
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Advanced Dependency Analysis
for QBF

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Mgr. Tomáš Peitl

Registration Number 01528158

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Stefan Szeider

Second advisor: Prof. Dr. Uwe Egly

The dissertation has been reviewed by:

Olaf Beyersdorff Luca Pulina

Vienna, 13th September, 2019

Tomáš Peitl

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Mgr. Tomáš Peitl

Favoritenstraße 9, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. September 2019

Tomáš Peitl

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

I want to thank my supervisor Stefan Szeider, and my colleague and de-facto other
supervisor Friedrich Slivovsky, for guidance and mentoring, for introducing me to the
real academic world with all its peculiarities, and not least for introducing me to QBF.
Another person from whom I learned a great deal about QBF is Florian Lonsing, whom
I thank for helpful discussions related to QCDCL and QBF in general, and for a great
course on the topic.

I was kindly supported by the FWF via the grants P27721 and W1255-N23, and I am
particularly thankful for the ability to spend two fantastic months at the University of
British Columbia in Vancouver, Canada; to the FWF and DK LogiCS, who paid, to
Stefan, who suggested it, and to Holger Hoos, who hosted me and taught me a lot about
machine learning. Unfortunately, I cannot say I thank God for the weather there.

I am indebted to my family, who supported me and let me grow throughout my life, and
to all of my amazing teachers and mentors, in school or otherwise, who helped shape
me into who I am, and whose list I dare not spell out because I would inevitably end
up missing a shameful number, but to whom all goes the lion’s share of credit for any
successful accomplishment of mine, such as this thesis, if that is what it is considered.

A huge thank you and admiration goes to my wife Katarína, who selflessly agreed to go
on this journey with me, who always stood by me, and who has lately, while I was busy
dealing with reluctant formulas and slowly assembling this thesis, been taking care of
a much more important thing, which is not a thing at all, a problem that, to use the
parlance of complexity theory, is known to be ALLTHETIME-hard, a complexity class in
comparison with which QBF’s PSPACE pales.

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

In den letzten 20 Jahren waren wir Zeugen des Aufstiegs von extrem effizienten Entschei-
dungsprozeduren für das aussagenlogische Erfüllbarkeitsproblem (Satisfiability, SAT).
Obwohl SAT aufgrund seiner NP-Vollständigkeit theoretisch als quasi unlösbar gilt,
können dank dieser sogenannten SAT-Solver Probleme aus Gebieten wie der Automati-
sierung von elektronischen Designs, der Software- und Hardwareverifikation, oder der
Programmsynthese heute in vielen Fällen gelöst werden.

Von dieser Erfolgsgeschichte inspiriert, hat sich die Forschung Formalismen zugewandt,
die eine noch größere Bandbreite von Problemen prägnant ausdrücken können. Ein
Beispiel für eine solche logische Sprache sind quantifizierte boolesche Formeln (QBF), die
den Gegenstand der vorliegenden Dissertation bilden. Quantifizierte boolesche Formeln
erweitern aussagenlogische Formeln durch Quantoren, die über die boolesche Domäne
rangieren. Das Erfüllbarkeitsproblem von QBF ist PSPACE-vollständig.

Die Schachtelung von Quantoren führt zu Abhängigkeiten zwischen den Variablen einer
QBF. In vielen Fällen sind jedoch syntaktisch indizierte Abhängigkeiten semantisch
überflüssig. Mit dem Begriff Abhängigkeitsanalyse sind Verfahren bezeichnet, die solche
falschen Abhängigkeiten zum Zweck der effizienteren Lösung von QBFs identifizieren.

Die bis vor Kurzem allgemeinste Methode zur Abhängigkeitsanalyse war der Einsatz von
sogenannten Abhängigkeitsschemata. Ein Abhängigkeitsschema ist eine Abbildung, die
einer Formel eine Menge von Abhängigkeiten zwischen den Variabeln zuordnet.

Die Resultate dieser Arbeit stehen hauptsächlich im Zusammenhang mit suchbasierten
QBF-Solvern, die Quantified Conflict-Driven Clause Learning (QCDCL) zur Grundlage
haben. QCDCL-Solver können Beweise in einem als Long-Distance Q-Resolution be-
kannten Beweissystem erzeugen. Die Hauptergebnisse der vorliegenden Arbeit können
folgendermaßen zusammengefasst werden:

• Wir geben hinreichende Bedingungen dafür an, wann ein Abhängigkeitsschema
im Zusammenspiel mit QCDCL und Long-distance Q-Resolution korrekt ist und
Zertifikatextraktion in Polynomialzeit erlaubt.

• Wir stellen mit “Dependency Learning” eine neue Methode zur Abhängigkeitsana-
lyse vor, die orthogonal zum Einsatz von Abhängigkeitsschemata steht und die das
dynamische Erlernen von Abhängigkeiten zur Laufzeit ermöglicht.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• Wir beweisen, dass die Korrekheit von aus Long-Distance Q-Resolution-Beweisen
extrahierten Zertifikaten in Polynomialzeit überprüft werden kann.

• Wir berichten von aus der Implementierung eines Solver-Portfolios für QBFs im
QCIR-Format gewonnenen Erkenntnissen. Hier zeigt sich, dass die Laufzeit von QBF-
Solvern mittels zweier Schlüsseleigenschaften von Formeln mit großer Genaugkeit
vorhergesagt werden kann.

• Wir präsentieren eine dynamische Implementierung des stärksten bekannten Ab-
hängigkeitsschemas, in der Dependency Learning mit dem Einsatz von Abhängig-
keitsschemata kombiniert wird.

• Wir zeigen, dass die zwei grundlegenden Beweisregeln von Long-Distance Q-
Resolution, nämlich universale Reduktion und Merging, inkommensurabel sind:
Beweissysteme, die jeweils nur eine dieser Regeln verwenden, sind hinsichtlich ihrer
Beweiskomplexität unvergleichbar.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

The last two decades have seen the rise of extremely efficient solvers for the satisfiabil-
ity problem of propositional logic (SAT). While SAT is, as an NP-complete problem,
considered theoretically intractable, the solvers have become so efficient that solving
hard search and optimization problems from areas such as electronic design automation,
software and hardware verification, or program synthesis via SAT encodings is now not
only a feasible approach, but often the state of the art. Inspired by this success story,
researchers started working on formalisms that could succinctly express an even wider
range of problems than SAT can. One example, which we study, are quantified Boolean
formulas (QBF).

Quantified Boolean formulas generalize propositional logic with quantification, and the
satisfiability problem for QBFs is PSPACE-complete. As a consequence of quantifier
nesting in QBFs, dependencies between variables arise. In many cases, however, some
dependencies that appear to be present syntactically, are spurious semantically. De-
pendency analysis is the process of identifying spurious dependencies and using that
additional information to solve a QBF more efficiently. Prior to this thesis, the most
general method for dependency analysis were dependency schemes. A dependency scheme
is a mapping which takes a formula and returns a set of dependencies.

The results in this thesis are related mainly to search-based QBF solvers that implement
quantified conflict-driven constraint learning (QCDCL). The trace of a run of a QCDCL
solver can be interpreted as a proof in long-distance Q-resolution. Our results can be
summarized as follows:

• we identify a sufficient condition for when a dependency scheme admits sound use
and certificate extraction in QCDCL with long-distance Q-resolution;

• we propose a new method for dependency analysis, called dependency learning,
that is orthogonal to dependency schemes, and in which dependencies are computed
dynamically on the fly as opposed to statically upfront;

• we show that certificates extracted from long-distance Q-resolution proofs can be
verified in polynomial time;

• we report on an implementation of a portfolio for circuit QBFs, and identify a pair
of key formula features that are excellent predictors of solver performance;

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• we present a dynamic implementation of the strongest known sound dependency
scheme and demonstrate that dependency learning can be used together with
dependency schemes;

• we prove that two basic components of long-distance Q-resolution, universal reduc-
tion and merging, have incomparable strength, i.e., the proof systems without one
of the rules are incomparable.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1

1.1 Background on QBF . 2
1.2 Contributions . 6
1.3 List of Papers and Software . 7

2 Preliminaries 9

2.1 Propositional Logic . 9
2.2 Quantified Boolean Formulas . 11
2.3 Q-resolution and other Proof Systems 12
2.4 QBF Solving and QCDCL . 14
2.5 Dependency Schemes . 17
2.6 QCDCL With Dependency Schemes 19
2.7 Q(D)-resolution . 20

3 Long-distance Q-resolution with Dependency Schemes 23

3.1 Long-distance Q(D)-resolution . 24
3.2 QCDCL with Dependency Schemes Generates LDQ(D)-Proofs 25
3.3 Soundness of and Strategy Extraction for LDQ(Drrs) 29
3.4 Proof of Theorem 2 . 32
3.5 Experiments . 43
3.6 Related Work . 46
3.7 Summary and Discussion . 48

4 Dependency Learning for QBF 51

4.1 QCDCL with Dependency Learning 52
4.2 Soundness and Termination . 54
4.3 Experiments . 56
4.4 An Exponential Speedup over QCDCL 63

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5 An Interpretation of Learned Dependencies 64
4.6 Summary and Discussion . 68

5 Combining Resolution-Path Dependencies with Dependency Learn-

ing 71

5.1 Reflexive Resolution-Path Dependency Scheme 72
5.2 Using Resolution-Path Dependencies in Practice 72
5.3 Experiments . 76
5.4 Summary and Discussion . 77

6 Polynomial-Time Validation of QCDCL Certificates 79

6.1 QBF Certificate Validation . 80
6.2 RUP Proofs from Ordinary Q-Resolution 80
6.3 RUP Proofs from Long-Distance Q-Resolution 84
6.4 True Formulas . 89
6.5 Experiments . 91
6.6 Summary and Discussion . 92

7 Proof Complexity of Fragments of Long-distance Q-resolution 95

7.1 A Lower Bound for Reductionless Q-resolution 96
7.2 Short Proofs of QParity in Reductionless Q-Resolution 99
7.3 Lower Bounds from Strategy Extraction 100
7.4 Summary and Discussion . 106

8 Portfolio-based Algorithm Selection for Circuit QBFs 109

8.1 QCIR Instance Features . 110
8.2 Per-instance Algorithm Selection for QCIR 112
8.3 Which Features Matter? . 113
8.4 Summary and Discussion . 116

9 Conclusion 123

List of Figures 127

List of Tables 129

List of Algorithms 131

Index 133

Bibliography 135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

Almost half a century has passed since Stephen Cook [Coo71] and Leonid Levin [Lev73]
independently discovered the existence of NP-complete problems, and in doing so laid
the foundations for what is today known as computational complexity theory. Nowadays,
computational complexity theory is an absolutely essential component of theoretical
computer science. Of particular interest is the relationship between two complexity classes:
P and NP. The class P contains all those problems that are solvable in polynomial time,
and hence are considered tractable. The class NP, on the other hand, contains all those
problems whose solutions can be verified in polynomial time. While P traditionally
embodies problems that can be solved efficiently, NP-complete problems, the hardest of
problems in NP, represent inherent intractability. The question whether P = NP , which
has become known as the “P vs NP” problem and on whose solution a million-dollar
bounty has been placed, is perhaps the single most important open problem in computer
science. Under the widely-held assumption that P 6= NP , NP-complete problems admit
no polynomial-time algorithms, and hence are not efficiently solvable, or tractable, in
that sense.

The most prominent NP-complete problem, and also the one first discovered by Cook and
Levin, is no doubt SAT—the satisfiability problem of propositional logic. SAT asks, given
a propositional formula, for a satisfying assignment to its variables. As the canonical
NP-complete problem, SAT should be believed to be intractable, and hence one would
expect that no-one is actually solving SAT algorithmically in practice.

Well, that is not quite the case. Starting in the late 1990s [MS96], though building on
techniques that go back to even before Cook and Levin [DP60,DLL62], algorithms and
solvers have been developed that have scaled up to real-world instances with millions
of variables and clauses. SAT technology has been successfully deployed in areas such
as formal verification [VWM15], pure mathematics [HKM16,Heu18], and, through its
optimization variant MaxSAT, also in optimization settings. When presented with an
NP-complete problem, the canonical reaction today is no longer to throw your hands

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

up in despair, but instead to encode it into SAT and have it solved without thinking
twice about it. This is not to say that the process of encoding is simple, but rather that
if it is done properly, it is often expected that the SAT solver will solve the instance.
The success of SAT solvers has changed the perception of hardness for many—it is not
uncommon to consider NP to be the class of problems that are practically tractable.

It is worth taking a moment to reflect on why SAT solvers have been so successful. The
rigorous answer is we do not know—to this day we have no satisfactory explanation
for the gap between the theoretical worst-case exponential explosion and the practical
real-world near-linear running time. Nevertheless, it is clear that without the aggressive
search-space-pruning techniques the solvers would not get far. The single most successful
complete (i.e. able to certify both satisfiability and unsatisfiability) algorithm for SAT is
Conflict-Driven Clause Learning (CDCL) [MLM09]. CDCL combines brute-force search
with reasoning about forced assignments and learning of new clauses. A CDCL solver
terminates once it finds a satisfying assignment or, if the formula is unsatisfiable, when
it learns the empty clause, at which point it has implicitly found a resolution proof
that shows unsatisfiability. When we speak of SAT solvers in the context of artificial
intelligence, it is precisely this learning, which can be seen as the “intelligent” component.

With the frontiers of practical tractability on the move, it is only natural that researchers
started looking for other problems, theoretically assumed to be even harder than SAT,
which could be attacked with similar methods and success. It should not come as a
surprise that that is also how this thesis came to be. We are interested in quantified
Boolean formulas (QBF), which are propositional formulas with quantifiers. In SAT, we
are looking for a satisfying assignment to the variables of formula, which is the same as
quantifying all variables existentially and then asking if the resulting QBF is true. From
that perspective, QBFs simply additionally allow universal quantifiers.

1.1 Background on QBF

It turns out that the extra quantifier makes quite a difference. If we allow its unrestricted
use, which is what we typically do, the problem of evaluating QBFs is complete for
PSPACE—the class of problems decidable in polynomial space. Hence, QBFs can
succinctly capture many relevant problems for which only exponentially-sized encodings
into SAT are assumed to exist, such as unbounded model checking, planning, or two-player
games.

QBF is no longer a new research field. The first theoretical results that continue to
influence today’s solvers date back to 1995 [KKF95], while the first solvers spawned at
the beginning of the millennium [ZM02b,ZM02c]. Since then, many different decision
procedures and solvers have been developed [BL10, KSGC10, JKMSC12, RT15, JM15,
Ten16,Jan18b,Jan18a]. Most of them take one of two approaches: they either use (careful)
expansion/abstraction into SAT; or they build upon a generalization of CDCL for QBF

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Background on QBF

called Quantified Conflict-Driven Constraint Learning (QCDCL). 1 In this thesis we
focus on QCDCL and theoretical questions that arise from it.

A salient feature of QBFs are dependencies between variables. Consider this simple (in
some sense the simplest non-trivial possible) formula:

∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y).

This formula is closed (every variable is bound by a quantifier) and in prenex normal
form—the quantifiers are all stacked up in the front—which is the kind of formulas that
we will work with. In fact, it is also in prenex conjunctive normal form (PCNF), which
means that the matrix—the quantifier-free part— is a conjunction of clauses. A clause
is a finite disjunction of literals, which in turn are either variables, like x, or negations
thereof, like ¬x.

If x is set to 0, then we can set y to 0 as well, and the formula is satisfied. Similarly, if x
is set to 1, then we can set y to 1, and again, the formula is satisfied. Therefore, it is true
that for all x there is a y such that the matrix is satisfied, and hence the formula is true.
But, the choice of y depends on x. We must set y to the same value as x, and hence no
single value for y will suffice. This is how dependencies can be understood intuitively.

Dependencies are tightly related to another important notion, namely that of models and
countermodels. In the previous example, we had to set y to the same value as x in order
to satisfy the matrix of the formula. The function fy(x) = x that performs this is called a
model of the formula. A countermodel is an analogous function for a universal variable in
case the formula is false. Models and countermodels are also known as winning strategies
or simply strategies. This comes from looking at QBFs as two-player games where the
existential player attempts to satisfy the matrix, the universal player attempts to falsify
it, and they take turns in the order of the quantifier prefix. A model is then exactly a
winning strategy for the existential player, and similarly a countermodel is a winning
strategy for the universal player.

All dependencies as given by the quantifier prefix are not always necessary. Consider a
formula built from two variable-disjoint copies of the previous example:

∀x∃y∀x′∃y′. (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (x′ ∨ ¬y′) ∧ (¬x′ ∨ y′).

Here y′ really only depends on x′, and not on x or y—the latter dependencies are spurious.
However, in order to solve this formula with QCDCL, we must assign variables in the
order of the quantifier prefix. So, for every assignment to x and y we must check from
scratch that for all x′ there exists a y′ to satisfy the matrix, even though the y′ only
depends on x′ and not on x and y.

1QCDCL is also known as QDPLL, harking back to CDCL’s precursor DPLL, and the acronym
QCDCL can also stand for Quantified Conflict-Driven/Directed Clause Learning, and in that case there is
also a counterpart called Solution-Driven Cube Learning (SDCL). In order to avoid this naming mishmash
we will stick to QCDCL and mean all of these ingredients.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Even worse, consider the formula

QΦQΨ. ϕ ∧ ψ,

where ϕ is a hard unsatisfiable propositional formula with all its variables quantified
existentially in QΦ and Ψ = QΨ.ψ is an easy false QBF that is variable-disjoint from Φ.
The conjunction is clearly false, and it could be quickly solved using the easy part Ψ, but
QCDCL has to respect the prefix, which says that the variables of Φ must go first. Hence,
even if the overall formula is objectively easy, it will be difficult for QCDCL because it
has to focus on the hard part.

Examples like the ones above inspired researchers to analyze dependencies in greater
detail. Of course, in general all the dependencies prescribed by the quantifier prefix
are necessary, and there is nothing that can be done about that. In practice, however,
formulas can contain spurious dependencies, and if a solver can detect that fact, it can use
it to its advantage. If a solver (or a preprocessor for that matter) manipulates or reasons
about the quantifier prefix in any non-trivial way, we say that it performs dependency
analysis.

The systematic study of dependencies in QBF started with the work of Samer and
Szeider [SS09] on dependency schemes. A dependency scheme is a mapping that takes a
formula and returns a set of pairs of its variables—the actual dependencies. Dependency
schemes were originally introduced as a means to perform reorderings of the quantifier
prefix in order to find smaller sets of variables whose every assignment simplifies the
formula to a tractable form. Not long afterwards, however, Biere and Lonsing [BL09,BL10]
showed how dependency schemes can be used to enhance a QCDCL solver. Their solver
DepQBF uses the standard dependency scheme to relax the ordering imposed by the
prefix.

Following the successful implementation of a dependency scheme in a QBF solver, the
doors were open for research to take dependency analysis for QBF solving to the next
level. Two of the most immediate problems were to ensure the soundness of QCDCL
with a dependency scheme, and to develop and implement stronger dependency schemes
which can detect more spurious dependencies.

To tackle the first challenge, researchers turned to proof theory for QBF. It was already
known that constraints learned by QCDCL can be modeled using a proof system called
Q-resolution [KKF95], a generalization of propositional resolution. Implementing QCDCL
learning with Q-resolution, however, is not completely straightforward and if not done
carefully may even lead to an exponential running time. While there is a somewhat more
complicated algorithm that can learn constraints in linear time with Q-resolution [Gel12],
in this thesis we focus on a different approach. Implemented already in the first QCDCL
solvers, but properly analyzed only more recently [ELW13], long-distance Q-resolution
generalizes Q-resolution by allowing tautological resolvents in some cases.

Suppose the clauses C1 ∨ x and C2 ∨ ¬x are to be resolved. Propositional resolution
requires that there is no clashing variable, i.e., a variable y with y ∈ C1 and ¬y ∈ C2 or

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Background on QBF

¬y ∈ C1 and y ∈ C2. This is also equivalent to requiring that the resolvent C1 ∨ C2 is
non-tautological. Q-resolution additionally stipulates that the pivot x is an existential
variable. In long-distance Q-resolution, there may be a clashing universal variable u
given that it is right of x in the quantifier prefix.

Long-distance Q-resolution has a number of advantages over Q-resolution: it is arguably
easier to implement in QCDCL; and it allows for exponentially shorter proofs of some
formulas. On the other hand, like Q-resolution, long-distance Q-resolution enjoys linear-
time strategy extraction, i.e., there is an algorithm that, given a long-distance Q-resolution
proof/refutation, computes a winning strategy in linear time. This is an important
property of proof systems for applications, where the simple answer of whether a formula
is true of false is often not sufficient.

In order to account for the use of dependency schemes in QCDCL, Slivovsky and Szeider
defined the proof system Q(D)-resolution, a parameterized version of Q-resolution [SS16b].
Q-resolution has two rules: the aforementioned resolution on existential pivots; and
universal reduction. Suppose C ∨ u is a clause where every variable x ∈ C is left of u in
the prefix. If C ∨ u does not become satisfied by the variables from C, then the universal
player will surely win by falsifying u. Hence, already C must be satisfied and u can be
reduced from C ∨ u.

In Q(D)-resolution, resolution remains the same, but universal reduction receives a
boost—a universal literal u may be reduced from C ∨ u as long as nothing in C depends
on u according to the dependency scheme D. This is in line with the previous intuition:
we may not play C-variables depending on the value of u, so we must satisfy C regardless
of u. Slivovsky and Szeider proved that Q(D)-resolution is sound when parameterized by
the reflexive resolution-path dependency scheme, also known as Drrs [SS16b]. This is the
strongest known soundness result for a dependency scheme in Q-resolution, and it also
implies that DepQBF is sound.

At the same time, Drrs happens to be the answer to the second research problem stated
above—to develop new, stronger dependency schemes. However, even though stronger
dependency schemes had been developed, there had been no efficient implementations
after DepQBF.

It was roughly at this moment in the history of QBF that the author of this thesis joined
the field. Let us summarize some of the main open problems as we saw them at the time.

• The soundness of Q(D)-resolution had been established for Drrs, but what about
efficient strategy extraction?

• Could long-distance Q-resolution be combined with dependency schemes?

• What is the relative proof complexity of the proof systems with dependency schemes?

• How to efficiently implement the reflexive resolution-path dependency scheme?

• What about some other, possibly stronger techniques for dependency analysis?

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

In the following chapters, we will give answers to these and other questions.

1.2 Contributions

In Chapter 3 we define LDQ(D)-resolution, a combination of long-distance Q-resolu-
tion with dependency schemes. We define a sufficient condition, called normality, on
the dependency scheme D, under which LDQ(D)-resolution is both sound and admits
polynomial-time strategy extraction. We also show that Drrs is normal.

In Chapter 4, we introduce dependency learning for QCDCL, a novel technique for
dependency analysis. QCDCL with dependency learning starts with an empty dependency
relation D, assuming every pair of variables is independent. The solver proceeds just like
DepQBF, making assignments and inferences according to its dependency relation, but
when it comes to constraint learning, it forgets about the dependencies and attempts to
learn a constraint like an ordinary QCDCL solver, using long-distance Q-resolution. This
may not always be possible because of the way the solver made previous assignments.
If the solver is unable to derive a learned constraint, it identifies a missing dependency,
adds it to D, backtracks, and continues.

Following up, in Chapter 5, we show how to harness the architecture of dependency
learning in order to implement the reflexive resolution-path dependency scheme in a
QCDCL solver. The core idea is to compute certain dependencies on demand during
dependency conflicts. This way only the most relevant dependencies—the ones that
are to be learned—are calculated, which prevents the quadratic blow-up resulting from
computing the entire dependency relation upfront. Thus, we also show that the two
techniques for dependency analysis can be combined.

Chapters 6 and 7 take a detour away from the world of dependencies. In Chapter 6,
we show that QBF certificates—which is just another name for strategies—computed
from long-distance Q-resolution (and hence also Q-resolution) proofs can be validated in
polynomial time. In many applications where the strategy is required it is often desirable
that the strategy be verified for correctness. Prior to this result, this step had required a
call to a SAT solver.

Chapter 7 also stays on the topic of long-distance Q-resolution. We show how semantic
(strategy-based) lower-bound techniques introduced for Q-resolution can be used to obtain
lower bounds for fragments of long-distance Q-resolution. In particular, we show that
two very natural fragments of long-distance Q-resolution—Q-resolution and long-distance
Q-resolution without universal reduction—are incomparable, i.e., neither polynomially
simulates the other. This means that the two core abilities of long-distance Q-resolution,
namely merging and reduction, are of incomparable power.

Chapter 8 is a report on our work on constructing an algorithm selector for a solver
portfolio for QBFs whose matrix is a general circuit. A portfolio is a collection of solvers,
and an algorithm selector is a procedure that, for a given formula, selects the most
promising solver based on the formula’s features. We have found that only two features

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. List of Papers and Software

suffice to predict solver performance very accurately, and to construct a very good
algorithm selector.

1.3 List of Papers and Software

While every chapter ends with a note of the papers containing the research presented in
that chapter, we also list all the papers used in this thesis here for reference.

• Peitl, Slivovsky, and Szeider: Long-distance Q-resolution with Dependency Schemes,
Journal of Automated Reasoning, 2019 [PSS19b,PSS16]

• Peitl, Slivovsky, and Szeider: Dependency Learning for QBF, Journal of Artificial
Intelligence Research, 2019 [PSS19a,PSS17]

• Peitl, Slivovsky, and Szeider: Polynomial-Time Validation of QCDCL Certificates,
SAT 2018—the 21st International Conference on the Theory and Practice of
Satisfiability Testing [PSS18]

• Hoos, Peitl, Slivovsky, and Szeider: Portfolio-Based Algorithm Selection for QBF,
CP 2018—the 24th International Conference on Principles and Practice of Con-
straint Programming [HPSS18]

• Peitl, Slivovsky, and Szeider: Combining Resolution-Path Dependencies with
Dependency Learning, SAT 2019—the 22nd International Conference on the Theory
and Practice of Satisfiability Testing [PSS19c]

• Peitl, Slivovsky, and Szeider: Proof Complexity of Fragments of Long-distance
Q-resolution, SAT 2019—the 22nd International Conference on the Theory and
Practice of Satisfiability Testing [PSS19d]

We also include links to software created as part of our work.

• The QCDCL-based dependency-learning QBF solver Qute: https://github.

com/perebor/qute

• The certificate extractor and validation proof generator qrp2rup: https://www.
ac.tuwien.ac.at/research/certificates

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Preliminaries

The central object studied in this thesis are quantified Boolean formulas (QBF). In this
chapter we introduce the notation and the basic notions associated with propositional
and quantified Boolean logic, as well as some QBF proof systems that we will study, and
their relationship to QBF solving.

2.1 Propositional Logic

We assume that a countably infinite set containing (propositional) variables is at our
disposal. A literal is a variable x or a negated variable ¬x. If x is a variable, we write
x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. We sometimes call literals x and ¬x
the positive and negative polarity of the variable x respectively. If S is a set of literals,
we write S for the set { ℓ : ℓ ∈ S } and let var(S) = { var(ℓ) : ℓ ∈ S }.

An (truth) assignment to a set X of variables is a mapping τ : X → {0, 1}. We also refer
to the values 0 and 1 as false and true, respectively. We write [X] for the set of truth
assignments to X, and extend τ : X → {0, 1} to literals by letting τ(¬x) = 1 − τ(x) for
x ∈ X. An assignment σ : X ′ → {0, 1} is an extension of the assignment τ : X → {0, 1}
if X ⊆ X ′ and ∀x ∈ X we have σ(x) = τ(x). The restriction of an assignment
τ : X → {0, 1} to a set Y ⊆ X of variables is the assignment τ |Y : Y → {0, 1} such that
τ is an extension of τ |Y . An assignment τ : X → {0, 1} can also be represented as the
set τ−1(1) = {x ∈ X : τ(x) = 1 } ∪ { ¬x ∈ X : τ(x) = 0 } of literals it makes true, or
even as a sequence of those literals if there is a particular order on the variables in X. In
particular, if S is a set of literals such that no two literals in S share a variable, then
S also represents the assignment that sets all literals of S to 1, and S represents the
assignment that sets all literals of S to 0.

We consider Boolean circuits over {¬, ∧, ∨, 0, 1} and write var(ϕ) for the set of variables
occurring in a circuit ϕ. If ϕ is a circuit and τ : X → {0, 1} an assignment, ϕ[τ] denotes

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

the circuit obtained by replacing each variable x ∈ X ∩ var(ϕ) by τ(x) and propagating
constants. An assignment τ : X → {0, 1} is a total (full) assignment to (the variables of)
a circuit ϕ if var(ϕ) ⊆ X, otherwise it is a partial assignment. A circuit ϕ is satisfiable if
there is an assignment τ such that ϕ[τ] = 1, otherwise it is unsatisfiable.

A clause (term) is a circuit consisting of a disjunction (conjunction) of literals. We
write ⊥ for the empty clause and ⊤ for the empty term. We call a clause tautological
(and a term contradictory) if it contains the same variable negated as well as unnegated.
A CNF formula (DNF formula) is a circuit consisting of a conjunction (disjunction)
of non-tautological clauses (non-contradictory terms). Whenever convenient, we treat
clauses and terms as sets of literals, and CNF and DNF formulas as sets of sets of literals.
For a CNF (DNF) formula ϕ, we define ϕ to be the DNF (CNF) formula {S : S ∈ ϕ }.

While restricting clauses, terms, and CNF and DNF formulas by assignments is defined the
same way as for general circuits, it will be an operation we will use extensively, and so we
detail it here. Let τ : X → {0, 1} be a truth assignment. The restriction S[τ] of a clause
(term) S by τ is defined as follows: if there is a literal ℓ ∈ S ∩ (X ∪X) such that τ(ℓ) = 1
(τ(ℓ) = 0) then S[τ] = 1 (S[τ] = 0). Otherwise, S[τ] = S \ (X ∪X). The restriction ϕ[τ]
of a CNF formula ϕ by the assignment τ is defined ϕ[τ] = {C[τ] : C ∈ ϕ,C[τ] 6= 1 },
and similarly, the restriction ϕ[τ] of a DNF formula ϕ by the assignment τ is defined
ϕ[τ] = {T [τ] : T ∈ ϕ, T [τ] 6= 0 }. Here, we define the empty CNF formula CNF(∅) to be
equivalent to 1, and DNF(∅) to equal 0.

A unit clause is a clause containing a single literal. A CNF formula ψ is derived from a
CNF formula ϕ by the unit clause rule if (ℓ) is a unit clause of ϕ and ψ = ϕ[ℓ 7→ 1]. Unit
propagation in a CNF formula consists of repeated application of the unit clause rule.
Unit propagation is said to derive the literal ℓ in a CNF formula ϕ if a CNF formula ψ
with (ℓ) ∈ ψ can be derived from ϕ by unit propagation. We say that unit propagation
causes a conflict if ⊥ can be derived by unit propagation. If unit propagation does not
cause a conflict the set of literals that can be derived by unit propagation induces an
assignment. The closure of an assignment τ with respect to unit propagation (in ϕ) is τ
combined with the set of literals derivable by unit propagation in ϕ[τ].

A clause C has the reverse unit propagation (RUP) property with respect to a CNF
formula ϕ if unit propagation in ϕ[C] causes a conflict. If C is RUP with respect to
ϕ, then ϕ and ϕ ∧ C are equisatisfiable, i.e. they are either both satisfiable, or both
unsatisfiable. A RUP proof of unsatisfiability of a CNF formula ϕ is a sequence C1, . . . , Cm

of clauses such that Cm = ⊥ and each clause Ci has the RUP property with respect
to ϕ ∪ {C1, . . . , Ci−1}, for 1 ≤ i ≤ m.

The problem of deciding the satisfiablity of a given Boolean circuit (SAT) is NP-
complete [Coo71]. It is well known that any circuit can be transformed into an equisat-
isfiable CNF formula of size linear in the size of the circuit [Tse68], and hence also
deciding satisfiability of CNF formulas is NP-complete.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Quantified Boolean Formulas

2.2 Quantified Boolean Formulas

We consider quantified Boolean formulas that are closed, i.e. with no free variables, and
in prenex normal form. Therefore, a QBF is denoted by Φ = Q.ϕ, where ϕ is a circuit
and Q = Q1x1 . . . Qnxn is a sequence such that Qi ∈ {∀,∃} and xi is a variable. The
fact that Φ is closed means that var(ϕ) ⊆ {x1, . . . , xn}, and the prenex normal form
refers to ϕ being quantifier-free. Hence we define var(Φ) as var(ϕ) and for xi ∈ var(Φ),
we define the quantifier type q(xi) = Qi. We say that x is existential if q(x) = ∃ and
universal if q(x) = ∀. The set of existential (universal) variables occurring in Φ is
denoted var∃(Φ) (var∀(Φ)). We call ϕ the matrix of Φ and Q the (quantifier) prefix
of Φ. The quantifier prefix Q gives rise to the strict linear order <Φ on var(Φ) defined
as xi <Φ xj ⇐⇒ i < j. We extend <Φ to a strict partial order on literals by putting
ℓ <Φ ℓ′ ⇐⇒ var(ℓ) <Φ var(ℓ′) and drop the subscript whenever Φ is understood. For
x ∈ var(Φ) we let RΦ(x) = { y ∈ var(Φ) : x <Φ y } and LΦ(x) = { y ∈ var(Φ) : y <Φ x }
denote the sets of variables to the right and to the left of x in Φ, respectively.

If τ is an assignment, then Φ[τ] denotes the QBF Q′.ϕ[τ], where Q′ is the quantifier
prefix obtained from Q by deleting variables that do not occur in ϕ[τ]. The semantics of
a PCNF formula Φ is defined as follows. If Φ does not contain any variables, then Φ is
true if its matrix is empty and false if its matrix contains the empty clause ⊥. Otherwise,
let Φ = QxQ.ϕ. If Q = ∃ then Φ is true if Φ[x 7→ 0] is true or Φ[x 7→ 1] is true, and
if Q = ∀ then Φ is true if both Φ[x 7→ 0] and Φ[x 7→ 1] are true.

We define an equivalence relation ∼=Φ on var(Φ) by putting

x ∼=Φ y ⇐⇒ q(x) = q(y) ∧

∀z ∈ var(Φ) (x <Φ z ∧ z <Φ y) ∨ (y <Φ z ∧ z <Φ x) =⇒ q(z) = q(x),

and refer to the equivalence classes as (quantifier) blocks. Because quantifier blocks
are intervals (in fact maximal intervals of variables of the same quantifier type) in the
strict linear order <Φ, the order carries over to a strict linear order <∼=Φ

by putting
[x]∼=Φ

<∼=Φ
[y]∼=Φ

⇐⇒ x <Φ y. That, in turn, gives rise to a strict partial order on var(Φ)
defined by x ≺Φ y ⇐⇒ [x]∼=Φ

<∼=Φ
[y]∼=Φ

. We similarly extend ≺Φ to a strict partial
order on literals. We let B(Φ) be the number of quantifier blocks of Φ and number the
blocks in the order of <∼=Φ

as X1, . . . , XB(Φ), i.e. Xi <∼=Φ
Xj ⇐⇒ i < j. We define the

(quantifier) depth δ(x) of a variable x ∈ Xi as δ(x) = i.

If the quantifier type of each variable is known, the quantifier prefix is uniquely determined
by the order <Φ, which is a linear extension of ≺Φ. However, any linear extension of ≺Φ

leads to a formula with the same truth value. In other words, since the order of variables
within a quantifier block is semantically irrelevant, we will sometimes write QBFs in the
form Φ = Q1X1, . . . , QnXk. ϕ with Qi 6= Qi+1, where each Xi is a quantifier block. In
this notation, we have that x ≺Φ y ⇐⇒ x ∈ Xi, y ∈ Xj , i < j.

Apart from ≺Φ, we will also make use of its sub-relation ≺q
Φ defined as

x ≺q
Φ y ⇐⇒ x ≺Φ y ∧ q(x) 6= q(y).

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

Let Φ = Q.ϕ be a QBF. A model of Φ is an indexed family {fe}e∈var∃(Φ) of functions
fe : [LΦ(e)] → {0, 1} such that ϕ[τ] = 1 for every assignment τ : var(Φ) → {0, 1}
satisfying τ(e) = fe(τ |LΦ(e)) for e ∈ var∀(Φ). A countermodel of Φ is an indexed
family {fu}u∈var∀(Φ) of functions fu : [LΦ(u)] → {0, 1} such that ϕ[τ] = 0 for every
assignment τ : var(Φ) → {0, 1} satisfying τ(u) = fu(τ |LΦ(u)) for u ∈ var∀(Φ).

Theorem 1 (Folklore). A QBF is true if, and only if, it has a model, and false if, and
only if, it has a countermodel.

Models and countermodels are tightly related to a game-theoretic perspective of QBFs.
A given QBF can be viewed as a game between two players—the existential player and
the universal player, sometimes abbreviated simply as Existential and Universal. The
players take turns assigning variables in the order of the quantifier prefix. Existential
wins if at the end the matrix is satisfied, while Universal wins if it is falsified. In this
game-theoretic terminology, a model (countermodel) is a winning strategy for Existential
(Universal).

In most cases, we deal with QBFs in PCNF, i.e. when the matrix ϕ is a CNF. Dually, a
PDNF formula is one where the matrix is in DNF. The size of a PCNF (PDNF) formula
Φ = Q.ϕ is defined as |Φ| =

∑

S∈ϕ |S|. For a PCNF (PDNF) formula Φ = Q.ϕ, we

define Φ = Q.ϕ, where Q is the quantifier prefix that results from Q by changing the
quantifier type of each variable. Naturally, we have that Φ is true if, and only if, Φ is false.
For technical reasons we require that PCNF (PDNF) formulas contain no tautological
clauses (contradictory terms). This is a safe assumption, since tautological clauses and
contradictory terms can simply be removed from any matrix without a change of truth
value.

The problem of deciding whether a given QBF is true or false is PSPACE-complete [SM73].
Using Tseitin conversion, one can transform the matrix of a QBF into CNF, and quantify-
ing the auxiliary variables existentially and rightmost in the prefix results in a truth-value
equivalent formula. Similarly, one can transform the matrix into a DNF and quantify the
auxiliary variables universally and rightmost, and obtain an equivalent formula. Hence,
deciding the truth of both PCNF and PDNF is also PSPACE-complete.

2.3 Q-resolution and other Proof Systems

An important part of the theoretical study of quantified Boolean formulas consists in the
study of their proof systems. While a wide range of proof systems that model different
solving paradigms have been proposed, in this work we focus on Q-resolution [KKF95], a
generalization of propositional resolution to QBF, and systems that are derived from it,
most prominently long-distance Q-resolution [ZM02b,BJ12]. The rules of Q-resolution
and long-distance Q-resolution are given in Figures 2.1 and 2.2, respectively. These proof
systems, as well as others that will be introduced later, operate on PCNF formulas.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Q-resolution and other Proof Systems

A (long-distance) Q-resolution derivation from a PCNF formula Φ in its most basic form
is a sequence of clauses P = C1, . . . , Cm such that each clause either appears in the matrix
of Φ, or can be derived from clauses appearing earlier in the sequence using (long-distance)
resolution or universal reduction. The size of P is defined as |P| :=

∑m
i=1 |Ci|. A derivation

of the empty clause is called a refutation, and one can show that a PCNF formula is false,
if, and only if, it has a (long-distance) Q-resolution refutation [KKF95, BJ12]. Hence,
both Q-resolution and long-distance Q-resolution are sound and (refutationally) complete
proof systems for PCNF formulas.

Q-resolution and long-distance Q-resolution can only be used to show that a given
PCNF is false. In order to be able to prove a formula true, dual proof systems called
(long-distance) Q-consensus, were introduced. They operate on terms instead of clauses,
and are obtained by swapping the roles of existential and universal variables (the analogue
of universal reduction for terms is called existential reduction).

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

The resolution rule allows the derivation of C1 ∨ C2 from clauses C1 ∨ e and ¬e ∨ C2,
provided that the pivot variable e is existential and that C1 ∨ C2 is not a tautology.
The clause C1 ∨ C2 is called the resolvent of C1 ∨ e and ¬e ∨ C2.

C (universal reduction)
C \ {ℓu}

The universal reduction rule admits the deletion of a universal literal ℓu from a clause C
under the condition that e ≺q var(ℓu) for each existential variable e ∈ var(C).

Figure 2.1: Q-resolution.

The case of (long-distance) Q-consensus operating on PDNF formulas is completely dual,
however, the case of proving PCNF formulas to be true is slightly more involved. In
particular, since (long-distance) Q-consensus operates on terms and the input PCNF
formula only contains clauses, some initial terms need to be generated. There are two
ways how this is done in practice: either a DNF representation of the matrix is obtained
at the beginning using Tseitin conversion; or initial terms are generated on the fly by
model generation [GNT06] from (full) assignments that satisfy the (CNF) matrix. 1

Hence, a (long-distance) Q-consensus derivation from a PCNF formula Φ is a sequence
T1, . . . , Tm of terms such that each term is either an initial term (i.e. it is either in the
DNF representation of Φ, or it is a generated model), or can be derived from previous
terms by consensus or existential reduction. A PCNF formula is true, if, and only if, the

1Model generation was shown to require an exponential number of initial terms in the worst case [JM17].

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

C1 ∨ e ¬e ∨ C2 (long-distance resolution)
C1 ∨ C2

The resolution rule allows the derivation of C1 ∨ C2 from clauses C1 ∨ e and ¬e ∨ C2,
provided that the pivot variable e is existential and that e ≺q var(ℓu) for each universal
literal ℓu ∈ C1 such that ℓu ∈ C2. The clause C1 ∨ C2 is called the resolvent of C1 ∨ e
and ¬e ∨ C2.

C (universal reduction)
C \ {u,¬u}

The universal reduction rule admits the deletion of a universal variable u from a clause C
under the condition that e ≺q u for each existential variable e ∈ var(C).

Figure 2.2: Long-distance Q-resolution.

empty term can be derived from a DNF representation of its matrix by (long-distance)
Q-consensus. Hence, both Q-consensus and long-distance Q-consensus are sound and
complete proof systems for PCNF and PDNF formulas.

Derivations as defined here will be sufficient for Chapter 6. However, in certain other
places, we will need a more detailed view of derivations in proof systems that generalize
Q-resolution. Therefore, a definition of derivations as certain directed acyclic graphs
(proof DAGs) labeled with clauses will be presented at the beginning of Chapter 3. These
two definitions are not in conflict—a derivation as a sequence of clauses can be seen as a
topological ordering of a derivation represented as a proof DAG. By looking at a derivation
as a sequence we simply abstract from the details of the immediate relationships between
the clauses.

From the work of Balabanov and Jiang, and subsequently Balabanov et al. [BJ12,BJJW15]
we know that Q-resolution and long-distance Q-resolution refutations can be used to
compute winning strategies (countermodels, but also models in the case of Q-consensus
and long-distance Q-consensus) in linear time in the size of the refutation. We call this
that (long-distance) Q-resolution admits linear-time strategy extraction.

2.4 QBF Solving and QCDCL

Most of the work in this thesis is concerned with—or at least motivated by—improving
QBF solving (deciding the truth value of a given closed prenex QBF). In the closely
related field of SAT solving (checking the satisfiability of propositional formulas), a single
solving paradigm has been established as the state of the art, namely Conflict-Driven
Clause Learning (CDCL) [MS96,MLM09]. CDCL is a family of algorithms whose central

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. QBF Solving and QCDCL

idea is to exhaustively enumerate the space of possible variable assignments, learning
implied clauses along the way to prune the search space. Informally, CDCL repeatedly
branches and applies unit propagation until a conflict is reached, at which point it
identifies a reason for the conflict and backtracks appropriately, possibly undoing more
than just the last decision before the conflict.

In contrast, in QBF there are at least two competing paradigms: expansion/instantiation-
based solving; and Quantified Conflict-Driven Constraint Learning (QCDCL), a general-
ization of CDCL. While both of these paradigms have their advantages and disadvantages—
as is witnessed for instance by separations between their underlying proof systems—in
this work we focus solely on QCDCL and the theory that surrounds it.

Starting from an input PCNF formula, QCDCL generates (“learns”) constraints—clauses
and terms—until it produces an empty constraint. Every clause learned by QCDCL
can be derived from the input formula by (long-distance) Q-resolution, and every term
learned by QCDCL can be derived by (long-distance) Q-consensus [GNT06, ELW13].
This certifies the correctness of the algorithm—if the solver learns the empty term, the
formula must be true, and if it learns the empty clause, the formula must be false.

One can think of QCDCL solving as proceeding in rounds. Along with a set of clauses
and terms, the solver maintains an assignment σ (the trail). During each round, this
assignment is extended by quantified Boolean constraint propagation (QBCP) and—
possibly—branching.

Quantified Boolean constraint propagation consists of exhaustive application of universal
and existential reduction in combination with unit assignments.2 More specifically, QBCP
reports a clause C as falsified if C[σ] 6= 1 and universal reduction can be applied to C[σ]
to obtain the empty clause. Dually, a term T is considered satisfied if T [σ] 6= 0 and T [σ]
can be reduced to the empty term. A clause C is unit under σ if C[σ] 6= 1 and universal
reduction yields the clause C ′ = (ℓ), for some existential literal ℓ such that var(ℓ) is
unassigned. Dually, a term T is unit under σ if T [σ] 6= 0 and existential reduction can
be applied to obtain a term T ′ = (ℓ) containing a single universal literal ℓ. If C = (ℓ) is
a unit clause, then the assignment σ has to be extended by ℓ in order not to falsify C,
and if T = (ℓ) is a unit term, then σ has to be extended by ℓ in order not to satisfy T .
If several clauses or terms are unit under σ, QBCP nondeterministically picks one and
extends the assignment accordingly. This is repeated until a constraint is empty or no
unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended by branching.
That is, the solver chooses an unassigned variable x such that every variable y with
y ≺q x is assigned, and extends the assignment σ by x or ¬x.

The resulting assignment can be partitioned into so-called decision levels. The decision
level of a literal ℓ in σ is the number of literals in σ that were assigned by branching and
not later than ℓ. The decision level of an assignment σ is the decision level of its last

2We do not consider the pure literal rule as part of QBCP.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

assigned literal. Note that each decision level greater than 0 can be associated with a
unique variable assigned by branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or satisfy a
term. 3 When this happens (this is called a conflict), the solver proceeds to conflict
analysis to derive a learned constraint C. Initially, C is the falsified clause (satisfied
term), called the conflict clause (term). The solver finds the existential (universal) literal
in C that was assigned last by QBCP, and the antecedent clause (term) R responsible
for this assignment. A new constraint is derived by resolving C and R and applying
universal (existential) reduction. This is done repeatedly until the resulting constraint C
is either empty or asserting. A clause (term) S is asserting if there is a unique existential
(universal) literal ℓ ∈ S with maximum decision level among literals in S, its decision
level is greater than 0, the corresponding decision variable is existential (universal), and
every universal (existential) variable y ∈ var(S) such that y ≺q var(ℓ) is assigned at
a lower decision level. Such a literal is called an asserting literal. Once an asserting
constraint has been found, it is added to the solver’s set of constraints. Finally, QCDCL
backtracks, undoing variable assignments until it reaches a decision level computed from
the learned constraint. It is not hard to see that an asserting constraint becomes unit
after this backtracking, with the asserting literal being the unit literal.

Example 1. We present a run of QCDCL on a simple PCNF formula Φ shown below.

Φ = ∀x∃y∃z.(x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬x ∨ z)

We use the notation x
d
= c to denote that variable x that is assigned value c by decision.

If x is assigned c by unit propagation, we write x = c. A possible run of QCDCL on Φ
looks as follows. The formula does not contain any unit clauses so QCDCL has to make

a decision, and the variable x is the only variable eligible for a decision. Setting x
d
= c

satisfies the first clause and turns the third clause into the unit clause (z). Setting z = 1
turns the second clause into the unit clause (y), and setting y = 1 satisfies the matrix.
This allows us to derive (x ∧ z ∧ y) as an initial term using the model generation rule.
By applying existential reduction we can derive the unit term (x) as a learned term.
QCDCL then backtracks to decision level 0 and assigns x = 0. This turns the first clause
into the unit clause (¬y) and results in the assignment y = 0. Now the second clause
simplifies to (¬z) and the algorithm assigns z = 0. The resulting assignment satisfies the
matrix and we derive (¬x ∧ ¬y ∧ ¬z) as an initial term. Existential reduction leads to
the unit term (¬x) which is resolved with the term (x) responsible for assigning x = 0.
The resolvent is the empty term and QCDCL returns true.

3If a PCNF is being solved and we do not have a DNF representation of the matrix, it can happen
that the assignment satisfies all clauses without satisfying a term. In that case, we generate a model,
which we add to the database of learned terms, and which is satisfied by the current assignment.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. Dependency Schemes

2.5 Dependency Schemes

In QCDCL, the quantifier prefix imposes constraints on the order of variable assignments:
a variable may be assigned only if it occurs in the leftmost quantifier block with unassigned
variables; else the method is not sound. However, this is often more restrictive than
necessary. For instance, variables from variable-disjoint subformulas may be assigned
in any order. Intuitively, a variable can be assigned as long as it is guaranteed not to
depend on any unassigned variable. This is the intuition underlying a generalization of
QCDCL implemented in the solver DepQBF [BL10,Lon12]. DepQBF uses a dependency
scheme [SS09] to compute an overapproximation of variable dependencies.

In this section we focus on what dependency schemes are. We will deal with the issue of
how to use dependency schemes in a QCDCL solver in Section 2.6. A dependency scheme
is a mapping that maps a PCNF formula Φ to a strict partial order of its variables that
refines the order ≺Φ on variables in the quantifier prefix.4

Definition 1 (Dependency Scheme). A dependency scheme is a mapping

D : Φ 7→ DΦ ⊆≺q
Φ

that maps a PCNF formula Φ to the dependency relation DΦ of Φ with respect to D.

The mapping which simply returns the prefix ordering of an input formula can be thought
of as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme). The trivial dependency scheme Dtrv asso-
ciates each PCNF formula Φ with the relation Dtrv

Φ =≺q
Φ.

Dependency schemes can be partially ordered based on their dependency relations: if the
dependency relation computed by a dependency scheme D1 is a subset of the dependency
relation computed by a dependency scheme D2 for each PCNF formula, then D1 is more
general than D2.

By definition, Dtrv is the least general dependency scheme. The more general a dependency
scheme, the more it relaxes the prefix ordering, and so the more useful it is. Currently,
(aside from the trivial dependency scheme) DepQBF supports the so-called standard
dependency scheme [SS09].5 We will work with the more general reflexive resolution-path
dependency scheme [SS16b], a variant of the resolution-path dependency scheme [VG11,
SS12]. This dependency scheme computes an over-approximation of variable dependencies
based on whether two variables are connected by a (pair of) resolution path(s).

Definition 3 (Resolution Path). Let Φ = Q.ϕ be a PCNF formula and let X be a set of
variables. A resolution path from ℓ1 to ℓ2k in Φ is a sequence π = ℓ1, . . . , ℓ2k of literals
satisfying the following properties:

4The original definition of dependency schemes [SS09] is more restrictive than the one given here, but
the additional requirements are irrelevant for the purposes of this thesis.

5Strictly speaking, it uses a refined version of the standard dependency scheme [Lon12, p.49].

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

1. for all i ∈ {1, . . . , k}, there is a Ci ∈ ϕ such that ℓ2i−1, ℓ2i ∈ Ci,

2. for all i ∈ {1, . . . , k}, var(ℓ2i−1) 6= var(ℓ2i),

3. for all i ∈ {1, . . . , k − 1}, ℓ2i = ℓ2i+1.

If additionally

4. for all i ∈ {1, . . . , k − 1}, {ℓ2i, ℓ2i+1} ⊆ X ∪X,

then we say that π is a resolution path via X. If π = ℓ1, . . . , ℓ2k is a resolution path in
Φ (via X), we say that ℓ1 and ℓ2k are connected in Φ (with respect to X). For every
i ∈ {1, . . . , k − 1} we say that π goes through var(ℓ2i) and var(ℓ2i), 1 ≤ i < k are the
connecting variables of π.

Resolution paths can be understood in terms of walks in the implication graph of a
formula [SS16a].

Definition 4 (Implication graph). Let Φ = Q.ϕ be a PCNF formula. The implication
graph of Φ, denoted by IG(Φ) is the directed graph with vertex set var(Φ) ∪ var(Φ) and
edge set { (ℓ, ℓ′) : there is a C ∈ ϕ such that ℓ, ℓ′ ∈ C and ℓ 6= ℓ′ }.

Lemma 1 ([SS16a]). Let Φ be a PCNF formula and let ℓ, ℓ′ ∈ var(Φ) ∪ var(Φ) be
distinct literals. The following statements are equivalent:

1. ℓ, ℓ1, ℓ1, . . . , ℓk, ℓk, ℓ
′ is a resolution path from ℓ to ℓ′,

2. ℓ, ℓ1, . . . , ℓk, ℓ
′ is a path in IG(Φ).

One can think of a resolution path as a potential chain of implications: if each clause
Ci contains exactly two literals, then assigning ℓ1 to 0 requires setting ℓ2k to 1. If, in
addition, there is such a path from ℓ1 to ℓ2k, then ℓ1 and ℓ2k have to be assigned opposite
values. The resolution path dependency scheme identifies variables connected by a pair
of resolution paths as potentially dependent on each other. We call a pair of variables
connected in this way a dependency pair.

Definition 5 (Dependency pair). Let Φ be a PCNF formula and x, y ∈ var(Φ). We say
{x, y} is a resolution-path dependency pair of Φ with respect to X ⊆ var∃(Φ) if at least
one of the following conditions holds:

• x and y, as well as ¬x and ¬y, are connected in Φ with respect to X.

• x and ¬y, as well as ¬x and y, are connected in Φ with respect to X.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. QCDCL With Dependency Schemes

It remains to determine the set X of variables with respect to which a pair x, y of variables
needs to be connected to induce a dependency. For x ≺Φ y, the original resolution-path
dependency scheme only included dependency pairs {x, y} connected with respect to
existential variables to the right of x, excluding x and y. It turns out that this dependency
scheme can be used for reordering the quantifier prefix [SS16a] but does not lead to a
sound generalization of Q-resolution as required for use within a QCDCL-solver [SS16b].
By dropping the restriction that x and y must not appear on the resolution paths inducing
a dependency pair, we obtain the reflexive resolution-path dependency scheme, which
yields a sound generalization of Q-resolution [SS16b].

Definition 6 (Proper Resolution Path). Let ℓ, ℓ′ be two literals of a PCNF formula Φ
such that δ(ℓ′) < δ(ℓ) . A resolution path from ℓ to ℓ′ is called proper, if it is a resolution
path via RΦ(var(ℓ′)) ∩ var∃(Φ). If there is a proper resolution path from ℓ to ℓ′, we say
that ℓ and ℓ′ are properly connected (in Φ).

Definition 7 (Proper dependency pair). Let Φ be a PCNF formula and x, y ∈ var(Φ),
δ(x) < δ(y). We say {x, y} is a proper resolution-path dependency pair of Φ if at least
one of the following conditions holds:

• x and y, as well as ¬x and ¬y, are properly connected in Φ.

• x and ¬y, as well as ¬x and y, are properly connected in Φ.

Definition 8. The reflexive resolution-path dependency scheme is the mapping Drrs

that assigns to each PCNF formula Φ = Q.ϕ the relation

Drrs

Φ = {x ≺q
Φ y : {x, y} is a proper resolution-path dependency pair of Φ }.

2.6 QCDCL With Dependency Schemes

DepQBF uses a dependency relation to determine the order in which variables can be
assigned: if y is a variable and there is no unassigned variable x such that (x, y) is in the
dependency relation, then y is considered ready for assignment. DepQBF also uses the
dependency relation to generalize the ∀-reduction rule used in clause learning [BL10]—if
no existential literals depend on a given universal literal in a clause, that universal
literal may be removed. When QCDCL is generalized by a dependency scheme this way,
however, its soundness requires a new argument. Consider the following true PCNF
formula:

∀x∃y . (x ∨ ¬y) ∧ (¬x ∨ y),

and a dependency scheme D that says that y does not depend on x. Thanks to the
independence, the x-literals can be reduced from both clauses, leading to unit propagation
assigning y = 0 from the first clause, which falsifies the second clause. The decision level
is 0 (no decisions have been made yet), and hence the falsified clause is not asserting and

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

QCDCL must attempt to resolve it with the antecedent clause, i.e. the one responsible
for propagating ¬y. After applying generalized universal reduction, the falsified clause
becomes y, and resolving it with (x ∨ ¬y) and reducing yields the empty clause. Thus,
the formula, which is true, is refuted using a suitable dependency scheme.

In fact, it is easy to see that unless a QBF is satisfiable as a propositional formula in
its existential variables, disregarding the universal variables completely, there is always
a dependency scheme that allows it to be refuted. Hence, a particular dependency
scheme D must be “approved” before it can be used in QCDCL solving. Similarly to
how ordinary QCDCL learns clauses (and terms) that can be derived using Q-resolution,
it turns out that QCDCL using a dependency scheme uses a generalized proof system
called Q(D)-resolution (and Q(D)-consensus), which takes a dependency scheme as a
parameter. Studying this proof system can provide the necessary soundness guarantees
for the dependency scheme.

Finally, ordinary QCDCL corresponds to QCDCL with the trivial dependency scheme,
and likewise, Q-resolution corresponds to Q(Dtrv)-resolution, as will become apparent
from the definition in Section 2.7.

2.7 Q(D)-resolution

In order to generalize Q-resolution by a dependency scheme D, we reinterpret the
condition for universal reduction that uses the prefix order ≺q

Φ with the relation DΦ

defined by the dependency scheme. The rules of the resulting proof system are shown in
Figure 2.3. In particular, we note that since the resolution rule does not take the prefix
into account, it remains unchanged in the dependency-enhanced version of the proof
system.

(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1 ∨ e and ¬e∨C2, where e
is an existential variable, the resolution rule can derive the clause C1 ∨ C2, provided that it is
not a tautology.

C (∀-reduction)
C − ℓu

The universal reduction rule admits the deletion of a universal literal ℓu from a clause C under
the condition that (evar(ℓu)) /∈ DΦ for each existential variable e in C.

Figure 2.3: Derivation rules of Q(D)-resolution for a PCNF formula Φ = Q.ϕ.

As was mentioned in the previous section, Q(D)-resolution is not necessarily sound—that

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.7. Q(D)-resolution

depends on the dependency scheme. However, it was shown that both Q(Drrs)-resolution
and Q(Drrs)-consensus are sound proof systems [SS16b]. If a dependency scheme D1 is
more general than a dependency scheme D2, then every Q(D2)-resolution step is also
a Q(D1)-resolution step, and consequently, every Q(D2)-resolution derivation is also a
Q(D1)-resolution derivation, and soundness and other properties of Q(D1)-resolution
such as strategy extraction carry over to Q(D2)-resolution. In this case, we have that
Q(Dstd)-resolution and Q(Dstd)-consensus, and therefore also DepQBF, are sound.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Long-distance Q-resolution with

Dependency Schemes

In Chapter 2 we mentioned the various proof systems that build on Q-resolution, such
as long-distance Q-resolution or Q(D)-resolution. One combination that was missing is
that of long-distance Q(D)-resolution, i.e. long-distance Q-resolution parameterized by a
dependency scheme. Therefore, it is natural to ask, whether dependency schemes can be
used in combination with long-distance Q-resolution.

We provide an affirmative answer to that question by giving a sufficient condition under
which a given dependency scheme D gives rise to a sound version of long-distance
Q(D)-resolution. In fact, under our condition the resulting proof system is not only
sound, but it also admits polynomial-time strategy extraction. We apply the general result
by showing that Drrs fulfils our condition, and therefore long-distance Q(Drrs)-resolution
is sound and admits efficient strategy extraction.

Our result shows that a QCDCL solver can employ both learning based on long-distance
Q-resolution, and a (suitable) dependency scheme. This has several advantages—long-dis-
tance Q-resolution is easier to implement and can potentially offer speedups on certain
formulas. While an exponential separation is not known in general, a separation between
Q(Dstd)-resolution and long-distance Q(Dstd)-resolution follows easily from the separation
between Q-resolution and long-distance Q-resolution, as we discuss in Section 3.7. We
further analyze the benefit of combining long-distance Q-resolution with dependency
schemes experimentally by enabling both features in the QCDCL solver DepQBF [BL10].
While it does not afford a major boost of performance, there are formulas where this
approach fares best.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

3.1 Long-distance Q(D)-resolution

Both Q-resolution and Q(D)-resolution only allow for the derivation of non-tautological
clauses, that is, clauses that do not contain a literal negated as well as unnegated.
Long-distance Q-resolution (to recall the rules, see Figure 2.2) is a variant of Q-resolution
that admits tautological clauses in certain cases [BJ12]. Variants of QCDCL that allow
for learned clauses to be tautological [ZM02c,ZM02a] have been shown to generate proofs
in long-distance Q-resolution [ELW13].

In long-distance Q-resolution, when a tautological clause is created by resolution, a
variable that appears in both polarities must be to the right of the pivot variable. We
generalize this by requiring that the pivot be independent of a tautological variable
to obtain long-distance Q(D)-resolution (LDQ(D)-resolution). The derivation rules of
LDQ(D)-resolution are shown in Figure 3.1.1 Here, as in the rest of the chapter, D
denotes an arbitrary dependency scheme.

(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1 ∨ e and ¬e ∨ C2, where
e is an existential variable, the (long-distance) resolution rule can derive the clause C1 ∨ C2,
provided that (u, e) /∈ DΦ for each universal variable u with u ∈ C1 and u ∈ C2 (or vice versa),
and that C1 ∨ C2 does not contain an existential variable in both polarities.

C (∀-reduction)
C \ {u,¬u}

The ∀-reduction rule derives the clause C \ {u,¬u} from C, where u ∈ var(C) is a universal
variable such that (u, e) /∈ DΦ for every existential variable e ∈ var(C).

Figure 3.1: Derivation rules of LDQ(D)-resolution for a PCNF formula Φ = Q.ϕ.

A derivation in a proof system consists of repeated applications of the derivation rules to
derive a clause from the clauses of an input formula. Here, derivations will be represented
by node-labeled directed acyclic graphs (DAGs). More specifically, we require these DAGs
to have a unique sink (that is, a node without outgoing edges) and each of their nodes to
have at most two incoming edges. We further assume an ordering on the in-neighbors (or
parents) of every node with two incoming edges—that is, each node has a “first” and a
“second” in-neighbor. Referring to such DAGs as proof DAGs, we define the following
two operations to represent resolution and ∀-reduction:

1The resolution rule as defined here is more general than the one considered in an earlier version of
this work [PSS16], in that we admit complementary universal literals to be “merged” as long as the pivot
is independent according to D (rather than Dtrv). This definition—which is required to capture proofs
generated by DepQBF (see Example 2 in Section 3.2)—was proposed in independent work by Beyersdorff
and Blinkhorn [BB16].

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. QCDCL with Dependency Schemes Generates LDQ(D)-Proofs

1. If ℓ is a literal and P1 and P2 are proof DAGs with distinct sinks v1 and v2, then
P1 ⊙ℓ P2 is the proof DAG consisting of the union of P1 and P2 along with a
new sink v that has two incoming edges, the first one from v1 and the second one
from v2. Moreover, if C1 is the label of v1 in P1 and C2 is the label of v2 in P2,
then v is labeled with the clause (C1 \ {ℓ}) ∪ (C2 \ {ℓ}).

2. If u is a variable and P is a proof DAG with a sink w labeled with C, then P − u
denotes the proof DAG obtained from P by adding an edge from w to a new node v
such that v is labeled with C \ {u,¬u}.

Definition 9 (Derivation). An LDQ(D)-resolution derivation (or LDQ(D)-derivation)
of a clause C from a PCNF formula Φ = Q.ϕ is a proof DAG P satisfying the following
properties.

• Source nodes are labeled with input clauses from ϕ.

• If a node with label C has parents labeled C1 and C2 then C can be derived from
C1 and C2 by (long-distance) resolution.

• If a node labeled with a clause C has a single parent with label C ′ then C can be
derived from C ′ by ∀-reduction with respect to the dependency scheme D.

We refer to these nodes as input nodes, resolution nodes, and ∀-reduction nodes, respec-
tively.

Let P be an LDQ(D)-derivation from a PCNF formula Φ. The (clause) label of the
sink node is called the conclusion of P, denoted Cl(P). If the conclusion of P is the
empty clause then we refer to P as an LDQ(D)-refutation of Φ. For a node v of P, the
subderivation (of P) rooted at v is the proof DAG induced by v and its ancestors in P . It
is straightforward to verify that the resulting proof DAG is again an LDQ(D)-derivation
from Φ. For convenience, we will identify (sub)derivations with their sinks. The size of
P, denoted |P|, is the total number of literal occurrences in clause labels of P.

3.2 QCDCL with Dependency Schemes Generates
LDQ(D)-Proofs

In this section, we present a version of the QCDCL algorithm that uses dependency
schemes [BL10,Lon12] and performs constraint learning based on long-distance Q-resolu-
tion [ZM02b,ELW13].Generalizing an argument by Egly, Lonsing, and Widl [ELW13],
we will show that this algorithm produces LDQ(D)-proofs when using a dependency
scheme D.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

Starting from an input PCNF formula Φ, QCDCL generates (“learns”) constraints—
clauses and terms—until it produces an empty constraint, at which point it returns true
(if the empty term is learned) or false (if the empty clause is learned).

One can think of QCDCL solving as proceeding in rounds. Along with a set of clauses
and terms, the solver maintains an assignment σ (the trail, which we will represent
by a sequence of literals in the order of their assignment). During each round, this
assignment is extended by quantified Boolean constraint propagation (QBCP) and—
possibly—branching.

Quantified Boolean constraint propagation (with dependency scheme D) consists in
the exhaustive application of universal and existential reduction (relative to DΦ) in
combination with unit assignments.2 More specifically, QBCP reports a clause C as
falsified if C[σ] 6= 1 and universal reduction can be applied to C[σ] to obtain the empty
clause. Dually, a term T is considered satisfied if T [σ] 6= 0 and T [σ] can be reduced to
the empty term. A clause C is unit under σ if C[σ] 6= 1 and universal reduction yields a
clause C ′ = (ℓ), for some existential literal ℓ such that var(ℓ) is unassigned. Dually, a
term T is unit under σ if T [σ] 6= 0 and existential reduction can be applied to obtain
a term T ′ = (ℓ) containing a single universal literal ℓ. If C = (ℓ) is a unit clause, then
the assignment σ has to be extended by ℓ in order not to falsify C, and if T = (ℓ) is a
unit term, then σ has to be extended by ℓ in order not to satisfy T . If several clauses or
terms are unit under σ, QBCP nondeterministically picks one and extends the assignment
accordingly. This is repeated until a constraint is empty or no unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended by branching.
That is, the solver chooses an unassigned variable y such that every variable x with
(x, y) ∈ DΦ is assigned, and extends the assignment σ by y or ¬y.

The resulting assignment can be partitioned into so-called decision levels. The decision
level of an assignment σ is the number of literals in σ that were assigned by branching.
The decision level of a literal ℓ in σ is the decision level of the prefix of σ that ends with ℓ.
Note that each decision level greater than 0 can be associated with a unique variable
assigned by branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or satisfy a term.
When this happens (we call this a conflict), the solver proceeds to conflict analysis to
derive a learned constraint C. Initially, C is the falsified clause (satisfied term), called the
conflict clause (term). The solver finds the existential (universal) literal in C that was
assigned last by QBCP, and the antecedent clause (term) R responsible for this assignment.
A new constraint is derived by resolving C and R and applying universal (existential)
reduction (again, relative to DΦ). This is done repeatedly until the resulting constraint C
is asserting. A clause (term) S is asserting if there is a unique existential (universal)
literal ℓ ∈ S with maximum decision level (greater than zero) among literals in S, the
corresponding decision variable is existential (universal), and every universal (existential)

2For simplicity, we do not consider the pure literal rule as part of QBCP.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. QCDCL with Dependency Schemes Generates LDQ(D)-Proofs

variable y ∈ var(S) such that (y, var(ℓ)) ∈ DΦ is assigned at a lower decision level (an
asserting constraint becomes unit after backtracking). Once an asserting constraint has
been found, it is added to the solver’s set of constraints. Finally, QCDCL backtracks,
undoing variable assignments until reaching a decision level computed from the learned
constraint.

Pseudocode for the main QCDCL loop is shown as Algorithm 1, and pseudocode for con-
flict analysis is shown as Algorithm 2. We now formally state and prove a correspondence
between clauses learned by QCDCL and LDQ(D)-resolution.

Proposition 1. Every clause learned by Algorithm 1 given an input PCNF Φ can be
derived from Φ by LDQ(D)-resolution.

Proof. We will show that each learned clause constructed during conflict analysis can
be derived by LDQ(D)-resolution from input clauses or previously learned clauses. In
addition, we prove an invariant saying that each such clause C can be reduced to the
empty clause under the trail assignment restricted to variables up to and including the
existential variable assigned last among those in C. Formally, if ℓ1 . . . ℓk is the trail and
i = max{ j : ℓj ∈ C, 1 ≤ j ≤ k }, then the restricted trail is ℓ1 . . . ℓi. If such an i does not
exist—which can happen only if C contains no existential variable—the restricted trail is
empty. Let τ denote the assignment corresponding to the restricted trail. We want to
show that C[τ] simplifies to the empty clause by ∀-reduction. The proof is by induction
on the number of resolution operations performed by Algorithm 2.

The base case with C being the conflict clause is trivial. For the inductive step, suppose
that C can be reduced to the empty clause under the restricted trail assignment τ =
ℓ1 . . . ℓi. Thus ℓi ∈ C is the existential literal falsified last among literals in C and
conflict analysis would resolve C with the antecedent R of ℓi next. We have to show the
resolvent satisfies the above invariant and that this resolution operation is permissible
in LDQ(D)-resolution. Let τ ′ = ℓ1 . . . ℓi−1 denote the trail at the time when ℓi was
propagated. Clause R is unit under τ ′, that is, R[τ ′] reduces to (ℓi). In particular, we
have τ ′(ℓ) = 0 for every existential literal ℓ ∈ R \ {ℓi} and every universal literal ℓ ∈ R
assigned by τ ′. Since C[τ] reduces to the empty clause by assumption, we further must
have τ(ℓ) = 0 for every existential literal and every assigned universal literal of C. We
conclude that τ ′(ℓ) = 0 for every existential literal and every assigned universal literal in
the resolvent C ′ = (C ∪R) \ {ℓi, ℓi}. This property is clearly not affected by unassigning
universal variables or unassigning existential variables not occurring in C ′, so C ′ reduces
to the empty clause under its corresponding restricted trail assignment, proving that the
invariant is preserved. Furthermore, it entails that any literal ℓ ∈ R such that ℓ ∈ C must
be universal and unassigned by τ ′. Since R[τ ′] can be reduced to (ℓi) by ∀-reduction, we
must have (var(ℓ), var(ℓi)) /∈ DΦ for each such literal ℓ, so C ′ can be derived from C
and R in LDQ(D)-resolution.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

Algorithm 1 QCDCL with Dependency Scheme D

1: procedure solve(Φ)
2: compute DΦ

3: while true do

4: conflict = QBCP()
5: if conflict == none then

6: decide()
7: else

8: constraint, btlevel = analyzeConflict(conflict)
9: if isEmpty(constraint) then

10: if isTerm(constraint) then

11: return true
12: else

13: return false
14: end if

15: else

16: addLearnedConstraint(constraint)
17: backtrack(btlevel)
18: end if

19: end if

20: end while

21: end procedure

Algorithm 2 Conflict Analysis with Long-Distance Q-resolution

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do

4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: constraint = resolve(constraint, reason, pivot)
7: constraint = reduce(constraint)
8: end while

9: btlevel = getBacktrackLevel(constraint)
10: return constraint, btlevel
11: end procedure

As in the case of QCDCL without dependency schemes [GNT06,ELW13] an analogue of
this result can be proved for learned terms and a dual proof system (“Q-consensus”) that
operates on terms instead of clauses.

The proof of Proposition 1 uses the fact that two clauses C1 ∨ u ∨ e and C2 ∨ ¬u ∨ ¬e
can be resolved on variable e even if u < e as long as (u, e) /∈ DΦ. The following example
illustrates that this generalization of the resolution rule is necessary for LDQ(D)-resolution
to trace QCDCL with dependency schemes and long-distance Q-resolution.

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Soundness of and Strategy Extraction for LDQ(Drrs)

Example 2. Consider the formula Φ = ∃z0∃z1∀x∃y∃z2∃z3∃a∃b.ϕ ∧ ψ, where

ϕ = (z1 ∨ x ∨ z2 ∨ a)
︸ ︷︷ ︸

C1

∧ (z1 ∨ y ∨ z2)
︸ ︷︷ ︸

C2

∧ (x ∨ y ∨ z3 ∨ b)
︸ ︷︷ ︸

C3

∧ (z2 ∨ z0)
︸ ︷︷ ︸

C4

∧ (z2 ∨ z0)
︸ ︷︷ ︸

C5

∧ (y ∨ z3)
︸ ︷︷ ︸

C6

,

and ψ consists of auxiliary clauses

ψ = (a) ∧ (b) ∧ (x ∨ a) ∧ (x ∨ b).

The clauses in ψ are there simply to enforce that a and b are set to true and (in
conjunction with ϕ) that (x, a), (x, b) ∈ Drrs

Φ . It is straightforward to check that the set
of dependencies computed by the reflexive resolution-path dependency scheme is

Drrs
Φ = {(z0, x), (z1, x), (x, a), (x, b)}.

That is, the dependency scheme identifies the syntactic dependencies (x, y), (x, z2), and
(x, z3) as spurious.

We now construct a possible trace of QCDCL on Φ with Drrs and learning based on
long-distance Q-resolution. At decision level 0 the unit clauses in ψ are propagated,
setting a = 1 and b = 1. This does not lead to further propagation and QCDCL proceeds

with the decision y
d
= 0. Note that y can be assigned before x because (x, y) /∈ Drrs

Φ . This
assignment does not lead to any literals being propagated, so the algorithm makes another

decision z2
d
= 0. Now clause C2 simplifies to the unit clause (z1) and z1 = 1 is propagated.

Clause C1 only contains x under the resulting assignment and we have a conflict. Conflict
analysis first resolves clauses C1 and C2 to obtain the clause C12 = (x ∨ y ∨ z2 ∨ ¬a).
Variable a depends on x, so ∀-reduction cannot be applied. Since z2 is the only variable
from the second decision level in clause C12 and z2 does not depend on x, C12 is asserting
and the clause is learned by QCDCL. Backtracking undoes the decision involving z2 and
propagates z2 = 1 instead. As a result, C4 simplifies to (z0), unit propagation assigns
z0 = 1, and clause C5 is falsified. Conflict analysis resolves C4 and C5 to derive the
learned (unit) clause C45 = (z2), which causes QCDCL to backtrack to decision level 0
and propagate z2 = 0. Now clause C12 simplifies to (x ∨ y). Since y is independent of x
we can apply ∀-reduction to obtain the unit clause (y) which propagates the assignment
y = 1. Clause C6 in turn becomes unit and propagates z3 = 0. As a result, clause C3

simplifies to (x) and reduces to the empty clause by ∀-reduction. Conflict analysis resolves
C3 and C6 so as to obtain the clause (x∨ y ∨ b). Variable b depends on x, so ∀-reduction
cannot be applied. Next, clause (x∨y∨b) is resolved with C12 to derive (x∨x∨z2 ∨a∨b).
Note that this resolution step is permissible since (x, y) /∈ Drrs

Φ . Further resolution steps
involving unit clauses yield the clause (x ∨ x), which can be reduced to the empty clause,
so that QCDCL terminates with return value FALSE.

3.3 Soundness of and Strategy Extraction for LDQ(Drrs)

A PCNF formula can be associated with an evaluation game played between an existential
and a universal player. These players take turns assigning quantifier blocks in the order

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

of the prefix. The existential player wins if the matrix evaluates to 1 under the resulting
variable assignment, while the universal player wins if the matrix evaluates to 0. One
can show that the formula is true (false) if and only if the existential (universal) player
has a winning strategy in this game, and this winning strategy is a (counter)model.

Goultiaeva, Van Gelder and Bacchus [GVGB11] proved that a Q-resolution refutation
can be used to compute winning moves for the universal player in the evaluation game.
The idea is that Universal maintains a “restriction” of the refutation by the assignment
constructed in the evaluation game, which is a refutation of the restricted formula.

For assignments made by the existential player, the universal player only needs to consider
each instance of resolution whose pivot variable is assigned: one of the premises is not
satisfied and can be used to (re)construct a refutation.

When it is Universal’s turn, the quantifier block for which she needs to pick an assignment
is leftmost in the restricted formula. This means that ∀-reduction of these variables is
blocked by any of the remaining existential variables and can only be applied to a purely
universal clause. In a Q-resolution refutation, these variables must therefore be reduced
at the very end, and because Q-resolution does not permit tautological clauses, only one
polarity of each universal variable from the leftmost block can appear in a refutation.
It follows that Universal can maintain a Q-resolution refutation by assigning variables
from the leftmost block in such a way as to map the associated literals to 0, effectively
deleting them from the remaining Q-resolution refutation.

In this manner, the universal player can maintain a refutation until the end of the game,
when all variables have been assigned. At that point, a refutation consists only of the
empty clause, which means that the assignment chosen by the two players falsifies a
clause of the original matrix and universal has won the game.

Egly, Lonsing, and Widl [ELW13] observed that this argument goes through even in
the case of long-distance Q-resolution, since a clause containing both u and ¬u for a
universal variable u can only be derived by resolving on an existential variable to the left
of u, but no such existential variable exists if u is from the leftmost block.

In this section, we will prove that this argument can be generalized to LDQ(Drrs)-refuta-
tions. We illustrate this correspondence with an example:

Example 3. Consider the PCNF formula

Φ = ∃x ∀u ∃e, y (x ∨ u ∨ y) ∧ (x ∨ u ∨ y) ∧ (x ∨ y) ∧ (x ∨ e) ∧ (u ∨ y) ∧ (y ∨ e)

Figure 3.2 shows an LDQ(Drrs) -refutation of Φ. The only universal variable is u, so
a strategy for the universal player in the evaluation game associated with Φ has to
determine an assignment to u given an assignment to x, the only (existential) variable
preceding u. The figure illustrates how to compute the assignment to u for the two
possible assignments τ : {x} → {0, 1} from the restriction of the refutation by τ . In
both cases, only one polarity of u occurs in the restricted refutation and therefore it

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Soundness of and Strategy Extraction for LDQ(Drrs)

is easy for Universal to determine the correct assignment. Notice that in one of the
cases, a generalized ∀-reduction node remains present in the restriction—this shows
that we cannot limit ourselves to looking at the final reduction step in the proof when
looking for the variables to assign (as is the case with ordinary Q-resolution refutations,
cf. [GVGB11]).

Figure 3.2: An LDQ(Drrs)-refutation of the formula Φ from Example 3 (above)
and two restrictions (below).

The key property that allows Universal to maintain a refutation in the above example
is that universal variables from the leftmost quantifier block may appear in at most
one polarity. We now show that this property is in fact sufficient for soundness of
LDQ(D)when combined with a natural monotonicity property of dependency schemes.

Definition 10. A dependency scheme D is monotone if DΦ[τ] ⊆ DΦ for every PCNF
formula Φ and every assignment τ to a subset of var(Φ). We say that D is simple if,
for every PCNF formula Φ = ∀XQ.ϕ, every LDQ(D)-derivation P from Φ, and every
universal variable u ∈ X, u or u does not appear in P. A dependency scheme D is normal
if it is both monotone and simple.

As in the case of Q-resolution, Universal’s move for a particular quantifier block can be
computed from the assignment corresponding to the previous moves and the refutation

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

in polynomial time. Since every polynomial-time algorithm can be implemented by a
family of polynomially-sized circuits, and because these circuits can even be computed in
polynomial time [AB09, p.109], it follows that LDQ(D)admits polynomial-time strategy
extraction when D is normal. We present an explicit construction with a more specific
bound on the runtime.

Theorem 2. Let D be a normal dependency scheme. There is an algorithm that computes
a countermodel of a PCNF formula Φ with n variables from an LDQ(D)-refutation P of
Φ in time O(|P| · n).

As an application of this general result, we will prove that the reflexive resolution-path
dependency scheme is normal in Section 3.4.1 below.

Theorem 3. Drrs is normal.

Corollary 1. There is a polynomial-time algorithm that, given a PCNF formula Φ and
an LDQ(Drrs)-refutation of Φ, computes a countermodel of Φ.

This result immediately carries over to the less general standard dependency scheme.

Corollary 2. There is a polynomial-time algorithm that, given a PCNF formula Φ and
an LDQ(Dstd)-refutation of Φ, computes a countermodel of Φ.

In combination with Proposition 1, these results imply soundness of both proof systems.

Corollary 3. The systems LDQ(Dstd)-resolution and LDQ(Drrs)-resolution are sound.

3.4 Proof of Theorem 2

We begin by formally defining the “restriction” of an LDQ(D)-derivation by an as-
signment, which is a straightforward generalization of this operation for Q-resolution
derivations [GVGB11].3 The result of restricting a derivation is either a derivation or
the object ⊤, which can be interpreted as representing the tautological clause containing
every literal. Accordingly, we stipulate that ℓ ∈ ⊤ for every literal ℓ.

Definition 11 (Restriction). Let Φ be a PCNF formula and let P be an LDQ(D)-deriva-
tion from Φ. Further, let X ⊆ var(Φ) and let τ : X → {0, 1} be a truth assignment. The
restriction of P by τ , in symbols P[τ], is defined as follows.

1. If P is an input node there are two cases. If Cl(P)[τ] = 1 then P[τ] = ⊤. Otherwise,
P[τ] is the proof DAG consisting of a single node labeled with Cl(P)[τ].

3Our definition slightly differs from the original for the resolution rule: if restriction removes the pivot
variable from both premises, we simply pick the (restriction of the) first premise as the result (rather
than the clause containing fewer literals). This simplifies the certificate extraction argument given below.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Proof of Theorem 2

2. If P = P1 ⊙ℓ P2, that is, if P is a resolution node, we distinguish four cases:

a) If ℓ /∈ Cl(P1[τ]) then P[τ] = P1[τ].

b) If ℓ ∈ Cl(P1[τ]) and ℓ /∈ Cl(P2[τ]) then P[τ] = P2[τ].

c) If ℓ ∈ Cl(P1[τ]), ℓ ∈ Cl(P2[τ]), and P1[τ] = ⊤ or P2[τ] = ⊤, we let P [τ] = ⊤.

d) If ℓ ∈ Cl(P1[τ]), ℓ ∈ Cl(P2[τ]), P1[τ] 6= ⊤, and P2[τ] 6= ⊤, we define
P[τ] = P1[τ] ⊙ℓ P2[τ].

3. If P = P ′ − u, that is, if P is a ∀-reduction node, we distinguish three cases:

a) If P ′[τ] = ⊤ then P[τ] = ⊤.

b) If P ′[τ] 6= ⊤ and u /∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ].

c) If P ′[τ] 6= ⊤ and u ∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] − u.

If D is a monotone dependency scheme, LDQ(D)-refutations are preserved under re-
striction by an existential assignment (cf. [GVGB11, Lemma 4]). This is stated in the
following lemma, which can by proved by a straightforward induction on the structure of
the LDQ(D)-derivation.

Lemma 2. Let D be a monotone dependency scheme, let P be an LDQ(D)-derivation
from a PCNF formula Φ, let E ⊆ var∃(Φ), and let τ : E → {0, 1} be an assignment. If
P[τ] = ⊤ then Cl(P)[τ] = 1. Otherwise, P[τ] is an LDQ(D)-derivation from Φ[τ] such
that Cl(P[τ]) ⊆ Cl(P)[τ].

Proof. The proof is by induction on the structure of P.

1. If P is an input node then P[τ] = ⊤ iff Cl(P)[τ] = 1 and Cl(P[τ]) = Cl(P)[τ]
otherwise, so the statement holds trivially.

2. If P = P1 ⊙ℓ P2 is a resolution node we distinguish four cases:

a) If ℓ /∈ Cl(P1[τ]), then P[τ] = P1[τ] and

Cl(P1[τ]) = Cl(P1[τ]) \ {ℓ} ⊆ Cl(P1)[τ] \ {ℓ} ⊆ Cl(P)[τ],

where the first inclusion holds by induction hypothesis and the second inclusion
follows from the definition of the resolution rule.

b) If ℓ ∈ Cl(P1[τ]) and ℓ /∈ Cl(P2[τ]) then P [τ] = P2[τ] and the statement follows
via a symmetric argument.

c) If ℓ ∈ Cl(P1[τ]), ℓ ∈ Cl(P2[τ]), and P1[τ] = ⊤ or P2[τ] = ⊤ then we
have P[τ] = ⊤. Assume without loss of generality that P1[τ] = ⊤. Then
Cl(P1)[τ] = 1 by induction hypothesis. Let ℓ′ ∈ Cl(P1) be a literal such
that τ(ℓ′) = 1. We distinguish two cases. If ℓ 6= ℓ′ then ℓ′ ∈ Cl(P) and

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

Cl(P)[τ] = 1. Otherwise, τ(ℓ′) = τ(ℓ) = 0, and we must have P2[τ] = ⊤ since
ℓ ∈ Cl(P2[τ]). By induction hypothesis, there has to be another literal ℓ′′ 6= ℓ
such that ℓ′′ ∈ Cl(P2) and τ(ℓ′′) = 1. The literal ℓ′′ is contained in Cl(P) as
well, so Cl(P)[τ] = 1.

d) If ℓ ∈ Cl(P1[τ]), ℓ ∈ Cl(P2[τ]), P1[τ] 6= ⊤, and P2[τ] 6= ⊤, then P[τ] =
P1[τ] ⊙ℓ P2[τ] and P[τ] 6= ⊤. By the induction hypothesis, P1[τ] is an
LDQ(D)-derivation from Φ[τ] such that Cl(P1[τ]) ⊆ Cl(P1)[τ], and P2[τ] is an
LDQ(D)-derivation from Φ[τ] such that Cl(P2[τ]) ⊆ Cl(P2)[τ]. Monotonicity
of D ensures that after restriction, the resolution step is still sound and thus
P[τ] is an LDQ(D)-derivation from Φ[τ] as well and

Cl(P[τ]) = Cl(P1[τ] ⊙ℓ P2[τ])

= Cl(P1[τ]) ∪ Cl(P2[τ]) \ {ℓ, ℓ}

⊆ Cl(P1)[τ] ∪ Cl(P2)[τ] \ {ℓ, ℓ} = Cl(P)[τ].

3. If P = P ′ − u is a reduction node, we have to distinguish two cases:

a) If P ′[τ] = ⊤ then P [τ] = ⊤ by definition. By induction hypothesis Cl(P ′)[τ] =
1 and since τ does not assign u, we get Cl(P)[τ] = 1 as well.

b) If P[τ] 6= ⊤ then P ′[τ] 6= ⊤ by definition of the restriction operation. By
induction hypothesis, P ′[τ] is an LDQ(D)-derivation from Φ[τ] such that
Cl(P ′[τ]) ⊆ Cl(P ′)[τ]. If u /∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] and the
statement holds. Otherwise, if u ∈ var(Cl(P ′[τ])) then P[τ] = P ′[τ] − u and
thus

Cl(P[τ]) = Cl(P ′[τ]) \ {u,¬u}

⊆ Cl(P ′)[τ] \ {u,¬u} = (Cl(P ′) \ {u,¬u})[τ] = Cl(P)[τ],

where the last but one equality holds because τ does not assign u. To see that
P[τ] = P ′[τ] − u is a valid ∀-reduction node, note that Cl(P ′[τ]) ⊆ Cl(P ′) by
induction hypothesis and observe that DΦ[τ] ⊆ DΦ.

Above, we argued that the universal player can use an LDQ(D)-refutation for a normal
dependency scheme D in order to compute winning moves in the evaluation game
associated with a PCNF formula and that this can be used to compute a countermodel of
the formula in polynomial time. We now prove this directly, by showing how to construct
a circuit implementing a countermodel from an LDQ(D)-refutation.

We begin by describing auxiliary circuits simulating the restriction operation. Let
Φ = Q1X1 . . . QkXk.ϕ be a PCNF formula and let P be a refutation of Φ. For each
quantifier block Xi, each subderivation S of P, and each literal ℓ, we will construct

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Proof of Theorem 2

circuits topi
S and containsi

S,ℓ with inputs from X =
⋃

j<i Xj such that, for every
assignment σ : X → {0, 1},

topi
S [σ] = 1 ⇐⇒ S[σ] = ⊤ (3.1)

containsi
S,ℓ[σ] = 1 ⇐⇒ ℓ ∈ Cl(S[σ]) (3.2)

We first describe our construction and then prove that it satisfies the above properties in
Lemma 3. Let S be an input node. We let

top1
S :=

∨(

Cl(S) ∩ (X1 ∪X1)
)

,

and define topi
S for 1 < i ≤ k as

topi
S := topi−1

S ∨
∨(

Cl(S) ∩ (Xi ∪Xi)
)

.

Moreover, for 1 ≤ i ≤ k we define containsi
S,ℓ as

containsi
S,ℓ =

{

1 if ℓ ∈ Cl(S) \ (X ∪X),

topi
S otherwise.

For non-input nodes, we proceed as follows. If S = S1 ⊙q S2, we define topi
S as

topi
S = (containsi

S1,q ∧ topi
S2

) ∨ (containsi
S2,q ∧ topi

S1
),

and if S = S ′ − u, we let

topi
S := topi

S′ .

For the containsi
S,ℓ circuit, we distinguish two cases. Let ℓ be a literal and S a derivation.

If ℓ /∈ Cl(S) we simply let

containsi
S,ℓ := topi

S .

Otherwise, if ℓ ∈ Cl(S), we have to consider two cases. First, if S = S1 ⊙q S2, we let

containsi
S,ℓ =topi

S ∨

(¬containsi
S1,q ∧ containsi

S1,ℓ) ∨

(containsi
S1,q ∧ ¬containsi

S2,q ∧ containsi
S2,ℓ) ∨

(containsi
S1,q ∧ containsi

S2,q ∧ (containsi
S1,ℓ ∨ containsi

S2,ℓ)).

Second, if S = S ′ − u, then

containsi
S,ℓ := containsi

S′,ℓ.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

To implement the winning strategy for Universal sketched above, we further construct
circuits polarityS,u for each node S of P and each universal variable u ∈ var∀(Φ), such
that, for each assignment τ : LΦ(u) → {0, 1},

polarityS,u[τ] = 1 ⇐⇒ u occurs in S[τ]. (3.3)

Let u ∈ Xi be a universal variable from the ith quantifier block. If S is an input node,
we simply define

polarityS,u := containsi
S,u,

and if S = S ′ − u is a ∀-reduction node, we let

polarityS,u := polarityS′,u.

If S = S1 ⊙q S2, then

polarityS,u :=(¬containsi
S1,q ∧ polarityS1,u) ∨

(containsi
S1,q ∧ ¬containsi

S2,q ∧ polarityS2,u) ∨

(containsi
S1,q ∧ containsi

S2,q ∧ (polarityS1,u ∨ polarityS2,u)).

Lemma 3. Let Φ = Q1X1 . . . QkXk.ϕ be a PCNF formula and P an LDQ(D)-derivation
from Φ. For each 1 ≤ i ≤ k, each literal ℓ, every u ∈ var∀(Φ) ∩ Xi, and every truth
assignment σ :

⋃i−1
j=1Xj → {0, 1}, topi

P satisfies (3.1), containsi
P,ℓ satisfies (3.2), and

polarityP,u satisfies (3.3).

Proof. Let X = X1 ∪ · · · ∪Xi−1. As (3.1) and (3.2) are related, we will prove them first.
We will use induction on the structure of P, with the induction hypothesis that (3.1)
and (3.2) hold. The inductive step will be carried out in two phases. In the first phase,
we prove that (3.1) holds and in the second phase we use this additional information to
prove that (3.2) holds as well.

1. Let P be an input node. By Definition 11 we have P[σ] = ⊤ if, and only if,
Cl(P)[σ] = 1. Since σ only assigns variables in X, this is the case if, and only if,
topi

P [σ] = 1, so (3.1) holds.

2. Let P = P1 ⊙q P2 such that (3.1) and (3.2) hold for P1 and P2. We distinguish
several cases.

a) q /∈ Cl(P1[τ]). Then P[τ] = P1[τ]. Since q /∈ Cl(P1[τ]), it cannot be the case
that P1[τ] = ⊤ and so P[τ] 6= ⊤ as well. By the induction hypothesis, we
have containsi

P1,q[τ] = 0 and also topi
P1

[τ] = 0 which means topi
P [τ] = 0

as required.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Proof of Theorem 2

b) q ∈ Cl(P1[τ]) and q /∈ Cl(P2[τ]). Then P[τ] = P2[τ]. Since q /∈ Cl(P2[τ]),
we cannot have P2[τ] = ⊤ and thus P[τ] 6= ⊤ as well. By the induction
hypothesis, we have containsi

P2,q[τ] = 0 and also topi
P2

[τ] = 0 which means

topi
P [τ] = 0 as required.

c) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] = ⊤ or P2[τ] = ⊤. Then P[τ] =
⊤ and by induction hypothesis, we have containsi

P1,q[τ] = 1 as well as

containsi
P2,q[τ] = 1, and topi

P1
[τ] = 1 or topi

P2
[τ] = 1. In any case,

topi
P [τ] = 1.

d) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] 6= ⊤ and P2[τ] 6= ⊤. Then
P[τ] = P1[τ] ⊙q P2[τ] 6= ⊤. By induction hypothesis, we have topi

P1
[τ] = 0

and topi
P2

[τ] = 0, which ensures topi
P [τ] = 0.

3. Let P = P ′ − u. From the definitions, we can immediately see that P ′[τ] = ⊤ ⇐⇒
P[τ] = ⊤ and topi

P ′ = topi
P which proves (3.1).

We have proved that P[τ] = ⊤ ⇐⇒ topi
P [τ] = 1, and it can be easily checked that, by

definition, topi
P ⇒ containsi

P,ℓ for every literal ℓ. Therefore, if P[τ] = ⊤, (3.2) holds
and in the following, we can restrict ourselves to the cases when P[τ] 6= ⊤. Also, we can
restrict ourselves to the cases when ℓ (the literal in question) actually belongs to Cl(P),
because otherwise containsi

P,ℓ = topi
P and in that case (3.2) clearly holds.

1. Let P be an input node. We may assume P[τ] 6= ⊤ and ℓ ∈ Cl(P) by the above. By
definition, we can easily see that containsi

P,ℓ[τ] = 1 if, and only if, ℓ ∈ Cl(P[τ]).

2. Let P = P1 ⊙q P2 such that (3.1) and (3.2) hold for P1 and P2. We distinguish
several cases.

a) q /∈ Cl(P1[τ]). By the induction hypothesis, we have containsi
P1,q[τ] = 0.

Also P[τ] = P1[τ] and

ℓ ∈ Cl(P[τ]) ⇐⇒ ℓ ∈ Cl(P1[τ]) ⇐⇒ containsi
P1,ℓ[τ],

where the second equivalence holds by induction hypothesis. Since we have
containsi

P1,q[τ] = 0, we can write

containsi
P1,ℓ[τ] ⇐⇒ ¬containsi

P1,q[τ] ∧ containsi
P1,ℓ[τ].

Because containsi
P1,q[τ] = 0 and topi

P [τ] = 0, the only disjunct in the

definition of containsi
P,ℓ[τ] that can possibly be satisfied is the second one,

so that

containsi
P,ℓ[τ] ⇐⇒ ¬containsi

P1,q[τ] ∧ containsi
P1,ℓ[τ],

which establishes (3.2).

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

b) q ∈ Cl(P1[τ]) and q /∈ Cl(P2[τ]). By the induction hypothesis, we have
containsi

P1,q[τ] = 1 and containsi
P2,q[τ] = 0. An argument symmetric to

the one for the preceding case can be used to show (3.2).

c) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] = ⊤ or P2[τ] = ⊤. In this case
P[τ] = ⊤ which has already been taken care of (see above).

d) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] 6= ⊤ and P2[τ] 6= ⊤. Then
P[τ] = P1[τ] ⊙q P2[τ] and since we have restricted ourselves to the case when
ℓ ∈ Cl(P) (see above), we have

ℓ ∈ Cl(P[τ]) ⇐⇒ ℓ ∈ Cl(P1[τ]) ∨ ℓ ∈ Cl(P2[τ])

⇐⇒ containsi
P1,ℓ[τ] ∨ containsi

P2,ℓ[τ],

where the final equivalence follows from the induction hypothesis. It is
straightforward to verify that the last expression in turn is equivalent to the
fourth disjunct in the definition of containsi

P,ℓ being satisfied, and since this
is the only disjunct that can be satisfied in this case, we conclude that (3.2)
holds.

By Definition 11, P [σ] = ⊤ if, and only if, P ′[σ] = ⊤, and ℓ ∈ Cl(P [σ]) if, and only
if, ℓ ∈ Cl(P ′[σ]), for each literal ℓ ∈ Cl(P). Since (3.1) and (3.2) hold for P ′ by
induction hypothesis, these properties must hold for P as well.

Let us now turn to the proof of (3.3).

1. If P is an input node we have

u ∈ P[τ] ⇐⇒ u ∈ Cl(P[τ]) ⇐⇒ containsi
P,u[τ] = polarityP,u[τ]

by what we proved previously and the definition of polarityP,u for input nodes
(and the fact that a literal appears in a derivation that consists of a single input
node iff it occurs in the clause of associated with that node).

2. Let P = P1 ⊙q P2.

a) q /∈ Cl(P1[τ]). Then P[τ] = P1[τ] and by the induction hypothesis, we have

u appears in P[τ] ⇐⇒ u appears in P1[τ] ⇐⇒ polarityP1,u[τ] = 1.

Using (3.2), it is readily verified that polarityP,u[τ] = polarityP1,u[τ].

b) q ∈ Cl(P1[τ]) and q /∈ Cl(P2[τ]). Here, (3.3) can be proved using an argument
symmetric to one for the previous case.

c) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] = ⊤ or P2[τ] = ⊤. Then P [τ] = ⊤,
so u appears in P[τ]. Without loss of generality, let P1[τ] = ⊤. By the
induction hypothesis we have polarityP1,u[τ] = 1, which, along with the
assumptions for this case and (3.2), implies that polarityP,u is satisfied by
the last disjunct.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Proof of Theorem 2

d) q ∈ Cl(P1[τ]) and q ∈ Cl(P2[τ]) and P1[τ] 6= ⊤ and P2[τ] 6= ⊤. In this case
u appears in P[τ] if, and only if, it appears in P1[τ] or in P2[τ]. Using the
induction hypothesis and (3.2), one can verify that this is the case if, and only
if, polarityP,u[τ] = 1.

These auxiliary circuits can be efficiently constructed in a top-down manner, from the
input nodes to the conclusion. By a careful analysis, we obtain the following:

Lemma 4. There is an algorithm that, given a PCNF formula Φ and an LDQ(D)-deriva-
tion P from Φ, computes the circuits polarityP,u for every universal variable u in time
O(|P| · n), where n = |var(Φ)|.

Proof. The algorithm first sorts clauses according to a fixed order of literals. Let k be
the number of quantifier blocks in the prefix of Φ. There is at most one circuit topi

P for
each node S of P and each 1 ≤ i ≤ k. Similarly, there is at most one circuit containsi

S,ℓ

for each node S of P, each 1 ≤ i ≤ k, and each literal ℓ ∈ Cl(S).

Once topi
S has been computed for each 1 ≤ i ≤ k, the circuits containsi

S,ℓ can easily
be constructed for each 1 ≤ i ≤ k and every literal ℓ ∈ Cl(S). Overall, this can be done
in time

O(|Cl(S)| · k) ≤ O(|Cl(S)| · n).

Assume that the circuits containsi
S,ℓ are stored in lists following the order of literals in

Cl(S). Then for each node S, the circuits topi
S and containsi

S,ℓ associated with S can
again be computed in time O(|Cl(S)| · n), so that overall, these circuits can be computed
in time O(|P| · n) for all nodes of P. Having computed the circuits contains and top,
the circuits polarityS,u can be computed for each node S and each universal variable
u ∈ var∀(Φ) in time O(|P| · n).

Using Lemma 2, we can spell out the argument sketched at the beginning of this section
and prove that for normal dependency schemes D, the universal player can maintain an
LDQ(D)-refutation throughout the evaluation game by successively restricting an initial
LDQ(D)-refutation by both players’ moves and assigning universal variables from the
leftmost remaining block X so as to falsify the (unique) literals from X remaining in the
refutation. Lemma 3 tells us that the polarity circuits can be used to implement this
strategy. In order to put things together, we will need the following two lemmas, which
tell us that successive restriction and bulk restriction in fact yield the same result.

Lemma 5. Let P be an LDQ(D)-derivation from a PCNF formula Φ, let τ1, τ2 be two
assignments to disjoint sets of variables. Then P[τ1][τ2] = P[τ1 ∪ τ2].

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

Proof. By induction on the structure of the derivation. If P is an input node, we have
Cl(P[τ]) = Cl(P)[τ] = Cl(P)[τ1][τ2] = Cl(P[τ1][τ2]) and since both derivations consist
of a single node with the same label, they are in fact equal. For derivations created by
the operations, the equality is trivially preserved.

Lemma 6. Let D be a normal dependency scheme, let Φ = Q1X1 . . . QkXk.ϕ be a PCNF
formula, let P be an LDQ(D)-refutation of Φ. Let Xi be a universal quantifier block and
let τ :

⋃i−1
j=1Xj → {0, 1} be an assignment. If P [τ] is an LDQ(D)-refutation of Φ[τ], then

P[τ ∪ σ] is an LDQ(D)-refutation of Φ[τ ∪ σ], where σ : Xi → {0, 1} is the assignment
such that σ(u) = ¬polarityP,u[τ] for each u ∈ Xi.

Proof. Assume P[τ] is an LDQ(D)-refutation of Φ[τ]. Let u ∈ Xi. Because D is simple,
variable u appears in P [τ] in at most one polarity. If u does not appear in P [τ] at all, the
restriction P[τ][σ] does not depend on σ(u). Otherwise, there is a unique literal ℓ with
var(ℓ) = u that appears in P [τ]. By Lemma 3, polarityP,u[τ] = 1 iff u appears in P [τ],
so σ(u) = ¬polarityP,u[τ] = 0 if ℓ = u and σ(u) = 1 if ℓ = ¬u. It is a straightforward
consequence that P[τ][σ] can be obtained from P[τ] by deleting every occurrence of a
variable u ∈ Xi and omitting instances of ∀-reduction that become redundant as a result.
Because D is monotone, the restriction P[τ][σ] is an LDQ(D)-refutation of Φ[τ ∪ σ], and
P[τ][σ] = P[τ ∪ σ] by Lemma 5.

With that, we are ready to prove the final statement.

Lemma 7. Let D be a normal dependency scheme, let P be an LDQ(D)-refutation of a
PCNF formula Φ. Then the family {fu}u∈var∀(Φ) of functions fu = ¬polarityP,u is a
countermodel of Φ.

Proof. Let Φ = Q1X1 . . . QkXk.ϕ and let τ : var(Φ) → {0, 1} be a truth assignment

such that τ(u) = fu

(

τ |LΦ(u)

)

for each universal variable u. Let X<i =
⋃i−1

j=1Xj , and let

τi = τ |X<i
for each 1 ≤ i ≤ k+1. We claim that P [τi] is an LDQ(D)-refutation of Φ[τi] for

1 ≤ i ≤ k + 1. The assignment τ1 is empty so P[τ1] = P and Φ[τ1] = Φ so the statement
holds in that case. Suppose the claim holds for i such that 1 ≤ i ≤ k. If Qi = ∃, then
P[τi][τ |Xi

] is an LDQ(D)-refutation of Φ[τi+1] by Lemma 2, and P[τi][τ |Xi
] = P[τi+1] by

Lemma 5. Otherwise, Qi = ∀ and P [τi+1] is an LDQ(D)-refutation of Φ[τi+1] by Lemma 6.
This completes the proof of the claim. In particular, we now have that P[τk+1] = P[τ] is
an LDQ(D)-refutation of Φ[τk+1] = Φ[τ]. Because Φ[τ] does not contain any variables,
the only way Φ[τ] can have a refutation is that its matrix contains the empty clause,
which means that ϕ[τ] = {∅}.

Theorem 2 follows immediately from Lemma 4 and Lemma 7.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Proof of Theorem 2

3.4.1 The Reflexive Resolution-Path Dependency Scheme is Normal

In order to prove Theorem 3 and show that Drrs is normal, we will need some insight
into the relationship between resolution paths and LDQ(Drrs)-derivations. For a formula
Φ and a universal literal u, we will denote by Tu(Φ) the set of existential literals e such
that u ≺q

Φ e and e is reachable from u by a proper resolution path. Since in the following
we consider u from the leftmost quantifier block, the condition for properness means just
that the connecting variables are existential.

Lemma 8. Let Φ = ∀XQ.ϕ be a PCNF formula and let u be a universal literal
with var(u) ∈ X. Let C1, C2 ∈ ϕ be clauses such that for some existential literal x,
x ∈ C1 and x ∈ C2, and let C = C1 ∪ C2 \ {x, x}. Then Tu(Φ) = Tu(Q.ϕ ∪ {C}).

Proof. Let Φ′ = Q.ϕ ∪ {C}. Of course, by adding clauses to a formula, we preserve all
existing resolution paths, so Tu(Φ) ⊆ Tu(Φ′). We will prove that the opposite inclusion
holds as well. Let e ∈ Tu(Φ′) and let π be a resolution path in Φ′ certifying this. If π is
also a resolution path in Φ, we are done. If it is not, it must be because it performs a
C-transition, namely it contains two consecutive literals l1, l2 such that var(l1) 6= var(l2),
l1, l2 ∈ C, but {l1, l2} 6⊆ C1 and {l1, l2} 6⊆ C2. In this case, without loss of generality, we
have l1 ∈ C1 and l2 ∈ C2. Let π1 be the prefix of π up to and including l1 and π2 be the
suffix of π starting with l2. Let π′ be the concatenation of π1, x, x, and π2. It is clearly
a valid resolution path and it uses one fewer C-transitions than π. Iterating this process,
we can remove all C-transitions from π to obtain a resolution path in Φ. The resulting
resolution path has the same endpoints and therefore certifies that e ∈ Tu(Φ).

The previous lemma implies that when considering reachability from an outermost
universal literal in a formula Φ, we can use clauses derived from Φ by LDQ(Drrs)-
resolution as well. Indeed, adding clauses produced by the resolution rule does not change
the set of reachable literals by Lemma 8, and adding clauses produced by universal
reduction clearly does not even create new resolution paths. Particularly, if two literals
ever appear together in a derived clause, there is a resolution path between them. This
is summarized by the following corollary.

Corollary 4. Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ
and let u ∈ X,u ∈ Cl(P). Then for all existential literals e ∈ Cl(P), there is a resolution
path from u to e in Φ.

As a first step towards proving Theorem 3, we will prove that both polarities of an
outermost universal literal cannot appear together in a single clause of a derivation.

Lemma 9. Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ and
let u ∈ X. Then u /∈ Cl(P) or ¬u /∈ Cl(P).

Proof. Towards a contradiction, suppose u,¬u ∈ Cl(P). Since input clauses do not
contain both polarities of any literal, there must be a resolution step inside the derivation,

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

which merges u and ¬u into one clause. Let P ′ = P1 ⊙x P2 be such a step. Then, without
loss of generality, x, u ∈ Cl(P1) and ¬x,¬u ∈ Cl(P2) and by Corollary 4, there is a
resolution path from u to x and from ¬u to ¬x, i.e. (u, x) ∈ Drrs

Φ . However, if x depends
on u, opposite polarities of u cannot be merged in a resolution step with the pivot x, a
contradiction.

We will further assume that the derivation considered in the proof of Theorem 3 is in the
normal form given by the following lemma.

Lemma 10. Let P be an LDQ(Drrs)-derivation from a PCNF formula Φ = ∀XQ.ϕ, let
u ∈ X be a universal variable such that both u and ¬u appear in P, and let Y = var∃(Φ).
There exists an LDQ(Drrs)-derivation P ′ from a PCNF formula Φ′ = ∀u∃Y.ϕ′ such
that P ′ contains both u and ¬u but only ∀-reduction steps with respect to one polarity
of u.

Proof. Let ϕ′ be the result of removing all universal variables except u from ϕ. Remov-
ing universal variables does not introduce new resolution paths, so Drrs

Φ′ ⊆ Drrs
Φ . The

derivation P ′ can be obtained from P in the following way. We first delete all occurrences
of universal variables other than u from P, along with ∀-reduction steps involving such
variables. The result is an LDQ(Drrs)-derivation from Φ′, and it still contains both u
and ¬u. Next, we choose a subderivation containing both u and ¬u such that none
of its proper subderivations contains both literals. By Lemma 9, the conclusion C of
this derivation can contain at most one of u and ¬u. If u ∈ C we omit all ∀-reduction
steps involving u. Otherwise, we omit all ∀-reduction steps involving ¬u. This yields the
desired LDQ(Drrs)-derivation P ′ from Φ′.

Using Lemma 9 and Lemma 10, we can proceed to finish the proof of Theorem 3.

Proof of Theorem 3. Towards a contradiction, consider an LDQ(Drrs)-derivation from
a formula Φ = ∀XQ.ϕ and let u ∈ X be such that both polarities of u occur in this
derivation. Let Y = var∃(Φ) and let P denote the simplified derivation given by Lemma 10.
Assume without loss of generality that P is a tree (any derivation can be turned into a
tree-like derivation by copying proof nodes), and that P does not contain ∀-reduction
steps involving ¬u. Since ¬u occurs in P but is not reduced, ¬u must occur in the
conclusion of P . Thus u cannot occur in the conclusion by Lemma 9. Since u is present in
the derivation P , this means there must be a reduction step on u somewhere in P . As u is
the only universal variable and we omitted all reduction steps on ¬u, all reduction steps
in P are on u and P must have the form depicted in Figure 3.3, where Pn = Pn+1 − u is
a lowermost reduction step on u and the subsequent resolutions are on pivots xn, . . . , x1.
Let C0 = Cl(P), Ci = Cl(Pi), C

′
i = Cl(P ′

i). The clauses C ′
1, . . . , C

′
n, Cn+1 are derived by

LDQ(Drrs)-resolution and by Lemma 8 we know that we can use them to show resolution-
path connections as if they were input clauses. By the transformations we considered
we know that starting from an arbitrary LDQ(Drrs)-derivation we can obtain a valid

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Experiments

Figure 3.3: Shape of the derivation constructed in the proof of Theorem 3.

LDQ(Drrs)-derivation in this form, so any contradiction we derive from here means a
contradiction with the assumption that an LDQ(Drrs)-derivation contains both polarities
of a universal variable from the outermost block, thus proving Theorem 3. With that, we
are ready to finish the proof.

We will prove that there is a resolution path from ¬u to u going through an existential
literal in Cn+1, which is in contradiction with the soundness of reduction of u from Cn+1.
Let us consider open resolution paths, i.e. resolution paths without their final literal. If
an open resolution path ends in a literal ℓ of clause C, we say that the path leads to the
clause C. By induction on n, we will prove that there is an open resolution path from
¬u which leads to the clause Cn. If n = 1, we have the path ¬u,¬x1, x1. For n > 1, let
π be the open path leading to Cn−1 and let ℓ be its last literal. Then either ℓ ∈ Cn, in
which case we have an open path leading to Cn, or ℓ ∈ C ′

n, in which case we have the
open path π,¬xn, xn leading to Cn. An open path that leads to Cn also leads to Cn+1,
because those two clauses only differ in the presence of u and therefore can be closed by
the literal u to obtain the required resolution path.

3.5 Experiments

To gauge the potential of clause learning based on LDQ(Dstd), we ran experiments
with the search-based solver DepQBF4 in version 5.0. By default, DepQBF supports
proof generation only in combination with the trivial dependency scheme—in that case,
it generates Q-resolution or long-distance Q-resolution proofs (depending on whether
long-distance resolution is enabled). However, by uncommenting a few lines in the source
code, proof generation can also be enabled with the standard dependency scheme, and
this option can even be combined with long-distance resolution. This leads to the solver
generating Q(Dstd)-resolution or LDQ(Dstd)-resolution proofs (see Section 3.2).

We compared the performance of DepQBF in four configurations,5 each using a different

4http://lonsing.github.io/depqbf/
5As a sanity check, we verified that all configurations that were able to solve a particular instance

returned the same result.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

proof system for constraint learning:

1. Long-distance Q-resolution with ∀/∃-reduction according to Dstd (LDQD).

2. Long-distance Q-resolution with ordinary ∀/∃-reduction (LDQ).

3. Q-resolution with ∀/∃-reduction according to Dstd (QD).

4. Ordinary Q-resolution (Q).

These experiments were performed on a cluster with Intel Xeon E5649 processors at
2.53 GHz running 64-bit Linux. We set time and memory limits of 900 seconds and
4 GB, respectively. Instances were taken from two tracks of the QBF Gallery 2014: the
applications track consisting of 6 instance families and a total of 735 formulas, and the
QBFLib track consisting of 276 formulas.

For our first set of experiments, we disabled dynamic QBCE (Quantified Blocked Clause
Elimination), a technique introduced with version 5.0 of DepQBF [LBB+15]. We further
used bloqqer6 (version 037) with default settings as a preprocessor. Since LDQ(Dstd)
generalizes both long-distance Q-resolution and Q(Dstd)-resolution, we were expecting a
performance increase with LDQ(Dstd)-learning compared to learning based on the other
proof systems. However, all four configurations showed virtually identical performance on
both the application and QBFlib benchmark sets in terms of total runtime and instances
solved within the time limit (see Table 3.1).

Application track

Configuration Solved True False Time

LDQD 377 186 191 343455
LDQ 377 186 191 345459
QD 377 183 194 343928
Q 376 182 194 345914

QBFLib track

Configuration Solved True False Time

LDQD 130 69 61 140743
LDQ 131 69 62 141646
QD 129 67 62 140975
Q 127 65 62 142679

Table 3.1: Solved instances, solved true instances, solved false instances, and total runtime
in seconds (including timeouts) with preprocessing (but without QBCE).

6http://fmv.jku.at/bloqqer/

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Experiments

To get a more detailed picture, we broke down the results for the application track
by instance family, limiting ourselves to instances that were solved by at least one
configuration. The barplot in Figure 3.4 shows that there are considerable differences in
performance between solver configurations for individual instances families, with each
solver configuration being outperformed by another configuration on at least one family.

0

50

100

150

bomb complexity dungeon hardness planning testing

Configuration

LDQ

LDQD

Q

QD

Figure 3.4: Average runtime in seconds (y-axis) for instances from the application track
for each instance family (x-axis), by solver configuration (with preprocessing, but without
dynamic QBCE). Here, we only considered instances that were solved by at least one
configuration.

For our second set of experiments, we turned on dynamic QBCE. This led to a significant
performance increase both in terms of number of instances solved within the time limit
and total runtime for both benchmark sets, a result that is consistent with the findings
in [LBB+15]. However, as far as the performance of LDQ(Dstd)-learning is concerned,
the application and QBFlib tracks differed significantly for this experiment. While
LDQ(Dstd)-learning fared worst among the configurations both with respect to instances
solved and total runtime on the application track, it was the best configuration for the
QBFlib track in both respects (see Table 3.2). Figure 3.5 shows that using the standard
dependency scheme was beneficial both with and without long-distance resolution for the
QBFlib instances.

For our final set of experiments, we left dynamic QBCE enabled but disabled preprocessing
for the application track, as this was shown to lead to a performance increase in the case
of learning with ordinary Q-resolution [LBB+15]. Indeed, this resulted in a performance
increase across the board (see Table 3.3). Moreover, LDQ(Dstd)-learning was the best
configuration in terms of instances solved (on par with Q(Dstd)-resolution) as well as in

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

Application track

Configuration Solved True False Time

LDQD 385 195 190 339143
LDQ 388 201 187 336739
QD 392 201 191 334965
Q 389 198 191 337141

QBFLib track

Configuration Solved True False Time

LDQD 145 75 70 132567
LDQ 133 64 69 141682
QD 137 70 67 134150
Q 129 62 67 142399

Table 3.2: Results with preprocessing and dynamic QBCE.

Configuration Solved True False Time

LDQD 440 223 217 287012
LDQ 435 223 212 291574
QD 440 225 215 291661
Q 437 221 216 337141

Table 3.3: Results for the application track with QBCE (but without preprocessing).

terms of overall runtime. Moreover, LDQ(Dstd)-learning was the best configuration in
terms of instances solved (on par with Q(Dstd)-resolution) as well as in terms of overall
runtime.

3.6 Related Work

QCDCL with learning based on long-distance Q-resolution was first described by Zhang
and Malik [ZM02a]. They presented an argument for the soundness of using tautological
clauses (respectively, contradictory terms) within their algorithm but did not study
long-distance Q-resolution as a proof system. Lacking a sound theoretical foundation,
the use of tautological clauses in QCDCL was abandoned in favour of more complicated
methods for constraint learning that avoid their generation [GNT06,Gel12,LEVG13].

Interest in long-distance Q-resolution was renewed when Balabanov and Jiang [BJ12]
introduced the proof system we presented in Section 3.1 (restricted to the trivial de-
pendency scheme) and proved its soundness. Egly, Lonsing, and Widl [ELW13] showed
that a family of formulas known to be hard for Q-resolution [KKF95] admits short

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. Related Work

0

250

500

750

0 50 100 150

Configuration

LDQ

LDQD

Q

QD

Figure 3.5: Solved instances from the QBFLib track (x-axis) sorted by runtime (y-axis),
by solver configuration (with preprocessing and dynamic QBCE).

long-distance Q-resolution proofs. They also demonstrated that QCDCL with learning
based on long-distance resolution generates long-distance Q-resolution proofs and pre-
sented a new version of DepQBF that implements this algorithm. Finally, they showed
that a long-distance Q-resolution proof can be interpreted as a winning strategy in
the evaluation game associated with a QBF, generalizing a result by Goultiaeva, Van
Gelder, and Bacchus [GVGB11]. Even though these results established a solid theo-
retical framework for the use of long-distance Q-resolution within QCDCL, they were
regarded as unsatisfactory by some since they did not provide an intuitive account of
the semantics of individual tautological clauses. Such an account was subsequently pre-
sented by Balabanov, Janota, Jiang, and Widl [BJJW15], who showed that tautological
literals u,¬u ∈ C can be interpreted as proxies for “phase functions” that determine
whether a variable or its negation is present in clause C based on the values assigned to
pivot variables appearing in the derivation of C. The authors used this interpretation to
generalize the linear-time strategy extraction algorithm of Balabanov and Jiang [BJ12]
to long-distance Q-resolution proofs.

Recently and independently of this work, Beyersdorff and Blinkhorn investigated the
soundness of Q-resolution proof systems parameterized by dependency schemes [BB16].
They define a property of dependency schemes D—full exhibition—which ensures that a
certain version of long-distance Q(D)-resolution is sound, and show that the reflexive

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Long-distance Q-resolution with Dependency Schemes

resolution-path dependency scheme has that property.

In a nutshell, a dependency scheme D is fully exhibited if every true QBF Φ has a
model {fe}e∈var∃(Φ) such that fe may only depend on a universal variable u if (u, e) ∈
DΦ (such models have elsewhere been referred to as D-models [Sli15]). It is fairly
straightforward to show that Q(D)-resolution is sound if D has this property, but
generalizing this result to proof systems with long-distance resolution presents a challenge.
Beyersdorff and Blinkhorn show that full exhibition is sufficient for soundness of a
restricted version of LDQ(D)-resolution, where complementary universal literals that
are “merged” by resolution must be annotated with the (existential) pivot variable, and
universal reduction can be applied only if every existential variable occurring in the
premise or the annotation of a universal variable is independent of the universal variable
to be reduced. However, it is uncertain whether proofs generated by DepQBF with
LDQ(D)-learning satisfy this additional restriction.

How full exhibition relates to our normality property is not entirely clear. Beyersdorff and
Blinkhorn prove that full exhibition is not sufficient for soundness of LDQ(D)-resolution
as defined here. In combination with Theorem 2, this shows that dependency schemes
that are fully exhibited need not be normal. Whether there are normal dependency
schemes that are not fully exhibited, on the other hand, remains open. Indeed, there is
some evidence to the effect that normality entails full exhibition: consider a dependency
scheme D that is not fully exhibited, and let Φ = ∀uQ.ϕ be a true QBF that does not
have a D-model. Suppose u is the only universal variable of Φ. In this restricted case, the
(non-)existence of a D-model can be expressed as a QBF Ψ by simply shifting existentials
independent of u to the left. Because Φ does not have a D-model, Ψ must be false and
admit a Q-resolution refutation P, which is also an LDQ(D)-refutation of Φ. Because Φ
is true, LDQ(D)-resolution must be unsound and so D cannot be normal by Theorem 2.
Obviously, the assumption that u is the only universal variable of Φ is very restrictive,
but since we can suppose that D is monotone (recall that a dependency scheme is normal
if it is both simple and monotone), there is hope that the argument for an arbitrary QBF
can be reduced to this case by instantiating with a suitable variable assignment.

3.7 Summary and Discussion

We have defined LDQ(D)-resolution, the proof system that combines long-distance
Q-resolution with dependency schemes. We defined normality of a dependency scheme,
and showed that if D is normal, then LDQ(D)-resolution is sound and admits polynomial-
time strategy extraction. As an application of this general result, we showed that Drrs is
normal.

The results of Section 3.2 and Section 3.3 establish a partial soundness proof of QCDCL
with learning based on LDQ(Dstd): we now know that we can trust such a solver when it
outputs “false”. To prove that “true” answers can be trusted as well, one has to show
soundness of quantified term resolution (Q-consensus) when combined with the standard
dependency scheme and long-distance resolution. The reason this does not follow from

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.7. Summary and Discussion

the results proved here is that they rely on a correspondence of Q-resolution derivations
with dependency-inducing resolution paths that is not immediate for terms generated
from an input PCNF: there is a correspondence of Q-consensus derivations with dual
“resolution paths” that connect such terms, but these “resolution paths” do not induce
resolution-path dependencies in the input PCNF.

The experiments in Section 3.5 indicate that we should not expect significant performance
gains when switching from learning with Q(Dstd)-resolution to LDQ(Dstd). This is in
spite of the fact that, from a purely theoretical perspective, LDQ(Dstd) is a stronger
proof system: a well-studied class of QBFs introduced by Kleine Büning, Karpinski,
and Flögel requires exponentially-sized Q-resolution proofs [KKF95] but admits short
long-distance Q-resolution refutations [ELW13], and since the standard dependency
scheme does not offer any improvement over trivial dependencies on these formulas
(see [BB17]) we obtain an exponential separation of LDQ(Dstd)-resolution from Q(Dstd)-
resolution. From a practical point of view, the main benefit of using LDQ(Dstd)-resolution
over Q(Dstd)-resolution is that conflict analysis is much simpler (cf. [ELW13]). A
learned constraint can be obtained from a conflict simply by resolving variables in the
reverse order of their propagation (see Section 3.2). Methods that avoid the generation
of tautological clauses (contradictory terms) during learning are significantly more
involved [GNT06,Gel12,LEVG13].

We have shown that LDQ(Drrs)-refutations allow for polynomial-time strategy extraction.
In practice, the corresponding algorithm generates circuits that are frequently larger
by an order of magnitude than the refutations provided as input. It is unclear whether
this increase in size can be avoided by careful engineering alone or only by using a
different approach. Faster (linear time) strategy extraction algorithms are known for
“ordinary” Q-resolution and long-distance Q-resolution [BJ12,BJJW15]. Unfortunately,
their underlying idea of setting universal variables so as to falsify the premise of some
∀-reduction step no longer works when dependency schemes enter the mix: generalized
∀-reduction may remove a universal variable u even in the presence (in the premise) of an
existential variable e such that u < e and the universal player can only be sure to falsify
the premise if the e-literal is false, but she does not know the value of e at the time of
assigning u. We believe that developing linear-time strategy extraction algorithms for
Q(D)-resolution or LDQ(D)-resolution is going to require a better understanding of the
power of these proof systems vis-à-vis Q-resolution and long-distance Q-resolution [BB17].

Publication Notes

The research in this chapter appeared in a paper published in the proceedings of the
19th International Conference on Theory and Applications of Satisfiability Testing (SAT
2016) [PSS16], and in full in a paper published in Volume 63 (2019) of the Journal of
Automated Reasoning [PSS19b].

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Dependency Learning for QBF

We have seen how the prefix ordering ≺q constrains QCDCL in its selection of branching
variables as well as in the application of unit propagation. Dependency schemes can
be used to grant the solver additional freedom, however, with greater freedom comes
greater responsibility—in this case to ensure that the dependency scheme is sound.
In Chapter 3 we gave a sufficient condition for a dependency scheme D in order for
LDQ(D)-resolution to be sound and admit polynomial-time strategy extraction. The
argument why Drrs satisfies this condition, and thus LDQ(Drrs)-resolution is sound, was
tedious and long-winded. This is an inherent weakness of dependency schemes—each new
dependency scheme or integration with another solving technique, such as long-distance
Q-resolution, requires a new soundness proof. Moreover, even though we established that
LDQ(Drrs)-resolution admits polynomial-time strategy extraction, the algorithm is not
as practical as its counterpart for long-distance Q-resolution, and would most likely be
unsuitable for an application where the strategy is of vital importance.

In this chapter we describe a different, novel approach to dependency analysis called
dependency learning. Dependency learning is a modification of QCDCL which allows the
solver to exploit independence between variables while retaining long-distance Q-resolution
as its underlying proof system, enjoying its soundness and fast strategy extraction without
the need for additional arguments. As we can observe from the experimental evidence,
dependency learning appears to identify far more independent pairs of variables than even
the reflexive resolution-path dependency scheme, providing yet another argument in its
favor. Compared to dependency schemes, it is also much simpler to implement, requiring
virtually no special data structures, other than an adaptation of a watched-literal scheme,
which is anyway already present in a QCDCL solver.

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

Algorithm 3 QCDCL with Dependency Learning

1: procedure solve()
2: D = ∅
3: while true do

4: conflict = QBCP()
5: if conflict == none then

6: decide()
7: else

8: constraint, btlevel = analyzeConflict(conflict)
9: if constraint != none then

10: if isEmpty(constraint) then

11: return isTerm(constraint)
12: else

13: addLearnedConstraint(constraint)
14: end if

15: end if

16: backtrack(btlevel)
17: end if

18: end while

19: end procedure

4.1 QCDCL with Dependency Learning

Similarly to depednency schemes, for dependency learning the solver maintains a
set D ⊆≺q of variable dependencies. Both QBCP and the decision rule must be modified
as follows:

• qbcp() uses universal and existential reduction relative to D. Universal reduction
relative to D removes each universal variable u from a clause C such that there is
no existential variable e ∈ var(C) with (u, e) ∈ D (existential reduction relative
to D is defined dually).

• decide() may assign any variable y such that there is no unassigned variable x
with (x, y) ∈ D (note that (x, y) ∈ D implies x ≺q y).

This is how DepQBF uses the dependency relation D computed by a dependency scheme
in propagation and decisions [BL10]. Unlike DepQBF, QCDCL with dependency learning
does not use the generalized reduction rules during conflict analysis (resolve and
reduce in lines 7 and 8 refer to resolution and reduction as defined in Figure 2.2).
As a consequence, the algorithm cannot always construct a learned constraint during
conflict analysis (see Example 4 below). Such cases are dealt with in lines 9 through 12
of analyzeConflict (Algorithm 4):

• existsResolvent(constraint, reason, pivot) determines whether the resolvent of
constraint and reason exists.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. QCDCL with Dependency Learning

Algorithm 4 Conflict Analysis with Dependency Learning

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do

4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint, reason, pivot) then

7: constraint = resolve(constraint, reason, pivot)
8: constraint = reduce(constraint)
9: else

10: illegal_merges = illegalMerges(constraint, reason, pivot)
11: D = D ∪ { (v, pivot) : v ∈ illegal_merges }
12: return none, decisionLevel(pivot)
13: end if

14: end while

15: btlevel = getBacktrackLevel(constraint)
16: return constraint, btlevel
17: end procedure

• If this is not the case, there has to be a variable v (universal for clauses, existential
for terms) satisfying the following condition: v ≺q pivot and there exists a literal
ℓ ∈ constraint with var(ℓ) = v and ℓ ∈ reason. The set of such variables is
computed by illegalMerges. For each such variable, a new dependency is added
to D. No learned constraint is returned by conflict analysis, and the backtrack
level (btlevel) is set so as to cancel the decision level at which pivot was assigned.

The criteria for a constraint to be asserting must also be slightly adapted: a clause (term) S
is asserting with respect to D if there is a unique existential (universal) literal ℓ ∈ S
with maximum decision level among literals in S, its decision level is greater than 0, the
corresponding decision variable is existential (universal), and every universal (existential)
variable y ∈ var(S) such that (y, var(ℓ)) ∈ D is assigned (again, this corresponds to
the definition of asserting constraints used in DepQBF [Lon12, p.119]). Finally, in the
main QCDCL loop, we have to implement a case distinction to account for the fact that
conflict analysis may not return a constraint (line 9 in Algorithm 3).

Example 4. We revisit the PCNF formula Φ from Example 1 to illustrate a run of
QCDCL with dependency learning.

Φ = ∀x∃y∃z.(x ∨ ¬y) ∧ (y ∨ ¬z) ∧ (¬x ∨ z)

Initially, the set D of learned dependencies is empty. Accordingly, universal reduction
relative to D would simplify the first clause to (¬y) and the third clause to (z). The
algorithm thus assigns y = 0 and z = 1, falsifying the second clause. Conflict analysis first

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

resolves the second clause with the third clause (which is responsible for propagating the
last literal in the falsified clause) to obtain the clause (¬x ∨ y). Since universal reduction
is performed according to the prefix order during conflict analysis, the literal ¬x cannot
be removed from this clause even though there is no dependency of y on x. Next, conflict
analysis attempts to resolve (¬x∨ y) with (x∨ ¬y). These clauses do not have a resolvent
in long-distance Q-resolution since x ≺q y. Variable x is identified as involved in an
illegal merge, the dependency (x, y) is added to D, and the solver backtracks before
decision level 0 (the level where ¬y was propagated), undoing all assignments. Because
of the learned dependency (x, y) ∈ D the first clause can no longer be simplified by
universal reduction, but the third clause still simplifies to (z) and z = 1 is propagated.
This simplifies the second clause to (y) and y = 1 is propagated. Thus the first clause
becomes (x) and universal reduction results in a conflict. Conflict analysis resolves the
first and second clause to derive (x ∨ ¬z). Because x ≺q z universal reduction cannot
simplify this clause. Conflict analysis then attempts to resolve (x ∨ ¬z) and (¬x ∨ z).
These clauses do not have a resolvent and x is identified as the cause of an illegal merge.
The dependency (x, z) is added to D and the solver backtracks to remove decision level 0
where z was propagated. Since D = {(x, y), (x, z)} now contains all possible dependencies
of Φ, QCDCL with dependency learning behaves exactly like ordinary QCDCL from that
point onward.

4.2 Soundness and Termination

Soundness of QCDCL with dependency learning is an immediate consequence of the
following observation.

Observation 1. Every constraint learned by QCDCL with dependency learning can be
derived from the input formula by long-distance Q-resolution or Q-consensus.

To prove termination, we argue that the algorithm learns a new constraint or a new
dependency after each conflict. Just as in QCDCL, every learned constraint is asserting,
so learning does not introduce duplicate constraints.

Observation 2. QCDCL with dependency learning never learns a constraint already
present in the database.

The only additional argument required to prove termination is one that tells us that the
algorithm cannot indefinitely “learn” the same dependencies.

Lemma 11. If QCDCL with dependency learning does not learn a constraint during
conflict analysis, it learns a new dependency.

Proof. To simplify the presentation, we are only going to consider clause learning (the
proof for term learning is analogous). We first establish an invariant of intermediate
clauses derived during conflict analysis: they are empty under the partial assignment

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Soundness and Termination

obtained by backtracking to the last literal in the assignment that falsifies an existential
literal in the clause. Formally, let C be a clause and let σ = (ℓ1, . . . , ℓk) be an assignment.
We define lastC(σ) = max({ i : 1 ≤ i ≤ k and ℓi ∈ C, var(ℓi) ∈ E } ∪ {0}), where E is the
set of existential variables of the input PCNF formula, and let σC = (ℓ1, . . . , ℓlastC(σ)).
In particular, if lastC(σ) = 0 then σC is empty.

We now prove the following claim: if σ is an assignment that falsifies a clause, then, for
every intermediate clause C constructed during conflict analysis, C[σC] is empty after
universal reduction. The proof is by induction on the number of resolution steps in
the derivation of C. If C is the conflict clause, then C[σ] reduces to the empty clause.
That means C[σC] can only contain universal literals and can also be reduced to the
empty clause by universal reduction. Suppose C is the result of resolving clauses C ′

and R and applying universal reduction, where C ′ is an intermediate clause derived
during conflict analysis and R is a clause that triggered unit propagation. The induction
hypothesis tells us that C ′[σC′] reduces to the empty clause. Since the pivot literal ℓ is
chosen to be the last existential literal falsified in C ′, we must have σC′ = (ℓ1, . . . , ℓk)
where ℓk = ℓ. Let τ = (ℓ1, . . . , ℓk−1). We must have C ′[τ] = U ′ ∪ {ℓ}, where U ′ is a
purely universal clause. Because R is responsible for propagating ℓ, we further must
have R[τ] = U ′′ ∪ {ℓ}, where U ′′ again is a purely universal clause. It follows that their
resolvent C[τ] = (C ′ \{ℓ})[τ] ∪ (R\{ℓ})[τ] = U ′ ∪U ′′ is a purely universal clause. Since τ
is a prefix of σ, it follows that C[σC] is a purely universal clause as well and therefore
empty after universal reduction. This proves the claim.

We proceed to prove the lemma. If the algorithm does not learn a clause during conflict
analysis, this must be due to a failed attempt at resolving an intermediate clause C
with a clause R responsible for unit propagation. That is, if e is the existential pivot
variable, there must be a universal variable u ≺ e such that u ∈ var(C) ∩ var(R) and
{u,¬u} ⊆ C ∪ R. Towards a contradiction, suppose that (u, e) ∈ D. Let σ denote the
assignment that caused the conflict and assume without loss of generality that {u, e} ⊆ R
and {¬u,¬e} ⊆ C. Since R caused propagation of e but (u, e) ∈ D, the variable u must
have been assigned before e and ¬u ∈ σ. As the pivot ¬e is the last existential literal
falsified in C, it follows that ¬u ∈ σC . Because ¬u ∈ C, this implies that the assignment
σC satisfies C, in contradiction with the claim proved above.

For a formula with n variables the number of dependencies is O(n2) and the number
of distinct constraints is 22n+1. QCDCL runs into a conflict at least every n variable
assignments, so Observation 2 and Lemma 11 imply termination.

Theorem 4. QCDCL with dependency learning is sound and terminating.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

4.3 Experiments

To see whether dependency learning works in practice, we implemented a QCDCL solver
named Qute that supports this technique.1 We evaluated the performance of Qute in
several experiments. First, we measured the number of instances solved by Qute on the
union of benchmark sets from the 2016–2018 QBF Evaluations [Pul16]. We compared
these numbers with those of the best performing publicly available solvers for each
input type. In a second experiment, we computed the dependency sets given by the
standard dependency scheme [SS09,BL09] and the reflexive resolution-path dependency
scheme [VG11,SS16b] for preprocessed instances, and compared their sizes to the number
of dependencies learned by Qute. Finally, we revisit an instance family which is known
to be hard to solve for QCDCL [Jan16] and show they pose no challenge to Qute. In fact,
we reinforce the last experimental result by a formal proof that QCDCL with dependency
learning can indeed solve instances from this family efficiently. For our experiments, we
used a cluster with Intel Xeon E5649 processors at 2.53 GHz running 64-bit Linux.

4.3.1 Decision Heuristic, Restart Strategy, and Constraint Deletion
Policy

We briefly describe a few design choices for key components of Qute. The exact values of
parameters (parameter names are shown in italics) used in the experiments are listed in
Table 4.1.

• We rely on a version of the variable move-to-front (VMTF) heuristic for selecting
decision variables [Rya04,BF15]. VMTF maintains a list of variables and selects
a decision variable that is closest to the head of the list. Upon learning a new
constraint, variables occurring in the constraint are moved to the front of the list.

• Restarts are determined by a simple inner-outer restart scheme [Bie08]. A restart is
triggered every time the conflict counter reaches a number referred to as the inner
restart distance. After every restart, the inner restart distance is multiplied by a
fixed restart multiplier and the conflict counter is reset. After a number of restarts
corresponding to the outer restart distance, the inner restart distance is reset and
the outer restart distance is multiplied by the restart multiplier.

• Qute keeps limits on the number of learned clauses and terms, respectively. Upon
hitting the limit for clauses or terms, the corresponding constraints are ordered
lexicographically according to their literal blocks distance (LBD) [AS09] in increasing
order and activity [ES03] in decreasing order. A fraction (determined by the clause
deletion ratio and term deletion ratio) of these constraints is then deleted starting
from the back of the list, skipping constraints that are locked because they are the
antecedent of a literal on the current trail. The limit on the number of learned

1http://github.com/perebor/qute

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Experiments

clauses or terms is then increased by a fixed constant (the clause database increment
and term database increment, respectively).

4.3.2 Solved Instances for QBF Evaluation 2016-2018 Benchmark
Sets

In our first experiment, we used the prenex non-CNF (QCIR, [JKS16]) benchmark sets
from the 2016-2018 QBF Evaluation, consisting in total of 1240 formulas. Time and
memory limits were set to 10 minutes and 4 GB, respectively. The results are summarized
in Table 4.2 and Figure 4.1. Qute’s performance is competitive with other state-of-the-art
circuit solvers, and this appears to be in large part due to dependency learning: when
dependency learning is deactivated, the number of solved instances drops significantly.

0

200

400

600

400 500 600 700

tim
e

(s
)

CQESTO

GhostQ

QFun

QuAbS

Qute (no DL)

Qute

RAReQS

Figure 4.1: Solved instances from the 2016-2018 QBF Evaluation prenex non-CNF (QCIR)
benchmark sets (x-axis) sorted by runtime (y-axis).

It is folklore within the QBF community that the number of quantifier alternations has
a strong influence on solver performance. Generally speaking, expansion/abstraction
solvers tend to do better on instances with few alternations, whereas QCDCL solvers are
at an advantage on instances with many alternations. Standard benchmark sets contain
many instances with only a single alternation [LE18], presumably because many problems
of interest can be encoded in such formulas. Figure 4.2 shows the number of solved prenex
non-CNF instances broken down by the number of quantifier alternations. While the

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

Table 4.1: Command line parameters for Qute used in the experiments.

parameter value description

-decision-heuristic VMTF Decision heuristic, see Section 4.3.
-restarts inner-outer Restart strategy, see Section 4.3.
-inner-restart-distance 250 Initial number of conflicts before

restart.
-outer-restart-distance 20 Initial number of restarts before

outer restart.
-restart-multiplier 2.5 Multiplier for inner restart distance

(upon restart) and outer restart dis-
tance (upon outer restart).

-initial-clause-DB-size 1000 Initial limit on learned clauses.
-initial-term-DB-size 4000 Initial limit on learned terms.
-clause-DB-increment 1000 Upon reaching the current limit on

the number of learned clauses, in-
crease the limit by this value.

-term-DB-increment 500 Upon reaching the current limit on
the number of learned terms, in-
crease the limit by this value.

-clause-removal-ratio 0.4 Fraction of learned clauses to delete
upon reaching the current limit.

-term-removal-ratio 0.3 Fraction of learned terms to delete
upon reaching the current limit.

-LBD-threshold 5 Only delete constraints with LBD
greater than this value.

-constraint-activity-decay 0.99 Multiply constraint activities with
this value after each conflict.

-constraint-activity-inc -2 Add this value to the activity score
of a constraint whenever it is seen
during conflict analysis.

-dependency-learning all Add all variables involved in an ille-
gal merge as learned dependencies.

-phase-heuristic invJW Heuristic for choosing the assign-
ment of a decision variable based on
positive and negative literal occur-
rences.

-model-generation depQBF Use DepQBF-style model generation
for PCNF instances: pick the first
satisfying literal in each clause, with
a preference for existential literals.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Experiments

Table 4.2: Instances from the 2016-2018 QBF Evaluation prenex non-CNF (QCIR)
benchmark sets solved within 10 minutes.

solver total sat unsat

QuAbS 705 313 392
CQESTO 695 310 385
Qute 681 315 366
GhostQ 681 296 385
Qfun 663 296 367
Qute (no DL) 617 281 336
RaReQS 518 218 300

number of instances with up to 100 alternations solved by Qute with dependency learning
is slightly subpar (even compared to Qute without dependency learning), dependency
learning shines when it comes to the subset of instances with the highest number (100+)
of quantifier alternations.2 This is also clearly visible in Figure 4.3, which shows the
runtimes of Qute with and without dependency learning for individual instances. On
average, dependency learning incurs a slight performance penalty for instances solved by
both configurations but leads to many more solved instances among those with at least
100 quantifier alternations.

Many of these formulas have a number of quantifier alternations that is close to the
overall number of variables. Apparently, most of the corresponding variable dependencies
are spurious, and dependency learning allows Qute to ignore them.

For our second experiment, we used the prenex CNF (PCNF) benchmark sets from
the 2016-2018 QBF Evaluations consisting of 1314 instances. Time and memory limits
were again set to 10 minutes and 4 GB. We performed this experiment twice: with and
without preprocessing using HQSpre [WRMB17]. In order not to introduce variance in
overall runtime through preprocessing, each instance was preprocessed only once and
solvers were run on the preprocessed instances with a timeout corresponding to the
overall timeout minus the time spent on preprocessing.

Since Qute shows good performance on QCIR instances, we included configurations that
perform partial circuit reconstruction using qcir-conv3 and then solve the resulting QCIR
instance.

The results obtained without using HQSpre are shown on the left hand side of Table 4.3.
When using qcir-conv, Qute solves significantly more instances with dependency learning
than without dependency learning. Without qcir-conv, the difference is less pronounced,

2This matches our experimental results on portfolio-based algorithm selection for QCIR, where
selectors favored Qute with dependency learning over other solvers for instances with many quantifier
alternations (see Chapter 8).

3http://www.cs.cmu.edu/~wklieber/qcir-conv.py

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

0

100

200

300

400

1−2 3−4 5−19 20−99 100+

CQESTO

GhostQ

QFun

QuAbS

Qute (no DL)

Qute

RAReQS

Figure 4.2: Solved instances from the 2016-2018 QBF Evaluation Prenex non-CNF
(QCIR) benchmark sets (y-axis) by number of quantifier alternations (x-axis).

but dependency learning remains beneficial. Overall, we see that circuit reconstruction
(also used internally by GhostQ [KSGC10] substantially increases the performance of
Qute.

Table 4.3: Instances from the QBF Evaluation 2016-2018 prenex CNF (PCNF) benchmark
sets solved within 10 minutes without preprocessing (left) and with preprocessing using
HQSpre (right). Configurations labeled with +CR use partial circuit reconstruction.

solver total sat unsat

GhostQ 752 350 402
Qute +CR 712 315 397
Qute (no DL)+CR 667 313 354
DepQBF 637 259 378
CaQE 549 216 333
RaReQS 510 152 358
Qute 499 166 333
Qute (no DL) 488 172 316

solver total sat unsat

CaQE 978 442 536
RaReQS 945 410 535
DepQBF 888 396 492
Qute +CR 871 374 497
Qute (no DL)+CR 866 377 489
Qute (no DL) 858 381 477
GhostQ 833 369 464
Qute 827 347 480

The results including preprocessing with HQSpre are shown on the right hand side of

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Experiments

10−2

10−1

100

101

102

103

10−2 10−1 100 101 102 103

Runtime − Dependency Learning (s)

R
un

tim
e

−
 N

o
D

ep
en

de
nc

y
Le

ar
ni

ng
 (

s)

Alternations

1−2

3−4

5−19

20−99

100+

Figure 4.3: Runtimes of Qute with and without dependency learning on the 2016-2018
QBF Evaluation Prenex non-CNF (QCIR) benchmark sets, by number of quantifier
alternations.

Table 4.3. The power of the preprocessor strikes the eye: any solver/configuration solves
more instances when paired with HQSpre, than any other without it. While dependency
learning does not seem to provide as much as in the previous cases, it is still part of the
best-performing configuration of Qute.

4.3.3 Learned Dependencies Compared to Dependency Relations

To get an idea of how well QCDCL with dependency learning is able to exploit indepen-
dence, we compared the number of dependencies learned by Qute with the number of
standard and resolution-path dependencies for instances from the PCNF benchmark set
after preprocessing with HQSpre. We only considered instances with at least one quanti-
fier alternation after preprocessing. Qute was run with a 10 minute timeout (excluding
preprocessing). If an instance was not solved we used the number of dependencies learned

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

within that time limit.4

Summary statistics are shown in Table 4.4. On average, the standard dependency scheme
only provides a mild improvement over trivial dependencies. The reflexive resolution-path
dependency scheme does better, but the set of trivial dependencies it can identify as
spurious is still small in many cases. The fraction of learned dependencies is much
smaller than either dependency relation on average, and the median fraction of trivial
dependencies learned is even below 1%.

This indicates that proof search in QCDCL with dependency learning is less constrained
than in QCDCL with either dependency scheme: since QCDCL is allowed to branch on
a variable x only if every variable that x depends on has already been assigned, decision
heuristics are likely to have a larger pool of variables to choose from if fewer dependencies
are present.

Table 4.4: Learned dependencies, standard dependencies, and reflexive resolution-path
dependencies for instances preprocessed by HQSpre, as a fraction of trivial dependencies.

dependencies mean median variance

standard 0.929 1.000 0.029
resolution-path 0.628 0.798 0.139
learned 0.033 0.007 0.004

4.3.4 Dependency Learning on Hard Instances for QCDCL

For our third experiment, we chose a family of instances CRn recently used to show that
ordinary QCDCL does not simulate tree-like Q-resolution [Jan16]. Since the hardness of
these formulas is tied to QCDCL not propagating across quantifier levels, they represent
natural test cases for QCDCL with dependency learning. We recorded the number of
backtracks required to solve CRn by Qute with and without dependency learning, for
n ∈ {1, ..., 50}. As a reference, we used DepQBF.5 For this experiment, we kept the
memory limit of 4 GB but increased the timeout to one hour. The results are summarized
in Figure 4.4. As one would expect, Qute without dependency learning and DepQBF
were only able to solve instances up to n = 7 and n = 8, respectively. Furthermore, it is
evident from the plot that the number of backtracks grows exponentially with n for both
solvers. By contrast, Qute with dependency learning was able to solve all instances within

4We cannot rule out that, for unsolved instances, Qute would have to learn a larger fraction of trivial
dependencies before terminating. However, the solver tends to learn most dependencies at the beginning
of a run, with the fraction of learned trivial dependencies quickly converging to a value that does not
increase much until termination.

5For the sake of comparing with Qute in prefix mode, we disabled features recently added to DepQBF
such as dynamic quantified blocked clause elimination [LBB+15] and oracle calls to the expansion-based
solver Nenofex.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. An Exponential Speedup over QCDCL

101

103

105

0 10 20 30 40 50

DepQBF

Qute

Qute (no DL)

Figure 4.4: Backtracks for instances CRn based on the completion principle [Jan16], as
a function of n.

the timeout. In the next section, we will formally prove that QCDCL with dependency
learning can find short proofs of the formulas CRn for all n.

4.4 An Exponential Speedup over QCDCL

We will now show that there is a run of QCDCL with dependency learning on CRn

that terminates in time polynomial in n. The corresponding short proof of CRn that is
found is, up to a symmetry, the one presented by Janota [Jan16]. Let us first recall the
definition of CRn.

Definition 12. Let n ∈ N, and let X = {xij : 1 ≤ i, j ≤ n }, and L = { ai, bi : 1 ≤ i ≤ n }
be sets of variables. The formula CRn has the prefix ∃X ∀z∃L, and the matrix consisting
of the following clauses:

Aij = xij ∨ z ∨ ai for 1 ≤ i, j ≤ n

Bij = ¬xij ∨ ¬z ∨ bj for 1 ≤ i, j ≤ n

A =
n∨

i=1

¬ai B =
n∨

j=1

¬bj

Lemma 12. Assume that the current trail of a QCDCL solver with dependency learning
contains only literals from the set {a1, . . . , an}. Then, assigning any ai that is not on

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

the trail to false causes unit propagation to derive a conflict, and the clause (z ∨ ai) is
derived during conflict analysis.

Proof. Assigning ai to false causes the clause Aij to propagate xij for j = 1, . . . , n. In
turn, assigning xij to true causes the clause Bij to propagate bj for j = 1, . . . , n (because
there is no dependency of bj on z). This causes a conflict with the clause B.

During conflict analysis, we will resolve B with the clauses Bij on b1, . . . , bn, effectively
removing all ¬bj from B, and introducing ¬xi1, . . . ,¬xin and ¬z. At that point, ¬z is
trailing and can be reduced. Afterwards, we will resolve away all the ¬xij using Aij ,
and we will end up with the clause (z ∨ ai) as required. Note that each intermediate
clause contains at least two literals from the set {ai,¬b1, . . . ,¬bn,¬xi1, . . . ,¬xin} which
are existential and assigned at the same decision level as ai (which is the highest decision
level) so none of these clauses can be asserting.

Consider the following run of QCDCL with dependency learning. Each clause contains
at least two existential literals, so (even with an empty dependency relation) no variable
is assigned by unit propagation at decision level 0. As the first decision, the variable a1

is assigned to false. By Lemma 12 the clause (z ∨ a1) is derived during conflict analysis.
This clause is asserting, so it is learned, the algorithm backtracks to decision level 0, and
unit propagation sets a1 to true. This is repeated for a1, . . . , an−1. During propagation
of the assignment a1 ∧ · · · ∧ an−1 the clause A propagates ¬an, which by Lemma 12 again
leads to a conflict and the derivation of the clause (z ∨ an) during conflict analysis. This
time, because ¬an is assigned at decision level 0, the clause (z ∨ an) is not asserting.
Thus conflict analysis proceeds to resolve (z ∨ an) with A, and then subsequently with
the clauses (z ∨ ai) for i = 1, . . . , n− 1. This yields the unit clause (z), which is reduced
to the empty clause, resulting in QCDCL terminating and outputting false.

This run requires n invocations of propagation and conflict analysis. Since both unit
propagation and conflict analysis can be carried out in polynomial time, we get a
polynomial bound on the overall runtime.

Theorem 5. QCDCL with dependency learning can solve CRn in polynomial time.

Since ordinary QCDCL requires time exponential in n to solve CRn [Jan16], dependency
learning achieves an exponential speedup on these instances.

4.5 An Interpretation of Learned Dependencies

Dependencies in QBF naturally arise in a semantic context. The formula ∀x∃y.ϕ(x, y)
says that we can choose a value for y, depending on x, such that ϕ(x, y) evaluates to
true. In other words, the assertion that this formula is true is equivalent to saying that
there is a function fy, which depends on x as its input, and which chooses values for y so
that ϕ evaluates to true. Such a function is called a model of the formula, and one way

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. An Interpretation of Learned Dependencies

of thinking about dependencies in a given formula is to think about the dependencies
exploited by a model/all models of the formula. For instance, in this example, it could
be the case that a constant function fy that does not exploit the information about x
at all suffices to make ϕ(x, y) evaluate to true—in such a case we would say that the
dependency of y on x, while present syntactically, is spurious semantically.

QCDCL with dependency learning does not directly extract semantic information about
the formula it is solving in the sense outlined in the previous paragraph—it simply relaxes
the rules of QCDCL, and refines the relaxation (by learning a dependency) to avoid an
illegal merge during constraint learning. Nevertheless, there is something that can be
said about the relationship between learned and “actual”, semantic dependencies of a
formula. In this section, we formalize what we mean by semantic dependencies, and
study how they relate to learned dependencies.

Our notion of semantic dependencies is based on changes (or lack thereof) in the truth
value of a formula when certain variables are shifted around in the prefix. As an example,
consider the formula

Φ = ∀u∀x∃z∀v∃y∃e.ϕ

for some matrix ϕ. We define the y-x shift of Φ as the formula

Φ′ = ∀u∃y∀x∃z∀v∃e.ϕ,

i.e., the variable y is moved “just in front of” x, maintaining the relative order of other
variables. This is formalized in the definition below.

Definition 13. Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF, and let x = xk and y = xm, k < m.
Let gm

k (j) for j = 1, . . . , n be defined in the following way:

gm
k (j) =

j if j < k or m < j

m if j = k

j − 1 otherwise

The y-x shift of Φ is the formula Φy
x = Qgm

k
(1)xgm

k
(1) . . . Qgm

k
(n)xgm

k
(n).ϕ.

Notice that the mapping gm
k is a permutation of the set {1, . . . , n}, and the prefix

Qgm
k

(1)xgm
k

(1) . . . Qgm
k

(n)xgm
k

(n) is what results from Q1x1 . . . Qnxn when y is shifted just
in front of x. This notion can naturally be extended to shifting in front of arbitrary sets
of variables.

Definition 14. Let Φ = Q1x1 . . . Qnxn.ϕ be a QBF, let y = xm, and ∅ 6= X ⊆ var(Φ).
Let k = min

xj∈X
j < m. The y-X shift of Φ is the formula Φy

X = Φy
xk

.

For a given variable y, any set of variables on which a model for y is allowed to depend
(syntactically), i.e., a set of variables left of y and of opposite quantifier type, will be
called a syntactic dependency set.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

Definition 15. Let Φ = Q.ϕ be a QBF, X ⊆ var(Φ), and y ∈ var(Φ) \ X. If x ≺Φ y
for each x ∈ X, then we say that X is a syntactic dependency set of y. If X = {x }, we
say that x is a syntactic dependency of y.

Finally, we define potential and critical semantic dependencies. Intuitively, X is a critical
dependency set of y if moving y in front of X in the prefix makes the formula change its
truth value. X is a potential dependency set of y if the player who owns y loses when y
is shifted in front of X, but does not necessarily win when y is in its original place. This
is akin to a necessary condition—X must be left of y if there should be a chance to win,
but maybe not even that is sufficient. Every critical dependency set is also a potential
dependency set.

Definition 16. Let Φ = Q.ϕ be a QBF, y one of its existential (universal) variables,
and X a syntactic dependency set of y. If Φy

X is false (true), then we say that X is a
potential dependency set of y. If, moreover, Φ is true (false), then we say that X is
a critical dependency set of y. If X = {x }, we say that x is a potential or critical
dependency of y, respectively.

We note that in the above definition, a critical (potential) dependency is a critical
(potential) dependency set of cardinality 1, and that this is different from being an
element of a larger critical (potential) dependency set. It can be easily seen that any
superset of a critical (potential) dependency set is also a critical (potential) dependency
set, but the same does not necessarily hold for subsets.

Example 5. Consider the formula

Φ = ∀x∃y. (x ∨ ¬y) ∧ (¬x ∨ y).

Clearly Φ is true, as is witnessed by the model fy(x) = x, and x is a syntactic dependency
of y. If we shift y in front of x, we get the formula Φy

x = ∃y∀x (x∨ ¬y) ∧ (¬x∨ y), which
is false, witnessed by the countermodel fx(y) = ¬y. Hence, we conclude that x is a
critical dependency of y.

Example 6. Consider the formula

Φ = ∀x∃y. (x ∨ ¬y) ∧ (x ∨ y).

If we shift y in front of x, we get the formula Φy
x = ∃y∀x (x ∨ ¬y) ∧ (x ∨ y), which is

false, witnessed by the countermodel fx(y) = 0. Hence, x is a potential dependency of y.
However, in this case Φ itself is false, and so x is not a critical dependency of y.

The results of this section show that learning certain seemingly necessary dependencies
can be avoided, and provide a characterization of learned dependencies and the context in
which they are learned. Theorem 6 says that QCDCL with dependency learning can solve
formulas with many critical dependencies (critical dependency sets of size 1) without
learning any of them. Theorem 7 on the other hand says that any learned dependency
must be contained in a potential dependency set in a restriction of the input formula.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. An Interpretation of Learned Dependencies

Theorem 6. For every n ∈ N there is a QBF Φn with O(n2) variables and Ω(n2) critical
dependencies, and a run of QCDCL with dependency learning on Φn that terminates in
polynomial time and learns no dependency.

Proof. Let Φn = CRn (see Definition 12). The required run of QCDCL with dependency
learning has already been presented in the previous section. It remains to show that
there are indeed the required critical dependencies.

Let 1 ≤ i0, j0 ≤ n, and consider the QBF (Φn)z
xij

, which results from swapping xij and z

in the prefix of Φn. It can be verified that the following set of (mostly constant) functions
is a model of (Φn)z

xij
:

xi0j = 1 for j 6= j0

xij0
= 0 for i 6= i0

xi0j0
= ¬z

ai = bj = 1 for i 6= i0 ∧ j 6= j0

ai0
= bj0

= 0 ,

and hence (Φn)z
xij

is true. Since Φn is false, we get that xi0j0
is a critical dependency of

z, and there are n2 choices of i0, j0.

Theorem 7. Assume QCDCL with dependency learning is solving the formula Φ and
learns a dependency of a variable y on a variable x. Let τ be the current trail assignment,
and let σ be τ restricted to literals of the same quantifier type as y. Then there is
X ⊆ var(Φ), such that x ∈ X and X is a potential dependency set of y in Φ[σ].

Proof. Without loss of generality, let us assume that x is universal and y is existential.
Consider QCDCL with dependency learning in the state when it learns a new dependency
of y on x. The learned dependency stems from a failed attempt at long-distance resolution
of two clauses R, the clause that became unit during search, and C, the intermediate
learned clause, derived from Φ, over the pivot y, without loss of generality y ∈ R. Let τ
be the trail assignment at the point when the resolution of R and C is attempted, i.e.,
up to but excluding y, and let σ be τ restricted to existential literals. Since R was unit
under τ and propagated y, and C is the intermediate learned clause, which must contain
only universal literals after the application of τ ∪ {y} (cf. proof of Lemma 11), we have
that y is the only existential literal in R[σ] and y is the only existential literal in C[σ].
The reason why long-distance resolution of R and C fails is that there is at least one
universal variable x′ ≺ y blocking the resolution, i.e., without loss of generality, x′ ∈ R
and x′ ∈ C. Let X be the set of all universal variables blocking the resolution of R and
C, clearly a syntactic dependency set of y. We will show that σ and X satisfy the stated
conditions.

First, by definition of dependency learning, the learned dependency x is in the set X. We
need to prove that X is a potential dependency set of y in Φ[σ], i.e., we need to show that

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

Φ[σ]yX is false. We will do that by restricting the long-distance Q-resolution derivations
of the clauses R and C, which are implicitly generated by QCDCL, by the assignment σ.
Since neither R, nor C are satisfied by σ, and σ only assigns existential variables, the
restricted derivations derive clauses R′ ⊆ R[σ] and C ′ ⊆ C[σ] (Lemma 2). If no literal
on y is present in either of R′ and C ′, we already have a long-distance Q-resolution
derivation of a purely universal clause, and so Φ[σ], and therefore also Φ[σ]yX , is false
(shifting an existential variable to the left can only make a true formula false, not the
other way around). Otherwise, consider the shifted prefix in Φ[σ]yX . With this prefix,
we can reduce all literals that are possibly blocking the resolution of R′ and C ′, and
hence we can derive the empty clause. Since shifting the existential variable y left in
the prefix does not invalidate any previous reductions or resolution steps, we have a
valid long-distance Q-resolution refutation of Φ[σ]yX , and hence X is really a potential
dependency set of y in Φ[σ].

Example 7. Theorem 7 can be illustrated with the following example. Consider the
formula

Φ = ∃z∀x∃y. (z ∨ x ∨ ¬y) ∧ (z ∨ ¬x ∨ y),

which essentially says if not z, then y = x. One of the models of Φ is fz = 1, which
remains a model even if we shift y in front of x. Hence, x is not even a potential
dependency of y. However, assume QCDCL with dependency learning is solving this

formula and starts with the decision z
d
= 0. Subsequently, because no dependencies have

been learned yet, unit propagation w.l.o.g. sets y = 1, and the clause (z ∨ x∨ y) becomes
falsified by universal reduction. Conflict analysis will attempt to resolve the (only) two
clauses of Φ, which is however prevented by x, and a dependency of y on x will have to
be learned.

Theorem 7 says there is a σ and a potential dependency set X of y in Φ[σ]. In particular,
σ = ¬z, the decision made by the solver, and X = {x }. Therefore, we could also
paraphrase Theorem 7 in the following way: if a dependency of y on x is learned, then
even if perhaps x is not contained in any potential dependency set of y in the original
formula Φ, it is definitely contained in a potential dependency set of Φ restricted by the
“current trail assignment”, which can be thought of as the actual formula that the solver
is solving at the moment of learning the dependency. In this example, at the moment
of learning the dependency of y on x, z is assigned to false, and hence the restricted
formula says y = x, and so learning the dependency is justified.

Note that this example also shows that it is unlikely that we could provide a stronger
condition for learned dependencies than Theorem 7, because even when solving a fairly
trivial formula with no potential dependency sets dependencies can still be learned.

4.6 Summary and Discussion

In this section, we introduced dependency learning for QCDCL, a novel method for
dependency analysis. Dependency learning has several advantages over the use of

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.6. Summary and Discussion

dependency schemes within QCDCL.

First, it is arguably easier to implement. The integration of the standard dependency
scheme with DepQBF required the development of data structures for the succinct
representation of standard dependencies [BL09], and no such compact representation is
currently known for the resolution-path dependency scheme. By contrast, dependency
sets in Qute are encoded in arrays containing a list of variables.

Second, our experiments indicate that proof search is less constrained since Qute typically
learns only a fraction of the dependencies computed by dependency schemes.

Third, by keeping long-distance Q-resolution as the underlying proof system, QCDCL
with dependency learning is amenable to a simple correctness proof and enjoys linear-time
strategy extraction.

Blinkhorn and Beyersdorff [BB17] offered a strong proof-theoretic argument in favor
QCDCL with dependency schemes over “vanilla” QCDCL by proving an exponential
separation of Q(Drrs)-resolution and ordinary Q-resolution, where Q(Drrs)-resolution is the
proof system used by QCDCL with the reflexive resolution-path dependency scheme Drrs

and a form of constraint learning that avoids long-distance resolution [LEVG13]. However,
this separation was proved against a class of formulas introduced by Kleine Büning,
Karpinski, and Flögel [KKF95] which is known to have short proofs in long-distance
Q-resolution [ELW13], so it does not speak about the relative strength of QCDCL with
the resolution-path dependency scheme and QCDCL with dependency learning.

In our experiments, Qute performed much better when presented with non-CNF input.
In particular, dependency learning was most effective on the prenex non-CNF (QCIR)
benchmark set, accounting for a 10% increase in the number of solved instances. Even
for PCNF formulas, the best configuration(s) used tools for partially recovering circuit
structure from CNF. This is consistent with the fact that dependency learning had
a more limited effect on Qute when preprocessing was used, since preprocessing is
known to adversely affect circuit reconstruction [GB13], and so it would impair Qute’s
best-performing configurations. Whether this bias towards non-CNF representations
is inherent to QCDCL with dependency learning or an artifact of other design choices
implemented in our solver remains to be seen.

Sometimes, the additional freedom afforded by dependency learning appears to be
detrimental to performance. In particular, this seems to be the case when quantifier
alternations reflect strict temporal or logical dependencies, such as in formulas encoding
two-player games. Freed from the restrictions normally imposed by the quantifier prefix,
decision heuristics originally devised for SAT steer Qute into regions of the search space
that make little sense semantically and force it to learn many useless constraints and
dependencies. We see two ways of addressing this issue.

First, we want to design new decision heuristics that take the quantifier prefix into
account, possibly by penalizing out-of-order assignments.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Dependency Learning for QBF

Second, we plan to develop techniques for initializing learned dependencies with a small
set of dependencies that might help steer proof search in the right direction. For instance,
Qute uses Tseitin conversion to obtain a set of initial clauses and terms from non-CNF
(QCIR) instances. We found that assigning a Tseitin variable before a variable used in
its definition often results in learning a dependency, so that it pays off to simply include
dependencies of a Tseitin variable on the variables used in its definition from the start. For
similar reasons, it might make sense to include dependencies induced by implicit variable
definitions [LM08]. Efficient techniques for detecting implicit variable definitions have
been developed for preprocessing in propositional model counting [LLM16, IMMV16].

It is worth noting that dependency learning supports the removal of learned dependencies
just as well as their addition. Although we did not encounter instances where the set of
learned dependencies grows so large that it significantly affects performance, it is possible
that the management of learned dependencies causes an overhead during longer solver
runs. For that reason, removing learned dependencies at regular intervals in analogy to
constraint deletion might be beneficial.

Publication Notes

The research in this chapter (except Sections 4.4 and 4.5) appeared in a paper published
in the proceedings of the 20th International Conference on Theory and Applications of
Satisfiability Testing (SAT 2017) [PSS17], and in full in a paper published in Volume 65
(2019) of the Journal of Artificial Intelligence Research [PSS19a].

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Combining Resolution-Path

Dependencies with Dependency
Learning

In Chapter 3, we showed that LDQ(Drrs)-resolution, the proof system that models QCDCL
solving with long-distance Q-resolution and the reflexive resolution-path dependency
scheme, is sound, and hence can be used for solving if the dependency scheme can be com-
puted efficiently enough. In contrast, in Chapter 4, we introduced dependency learning,
a new technique for dependency analysis that is orthogonal to dependency schemes. We
argued that dependency learning offers an array of advantages over dependency schemes,
such as soundness for free, empirically better independence detection, and native support
for fast strategy extraction. In fact, the very idea of dependency learning was conceived
in order to address the shortcomings of dependency schemes. However, that does not
mean that dependency learning cannot be used in conjunction with dependency schemes.

In this chapter, we show exactly that—how to incorporate both dependency learning and
dependency schemes into a QCDCL solver. Moreover, we present the first practically
efficient implementation of the reflexive resolution-path dependency scheme. In order to
achieve that, we give up on computing the entire dependency relation upfront like DepQBF
does, and instead query certain dependencies on the fly, during dependency conflicts.
Recall that a dependency conflict occurs when the solver attempts to resolve two clauses
that do not have a resolvent in long-distance Q-resolution. If the blocking variables are in
fact independent according to Drrs, the resolution step is valid in LDQ(Drrs)-resolution.
Hence, dependency conflicts are a great place at which to compute dependencies. Once
computed, however, the dependencies are kept for future use in both dependency conflicts,
as well as universal reduction.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Combining Resolution-Path Dependencies with Dependency Learning

(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1 ∨ e and ¬e ∨ C1, where
e is an existential variable, the (long-distance) resolution rule can derive the clause C1 ∨ C2,
provided that (u, e) /∈ Drrs

Φ
for each universal variable u with u ∈ C1 and u ∈ C2 (or vice versa),

and that C1 ∨ C2 does not contain an existential variable in both polarities.

C (generalized ∀-reduction)
C \ {u,¬u}

The ∀-reduction rule derives the clause C \ {u,¬u} from C, where u ∈ var(C) is a universal
variable such that (u, e) /∈ Drrs

Φ
for every existential variable e ∈ var(C).

Figure 5.1: Derivation rules of LDQ(Drrs)-resolution for a PCNF formula Φ = Q.ϕ.

5.1 Reflexive Resolution-Path Dependency Scheme

Recall Definition 8 of the reflexive resolution path dependency scheme from Section 2.5.
When Drrs is used in QCDCL solving, the solver learns clauses in a generalization of
long-distance Q-resolution called LDQ(Drrs)-resolution. Figure 5.1 shows the proof
rules of LDQ(Drrs)-resolution (cf. Figure 3.1). Soundness of LDQ(Drrs)-resolution has
been established by Corollary 3. We note that the soundness of the corresponding
LDQ(Drrs)-consensus for terms still remains as an open problem. In our experiments
with the proof system, we have been able to independently verify the truth value of all
formulas by a different QBF solver.

5.2 Using Resolution-Path Dependencies in Practice

The major issue with implementing any dependency scheme for use in a QBF solver is
the fact that the size of the dependency relation is inherently worst-case quadratic in
the number of variables—all pairs of variables of opposite quantifier type potentially
need to be stored. QBFs of interest often contain hundreds of thousands of variables,
and therefore any procedure with quadratic complexity is infeasible. DepQBF overcomes
this by identifying equivalence classes of variables with identical dependency information,
and storing only one chunk of data per equivalence class [BL09]. This compressed form,
however, is specifically tailored to the standard dependency scheme, and cannot directly
be transferred to other dependency schemes.

5.2.1 Dynamically Applying Drrs

In order to avoid the quadratic blowup, we take a different approach. We do not aim at
computing the entire dependency relation, but instead compute parts of it on demand,

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Using Resolution-Path Dependencies in Practice

when a dependency conflict occurs.

Dependency conflicts in clause learning in QCDCL with dependency learning take place
in the following way (in this entire section we focus on the case of clauses, but the case
of term learning is dual): the solver attempts to resolve two clauses, C1 and C2, over a
pivot variable e, but there is a non-empty set of universal variables U , such that

∀u ∈ U u ≺ e, (u ∈ C1 ∧ u ∈ C2) ∨ (u ∈ C1 ∧ u ∈ C2).

These variables are blocking the resolution step, as is shown in the pseudocode snippet in
Algorithm 4. The reason why this occurs is that the solver mistakenly assumed e not to
depend on any u ∈ U , and this erroneous assumption is now to be rectified by learning
the dependency of e on at least one variable from U .

Algorithm 5 Conflict Analysis with DL and a Dependency Scheme

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do

4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint, reason, pivot) then

7: constraint = resolve(constraint, reason, pivot)
8: constraint = reduce(constraint)
9: else // dependency conflict

10: U = illegalMerges(constraint, reason, pivot)
11: rrs_deps[pivot] = getDependencies(pivot)

12: U = U ∩ rrs_deps[pivot]

13: if U = ∅ then

14: goto 7
15: else

16: D = D ∪ { (v, pivot) : v ∈ U }
17: return none, decisionLevel(pivot)
18: end if

19: end if

20: end while

21: btlevel = getBacktrackLevel(constraint)
22: return constraint, btlevel
23: end procedure

We can conveniently insert a dynamically computed dependency scheme at this moment.
Before any dependency of e is learned, the dependencies of e according to the dependency
scheme are computed. Any u ∈ U that turns out to be independent of e can be removed
from the set of blocking variables. If everything in U is independent, no dependency
needs to be learned, and conflict analysis can proceed by performing a resolution step in

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Combining Resolution-Path Dependencies with Dependency Learning

LDQ(Drrs)-resolution, in which all u ∈ U are merged over e. If some variables in U turn
out to be actual dependencies of e, at least one of them has to be learned as usual. The
modification to the conflict analysis process is shown in Algorithm 5.

The computed dependencies of e are then stored and re-used in any future dependency
conflicts featuring e as the pivot variable, as well as in strengthening the reduction rule.

Soundness of QCDCL with dependency learning and the reflexive resolution-path de-
pendency scheme follows from the soundness of long-distance Q(Drrs)-resolution, the
underlying proof system used by the algorithm.

5.2.2 Dynamically Computing Drrs

When computing resolution-path connections, it is natural to start with a variable v,
and compute all variables which depend on v. This is because in this case, the set
of connecting variables that can form proper resolution paths is fixed—all existential
variables right of v are permitted—and the task of finding everything that depends on v is
reducible to reachability in a single directed graph. However, since a dependency conflict
may feature any number of blocking variables, we would potentially need to perform the
search many times in order to check each dependency. It would be preferable to compute
all dependencies of the pivot variable instead. However, since for every blocking variable
u ∈ U , the set of allowed connecting variables may be different, we cannot reduce the
task of finding all dependencies of the pivot e to just reachability in a single directed
graph, and we need a different approach.1

Definition 17. Let Φ be a PCNF formula, ℓ a literal of Φ, and wℓ : var(Φ) ∪ var(Φ) →
R ∪ {±∞} the mapping defined by

wℓ(l) =

∞ if l = ℓ,

δ(ℓ) if l 6= ℓ and var(l) is existential,

−∞ otherwise.

The depth-implication graph for Φ at ℓ, denoted DIG(Φ, ℓ) is the weighted version of
IG(Φ) where the weight of an edge (ℓ1, ℓ2) is defined as w(ℓ1, ℓ2) = wℓ(ℓ1).

For a path π in a weighted directed graph G, the width of π is defined as the minimum
weight over all edges of π. The following theorem relates resolution paths in a formula
with widest paths in its depth-implication graph.

Theorem 8. Let ℓ, ℓ′ be two literals of a PCNF formula Φ such that δ(ℓ′) < δ(ℓ). There
is a proper resolution path from ℓ to ℓ′ if, and only if, the widest path from ℓ to ℓ′ in
DIG(Φ, ℓ) has width larger than δ(ℓ′).

1This is the case regardless of the quantifier type of the pivot, the issue is that different targets in
the set of blocking variables can be reached using different connecting variables.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Using Resolution-Path Dependencies in Practice

Proof. Let π = ℓ, ℓ2, . . . , ℓ2k−1, ℓ
′ be a proper resolution path, and let

π′ = ℓ, ℓ2, . . . , ℓ2k−2, ℓ
′

be the corresponding path in DIG(Φ, ℓ) (by Lemma 1). The width of π′ is defined as

w(π′) = min
{

w(ℓ, ℓ2), . . . , w(ℓ2k−2, ℓ
′)
}

= min
{

wℓ(ℓ), . . . , wℓ(ℓ2k−2)
}

.

Since wℓ(ℓ) = ∞ and π is proper and hence none of its connecting variables are universal,
we have that w(π′) = min {δ(ℓ2), . . . , δ(ℓ2k−2)} > δ(ℓ′), where the inequality follows from
π being proper.

Conversely, let π′ = ℓ1, ℓ2, . . . , ℓk, ℓ
′ be a path of width greater than δ(ℓ′), and let

π = ℓ1, ℓ2, ℓ2, . . . , ℓk, ℓk, ℓ
′ be the corresponding resolution path. Since w(π′) > δ(ℓ′), no

connecting variables in π can be universal, and they all have to be right of ℓ′, hence π is
proper.

Naively applying the algorithm from [SS16a] would result in an overall quadratic running
time needed to determine all dependencies of a given variable v. Using Theorem 8 we
can reduce the task to two searches for widest paths, and obtain a much more favourable
time bound.

Theorem 9. Given a variable v of a PCNF formula Φ, all resolution-path dependencies,
i.e., the set {x ∈ var(Φ) : (x, v) ∈ Drrs

Φ }, can be computed in time O
(
‖Φ‖ log ‖Φ‖

)
.

Proof. In order to find out whether a given candidate variable x is a dependency of v,
one has to determine whether there is a pair of proper resolution paths, either from v to
x and from v to x, or from v to x and from v to x. Theorem 8 tells us that the existence
of proper resolution paths is equivalent to existence of wide paths. A generalization of
Dijkstra’s algorithm can compute widest paths from a single source to all destinations
in a given graph in quasilinear time [KP06]. The key observation is that the entire
computation is performed within two graphs, namely DIG(Φ, v) and DIG(Φ, v). By
computing all widest paths from both v and v, and then subsequently checking for which
candidate variables x both polarities of x are reached by a wide enough path, we can
find all dependencies of v.

By using the clause-splitting trick like in [SS16a] we can, in linear time, obtain an
equisatisfiable formula Φ′ with var(Φ) ⊆ var(Φ′) such that the resolution-path connections
between variables of Φ are the same. Since Φ′ has bounded clause size, we get that the
number of edges in IG(Φ′) is O

(
‖Φ′‖) = O

(
‖Φ‖), and the stated running time is then

simply the running time of Dijkstra’s algorithm.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Combining Resolution-Path Dependencies with Dependency Learning

5.3 Experiments

We modified the dependency-learning solver Qute so as to perform the procedure described
above—when a dependency is about to be learned, resolution-path dependencies of the
pivot variable are computed, and all blocking variables that turned out to be spurious
dependencies are eliminated. Furthermore, the computed dependencies are kept for re-use
in future dependency conflicts featuring the same pivot variable, as well as to be used in
generalized ∀-reduction.

We evaluated our solver on a cluster of 16 machines each having two 10-core Intel Xeon
E5-2640 v4, 2.40GHz processors and 160GB of RAM, running Ubuntu 16.04. We set
the time limit to 900 seconds and the memory limit to 4GB. As our benchmark set, we
selected the QDIMACS instances available in the QBF Library2 [GNPT05]. We first
preprocessed them using the preprocessor HQSpre3 [WRMB17] with a time limit of
400 seconds, resulting in a set of 14893 instances not solved by HQSpre. Out of these
instances, we further identified the set of easy instances as those solved within 10 seconds
by each of the following solvers: CaQE4 3.0.0 [RT15], DepQBF5 6.03 [BL10], QESTO6

1.0 [JM15], Qute7 1.1 [PSS19a], and RaReQS8 1.1 [JKMSC12]. We decided to focus only
on instances not solved by at least one of these solvers in under 10 seconds, as it arguably
makes little sense to try and push state of the art for formulas that can already be solved
in almost no time regardless of the choice of the solver. That left us with a set of 11262
instances.

Table 5.1 and Figure 5.2 show the comparison between plain Qute and the version
which implements the dependency scheme (Qute-Drrs). The version with the dependency
scheme solved 176 (roughly 4.5%) more instances than the version without. The scatter
plot in Figure 5.2 deserves further attention. While the overall number of solved instances
is higher for Qute-Drrs, the plot is skewed towards Qute-Drrs. We attribute this to a
small overhead associated with the use of the dependency scheme, which is most apparent
for the easiest formulas. The plot also shows that there are a few formulas solved by
the plain version, but not by Qute-Drrs. This is only partly due to the additional time
spent computing resolution paths, and is, in our opinion, in much larger part due to the
heuristics being led off the right track towards a proof of the formula.

We found two families of instances where the increase in number of solved instances is even
more significant, as is documented in Table 5.1. Particularly on the matrix multiplication
and reduction finding benchmarks the dependency scheme provides a tremendous boost
of performance, resulting in almost four times as many solved instances.

2http://www.qbflib.org/
3https://projects.informatik.uni-freiburg.de/users/4
4https://www.react.uni-saarland.de/tools/caqe
5https://github.com/lonsing/depqbf
6http://sat.inesc-id.pt/~mikolas/sw/qesto
7https://github.com/perebor/qute
8http://sat.inesc-id.pt/~mikolas/sw/areqs

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Summary and Discussion

Table 5.1: Number of instances solved by plain Qute vs Qute using the reflexive resolution-
path dependency scheme on the ‘matrix multiplication’ and ‘reduction finding’ families
of formulas, as well as on all instances.

MM-family RF-family all instances

of instances 334 2269 11262

solved by Qute (SAT / UNSAT) 34 (4/30) 423 (140/283) 3959 (1467/2492)
solved by Qute-Drrs (SAT / UNSAT) 123 (4/119) 484 (144/340) 4135 (1489/2646)

5.4 Summary and Discussion

We presented the first practical implementation of Drrs in a QBF solver. Thus, we
have demonstrated that the strongest known tractable sound dependency scheme can be
efficiently used in QBF solving. Our approach shows that dependency schemes can be
fruitfully combined with dependency learning. Our algorithm for the computation of all
resolution-path dependencies of a given variable may also be of independent interest.

While the additional prefix relaxation that comes from Drrs is no cure-all for the hardness
of QBF, we have found families of formulas where it provides a significant speedup.
In particular, the use of the dependency scheme turned out very beneficial on the
‘matrix multiplication’ and ‘reduction finding’ classes, which are both practically relevant
applications and further improvement using QBF would be valuable.

A possible direction for future work is to try to further improve the time bound of our
algorithm for computing the resolution-path dependencies of a variable either by using
data structures more suitable for this concrete scenario, or by preprocessing the formula.
A succinct, possibly implicit, representation of Drrs for use in other solver architectures
would also be very interesting.

Publication Notes

The research in this chapter appeared in a paper published in the proceedings of the
22nd International Conference on Theory and Applications of Satisfiability Testing (SAT
2019) [PSS19c].

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Combining Resolution-Path Dependencies with Dependency Learning

10−3 10−2 10−1 100 101 102 103

Qute

10−3

10−2

10−1

100

101

102

103

Q
u
te
-D

r
r
s

Figure 5.2: Runtimes of Qute with and without Drrson all instances.

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Polynomial-Time Validation of

QCDCL Certificates

In QBF solving, whether with or without dependency analysis, our main goal is to
determine the truth value of a given formula. This is the basic ability that any solver
must have, and we also frame questions in computational complexity theory in these
terms—as decision problems. However, once we want to actually apply QBF to real
world problems, we often find that it is necessary to get more from the solver than just a
plain yes/no answer. Such is the case when we encode tasks from software verification
and want to see the faulty counterexample, when we solve a synthesis problem and want
to get the synthesized program, or when we encode a 2-player game and are interested in
the winning strategy.

Additional information provided by a QBF solver is called a certificate—it certifies in an
independently verifiable way that the solver’s answer is correct. A certificate can have
several forms, but we will use the term to refer to models and countermodels.

A certificate has two purposes: to provide a means of checking the correctness of the
solver; and to serve itself as an object of interest, as described above. In both cases it is
desirable to validate the certificate, i.e. to check that it is really correct. This is a complex
process which ends with a query about the truth value of a propositional formula. We
show how certificates from QCDCL solvers can be validated in polynomial time, without
the need for calling a SAT solver in the last step.

We begin this chapter by describing the setting of the problem of QBF certificate
validation. Then, in Sections 6.2 and 6.3, we present an algorithm that computes a RUP
proof that can be used to replace the final call to the SAT solver by a simple proof check.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

6.1 QBF Certificate Validation

For the sake of simplicity, we will only focus on false PCNF formulas. The results
generalize to true formulas by duality, which will be discussed in Section 6.4.

Let ϕ be a CNF formula, let C be a boolean circuit. The substitution of C into ϕ,
denoted by ϕ[C], is simply the CNF formula ϕ in conjunction with a CNF encoding of
C (which may contain additional auxiliary variables). Let Φ = Q.ϕ be a false QBF in
PCNF, let C be a boolean circuit whose inputs are existential variables of Φ and whose
outputs are universal variables of Φ. The task of verifying that C is a countermodel of Φ
is to verify that ϕ[C] is unsatisfiable.

Some QCDCL QBF solvers are capable of outputting a trace that contains a (long-distance)
Q-resolution refutation of the formula solved. From this refutation, a countermodel
circuit can be computed by the Balabanov-Jiang (BJ) algorithm [BJ12], or by the
extended Balabanov-Jiang-Janota-Widl (BJJW) algorithm [BJJW15] for long-distance
Q-resolution. Let Φ = Q.ϕ be a QBF, let P be a (long-distance) Q-resolution refutation
of it, let CC(P) be the countermodel circuit computed by the appropriate version of
BJ/BJJW. The CNF formula that results from substitution of CC(P) into ϕ as described
in the previous paragraph, i.e., ϕ[CC(P)], is denoted by Φ[P], and is called the validation
formula for the QBF Φ and the proof P. This is the formula that must be checked for
unsatisfiability in order to verify the correctness of the certificate CC(P). We will now
present a way how to directly compute a RUP proof for the validation formula out of
the proof P, thus obviating the need to use a SAT solver and making validation checks
solvable in polynomial time.

6.2 RUP Proofs from Ordinary Q-Resolution

We will begin by describing a countermodel, and in particular its CNF version obtained
by the Tseitin conversion, computed by BJ. For a full explanation of the algorithm we
refer to the original paper [BJ12]. We illustrate the certificate extraction process on this
example formula

∃x1, x2 ∀y ∃z (x1 ∨ x2 ∨ y ∨ z) ∧ (x1 ∨ x2 ∨ z) ∧ (x1 ∨ x2)

∧ (x1 ∨ x2 ∨ y ∨ z) ∧ (x1 ∨ x2 ∨ z) ∧ (x1 ∨ x2)

along with its Q-resolution refutation:

(1) x1 ∨ x2 ∨ y ∨ z (input)

(2) x1 ∨ x2 ∨ y ∨ z (input)

(3) x1 ∨ x2 ∨ z (input)

(4) x1 ∨ x2 ∨ z (input)

(5) x1 ∨ x2 (input)

(6) x1 ∨ x2 (input)

(7) x1 ∨ x2 ∨ y (1, 3)

(8) x1 ∨ x2 (7)

(9) x1 ∨ x2 ∨ y (2, 4)

(10) x1 ∨ x2 (9)

(11) x1 (5, 8)

(12) x1 (6, 10)

(13) ⊥ (11, 12)

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. RUP Proofs from Ordinary Q-Resolution

Let P be a Q-resolution refutation of a formula Φ = Q.ϕ. BJ processes the clauses of P
forward (we assume a topological ordering of the proof), and every time a conclusion R
of a reduction step R = R′ − L (read the set of literals L is reduced from the clause R′

to obtain the clause R) is encountered, for every literal ℓ from L either the clause R (if ℓ
is positive) or the term R (if ℓ is negative) is pushed to what is called the countermodel
array of var(ℓ) (cf. [BJ12]). At the end, the arrays represent the countermodel functions
for their respective variables, in the following way:

Let u be a universal variable, and let its countermodel array have the entries X1, . . . , Xn.
This array is interpreted by constructing a set of partial circuits. Let fu

n = Xn. Then we
define

fu
k =

{

Xk ∧ fu
k+1 if Xk is a clause,

Xk ∨ fu
k+1 if Xk is a term,

and finally fu = fu
1 . The circuit fu represents the countermodel function for the variable

u. Intuitively, these circuits find the first reduction step whose conclusion is falsified, and
set all of the reduced literals in the premise so that they are falsified too, which ensures
that the falsified clause is implied by the conjunction of input clauses and hence at least
one of those is falsified too.

Figure 6.1: Schematic depiction of a countermodel circuit extracted by BJ. Each fi is
either an “and” or an “or” gate, depending on the context.

Let us see what this means on the example formula and proof. There is only one universal
variable, so we will only build one countermodel array. Processing the clauses forward,
the first conclusion of a reduction step that we encounter is (8), y is reduced in positive
polarity, so we push the clause (x1 ∨ x2) to the countermodel array. Next, we encounter
the conclusion (10), here y is reduced in negative polarity, so we push the negation of
the conclusion (x1 ∨ x2), the term (x1 ∧ x2). There are no more reduction steps, so the
final countermodel array for y is [(x1 ∨ x2), (x1 ∧ x2)]. According to the interpretation
above, this results in the circuit y = ((x1 ∨ x2) ∧ (x1 ∧ x2)) = (x1 ∧ x2). It can be easily
verified that this is indeed a countermodel for the formula.

Let us now examine how the circuit fu can be translated into CNF for substitution into
Φ. We can observe that the circuit fu has a nested structure, in which first the values of
all of the Xk are evaluated, which are then further processed by the circuit to obtain
the value for u. Every Xk is either a clause or a term corresponding to a conclusion of a
reduction step in P. Let R1, . . . , RN be all conclusions of reduction steps in P, in the
same order as they appear in the proof. Then for every Xk there is ik such that Xk = Rik

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

or Xk = Rik
. Let us define variables gi = Ri for 1 ≤ i ≤ N using the set of clauses

G =
{
{(gi ∨Ri)} ∪ {(gi ∨ ℓ) | ℓ ∈ Ri} | 1 ≤ i ≤ N

}
.

Rather than encoding each countermodel circuit using its Xk members, we will leverage
the fact that Xk is either equivalent to gik

or to gik
and replace it by the suitable polarity.

This way, the recursive definitions of fu
k boil down to

fu
n =

{

gin if Xn is a clause,

gin if Xn is a term,

and for 1 ≤ k < n

fu
k =

{

gik
∧ fu

k+1 if Xk is a clause,

gik
∨ fu

k+1 if Xk is a term.

At this point, since the countermodel arrays are populated in the order of the proof, we
can observe the following:

Observation 3. Whenever gik
and gik′

appear in the same circuit and k < k′, i.e., gik

comes before gik′
in the corresponding countermodel array, then also ik < ik′, i.e., the

reduction step corresponding to gik
also comes before the one corresponding to gik′

.

Using the simplified circuits with the variables gi, we can finally produce an encoding
into CNF. By using the Tseitin conversion, we get the clauses

F u
n =

{

(fu
n ∨ gin) ∧ (fu

n ∨ gin) if Xn is a clause,

(fu
n ∨ gin)

︸ ︷︷ ︸

F u
n,1

∧ (fu
n ∨ gin)

︸ ︷︷ ︸

F u
n,2

if Xn is a term,

and for 1 ≤ k < n

F u
k =

{

(fu
k ∨ gik

∨ fu
k+1) ∧ (fu

k ∨ gik
) ∧ (fu

k ∨ fu
k+1) if Xk is a clause,

(fu
k ∨ gik

∨ fu
k+1)

︸ ︷︷ ︸

F u
k,1

∧ (fu
k ∨ gik

)
︸ ︷︷ ︸

F u
k,2

∧ (fu
k ∨ fu

k+1)
︸ ︷︷ ︸

F u
k,3

if Xk is a term.

In our running example, we have two reduction steps, there are therefore two definitions
of g-variables, namely g1 = (x1 ∨x2) and g2 = (x1 ∨x2). If we replace the actual entries in
the countermodel array by the g-variables, we get the array [g1, g2] and the corresponding
circuit y = g1 ∧ g2. Its CNF encoding is

(y ∨ g1 ∨ g2) ∧ (y ∨ g1) ∧ (y ∨ g2).

Starting from a formula Φ = Q.ϕ and its Q-resolution refutation P, G will denote the
set of clauses defining the gi and F will denote the set of clauses F u

k (for all universals

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. RUP Proofs from Ordinary Q-Resolution

u and appropriate k) defining the countermodel. The validation formula Φ[P] is then
ϕ ∧G ∧ F and we will now present a RUP proof for it.

We will need the following notation. Let x, y be variables of a propositional formula ϕ,
let τ be an assignment to variables of ϕ. We write x ∼=ϕ

τ y if, for every extension σ of
τ that defines x or y, either unit propagation in ϕ[σ] causes a conflict or σ′(x) = σ′(y),
where σ′ is the closure of σ with respect to unit propagation. If ϕ is understood from
the context, we may drop the superscript, likewise, if τ is the empty assignment, we may
drop the subscript.

Lemma 13. Let u be a universal variable of Φ whose countermodel array has n entries
and the corresponding g-variables are gi1

, . . . , gin. For 1 ≤ k ≤ n let τk be a partial
assignment (to variables of Φ[P]) which sets gi1

, . . . , gik−1
to true. Then fu ∼=τk

fu
k .

Proof. We can see that the clauses F u
j,2[τk] are satisfied by gik

and gik
disappears from

F u
j,1[τk] for 1 ≤ j < k. The clauses F u

j,1[τk] and F u
j,3[τk] we are left with encode precisely

fu
j

∼= fu
j+1. Together, we have that under the assignment τk, fu = fu

1
∼= fu

k , or in other
words fu ∼=τk

fu
k .

The following lemma asserts that the intuition about how countermodel circuits find the
first falsified conclusion and set the variable accordingly is indeed true.

Lemma 14. For 1 ≤ i ≤ N let τi be a partial assignment (to variables of Φ[P]) which
sets g1, . . . , gi−1 to true and gi to false. Let ℓ be a universal literal that is reduced in the
reduction step leading to Ri. Under the assignment τi unit propagation (in Φ[P]) causes
a conflict or derives ℓ.

Proof. Let us assume unit propagation does not cause a conflict. Let u = var(ℓ), gi

occurs in the countermodel array of u as some gik
. If ℓ is positive, F u

k,2 together with

gik
propagate fu

k . If ℓ is negative, F u
k,2 together with gik

propagate fu
k . We can use

Observation 3 to see that all gik′
with k′ < k are set to true and Lemma 13 applies,

so that fu ∼= fu
k and the value for u propagated is false if ℓ is negative and true if ℓ is

positive. Either way, this means that ℓ is propagated.

With Lemma 14, we can describe how to construct a RUP proof for Φ[P] from P.

Theorem 10. Let P be a Q-resolution refutation of the formula Φ = Q.ϕ. Then there
exists a RUP proof of unsatisfiability of the validation formula Φ[P] of size O(|P|), and
this proof can be computed in O(|P|) time.

Proof. Let P ′ be P with each conclusion Ri replaced by the unit clause (gi), and with
the input clauses omitted. We claim that P ′ is a RUP proof of unsatisfiability of Φ[P].
Since resolvents are always RUP with respect to their premises we only need to verify
that all (gi) are RUP too. Let Ri = R′

i − L be a reduction step, let ℓ ∈ L be one of the

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

universal literals reduced to obtain Ri, let u = var(l). We need to prove that setting (gi)
to false causes a conflict by unit propagation. At the time when (gi) is inserted into the
proof, all (gj) with j < i have already been inserted and since they are unit clauses, all
gj with j < i are set to true by unit propagation. Adding to that the assignment gi, the
conditions of Lemma 14 are satisfied and so either unit propagation causes a conflict (in
which case we are done), or ℓ is propagated. Since ℓ was chosen without loss of generality,
all literals in L are propagated to false, and since gi trivially propagates all literals of
Ri to false, R′

i is falsified and a conflict is reached as required. Clearly, the size of P ′ is
bounded by the size of P , and it can be computed in time O(|P|) as the amount of work
per each clause of P is proportional to its size.

For example, the RUP proof constructed according to Theorem 10 from the example
Q-resolution proof would consist of the following sequence of clauses:

(x1 ∨ x2 ∨ y), (g1), (x1 ∨ x2 ∨ y), (g2), (x1), (x1), ⊥

6.3 RUP Proofs from Long-Distance Q-Resolution

With long-distance Q-resolution, we cannot directly use the clauses of the refutation
in the RUP proof as we did in the proof of Theorem 10, because these clauses may be
tautological. Instead, we adopt the approach that was used in the paper of Balabanov
et al. [BJJW15] in order to generalize BJ to long-distance Q-resolution proofs. The
following definition is taken from the paper of Balabanov et al. [BJJW15], with a slight
change of notation.

Definition 18. Let P be a long-distance Q-resolution refutation of the QBF Φ = Q.ϕ.
Let C ∈ P be a clause, ℓ ∈ C a literal and u = var(ℓ). The phase function of the variable
u in the clause C, denoted by uφ(C), is a boolean function defined recursively as follows:

• if C is an input clause, then uφ(C) = 1 if ℓ = u, otherwise uφ(C) = 0

• if C is the result of application of universal reduction on the clause C ′, uφ(C) =
uφ(C ′)

• if C is the resolvent of C1 and C2 on the pivot literal p, p ∈ C1, p ∈ C2, then
if u 6∈ var(C1), then uφ(C) = uφ(C2), if u 6∈ var(C2) or uφ(C1) = uφ(C2), then
uφ(C) = uφ(C1), otherwise uφ(C) = (p ∧ uφ(C2)) ∨ (p ∧ uφ(C1))

The effective literal of ℓ in C, denoted by ℓǫ(C), is a literal that satisfies ℓǫ(C) ⇔ (u ⇔
uφ(C)). The shadow clause of C is the clause Cσ =

∨

ℓ∈C ℓ
ǫ(C).

The phase function intuitively tells us, under a given assignment to previous variables
in the quantifier prefix, what is the phase in which a given universal variable would
have appeared in a given clause, had we restricted the proof using that assignment. The

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. RUP Proofs from Long-Distance Q-Resolution

effective literal is a literal which, based on an assignment to previous existential variables,
is equivalent to the polarity of its variable indicated by the phase function. Note that in
the case when the phase function is constant, i.e. 0 or 1, the effective literal of any literal
is simply the literal itself. In such cases we say that the literal is unmerged. Literals that
are not unmerged are merged.

We will now present a description of the countermodel computed by BJJW from a
long-distance Q-resolution refutation. In order to do that, we adapt the notation from
Section 6.2. Let P be a long-distance Q-resolution refutation of a formula Φ = Q.ϕ.
The conclusions of reduction steps in P, in the same order as they appear, are denoted
by R1, . . . , RN . The variables gi, 1 ≤ i ≤ N , are now equivalent to the shadow clauses
Ri

σ instead of Ri themselves. Since BJJW keeps track of the phase function of every
universal variable in every clause, we will use a variable uφ(C) to denote the output of
the phase function. We will also have variables ℓǫ(C) for the effective literals. In the case
of unmerged literals, this will simply be ℓ. By H we will denote the conjunction of all
clauses that encode the circuits which define phase variables and effective literals.

The partial countermodel circuits fu
k from the previous section are slightly more com-

plicated now. Let Ri = R′
i − L be a reduction step, let ℓ ∈ L be a literal that is being

reduced, let u = var(ℓ). If ℓ is unmerged, Ri
σ is pushed into the countermodel array

of u, similarly as in the case of ordinary Q-resolution. However, if ℓ is merged, we first
require that both ℓ and ℓ be reduced at the same time (merged literals arise from merges,
so they are always in both polarities in a clause), and as such two entries are pushed into
the countermodel array of u, namely Ri

σ ∨ uφ(R′
i) and right afterwards Ri

σ ∧ uφ(R′
i).

The intuition for why these entries are added is the following: if the phase uφ(R′
i) of

ℓ in R′
i is positive, and the (shadow clause of the) conclusion is falsified, set u to false,

otherwise if the phase is negative and the conclusion is falsified, set u to true, each time
falsifying the effective literal ℓǫ(R′

i). This is analogous to the ordinary case, where when
the conclusion is falsified, the reduced literal is set so that it is falsified, only in this case
we falsify the effective literal.

Now, for the sake of simplicity of presentation, we will treat unmerged literals the same
way as merged ones. This means that even for unmerged reduced literals we push two
entries into the countermodel array, Ri ∨ uφ(R′

i) and Ri ∧ uφ(R′
i). It is easy to see that

if uφ(R′
i) = 1, the term becomes falsified and the clause reduces to just Ri, while if

uφ(R′
i) = 0, the clause becomes satisfied and the term reduces to just Ri. In each case,

the circuit is equivalent to what we would have produced by pushing just the one entry
as previously.

Let X1, . . . , X2n be the entries in the countermodel array of a universal variable u. Each
X2k−1 is Rik

σ ∨ uφ(R′
ik

) and X2k is Rik

σ ∧ uφ(R′
ik

). We have already defined gi = Ri
σ,

but since each entry in the countermodel array still contains two variables even after
replacing Rik

σ with gik
, we will define the auxiliary variables f

′u
2k−1 = gik

∨ uφ(R′
ik

) and

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

f
′u
2k = gik

∧ uφ(R′
ik

) using the following sets of clauses (for 1 ≤ k ≤ n):

F
′u
2k−1 =

F
′u
2k−1,1

︷ ︸︸ ︷
(
f

′u
2k−1 ∨ gik

∨ uφ(R′
ik

)
)

∧

F
′u
2k−1,2

︷ ︸︸ ︷
(
f

′u
2k−1 ∨ gik

)
∧

F
′u
2k−1,3

︷ ︸︸ ︷
(
f

′u
2k−1 ∨ uφ(R′

ik
)
)

F
′u
2k =

(
f

′u
2k ∨ gik

∨ uφ(R′
ik

)
)

︸ ︷︷ ︸

F
′u
2k,1

∧
(
f

′u
2k ∨ gik

)

︸ ︷︷ ︸

F
′u
2k,2

∧
(
f

′u
2k ∨ uφ(R′

ik
)
)

︸ ︷︷ ︸

F
′u
2k,3

Let F ′ be the conjunction of all F
′u
k for all universal variables u and all appropriate k.

The following is immediate from the clauses F ′.

Observation 4. Setting gik
to true causes unit propagation to set f

′u
2k−1 and f

′u
2k.

Finally, we are ready to present the set F of clauses which encode the countermodel
circuit:

F u
2n,1 = (fu

2n ∨ f
′u
2n), F u

2n,2 = (fu
2n, f

′u
2n),

and for 1 ≤ k < 2n

F u
k =

{

(fu
k ∨ f

′u
k ∨ fu

k+1) ∧ (fu
k , f

′u
k) ∧ (fu

k , f
u
k+1) if k is odd,

(fu
k ∨ f

′u
k ∨ fu

k+1)
︸ ︷︷ ︸

F u
k,1

∧ (fu
k , f

′u
k)

︸ ︷︷ ︸

F u
k,2

∧ (fu
k , f

u
k+1)

︸ ︷︷ ︸

F u
k,3

if k is even.

Similarly as before, let F be the conjunction of all F u
k for all appropriate u and k, and

let G be the conjunction of the clauses defining the equivalences gi ⇔ Ri
σ. Then, the

validation formula for Φ and P is Φ[P] = ϕ ∧ F ∧ F ′ ∧G ∧H.

The following are analogues of Lemmas 13 and 14.

Lemma 15. Let u be a universal variable of Φ whose countermodel array has 2n entries
and the corresponding g-variables are gi1

, . . . , gi2n
. For 1 ≤ k ≤ 2n let τk be a partial

assignment (to variables of Φ[P]) which sets gi1
, . . . , gik−1

to true. Then fu ∼=τk
fu

2k−1.

Proof. Let 1 ≤ j < k. Applying Observation 4, we see that f
′u
2j−1 and f

′u
2j are propagated,

in each case, inspecting the restricted clauses that remain, we see that fu
2j−1

∼=τk
fu

2j and
fu

2j
∼=τk

fu
2j+1. Altogether, we get fu ∼=τk

fu
k .

Lemma 16. For 1 ≤ i ≤ N let τi be a partial assignment (to variables of Φ[P]) which
sets g1, . . . , gi−1 to true and gi to false. Let u be a universal variable of Φ in whose
countermodel gi appears as some gik

. Let Ri be the corresponding reduction step, obtained

from R′
i. Then, under either of the assignments τi ∪ uφ(R′

i) and τi ∪ uφ(R′
i), unit

propagation (in Φ[P]) causes a conflict or derives uǫ(R′
i).

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. RUP Proofs from Long-Distance Q-Resolution

Proof. Assume unit propagation does not cause a conflict. Let us assume uφ(R′
i) first.

Since we have gik
∧uφ(R′

i), the clause F
′u
2k−1,1 propagates f

′u
2k−1, which in turn propagates

fu
2k−1. Since g1, . . . , gi−1 are set to true, Lemma 15 applies and the value of fu

2k−1 is
propagated for the value of u, meaning u is propagated. Together with the assumption
uφ(R′

i), we have that the effective literal uǫ(R′
i) is set to false by unit propagation.

If on the other hand we assume uφ(R′
i), f

′u
2k−1 is propagated from F

′u
2k−1,3, which means

that the restricted clauses F u
2k−1 now encode fu

2k−1
∼= fu

2k. Also, F
′u
2k,1 propagates f

′u
2k,

which in turn propagates fu
2k. Since g1, . . . , gi−1 are set to true, Lemma 15 applies and

the value of fu
2k is propagated for the value of u, meaning u is propagated. Together with

the assumption uφ(R′
i), we have that the effective literal uǫ(R′

i) is set to false by unit
propagation.

While in the case of ordinary Q-resolution, the resolvent of two clauses is always RUP
with respect to those clauses, this is not true in the case of long-distance Q-resolution.
This is due to the fact that if a merge occurs, a fresh effective literal is introduced in the
resolvent, and just falsifying this new fresh literal without the knowledge of the value
of the corresponding phase variable does not cause the effective literals in the premises
of the resolution step to become falsified. Therefore, we first prove that a set of extra
clauses can be derived from the definitions of phase functions and effective literals. These
clauses will then empower unit propagation to deal with merged effective literals the
same way as with unmerged ones.

Let C be the resolvent of C1 and C2 on the pivot literal p ∈ C1 (and p ∈ C2). Let ℓ ∈ C1,
ℓ ∈ C2, u = var(ℓ) be a universal literal such that uφ(C1) 6= uφ(C2), i.e. u is being
merged in this resolution step. Then the clauses Eu

C,C1
and Eu

C,C2
are defined as follows:

Eu
C,C1

= (uǫ(C) ∨ p ∨ uǫ(C1)), Eu
C,C2

= (uǫ(C) ∨ p ∨ uǫ(C2)).

We will denote by E the set of all Eu
C,D for appropriate premise D, resolvent C, and

merged literal u. The clauses of E will provide us with a direct relationship between
successive effective literals of one variable. They express one direction of the conditional
dependence of an effective literal on the previous effective literals—if an effective literal is
false, then based on the value of the pivot variable, the corresponding previous effective
literal must be false too.

Lemma 17. All clauses of E are derivable by RUP from H. The combined size of the
RUP proofs is O(|P|) and they are computable in O(|P|) time.

Proof. Let Eu
C,D ∈ E, let p ∈ D be the pivot literal. It can be easily verified by unit

propagation on the definitions of phase functions and effective literals that the following
is the required RUP proof:

(uǫ(C) ∨ p ∨ uǫ(D) ∨ uφ(C)), (Eu
C,D)

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

Clearly, per each resolution step, these proofs only take up constant space and are
computable in constant time, resulting in an overall linear bound.

We now state the main result of this section.

Theorem 11. Let P be a long-distance Q-resolution refutation of the formula Φ = Q.ϕ.
Then there exists a RUP proof of unsatisfiability of the validation formula Φ[P] of size
O(|P|), and this proof can be computed in O(|P|) time.

Proof. Let F, F ′, G,H be the sets of clauses described above. Let PE be the combined
RUP proof of all clauses of E from H from Lemma 17. For each reduction step Ri = R′

i−L,
let VL = {u1, . . . , us} be some ordering of var(L), s = |var(L)|. We define the variables
gi,j for each 1 ≤ j ≤ s recursively in the following way (recall that gi is defined equal to
Ri

σ):

gi,s = gi

gi,j = gi,j+1 ∨ uj+1
ǫ(R′

i) for 1 ≤ j < s

Essentially, gi,j is equivalent to
(
R′

i − {u1, u1, . . . , uj , uj}
)σ

, or in other words, to an
intermediate shadow clause with only a subset of the variables reduced. Let P ′ be the
sequence of shadow clauses of P with each Ri

σ replaced by the following sequence of
clauses:

(
gi,1 ∨ u1

φ(R′
i)
)
,
(
gi,1
)
, . . . ,

(
gi,s ∨ us

φ(R′
i)
)
,
(
gi,s
)
,

and with C ∨ p inserted before each resolvent C in whose resolution step on the pivot
literal p a variable is being merged. Then, we claim that PE followed by P ′ is a linear-size
linear-time-computable RUP proof of unsatisfiability of Φ[P]. Since by Lemma 17 PE

satisfies the requirements, it only remains to verify that P ′ is a valid RUP proof of the
required size. Moreover, since we have already proven the clauses E by PE , we can use
them to argue the soundness of P ′.

The rest of the proof will proceed in two stages. In the first stage, we verify that the
shadow clauses of the resolvents as they are introduced into the RUP proof are RUP
indeed, in the second stage we verify the soundness of reduction steps.

For the first stage, we will use the clause set E. It is sufficient to check the RUP property
of resolvents in whose resolution steps a variable is merged, the ordinary resolvents are
trivially RUP. Let C be the resolvent of C1 and C2 on the pivot p, p ∈ C1. Let u1, . . . , um

be the variables that are merged in this reduction step. First, we have to verify that
Cσ ∨ p is RUP. Setting all literals of Cσ and p to false falsifies everything in C1

σ, except
the effective literals u1

ǫ(C1), . . . , um
ǫ(C1). Let 1 ≤ j ≤ m and consider the clause E

uj

C,C1
.

By assumption, uj
ǫ(C) and p are set to false, which causes E

uj

C,C1
to propagate uj

ǫ(C1).
This is done for all uj , altogether falsifying the clause C1

σ and meaning Cσ ∨ x is indeed
RUP. In order to see that Cσ is RUP once we have Cσ ∨ p consider that setting Cσ to
false sets p to true by unit propagation. Now, for 1 ≤ j ≤ m, uj

ǫ(C) is set to false and p
to true, so the clause E

uj

C,C2
propagates uj

ǫ(C2), ultimately falsifying C2
σ.

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. True Formulas

Let Ri = R′
i − L be a reduction step, let VL = {u1, . . . , us}. We will prove by induction

on s that all of the intermediate clauses introduced for this reduction step are RUP. If
s = 1, we have that gi occurs in the countermodel array of u1 as some gik

. When gi,1 is
set to false, gi is set to false by unit propagation, and so is Ri

σ. If in addition u1
φ(R′

i)
is set to false, either a conflict is reached, or u1

ǫ(R′
i) is set to false by unit propagation

by Lemma 16. Since R′
i
σ = Ri

σ ∨ u1
ǫ(R′

i) and Ri
σ is falsified, we have that R′

i
σ is now

falsified too. This means that the clause
(
gi,1 ∨ u1

φ(R′
i)
)

is RUP. To see that afterwards
the clause

(
gi,1
)

is RUP, consider that in this case the previous clause will propagate
u1

φ(R′
i), by Lemma 16 u1

ǫ(R′
i) is set to false by unit propagation, and R′

i
σ is again

falsified.

For s > 1 we argue similarly using gi,s. When gi,s is set to false, gi is set to false by unit
propagation, and so is Ri

σ. If in addition us
φ(R′

i) is set to false, either a conflict is reached,
or us

ǫ(R′
i) is set to false by unit propagation by Lemma 16. Since gi,s−1 = gi,s ∨ us

ǫ(R′
i),

unit propagation sets gi,s−1 to false, a conflict. To see that afterwards the clause
(
gi,s
)

is
RUP, consider that in this case the previous clause will propagate u1

φ(R′
i), by Lemma 16

uj
ǫ(R′

i) is set to false by unit propagation, and gi,s−1 is again falsified.

This concludes the proof of soundness of P ′. As for the time and space claims, consider
that for each resolvent and reduction step, only a linear number of literals (in the size of
the resolvent or premise of reduction step) is introduced into the proof. These literals can
easily be computed in linear time as we only need to know the phase variables, effective
literals, and the gi,j variables, which we create freshly while processing the reduction
step.

Finally, let us point out that even though we presented concrete CNF encodings for many
of the circuits, other encodings can work as well. Namely, it is sufficient if the encodings
contain the g-variables (because these are present in the RUP proof) and satisfy the
unit-propagation properties of the lemmas.

6.4 True Formulas

In this section we show how to derive analogues of Theorems 10 and 11 for true formulas.
Let us start with the case of a (long-distance) Q-consensus proof P of a true PDNF
formula Φ = Q.ϕ. In this case the validation formula Φ[P] for the model CC(P) is the
DNF ϕ in disjunction with DNF(CC(P)). The task of validation of the model CC(P) is to
check that Φ[P] is valid, and checking the validity of Φ[P] is equivalent to checking that
the CNF Φ[P] is unsatisfiable.

Theorem 12. Let P be a long-distance Q-consensus proof of the PDNF formula Φ = Q.ϕ.
Then there exists a RUP proof of unsatisfiability of the negated validation formula Φ[P]
of size O(|P|), and it can be computed in O(|P|) time.

Proof. We observe that the countermodels extracted by BJ/BJJW from P and from
its negation P (the sequence of negated terms of P) are in fact the same (we have not

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

discussed the variants of BJ/BJJW for true formulas here, but check the definitions
in [BJ12, BJJW15] to see that this trivially holds), which means that their CNF and
DNF encodings are negations of one another. This means that

Φ[P] = ϕ ∨ DNF(CC(P)) = ϕ ∧ DNF(CC(P)) = ϕ ∧ CNF(CC(P)) = Φ[P],

and we can apply Theorem 11 on Φ and P.

For a Q-consensus proof P of a true PCNF formula Φ = Q.ϕ let us first clarify what the
validation formula looks like. We would need to check the validity of ϕ ∨ DNF(CC(P)),
but ϕ is a CNF and CC(P) must be encoded as a DNF for validity checking. Therefore,
we need to first transform ϕ to DNF using the Tseitin transformation as follows. Suppose
ϕ = C1 ∧ · · · ∧ Cn. We will define the clause variables ci = Ci and represent DNF(ϕ) as
follows:

DNF(ϕ) =
n∨

i=1

[

(ci ∧ Ci) ∨
∨

ℓ∈Ci

(ci ∧ ℓ)
]

∨ (c1 ∧ · · · ∧ cn).

The validation formula Φ[P] is then DNF(ϕ) ∨ DNF(CC(P)). As before, instead of checking
the validity of Φ[P], we will check the unsatisfiability of Φ[P].

Theorem 13. Let P be a long-distance Q-consensus proof of the PCNF formula Φ = Q.ϕ
with the set of initial terms µ. If every clause from µ is RUP with respect to DNF(ϕ),
then there exists a RUP proof of unsatisfiability of the negated validation formula Φ[P]
of size O(|P|), and it can be computed in O(|P|) time.

Proof. Let M = Q.µ be the PDNF consisting of the initial terms. Using Theorem 12, we
obtain a RUP proof for the negated validation formula M [P] = M [P] = µ ∧ CNF(CC(P)).
By prepending µ to this proof, we obtain a RUP proof of DNF(ϕ) ∧ CNF(CC(P)) = Φ[P]
of size O(|P| + |µ|) = O(|P|).

There are two common ways of obtaining initial terms. One is to transform the CNF
ϕ to DNF [JM17], in which case there is nothing to prove, because the negated initial
terms are directly members of DNF(ϕ) and therefore RUP. The other way is to produce
hitting sets of the clauses of ϕ. In this case, since every initial term is a hitting set of the
clauses C1, . . . , Cn, we have that for every initial term I and for every clause Ci, there is
always a clause of CNF(ϕ) of the form (ci ∨ ℓ), such that ℓ ∈ I. Therefore, by assuming
the negation of a negated initial term, i.e. the term itself, unit propagation will propagate
ci for all i, which in turn causes a conflict with the clause (c1 ∨ · · · ∨ cn). Therefore, every
clause in ¬µ is indeed RUP with respect to DNF(ϕ) and Theorem 13 applies.

Finally, in the paragraph above we mentioned that initial terms are hitting sets of the
clauses of ϕ (in one of the cases). In fact, this need not always be true, since the
hitting sets might have existential reduction applied to them first according to the model
generation rule [GNT06]. Since it is no problem for the QBF solver to output the original
hitting set without applying existential reduction, but very difficult (NP-hard in general)

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Experiments

for the proof-checker to recover it, we suggest to strengthen the conditions on the QRP
proof format by requiring that the initial terms be full hitting sets. If this condition is
not met our algorithm may fail to produce valid RUP proofs for true PCNF formulas.
Fortunately DepQBF always generated terms that happened to be full hitting sets in our
experiments.

6.5 Experiments

We implemented the algorithm of Theorem 11, which generalizes Theorem 10, in a tool
called qrp2rup (https://www.ac.tuwien.ac.at/research/certificates/)
and evaluated the performance compared to various other approaches to certificate
validation. In particular, since our tool is also capable of emitting deletion information
for DRAT-trim, we evaluated the following six configurations of certificate extractors
and validators:

• qrp2rup with deletion information
and validation by DRAT-trim,

• qrp2rup without deletion informa-
tion (plain) and validation by DRAT-
trim,

• qrp2rup and validation by Lingeling

(ignoring the RUP proof),

• qrp2rup and validation by Glucose
(ignoring the RUP proof),

• QBFcert and validation by Lingeling,

• QBFcert and validation by Glucose.

We also experimented with configurations of DRAT-trim that used forward checking
(instead of the default backward checking), but excluded the results due to systematically
inferior performance. Note that since QBFcert cannot handle long-distance Q-resolution,
only the first four configurations were used for the experiments with long-distance proofs.
To produce both ordinary and long-distance Q-resolution proofs, we used DepQBF 6.03 in
a configuration that allowed tracing (i.e., with most of the advanced techniques off) with a
cut-off time of 900 CPU seconds and a memory limit of 4GB. The validation process was
limited to 1800 CPU seconds and 7GB of memory. The experiments were run on a cluster
of heterogeneous machines running 64-bit Ubuntu 16.04.3 LTS (GNU/Linux 4.10.0-42).
We evaluated the tools on the PCNF benchmark sets from the QBF Evaluations 2017,
2016, and 2010. The numbers of true and false validated instances for each configuration
and benchmark set are reported in the tables below. The column “total” reports the
total number of proofs for true and false formulas produced by DepQBF.

The results indicate that our approach is beneficial mainly on true formulas, but performs
well across the board. Interestingly, even though QBFcert tends to produce smaller
certificates than qrp2rup, Glucose performs worse on them. QBFcert internally uses
AIG-based optimizations to shrink the certificates, and it is conceivable that these
optimizations hurt Glucose’s performance.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Polynomial-Time Validation of QCDCL Certificates

QBFcert qrp2rup qrp2rup

SAT solver SAT solver DRAT-trim

year total Lingeling Glucose Lingeling Glucose deletion plain
2010 162+230 88+215 88+216 88+225 92+228 99+224 99+223
2016 157+206 124+196 123+197 116+202 128+203 136+202 136+200
2017 18+62 12+58 12+58 11+62 12+63 12+63 12+62

Table 6.1: Ordinary Q-resolution proofs: number of true+false formulas validated.

qrp2rup+SAT-solver qrp2rup+DRAT-trim

year total Lingeling Glucose deletion plain
2010 149+222 93+215 95+217 100+215 100+215
2016 160+250 120+197 131+200 137+196 137+196
2017 17+59 12+59 13+59 13+59 13+59

Table 6.2: Long-distance Q-resolution proofs: number of true+false formulas validated.

6.6 Summary and Discussion

We have presented a way of using (long-distance) Q-resolution/Q-consensus proofs in the
process of validating QBF certificates. Our approach does not require a SAT call and
comes with a polynomial runtime guarantee. Since it allows us to generate proofs in a
format that is routinely used to verify the answers produced by SAT solvers and that has
prompted the development of formally verified checkers [Lam17,HHKW17,CFHH+17],
we can have a high degree of confidence in the correctness of certificates validated in this
manner.

However, one subtle challenge remains. When constructing the validation formula Φ[P],
we take the matrix of Φ and append a CNF encoding of the countermodel. In principle, if
we instead appended a small unsatisfiable CNF formula such as (x) ∧ (x), we could be led
to believe that it represents a countermodel when in reality it is much more restrictive
than a countermodel is allowed to be (a formula that does not encode a set of functions).
It would be desirable to have a way of checking that what we appended to the original
matrix is indeed a set of functions (with the correct dependencies) for universal variables.
This may require formal verification of parts of the certificate extraction algorithm.

A potential limitation of our approach is that it is sensitive to certain aspects of the CNF
encoding of the countermodel to be validated, and therefore does not necessarily work
with certificates extracted by other tools. However, our method ought to be compatible
with simple circuit-level simplifications of certificates. Moreover, we hope to improve
performance by generating GRAT [Lam17] proofs of validation formulas as future work.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.6. Summary and Discussion

Publication Notes

The research in this chapter appeared in a paper published in the proceedings of the
21st International Conference on Theory and Applications of Satisfiability Testing (SAT
2018) [PSS18].

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Proof Complexity of Fragments of

Long-distance Q-resolution

Proof complexity is an invaluable tool in the study of the limits (and strengths) of QBF
solvers. Analyzing even simple versions of QCDCL can be very complicated, let alone
when decision heuristics and other details enter the field. If, however, we can argue
that a given solver searches for proofs in some proof system, and that a given formula
only has exponentially long proofs in that proof system (a lower bound), then we obtain
bulletproof evidence that the solver is going to perform poorly no matter what heuristics
it uses.

We present lower bounds and general lower-bound techniques for several fragments of
long-distance Q-resolution in this chapter. We also observe that a previously known
upper bound can be rephrased in stronger terms in our context, yielding a separation of
two important fragments of long-distance Q-resolution: Q-resolution, i.e., the fragment
that has universal reduction but no merging; and reductionless long-distance Q-resolution,
i.e., the fragment that has merging but no reduction.

The rules of reductionless long-distance Q-resolution are shown in Figure 7.1. The QBF
solver GhostQ [KSGC10] uses reductionless long-distance Q-resolution for learning.
Indeed, in a search-based solver that assigns variables in the order of the quantifier prefix,
universal reduction is not required to derive a learned clause. One only needs to identify
purely universal clauses, which are treated as if they were empty. Note, however, that
while the reductions do not help in deriving a single learned clause, it is not known
whether they cannot speed the solver up in the long run by learning shorter clauses.
Reductionless long-distance Q-resolution was originally called Qw-resolution [BJK15],
but we will stick to the longer, somewhat more self-explanatory name.

We have already defined Q-resolution and long-distance Q-resolution in Chapter 2 in
Figures 2.1 and 2.2. In this chapter, we will sometimes write u∗ for the merged literal

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Proof Complexity of Fragments of Long-distance Q-resolution

(input clause)
C

Every input clause C ∈ ϕ can be used as an axiom.

C1 ∨ e ¬e ∨ C2 (long-distance resolution)
(C1 \ C2) ∨ (C2 \ C1) ∨ {u∗ : u ∈ var(C1 ∩ C2) }

It is required that e <Φ u for each variable u ∈ var(C1 ∩C2) and that C1 ∨C2 does not contain
an existential variable and its negation.

Figure 7.1: Derivation rules of reductionless Q-resolution for a PCNF formula Φ = Q.ϕ.

u ∨ ¬u created by long-distance resolution, and let u∗ = u∗ and var(u∗) = u.

As usual, we consider derivations in these proof systems which are sequences C1, . . . , Ck

of clauses such that each clause Ci is an axiom or derived from clauses appearing earlier in
the sequence using one of the proof rules. The definition of a refutation is slightly adapted:
it is a derivation of the empty clause; or, in the case of reductionless Q-resolution, a
derivation of a purely universal clause. In the following sections, we will also sometimes
write C1 ⊙xC2 to denote the resolvent of C1 and C2 on pivot x. If the pivot is understood
we may simply write C1 ⊙ C2.

7.1 A Lower Bound for Reductionless Q-resolution

We generalize an exponential lower bound for level-ordered Q-resolution [JMS15] for the
completion principle formulas CRn. We have already used these formulas before, to prove
certain properties of QCDCL with dependency learning in Chapter 4 (see Definition 12),
but we repeat the definition below for convenience. A Q-resolution derivation is level-
ordered if the order of pivot variables encountered on any path in the derivation follows
the order in the quantifier prefix. A level-ordered Q-resolution refutation can be turned
into a reductionless Q-resolution refutation simply by omitting the reduction steps.

Definition 19 ([JMS15]). Let

CRn = ∃
1≤i,j≤n

xij ∀z
n
∃

i=1
ai

n
∃

j=1
bj

(
∧

1≤i,j≤n

Aij ∧Bij

)

∧A ∧B,

where
Aij = xij ∨ z ∨ ai,

Bij = xij ∨ z ∨ bj ,

A = a1 ∨ · · · ∨ an,

B = b1 ∨ · · · ∨ bn.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1. A Lower Bound for Reductionless Q-resolution

We will prove the following result.

Theorem 14. Any reductionless Q-resolution refutation of the formula CRn has size at
least 2n.

In the following we assume n ≥ 2 (Theorem 14 obviously holds for n = 1), Π is a
reductionless Q-resolution refutation of CRn, C is a clause of Π, and C⊥ the conclusion
of Π (recall that a reductionless Q-resolution refutation ends in a purely universal clause).
For the purposes of this subsection, we will consider a merged literal u∗ as a shorthand
for u ∨ ¬u.

Claim 1. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n,

• if ai ∈ C or xij ∈ C then z ∈ C,

• if bj ∈ C or xij ∈ C then z ∈ C.

Proof. The statement holds for input clauses and universal literals are never removed
from clauses.

Claim 2. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n,

• if ai ∈ C then z ∈ C or C = A,

• if bj ∈ C then z ∈ C or C = B.

Proof. The statement holds for input clauses. Let C be the resolvent of C1 and C2 and
assume without loss of generality that ai ∈ C1. By induction hypothesis either z ∈ C1,
in which case z ∈ C, or C1 = A, in which case the resolution step is over some pivot aj .
That means aj ∈ C2, and by Claim 1 we have z ∈ C2 and so z ∈ C.

Claim 3.

• For all 1 ≤ i ≤ n, if z 6∈ C ∧ ai 6∈ C ∧ C 6= B, then there is j, such that xij ∈ C,

• For all 1 ≤ j ≤ n, if z 6∈ C ∧ bj 6∈ C ∧ C 6= A, then there is i, such that xij ∈ C.

Proof. By induction on the proof size. The statement clearly holds for input clauses. Let
C be the resolvent of C1 and C2. Since z 6∈ C, both z 6∈ C1 and z 6∈ C2. Since ai 6∈ C,
either ai 6∈ C1 or ai 6∈ C2, assume the first. If C1 = B, then the resolution step can only
resolve away one of the literals, and so there is j such that bj ∈ C. By Claim 2 (since
C 6= B) we have z ∈ C, a contradiction. Therefore C1 6= B and by induction hypothesis
there is j such that xij ∈ C1. Unless the resolution step is on xij , we have xij ∈ C, so it
remains to prove that this is indeed not the case. If xij were the pivot, then xij ∈ C2,
hence z ∈ C2, a contradiction.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Proof Complexity of Fragments of Long-distance Q-resolution

Claim 4. The conclusion C⊥ contains z∗.

Proof. C⊥ contains no existential literals and is distinct from A and B, so in order not
to be in contradiction with Claim 3, the statement has to hold.

Claim 5. If z, z ∈ C, then for all 1 ≤ i, j ≤ n we have ai, ai, bj , bj 6∈ C.

Proof. Consider the last C that violates this implication. Clearly C 6= C⊥. Therefore,
there is C0 and C1 such that C1 is the resolvent of C and C0. Clearly z, z ∈ C1. Since C1

no longer violates the condition, there is no literal right of z in C1. Hence C0 is neither
A nor B. Therefore by Claim 1 and Claim 2, a literal on z is in C0. Since C violates
the implication, there is a literal right of z in C, but since there is none in C1, the pivot
variable must be right of z. That means the resolution step is illegal, a contradiction.

Claim 6. If C is the resolvent of C1 and C2 and z, z ∈ C, then neither C1 nor C2

contains any of the literals ai, ai, bj , bj.

Proof. If z, z ∈ C1 or z, z ∈ C2, then the statement follows from Claim 5. Otherwise, the
resolution step merges z and z. That means the pivot must be left of z, and so any of the
literals ai, ai, bj , bj would end up in C if contained in any of the premises, a contradiction
with Claim 5.

For the next claims, we need to introduce sets M and S as follows. We let

M = {C ∈ Π : z∗ ∈ C }

be the set of clauses which contain a merged literal. We define S as the “boundary” of M ,
i.e., the set of clauses that do not contain a merged literal but have a direct descendant
that does, formally

S = {C ∈ Π : C /∈ M and there are C0, C1 ∈ Π s.t. C1 = C ⊙ C0 and C1 ∈ M }.

Claim 7. If C ∈ S, then ai, ai, bj , bj 6∈ C.

Proof. Follows from Claim 6 as C ∈ S has a direct descendant with z∗.

Claim 8. If C ∈ S then |C \ {z, z}| ≥ n.

Proof. By Claim 7 and the fact that C 6∈ M we get that all preconditions of one of the
rows of Claim 3 are satisfied for C, which means that either for all i there is a j such that
xij ∈ C, or for all j there is an i such that xij ∈ C, in both cases a total of n distinct
literals, none of which is a literal on z.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. Short Proofs of QParity in Reductionless Q-Resolution

of Theorem 14. Consider Π′ = S ∪M . Clauses in M have direct ancestors only in M or
S (any direct ancestor that is not in M is by definition in S). Since C⊥ ∈ M , Π′ is a
reductionless Q-resolution refutation of S. If we disregard literals on z, it is in fact a
resolution refutation of the propositional formula S, which means that S is unsatisfiable.
By Claim 8, every clause in S has at least n literals, and so it excludes at most 2n2−n

of the assignments to the variables of S. Therefore, S must have at least 2n clauses in
order to exclude all assignments and be unsatisfiable.

Corollary 5. Reductionless Q-resolution does not p-simulate tree-like Q-resolution.

Proof. Since CRn have short proofs in tree-like Q-resolution [Jan16], the separation
follows from Theorem 14.

Remark 1. Theorem 14 has another interesting consequence. Since QCDCL with
dependency learning can solve CRn in polynomial time [PSS19a], Theorem 14 implies
that in order to harness the full power of QCDCL with dependency learning, one has to
perform universal reduction during clause learning. This is in contrast with “ordinary”
QCDCL where universal reduction is not required to derive a learned clause [KSGC10].

7.2 Short Proofs of QParity in Reductionless
Q-Resolution

In this section, we prove that the QParity formulas, which require exponentially long
proofs in Q-resolution [BCJ15], have short proofs in reductionless Q-resolution. It has
already been shown that these formulas have short proofs in long-distance Q-resolu-
tion [Che17, Theorem 9]. We simply observe that these proofs—which we reproduce
below for the sake of completeness—are in fact reductionless.

Definition 20 ([BCJ15]). Let QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. φn, where

φn = T 1
2 ∧ T 2

2 ∧ T 3
2 ∧ T 4

2 ∧

(
n∧

i=3

T 1
i ∧ T 2

i ∧ T 3
i ∧ T 4

i

)

∧ Z1 ∧ Z2, and

T 1
2 = x1 ∨ x2 ∨ t2,

T 2
2 = x1 ∨ x2 ∨ t2,

T 3
2 = x1 ∨ x2 ∨ t2,

T 4
2 = x1 ∨ x2 ∨ t2,

T 1
i = ti−1 ∨ xi ∨ ti,

T 2
i = ti−1 ∨ xi ∨ ti,

T 3
i = ti−1 ∨ xi ∨ ti,

T 4
i = ti−1 ∨ xi ∨ ti,

Z1 = tn ∨ z,

Z2 = tn ∨ z.

Theorem 15. There is a reductionless Q-resolution refutation of QParityn of size
6n− 5.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Proof Complexity of Fragments of Long-distance Q-resolution

Proof. For 2 ≤ i ≤ n− 1 and 1 ≤ j ≤ 2, we let Z1
i = ti ∨ z∗, Z2

i = ti ∨ z∗, and Zj
n = Zj ,

and it is easy to verify that

Zj
i−1 =

(

T 3j−2
i ⊙ti

Z1
i

)

⊙xi

(

T j+1
i ⊙ti

Z2
i

)

.

Hence, we derive Z1
2 and Z2

2 in a total of 6(n− 2) steps. Next, we have

(z∗) =
((

T 1
2 ⊙t2

Z1
2

)

⊙x2

(

T 2
2 ⊙t2

Z2
2

))

⊙x1

((

T 4
2 ⊙t2

Z1
2

)

⊙x2

(

T 3
2 ⊙t2

Z2
2

))

,

and so the formula is refuted. The resolution steps on the xi are sound, because xi < z
for all 1 ≤ i ≤ n. The total number of resolution steps is 6n− 5.

Corollary 6. Q-resolution does not p-simulate reductionless Q-resolution.

Remark 2. While strategies extracted from Q-resolution refutations (of PCNF formulas
containing a single unviersal variable) correspond to bounded-depth circuits [BCJ15], The-
orem 15 implies that reductionless Q-resolution proofs cannot be efficiently transformed
into bounded-depth circuits.

7.3 Lower Bounds from Strategy Extraction

In this section, we will show how to extend the scope of lower bound techniques based
on strategy extraction [BCJ15] to fragments of long-distance Q-resolution. We begin by
observing that strategies extracted from reductionless Q-resolution proofs correspond to
branching programs [BBM19].

We briefly review the definition of a branching program and refer to the book by Wegener
for more details [Weg00]. A branching program or binary decision diagram (BDD) on
a set X of variables is a directed acyclic graph with a unique source node and at most
two sink nodes. Each node v is labelled with a variable λ(v) ∈ X, except for the sinks,
which are labelled with 0 or 1. If there are two sink nodes, their labels must be distinct.
Moreover, every node has exactly two outgoing edges labelled with 0 and 1, respectively.
A path v1, . . . , vn from the source of a branching program to its sink is consistent if the
label of edge (vi, vi+1) agrees with the label of edge (vj , vj+1) whenever vi and vj are
labelled with the same variable. A consistent path corresponds to an assignment in the
obvious way. A branching program B on X computes a Boolean function f(B) in the
following way. Let τ : X → {0, 1} be an assignment. We follow the (consistent) path
induced by τ to a sink node v, and set f(B)(τ) = λ(v). The size of a branching program
is the number of nodes in it.

Let π = C1, . . . , Ck be a reductionless Q-resolution derivation from a PCNF formula Φ.
For each universal variable u ∈ var∀(Φ), we construct a branching program Bu

Φ(π) in the
following way [BJK15,BBM19]. We first introduce two nodes v0 and v1 with λ(v0) = 0
and λ(v1) = 1. We now consider the clauses Ci in the order of their derivation and
associate a node vi with each one. Depending on how clause Ci was derived, we distinguish
two cases:

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Lower Bounds from Strategy Extraction

1. If Ci is an input clause, we let

vi =

{

v0, if u ∈ Ci;

v1, otherwise.

2. If Ci is the resolvent of clauses Cj = C ′
j ∨ e and Cl = ¬e ∨ C ′

l , there are two
possibilities depending on the order of variables e and u in the prefix:

• If e < u, we introduce a fresh node vi to Bu
Φ(π) and label it λ(v) = e. Moreover,

we add a 0-labelled edge from vi to vj and a 1-labelled edge from vi to vl.

• Otherwise, u < e and we cannot have u ∈ var(Cj ∩ Cl) by the rules of
reductionless Q-resolution (see Figure 7.1). If u ∈ var(Cj), we let vi = vj .
Otherwise, we let vi = vl.

Finally, we remove all nodes that cannot be reached from vk. The following statement is
immediate from the construction.

Lemma 18. If π = C1, . . . , Ck is a reductionless Q-resolution derivation from a PCNF
formula Φ and u ∈ var∀(Φ) is a universal variable, then Bu

Φ(π) is a branching program
on Du

Φ of size at most k.

Moreover, if the derivation π is a refutation, these branching programs compute a
universal winning strategy. To show this, we first prove the following statement.

Lemma 19. Let π = C1, . . . , Ck be a reductionless Q-resolution derivation from a PCNF
formula Φ. Let τ : var∃(Φ) → {0, 1} be an assignment that does not satisfy Ck, and let

σπ
Φ = {u 7→ f(Bu

Φ(π))(τ |Du
Φ

) : u ∈ var∀(Φ) }

be the assignment computed by the branching programs Bu
Φ(π) in response. Then Ci[σ

π
Φ ∪

τ] = 0 for some input clause Ci ∈ π.

Proof. We proceed by induction on the size k of the derivation. If π = C1 then C1 must
be an input clause, and Bu

Φ(π) consists of a single node labelled 0 if u ∈ C1 and labelled 1
if ¬u ∈ C1. Accordingly, the function f(Bu

Φ(π)) constantly returns an assignment that
falsifies any universal literal on variable u. This proves the base case.

Suppose the statement of the lemma holds for derivations of size up to k − 1. If Ck

is an input clause, the same reasoning as in the base case applies, so suppose Ck is
derived by resolution from clauses Ci = C ′

i ∨ e and Cj = ¬e ∨ C ′
j with 1 ≤ i, j < k.

Let πi = C1, . . . , Ci and let πj = C1, . . . , Cj be the derivations of the corresponding
clauses. We claim that σπ

Φ(u) = σπi

Φ (u) for each universal variable u ∈ var(Ci) if τ(e) = 0,
and σπ

Φ(u) = σ
πj

Φ (u) for each universal variable u ∈ var(Cj) if τ(e) = 1.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Proof Complexity of Fragments of Long-distance Q-resolution

Choose a universal variable u and let τ ′ = τ |Du
Φ

be the corresponding restriction of τ .
We consider two cases. If e < u it is not difficult to see that

f(Bu
Φ(π))(τ ′) =

{

f(Bu
Φ(πi))(τ

′) if τ(e) = 0, and

f(Bu
Φ(πj))(τ ′) otherwise.

Accordingly, we have σπ
Φ(u) = σπi

Φ (u) if τ(e) = 0 and otherwise σπ
Φ(u) = σ

πj

Φ (u). On the
other hand, if u < e by construction of the branching program we have

f(Bu
Φ(π)) =

{

f(Bu
Φ(πi)) if u ∈ var(Ci), and

f(Bu
Φ(πj)) otherwise.

If u ∈ var(Ci) then σπ
Φ(u) = σπi

Φ (u). If u ∈ var(Cj) as well then we must have u ∈ Ci ∩Cj

or ¬u ∈ Ci ∩ Cj since u /∈ var(Ci ∩ Cj) by definition of reductionless Q-resolution. It
follows that f(Bu

Φ(πi)) and f(Bu
Φ(πj)) compute the same constant function. Otherwise,

if u /∈ var(Ci) then σπ
Φ(u) = σ

πj

Φ (u). This proves the claim.

If τ(e) = 0 then by induction hypothesis Cl[σ
πi

Φ ∪ τ] = 0 for an input clause Cl ∈ πi. We
can assume without loss of generality that πi does not contain any universal variable
besides those in the clause Ci. It follows from the claim that the assignment σπ

Φ ∪ τ
falsifies Cl as well. The case τ(e) = 1 is symmetric.

Lemma 20. Let π = C1, . . . , Ck be a reductionless Q-resolution refutation of a PCNF
formula Φ. The set { f(Bu

Φ(π)) : u ∈ var∀(Φ) } is a universal winning strategy.

Proof. Because π is a refutation the clause Ck must not contain existential variables.
Thus every assignment τ : var∃(Φ) → {0, 1} is an assignment that does not satisfy Ck,
and by Lemma 19 the universal response σπ

Φ (defined as in the statement of that lemma),
in conjunction with the assignment τ , must falsify an input clause.

These results allow us to translate lower bounds for branching programs to lower bounds
on the size of reductionless Q-resolution refutations. Let f : X → {0, 1} be a Boolean
function, let ϕ(X) be a Boolean circuit encoding f , and let u be a variable not occurring
in ϕ. Using Tseitin transformation [Tse68], we can construct a CNF formula ψ(X,u, Y)
such that ∃Y.ψ(X,u, Y) is logically equivalent to ϕ(X) 6= u. The PCNF formula Φ =
∃X∀u∃Y.ψ(X,u, Y) is a false PCNF formula with f as a unique universal winning strategy
(cf. the lower bounds from strategy extraction for Q-resolution [BCJ15]). We call such a
formula Φ a PCNF encoding of f .

Proposition 2. Let Φ be a PCNF encoding of a Boolean function f such that any
branching program computing f has size at least m. Then any reductionless Q-resolution
refutation of Φ requires at least m clauses.

Proof. Since f is the unique universal winning strategy for Φ, the statement follows
immediately from Lemma 18 and Lemma 20.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Lower Bounds from Strategy Extraction

To the best of our knowledge, the only lower bounds on the size of general branching
programs for explicitly defined Boolean functions currently known are polynomial [Nec66].
Accordingly, Proposition 2 does not yield strong lower bounds for reductionless Q-
resolution. However, we can lift lower bounds for restricted classes of branching programs
to lower bounds on the proof size in restricted versions of reductionless Q-resolution.

7.3.1 Regular Reductionless Q-Resolution

Every reductionless Q-resolution derivation π = C1, . . . , Ck can be represented by a
directed acyclic graph G(π) on vertices v1, . . . , vk where vi is labelled with Ci and there
is an edge from vj to vi if i < j and Ci is one of the clauses Cj was derived from (that
is, edges are oriented from conclusions to premises). Each edge is labelled with the
corresponding pivot variable.

A reductionless Q-resolution refutation π = C1, . . . , Ck is regular if each variable occurs
at most once as a label on any directed path starting from the vertex labelled with
clause Ck. Each strategy function computed by such a proof corresponds to a so-called
read-once branching programs or free binary decision diagram (FBDD). A read-once
branching program is a branching program where each variable is encountered at most
once on any path from the source to a sink [Weg00].

Lemma 21. Let π = C1, . . . , Ck be a regular reductionless Q-resolution refutation of a
PCNF formula Φ. Then Bu

Φ(π) is a read-once branching program of size at most k for
each universal variable u ∈ var∀(Φ).

Proof. Consider Bu
Φ(π) for any universal variable u ∈ var∀(Φ). By construction, the

sequence of variables encountered on any path starting from the source of Bu
Φ(π) is a

subsequence of the pivot variables seen as edge labels on any path starting from the
source of G(π). In particular, every variable occurs at most once. Since Bu

Φ(π) is a
branching program of size at most k by Lemma 18, it is in fact a read-once branching
program of size at most k.

The FBDD size of a Boolean function f is the size of the smallest read-once branching
program representing f . We can transfer lower bounds on the FBDD size of Boolean
functions into lower bounds on the regular reductionless Q-resolution proof size of certain
PCNF formulas, as stated in the next result.

Proposition 3. Let Φ be a PCNF encoding of a Boolean function f with FBDD size m.
Any regular reductionless Q-resolution refutation of Φ has size at least m.

Proof. The statement follows from Lemma 21 and Lemma 20.

Unlike in the case of general branching programs, strong lower bounds on the FBDD size
of many explicitly defined Boolean functions are known [Weg00]. For instance, we can
use the following result due to Bollig and Wegener [BW98].

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Proof Complexity of Fragments of Long-distance Q-resolution

Theorem 16 ([BW98]). There is a Boolean function g in n variables that can be
computed by a Boolean circuit of size O(n3/2) but has FBDD size Ω(2

√
n).

Corollary 7. There is a Boolean function g in n variables with a PCNF encoding Φ of
size polynomial in n such that any regular reductionless Q-resolution refutation of Φ has
size Ω(2

√
n).

7.3.2 Tree-like Long-Distance Q-Resolution

In this subsection, we are going to prove lower bounds on the size of tree-like long-distance
Q-resolution. As in the case of reductionless Q-resolution, a long-distance Q-resolution
derivation π = C1, . . . , Ck can be represented by a labelled DAG G(π). A derivation π is
called tree-like if the DAG G(π) is a tree.

We want to show that every tree-like long-distance Q-resolution refutation of a PCNF
encoding of a Boolean function f can be efficiently turned into a bounded-depth circuit
computing f . First, we generalize the construction of the branching programs Bu

Φ

described at the beginning of this section to long-distance Q-resolution derivations.
Let π = C1, . . . , Ck be a long-distance Q-resolution derivation from a PCNF formula Φ.
For each universal variable u ∈ var∀(Φ), we construct a labelled DAG Bu

Φ(π) in the same
way as for a reductionless Q-resolution derivation, except for the following modification:
if clause Ci is derived from a clause Cj by universal reduction and u ∈ var(Cj) \ var(Ci),
we set vi = v0, where λ(v0) = 0. It is readily verified that we obtain a branching program
of size at most k, as stated in the following lemma.

Lemma 22. If π = C1, . . . , Ck is a long-distance Q-resolution derivation from a PCNF
formula Φ and u ∈ var∀(Φ) is a universal variable, then Bu

Φ(π) is a branching program
on Du

Φ of size at most k.

A universal winning strategy can be computed from a long-distance Q-resolution refutation
as follows [BJJW15]. We maintain a kind of decision list [Riv87] for each universal
variable that is intended to encode a strategy function. Specifically, we consider sequences
L = (ϕ1 → ψ1), . . . , (ϕk → ψk) where each of the ϕi and ψi are propositional formulas.
Such a list, which we call a generalized decision list, represents a Boolean function fL in
the following way. Consider an assignment τ :

⋃k
i=1 var(ϕi) ∪ var(ψi) → {0, 1} to all the

variables appearing in formulas on the list. If there is no index i with 1 ≤ i ≤ k such
that τ satisfies ϕi, we define fL(τ) = 1. Otherwise, let i be the smallest index such that τ
satisfies ϕi. Then fL(τ) = ψi[τ]. The size of a decision list L = (ϕ1 → ψ1), . . . , (ϕk → ψk)
is |L| =

∑k
i=1(|ϕi| + |ψi|).

Given a long-distance Q-resolution refutation π = C1, . . . , Ck of a PCNF formula Φ, we
construct a family LΦ(π) = {Lu : u ∈ var∀(Φ) } of generalized decision lists representing
a universal winning strategy for Φ. For Q ∈ {∃,∀}, let CQ

i = { ℓ ∈ Ci : var(ℓ) ∈ varQ(Φ) }
denote the restriction of Ci to existential or universal literals. Moreover, for a Boolean
function f , let φ(f) denote an encoding of f as a propositional formula. We consider

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Lower Bounds from Strategy Extraction

applications of universal reduction in the same order as they appear in the proof. Let Ci

be a clause derived by universal reduction from a clause Cj , and let u ∈ var(Cj)\var(Ci).
Let πi = C1, . . . , Ci and πj = C1, . . . , Cj denote the subderivations ending in clauses Ci

and Cj , respectively. We add an entry

C∃

i ∧
∧

v∈var(C∀

i
)

v ↔ φ(f(Bv
Φ(πi)))

 → φ(f(Bu

Φ(πj))) (7.1)

at the end of the decision list Lu. Observing that the functions f(Bu
Φ(πj)) correspond

to the (negated) phase functions introduced for the purpose of efficiently extracting
universal winning strategies from long-distance Q-resolution refutations [BJJW15], it can
be verified that the strategy functions computed by the corresponding algorithm coincide
with the functions computed by the decision lists defined according to (7.1).

Proposition 4 ([BJJW15]). Let π be a long-distance Q-resolution refutation of a PCNF
formula Φ. The set { fLu : Lu ∈ LΦ(π) } is a universal winning strategy.

We now argue that this winning strategy can be represented by a bounded-depth circuit
for certain proofs in tree-like long-distance Q-resolution. Specifically, we will show that
this is the case for every tree-like refutation of a PCNF encoding of a Boolean function.
We first observe that the branching programs Bu

Φ for tree-like proofs are decision trees.
A decision tree is a branching program that can be turned into a tree by deleting the
sink nodes.

Lemma 23. If π = C1, . . . , Ck is a tree-like long-distance Q-resolution derivation from a
PCNF formula Φ, then Bu

Φ(π) is a decision tree for each universal variable u ∈ var∀(Φ).

Proof. It is not difficult to see that after deleting the sink nodes labelled with 0 and 1
from Bu

Φ(π), the corresponding DAG can be obtained from G(π) by deleting vertices
and edges as well as contracting induced paths. Since G(π) is a tree, the result is also a
tree.

Every decision tree can be efficiently translated into a CNF formula by taking the
conjunction over the negations of its consistent paths [Riv87]. Moreover, a generalized
decision list L = (ϕ1 → ψ1), . . . , (ϕk → ψk) can be represented by a circuit

φ(L) =
k∨

i=1

(
i−1∧

j=1

¬ϕj ∧ ϕi) → ψi

 . (7.2)

Lemma 24. Let L = (ϕ1 → ψ1), . . . , (ϕk → ψk) be a generalized decision list such that d
is the maximum depth of any formula ϕi and ψi, for 1 ≤ i ≤ k. Then φ(L) is equivalent
to fL. Moreover, φ(L) has depth at most d+ 4 and |φ(L)| = O(|L|2).

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Proof Complexity of Fragments of Long-distance Q-resolution

Let Φ be the PCNF encoding of a Boolean function f and consider a tree-like long-distance
Q-resolution refutation π of Φ. Because Φ contains only a single universal variable, each
entry in a decision list of LΦ(π) given by (7.1) simplifies to C → φ(f(Bu

Φ(πj))), and the
right hand side of this implication can be efficiently transformed into a CNF because Bu

Φ

is a decision tree by Lemma 23. We thus obtain the following result.

Proposition 5. There is a polynomial p(·) and a constant d such that, for any tree-like
long-distance Q-resolution refutation π of the PCNF encoding of a function f , there exists
a Boolean circuit of size at most p(|π|) and depth at most d computing f .

Proof. By Lemma 22 and Lemma 23, each labelled DAG Bu
Φ(π′) is a decision tree of

size at most |π| for the universal variable u of Φ and each subproof π′ of π. Each such
decision tree can be efficiently encoded as a CNF formula and the decision list has no
more than |π| entries of size polynomial in |π|, so it follows from Lemma 24 that there is
a polynomial p(·) such that φ(Lu) has size at most p(|π|) and depth at most 6. Finally,
{fLu} is a universal winning strategy for Φ by Proposition 4, so fLu must coincide
with f .

Since any bounded-depth circuit computing the n-bit parity function has size exponential
in n [Hås87], Proposition 5 allows us to obtain the following exponential lower bound on
the size of refutations of QParity in tree-like long-distance Q-resolution.

Theorem 17. Any refutation of QParityn in tree-like long-distance Q-resolution re-
quires size exponential in n.

7.4 Summary and Discussion

We studied the proof complexity of fragments of long-distance Q-resolution. We proved
that reductionless Q-resolution cannot p-simulate even tree-like Q-resolution. Since reduc-
tionless Q-resolution can be used to derive learned clauses in QCDCL solvers [KSGC10],
this is another indication that QCDCL1 proofs correspond to a fairly weak fragment
of (long-distance) Q-resolution [Jan16]. The QParity formulas, on the other hand,
have short refutations in reductionless Q-resolution. These formulas require Q-resolution
refutations of exponential size [BCJ15], so Q-resolution and reductionless Q-resolution
turn out to be incomparable.

The existence of short proofs of QParity also marks the breakdown of an elegant
technique for obtaining lower bounds on the size of Q-resolution refutations through
strategy extraction [BCJ15]. Evidently, strategies corresponding to reductionless Q-
resolution proofs do not correspond to bounded-depth circuits.

We proved that arguments based on strategy extraction can nevertheless be used to
obtain lower bounds for restricted versions of long-distance Q-resolution. Specifically, we

1At least without techniques like dependency learning [PSS19a].

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.4. Summary and Discussion

showed that regular reductionless Q-resolution proofs correspond to read-once branching
programs, and that tree-like long-distance Q-resolution proofs correspond to bounded-depth
circuits, allowing us to transfer known lower bounds.

Obtaining a characterization of the strategies corresponding to (even reductionless) long-
distance Q-resolution refutations that could be used in obtaining lower bounds remains
as an intriguing open problem.

Publication Notes

The research in this chapter appeared in a paper published in the proceedings of the
22nd International Conference on Theory and Applications of Satisfiability Testing (SAT
2019) [PSS19d].

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Portfolio-based Algorithm
Selection for Circuit QBFs

This chapter documents our work on the construction of algorithm selectors for a portfolio
solvers for circuit QBFs. An algorithm selector is a procedure which, given a vector of
features of an input instance, picks that solver from a portfolio which it estimates will take
the shortest time to solve the instance. Here, a portfolio is simply a set of solvers, and
the features are real numbers easily computable from a formula. An algorithm selector
typically learns from data of instance features and solver runs using machine learning.

The contributions of this work are the following:

• we define novel features for formulas in the QCIR input format;

• we show that these features lead to good algorithm selectors;

• and we identify a set of only two features which suffices to predict solver performance
accurately, and leads to closing almost the entire performance gap to the virtual
best solver.

Our portfolio comprises the QBF solvers that participated in the prenex non-CNF track
of the 2017 QBF Evaluation1 (with the exception of CQesto, which was not publicly
available at the time; for all solvers, the default configurations provided by their authors
were used). Their performance on the corresponding benchmark set was fairly similar,
with the number of solved instances ranging from 89 (GhostQ) to 117 (QFun) out of a
total 320.

1See http://www.qbflib.org.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Portfolio-based Algorithm Selection for Circuit QBFs

1. QuAbS [Ten16] generalizes the concept of “clause selection” (as implemented in
Qesto [JM15] and CAQE [RT15]) from clauses to subformulas. An abstraction is
maintained for each quantifier block, and so-called interface literals communicate
whether a subformula is satisfied or falsified at a lower (or higher) level.

2. QFun [Jan18b] generalizes counterexample-guided abstraction refinement (CEGAR)
solving [JKMSC12] to circuit QBFs and uses decision tree learning to “guess”
counter(models) based on recent truth assignments.

3. Qute [PSS17] is a search-based solver that implements a technique called de-
pendency learning to ignore artificial syntactic dependencies induced by nested
quantifiers.

4. GhostQ [KSGC10] is a search-based solver that utilizes so-called ghost literals for
dual propagation.

AutoFolio is an algorithm selector that alleviates the burden of manually choosing the
right machine learning model for a problem domain and hand-tuning hyperparameters
by using algorithm configuration tools to automatically make design choices and find
hyperparameter settings that work well for a particular scenario [LHHS15].

AutoFolio allows us to construct a portfolio from the above solvers with little effort.
In particular, it quickly lets us create portfolios that are tuned to particular subsets of
features (see Section 8.3). Our main design choice consists in defining the set of features
described in the next section.

8.1 QCIR Instance Features

We consider circuit Quantified Boolean Formulas (QBFs) in prenex normal form encoded
according to the “cleansed” QCIR standard [JKS16]. Each such formula is a pair Φ = Q.ϕ
consisting of a quantifier prefix Q and a Boolean circuit ϕ called the matrix of Φ. The
quantifier prefix Q is a sequence Q1X1 . . . QkXk where each Qi ∈ {∀,∃} is a quantifier
for 1 ≤ i ≤ k such that Qi 6= Qi+1 for 1 ≤ i < k, and the Xi are pairwise disjoint sets of
variables called quantifier blocks.

The matrix ϕ is a Boolean circuit encoded as a sequence of gate definitions of the form

g = ◦(l1, . . . , lr)

where ◦ ∈ {∧,∨}, each gate literal li is either an unnegated gate variable g′ (a positive
gate literal) or a negated gate variable ¬g′ (a negative gate literal), and g′ is a previously
defined gate or an input gate g′ ∈

⋃k
i=1Xi. We refer to r as the size of gate g. The

depth of a gate g is 0 if g is an input gate, and otherwise the maximum depth of a gate
occurring in the definition of g plus one. A unique gate literal is identified as the output
of the circuit ϕ.

We consider the following static features of QCIR instances:

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.1. QCIR Instance Features

1. The number ne of existential variables.

2. The number nu of universal variables.

3. The balance ne/nu + nu/ne of existential and universal variables.

4. The number k of quantifier blocks.

5. The minimum size minb of a quantifier block.

6. The maximum size maxb of a quantifier block.

7. The average size µb of a quantifier block.

8. The standard deviation σb of the quantifier block size.

9. The relative standard deviation σb/µb of the quantifier block size.

10. The total number pos of positive gate literals.

11. The total number neg of negative gate literals.

12. The balance pos/neg + neg/pos of positive and negative gate literals.

13. The number n∧ of AND gates.

14. The number n∨ or OR gates.

15. The maximum gate size maxgs.

16. The average gate size µgs.

17. The standard deviation σgs of the gate size.

18. The relative standard deviation σgs/µgs of the gate size.

19. The maximum gate depth maxd.

20. The average gate depth µd.

21. The standard deviation σd of the gate depth.

22. The relative standard deviation σd/µd of the gate depth.

23. The number np of gates all of whose gate literals have the same polarity (all positive
or all negative).

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Portfolio-based Algorithm Selection for Circuit QBFs

Features that only depend on the quantifier prefix can be computed just as well for
PCNF instances, and indeed some of the features 1–9 were already used in constructing
the portfolio solver AQME [PT09]. The main difference between PCNF and QCIR is in
the representation of the matrix and accordingly, this is where new features are required.
Some of the above features (such as the numbers of AND/OR gates) can be seen as
generalizations of PCNF features (number of clauses). Others, such as the maximum
gate depth, only make sense for circuits.

In addition to these static features, we use several probing features computed by a
short run of Qute (probing features are crucial for the performance of portfolios for
SAT [XHHL08]):

1. The number of learned clauses.

2. The number of learned tautological clauses.

3. The number of learned terms.

4. The number of learned contradictory terms.

5. The fraction of variable assignments made by branching (the remaining assignments
are due to propagation).

6. The total number of backtracks.

7. The number of backtracks due to dependency learning (a feature of Qute).

8. The number of learned dependencies as a fraction of the trivial dependencies.

8.2 Per-instance Algorithm Selection for QCIR

The experiments were conducted on a cluster where each node is equipped with 2 Intel
Xeon E5-2640 v4 processors (25M Cache, 2.40 GHz) and 160GB of RAM. The machines
are running 64-bit Ubuntu in version 16.04.3.

We work with the set of QCIR benchmark instances from the 2016 and 2017 QBF
evaluations solved by at least one of the above solvers within 900 seconds of CPU time
and 4GB of memory usage, a total of 731 instances. Figure 8.1 illustrates that there is a
lot of complementarity between the component solvers. We split the 731 instances into a
training set of 549 instances and a test set of 182 instances, uniformly at random. On
the training set we fixed a cross-validation split into 10 folds of the same size. When we
report performance of a selector on the training set, we in fact report cross-validation
performance on this fixed split. This means that the selector was trained once on each
subset of 9 folds and evaluated on the 10th one, and the results were combined. On
the other hand, when we report performance on the test set, the respective selector is
trained on the entire training set, disregarding the CV-split, and then evaluated on the

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.3. Which Features Matter?

Training set (549) Test set (182)
solver PAR10 #solved %closed PAR10 #solved %closed

GhostQ 2228.92 414 — 2492.61 132 —
Qfun 1922.07 433 — 2384.68 134 —
QuAbS 1641.90 450 — 1747.40 147 0%
Qute 1458.09 461 0% 1845.48 145 —
PFA 71.93 546 96.35% 171.03 179 91.01%
PF2 57.58 547 97.35% 217.16 178 88.34%
PF3 55.78 547 97.47% 165.97 179 91.30%
PFS 55.65 547 97.48% 167.53 179 91.21%
VBS 19.46 549 100% 15.35 182 100%

Table 8.1: Performance of component solvers and selectors on the training and test sets
in terms of penalized average runtime (PAR10), the number of solved instances, and for
selectors the extent to which they match the virtual best solver (VBS) measured as the
percentage of the PAR10 gap between the single best solver (SBS) and the VBS that is
closed by the selector. Training performance of selectors is CV-performance. Selectors
were configured using AutoFolio in self-tuning mode for each of the feature subsets
reported. PF2 is the selector configured for the best subset of 2 features, similarly PF3,
PFS uses static features only, and PFA uses all features.

entire test set. The reason why we use this setup for our evaluation is the following. The
standard way to evaluate the performance of AutoFolio is by using cross-validation.
However, if AutoFolio is tuned to the specific CV-split, the CV performance may be
an overly optimistic estimate of how well the model will generalize. Even though cross
validation should still protect us from overfitting, we decided to hold out a test set even
on top of that, in order to perform a sanity check of the experiment afterwards.

Each of the selectors PF* mentioned in Table 8.1 was trained using AutoFolio in
self-tuning mode, with a budget of 42 000 wall-clock seconds and a bound of 50 000 runs
for the algorithm configuration tool SMAC, and with a specific subset of features (see
the next section and caption of Table 8.1 for details). For the SMAC-configuration phase
we used the CV-split as mentioned earlier. The selectors PFA, PFS, and PF3 use an
XGBoost classifier, while PF2 uses a random-forest regressor.

8.3 Which Features Matter?

It is common wisdom that high-performance per-instance algorithm selectors should have
access to a large and rich set of features (see, e.g., [XHHL08]). While earlier selector
designs based on ridge regression required feature selection to work well, state-of-the-art
per-instance selectors make use of sophisticated machine learning techniques, such as

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Portfolio-based Algorithm Selection for Circuit QBFs

random forests, that are less sensitive to uninformative or correlated features. However,
defining and computing features requires substantial domain expertise and often involves
significant amount of work, especially since feature computation must be efficient in
order to achieve good selector performance. Furthermore, selectors based on large sets of
complex features can be far more difficult to understand than ones based on few and
simple features. Since our full feature set for QCIR formulae, as described previously,
gave rise to excellent selector performance, we decided to investigate whether similarly
good performance could be obtained with fewer features.

We first trained a selector using only our static features, using AutoFolio, as described
in the previous section. The resulting selector, denoted PFS in Table 8.1, performed
slightly better than the selector trained using the full set of static and probing features
(PFA). This was a great surprise to us in light of previous work on algorithm selection in
which probing features were found to be helpful (see, e.g., [Kot16]). Since our full selector
is already very close in performance to the VBS, it cannot be the case that we simply
failed to come up with the right probing features, but rather that in the scenario we
consider, static features are sufficient. Prompted by this finding, we decided to investigate
the effect of further reducing our static features set.

In order to test what feature subsets might work well, we used the following setup. We
configured AutoFolio using the static features, and we saved the resulting configuration
of hyperparameters. Then, with this configuration of AutoFolio, we performed forward
and backward selection on the set of static features. In forward selection, we started with
the empty set of features, and at each step added a single feature, while in backward
selection we started with the full set of static features, and at each step removed a
feature. In both cases, the feature to be added/removed was chosen so that the resulting
portfolio would have maximum performance. It is important to note here that we did not
configure AutoFolio for each of the subsets searched in this process—instead we used
the configuration that we computed as described at the beginning of this paragraph. The
reason for that was to avoid the huge computational cost of configuring AutoFolio over
and over again. In retrospect, this was indeed justified, as we obtained well-performing
selectors for the feature subsets even this way, and we saved months of CPU time.
However, note that once we found promising subsets of features by forward/backward
selection, we configured AutoFolio for these subsets again, and the results of those
specifically configured selectors are reported in Table 8.1.

Figure 8.2 shows the performance curve along forward/backward selection. The values of
PAR10 and the number of solved instances were obtained by performing cross validation
on the fixed CV-split mentioned earlier. In particular, we can see that forward selection
achieves very good performance with two or three features already. The first three
features picked by forward selection are circuit depth, number of quantifier blocks, and
average block size. Since so few features turned out to yield such good selectors, we
performed a brute-force search of all subsets of size 2 or 3 (again, evaluating performance
with the fixed AutoFolio configuration used for forward/backward selection). This
search confirmed that both the size-2 and size-3 subsets found by forward selection

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.3. Which Features Matter?

were almost optimal (equal number of solved instances as with the optimal set, PAR10
within 1%). This search confirmed that the size-2 subset found by forward selection was
almost optimal (second best, equal number of solved instances as with the optimal set,
difference of 1.2 in PAR10), and the size-3 subset was optimal. We decided to continue
the experiment with the size-2 subset found by forward selection (instead of the “optimal”
one), for two reasons. Firstly, it contains the feature circuit depth, which is the best single
predictor, but which is replaced in the optimal subset by relative standard deviation of
gate depths, a feature that is somewhat harder to interpret. Secondly, we need to keep in
mind, that not even this exhaustive search was perfect, as we did not (and could not)
configure AutoFolio for each subset searched. Therefore, its results only served as a
sanity check, to make sure that forward selection did not miss some great feature set,
which turned out not to be the case. Hence, we went on to configure AutoFolio for
the subsets {circuit depth, number of quantifier blocks}, and {circuit depth, number of
quantifier blocks, average block size}, the results of which are shown in Table 8.1 (entries
PF2 and PF3). As Table 8.1 shows, PF2 achieves virtually the same good performance
as PFS, and closes almost all of the gap between SBS and VBS. This holds whether we
look at the CV-evaluation on the training set, or the additional evaluation on the test
set.

As a final sanity check, we evaluated the performance of selectors trained using these small
sets of features on the same set of instances, but using only 3 out the 4 participating solvers
(for each subset of 3 solvers). We set this experiment up in the following way: for each
subset of features corresponding to one of the selectors PF*, we saved the configuration of
AutoFolio that was optimized for the particular subset of features using all four solvers.
We then evaluated the performance of selectors built using the saved configurations for
each of the 4 size-3 solver subsets (a total of 16 selectors), in the same way as we did for
Table 8.1. In order to get the theoretically best AutoFolio performance, we would have
had to reconfigure AutoFolio for every pair of (solver subset, feature subset), but as
before we simplified things to save computational resources. This experiment confirmed
that even for different solver sets, the features circuit depth, and number of quantifier
blocks are fairly robust predictors of solver performance. However, naturally, features
must be tied to solvers whose performance they predict, so we cannot expect that a fixed
set of features will be a universal predictor for all solver sets.

In a sense, these results are not surprising, as one would expect from complexity theory
as well as from previous work that the number of quantifier blocks indeed plays an
important role. Similarly, circuit depth seems to be a prominent property of circuits.
However, it is indeed striking that only two, and moreover the most straightforward
features of circuit QBF suffice to build such robust portfolios. We believe that this opens
up a new path of thinking for both solver users and developers. Users can classify their
benchmarks and pick a suitable solver more easily, while developers can take advantage
of this information to build portfolios within their solvers. Believing many features are
necessary to learn anything meaningful about a given instance can be discouraging from
even trying. With just two features, the options are much wider—they can be understood

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Portfolio-based Algorithm Selection for Circuit QBFs

intuitively, or even plotted. In fact, to demonstrate how we can gain additional insight
into the problem, we visualize the solver choices made both by the portfolio, as well
as by the VBS. When plotting the VBS in Figure 8.4, we ignore instances where the
solvers perform too similarly, because they contain more noise than information. On
the other hand, we plot the portfolio choices in Figure 8.5 as a grid (of hypothetical
instances), in order to discover the decision boundaries. These figures show very clearly
which solvers are good for which instances. Incidentally, Figure 8.4 also reveals the fact
that the QCIR instances that are available either have many quantifier blocks, or deep
circuits, or neither, but not both (strictly speaking, to see that, we would need to plot
all instances, but the picture has the same shape, only more noise). This should serve
as a challenge to the QBF community to come up with a more complete distribution of
benchmark instances.

8.4 Summary and Discussion

With the availability of tools such as AutoFolio, the task of constructing effective
per-instance algorithm selectors essentially boils down to designing and implementing
features that (jointly) permit to effectively identify which solver to run on any given
problem instance. This can still seem daunting in view of the fact that certain domains
require rich sets of quickly computable features, with a combination of static and dynamic
features, in order to achieve good selector performance [XHHL08]. Our results show that
this need not be the case: for circuit QBFs, two or three cheaply computable instance
features are sufficient to realize most of the performance potential of a (hypothetical)
perfect selector. Moreover, these features include properties of QBFs such as the number
of quantifier blocks that are known to affect solver performance. Apart from corroborating
the notion that quantifier alternations matter, our results show that circuit depth seems
to be important. This warrants further investigation.

Our finding that simple feature sets can be effective likely applies to other problems and
encourages an incremental design philosophy: start with a few simple features and add
features as needed. As part of future work we hope to find other domains where this
approach works well and, more generally, identify the circumstances under which this is
the case.

Publication Notes

The research in this chapter appeared in a paper published in the proceedings of the
24th International Conference on Principles and Practice of Constraint Programming
(CP 2018) [HPSS18].

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.4. Summary and Discussion

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	0.001 	0.01 	0.1 	1 	10 	100 	1000

Q
u
te

QuAbS

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	0.001 	0.01 	0.1 	1 	10 	100 	1000

Q
u
te

Qfun

Figure 8.1: Comparisons of high-performance QBF solvers on our instance set; perfor-
mance is measured as PAR 10 (penalized running times with penalty factor 10) on our
reference machines. This shows that there is quite a lot of complementarity between the
solvers.

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Portfolio-based Algorithm Selection for Circuit QBFs

	10

	100

	1000

	0 	5 	10 	15 	20 	25

P
A
R
1
0

#features

Forward	selection

Backward	selection

SBS

VBS

	460

	480

	500

	520

	540

	560

	0 	5 	10 	15 	20 	25

#
s
o
lv
e
d

#features

Forward	selection

Backward	selection

SBS

VBS

Figure 8.2: Forward and backward selection on the static features; the plots show per-
formance based on the number of features included. Note that for the performance
evaluation during forward/backward selection, AutoFolio was not automatically config-
ured for each subset of features, but instead was once configured for the full set of static
features at the beginning, and this configuration of hyperparameters was subsequently
used for all features sets.

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.4. Summary and Discussion

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	0.001 	0.01 	0.1 	1 	10 	100 	1000

S
B
S

PF2

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	0.001 	0.01 	0.1 	1 	10 	100 	1000

V
B
S

PF2

Figure 8.3: Performance of PF2 with all four solvers vs SBS and VBS.

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Portfolio-based Algorithm Selection for Circuit QBFs

	1

	10

	100

	1000

	10000

	1 	10 	100 	1000 	10000

c
ir
c
u
it
	d
e
p
th

number	of	blocks

ghostq

qfun

quabs

qute

Figure 8.4: Best solver choices based on instance features. Each point represents an
instance/solver pair; the coordinates correspond to the number of quantifier blocks and
circuit depth of the instance, the shape and color indicate the solver that is fastest on
that instance. Only instances where the fastest solver is either the only one to solve the
instance, or at least ten times faster than the second fastest, are shown. This is to ensure
that the figure shows only solver choices that are crucial, and to avoid instances where
the solver choice is unimportant, because all of them run in similar time.

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.4. Summary and Discussion

	1

	10

	100

	1000

	10000

	1 	10 	100 	1000 	10000

c
ir
c
u
it
	d
e
p
th

number	of	blocks

ghostq

qfun

quabs

qute

Figure 8.5: Points indicate solver choices of PF2 based on feature values.

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 9
Conclusion

We have presented a number of results concerning the theory and practice of quantified
Boolean formulas in Chapters 3 to 8. Let us now take a moment to step back and consider
the big picture, how our results fit in, and some directions for future research.

In Chapter 3, we have shown that long-distance Q-resolution in QCDCL solving is
compatible with the known dependency schemes, and in particular with the reflexive
resolution-path dependency scheme. This is an important result, without which Chapter 5
would most likely not have been possible. Indeed, even though Q-resolution appears
to be a more natural and intuitive proof system than its tautology-producing sister,
this is definitely not the case from the implementation perspective. And it is not just
that long-distance Q-resolution is easier to put down in code; when dependency learning
comes into play, it is not clear whether an efficient implementation using Q-resolution is
even possible.

The main question left open from Chapter 3 is whether, under the condition of normality
of D, long-distance Q(D)-consensus is sound. Experimental results from Chapter 5
suggest that this could be the case, but a formal proof will be required in order to close
this problem and guarantee soundness of the corresponding solvers for true formulas.
Another important open problem is to improve the strategy extraction algorithm for
LDQ(D)-resolution. While we now know that a polynomial-time algorithm exists, an
entirely different approach, possibly similar to the work of Balabanov et al. [BJJW15],
might be necessary to come up with a truly practically efficient algorithm.

Dependency learning, introduced in Chapter 4, is a novel technique for dependency
analysis, and a powerful generalization of QCDCL. Recent results show that QCDCL
requires exponential time on formulas with short Q-resolution proofs [Jan16], but with
dependency learning, these formulas can be solved in polynomial time. This brings us to a
different perspective on dependency learning. Instead of seeing it as a dependency-analysis
method, we can look at it as a different, more liberal generalization of CDCL to QBF—one

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

9. Conclusion

where soundness follows not from a restriction on the order of assignments, but only
from the soundness of the underlying proof system. This leads to a natural theoretical
question: can QCDCL with dependency learning polynomially simulate (long-distance)
Q-resolution, i.e., can it, given the right heuristic choices, find a short proof whenever
one exists?

Several questions surrounding dependencies in QBF can be elegantly formulated using
dependency quantified Boolean formulas (DQBF) [PRA01]. Informally speaking, in
DQBF, every existential variable is assigned a set of universal variables on which it is
allowed to depend. Every QBF is also a DQBF, the dependency set being simply the
set of all universal variables to the left. We have not touched upon DQBF in this thesis,
but it appears to be an appropriate tool to address many open problems in dependency
analysis. Let us illustrate that with an example from Chapter 4.

In Section 4.5, we defined the notion of a potential or critical dependency set X of a
variable y by shifting y before X in the quantifier prefix (Definitions 14 through 16).
A more natural (and stronger) way to define this notion could indeed be in terms of
DQBF—instead of shifting the variable y before X, we could simply remove X from
the dependency set of y (shifting also removes X from the dependency set of y, but
it possibly removes more than just that). However, in that case we could not use
long-distance Q-resolution to argue that the restricted formula in the proof of Theorem 7
is false, because long-distance Q-resolution is not sound for DQBF in general [BCSS16].
Nevertheless, the kind of long-distance Q-resolution derivation that appears in that proof
is fairly specific, and it is conceivable that a stronger, DQBF-based version of Theorem 7
can be proved by more careful analysis. In order to do that, a further, more detailed
study of long-distance Q-resolution in the context of DQBF will be necessary; something
we are planning to do as part of future work.

In Chapter 6, we showed how strategies extracted from long-distance Q-resolution proofs
can be validated in polynomial time. This is an important step in the direction of
streamlining the entire QBF workflow—from encoding, through solving, and certificate
extraction, to certificate validation. The SAT community has largely achieved this goal
with the DRAT proof system and its derivatives and associated proof checkers [WHH14,
Lam17,CFHH+17], which have become the gold standard in certifying UNSAT answers of
SAT solvers. Building on these well-tested tools, we eliminated the unpleasant worst-case
exponential-time validation step by a SAT solver. Nevertheless, a lot of effort by the
entire QBF community will still be necessary in order to standardize the certification of
QBF solvers.

Chapter 7 provides an interesting glimpse into the inner workings of long-distance
Q-resolution. The two weapons that long-distance Q-resolution has to deal with universal
variables—reduction and merging—turn out to be of incomparable power. We also learned
that unlike Q-resolution (in a special case), reductionless long-distance Q-resolution does
not admit polynomial-time strategy extraction into bounded-depth circuits, potentially
hinting at why the merging of long-distance Q-resolution allows for exponentially shorter
proofs. In fact, we believe that the mystery of long-distance Q-resolution deserves more

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

attention, and can potentially hold answers to many questions about QCDCL solving. It
is fascinating how the use of seemingly useless tautologies leads to such a rich underlying
theory. We are therefore planning to dedicate further effort to the study of long-distance
Q-resolution, also in the context of DQBF as mentioned above, in future work.

If Chapter 8 has a single important message, then it is probably this: the choice of
a solver for a particular QBF depends first and foremost on the number of quantifier
alternations. While the situation is not always completely clear-cut, for instances with a
very high number of alternations QCDCL solvers tend to work well, and for instances with
a very low number of alternations expansion-based solvers are preferable. An important
consequence of this finding is that of benchmark selection. We should be careful not to
over- or under-represent a certain class of benchmarks in order not to make a particular
solving paradigm appear inferior and thus hinder its development.

QBF should ultimately serve as a technology to solve hard problems. This requires
a number of tools—great solvers, standardized formats, convenient encoding methods,
strategy manipulators to name a few. In this thesis, we touched upon many of these
topics, and developed new algorithms and settled open theoretical problems. As it usually
happens, our work has raised more new questions than it provided answers. Ultimately,
the goal of this and related research is to make QBF technology capable of solving
interesting real-world problems from all sorts of applications. And while that target
still remains more distant than, say, with SAT, this thesis has shed light and helped
zoom in on some of the important issues, and should hopefully serve as a source of both
knowledge and inspiration for QBF researchers working towards that ultimate goal.

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

2.1 Q-resolution. 13

2.2 Long-distance Q-resolution. 14

2.3 Derivation rules of Q(D)-resolution for a PCNF formula Φ = Q.ϕ. 20

3.1 Derivation rules of LDQ(D)-resolution for a PCNF formula Φ = Q.ϕ. . . . 24

3.2 An LDQ(Drrs)-refutation of the formula Φ from Example 3 (above) and two
restrictions (below). 31

3.3 Shape of the derivation constructed in the proof of Theorem 3. 43

3.4 Average running times of various configurations of DepQBF on application
benchmark families. 45

3.5 Solved instances from the QBFLib track (x-axis) sorted by runtime (y-axis),
by solver configuration (with preprocessing and dynamic QBCE). 47

4.1 Solved instances from the 2016-2018 QBF Evaluation prenex non-CNF (QCIR)
benchmark sets (x-axis) sorted by runtime (y-axis). 57

4.2 Solved instances from the 2016-2018 QBF Evaluation Prenex non-CNF (QCIR)
benchmark sets (y-axis) by number of quantifier alternations (x-axis). . . 60

4.3 Runtimes of Qute with and without dependency learning on the 2016-2018
QBF Evaluation Prenex non-CNF (QCIR) benchmark sets, by number of
quantifier alternations. 61

4.4 Backtracks for instances CRn based on the completion principle [Jan16], as a
function of n. 63

5.1 Derivation rules of LDQ(Drrs)-resolution for a PCNF formula Φ = Q.ϕ. . 72

5.2 Runtimes of Qute with and without Drrson all instances. 78

6.1 Schematic depiction of a countermodel circuit extracted by BJ. Each fi is
either an “and” or an “or” gate, depending on the context. 81

7.1 Derivation rules of reductionless Q-resolution for a PCNF formula Φ = Q.ϕ. 96

8.1 Complementarity of high-performance QBF solvers. 117

8.2 Forward and backward selection of features. 118

8.3 Performance of PF2 with all four solvers vs SBS and VBS. 119

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.4 Best solver choices based on instance features. 120
8.5 Points indicate solver choices of PF2 based on feature values. 121

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

3.1 Solved instances, solved true instances, solved false instances, and total
runtime in seconds (including timeouts) with preprocessing (but without
QBCE). 44

3.2 Results with preprocessing and dynamic QBCE. 46
3.3 Results for the application track with QBCE (but without preprocessing). 46

4.1 Command line parameters for Qute used in the experiments. 58
4.2 Instances from the 2016-2018 QBF Evaluation prenex non-CNF (QCIR)

benchmark sets solved within 10 minutes. 59
4.3 Performance of QBF solvers on PCNF instances from QBF Evaluations 2016-

2018. 60
4.4 Learned dependencies, standard dependencies, and reflexive resolution-path

dependencies for instances preprocessed by HQSpre, as a fraction of trivial
dependencies. 62

5.1 Number of instances solved by plain Qute vs Qute using the reflexive resolution-
path dependency scheme on the ‘matrix multiplication’ and ‘reduction finding’
families of formulas, as well as on all instances. 77

6.1 Ordinary Q-resolution proofs: number of true+false formulas validated. . 92
6.2 Long-distance Q-resolution proofs: number of true+false formulas validated. 92

8.1 Performance of portfolio component solvers. 113

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Algorithms

1 QCDCL with Dependency Scheme D 28
2 Conflict Analysis with Long-Distance Q-resolution 28
3 QCDCL with Dependency Learning 52
4 Conflict Analysis with Dependency Learning 53
5 Conflict Analysis with DL and a Dependency Scheme 73

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Index

algorithm selection, 112

AutoFolio, 110

certificate, 79

circuit, 9

CNF, DNF, 10

completion principle formulas, 63, 67, 96

conflict, 16

dependency conflict, 71

dependency

critical, 66

potential, 66

syntactic, 65

dependency pair, 18

proper, 19

dependency scheme, 17

fully exhibited, 48

monotone, 31

normal, 31

reflexive resolution-path, 19, 41, 72

simple, 31

standard, 17

trivial, 17

derivation, 13, 25

restriction, 32

DRAT-trim, 91

effective literal, 84

FBDD, 103

implication graph, 18

depth-implication graph, 74

learned dependencies, 64

model, countermodel, 12

PCNF, PDNF, 12
phase function, 84

Q(D)-resolution, 20
long-distance, 24, 72

Q-consensus, 13, 89
long-distance, 13, 89

Q-resolution, 13, 80
level-ordered, 96
long-distance, 14, 84

tree-like, 104
reductionless, 96
regular reductionless, 103

QCDCL, 14
with dependency learning, 52, 53, 55,

73
with dependency schemes, 25, 28, 73

QCIR, 110
QParity formulas, 99
quantified Boolean constraint propaga-

tion, 15
quantified Boolean formula, 11
Qute, 56

resolution path, 17
proper, 19, 74

RUP, 10, 80, 84

shadow clause, 84
strategy extraction, 32, 81, 100

validation formula, 80

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[AS09] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In Craig Boutilier, editor, IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009, pages 399–404, 2009.

[BB16] Olaf Beyersdorff and Joshua Blinkhorn. Dependency schemes in QBF calculi:
Semantics and soundness. In Michel Rueher, editor, Principles and Practice
of Constraint Programming - 22nd International Conference, CP 2016,
volume 9892 of Lecture Notes in Computer Science, pages 96–112. Springer
Verlag, 2016.

[BB17] Joshua Blinkhorn and Olaf Beyersdorff. Shortening QBF proofs with de-
pendency schemes. In Serge Gaspers and Toby Walsh, editors, Theory and
Applications of Satisfiability Testing - SAT 2017, volume 10491 of Lecture
Notes in Computer Science, pages 263–280. Springer Verlag, 2017.

[BBM19] Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strategies
into QBF proofs. In 36th International Symposium on Theoretical Aspects
of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany,
pages 14:1–14:18, 2019.

[BCJ15] Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. Proof complexity of
resolution-based QBF calculi. In Ernst W. Mayr and Nicolas Ollinger,
editors, 32nd International Symposium on Theoretical Aspects of Computer
Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of
LIPIcs, pages 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2015.

[BCSS16] Olaf Beyersdorff, Leroy Chew, Renate A. Schmidt, and Martin Suda. Lifting
QBF resolution calculi to DQBF. In Nadia Creignou and Daniel Le Berre,
editors, Theory and Applications of Satisfiability Testing – SAT 2016, pages
490–499, Cham, 2016. Springer International Publishing.

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[BF15] Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scoring
schemes. In Marijn Heule and Sean Weaver, editors, Theory and Applications
of Satisfiability Testing - SAT 2015 - 18th International Conference, Austin,
TX, USA, September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes
in Computer Science, pages 405–422. Springer Verlag, 2015.

[Bie08] Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In
Hans Kleine Büning and Xishun Zhao, editors, Theory and Applications of
Satisfiability Testing - SAT 2008, 11th International Conference, SAT 2008,
Guangzhou, China, May 12-15, 2008. Proceedings, volume 4996 of Lecture
Notes in Computer Science, pages 28–33. Springer Verlag, 2008.

[BJ12] Valeriy Balabanov and Jie-Hong Roland Jiang. Unified QBF certification
and its applications. Formal Methods in System Design, 41(1):45–65, 2012.

[BJJW15] Valeriy Balabanov, Jie-Hong Roland Jiang, Mikoláš Janota, and Magdalena
Widl. Efficient extraction of QBF (counter)models from long-distance
resolution proofs. In Blai Bonet and Sven Koenig, editors, Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 3694–3701. AAAI Press, 2015.

[BJK15] Nikolaj Bjørner, Mikoláš Janota, and William Klieber. On conflicts and
strategies in QBF. In Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe,
and Andrei Voronkov, editors, 20th International Conferences on Logic for
Programming, Artificial Intelligence and Reasoning - Short Presentations,
LPAR 2015, Suva, Fiji, November 24-28, 2015., volume 35 of EPiC Series
in Computing, pages 28–41. EasyChair, 2015.

[BL09] Arming Biere and Florian Lonsing. A compact representation for syntactic
dependencies in QBFs. In Oliver Kullmann, editor, Theory and Applica-
tions of Satisfiability Testing - SAT 2009, volume 5584 of Lecture Notes in
Computer Science, pages 398–411. Springer Verlag, 2009.

[BL10] Armin Biere and Florian Lonsing. Integrating dependency schemes in search-
based QBF solvers. In Ofer Strichman and Stefan Szeider, editors, Theory
and Applications of Satisfiability Testing - SAT 2010, volume 6175 of Lecture
Notes in Computer Science, pages 158–171. Springer Verlag, 2010.

[BW98] Beate Bollig and Ingo Wegener. A very simple function that requires
exponential size read-once branching programs. Inf. Process. Lett., 66(2):53–
57, 1998.

[CFHH+17] Luís Cruz-Filipe, Marijn J. H. Heule, Warren A. Hunt, Matt Kaufmann,
and Peter Schneider-Kamp. Efficient certified RAT verification. In Leonardo
de Moura, editor, Automated Deduction – CADE 26, pages 220–236, Cham,
2017. Springer International Publishing.

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Che17] Leroy Nicholas Chew. QBF proof complexity. PhD thesis, University of
Leeds, UK, 2017.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proc.
3rd Annual Symp. on Theory of Computing, pages 151–158, Shaker Heights,
Ohio, 1971.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5:394–397, 1962.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
J. of the ACM, 7(3):201–215, 1960.

[ELW13] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution:
Proof generation and strategy extraction in search-based QBF solving. In
Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning - LPAR 2013,
volume 8312 of Lecture Notes in Computer Science, pages 291–308. Springer
Verlag, 2013.

[ES03] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Enrico
Giunchiglia and Armando Tacchella, editors, Theory and Applications of Sat-
isfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, pages 502–518. Springer Verlag, 2003.

[GB13] Alexandra Goultiaeva and Fahiem Bacchus. Recovering and utilizing partial
duality in QBF. In Matti Järvisalo and Allen Van Gelder, editors, Theory
and Applications of Satisfiability Testing - SAT 2013, volume 7962 of Lecture
Notes in Computer Science, pages 83–99. Springer Verlag, 2013.

[Gel12] Allen Van Gelder. Contributions to the theory of practical quantified Boolean
formula solving. In Michela Milano, editor, Principles and Practice of
Constraint Programming - 18th International Conference, CP 2012, volume
7514 of Lecture Notes in Computer Science, pages 647–663. Springer Verlag,
2012.

[GNPT05] E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. Quantified
Boolean Formulas satisfiability library (QBFLIB), 2005. www.qbflib.org.

[GNT06] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/
term resolution and learning in the evaluation of Quantified Boolean Formu-
las. J. Artif. Intell. Res., 26:371–416, 2006.

[GVGB11] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform
approach for generating proofs and strategies for both true and false QBF
formulas. In Toby Walsh, editor, Proceedings of IJCAI 2011, pages 546–553.
IJCAI/AAAI, 2011.

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[Hås87] Johan Håstad. Computational Limitations of Small-depth Circuits. MIT
Press, Cambridge, MA, USA, 1987.

[Heu18] Marijn J. H. Heule. Schur number five. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 6598–6606,
2018.

[HHKW17] Marijn Heule, Warren Hunt, Matt Kaufmann, and Nathan Wetzler. Efficient,
verified checking of propositional proofs. In Mauricio Ayala-Rincón and
César A. Muñoz, editors, Interactive Theorem Proving, pages 269–284, Cham,
2017. Springer International Publishing.

[HKM16] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and
verifying the boolean pythagorean triples problem via cube-and-conquer.
In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference, Bor-
deaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in
Computer Science, pages 228–245. Springer Verlag, 2016.

[HPSS18] Holger H. Hoos, Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider.
Portfolio-based algorithm selection for circuit QBFs. In John N. Hooker,
editor, Principles and Practice of Constraint Programming - 24th Interna-
tional Conference, CP 2018, volume 11008 of Lecture Notes in Computer
Science, pages 195–209. Springer Verlag, 2018.

[IMMV16] Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. On
computing minimal independent support and its applications to sampling
and counting. Constraints, 21(1):41–58, 2016.

[Jan16] Mikoláš Janota. On Q-resolution and CDCL QBF solving. In Nadia Creignou
and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing
- SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages
402–418. Springer Verlag, 2016.

[Jan18a] Mikoláš Janota. Circuit-based search space pruning in qbf. In Olaf Bey-
ersdorff and Christoph M. Wintersteiger, editors, Theory and Applications
of Satisfiability Testing – SAT 2018, pages 187–198, Cham, 2018. Springer
International Publishing.

[Jan18b] Mikolás Janota. Towards generalization in QBF solving via machine learning.
In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence - AAAI 2018.
AAAI Press, 2018.

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[JKMSC12] Mikoláš Janota, William Klieber, João Marques-Silva, and Edmund M.
Clarke. Solving QBF with counterexample guided refinement. In Alessandro
Cimatti and Roberto Sebastiani, editors, Theory and Applications of Sat-
isfiability Testing - SAT 2012, volume 7317 of Lecture Notes in Computer
Science, pages 114–128. Springer Verlag, 2012.

[JKS16] Charles Jordan, Will Klieber, and Martina Seidl. Non-CNF QBF solving
with QCIR. In Adnan Darwiche, editor, Beyond NP, Papers from the 2016
AAAI Workshop., volume WS-16-05 of AAAI Workshops. AAAI Press, 2016.

[JM15] Mikoláš Janota and Joao Marques-Silva. Solving QBF by clause selection.
In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
pages 325–331. AAAI Press, 2015.

[JM17] Mikoláš Janota and Joao Marques-Silva. An Achilles’ heel of term-resolution.
In Eugénio C. Oliveira, João Gama, Zita A. Vale, and Henrique Lopes
Cardoso, editors, Progress in Artificial Intelligence - 18th EPIA Conference
on Artificial Intelligence, EPIA 2017, volume 10423 of Lecture Notes in
Computer Science, pages 670–680. Springer Verlag, 2017.

[JMS15] Mikoláš Janota and Joao Marques-Silva. Expansion-based QBF solving
versus Q-resolution. Theoretical Computer Science, 577(0):25–42, April
2015.

[KKF95] H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified
Boolean formulas. Information and Computation, 117(1):12–18, 1995.

[Kot16] Lars Kotthoff. Algorithm selection for combinatorial search problems: A
survey. In Christian Bessiere, Luc De Raedt, Lars Kotthoff, Siegfried Nijssen,
Barry O’Sullivan, and Dino Pedreschi, editors, Data Mining and Constraint
Programming - Foundations of a Cross-Disciplinary Approach, volume 10101
of Lecture Notes in Computer Science, pages 149–190. Springer, 2016.

[KP06] Volker Kaibel and Matthias Peinhardt. On the bottleneck shortest path
problem. Zib-report 06-22, Zuse Institute Berlin, 2006.

[KSGC10] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. A non-
prenex, non-clausal QBF solver with game-state learning. In Ofer Strichman
and Stefan Szeider, editors, Theory and Applications of Satisfiability Testing
- SAT 2010, volume 6175 of Lecture Notes in Computer Science, pages
128–142. Springer Verlag, 2010.

[Lam17] Peter Lammich. Efficient verified (un)sat certificate checking. In Leonardo
de Moura, editor, Automated Deduction – CADE 26, pages 237–254. Springer
International Publishing, 2017.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[LBB+15] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl.
Enhancing search-based QBF solving by dynamic blocked clause elimination.
In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning -
20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28,
2015, Proceedings, volume 9450 of Lecture Notes in Computer Science, pages
418–433. Springer Verlag, 2015.

[LE18] Florian Lonsing and Uwe Egly. Evaluating QBF solvers: Quantifier al-
ternations matter. In John N. Hooker, editor, Principles and Practice of
Constraint Programming - 24th International Conference, CP 2018, volume
11008 of Lecture Notes in Computer Science, pages 276–294. Springer Verlag,
2018.

[Lev73] Leonid Levin. Universal sequential search problems. Problems of Information
Transmission, 9(3):265––266, 1973.

[LEVG13] Florian Lonsing, Uwe Egly, and Allen Van Gelder. Efficient clause learning
for quantified Boolean formulas via QBF pseudo unit propagation. In
Matti Järvisalo and Allen Van Gelder, editors, Theory and Applications of
Satisfiability Testing - SAT 2013, volume 7962 of Lecture Notes in Computer
Science, pages 100–115. Springer Verlag, 2013.

[LHHS15] Marius Thomas Lindauer, Holger H. Hoos, Frank Hutter, and Torsten
Schaub. Autofolio: An automatically configured algorithm selector. J. Artif.
Intell. Res., 53:745–778, 2015.

[LLM16] Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Improving
model counting by leveraging definability. In Subbarao Kambhampati,
editor, Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
pages 751–757. IJCAI/AAAI Press, 2016.

[LM08] Jérôme Lang and Pierre Marquis. On propositional definability. Artificial
Intelligence, 172(8-9):991–1017, 2008.

[Lon12] Florian Lonsing. Dependency Schemes and Search-Based QBF Solving:
Theory and Practice. PhD thesis, Johannes Kepler University, Linz, Austria,
April 2012.

[MLM09] João P. Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning sat solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, pages 131–153. IOS Press,
2009.

[MS96] João P. Marques-Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In International Conference on Computer-Aided

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Design (ICCAD ’96), November 10-14, 1996, San Jose, CA, USA, pages
220–227. ACM and IEEE, 1996.

[Nec66] ’E. I. Nechiporuk. A Boolean function. Dokl. Akad. Nauk SSSR,
169(4):765–766, 1966.

[PRA01] G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncoop-
erative games of incomplete information. Computers & Mathematics with
Applications, 41(7–8):957 – 992, 2001.

[PSS16] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Long distance Q-
resolution with dependency schemes. In Nadia Creignou and Daniel Le
Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 -
19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings,
volume 9710 of Lecture Notes in Computer Science, pages 500–518. Springer
Verlag, 2016.

[PSS17] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for
QBF. In Serge Gaspers and Toby Walsh, editors, Theory and Applications of
Satisfiability Testing - SAT 2017, volume 10491 of Lecture Notes in Computer
Science, pages 298–313. Springer Verlag, 2017.

[PSS18] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Polynomial-time
validation of QCDCL certificates. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, Theory and Applications of Satisfiability Testing –
SAT 2018, pages 253–269, Cham, 2018. Springer International Publishing.

[PSS19a] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning
for QBF. Journal of Artificial Intelligence Research, vol. 65, 2019.

[PSS19b] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-
resolution with dependency schemes. Journal of Automated Reasoning,
63(1):127–155, Jun 2019.

[PSS19c] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Combining resolution-
path dependencies with dependency learning. In Mikoláš Janota and Inês
Lynce, editors, Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, Lisbon, Portugal, July 9-12, 2019,
Proceedings, Lecture Notes in Computer Science. Springer Verlag, 2019. To
appear.

[PSS19d] Tomáš Peitl, Friedrich Slivovsky, and Stefan Szeider. Proof complexity of
fragments of long-distance Q-resolution. In Mikoláš Janota and Inês Lynce,
editors, Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd
International Conference, Lisbon, Portugal, July 9-12, 2019, Proceedings,
Lecture Notes in Computer Science. Springer Verlag, 2019. To appear.

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[PT09] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver
for quantified Boolean formulas. Constraints, 14(1):80–116, 2009.

[Pul16] Luca Pulina. The ninth QBF solvers evaluation - preliminary report. In
Florian Lonsing and Martina Seidl, editors, Proceedings of the 4th Inter-
national Workshop on Quantified Boolean Formulas (QBF 2016)., volume
1719 of CEUR Workshop Proceedings, pages 1–13. CEUR-WS.org, 2016.

[Riv87] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246,
1987.

[RT15] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In
Roope Kaivola and Thomas Wahl, editors, Formal Methods in Computer-
Aided Design - FMCAD 2015, pages 136–143. IEEE Computer Soc., 2015.

[Rya04] Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s
thesis, Simon Fraser University, 2004.

[Sli15] Friedrich Slivovsky. Structure in #SAT and QBF. PhD thesis, TU Wien,
May 2015.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring expo-
nential time. In Proc. Theory of Computing, pages 1–9. ACM, 1973.

[SS09] Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean
formulas. Journal of Automated Reasoning, 42(1):77–97, 2009.

[SS12] Friedrich Slivovsky and Stefan Szeider. Computing resolution-path depen-
dencies in linear time. In Alessandro Cimatti and Roberto Sebastiani, editors,
Theory and Applications of Satisfiability Testing - SAT 2012, volume 7317
of Lecture Notes in Computer Science, pages 58–71. Springer Verlag, 2012.

[SS16a] Friedrich Slivovsky and Stefan Szeider. Quantifier reordering for QBF.
Journal of Automated Reasoning, 56(4):459–477, 2016.

[SS16b] Friedrich Slivovsky and Stefan Szeider. Soundness of Q-resolution with
dependency schemes. Theoretical Computer Science, 612:83–101, 2016.

[Ten16] Leander Tentrup. Non-prenex QBF solving using abstraction. In Nadia
Creignou and Daniel Le Berre, editors, Theory and Applications of Satis-
fiability Testing - SAT 2016, volume 9710 of Lecture Notes in Computer
Science, pages 393–401. Springer Verlag, 2016.

[Tse68] G. S. Tseitin. On the complexity of derivation in propositional calculus.
Zap. Nauchn. Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR, 8:23–41,
1968. Russian. English translation in J. Siekmann and G. Wrightson (eds.)
Automation of Reasoning. Classical Papers on Computer Science 1967–1970,
Springer Verlag, 466–483, 1983.

142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[VG11] Allen Van Gelder. Variable independence and resolution paths for quantified
Boolean formulas. In Jimmy Lee, editor, Principles and Practice of Con-
straint Programming - CP 2011, volume 6876 of Lecture Notes in Computer
Science, pages 789–803. Springer Verlag, 2011.

[VWM15] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability
solvers and their applications in model checking. Proceedings of the IEEE,
103(11):2021–2035, 2015.

[Weg00] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM,
2000.

[WHH14] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. Drat-trim:
Efficient checking and trimming using expressive clausal proofs. In Carsten
Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing
– SAT 2014, pages 422–429. Springer Verlag, 2014.

[WRMB17] Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker. HQSpre -
an effective preprocessor for QBF and DQBF. In Axel Legay and Tiziana
Margaria, editors, Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, volume 10205 of
Lecture Notes in Computer Science, pages 373–390, 2017.

[XHHL08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla:
Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res., 32:565–606,
2008.

[ZM02a] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified
Boolean satisfiability solver. In Lawrence T. Pileggi and Andreas Kuehlmann,
editors, Proceedings of the 2002 IEEE/ACM International Conference on
Computer-aided Design, ICCAD 2002, San Jose, California, USA, November
10-14, 2002, pages 442–449. ACM / IEEE Computer Society, 2002.

[ZM02b] Lintao Zhang and Sharad Malik. The quest for efficient Boolean satisfia-
bility solvers. In D. Brinksma and K. G. Larsen, editors, Computer Aided
Verification: 14th International Conference (CAV 2002), volume 2404 of
Lecture Notes in Computer Science, pages 17–36, 2002.

[ZM02c] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfac-
tion and conflicts in quantified Boolean formula evaluation. In Pascal Van
Hentenryck, editor, Principles and Practice of Constraint Programming - CP
2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September
9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer Science,
pages 200–215. Springer Verlag, 2002.

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background on QBF
	Contributions
	List of Papers and Software

	Preliminaries
	Propositional Logic
	Quantified Boolean Formulas
	Q-resolution and other Proof Systems
	QBF Solving and QCDCL
	Dependency Schemes
	QCDCL With Dependency Schemes
	Q(D)-resolution

	Long-distance Q-resolution with Dependency Schemes
	Long-distance Q(D)-resolution
	QCDCL with Dependency Schemes Generates LDQ(D)-Proofs
	Soundness of and Strategy Extraction for LDQ(Drrs)
	Proof of Theorem 2
	Experiments
	Related Work
	Summary and Discussion

	Dependency Learning for QBF
	QCDCL with Dependency Learning
	Soundness and Termination
	Experiments
	An Exponential Speedup over QCDCL
	An Interpretation of Learned Dependencies
	Summary and Discussion

	Combining Resolution-Path Dependencies with Dependency Learning
	Reflexive Resolution-Path Dependency Scheme
	Using Resolution-Path Dependencies in Practice
	Experiments
	Summary and Discussion

	Polynomial-Time Validation of QCDCL Certificates
	QBF Certificate Validation
	RUP Proofs from Ordinary Q-Resolution
	RUP Proofs from Long-Distance Q-Resolution
	True Formulas
	Experiments
	Summary and Discussion

	Proof Complexity of Fragments of Long-distance Q-resolution
	A Lower Bound for Reductionless Q-resolution
	Short Proofs of QParity in Reductionless Q-Resolution
	Lower Bounds from Strategy Extraction
	Summary and Discussion

	Portfolio-based Algorithm Selection for Circuit QBFs
	QCIR Instance Features
	Per-instance Algorithm Selection for QCIR
	Which Features Matter?
	Summary and Discussion

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Bibliography

