs. The right-most two columns are for
checking the existence of a coarser abstraction from the best outcome obtained in the
runs. The time to find an optimal solution when debugging the concreteness checking was
limited by 50 seconds. If none is found within the time limit, the refinement is decided
on the basis of suboptimal analyses.

For Reachability and Sudoku, we observe that abstractions close to the best possible
ones can be obtained. Abstractions that are slightly better were obtained with 2-phase
debugging, due to putting the focus on the right part of the abstraction after the first step.
For Knight’s Tour and Visitall, we observe that incremental checking can obtain better
abstractions. For 2-phase debugging, the program mostly had to decide on suboptimal
concreteness checking outputs, due to timeouts. Additionally, for problem Visitall with
the V encoding, 2-phase debugging caused memory errors (when over 500 MB) on some

195

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Figure 6.9: Spurious plans in abstractions that distinguish the single-cell passages

•

(a) inst. #10 (b) V - spurious action transi-
tions

(c) VKT - separate sequences of
actions that visit the cells that are
reachable with single-cell passages

runs for some instances, thus not all 10 runs could be completed.

We can also see a difference of the resulting abstractions for the different encodings of
Visitall. The planning encoding causes to achieve unsatisfiability with finer abstractions.
Guesses of spurious sequences of actions in the abstraction cause the debugging to decide
on refinements that avoid these sequences. The focus moves towards the unsolvability
when the abstract action sequence is not executable due to an obstacle. In some instances
where the reason for unsolvability is not easily caught by having two dead-ends, shifting
the focus on to the existence of some obstacles does not achieve unsatisfiability. The
abstract encoding manages to find a plan passing through different sized regions by
avoiding the constraints due to uncertainty. For these instances, the abstraction needs to
be fine enough to get rid of most of the uncertainty.

For example, Figure 6.9a shows such an instance. An abstraction that distinguishes the
one-passage-entries and the obstacles that surround the cells cannot achieve unsatisfiability
for V. Figure 6.9b shows some spurious action transitions that are determined in a plan
found with the V encoding among regions by avoiding the constraints due to uncertainty.
Unsatisfiability cannot be achieved for VKT as well. This is due to guessing a set of
move atoms, which achieves that every cell is visited, but actually does not have a
corresponding original order of movements. Figure 6.9c shows the spurious order of
movements that gets split in order to visit each cell that is only reachable through a
one-passage-entry. If the abstraction is refined to distinguish the cells in the respective
corners, then unsatisfiability is realized.

6.4.1 User Study on Unsatisfiability Explanations

We were interested in checking whether the obtained abstractions match the intuition
behind a human explanation. For Reachability and Visitall, finding the reason for
unsolvability of an instance is possible by looking at the obstacle layout. Thus, we

3A total of 16 runs could not be completed due to memory errors. The results are computed among
the runs that have been completed.

196

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Evaluation: Unsolvable Problem Instances

Figure 6.10: Explanatory abstractions for unsatisfiable Reachability instances

(a) inst. #6 : expected (b) inst. #6 : unexpected

•

(c) inst. #6 - DASPAR

(d) inst. #10: expected (e) inst. #10: unexpected

•

(f) inst. #10 - DASPAR

conducted a user study for these problems in order to obtain the regions that humans
focus on to realize the unsolvability of the problem instance.

As participants, we had ten PhD students of Computer Science at TU Wien. We
asked them to mark the area which shows the reason (if more than one exists mark
with different colors) for having unreachable cells in the Reachability instances and
the reason for not finding a solution that visits all the cells in the Visitall instances.
Explanations for ten instances of each problem were collected. We discuss the results
for both problems by showing two of the responses (expected and unexpected) and
the best abstraction obtained from mDASPAR when starting with the initial mapping.
All user explanations can be found in http://www.kr.tuwien.ac.at/research/

systems/abstraction/mdaspar_material.zip.

Reachability. The expected explanations (e.g., Figures 6.10a and 6.10d) focus on the
obstacles that surround the unreachable cells, as they prevent them from being reachable.
When their respective abstraction mappings are given to mDASPAR, the constructed
abstract program is also unsatisfiable. The explanation in Fig. 6.10b puts the focus on
the unreachable cells themselves, and Fig. 6.10e distinguishes a particular obstacle as
a reason. When the respective abstraction mappings are given to mDASPAR, it needs
to refine further to distinguish more obstacles and achieve unsatisfiability. The mark in
Figure 6.10e is a possible solution to the unreachability of the cells, since removing the
marked obstacle makes all the cells reachable.

197

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Figure 6.11: Explanatory abstractions for unsatisfiable Visitall instances

(a) inst. #1: expected (b) inst. #1: unexpected

•

(c) inst. #1 - DASPAR

(d) inst. #10: expected (e) inst. #10: unexpected

•

(f) inst. #10 - DASPAR

In ASP, checking whether all cells are reachable is straightforward, without introducing
guesses. This is also observed to be helpful for mDASPAR, as most of the resulting
abstractions were similar to the gathered answers. Since in the initial abstraction, the
abstract program only knows that the agent is located in the upper-left abstract region,
in instance #10, mDASPAR follows a different path in refining the abstraction, and
reaches the abstraction shown in Figure 6.10f. Although not the same as the one given
by the users, this abstraction also shows a reason for having unreachable cells. Humans
use the implicit knowledge that the agent is located in the upper-left corner in order
to determine the reason for unreachability of the cells, and thus focus on a different
area than mDASPAR. Such an abstraction can also be achieved with the method, by
influencing the refinement decisions towards singling out the initial location of the agent.

The abstractions achieved by mDASPAR are more general in the sense that the precise
initial location of the agent is not necessary to distinguish the unreachable cells. The
agent can be initially located in any of the cells mapped to the respective abstract region.
The precise layout of the obstacles in the abstracted regions also does not play a role in
determining the unreachability of the distingished cells.

Visitall. Most of the users pick two dead-end cells in the instances (if such occur) as
an explanation for unsatisfiability. However, the explanations are given by marking these
dead-end cells, instead of the obstacles surrounding them (see Fig. 6.11a), which are the
actual cause for them to be dead-end cells. Even with abstraction mappings that also
distinguish the surrounding obstacles of these dead-end cells, the corresponding abstract

198

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Abstraction for Policy Refutation

program still remains satisfiable. mDASPAR needs to refine further to distinguish the
neighboring cells (as in Fig. 6.11c), to realize that it can only pass through one grid-cell
when reaching the dead-end cells, and thus achieve unsatisfiability.

Unexpectedly, some users marked only one of the dead-end cell as an explanation
(Figure 6.11b), which is actually focusing on a possible solution.

Some instances do not contain two dead-end cells, but single-cell passages to some regions.
Fig. 6.11d shows an entry that distinguishes these passages, while again focusing only on
the cells themselves. For these instances, the results of mDASPAR are quite different.
We discussed this already over Figure 6.9 in the evaluation results. Fig. 6.11f shows the
best abstraction achieved for VKT. It distinguishes all the cells in the one-passage-entry
regions to realize that a desired action sequence can not be found.

The generality of the achieved abstractions can also be observed here. The precise layout
of the agent and the obstacles in the abstracted areas do not change the unsatisfiability
result due to not being able to visit all the cells in the distinguished parts.

Observations The abstraction method can demonstrate the capability of human-like
focus on certain parts of the grid to show the unsolvability reason. However, humans are
also implicitly making use of their background knowledge and do not need to explicitly
state the relations among the objects. Empowering the machine with such capabilities
remains a challenge. The study also showed the difference in understanding the meaning
of “explanation”. For some, showing the solution to get rid of unsolvability is also seen as
an explanation. This difference in understanding shows that one needs to clearly specify
what they want (e.g., “mark only the obstacles that cause to have unreachable cells”),
which would then deviate from studying the meaning of explanation.

6.5 Abstraction for Policy Refutation

We now focus on using the abstraction over grid-cells for the problem of checking policies
on whether they manage to guide the agent towards the goal. We consider two versions
of this problem and discuss the use of abstraction.

As a running example, we consider an agent trying to find its way in a maze towards a
goal point (similar in spirit to the example of finding a missing person). For representing
and generating the mazes, we use an altered version of the Maze Generation encoding
from ASP Competition 2011.4 The first example policy when talking about mazes that
may come to one’s mind is the “right-hand rule” policy. This policy is known to work in
many maze instances, except the ones where the goal point is in the middle area and the
agent is forced to loop due to the obstacle layout.

4https://www.mat.unical.it/aspcomp2011/files/MazeGeneration/maze_

generation.enc.asp

199

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

Table 6.2: Policy checking in maze instances

sat/unsat ave. step ave. cost ave. best step ave. best cost

naive 16/4 7.2 0.391 6.5 0.362

right-hand 6/14 12.5 0.630 11.8 0.599

Does the policy work on a given instance?

For fixed problem instances, this check is done by a search of a counterexample trajectory
which follows the policy but does not reach the goal. If no such trajectory can be found
(i.e., unsatisfiability is achieved), then this shows that the policy works on the instance.
Abstraction can be used to focus on the part of the instance which is enough to show
that the policy does not achieve the goal or that following the policy always achieves
the goal. Notice that the case when the policy works then becomes similar to having
unsatisfiable problems which was the focus in the previous section.

The granularity of the abstraction needed to show the result of the checking depends on
the complexity of the policy. As demonstrated in Figure 6.13, refuting the well-known
“right-hand rule” policy needs the abstraction to at least refine the outer area (if not
more). To observe how the policy type affects the resulting abstraction, we did some
experiments. To help with the refinement decisions, the initial abstraction distinguishes
the starting point of the agent and abstracts over the rest.

We consider the following two policies:

(A) Right-hand rule: Follow the wall on the right-hand side.
(B) Naive policy: Choose the direction to move to with the priority right > down >

left > up.

We generated 20 instances where on some of them both, some or none of the policies work.
For the debugging method we picked time increment, since we wanted the debugging
to focus on each step of the abstract trajectory starting from the beginning, and on
whether or not they match the policy’s decisions in the corresponding original trajectory.
Furthermore, the refinement decision is made only from the check of the first abstract
answer set obtained. This is due to the fact that, if diverse answer sets are considered, a
concrete answer set among spurious ones can be encountered. This would finalize the
search and achieve an abstraction that definitely is not faithful. Thus, to increase the
chances of achieving faithful abstractions, only one abstract answer set is picked.

Table 6.2 shows the results of using mDASPAR to achieve an abstraction with a concrete
solution. Obtaining SAT means that the program found a concrete solution, i.e., a
concrete counterexample trajectory, which shows that the policy does not work, while
having UNSAT means that the policy works. As expected, the naive policy failed to work
for most of the instances. Since the right-hand rule forces to traverse the environment
more, mDASPAR required to have finer abstractions to figure out the concrete solution.
In both cases, the obtained abstractions were not too distant from the best possible ones,

200

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Abstraction for Policy Refutation

Figure 6.12: Abstractions on policy checking in maze instances (with the support-
ing/refuting paths)

(a) naive: works, right-hand:
doesn’t work

(b) Supporting the naive pol-
icy

(c) Refuting the right-hand
policy

(d) naive: doesn’t work, right-
hand: works

(e) Refuting the naive policy (f) Supporting the right-hand
policy

(g) naive: works, right-hand:
works

(h) Supporting the naive pol-
icy

(i) Supporting the right-hand
policy

although still sometimes the focus was shifted to the irrelevant parts of the grid. All of
the obtained resulting abstractions were faithful, which means that they were able to
show the actual behavior of the policy. Figure 6.12 shows the resulting abstractions for
three of the instances.

Does the policy always work?

This is a more involved check, since a set of possible instances has to be considered and
a search of a counterexample trajectory among each instance needs to be done. If the

201

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

policy works, then all possible policy trajectories in all instances have to be checked to
conclude this result. For this case, considering an abstraction that focuses on a certain
part of the grid may not be useful, since depending on the structure of the instances
different parts of the grid may need to be singled out. However, if the policy does not
work, it is enough to find an instance in which a counterexample policy trajectory can
be shown. Thus, an abstraction that focuses on a certain part of the grid where some
instance can show a counterexample would be useful.

In ASP, such a check can be done by making two sets of guesses: (1) choose a valid
instance, by guessing the layout of the environment and the position of the goal, and (2)
determine a counterexample trajectory, by guessing the movements of the agent following
the policy which do not achieve the goal in the instance. If the policy is deterministic
(i.e., chooses exactly one action at a state), then the second guessing part becomes
straightforward. However, for nondeterministic policies, a choice of possible actions to
take exists, which adds to the complexity of the search.

The experiments showed that having these guesses combined with the guesses introduced
in the syntactic transformation causes to encounter many spurious abstract answer sets.
These answer sets sometimes force the refinement decisions to be made towards useless
parts of the grid. For example, when the general policy checking is done for the right-hand
policy, mDASPAR needs to refine back to the original domain to catch some instance
with a counterexample trajectory, since the policy forces to traverse the environment,
and in the abstract encoding, the guesses of the instance and the movements cause to
create many spurious trajectories. As for the naive policy, mDASPAR is capable of
encountering a counterexample trajectory in few refinement steps. It is enough to realize
that the naive policy does not work by creating a partial instance where the agent enters
a dead-end and has to leave by moving left, then it starts looping by moving right and
left.

6.6 Discussion

In this chapter, we have investigated the use of multi-dimensional domain abstraction
on grid-cells. The quad-tree style abstraction respects the structure of the grid, and
achieves a systematic abstraction refinement process. The resulting abstractions match
the intuition behind human abstractions, by singling out the relevant part of the grid
and abstracting away the rest.

Achieving better has been abstractions shown to be possible with more sophisticated
decision making for the refinement step. However, the multi-dimensionality adds to
the difficulty of computing the types of the relations and the concreteness checking of
abstract answer sets in the original domain. Thus, the current approach does not scale
to large sized grids. For now, to aid in the relation type computation effort, once a
type computation is conducted for a certain mapping, it is cashed and reused whenever
the respective mapping appears. This way, the recomputations are avoided. This effort
could be ameliorated by investigating analytical methods for computing and representing

202

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.6. Discussion

Figure 6.13: Can we refute the right-hand rule policy in all maze instances with one
abstraction?

(a) A counterexample instance (b) Distinguishing the path of a coun-
terexample trajectory

(c) A counterexample instance (d) Spurious counterexample trajecto-
ries occur due to abstract regions

relation types. For concreteness checking, we discuss in Section 7.3 as future work a
possible alternative approach to address the scalability issue.

The multi-dimensionality of the abstraction can be useful in other problems that bear a
structure which needs to be respected. The approach can easily be applied to different
problems, by modifying the refinement step description to respect the new structure.

Lastly, we want to emphasize that, in case the policy does not work, it is uncommon to
have one abstraction mapping that can be applied with any possible instance and that
is able to catch some counterexample trajectory to refute the given policy, especially
one that is faithful when applied for any instance. Figure 6.13a shows an instance in
which the right-hand policy is unable to reach the (green) goal point from the (red) entry
point in the upper left corner. An abstraction such as Figure 6.13b is enough to realize
that a loop occurs and a goal can not be reached (i.e., it is a faithful abstraction for this
instance). However, this abstraction does not always distinguish the cells that force to
obtain a counterexample trajectory in each possible refuting instances. For example, the
instance in Figure 6.13c also forces the agent to loop, but with the same abstraction
(Figure 6.13d) since there is uncertainty among the abstract regions it is still possible to
create spurious counterexample trajectories in the abstract program. Thus, faithfulness
can not be achieved. For this problem, the identity abstraction would be the one that

203

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Abstracting Problems over Grid-Cells

can be used to (faithfully) refute the policy in all possible instances.

It would be interesting to investigate the properties needed in a policy and in the domain
that makes it possible to have a universal (non-identity) abstraction to be used to
(faithfully) refute the policy in all instances.

204

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Conclusion

7.1 Summary

In this thesis, we tackled the challenge of understanding the core elements of the behavior
of an agent program by employing abstraction. We approached the problem from two
directions. First, we investigated the representation of an abstraction for reactive agent
behavior that follows a given policy. For this, we focused on a representation that
gets rid of details irrelevant to the policy behavior and preserves the properties of the
behavior, which makes it possible to do reasoning at the abstract level with a guarantee
that the same holds at the original level. Second, we considered abstraction as an
over-approximation, and employed the notion of abstraction in the context of Answer
Set Programming, a knowledge representation and reasoning paradigm widely used in
declarative problem solving, as well as modeling agent behavior, in order to be able to
abstract over the irrelevant details of answer set programs.

We addressed the shortage of representations that are capable of modeling reactive
policies which distinguish relevant details of the states and the transitions. Our ASP-
based perspective on the representation integrates target development and online planning
capabilities. These components allow one to describe a reactive behavior that decides
the course of actions by determining targets as stepping stones to achieve during the
interaction with the environment. Flexibility in these components does not restrict one
to only using ASP or action languages, but allows for the use of other formalizations as
well.

Depending on the agent’s designed behavior and its determination of a course of actions
at a state, some information in the state may not be necessary, relevant or even observable.
For this, we considered a notion of indistinguishability which is on clustering the states
that contain the same profile according to the policy. This equalization on the states shifts
the focus towards the behavior that the policy enforces on the agent, by representing

205

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

the transitions according to the plans determined by the policy as macro actions/big
jumps between the equalized states. Since the original policy transitions are preserved,
this makes it possible to reason about the behavior of the policy over all trajectories
in the equalized transition system, especially to check if following the policy always
manages to achieve the goal condition. In order to ensure that no new properties over the
system behavior are introduced, a further condition over the equalization is introduced.
This properness condition ensures that having a trajectory through the policy actions in
the abstract level guarantees the existence of a concrete trajectory in the original level.
Knowing that any such trajectory found in the equalized transition system exists in the
original transition system gives the possibility to do further reasoning over the policy
behavior. Especially, if a counterexample trajectory that shows that the policy cannot
achieve the goal condition is found, then this is enough to conclude that the policy indeed
does not work in the original system.

Our motivation has been to use ASP and ASP-based action languages in representing
such an agent behavior that follows a desribed policy and to use abstraction to help in
focusing on the key elements of the behavior. However, such a notion of abstraction has
not been explored in the context of ASP before. This motivated to shift the focus of the
thesis towards introducing this notion to ASP and investigating its possible uses.

We started with introducing abstraction of a program by constructing an abstract program
with smaller vocabulary, and ensuring that the original program is over-approximated,
i.e., every original answer set can be mapped to some abstract answer set. We described
methods to construct abstract programs, while preserving the structure of the rules, by
considering two approaches; one is omitting atoms from a ground program, while the
other is about abstracting over the domain elements of a non-ground program. As having
an over-approximation causes the possibility to have spurious answer sets which cannot
be mapped to original answer sets, we proposed a method for refining the abstractions
to get rid of the spuriousness. This method makes use of ASP-debugging techniques to
obtain hints for refinements when checking the concreteness of the obtained abstract
answer set.

We then integrated the abstraction and refinement notions and introduced a CEGAR-style
methodology [CGJ+03] that starts with an initial abstraction and refines it repeatedly
using hints that are obtained from checking the abstract answer sets, until a concrete
solution (or unsatisfiability) is encountered. We have implemented the approach in the
tools ASPARO, for omission-based abstraction, DASPAR, for domain abstraction, and
mDASPAR that extends domain abstraction to handle multi-dimensionality. Given an
answer set program and an initial abstraction, these tools are able to automatically
produce an abstraction mapping that creates an abstract program where either a concrete
answer set is encountered, or unsatisfiability is achieved.

The conducted experimental evaluations show the potential of the approaches in under-
standing the core elements of a program. For unsatisfiable ASP programs, we observe
that automatic abstraction refinement is able to catch the unsatisfiability without refining
back to the original program. With omission abstraction, this results in obtaining an

206

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Related Work

abstract program where the focus of attention is narrowed down to the rules associated
with obtaining unsatisfiability. As for domain abstraction, a multi-dimensional view of
an abstraction makes it possible to zoom in to the area of the grid-cell which shows the
reason for unsolvability. For satisfiable ASP programs, an abstraction over the domain
allows for problem solving over abstract notions, which reflect relevant details only. The
obtained abstract solutions can then be used in understanding the unnecessary details of
the domain which does not make a difference in finding the solution.

7.2 Related Work

In this section, we describe the most related works to our thesis. Since the motivation
of the thesis is to gain the capability of reasoning about the behavior of the agent, this
makes it related to the area of agent verification, where the notion of abstraction has
also been used. The aim of using abstraction to understand the core elements of problem
solving makes the thesis also close to the works on using abstraction for planning and
generalized planning. The main difference of the thesis lies in the focus on a highly
expressive nonmonotonic logic formalism.

Agent Verification One view on representing agents has been by seeing them as
rational, acting according to their beliefs, desires and intentions [Bra87, CL90]. The
BDI model proposed by Rao and Georgeff [RG+95, RG91] is a logical framework for
such an agent theory, with a formalism that is based on branching time model. There
are many different agent programming languages and platforms based on this model.
Verifying properties of multi-agent systems represented in these languages has also received
attention [BFVW06, DFWB12]. These approaches consider very complex architectures
that even contain a plan library where plans are matched with the intentions or the agent’s
state and manipulate the intentions. Verification for such complex BDI architecture
gets very challenging. In order to deal with large state spaces, Bordini et al. [BFVW04]
represented each agent program by a graph describing the dependencies and proposed an
algorithm to eliminate parts of the program that do not affect the property to be verified.

There have been works conducted on the verification of GOLOG programs [LRL+97],
a family of high-level action programming languages defined on top of action theories
expressed in the situation calculus. The method of verifying properties of non-terminal
processes are sound, but incomplete as the verification problem is undecidable [DGTR97,
CL08]. By resorting to action formalisms based on description logic, decidability can be
achieved [BZ13]. Another way of reaching decidability is to consider a fragment where
actions affect only a finite number of objects [DGLP12, DGLPS16] or the dependencies
between fluents in the successor state axioms are restricted [ZC16]. Mo et al. [MLL16]
introduced a method that uses predicate abstraction for automatic verification of partial
correctness of GOLOG programs.

Verifying temporal properties of dynamic systems in the context of data management
was studied by Calvanese et al. [CDGMP13] for description logic knowledge bases under

207

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

a “bounded-state” assumption. They considered a generic notion over the systems, which
states that the properties of individuals are only those that can be inferred from the
knowledge base, for which they introduced a notion of equivalence of ABoxes.

Abstraction was studied for situation calculus action theories by Banihashemi et al.
[BDGL17], who imposed a bisimulation restriction on the abstraction in order to ensure
that reasoning about agent’s actions at the abstract level can be mapped to a concrete
reasoning. Later, in [BDGL18] they showed how this restricted notion of abstraction can
be used in reasoning about a strategy for an agent to achieve a goal at the high level and
then mapping it back into a low-level strategy. Their focus however was not on how such
an abstraction can be found.

For verifying the behavior of multi-agent systems, the use of abstraction has been
investigated by Lomuscio et al. for abstracting over each agent to construct an abstract
system while preserving the properties expressed in a temporal-epistemic logic [CDLR09]
or alternating-time temporal logic [LM14]. In [CDLR09] the focus is not on how such
an abstraction can be built. In [LM14] an abstraction of the states is made by putting
together the states that have the same possible actions to execute and action abstraction
keeps the actions of certain agents, by omitting the rest. This is similar to the equalization
we considered in the dynamic setting in Section 3.3, where we have abstracted over the
environment actions. They considered a three-valued logic and the abstraction also
preserves the behavior of not satisfying a property. The spuriousness may occur for the
case of achieving an “uncertain” result for checking a specification in the abstract level,
which then forces to refine the abstraction by splitting the states by investigating the
subformulas of the specification. They later extended this work to infinite state models
[LM16] and abstracted them to finite models using predicate abstraction by analysing
the specification to be checked. Later they presented an interpolant-based refinement
method [BLM16].

Verifying the correctness of ASP programs by representing them in first-order logic is an
ongoing research topic of Lühne et al. with recent results on verifying strong equivalence
[LLS19].

Abstraction in Planning Starting from the early years of AI planning, applications
of abstraction to help with the search and planning for complex domains have received a
lot of attention. One main research focus has been on hierarchical planning, which is on
considering different abstraction levels over the problem space. A plan is searched at the
abstract level and then the solution is refined successively to more detailed levels in the
abstraction hierarchy, until a concrete plan is computed at the original level. Sacerdoti
[Sac74] showed an abstraction notion that keeps the “critical” preconditions of actions
and ignores the rest. Knoblock [Kno94] proposed an ordered monotonicity property
to ensure that solving the subproblems by refining certain parts of the plan does not
change the remaining parts of the abstract plan. A similar property was considered by
Bacchus and Yang [BY94], which states that if the original problem is solvable, then
any abstract solution must have a refinement. Anderson and Farley [AF88] construct

208

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Related Work

operator hierarchies by having classes of operators that share common effects and forming
new abstract operators with the shared preconditions.

Another research focus has been on using abstractions to compute heuristics, which
are estimates of the distances to the solution that guide the search for plan. Pattern
databases [CS98] are constructed from the results of projecting the state space to a set
of variables of the planning task, called a pattern, which is to be solved optimally. The
omission abstraction we introduced in Section 4.2 matches the intuition behind this
projection notion. Edelkamp [Ede01] was the first to apply this technique in planning,
and showed that a pre-compiled look up table consisting of the costs of abstract solutions
can help with the heuristic search in finding optimal solutions. The merge & shrink
abstraction method of Helmert et al. [HHH+07] starts with a suite of single projections,
and then computes an abstraction by merging them and shrinking. A CEGAR-inspired
method was proposed by Seipp and Helmert [SH13] based on cartesian abstractions
which form a general class of abstractions. The reason for spuriousness of the abstract
plan is detected when trying to construct a concrete plan, and the abstraction is refined
by splitting the states. Obtaining such a cartesian abstraction is also possible with
domain abstraction introduced in Section 4.3, while we further empower the abstraction
with a multi-dimensional handle in Section 4.6 which has the capability of representing
a hierarchy of abstraction levels. As we showed in Chapter 6, such an abstraction is
especially useful for grids.

Although not thoroughly investigated, the notion of domain abstraction has also been
considered in heuristic-search planning. Hernádvölgyi and Holte [HH99] presented
a domain abstraction notion over the states which are represented as fixed length
vectors of labels. They also noted the possibility of encountering spurious states with
some abstractions. Hoffman et al. [HSD06] considered variable domain abstraction by
modifying the add and delete lists of the operators accordingly. They also argued that
obtaining efficient results from applying abstraction in planning mostly relies on the
amount of irrelevance that the problem contains. This is an observation we have also made
with our experiments, and further investigations on the structure that problems must
have in order to obtain good results, especially in the context of ASP, is an interesting
research direction.

The notion of irrelevant information and its effects were analyzed for planning by Nebel
et al. [NDK97], in which different heuristics were introduced to omit such information.
Fox and Long [FL99] described a method for detecting symmetries in a problem which
are then treated as indistinguishable to help the planner.

In the context of ASP and action languages, Dix et al. [DKN03] proposed a way of
formulating and solving hierarchical planning under the ASP semantics, with a focus
on ordered task decomposition, which is planning each step in the order it will later be
executed. For a particular application of mobile robot planning, Zhang et al. [ZYKS15]
performed hierarchical planning using the action language BC.

209

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

Generalized planning Finding a plan that can achieve the goal in a class of problem
instances can give an understanding of the relevant details of these problems. This plan
can then be used in any particular instance of the problem without the need to do further
search. Note that, as discussed in Section 5.3, the plans that are computed with our
domain abstraction method can also be seen as a generalized plan, since these plans work
for any original problem instance that can be mapped to the abstract instance.

Srivastava et al [SIZ11] proposed an abstraction method for constructing generalized
plans with loops, by focusing on classical planning, but the problem of selecting a good
abstraction was beyond the scope of their work. Bonet and Geffner [BG15] considered a
setting where uncertainty is represented by a set of states, by clustering the states that
provide the same observations. This view is similar to the indistinguishability notion
we proposed in Section 3.1. They study the conditions for a policy (i.e., plan) to be
general enough to work on other instances. Later they extended this notion with having
trajectory constraints [BDGGR17].

Illanes and McIlraith [IM16] studied abstraction for numeric planning problems by
compiling them into classical planning. Recently, they used abstraction for problems that
contain quantifiable objects [IM19], e.g., some number of packages to deliver to points A
and B, to find generalized plans by abstracting away from the quantification that works
for multiple instances of the problem. For this, they build a quantified planning problem
by identifying sets of indistinguishable objects using reformulation techniques [RDBF16]
to reduce symmetry, and then use an algorithm to compute a general policy. While the
quantifiability conditions of [IM19] restrict its possible applications, our method has the
orthogonal potential drawback of producing spurious answers.

7.3 Future Work

Introducing the abstraction notion to representing agent behavior with an action language
perspective, and in particular, to the context of Answer Set Programming offers various
directions of future work.

One interesting research would be to relate such an abstraction notion in ASP with
action domain descriptions, and to investigate the properties of obtaining abstractions
over the states and actions of the transition system. Different properties may be achieved
according to the structure of the problems, e.g., indirectly effected objects that do not
affect the agent’s decision making may be abstracted while preserving faithfulness. Such
an over-approximation is to be built on the constructed equalized transition system,
which can then be used in extracting the key elements of the agent’s behavior according
to the policy.

Regarding over-approximation in ASP, the current abstraction method can be made
more sophisticated in order to avoid introducing too many spurious answer sets. This,
however, will require to conduct a more extensive program analysis, as well as to have
non-modular program abstraction procedures which do not operate on a rule by rule

210

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Future Work

basis; to what extent the program structure can be obtained, and understanding the
trade-off between program similarity and answer set similarity are interesting research
questions. We plan to explore employing rule decomposition techniques [BMW16] as a
preprocessing step in order to achieve programs with a certain structure, to observe their
effects for the abstraction step.

The current method can benefit from significant performance improvement, as the
current prototypes have been built on top of legacy code and tools of ASP-debugging
approaches [BGP+07, OPT10] from previous works. Having the concreteness checking
and refinement decision making done externally over the constructed meta programs also
adds to the computation effort. Incorporating these steps into an ASP solver may lead to
improvement in the performance of the methodology. The ASP debugging tools such as
Ouroboros [OPT10] or DWASP [DGM+15] can also be employed for this purpose. Since
the computation effort rises for the concreteness checking, e.g., for the grid-cell setting,
doing an incremental check may be helpful. There are ASP solvers that are making use
of the modularity of the program in searching for an answer set [GKK+08, GKKS19]
or apply lazy grounding [TWF19], which could be used for our purposes as well. An
optimized implementation may lead to view abstraction under a performance aspect,
which then becomes part of a general ASP solving toolbox.

Different methods can be also explored to help with the decision making in the refinement
step. The concreteness checking in the introduced method can be costly due to the need
to ground the original program while checking. This can be ameliorated by approaching
the checking problem from another perspective. Justification methods [PSE09, CFF14]
can be used to first get an explanation of how the abstract answer set is computed. This
explanation can then be checked on the original program by tracing the decision steps
and searching for an original trace. In case an original trace fails at a certain step, this
would show the reason for spuriousness of the abstract justification. This reason can
then be used in the refinement of the abstraction.

An important aspect of the abstraction&refinement method is the inital abstraction
mapping. Starting with too coarse abstractions may mislead the method into refining
irrelevant parts of the abstraction. To overcome this, an understanding of a good
initial abstraction needs to be investigated. Employing symmetry breaking techniques
[DTW11, DBBD16] in order to get hints on a good initial abstraction is a promising
subject of future research. Furthermore, as the use of abstraction depends on the
problem structure at hand, characterizations of different problem types and the effects of
abstraction are necessary.

Employing abstraction to obtain human-understandable explanations on problem solving
using ASP programs requires further investigation. With the current method, an abstract
program can be obtained, which can achieve concrete solutions to the problem. This alone
can not be enough for a human to understand the behavior. The application on grid-cell
problems showed that by visualizing the obtained abstractions for the corresponding
ASP programs, similarities can be observed with the focus areas in human explanations

211

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Conclusion

to the problems. However, a general approach for obtaining explanations that can be
applicable to variety of problems is an open issue.

212

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[ABC99] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query
answers in inconsistent databases. In Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 68–79, 1999.

[ABW88] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory
of declarative knowledge. In Foundations of deductive databases and logic
programming, pages 89–148. Elsevier, 1988.

[ACC+13] Mario Alviano, Francesco Calimeri, Günther Charwat, Minh Dao-Tran,
Carmine Dodaro, Giovambattista Ianni, Thomas Krennwallner, Martin
Kronegger, Johannes Oetsch, Andreas Pfandler, et al. The fourth answer
set programming competition: Preliminary report. In Proceedings of the
12th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2013), pages 42–53. Springer, 2013.

[AD16] Mario Alviano and Carmine Dodaro. Anytime answer set optimization via
unsatisfiable core shrinking. Theory and Practice of Logic Programming,
16(5-6):533–551, 2016.

[ADJ+18] Mario Alviano, Carmine Dodaro, Matti Järvisalo, Marco Maratea, and
Alessandro Previti. Cautious reasoning in ASP via minimal models and
unsatisfiable cores. Theory and Practice of Logic Programming, 18(3-4):319–
336, 2018.

[AF88] John S. Anderson and Arthur M. Farley. Plan abstraction based on operator
generalization. In Proceedings of the 7th National Conference on Artificial
Intelligence (AAAI 1988), pages 100–104, 1988.

[AKMS12] Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub. Unsatisfiability-based optimization in clasp. In Technical Com-
munications of the 28th International Conference on Logic Programming,

213

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

ICLP 2012, volume 17, pages 211–221. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2012.

[APG09] Alexandre Albore, Héctor Palacios, and Héctor Geffner. A translation-
based approach to contingent planning. In Twenty-First International Joint
Conference on Artificial Intelligence, 2009.

[Bal96] José L. Balcázar. The complexity of searching implicit graphs. Artificial
Intelligence, 86(1):171–188, 1996.

[Bar03] Chitta Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[BCRT06] Piergiorgio Bertoli, Alessandro Cimatti, Marco Riveri, and Paolo Traverso.
Strong planning under partial observability. Artificial Intelligence,
170(4):337–384, 2006.

[BD97] Stefan Brass and Jürgen Dix. Characterizations of the disjunctive sta-
ble semantics by partial evaluation. The Journal of Logic Programming,
32(3):207–228, 1997.

[BDGGR17] Blai Bonet, Giuseppe De Giacomo, Hector Geffner, and Sasha Rubin. Gener-
alized planning: Non-deterministic abstractions and trajectory constraints.
In Proceedings of the 26th International Joint conference on Artificial
intelligence (IJCAI 2017), pages 873–879, 2017.

[BDGL17] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. Abstraction
in situation calculus action theories. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI 2017), pages 1048–1055, 2017.

[BDGL18] Bita Banihashemi, Giuseppe De Giacomo, and Yves Lespérance. Abstraction
of agents executing online and their abilities in the situation calculus.
In Proceedings of the 27th International Joint conference on Artificial
intelligence (IJCAI 2018), pages 1699–1706, 2018.

[BEBN08] Chitta Baral, Thomas Eiter, Marcus Bjäreland, and Mutsumi Nakamura.
Maintenance goals of agents in a dynamic environment: Formulation and
policy construction. Artificial Intelligence, 172(12):1429–1469, 2008.

[BET11] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set
programming at a glance. Communications of the ACM, 54(12):92–103,
2011.

[BF97] Avrim L Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90(1-2):281–300, 1997.

214

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[BFVW04] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge.
State-space reduction techniques in agent verification. In Proceedings of the
3rd International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2004) - Volume 2, pages 896–903. IEEE Computer
Society, 2004.

[BFVW06] Rafael H. Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge.
Verifying multi-agent programs by model checking. Autonomous agents
and multi-agent systems, 12(2):239–256, 2006.

[BG00a] Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains.
In Logic-based artificial intelligence, pages 257–279. Springer, 2000.

[BG00b] Blai Bonet and Hector Geffner. Planning with incomplete information as
heuristic search in belief space. In Proceedings of the 5th International
Conference on Artificial Intelligence Planning Systems, pages 52–61. AAAI
Press, 2000.

[BG15] Blai Bonet and Hector Geffner. Policies that generalize: Solving many
planning problems with the same policy. In Proceedings of the 24th Inter-
national Joint conference on Artificial intelligence (IJCAI 2015). AAAI
Press, 2015.

[BGP+07] Martin Brain, Martin Gebser, Jörg Pührer, Torsten Schaub, Hans Tompits,
and Stefan Woltran. Debugging asp programs by means of asp. In Pro-
ceedings of the 9th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2007), pages 31–43. Springer, 2007.

[BJ95] Christer Backstrom and Peter Jonsson. Planning with abstraction hi-
erarchies can be exponentially less efficient. In Proceedings of the 14th
International Joint conference on Artificial intelligence (IJCAI 1995) -
Volume 2, pages 1599–1604. Morgan Kaufmann Publishers Inc., 1995.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008.

[BKS06] Daniel Bryce, Subbarao Kambhampati, and David E Smith. Planning
graph heuristics for belief space search. Journal of Artificial Intelligence
Research, 26:35–99, 2006.

[BKT93] Samuel Buss, Jan Krajìček, and Gaisi Takeuti. On provably total functions
in bounded arithmetic theories. In Peter Clote and Jan Krajìček, editors,
Arithmetic, Proof Theory and Computational Complexity, pages 116–61.
Oxford University Press, 1993.

[BKT00] Chitta Baral, Vladik Kreinovich, and Raúl Trejo. Computational complexity
of planning and approximate planning in the presence of incompleteness.
Artificial Intelligence, 122(1-2):241–267, 2000.

215

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[BLM16] Francesco Belardinelli, Alessio Lomuscio, and Jakub Michaliszyn. Agent-
based refinement for predicate abstraction of multi-agent systems. In
Proceedings of the 22nd European Conference on Artificial Intelligence
(ECAI 2016), pages 286–294. IOS Press, 2016.

[BMT11] Gerhard Brewka, Victor W. Marek, and Mirosław Truszczyński, editors.
Nonmonotonic reasoning: essays celebrating its 30th anniversary. College
Publ., 2011.

[BMW16] Manuel Bichler, Michael Morak, and Stefan Woltran. The power of non-
ground rules in answer set programming. Theory and Practice of Logic
Programming, 16(5-6):552–569, 2016.

[Bon10] Blai Bonet. Conformant plans and beyond: Principles and complexity.
Artificial Intelligence, 174(3-4):245–269, 2010.

[Bra87] Michael Bratman. Intention, plans, and practical reason, volume 10. Har-
vard University Press Cambridge, MA, 1987.

[BY94] Fahiem Bacchus and Qiang Yang. Downward refinement and the efficiency
of hierarchical problem solving. Artificial Intelligence, 71(1):43–100, 1994.

[Byl94] Tom Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2):165–204, 1994.

[BZ13] Franz Baader and Benjamin Zarrieß. Verification of Golog programs over
description logic actions. Frontiers of Combining Systems, pages 181–196,
2013.

[CDGMP13] Diego Calvanese, Giuseppe De Giacomo, Marco Montali, and Fabio Patrizi.
Verification and synthesis in description logic based dynamic systems. In
Web Reasoning and Rule Systems, pages 50–64. Springer, 2013.

[CDLR09] Mika Cohen, Mads Dam, Alessio Lomuscio, and Francesco Russo. Ab-
straction in model checking multi-agent systems. In Proceedings of the 8th
International Conference on Autonomous Agents and Multiagent Systems -
Volume 2, pages 945–952. International Foundation for Autonomous Agents
and Multiagent Systems, 2009.

[CFF14] Pedro Cabalar, Jorge Fandinno, and Michael Fink. Causal graph justifica-
tions of logic programs. Theory and Practice of Logic Programming (TC),
14(4-5):603–618, 2014.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM, 50(5):752–794, 2003.

216

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model check-
ing and abstraction. ACM Transactions on Programming Languages and
Systems (TOPLAS), pages 1512–1542, 1994.

[CGV16] Federico Cerutti, Massimiliano Giacomin, and Mauro Vallati. Generating
structured argumentation frameworks: AFBenchGen2. In Pietro Baroni,
Thomas F. Gordon, Tatjana Scheffler, and Manfred Stede, editors, Pro-
ceedings of the 6th International Conference on Computational Models of
Argument (COMMA 2016), volume 287 of Frontiers in Artificial Intelligence
and Applications, pages 467–468. IOS Press, 2016.

[CHVB18] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick
Bloem. Handbook of model checking. Springer, 2018.

[CIR+11] Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano,
Annamaria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber,
Onofrio Febbraro, Nicola Leone, Marco Manna, Alessandra Martello, Clau-
dio Panetta, Simona Perri, Kristian Reale, Maria Carmela Santoro, Marco
Sirianni, Giorgio Terracina, and Pierfrancesco Veltri. The third answer set
programming competition: Preliminary report of the system competition
track. In Logic Programming and Nonmonotonic Reasoning - 11th Interna-
tional Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011.
Proceedings, pages 388–403, 2011.

[CL90] Philip R. Cohen and Hector J. Levesque. Intention is choice with commit-
ment. Artificial Intelligence, 42(2-3):213–261, 1990.

[CL08] Jens Claßen and Gerhard Lakemeyer. A logic for non-terminating Golog
programs. In Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2008), pages 589–599,
2008.

[Cla78] Keith L. Clark. Negation as failure. In Logic and data bases, pages 293–322.
Springer, 1978.

[CPRT03] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Artificial Intelligence,
147(1-2):35–84, 2003.

[CR96] Alain Colmerauer and Philippe Roussel. The birth of prolog. In History of
programming languages—II, pages 331–367. ACM, 1996.

[CR00] Alessandro Cimatti and Marco Roveri. Conformant planning via symbolic
model checking. Journal of Artificial Intelligence Research, 13:305–338,
2000.

217

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Cra52] Kenneth James Williams Craik. The nature of explanation, volume 445.
CUP Archive, 1952.

[CRB04] Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli. Conformant
planning via symbolic model checking and heuristic search. Artificial
Intelligence, 159(1-2):127–206, 2004.

[CS98] Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Compu-
tational Intelligence, 14(3):318–334, 1998.

[DBBD16] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
On local domain symmetry for model expansion. Theory and Practice of
Logic Programming, 16(5-6):636–652, 2016.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Computing
Surveys (CSUR), 33(3):374–425, 2001.

[Del17] James P. Delgrande. A knowledge level account of forgetting. Journal of
Artificial Intelligence Research, 60:1165–1213, 2017.

[DFWB12] Louise A. Dennis, Michael Fisher, Matthew P. Webster, and Rafael H.
Bordini. Model checking agent programming languages. Automated Software
Engineering, 19(1):5–63, 2012.

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation
of reactive systems. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(2):253–291, 1997.

[DGLP12] Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi. Bounded situa-
tion calculus action theories and decidable verification. In Proceedings of the
13th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2012). AAAI Press, 2012.

[DGLPS16] Giuseppe De Giacomo, Yves Lespérance, Fabio Patrizi, and Sebastian
Sardina. Verifying ConGolog programs on bounded situation calculus theo-
ries. In Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI 2016), pages 950–956, 2016.

[DGM+15] Carmine Dodaro, Philip Gasteiger, Benjamin Musitsch, Francesco Ricca,
and Kostyantyn Shchekotykhin. Interactive debugging of non-ground asp
programs. In Proceedings of the 13th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2015), pages 279–293.
Springer, 2015.

[DGTR97] Giuseppe De Giacomo, Eugenia Ternovskaia, and Ray Reiter. Non-
terminating processes in the situation calculus. In Working Notes of

218

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

“Robots, Softbots, Immobots: Theories of Action, Planning and Control”,
AAAI’97 Workshop, 1997.

[DKN03] Jürgen Dix, Ugur Kuter, and Dana Nau. Planning in answer set program-
ming using ordered task decomposition. In Annual Conference on Artificial
Intelligence, pages 490–504. Springer, 2003.

[DTW11] Christian Drescher, Oana Tifrea, and Toby Walsh. Symmetry-breaking
answer set solving. AI Commun., 24(2):177–194, 2011.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial intelligence, 77(2):321–357, 1995.

[DVB+09] Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and
Miroslaw Truszczynski. The second answer set programming competition.
In Logic Programming and Nonmonotonic Reasoning, 10th International
Conference, LPNMR 2009, Potsdam, Germany, September 14-18, 2009.
Proceedings, pages 637–654, 2009.

[DW15] James P. Delgrande and Kewen Wang. A syntax-independent approach to
forgetting in disjunctive logic programs. In PProceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI 2015), pages 1482–1488, 2015.

[Ede01] Stefan Edelkamp. Planning with pattern databases. In Proceedings of the
6th European Conference on Planning (ECP 2001), pages 13–24, 2001.

[EF03] Thomas Eiter and Michael Fink. Uniform equivalence of logic programs
under the stable model semantics. In International Conference on Logic
Programming, pages 224–238. Springer, 2003.

[EFFW07] Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. Com-
plexity results for answer set programming with bounded predicate arities
and implications. Annals of Mathematics and Artificial Intelligence, 51(2-
4):123, 2007.

[EFL+03] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A logic programming approach to knowledge-state planning, II:
The DLVk system. Artificial Intelligence, 144(1):157–211, 2003.

[EFL+04] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A logic programming approach to knowledge-state planning:
Semantics and complexity. ACM Transactions on Computational Logic,
5(2):206–263, 2004.

[EFTW04] Thomas Eiter, Michael Fink, Hans Tompits, and Stefan Woltran. Simpli-
fying logic programs under uniform and strong equivalence. In Vladimir

219

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

Lifschitz and Ilkka Niemelä, editors, Proceedings of the 7th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR
2004), pages 87–99. Springer, 2004.

[EGG96] Thomas Eiter, Georg Gottlob, and Yuri Gurevich. Normal forms for second-
order logic over finite structures, and classification of NP optimization
problems. Ann. Pure Appl. Logic, 78(1-3):111–125, 1996.

[EGL16] Esra Erdem, Michael Gelfond, and Nicola Leone. Applications of answer
set programming. AI Magazine, 37(3):53–68, 2016.

[EKI18] Thomas Eiter and Gabriele Kern-Isberner. A brief survey on forgetting
from a knowledge representation and reasoning perspective. KI – Künstliche
Intelligenz, 33(1):9–33, 2018.

[ELM+98] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco
Scarcello. The KR system dlv: Progress report, comparisons and bench-
marks. Proceedings of the 6th International Conference on Principles of
Knowledge Representation and Reasoning (KR 1998), pages 406–417, 1998.

[ESS19] Thomas Eiter, Zeynep G. Saribatur, and Peter Schüller. Abstraction for
zooming-in to unsolvability reasons of grid-cell problems. In Proceedings of
the Workshop on Explainable Artificial Intelligence (XAI), 2019. To appear.

[EW08] Thomas Eiter and Kewen Wang. Semantic forgetting in answer set pro-
gramming. Artificial Intelligence, 172(14):1644–1672, 2008.

[FL99] Maria Fox and Derek Long. The detection and exploitation of symmetry in
planning problems. In Proceedings of the 16th International Joint conference
on Artificial intelligence (IJCAI 1999), volume 99, pages 956–961, 1999.

[FLP04] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates
in disjunctive logic programs: Semantics and complexity. In Proceedings
of the 9th European Conference on Logics in Artificial Intelligence (JELIA
2004), volume 3229 of Lecture Notes in Computer Science, pages 200–212.
Springer, 2004.

[FS19] Jorge Fandinno and Claudia Schulz. Answering the “why” in answer set
programming - A survey of explanation approaches. Theory and Practice
of Logic Programming, 19(2):114–203, 2019.

[GK14] Michael Gelfond and Yulia Kahl. Knowledge representation, reasoning,
and the design of intelligent agents: The answer-set programming approach.
Cambridge University Press, 2014.

[GKK+08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele. Engineering an incremental ASP solver.

220

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

In Proceedings of the 24th International Conference on Logic Programming
(ICLP 2008), pages 190–205, 2008.

[GKKS19] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub. Multi-shot asp solving with clingo. Theory and Practice of Logic
Programming, 19(1):27–82, 2019.

[GKL16] Ricardo Gonçalves, Matthias Knorr, and Joao Leite. The ultimate guide to
forgetting in answer set programming. In Proceedings of the 15th Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR 2016), pages 135–144. AAAI Press, 2016.

[GKLW17] Ricardo Gonçalves, Matthias Knorr, João Leite, and Stefan Woltran. When
you must forget: Beyond strong persistence when forgetting in answer set
programming. Theory and Practice of Logic Programming, 17(5-6):837–854,
2017.

[GKNS07] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
clasp: A conflict-driven answer set solver. In Proceedings of the 9th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2007), pages 260–265. Springer, 2007.

[GKNS08] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
Advanced preprocessing for answer set solving. In Proceedings of the 18th
European Conference on Artificial Intelligence (ECAI 2008), volume 178,
pages 15–19. IOS Press, 2008.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of the 5th International Conference and
Symposium on Logic Programming (ICLP/SLP 1988), volume 88, pages
1070–1080, 1988.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9(3):365–385, 1991.

[GL93] Michael Gelfond and Vladimir Lifschitz. Representing action and change by
logic programs. The Journal of Logic Programming, 17(2):301–321, 1993.

[GL98a] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic
Transactions on AI, 3(16), 1998.

[GL98b] Enrico Giunchiglia and Vladimir Lifschitz. An action language based on
causal explanation: Preliminary report. In Proceedings of the 15th National
Conference on Artificial Intelligence and 10th Innovative Applications of
Artificial Intelligence Conference (AAAI/IAAI 1998), pages 623–630, 1998.

221

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[GLM04] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. Sat-based answer set
programming. In Proceedings of the 19th National Conference on Artificial
Intelligence (AAAI 2004), pages 61–66, 2004.

[GLMW16] Sarah Alice Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan Woltran.
Introducing the second international competition on computational models
of argumentation. In Proceedings of the International Workshop on Systems
and Algorithms for Formal Argumentation (SAFA), pages 4–9, 2016.

[GLV99] Georg Gottlob, Nicola Leone, and Helmut Veith. Succinctness as a source
of complexity in logical formalisms. Ann. Pure Appl. Logic, 97(1-3):231–260,
1999.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory
and practice. Elsevier, 2004.

[GPST08] Martin Gebser, Jörg Pührer, Torsten Schaub, and Hans Tompits. A meta-
programming technique for debugging answer-set programs. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), vol-
ume 8, pages 448–453, 2008.

[GS88] Matthew L. Ginsberg and David E. Smith. Reasoning about action i: A
possible worlds approach. Artificial Intelligence, 35(2):165–195, 1988.

[GW92] Fausto Giunchiglia and Toby Walsh. A theory of abstraction. Artificial
Intelligence, 57(2-3):323–389, 1992.

[HB05] Jörg Hoffmann and Ronen Brafman. Contingent planning via heuristic
forward search with implicit belief states. In Proc. ICAPS, volume 2005,
2005.

[HB06] Jörg Hoffmann and Ronen I Brafman. Conformant planning via heuristic
forward search: A new approach. Artificial Intelligence, 170(6-7):507–541,
2006.

[HH99] István T. Hernádvölgyi and Robert C. Holte. Psvn: A vector representation
for production systems, 1999.

[HHH+07] Malte Helmert, Patrik Haslum, Jörg Hoffmann, et al. Flexible abstraction
heuristics for optimal sequential planning. In Proceedings of the 17th
International Conference on Automated Planning and Scheduling (ICAPS
2007), pages 176–183, 2007.

[HJ99] Patrik Haslum and Peter Jonsson. Some results on the complexity of
planning with incomplete information. In European Conference on Planning,
pages 308–318. Springer, 1999.

222

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Hob90] Jerry R. Hobbs. Granularity. In Readings in qualitative reasoning about
physical systems, pages 542–545. Elsevier, 1990.

[HSD06] Jörg Hoffmann, Ashish Sabharwal, and Carmel Domshlak. Friends or Foes?
an AI planning perspective on abstraction and search. In Proceedings of
the 16th International Conference on Automated Planning and Scheduling
(ICAPS 2006), pages 294–303, 2006.

[IM16] Leon Illanes and Sheila A. McIlraith. Numeric planning via search space
abstraction. In Proceedings of the Workshop on Knowledge-based Techniques
for Problem Solving and Reasoning, 2016.

[IM19] León Illanes and Sheila A. McIlraith. Generalized planning via abstraction:
Arbitrary numbers of objects. In Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI 2019), 2019.

[JL83] Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science
of language, inference, and consciousness. Number 6. Harvard University
Press, 1983.

[JM16] Mikolás Janota and Joao Marques-Silva. On the query complexity of
selecting minimal sets for monotone predicates. Artificial Intelligence,
233:73–83, 2016.

[JNS+06] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Simons, and Jia-
Huai You. Unfolding partiality and disjunctions in stable model semantics.
ACM Transactions on Computational Logic, 7(1):1–37, 2006.

[KD86] Subbarao Kambhampati and Larry Davis. Multiresolution path planning
for mobile robots. IEEE Journal on Robotics and Automation, 2(3):135–145,
1986.

[KLC98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artificial
Intelligence, 101(1-2):99–134, 1998.

[Kno94] Craig A. Knoblock. Automatically generating abstractions for planning.
Artificial Intelligence, 68(2):243–302, 1994.

[Kra07] Jeff Kramer. Is abstraction the key to computing? Communications of the
ACM, 50(4):36–42, 2007.

[KS96] Henry Kautz and Bart Selman. Pushing the envelope: Planning, proposi-
tional logic, and stochastic search. In Proceedings of the National Conference
on Artificial Intelligence, pages 1194–1201, 1996.

223

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Lee05] Joohyung Lee. A model-theoretic counterpart of loop formulas. In Pro-
ceedings of the 19th International Joint conference on Artificial intelligence
(IJCAI 2005), volume 5, pages 503–508, 2005.

[Lei17] João Leite. A bird’s-eye view of forgetting in answer-set programming.
In Marcello Balduccini and Tomi Janhunen, editors, Proceedings of the
14th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2017), volume 10377 of Lecture Notes in Computer
Science, pages 10–22. Springer, 2017.

[LGS+95] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, Saddek
Bensalem, and David Probst. Property preserving abstractions for the
verification of concurrent systems. Formal methods in system design, 6(1):11–
44, 1995.

[Lif99a] Vladimir Lifschitz. Action languages, answer sets and planning. In The Logic
Programming Paradigm: a 25-Year Perspective, pages 357–373. Springer,
1999.

[Lif99b] Vladimir Lifschitz. Answer set planning. In Proceedings of the 1999
International Conference on Logic Programming (ICLP 1999), pages 23–37,
1999.

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artificial
Intelligence, 138(1-2):39–54, 2002.

[Lif08a] Vladimir Lifschitz. Twelve definitions of a stable model. In Maria Garcia
de la Banda and Enrico Pontelli, editors, Logic Programming, pages 37–51.
Springer Berlin Heidelberg, 2008.

[Lif08b] Vladimir Lifschitz. What is answer set programming? In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), pages
1594–1597, 2008.

[Llo87] John W. Lloyd. Foundations of logic programming, Second Edition. Springer,
1987.

[LLS19] Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub. Verifying strong
equivalence of programs in the input language of gringo. In Proceedings of
the 15th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2019), pages 270–283. Springer, 2019.

[LM14] Alessio Lomuscio and Jakub Michaliszyn. An abstraction technique for
the verification of multi-agent systems against atl specifications. In Pro-
ceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2014). AAAI Press, 2014.

224

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[LM16] Alessio Lomuscio and Jakub Michaliszyn. Verification of multi-agent systems
via predicate abstraction against ATLK specifications. In Proceedings of
AAMAS, pages 662–670, 2016.

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. The DLV system for knowledge
representation and reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.

[LPV01] Vladimir Lifschitz, David Pearce, and Agustín Valverde. Strongly equivalent
logic programs. ACM Transactions on Computational Logic, 2(4):526–541,
October 2001.

[LRL+97] Hector J. Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming language for dynamic
domains. The Journal of Logic Programming, 31(1):59–83, 1997.

[LRS97] Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable
models: Unfounded sets, fixpoint semantics, and computation. Information
and computation, 135(2):69–112, 1997.

[LS04] Inês Lynce and João P. Marques Silva. On computing minimum unsatisfiable
cores. In Proceedings of the 7th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), 2004.

[LS08] Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing mini-
mal unsatisfiable subsets of constraints. Journal of Automated Reasoning,
40(1):1–33, 2008.

[LT99] Vladimir Lifschitz and Hudson Turner. Representing transition systems by
logic programs. Logic Programming and Nonmonotonic Reasoning, pages
92–106, 1999.

[LTT99] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expres-
sions in logic programs. Annals of Mathematics and Artificial Intelligence,
25(3-4):369–389, 1999.

[LZ04] Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic
program by sat solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[Mah86] M. J. Maher. Equivalences of logic programs. In Ehud Shapiro, editor, Third
International Conference on Logic Programming, pages 410–424. Springer
Berlin Heidelberg, 1986.

[McC59] John McCarthy. Programs with common sense. In Proceedings of the
Teddington Conference on the Mechanization of Thought Processes, pages
75–91. MIT Press, 1959.

225

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[McC81a] John McCarthy. Circumscription—a form of non-monotonic reasoning. In
Readings in Artificial Intelligence, pages 466–472. Elsevier, 1981.

[McC81b] John McCarthy. Epistemological problems of artificial intelligence. In
Readings in artificial intelligence, pages 459–465. Elsevier, 1981.

[McC86] John McCarthy. Applications of circumscription to formalizing common-
sense knowledge. Artificial Intelligence, 28(1):89–116, 1986.

[McC99] Norman McCain. The causal calculator, 1999.

[McD82] Drew McDermott. Nonmonotonic logic II: Nonmonotonic modal theories.
Journal of the ACM, 29(1):33–57, 1982.

[MD80] Drew McDermott and Jon Doyle. Non-monotonic logic I. Artificial Intelli-
gence, 13(1-2):41–72, 1980.

[MH69] John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. Stanford University USA, 1969.

[MLL16] Peiming Mo, Naiqi Li, and Yongmei Liu. Automatic verification of golog
programs via predicate abstraction. In Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI 2016), pages 760–768. IOS
Press, 2016.

[Moo85] Robert C. Moore. Semantical considerations on nonmonotonic logic. Artifi-
cial Intelligence, 25(1):75–94, 1985.

[MT98] Norman McCain and Hudson Turner. Satisfiability planning with causal
theories. In Proceedings of the 6th International Conference on Principles
of Knowledge Representation and Reasoning (KR 1998), pages 212–223.
Morgan Kaufmann, 1998.

[MW12] Michael Morak and Stefan Woltran. Preprocessing of complex non-ground
rules in answer set programming. In Technical Communications of the 28th
International Conference on Logic Programming, page 247, 2012.

[NDK97] Bernhard Nebel, Yannis Dimopoulos, and Jana Koehler. Ignoring irrelevant
facts and operators in plan generation. In European Conference on Planning,
pages 338–350. Springer, 1997.

[NL95] P. Pandurang Nayak and Alon Y. Levy. A semantic theory of abstractions.
In Proceedings of the 14th International Joint conference on Artificial
intelligence (IJCAI 1995), pages 196–203, 1995.

[NS72] Allen Newell and Herbert A. Simon. Human problem solving, volume 104.
Prentice-Hall Englewood Cliffs, NJ, 1972.

226

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[OJ06] Emilia Oikarinen and Tomi Janhunen. Modular equivalence for normal logic
programs. In Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI 2006), volume 6, pages 412–416. IOS Press, 2006.

[ONA02] Mauricio Osorio, Juan A. Navarro, and José Arrazola. Equivalence in
answer set programming. In Alberto Pettorossi, editor, Logic Based Program
Synthesis and Transformation, pages 57–75. Springer Berlin Heidelberg,
2002.

[OPT10] Johannes Oetsch, Jörg Pührer, and Hans Tompits. Catching the ouroboros:
On debugging non-ground answer-set programs. Theory and Practice of
Logic Programming, 10(4-6):513–529, 2010.

[Pap03] Christos H. Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

[Pea04] David Pearce. Simplifying logic programs under answer set semantics. In
Bart Demoen and Vladimir Lifschitz, editors, Logic Programming, pages
210–224, 2004.

[PG09] Hector Palacios and Hector Geffner. Compiling uncertainty away in con-
formant planning problems with bounded width. Journal of Artificial
Intelligence Research, 35:623–675, 2009.

[Prz90] Teodor C. Przymusinski. The well-founded semantics coincides with the
three-valued stable semantics. Fundam. Inform., 13(4):445–463, 1990.

[PSE09] Enrico Pontelli, Tran Cao Son, and Omar Elkhatib. Justifications for
logic programs under answer set semantics. Theory and Practice of Logic
Programming, 9(1):1–56, 2009.

[RDBF16] Pat Riddle, Jordan Douglas, Mike Barley, and Santiago Franco. Improving
performance by reformulating PDDL into a bagged representation. In Pro-
ceedings of the Workshop on Heuristics and Search for Domain-independent
Planning (HSDIP 2016), pages 28–36, 2016.

[Rei80] Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13(1-2):81–132, 1980.

[Rei87] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

[RG91] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a
BDI-architecture. In Proceedings of the 2nd International Conference on
Principles of Knowledge Representation and Reasoning (KR 1991), pages
473–484, 1991.

227

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[RG+95] Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory to practice.
In ICMAS, volume 95, pages 312–319, 1995.

[Rin99] Jussi Rintanen. Constructing conditional plans by a theorem-prover. Journal
of Artificial Intelligence Research, 10:323–352, 1999.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2 edition, 2003.

[Sac74] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5(2):115–135, 1974.

[Sag87] Y. Sagiv. Optimizing datalog programs. In Proceedings of the 6th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS ’87, pages 349–362, New York, NY, USA, 1987. ACM.

[SB01] Tran Cao Son and Chitta Baral. Formalizing sensing actions – a transition
function based approach. Artificial Intelligence, 125(1):19–91, 2001.

[SBE17] Zeynep G. Saribatur, Chitta Baral, and Thomas Eiter. Reactive mainte-
nance policies over equalized states in dynamic environments. In Proceedings
of EPIA, pages 709–723, 2017.

[SE16a] Zeynep G. Saribatur and Thomas Eiter. Reactive policies with planning for
action languages. In Loizos Michael and Antonis Kakas, editors, Proceedings
of the 15th European Conference on Logics in Artificial Intelligence (JELIA
2016), volume 10021 of Lecture Notes in Computer Science, pages 463–480.
Springer, 2016.

[SE16b] Zeynep G. Saribatur and Thomas Eiter. Reactive policies with planning
for action languages. In Gabriele Kern-Isberner and Renata Wassermann,
editors, Proceedings of the 16th International Workshop on Non-Monotonic
Reasoning (NMR 2016), pages 143–152. TU Dortmund, 2016. Tech.Rep. in
CS, 852.

[SE18a] Zeynep G. Saribatur and Thomas Eiter. Omission-based abstraction for
answer set programs. In Proceedings of the 16th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2018), pages
42–51. AAAI Press, 2018.

[SE18b] Zeynep G. Saribatur and Thomas Eiter. Omission-based abstraction for
answer set programs. In LOGCOMP Research Report 18-06, 2018.

[SE18c] Zeynep G. Saribatur and Thomas Eiter. Towards abstraction in asp with
an application on reasoning about agent policies. In Proceedings of the 12th
Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP), 2018.

228

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[SH13] Jendrik Seipp and Malte Helmert. Counterexample-guided cartesian ab-
straction refinement. In Proceedings of the 23rd International Conference
on Automated Planning and Scheduling (ICAPS 2013), 2013.

[SIZ11] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. A new
representation and associated algorithms for generalized planning. Artificial
Intelligence, 175(2):615–647, 2011.

[SN01] Tommi Syrjänen and Ilkka Niemelä. The smodels system. In Proceedings of
the 6th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2001), pages 434–438, 2001.

[SNS02] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and imple-
menting the stable model semantics. Artificial Intelligence, 138(1-2):181–234,
2002.

[SSE19] Zeynep G. Saribatur, Peter Schüller, and Thomas Eiter. Abstraction for
non-ground answer set programs. In Proceedings of the 16th European
Conference on Logics in Artificial Intelligence (JELIA 2019), Lecture Notes
in Computer Science, pages 576–592. Springer, 2019.

[ST13] Claudia Schulz and Francesca Toni. ABA-based answer set justification.
Theory and Practice of Logic Programming (TC), pages 4–5, 2013.

[STB04] Tran Cao Son, Phan Huy Tu, and Chitta Baral. Planning with sensing
actions and incomplete information using logic programming. In Pro-
ceedings of the 7th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2004), pages 261–274. Springer, 2004.

[STGM05] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and A Ricardo Morales.
Conformant planning for domains with constraints-a new approach. In
AAAI, volume 5, pages 1211–1216, 2005.

[SW98] David E. Smith and Daniel S. Weld. Conformant graphplan. In Proceedings
of the 15th National Conference on Artificial Intelligence and 10th Innova-
tive Applications of Artificial Intelligence Conference (AAAI/IAAI 1998),
pages 889–896, 1998.

[Syr06] Tommi Syrjänen. Debugging inconsistent answer set programs. In Pro-
ceedings of the 11th International Workshop on Non-Monotonic Reasoning
(NMR 2006), volume 6, pages 77–83, 2006.

[SZ13] Lorenza Saitta and Jean-Daniel Zucker. Abstraction in artificial intelligence
and complex systems, volume 456. Springer, 2013.

[TSGM11] Phan Huy Tu, Tran Cao Son, Michael Gelfond, and A Ricardo Morales.
Approximation of action theories and its application to conformant planning.
Artificial Intelligence, 175(1):79–119, 2011.

229

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[Tur02] Hudson Turner. Polynomial-length planning spans the polynomial hierarchy.
In Sergio Flesca, Sergio Greco, Nicola Leone, and Giovambattista Ianni,
editors, Proceedings of the European Conference on Logics in Artificial
Intelligence (JELIA 2002), volume 2424 of Lecture Notes in Computer
Science, pages 111–124. Springer, 2002.

[Tur03] Hudson Turner. Strong equivalence made easy: nested expressions and
weight constraints. Theory and Practice of Logic Programming, 3(4–5):609–
622, 2003.

[TWF19] Richard Taupe, Antonius Weinzierl, and Gerhard Friedrich. Degrees of
laziness in grounding. In Proceedings of the 15th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR 2019), pages
298–311. Springer, 2019.

[VGRS91] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM, 38(3):619–649,
1991.

[VHLP08] Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of
knowledge representation, volume 1. Elsevier, 2008.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-
world” networks. Nature, 393:440–442, 1998.

[ZC16] Benjamin Zarrieß and Jens Claßen. Decidable verification of Golog programs
over non-local effect actions. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI 2016), pages 1109–1115, 2016.

[ZYKS15] Shiqi Zhang, Fangkai Yang, Piyush Khandelwal, and Peter Stone. Mobile
robot planning using action language BC with an abstraction hierarchy. In
Proceedings of the 13th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2015), pages 502–516. Springer,
2015.

230

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Encodings

In this appendix, we provide details about the slight modifications made from the existing
(or common) encodings, in order to use them in our experiments. The full encodings can be
found in http://www.kr.tuwien.ac.at/research/systems/abstraction/.

Disjunctive scheduling The problem is of the following form: given tasks I with fixed
duration D (task(I,D)), earliest start time S (est(I, S)), latest end time E (let(I, E)),
and disjunctive constraints (disj(I, I ′)) for tasks that cannot overlap, assign to each task
a start time such that all constraints are satisfied. The encoding from ASPCOMP20111

contains many arithmetic expressions in order to compute the end times of the tasks
when starting at certain time. The results of these computations are then compared
with each other in order to ensure that there is no overlapping for the tasks that should
remain disjoint:

⊥← disj(I1, I2), task(I1, D1), task(I2, D2), time(I1, T1), time(I2, T2),

E1 = T1 +D1, E2 = T2 +D2, T1 ≤ T2, T2 < E1. (A.1)

⊥← disj(I1, I2), task(I1, D1), task(I2, D2), time(I1, T1), time(I2, T2),

E1 = T1 +D1, E2 = T2 +D2, T2 ≤ T1, T1 < E2. (A.2)

As DASPAR cannot handle such arithmetic expressions, we rewrote the above rules by
introducing auxiliary atoms. The atom aux_endtime(I, T, E) means that the task I
finishes at time E when it starts at time T and aux_starttime(I, T) shows that time T
is a possible starting point of task I, i.e., if I starts at T then it will finish before the
latest end time E given with let(I, E).

aux_endtime(I, T, E)← task(I,D), times(T), E = T +D, times(E). (A.3)

1https://www.mat.unical.it/aspcomp2011/files/DisjunctiveScheduling/

disjunctive_scheduling.enc.asp

231

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Encodings

aux_starttime(I, T)← aux_endtime(I, T, E1), let(I, E), E1 ≤ E. (A.4)

As the atoms aux_endtime(I, T, E) and aux_starttime(I, T) can be deterministically
computed, for the evaluations in Section 5.2.2 we precompute these atoms for each instance
and get rid of the rules (A.3)-(A.4), so that they are not treated in the abstraction process.

An time assignment of a task I is guessed over the possible starting points T that are
later than the earliest start time S given with est(I, S).

{time(I, T)}← aux_starttime(I, T), est(I, S), S ≤ T.

The rules (A.1)-(A.2) are then represented with the following rules, by standardizing
apart over the sort times.

aux_first(I1, I2, T, E1)← disj(I1, I2), time(I1, T1), aux_endtime(I1, T2, E1), T1 =T2.

aux_second(I1, I2, T, E2)← disj(I1, I2), time(I2, T1), aux_endtime(I2, T2, E2), T1 =T2.

aux_aux_first(I1, I2, T1)← aux_first(I1, I2, T1, E1).

aux_aux_second(I1, I2, T2)← aux_second(I1, I2, T2, E2).

⊥← aux_first(I1, I2, T1, E1), aux_aux_second(I1, I2, T2),

T1 ≤ T2, T2 < E1.

⊥← aux_aux_first(I1, I2, T1), aux_second(I1, I2, T2, E2),

T2 ≤ T1, T1 < E2.

The constraint to ensure that each task is assigned a time point is the same as the original
encoding.

Grid-Cell Problem Encodings

Sudoku We used the encoding from DLV group in ASPCOMP09 with slight modifica-
tions. The guessing of the assignment of numbers to the free cells is written as

{sol(X,Y,N) : num(N)}←notoccupied(X,Y), row(X), column(Y).

hasNum(X,Y)← sol(X,Y,N).

⊥←not hasNum(X,Y), row(X), column(Y).

The constraints of assigning one symbol per column and one symbol per row are the
same as in the original encoding, but with standardizing apart over the sorts row and
column.

⊥← sol(X,Y1,M), sol(X2, Y2,M), X =X2, Y1<Y2.

⊥← sol(X1, Y,M), sol(X2, Y2,M), X1<X2, Y =Y2.

For the constraint of assigning one symbol per subregion, standardizing apart the original
rules caused to have relations with many argument, thus we converted them into the
rules

⊥← sol(X1, Y1,M), sol(X2, Y2,M),

232

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

sameSubSquareLessThan(X1, Y1, X2, Y2).

sameSubSquareLessThan(X1, Y1, X2, Y2)← sameSubSquare(X1, Y1, X2, Y2), X1 < X2.

sameSubSquareLessThan(X1, Y1, X2, Y2)← sameSubSquare(X1, Y1, X2, Y2), Y1 < Y2.

sameSubSquare(X1, Y1, X2, Y2)← subrangeR(X1,M), subrangeR(X2,M),

subrangeC (Y1, R), subrangeC (Y2, R).

with the hardcoded facts subrangeR(X,M) and subrangeC (Y,R) for subregions w.r.t.
rows and columns, respectively.

Knight’s Tour We used the encoding from ASPCOMP11 2 with slight modifications.
At most one move atom is made for each valid movement among the cells.

{move(X1, Y1, X2, Y2)}1← valid(X1, Y1, X2, Y2).

In the original encoding, the valid cells computations were done using rules of the form

valid(X1, Y1, X2, Y2)← point(X1, Y1), point(X2, Y2), X1 = X2 + 2, Y1 = Y2 + 1.

which are modified as

validcell(X1, Y1, X2, Y2)← dist1(X1, X2), dist2(Y1, Y2).

validcell(X1, Y1, X2, Y2)← dist2(X1, X2), dist1(Y1, Y2).

valid(X1, Y1, X2, Y2)← validcell(X1, Y1, X2, Y2), point(X1, Y1), point(X2, Y2).

where the auxiliary facts dist1(X1, X2), dist2(X1, X2) represent the arithmetic operations
X1 = X2 + 2, Y1 = Y2 + 1.

The constraints to ensure that exactly one entering/leaving movement is made for each
cell is the same as the original encoding. Having each cell visited is ensured by the
following rules

reached(X,Y)←move(X1, Y1, X, Y), start(X1, Y1).

reached(X2, Y2)← reached(X1, Y1),move(X1, Y1, X2, Y2).

⊥← point(X,Y),not reached(X,Y), row(X), column(Y).

where the atom start(X,Y) is used to show the starting point, instead of having in the
rule the atom move(1, 1, X, Y) as it is originally. This change makes treating the program
more convenient, as the rules do not contain constants that need to mapped to different
abstract constants depending on the mapping.

2https://www.mat.unical.it/aspcomp2011/files/KnightTour/knight_tour.enc.

asp

233

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Encodings

Visitall We encoded a planning problem following the guidelines shown in Section 2.2.1
on representing actions and change. We considered go(X,Y, T) actions that can move
horizontally/vertically to a cell X,Y . For such an action, we have to ensure that the
action does not pass through an obstacle or a previously visited cell, and that all the
passed cells become visited.

A common way of encoding this is to have auxiliary atoms that keep track of the cells
that are in between such as

aux_passed(X,Y2, T + 1)← rAt(X,Y, T), go(X,Y1, T), Y < Y2, Y2 ≤ Y1.

aux_passed(X,Y2, T + 1)← rAt(X,Y, T), go(X,Y1, T), Y1 < Y2, Y2 ≤ Y.

aux_passed(X2, Y, T + 1)← rAt(X,Y, T), go(X1, Y, T), X < X2, X2 ≤ X1.

aux_passed(X2, Y, T + 1)← rAt(X,Y, T), go(X1, Y, T), X1 < X2, X2 ≤ X.

passed(X,Y)← aux_passed(X,Y, T).

which are then used to ensure the above conditions.

⊥← passed(X,Y), obsAt(X,Y).

visited(X,Y, T)← aux_passed(X,Y, T).

⊥← aux_passed(X,Y, T + 1), visited(X,Y, T).

We follow the remark in Section 4.6 on handling different abstraction levels on variables
in a rule. For example, for the first rule, in addition to the standardizing apart the rule
as

aux_passed(X,Y2, T + 1)← rAt(X,Y, T), go(X1, Y1, T), X = X1, Y < Y2, Y2 ≤ Y1.

we add the additional rule

aux_passed(X1, Y2, T + 1)← rAt(X,Y, T), go(X1, Y1, T), X = X1, Y < Y2, Y2 ≤ Y1.

Similar is done with the remaining rules.

Furthermore, knowing that the action go(X1, Y1, T) will only be picked in a horizontal
(resp. vertical) direction of rAt(X,Y, T), we drop the additional relation X = X1 (resp.
Y = Y1) from the rule body in order to reduce the amount of relations in a rule.

234

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX B
Further Computational Details

In this appendix, we take a look at further details of the computational complexity for
omission abstraction.

We consider the computation of put-back sets, which is needed for the elimination of
spurious answer sets. To describe the complexity, we use some complexity classes for
search problems, which generalize decision problems in that for a given input, some
(possibly different or none) output values (or solutions) might be computed. Specifically,
FPNP consists of the search problems for which a solution can be computed in polynomial
time with an NPoracle, and FPNP

‖ is analogous but under the restriction that all oracle

calls have to be made at once in parallel. The class FPΣP
k [log, wit], for k ≥ 1, contains

all search problems that can be solved in polynomial time with a witness oracle for
Σp

k [BKT93]; a witness oracle for Σp
k returns in case of a yes-answer to an instance a

polynomial size witness string that can be checked with an Σp
k−1 oracle in polynomial

time. In particular, for k = 1, i.e., for FPNP[log, wit], one can use a SAT oracle and the
witness is a satisfying assignment to a given SAT instance, cf. [JM16].

While an arbitrary put-back set PB ⊆ A is can be trivially obtained (just set PB = A),
computing a minimal put-back set is more involved. Specifically, we have:

Theorem B.1. Given a program Π, a set A of atoms, and a spurious answer set I of
omit(Π, A), computing (i) some ⊆-minimal put-back set S resp. (ii) some smallest size
put-back set S for I is in case (i) feasible in FPNP and FPNP

‖ -hard resp. is in case (ii)

FPΣP
2 [log, wit]-complete.

Note that few FPΣP
2 [log, wit]-complete problems are known. The notions of hardness

and completeness are here with respect to a natural polynomial-time reduction between
two problems P1 and P2: there are polynomial-time functions f1 and f2 such that (i) for

235

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Further Computational Details

every instance x1 of P1, x2 = f1(x1) is an instance of P2, such that x2 has solutions iff
x1 has, and (ii) from every solution s1 of x2, some solution s1 = f2(x1, s2) is obtainable.

Proof of Theorem B.1. As for membership in (i), we can compute such a set S by an
elimination procedure as follows. Starting with A′ = ∅, we repeatedly pick some atom
α ∈ A \A′ and test the following condition:

(+) for A′′ = A′ ∪ {α}, the program omit(Π, A′′) has no answer set Î ′′ such that
Î ′′|A = Î.

If (+) holds, we set A′ := A′′ and make the next pick from A \ A′. Upon termination,
S = A \ A′ is a minimal put-back set. The correctness of this procedure follows from
Proposition 4.8, by which the elimination of spurious answer sets is anti-monotonic in
the set A of atoms to omit. As for the effort, the test (+) can be done in polynomial
time with an NPoracle; from this, membership in in FPNP follows.

The hardness for FPNP

‖ is shown by a reduction from computing, given normal logic
programs Π1, . . . ,Πn on disjoint sets X1, . . . , Xn of atoms, the answers q1, . . . , qn to
whether Πi has some answer set (qi = 1) or not (qi = 0).

To this end, we use fresh atoms ai and bi and construct

Π′
i = { ai ← not bi

bi ← not ai

⊥ ← not bi

H(r)← B(r), ai r ∈ Πi

y ← x,not x x, y ∈ Xi

ai ← x,not x x ∈ Xi

bi ← x,not x x ∈ Xi }

Clearly, {ai} is an answer set of omit(Π′, Xi ∪{bi}), as the rule ai ← not bi is turned into
a choice; it is spurious, as only this rule in Π can derive ai. However, this violates the
constraint ⊥ ← not bi.

Assuming w.l.o.g. that Πi includes no constraints, for every set PB of atoms such that
Xi 6⊆ PB, the program omit(Π′

i, (Xi ∪ {bi}) \ PB) has some answer set containing ai,
thanks to the abstraction of the rules with x,not x in the body; thus PB = Xi is the
minimal candidate for being a put-back set. Furthermore, if Πi has no answer set,
then ∅ is the single answer set of omit(Π′

i, {bi}) while if Πi has some answer set S, then
omit(Π′

i, {bi}) has the answer set S∪{ai}. That is, Xi is the (unique) ⊆-minimal put-back
set iff Πi has no answer set.

We construct the final program as Π′ =
⋃n

i=1 Π′
i. Then, Î = {a1, . . . , an} is a spurious

answer set of omit(Π′,
⋃n

i=1Xi ∪ {bi}), and every minimal put-back set PB for Î satisfies
bi ∈ PB iff Πi is satisfiable; this proves FPNP

‖ -hardness.

236

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

xi. xi. i = 1 . . . , n (B.2)

sat←xi,not xi, xi,not xi. i = 1 . . . , n (B.3)

zi ←not zi, xi,not xi. i = 1 . . . , n (B.4)

zi ←not zi, xi,not xi. i = 1 . . . , n (B.5)

yj ←not yj ,not sat. j = 1, . . . ,m (B.6)

yj ←not yj ,not sat. j = 1, . . . ,m (B.7)

sat←l◦i1
, . . . l◦ini

. i = 1, . . . , k (B.8)

sat←yj ,not yj . j = 1, . . . ,m (B.9)

sat←yj ,not yj . j = 1, . . . ,m (B.10)

sat←zi,not zi. i = 1 . . . , n (B.11)

sat←zi,not zi. i = 1 . . . , n (B.12)

Figure B.1: Program rules for the proof of Theorem B.1-(ii), first part

As for (ii), the membership in FPΣP
2 [log, wit] holds as we can decide the problem by a

binary search for a put-back set of bounded size using a Σp
2 witness oracle, where the

finally obtained put-back set is output.

The FPΣP
2 [log, wit] hardness is shown by a reduction from the following problem. Given

a QBF Φ = ∃X∀Y E(X,Y), compute a smallest size truth assignment σ to X such that
∀Y E(σ(X), Y) evaluates to true, knowing that some σ with this property exists, where
the size of σ is the number of atoms set to true.

More specifically, we assume that E(X,Y) =
∨k

i=1Di is a DNF where Di = li1 ∧ · · · ∧ lini

is a conjunction of literals over X = {x1, . . . , xn} and Y = {y1, . . . , ym} similar as in
the proof of Theorem 4.12 that contains some literal over Y , moreover without loss of
generality that E(X,Y) is a tautology if all literals over X are removed from it. To verify
the latter assumption, we may rewrite Φ to

∃X∀Y
∨

xi∈X

(x ∧ ¬xi ∧ yj) ∨ (x ∧ ¬xi ∧ ¬yj) ∨ E(X,Y), (B.1)

for an arbitrary yj ∈ Y , which has the desired property.

We set up a program Π with rules shown in Figure B.1, where X = {xi | xi ∈ X},
Z = {z1, . . . , zn} and Z = {zi | zi ∈ Z} are copies of X and Y = {yj | yj ∈ Y } is a copy
of Y , and l◦ maps a literal l over X ∪ Y to default literals over Y ∪ Y ∪Z ∪Z as follows:

l◦ =

not zi, if l = ¬xi,
not zi, if l = xi,
yj , if l = yj ,
yj if l = ¬yj .

237

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. Further Computational Details

We note that Π has no answer set: due to the facts xi and xi, none of the rules (B.3)–
(B.5) is applicable and zi, zi must be false in every answer set of Π. This in turn implies
that in (B.8) all not zi, not zi literals are true. Now if we assume that sat would be true
in an answer set of Π, then no rule in (B.6) or (B.7) would be applicable to derive yj

resp. yj , and then by the assumption on E(X,Y) no rule (B.8) is applicable; this means
that sat is not reproducible and thus not in the answer set, which is a contradiction. If
on the other hand sat would be false in an answer set, then the rules (B.6) and (B.7)
would guess a truth assignment to Y ; by the tautology assumption on E(X,Y), some
rule (B.8) is applicable and derives that sat is true, which is again a contradiction.

We then set A = A and Î = ∅. Then, clearly Î = ∅ is trivially a spurious answer set of
omit(Π, A).

The idea behind this construction is as follows. As long as we do not put back sat, the
abstraction program omit(Π, L′) will have some answer set. Furthermore, if we do not
put back either xi or xi, or both zi and zi and all yj , yj , then we can guess by (B.3)
resp. (B.9) – (B.12) that sat is true, which again means that some answer set exists. The
rules (B.4) – (B.5) serve then to provide with zi and zi access to xi and its negation ¬xi,
respectively.

The rules (B.6) – (B.7) serve to guess an assignment µ to Y (but this only works if
sat is false). The rule (B.6) checks whether upon a combined assignment σ ∪ µ, the
formula E(σ(X), µ(Y)) evaluates to true; if this is the case, sat is concluded which then
however blocks the guessing in (B.6) – (B.7). It holds that some putback set of size
k = |X|+ 2|X|+ 2|Y |+ 1, which is the smallest possible here, exists iff Φ evaluates to
true. On the other hand, if we put back a single further atom, for some xi, xi is in the
database, and thus by the special form of E(X,Y) in (B.1) for Y ′ = Y one can derive sat
again. Thus the closest putback set has either size k or k + 1. In order to discriminate
among different σ(X) and select the smallest one, we add further rules:

sat←not zi, ci (B.13)

sat←not zi,not zi, d1, . . . , dl (B.14)

where all ci and dj are fresh atoms. Intuitively, when xi is put in, then ¬zi evaluates
to true and ci must be omitted in order to avoid guessing on sat. Furthermore, if both
xi and xi are put back, then all d1, . . . , dn must be put back as well. If σ(X) makes
∀Y E(σ(X), Y) true, then the closest putback set has size k + 1 + |σ|; if we let l be
large enough, then putting both xi and xi back is more expensive than putting a proper
assignment, Overall, the desired smallest σ(X) is obtained.

We remark that the problem is solvable in polynomial time, if the smallest putback set S
has a size bounded by a constant k. Indeed, in this case we can explore all S of that size,
and find all answer sets Î ′ of omit(Π, A ∪ S) that coincide with I on L in polynomial
time.

We finally consider the problem of computing some refinement-safe abstraction that does
not remove a given set A0 of atoms.

238

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Theorem B.2. Given a set A0 ⊆ A, computing (i) some ⊆-maximal set A ⊆ A\A0 resp.
(ii) some A ⊆ A \ A0 of largest size such that omit(Π, A) is a refinement-safe faithful

abstraction is in case (i) in FPNP and FPNP

‖ -hard and in case (ii) FPΣP
2 [log, wit]-

complete, with FPΣP
2 [log, wit]-hardness even if A0 = ∅.

Proof. (i) One sets A := ∅ and S := A \ A0 initially and then picks an atom α from S
and sets S := S \ {α}. One tests whether (*) omitting A′ ∪ {α}, for every subset A′ ⊆ A,
is a faithful abstraction; if so, then one sets A :=A ∪ {α}. Then a next atom α is picked
from S etc. When this process terminates, we have a largest set A such that omitting
A from Π is a faithful abstraction. Indeed, by construction the final set A fulfills that
for each A′ ⊆ A, omit(Π, A′) is faithful, and thus A is refinement-safe; furthermore A
is maximal: if a larger set A′ ⊃ A would exist, then at the point when α ∈ A′ \ A was
considered in constructing A the test (*) would not have failed and α ∈ A would hold.

Notably, (*) can be tested with an NP oracle: the conditions fails iff for some A′, the
program omit(Π, A′ ∪ α) has a spurious answer set Î. In principle, the spurious check
for Î is difficult (a coNP-complete problem, by our results), but we can take advantage
of knowing that omit(Π, A′) is faithful: so we only need to check whether an extension
of Î is an answer set of omit(Π, A′), and not of Π itself; i.e., we only need to check
Î /∈ AS(omit(Π, A′)) and Î ∪ {α} /∈ AS(omit(Π, A′)).

(ii) The proof of FPΣP
2 [log, wit]-completeness is similar as above for Theorem B.1. First,

we note that to decide whether some refinement-safe faithful A ⊆ A \A0 of size |A| ≥ k
exists is in Σp

2: a nondeterministic variant of the algorithm for item (i), that picks α
always nondeterministically and finally checks that |A| ≥ k holds establishes this. We
then can run a binary search, using a Σp

2 witness oracle, to find a refinement-safe faithful

abstraction A of largest size. This shows FPΣP
2 [log, wit]-membership.

As for the FPΣP
2 [log, wit]-hardness part, in the proof of FPΣP

2 [log, wit]-hardness for
Theorem B.1-(ii) each put-back set PB for the spurious answer set Î = ∅ for A = ∅
satisfies omit(Π,A \ PB) = ∅, and is thus by Proposition 4.9 refinement-safe faithful.
As the smallest size PB sets correspond to the maximum size A′ = A \ PB sets, the

FPΣP
2 [log, wit]-hardness follows, even for A0 = ∅.

We remark that without refinement safety, the problem is likely to be more complex:
deciding whether an abstraction is faithful is Πp

2-complete, and this question is trivially
reducible to this problem.

239

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Background
	Contributions
	Thesis Structure
	Publications

	Background
	Agents, Actions and Change
	Answer Set Programming
	Actions and ASP

	Abstraction
	Computational Complexity

	Behavior-Preserving Abstraction
	Semantics for Reactive Agent Policies using Abstraction
	Modeling Policies in Transition Systems
	State Profiles According to the Policy
	Components of the Policy
	Transition Systems According to the Policy
	Complexity Issues
	Constraining Equalization

	Bridging to Action Languages
	Reactive Maintenance Policies
	Behavior of a Policy in Dynamic Environments
	Omitting Unnecessary Information
	Computational Complexity

	Discussion

	Exploiting Over-Approximation
	Abstraction for Answer Set Programs
	Introducing Abstraction in ASP
	Omission-based Abstraction
	Program Abstraction
	Properties of Omission Abstraction
	Computational Complexity
	Extensions
	Satisfiability Blockers of Programs

	Domain Abstraction
	Towards an Abstract Program
	Lifted Built-in Relations
	Abstract Program Construction
	Syntactic Extensions and Further Considerations
	Properties of Domain Abstraction
	Computational Complexity
	Existential Abstraction on Relations

	Refinement by Debugging
	Bad Omission of Ground Atoms
	Non-Ground Spuriousness

	Overall Methodology
	Omission Abstraction and Refinement
	Domain Abstraction and Refinement

	Multi-Dimensional Domain Abstraction
	Discussion
	Other Abstraction Possibilities
	Related Work in ASP

	Applications in Problem Analysis
	Implementation
	ASPARO
	DASPAR

	Evaluation
	Finding Satisfiability Blockers of Programs
	Obtaining Abstract Solutions

	Abstraction in ASP Planning
	Abstracting over Irrelevant Details
	Computing Abstract Plans

	Discussion

	Abstracting Problems over Grid-Cells
	Problems in Focus
	Quad-tree Abstraction
	mDASPAR
	Debugging and Refinement
	Incremental Concreteness Checking

	Evaluation: Unsolvable Problem Instances
	User Study on Unsatisfiability Explanations

	Abstraction for Policy Refutation
	Discussion

	Conclusion
	Summary
	Related Work
	Future Work

	Bibliography
	Encodings
	Further Computational Details

