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Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





Reduction Techniques for
Parameterized Model Checking
and Synthesis of Fault-Tolerant

Distributed Algorithms

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der Technischen Wissenschaften

by

Marijana Lazić, MSc
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Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Marijana Lazić, MSc
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Kurzfassung

Verteilte Algorithmen finden zahlreiche Anwendungen im täglichen Leben, in eingebetteten
Systemen der Automobil- und Flugzeugindustrie, in Computer Netzwerken, sowie dem
Internet der Dinge. Die zentrale Idee ist Zuverlässigkeit durch Replikation zu erreichen
und sicherzustellen, dass alle korrekten Replika als Einheit agieren, selbst wenn manche
Replika ausfallen. Dadurch ist die korrekte Operation des Systems zuverlässiger als
die Operation seiner einzelnen Teile. Fehlertolerante Algorithmen sind typisch für jene
Anwendungen, welche die höchste Ausfallsicherheit verlangen, da in diesen Anwendungen
menschliches Leben gefährdet wird, wie zum Beispiel in der Automobil- und Flugindustrie,
und selbst unwahrscheinliche Ausfälle dieser Systeme unakzeptabel sind. Darum ist die
Korrektheit fehlertoleranter Systeme von zentraler Bedeutung.

Neue Anwendungsgebiete wie Cloud Computing und Blockchain Technologien schaffen
neue Motivation zur Untersuchung fehlertoleranter Algorithmen. Mit einer immer größeren
Anzahl an involvierten Computern sind Fehler eher die Norm als die Ausnahme. Dadurch
wird Fehlertoleranz nur wirtschaftlichen Notwendigkeit und somit auch die Korrektheit
der Mechanismen zur Fehlertoleranz.

Um mit praktischen verteilten Systemen, welche aus tausenden Komponenten beste-
hen, umgehen zu können, bedarf es Techniken zur Analyse fehlertoleranter verteilter
Algorithmen für jede Systemgröße, das heißt für jede mögliche Anzahl an Komponenten
und jede zulässige Anzahl an Defekten. Wir verwenden spezielle Variablen n, f und t,
genannt Parameter, um entsprechend die Anzahl der Prozesse, die Anzahl der Defekte,
und eine Oberschranke für die Anzahl der Defekte zu beschreiben. Wir betrachten einen
Algorithmus als korrekt, wenn dieser seine Spezifikation unter jeder Wahl von n, f, t
erfüllt, wobei wir Vorbedingungen, wie zum Beispiel n > 3t, die sogenannte Resilience
Condition, erlauben. Die Verifikation dieser generellen Korrektheit nennt man paramete-
risierte Verifikation, und die Synthese korrekter Algorithmen aus deren Spezifikationen
wird parameterisierte Synthese genannt.

Das Schlussfolgern über die Korrektheit von fehlertoleranten verteilten Algorithmen
(FTDAs) ist durch deren nichtdeterministisches Verhalten aufgrund von Defekten, Neben-
läufigkeit und Nachrichtenverzögerung eine immens schwierige Aufgabe. Der klassische
Ansatz zur Feststellung von Korrektheit besteht in mathematischen Beweisen durch
Bleistift und Papier, welche offensichtlich menschlichen Einfallsreichtum und großen
manuellen Aufwand erfordern. Da verteilte Algorithmen komplexes Verhalten aufweisen
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und da diese für Menschen schwer verständlich sind, gibt es nur sehr wenige Werkzeuge,
um logische Fehler in fehlertoleranten verteilten Algorithmen aufzuspüren, insbesondere
in der Entwurfsphase.

In dieser Dissertation befassen wir uns mit der Klasse von asynchronen FTDAs, wo-
bei Prozesse durch Message Passing kommunizieren und die empfangenen Nachrichten
mit sogenannten Tresholds vergleichen. Zum Beispiel mag es einem Prozess nur dann
erlaubt sein, eine Operation auszuführen, wenn dieser von der Mehrheit der Prozesse im
System eine Nachricht empfangen hat, d.h. mindestens n

2 Nachrichten. Tresholds sind
üblicherweise Linearkombinationen von Parametern und daher Parameterisierungen des
Programmcodes. Für solche FTDAs sind die meisten existierenden Verifikations- und
Synthesetechniken entweder nur für kleine Instanzen geeignet, zum Beispiel mit vier
Prozessen von denen einer ausfallen darf, oder ungeeignet für (i) parameterisierten Pro-
grammcode, (ii) arithmetische Resilience Conditions, oder (iii) die Spezifikation verteilter
Algorithmen.

In dieser Dissertation entwickeln wir Techniken zur parameterisierten Analyse dieser
Klasse von FTDAs, welche den erwähnten Herausforderungen gerecht werden. Diese
Techniken basieren auf Reduktion, das heißt auf dem Schließen über Abhängigkeiten von
nebenläufig ausgeführten Ereignissen. Der Beitrag dieser Dissertation is dreifältig:

1. Wir präsentieren ein komplettes Framework zur parametersierten Verifikation von
temporalen Eigenschaften dieser speziellen Klasse von FTDAs, insbesondere eine
Methode zur Zertifizierung der Korrektheit eines Algorithmus für jede Systemgröße.
Unsere Methode adressiert sowohl Safety- als auch Liveness-Spezifikationen von
Algorithmen.

2. Wir erarbeiten eine automatisierte Technik zur Synthese von FTDAs, welche korrekt
für jede Systemgröße ist und nicht nur für jene fixierter Größe. Für ein gegebenes
sogenanntes Skeletts eines Algorithmus unserer Klasse erkennen wir automatisch
Tresholds, parameterisiert in der Anzahl der Prozesse und der Anzahl der Defekte,
welche korrekte Algorithmen liefern.

3. Zusätzlich erweitern wir die Klasse der betrachteten Algorithmen um die Fähigkeit,
probabilistische Übergänge auszuüben, wie zum Beispiel Münzwürfe und Spezifika-
tionen, welche mit Wahrscheinlichkeit 1 gelten. Wir reduzieren das Problem der
Verifikation solcher randomisierter FTDAs auf das bekannte Szenario. Dadurch ent-
wicklen wir die erste automatisierte Methode zur parameterisierten Verifikation von
randomisierten, fehlertoleranten, verteilen Algorithmen und deren probabilistischen
Eigenschaften.



Abstract

Distributed algorithms have many applications in everyday life, as well as in avionic and
automotive embedded systems, computer networks, and the Internet of Things. The
central idea is to achieve dependability by replication, and to ensure that all correct
replicas behave as one, even if some of the replicas fail. In this way, the correct operation
of the system is more reliable than the correct operation of its parts. Fault-tolerant
algorithms are typically used in applications where highest reliability is required because
human lives might be at risk, such as in automotive or avionic industries, and even
unlikely failures of the system are not acceptable. Therefore, correctness of fault-tolerant
algorithms is of utmost importance.

New application domains, such as cloud computing or blockchain technologies, provide
new motivation to study fault-tolerant algorithms. With the huge number of computers
involved, faults are the norm rather than the exception. Consequently, fault-tolerance
becomes an economic necessity, and so does the correctness of mechanisms for fault-
tolerance. In order to deal with real-life distributed systems with thousands of components,
we need techniques for analyzing fault-tolerant distributed algorithms for every system
size, that is, for every number of components and every admissible number of faults.

We use special variables n, f and t, called parameters, to describe the number of processes
in the system, the number of faults, and an upper bound on the number of faults,
respectively. An algorithm is considered to be correct if it satisfies its specifications
for every n, f, t, under a certain prerequisite, e.g., n > 3t, called resilience condition.
Verifying such general correctness is called parameterized verification, and synthesizing
correct algorithms from their specifications is in this case called parameterized synthesis.

Reasoning about correctness of fault-tolerant distributed algorithms (FTDAs) is an
immensely difficult task, due to the non-deterministic behavior caused by the presence
of faults, concurrency, message delays, etc. The classical approach toward correctness
consists of pencil-and-paper mathematical proofs, that require human ingenuity and huge
manual efforts. As distributed algorithms show complex behavior, and are difficult to
understand for human engineers, there is only very limited tool support to catch logical
errors in fault-tolerant distributed algorithms, especially at design time.

In this thesis we focus on the class of asynchronous FTDAs where processes communi-
cate by message passing and compare numbers of received messages against so-called
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thresholds. For instance, a process might be allowed to perform an action only if it has
received messages from a majority of processes in the system, i.e., at least n

2 messages.
Thresholds are typically linear combinations of parameters, and thus they constitute a
parameterization of the code itself. For asynchronous FTDAs, most existing verification
and synthesis techniques are either only able to deal with small instances, for example,
with four processes among which one might fail, or they cannot deal with (i) param-
eterized code, (ii) arithmetic resilience conditions, or (iii) specifications of distributed
algorithms.

In this thesis we develop techniques for the parameterized analysis of this class of FTDAs
that can cope with all the mentioned challenges. More specifically, our methods are
based on reduction techniques, that is, on reasoning about dependency of concurrently
executed events. The contribution of this thesis is threefold:

1. We present a complete framework for the parameterized verification of temporal
properties of this particular class of FTDAs, that is, a method for certifying the
correctness of an algorithm for any system size. Our method addresses both safety
and liveness specifications of algorithms.

2. We introduce an automated technique for synthesizing FTDAs that are correct for
any system size, rather than for a fixed size. In fact, for a given so-called skeleton
of an algorithm from our class, we automatically detect thresholds, parameterized
in the number of processes in total and the number of faults, that yield correct
algorithms.

3. Additionally, we extend the class of the considered algorithms, by allowing prob-
abilistic transitions, such as coin tosses, and specifications that hold with proba-
bility 1. We reduce the problem of verification of such randomized FTDAs to the
non-probabilistic setting. In this way, we present the first automated method for
parameterized verification of randomized fault-tolerant distributed algorithms and
their associated probabilistic properties.
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CHAPTER 1
Introduction

In the era of modern technologies and high tech development, each of us is more or less
dependent on complex computer systems. These systems are progressively becoming
distributed. Our everyday activities depend on the Internet, where geographically distant
computers communicate with each other. Even seemingly simple tasks, like reading
newspapers online or having long-distance video calls, require sophisticated distributed
algorithms. We expect them to work correctly, but often they do not. Let us take
an example of a distributed problem which can be found in a daily routine such as
having chat with several users via a social network. If some of the users, or server, got
disconnected, we expect that the other users can continue to chat and that the system
provides history information to other users, including messages sent by the disconnected
users.

Moreover, in complex distributed systems like cloud services or databases, failures of
individual components are a commonplace phenomenon [Net10]. We often encounter
environmental faults, like power outages, memory corruption, or network misconfiguration,
as well as software bugs caused by the programmer’s oversight. This problem calls for
fault-tolerance mechanisms that can deal with different types of failures.

For example, the different components of Amazon cloud storage service S3, are spread all
over the United States and Europe, and need to be aware of the states of each other. In
July 2008 [Tea08], message corruption caused problems in server-to-server communication.
The existing fault-tolerance mechanism of Amazon S3 was not able to deal with this kind
of faults. Consequently, when the corruption occurred, it spread throughout the system.
To recover, Amazon had to take the service offline for more than seven hours. This
caused a vast financial damage, and therefore motivated more investments in verification
of fault-tolerant distributed systems.

Furthermore, currently we observe increasing interest in blockchain technology [Nak08,
Ext15, GOS16, Buc16], where a large number of persons, companies, etc., are interested
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in participating in a market place. These systems have to ensure fault tolerance, e.g., if
a majority of the participants are honest, the system should work as expected. Besides,
they provide probabilistic guarantees, which demands analysis of randomized distributed
algorithms for any number of participants.

Such examples of distributed algorithms, whose failures can cause a huge financial loss,
or put human lives at risk, like in the case of airplanes, cars, and medical devices, teach
us that the correctness of fault-tolerant distributed algorithms is of immense importance.

Replication is a classic approach to make computing systems more reliable. In order to
avoid a single point of failure, one introduces multiple processes in a distributed system.
Then, if some of these processes fail (e.g., by crashing or deviating from their expected
behavior) the distributed system as a whole should stay operational. For this purpose
one uses fault-tolerant distributed algorithms (FTDAs). These algorithms have been
extensively studied in distributed computing theory [Lyn96, AW04], and they found
application in safety critical systems (e.g., automotive or aeronautic industry). With the
recent advent of data centers, cloud computing, and blockchain technologies, we observe
growing interest in fault-tolerant distributed algorithms, and their correctness, also for
more mainstream computer science applications [LBC16, PTP+16, DHV+14, DHZ16,
PMP+16, WWP+15, HHK+15].

The classical approach for certifying correctness of algorithms in distributed computing
literature are hand-written mathematical proofs. One downside of this approach is that
these proofs are written for specific algorithms, and thus cannot be easily generalized.
Moreover, they are usually highly complex, as they require reasoning about faults, con-
currency, non-determinism, and message delays. Consequently, even published algorithms
and their proofs can contain bugs [LR93]. Establishing correctness manually demands
human ingenuity, huge efforts and a lot of time.

To overcome the problem of hand-written proofs, one may consider automated verification.
However, designing automated techniques for verification of fault-tolerant distributed
algorithms is a notably difficult task. One problem comes from the scale. The existing
automated techniques often cannot cope with complex distributed systems, and therefore
focus on small instances, with a fixed number of processes, typically less than 10 [JKS+13b,
Gme15]. Large realistic systems, containing thousands of participants, require techniques
that do not depend on the number of components, ideally they should work for an
unbounded number of components. This precisely formalizes the need for parameterized
analysis of distributed algorithms. In other words, we generally introduce parameters n, t
and f , where n represents the total number of processes in the system, f is the number
of faulty processes, and t is the upper bound on the number of faults. It is natural that
one cannot expect correct behavior of a system, if, for example, all processes are faulty,
formally, if n = f . We consider an algorithm to be correct if it satisfies its specifications
for any values of parameters provided that, for example, less than a third of processes
might fail, that is, n > 3t. This requirement is called resilience condition.

Checking if an arbitrary distributed system satisfies an arbitrary temporal formula in the

4



1.1. Fault-tolerant Distributed Algorithms

parameterized case, is known to be undecidable [BJK+15]. These theoretical restrictions
thus introduce a trade-off between generality and the degree of automation. In this work
we give priority to automation, and focus on one class of distributed algorithms. We
explain characteristics of this class in Section 1.1, and illustrate a typical example of
an FTDA of interest. The problem we address in this thesis is presented in Section 1.2.
The existing work on this topic, using different approaches, is summarized in Section 1.3.
For solving the problem, we employ a method called reduction, that is described in
Section 1.4. Finally, a guide through the main body of the thesis is given in Section 1.5.

1.1 Fault-tolerant Distributed Algorithms

A fault-tolerant distributed system is a collection of independent sequentially computing
components, called processes, that cooperate to achieve a common goal in the presence
of failures. A protocol that defines the behavior of each correct process in such a system,
is given as a fault-tolerant distributed algorithm (FTDA) [Lyn96, AW04].

There are two common means of communication in a distributed system:

• message passing, that is, processes send messages to each other over communication
channels that connect pairs of processes, or

• shared memory, that is, processes store data in a memory that is accessible to other
processes (not necessarily all).

Regarding timing assumptions, the literature distinguishes three models:

• synchronous model [Lyn96], where processes operate in lockstep. Every execution of
the system is partitioned in rounds, and in each round processes exchange messages
(send and receive them) and perform local computations. We say that individual
executions of processes are fully synchronized. Although convenient for analysis,
this model is not achievable in practice.

• asynchronous model [FLP85] allows more realistic modeling, where processes are
arbitrarily interleaved with no upper bound on the time taken for message delivery
and no upper bound on the speeds of individual processes. Even in a fault-
free algorithm, with a fixed input, asynchronous modeling gives rise to multiple
executions, depending on the speeds of processes and message deliveries.

• partially synchronous model [DDS87, DLS88], which is a more restricted asyn-
chronous model, where processes are interleaved with certain limits on message
delays and/or the relative process speeds.

In this work we focus on asynchronous algorithms with the message passing model of
communication. Processes are fully symmetric, that is, they do not have process IDs,
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and the message passing model is restricted in such a way that correct processes can only
broadcast messages, that is, send to all. The events of receiving such a message are not
synchronized. Moreover, processes keep track of the number of received messages and
compare it against so-called thresholds. A process is allowed to progress only if its number
of received message has reached the threshold. FTDAs with these characteristics are
called threshold-based FTDAs. Typical examples of such algorithms are folklore reliable
broadcast (FRB) [CT96], consistent broadcast (STRB) [ST87b], asynchronous Byzantine
agreement (ABA) [BT85], condition-based consensus (CBC) [MMPR03], non-blocking
atomic commitment (NBAC and NBACC [Ray97] and NBACG [Gue02]), one-step
consensus with zero degradation (CF1S [DS06]), consensus in one communication step
(C1CS [BGMR01]), and one-step Byzantine asynchronous consensus (BOSCO [SvR08]).

Threshold-based FTDAs. Faulty behavior in distributed systems can appear in many
different forms [GKS+14, Gme15]. For example, processes may just stop functioning
(crash faults), may fail to send messages to certain participants (omission faults), or
they may send messages with erroneous content, or even conflicting information to
different processes (Byzantine faults). Many algorithms achieve fault-tolerance by using
threshold guards that, for instance, ensure that a process waits until it has received an
acknowledgment from a majority of its peers.

In asynchronous systems, processes do not have access to the global state. Thus, they
progress based on their local states and received messages. If the modeling does not allow
faults, we often encounter simple threshold guards, such as existential guards:

if received <m> from some processes

then action(m);

and universal guards:

if received <m> from all processes

then action(m);

Nevertheless, as discussed in [GKS+14], these guards do not tolerate faults. Namely,
if one uses existential guards in the presence of Byzantine faults, and the sender of a
message < m > is faulty, then the content of the message might be erroneous, and a
receiver would make its local computation based on this misleading information; If one
uses universal guards, and a faulty process omits to send < m >, then this message will
never be received, and thus every correct process will wait forever as the guard prevents
it from progressing. Therefore, it is crucial to be able to express different conditions,
for example, that a process should wait until it receives at least one message from a
correct process, or until it receives messages from majority of processes. Algorithms that
use threshold guards are called threshold-based algorithms, and in this thesis we develop
techniques for analysis of threshold-based FTDAs.
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1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one step)
5 i f myvali = 1
6 and not s en t ECHO be f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t t+ 1 d i s t i n c t p r o c e s s e s

10 and not s en t ECHO be f o r e
11 then send ECHO to a l l
12
13 i f received ECHO from at l e a s t n− t d i s t i n c t p r o c e s s e s
14 then accepti ← true
15 od

Figure 1.1: Pseudo code of a distributed algorithm for a correct process i. A distributed
system consists of n processes, at most t < n/3 of which are Byzantine faulty.

Example FTDA. A typical example of a threshold-based fault-tolerant distributed
algorithm is reliable broadcast. Figure 1.1 shows a pseudo code inspired by the reliable
broadcast protocol from [ST87b], which is used as building block of many fault-tolerant
distributed systems. It tolerates Byzantine faults, that is, every correct process follows the
pseudo code, and no assumption is made about faulty processes. Note that parameters
appear already in the pseudo code: the system contains n processes, and at most t of
them are faulty. We allow at most t < n/3 faulty processes, and this is called resilience
condition.

The statements from lines 9 and 13 are called threshold guards, and the expressions t+ 1
and n − t from these lines are thresholds. Waiting for messages from n − t processes
ensures that if all correct processes send messages, then faulty processes cannot prevent
progress. Similarly, waiting for t+ 1 messages ensures that at least one message was sent
by a correct process.

Each correct process i has initial value 0 or 1 (line 1). Processes with initial value 1
broadcast the ECHO message (lines 5-7), i.e., send ECHO to all processes including
themselves, exactly once. Independently of its initial value, every process that has
received at least t+ 1 messages from its peers, but has not sent ECHO, also broadcasts
the ECHO message (lines 9-11). Every correct process that has collected at least n− t
ECHO messages, sets its accept value to true, or simply, accepts (lines 13-14). We assume
that every message that is sent, eventually it is received, and this is called fairness
assumption.

Example specifications. This algorithm is correct if for every value of n and t such
that n > 3t, the following holds:
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Unforgeability If all correct processes have initial value 0, then no correct process ever
accepts.

Correctness 1 If all correct processes have initial value 1, then there is a correct process
that eventually accepts.

Relay If a correct process accepts, then eventually all correct processes accept.

Does the algorithm satisfy the specifications? Next we consider three cases that
illustrate the role of threshold guards and the resilience condition.

Let us first consider the fault-free case, i.e., when t = 0. Our threshold guards t+ 1 and
n− t become existential (t+ 1 = 1) and universal (n− t = n), respectively. We analyze
behavior of the parameterized system in the two possible cases: (i) when all processes
have initial value 0, and (ii) when k ≥ 1 processes have initial value 1.

(i) If no process has initial value 1, then no process ever sends the ECHO message,
and therefore no process ever accepts. This proves unforgeability.

(ii) If there are exactly k ≥ 1 processes with 1 as their initial value, each of them will
send the ECHO message. Then, by our assumption that every sent message is
eventually received, each process eventually receives at least k ECHO messages. As
k ≥ 1, every process will reach the threshold t+ 1 = 1 in line 9, and thus each of
the n processes will send ECHO (even those n − k processes whose initial value
is 0). Thus, again by the fairness assumption, every process eventually receives n
ECHO messages, and accepts. For k = n, this proves correctness, and in general, it
implicitly proves relay.

This confirms that existential and universal guards are powerful enough in the case with
no faults.

Next we consider the system in the presence of faults, but with respect to the resilience
condition n > 3t. Let us analyze a particular instance of the system, that is, let us
assume that the system consists of, for example, four processes and exactly one of them
is faulty, that is, n = 4 and t = 1. We show (i) that the system satisfies unforgeability,
even if the faulty process sends the ECHO message to the others. Moreover, we show (ii)
that a slight modification of a threshold can violate unforgeability.

(i) Assume that the three correct processes have initial value 0, but the faulty one
sends ECHO to some or all of them. The threshold guard t+ 1 = 2 will never be
reached, and thus, no other process will ever broadcast ECHO, nor accept.

1We kept the name of this specification, correctness, as it is originally introduced in [ST87b], but one
should not confuse it with the notion of a correct system, which means that the system satisfies all its
specifications, in this case: unforgeability, correctness, and relay.
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(ii) To illustrate the importance of the threshold guards, we can set the threshold from
the line 9 to t instead of t+ 1, and give the same example, where one faulty process
sends the ECHO message to the correct ones that have initial values 0. They will
eventually receive this message, which would be enough for their own broadcast,
and implicitly later for accepting. This would violate unforgeability.

Here we also stress the role of the resilience condition n > 3t. Assume it is only slightly
changed, that is, assume we have n ≥ 3t instead of n > 3t. Then, the algorithm is not
correct. Let us take the simplest example, with n = 3 and t = 1. Note that unforgeability
and correctness are still satisfied, but relay can be violated. Assume that two correct
process are i and j, where i has initial value 0, and j has 1. If the Byzantine process
sends ECHO to j, but no message to i, then j eventually receives two messages (from
itself and from the faulty one) and accepts, but i never receives more than one message
(from j), and thus never accepts. This violates relay.

We have seen that parameterized verification of distributed algorithms highly depends
on the interplay between resilience conditions, precise formulation of specifications, and
parameter values.

1.2 Problem statement

In this thesis we focus on verification and synthesis of fault-tolerant distributed algorithms.
To formalize threshold-based fault-tolerant distributed algorithms we use threshold
automata. The notion has been introduced for the first time in [KVW14], and it represents
an abstraction of the original system. Threshold automata are edge-labeled graphs, where
nodes represent local states of individual processes, and edges represent transitions that
can be executed by a process only if the threshold guard labeling the edge is true. A
threshold automaton captures the behavior of one process, and the distributed system is
modeled as a system of typically n copies of a threshold automaton.

A parameterized distributed system M(n, t, f) is now defined as follows:

M(n, t, f) = P (n, t, f) ‖ P (n, t, f) ‖ . . . ‖ P (n, t, f)︸ ︷︷ ︸
n−f times

‖ Faulty ‖ . . . ‖ Faulty︸ ︷︷ ︸
f times

(1.1)

It is a parallel composition of n individual sequentially computing processes, that either
follow the process code P (n, t, f) if they are correct, or deviate from it in case of a
faulty process (Faulty). For instance, P (n, t, f) can be a formalization of the code from
Figure 1.1. We are interested in asynchronous timing model, as described in Section 1.1.

Such systems should satisfy temporal properties. Every specification is either safety, or
liveness, or their combination [AS87, Lam77]. Intuitively, safety means that nothing
bad can ever happen in the system, and liveness means that something good eventually
happens. In the example from Section 1.1, unforgeability is a safety property, while
correctness and relay are liveness properties. Classical verification methods often focus on
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safety properties, but for fault-tolerant distributed algorithms liveness is as important as
safety. It is a folklore knowledge that designing a safe fault-tolerant distributed algorithm
is trivial: just do nothing; e.g., by never committing transactions, one cannot commit
them in inconsistent order. Hence, a technique that verifies only safety may establish
the “correctness” of a distributed algorithm that never does anything useful. To achieve
trust in correctness of a distributed algorithm, we need tools that verify both safety and
liveness. A formal definition of the system correctness is given as follows:

Given a process code P (n, t, f), a temporal formula ϕ, and a resilience condi-
tion RC (n, t, f), the system M(n, t, f) defined by P (n, t, f) as in Eq. (1.1) is
correct if it holds that

M(n, t, f) |= ϕ (1.2)

for all values of parameters n, t and f that satisfy RC (n, t, f).

In this thesis we address four challenges about correctness of distributed algorithms
according to Definition (1.2):

C1 Check if an asynchronous system M(n, t, f) is correct for a resilience condition RC ,
if ϕ is a reachability property;

C2 Check if an asynchronous system M(n, t, f) is correct for an RC , if ϕ is a safety or
liveness property that can be encoded in a fragment of linear temporal logic with
operators F and G ;

C3 If a process code is only partially defined, synthesize the full definition of P (n, t, f),
such that the asynchronous system M(n, t, f) defined by P (n, t, f) is correct for a
given resilience condition and a formula in LTL as in C2;

C4 Check if a randomized asynchronous system Mrand(n, t, f) satisfies an LTL formula
as in C2, possibly with probability 1.

We successfully deal with these four challenges in Chapters 3–6. Moreover, we design an
automated tool that either confirms correctness, or otherwise it generates concrete values
of parameters, i.e., a fixed system, and an execution in it, that demonstrates violation
of ϕ. The tool is called Byzantine Model Checker (ByMC [KW18]).

The dependence diagram of the four problems is depicted in Figure 1.2. Every solution
to a challenge is based on the solution to the preceding challenge in the diagram.

1.3 State of the Art

Model checking. Verification is a general notion that includes different formal
methods, such as theorem proving [BM83], abstract interpretation [CC77], and model
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Challenge C1
(Chapter 3)
[KLVW17a]

Challenge C2
(Chapter 4)
[KLVW17b]

Challenge C3
(Chapter 5)
[LKWB17]

Challenge C4
(Chapter 6)
[BKLW18]

Figure 1.2: A schematic representation of the four parameterized model checking chal-
lenges addressed in this thesis.

checking [CHVB18]. We focus on model checking, that is in [CGP99] defined as an
efficient search procedure used to determine if a specification is true on a transition
system, that is, the transition system is checked to see whether it is a model of the
specification [CGP99]. Formally, given a transition system M and a property ϕ, model
checking is concerned with the question whether it holds that M |= ϕ.

Model checking has been introduced in the early eighties independently in [CE81]
and [QS82], but it still receives well deserved attention [CGP99, BK08, GV08, CHVB18].
The state-transition system is a formalization of, for instance, a protocol or a circuit
design2. A property is given in a temporal logic, that is an extension of propositional logic
that allows us to describe the behavior of a system over time, e.g., an event eventually
happens, or an event keeps appearing until another event happens, etc.

The early model checking techniques [CE81, QS82] searched through all system states in
an exhaustive manner. Thus, they dealt with finite state systems, and they faced the
problem of the combinatorial state explosion, which is the most evident for concurrent
systems. Even if we have only a fixed finite number of processes, all possible interleavings
form a massive global search space. The number of global states grows exponentially
with the number of processes. If our goal is automated verification of huge databases
or blockchains, we need more tuned techniques. We need to exploit the features of the
transition system.

Effective methods that increase efficiency of model checking are abstraction [CGL94,
GS97], binary decision diagrams [BCM+90], satisfiability solvers [BCCZ99, Bra12], ab-
straction refinement using SMT solvers [CGJ+03, BLR11].

2In the model checking literature, as well as in this thesis, we say that a transition system is a model,
in the sense of formalizing (modeling) the protocol or the circuit. This should not be confused with a
transition system being a logical model of a formula.
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Parameterized model checking. When we fix values of n, t and f in a parame-
terized system M(n, t, f), we typically get a finite state system. Conventional model
checkers are able to verify correctness only for small instances of systems. A method
that checks correctness of a system M(n, t, f) according to the definition (1.2), that is, a
method for checking whether the system satisfies the specification for all values of these
parameters, is called parameterized model checking. As we consider an infinite family of
systems, parameterized model checking is exceptionally hard. Moreover, it happens to
be undecidable for many computational models, which is summarized in [BJK+15].

A common method examines cutoffs [EN95, CTTV04, KKW10, AHH13, MSB17], that
ensure that checking systems up to a specific size is necessary and sufficient for the
correctness of the system for all sizes. This idea allows us to use existing non-parameterized
techniques on small systems in order to check the parameterized problem. In other words,
the existence of a cutoff for a system implies decidability of the paramaterized model
checking problem for that system [BJK+15, Prop. 3.5]. Nonetheless, in order to solve
this problem, one needs to know (i) whether there is a cutoff, (ii) the size of the cutoff,
and (iii) whether the cutoff is small enough to be checked in practice.

The first undecidability result for the parameterized model checking of concurrent systems
was obtained in [AK86]. Their idea lies in reducing the parameterized model checking
problem to the non-halting problem of Turing machines. Extensions of this idea could
also be applied to uniform concurrent systems, that is, those where each of n finite-state
processes is independent of the parameter n. Decidability of such systems depends on
the means of communication, timing assumptions, as well as on the topology of the
underlying communication graph.

For instance, undecidability of parameterized model checking problem for token rings
where tokens contain information is presented in [Suz88]. Token passing systems commu-
nicate by passing a token along an edge of the underlying graph. For tokens that do not
contain information, there exist decidability results of the parameterized model checking
problem [EN95, EN03, CTTV04, AJKR14] for special fragments of temporal logic that
do not contain the nexttime operator.

Imposing certain restrictions on the specifications [EK03, EFM99, GS92, AKR+18],
when focusing on the parameterized systems where processes communicate via pairwise
rendezvous or by broadcasting messages, implies decidability for safety properties, as
well as for liveness for pairwise rendezvous, and undecidability for liveness otherwise. In
asynchronous shared-memory systems with one distinguished leader and any number
of identical contributors, safety and liveness are decidable [DEGM15, EGM16]. Slight
deviations from this setting lead to undecidability [Esp14].

Another natural technique for parameterized model checking is based on induction. It is
requires network invariants [WL89, KM95], that is, the properties such that holds on a
system with n processes, that it also hold on the analogous system with n+ 1 processes.
Numerous extensions of this technique have been developed for parameterized systems
defined by network grammars [BCG89, SG89, CGJ95, CGJ97, KZ10].
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As described in the survey [BJK+15], the state-of-the-art techniques for parameterized
model checking [EN95, PXZ02, EK03, CTV08] do not focus on fault-tolerant distributed
algorithms.

Fault-tolerant distributed algorithms. Design, implementation, and verification
of distributed systems constitutes an active research area [vGBR16, KAB+07, BDMS13,
DHZ16, LBC16, PTP+16]. Although distributed algorithms show complex behavior, and
are difficult to understand for human engineers, there is only very limited tool support
to catch logical errors in fault-tolerant distributed algorithms at design time.

One approach is to encode these algorithms in TLA+ [TLA], and use the TLC model
checker to automatically find bugs in small instances, i.e., in distributed systems con-
taining, e.g., three processes. Large distributed systems (e.g., clouds) need guarantees
for all numbers of processes. These guarantees are typically given using hand-written
mathematical proofs. In principle, these proofs could be encoded and machine-checked
using the TLAPS proof system [CDLM10], PVS [LR93], Isabelle [CBM09], Coq [LBC16],
Nuprl [RGBC15], or similar systems; but this requires human expertise that cannot be
easily automated and repeated for other benchmarks.

Ensuring correctness of the implementation is an open challenge: As the implementations
are done by hand [OO14, PTP+16], the connection between the specification and the
implementation is informal, such that there is no formal argument about the correct-
ness of the implementation. There is a mature theory regarding mathematical proof
methods, which found their way into formal frameworks like I/O Automata [Lyn96] and
TLA+ [Lam02]. Recent approaches [WWP+15, LBC16, HHK+17, SWT18] provide tool
support to establish correctness of implementations, by manually constructing proofs
with an interactive theorem prover. Although, if successful, this approach provides a
machine-checkable proof [CDLM10, BBJ+16a], it requires considerable manual efforts
from the user. A logic for distributed consensus algorithms in the HO Model [CS09] was
introduced in [DHV+14]. It allows one to automatically check the invariants (for safety)
and ranking functions (for liveness), that is, the manual effort is reduced to finding right
invariants and ranking functions. Model checking of distributed algorithms promises a
higher degree of automation. For consensus algorithms in the HO Model, the results
of [MSB17] reduce the verification to checking small systems of five or seven processes.

Another methodology that has a better degree of automation, has been introduced
in [PMP+16], supported by the interactive verification tool Ivy [MP18]. It has been
extended in [PHL+18, PHM+18] in order to check both safety and liveness of a large class
of distributed algorithms that can be expresses in the effectively-propositional fragment
(EPR) of first order logic. Expressing algorithms in EPR is not necessarily straightforward,
as the quantifier alternation graph might contain cycles, whose elimination requires human
expertise. The user specifies the distributed algorithm and suggests an invariant, and
receives guidance in the form of a counterexample depicted graphically. By inspecting
the counterexample, that is typically small as EPR has the finite model property, the
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user suggests another invariant and proceeds. This technique has been successfully used
for verification of several variations of Paxos.

Recently, parameterized model checking of FTDAs in the synchronous setting has been
achieved in [ARS+18] for safety and liveness using abstraction, and in [SKWZ18] using
bounded model checking only for safety. More generally, in the parameterized case, going
from safety to liveness is not straightforward, as exemplified by [FKP16]. There are
systems where safety is decidable and liveness is not [EFM99].

Threshold-based FTDAs. As a starting point for the work of this thesis, we have
used the parameterized model checking technique from [KVW14], that is based on
bounded model checking. Namely, the authors use acceleration in order to find a bounded
diameter of the system, and check all executions up to the computed length. This can
only be applied for reachability properties, and moreover, enumerating all executions of
a specific length is in general inefficient. This work is an adaptation of the approach
based on data and counter abstraction, used in [JKS+13a, Gme15]. This was the first
successful parameterized model checking technique for both safety and liveness properties
of fault-tolerant distributed algorithms. Although it allows checking of any formula, this
method proved to be impractical for large benchmarks, as the abstraction introduced
spurious counterexamples that had to be manually examined.

1.4 Methodological Approach

Given a sequential piece of code, once the input is fixed, the control flow of the code
with the evaluation of variables defines a single execution (if we ignore a lot of details
in modern compiler and processor design, such as, code optimization, caching, etc.). In
sharp contrast, a distributed system consists of multiple processes each with its local
control flow. In asynchronous systems, processes run independently, so that already
all possible interleavings of steps of the distributed processes induce a typically huge
execution space rather than a single execution. Furthermore, we are interested in the
case where these processes communicate by message passing, without restricting delays
of their messages. This additionally increases the execution space.

As already observed by Lamport [Lam78], distributed computations thus induce a partial
order— the so-called happens before relation—of events in a distributed system. Roughly
speaking, the event of sending a message m happens before the event of receiving m, and
for each process p, local events at p are ordered according to the temporal order of their
occurrences. The happens before relation is the transitive closure of the send-receive
relation for all messages and all processes, and the local order of events for each process.
As a result, if in an execution events e1 and e2 happend directly one after the other at two
distinct processes p and q, respectively, e1 and e2 may still be independent (not ordered
according to happened before). That is, neither the local control flows, nor the messages
impose an order of e1 and e2 so that swapping e1 and e2 leads to a different execution,
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which (i) entails the same happens before relation, and (ii) is locally indistinguishable for
processes p and q (and all other processes in the system).
The enormously large execution spaces of asynchronous algorithms make understanding
and reasoning about the executions hard, both for humans and computers. An important
idea to handle this complexity is to structure the reasoning along the induced partial
orders. Due to the mentioned partial order and indistinguishability arguments, the
happens before relation can be understood as an equivalence relation between executions:
all executions that have the same happens before relation over their events can be seen
as falling into the same class. For many interesting specifications, it is sufficient to check
a representative execution from each class. Here we distinguish—very roughly—two
approaches. In partial-order reduction, while searching the execution space, executions
that are “similar” to ones searched before are pruned [God90, Val91, Pel93]. In reduction
one proves a priori that every execution can be represented by an execution of specific
form [Lip75, EF82]. Then verification procedures only need to consider executions of
these specific forms.
To the best of our knowledge, Lipton [Lip75] was the first to highlight reduction as a proof
method for concurrent systems. In his theory, processes execute sequences of statements,
for instance, one process may be the sequence of statements A,B,C, and another process
may be the sequence X,Y . Then, concurrent executions are interleaved sequences of
statements. For example, A,X,B, Y,C is an execution, as well as X,A,B,C, Y . In the
latter execution, the sequence A,B,C is said to be executed atomically.
Lipton considered the classic semaphore operation P (s) and V (s), for semaphore s.
Then if p’s code is P (s), B, V (s), he proves that all executions can be reduced to ones
where P (s), B, V (s) occurs as uninterupted (atomic) block: Intuitively, if an execution
is interleaved with an event A′ at a different process p′, that is, P (s), A′, B, V (s), then
Lipton proves that P (s) can always be moved to the right, that is, A′, P (s), B, V (s) is
also an execution within the mentioned block. Such an operation is called a right mover.
Similarly, all V operations are called left movers. Thus, Lipton’s reduction consists
in identifying large blocks of process code between a P operation and its matching V
operation that can be “moved” together. Then for verification (of reachability properties)
it is sufficient to consider the executions where these blocks are executed atomically.

Reduction techniques for threshold-based FTDAs. In this thesis, we focus on
the class of fault-tolerant distributed algorithms described in Section 1.1, and the four
parameterized model checking challenges from Section 1.2. The dependence diagram of
the four problems is depicted in Figure 1.2. In all the four points we exploit the structure
of the system given by a threshold automaton, and develop new reduction techniques
that fit to such systems. The dependence diagram of the techniques used for solving the
four challenges is given in Figure 1.3. Every reduction technique from the figure is based
on the technique from the preceding point in the diagram.
The core technique is called PARA2. The acronym stands for PARAmeterized PAth
Reduction with Acceleration. We analyze a finite path (i.e., an execution) of a system, and
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PARA2 for
reachability

Property
specific PARA2

for safety
and liveness

CEGIS loop
based on

the PARA2

for safety
and liveness

PARA2 for
safety and
liveness in

communication
closed layers

Figure 1.3: A schematic representation of the reduction techniques used for solving the
challenges from Section 1.2, following the diagram from Figure 1.2.

use a specific type of reduction and acceleration in order to form a short path with the
same characteristics. For example, we analyze the relation between statements from Fig-
ure 1.1 like “send ECHO” and “received ECHO from at least t+1 distinct
processes” in order to determine which statements are movable. Moving actions in a
specific fashion allows us to generate other atomic steps. For instance, if m processes
perform event A one after the other, that is, the execution is A,A, . . . , A, this can be
represented by a single (accelerated) transition Am. As a result, moving the As together
and accelerating them, leads to “shorter” executions. The goal of every PARA2 tech-
nique is to obtain the so-called short counterexample property, stating that if there is a
counterexample to a formula in a system, then there exists also a counterexample of a
bounded length. This allows us to consider only paths of the obtained length. Moreover,
the way we use acceleration makes the length of a path independent of the number of
processes in the system. Therefore, the obtained bound can be used efficiently for any
system size.

In the following, we briefly explain each of the PARA2 techniques from Figure 1.3, used
in this thesis.

PARA2 for reachability. Inspired by Lipton’s method, we first introduce a reduction
technique PARA2 for reachability properties. This means that, when analyzing a path,
after applying this reduction technique, the goal is to obtain a short path that satisfies
the same reachability properties. In other words, we want to obtain a short path that
reaches the same global state as the original path, when the initial state is the same. We
exploit the properties of threshold guards to show which transitions can be reordered
and accelerated. In Chapter 3 we prove that this type of PARA2 preserves reachability
properties.
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1.4. Methodological Approach

Property specific PARA2 for safety and liveness. In contrast to the goal of only
reaching one state, more sophisticated properties are, for instance, expected to hold in
every state along a path. Our first PARA2 technique only ensures that the original path
and its short version have the same final state, but it does not guarantee anything about
the states visited by the two paths. Therefore, in Chapter 4 we introduce a sophisticated
PARA2 technique that depends both on the properties of threshold guards, as well as
on the formula we want to preserve. The bounds on the length of the path obtained by
this technique are two times, or in rare cased three times larger than the one from the
previous method, but the acceleration still makes this bound independent of the number
of processes.

CEGIS loop based on the PARA2 for safety and liveness. For synthesizing
algorithms correct by construction in Chapter 5, we use the CEGIS technique [ABJ+13]
that, very roughly explained, gives a guess of a solution and then it checks if the guess is
indeed a solution, and continues by repeating the procedure. The checking part is based
on the verification technique provided by the PARA2 technique for safety and liveness.

PARA2 for safety and liveness in communication closed layers. In randomized
distributed algorithms processes repeat the execution of their process code unbound-
edly many times, in their own speed. When analyzing asynchronous composition of
unbounded number of such rounds, we need to raise the PARA2 technique to the next
level. Namely, we advocate for a classic reduction by Elrad and Francez [EF82], which
they originally formulated in the context of CSP [Hoa78] (Communicating Sequential
Processes). Consider a parallel composition of processes Pi, for 1 ≤ i ≤ n, that is,
S = P1 ‖ P2 ‖ · · · ‖ Pn. Further assume that each process Pi is a sequential composition
of layers L1

i ;L2
i ; . . . ;Lki . Then they assume the following property: if for two processes i

and j, the layers Lai and Lbj communicate (have a synchronized event in CSP), then a = b.
In other words, layers communicate only with layers of the same number, that is, we
say they are communication-closed. If we consider the parallel compositions of layers
Lk = Lk1 ‖ Lk2 ‖ · · · ‖ Lkn, then the central result—proved with a reduction argument—
is that instead of analyzing S, it is sufficient to analyze the sequential composition of
layers S` = L1;L2; . . . Lk. Observe that S` has considerably fewer interleavings than S.
For instance, in S events of layer 2 at process p, L2

p, might occur before events of layer 1
at process q (that is, L1

q), while in S` this cannot be the case.

Inspired by the work of Elrad and Francez, and in combination with our existing PARA2

techniques, in Chapter 6 we introduce the PARA2 technique for safety and liveness in
communication closed layers. It allows us to order the layers, and then to use the PARA2

technique within each layer. Note that this technique does not yield short executions, as
we have unboundedly many “short” layers, but we further prove that we can single out
one representative layer.
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1. Introduction

1.5 Structure of the Thesis

In Chapter 2 we introduce the framework for modeling threshold-based fault-tolerant
distributed algorithms. That includes threshold automata that are used to model
distributed algorithms, counter systems as their semantics, and the fragment ELTLFT of
temporal logic for specifying temporal properties of distributed systems. The definition
of ELTLFT is our contribution, whereas counter systems and threshold automata were
introduced earlier in [KVW14].

Each of the following Chapters 3–6 is devoted to one of the four challenges from Section 1.2,
and thus also to the four papers [KLVW17a, KLVW17b, LKWB17, BKLW18]. This
follows the diagram from Figure 1.2. If the reader is interested in only one of the chapters,
we suggest also reading the preceding chapters from the diagram.

Where it makes sense for demonstrating our ideas, we start with a simple illustration of
the technique, followed by the definitions of the notions required for that chapter only.
The techniques are precisely explained and accompanied by examples. We often leave the
technical proofs for the second to last sections of chapters. Moreover, every technique is
supported by experimental evaluation.

Chapter 7 summarizes these results and offers possible successive research directions.
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CHAPTER 2
Threshold Automata

We focus on one particular class of distributed algorithms, namely, threshold-based
algorithms. This means that for performing an action, a process has to receive enough
messages from its peers. In other words, in our setting processes communicate by message
passing, and each process keeps track of the number of messages it has received so far,
and compares it with a given threshold. Once the number of received messages is at least
as large as the threshold, the process is allowed to perform each action associated to this
threshold.

Thresholds are given in the form of a linear combination of parameters. For example,
if a system consists of n processes, and if a process needs to wait for messages from a
majority of its peers, the corresponding threshold is n/2.

Using the properties of these expressions, we present techniques for verification of
threshold-based distributed algorithms in Chapter 3, Chapter 4, and Chapter 6, and
for synthesizing the expressions themselves in order to obtain correct algorithms in
Chapter 5.

In this chapter we introduce the most important notions, necessary and common for all the
following chapters. This includes threshold automata in Section 2.1, used for formalizing
threshold-based distributed algorithms, as well as counter systems in Section 2.2, used
to model semantics of threshold automata. Definitions specific for a single chapter, like
a sketch threshold automaton in Chapter 5, or a probabilistic threshold automaton in
Chapter 6, are introduced in the respective chapters.

2.1 Modeling Threshold-based Distributed Algorithms

The notion of a threshold automaton (TA) is introduced in [KVW14], and it is used to
describe a local control flow of a single process in a concurrent system. The TA that
corresponds to the pseudo code from Figure 1.1 is given in Figure 2.1. The threshold

19
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`0

`1

`2 `3

r2 : γ1 7→ x++

r1 : true 7→ x++

r3 : γ2 7→ x++

r4 : γ2

r5 : γ2 7→ x++

r6
r7 r8

Figure 2.1: The threshold automaton corresponding to the algorithm from Figure 1.1
with γ1 : x ≥ (t+ 1)− f and γ2 : x ≥ (n− t)− f over parameters n, t, and f , representing
the number of processes, the upper bound on the faulty processes (used in the code), and
the actual number of faulty processes. The negative number −f in the threshold is used
to model the environment, and captures that at most f of the received messages may
have been sent by faulty processes.

automaton represents the local control flow of a single process, where edges represent
local transitions that are labeled with ϕ 7→ act: Expression ϕ is a threshold guard and
the action act may increment a shared variable.

Example 2.1. Here we explain the relation between the TA from Figure 2.1 and the
pseudo code from Figure 1.1: if for a process i we have myvali = 1, this corresponds to
the initial local state `1 of the process, while otherwise the process starts in `0. The local
state `2 in Figure 2.1 captures that the process has sent ECHO and accepti evaluates
to false, while `3 captures that the process has sent ECHO and accepti evaluates to
true. The syntax of Figure 1.1, although checking how many messages of some type
are received, hides bookkeeping details and the environment, e.g., message buffers. For
our verification technique, we need to make such issues explicit: The shared variable x
stores the number of correct processes that have sent ECHO. Initially no process has
sent any messages, and thus x = 0. Incrementing x models that ECHO is sent when the
transition is taken. Then, execution of Line 4 corresponds to the transition r1. Executing
Line 9 is captured by r2: the check whether t+ 1 messages are received is captured by
the fact that r2 has the guard γ1, that is, x ≥ (t+ 1)− f . Intuitively, this guard checks
whether sufficiently many processes have sent ECHO (i.e., increased x), and takes into
account that at most f messages may have been sent by faulty processes. Namely, if we
observe the guard in the equivalent form x+ f ≥ t+ 1, then we notice that it evaluates to
true when the total number of received ECHO messages from correct processes (x) and
potentially received messages from faulty processes (at most f), is at least t+ 1, which
corresponds to the guard of Line 9. Transition r4 corresponds to Line 13, r3 captures
that Line 4 and Line 13 are performed in one protocol step, and r5 captures Line 9 and
Line 13. /

While the example shows that the pseudo code and a TA are quite close, it should be
noted that in reality, things are slightly more involved. For instance, in the pseudo code
threshold guards are evaluated locally, which requires local counters in the implementation,
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2.1. Modeling Threshold-based Distributed Algorithms

that are abstracted in the TA. Discussions on data abstraction and automated generation
of TAs from code in parametric Promela can be found in [KVW16].
We use threshold automata in the theoretical work of this thesis, as well as for an internal
representation in the ByMC tool following this work. Let us now formally define them.

Threshold Automaton. A threshold automaton is a tuple TA = (L,V,R,RC ),
where the components represent sets of local states, variables, rules defining the state
changes, and resilience conditions, respectively. Below we define each of the sets.

States. The set of all local states (or, locations) is denoted by L. This is a nonempty
finite set, and for simplicity we use the convention that L = {1, . . . , |L|}. It contains the
set of distinct local states, called initial states (or, initial locations). The set of all initial
states is denoted by I ⊆ L.

Variables and resilience conditions. The set of all variables V is partitioned in
two sets, denoted by Γ and Π.
The set Γ is the finite nonempty set of shared variables over N0 = {0, 1, 2, . . .}. The
finite nonempty set of all parameter variables, ranging over N0, is denoted by Π. The
resilience condition RC is a predicate over N|Π|0 , often given as a formula in linear integer
arithmetic, e.g., n > 3t. The set of all admissible parameters is denoted by PRC = {p ∈
N|Π|0 : RC (p)}.

Example 2.2. The admissible parameters and resilience conditions are motivated by
fault-tolerant distributed algorithms: Let n be the number of processes, t be the assumed
number of faulty processes, and in a run, f be the actual number of faults. For these
parameters, the famous result by Pease, Shostak and Lamport [PSL80] states that
agreement can be solved iff the resilience condition n > 3t ∧ t ≥ f ≥ 0 is satisfied. Given
such constraints, the set PRC is infinite, and in Section 2.2 we will see that this results
in an infinite state system. /

Threshold guards. The key ingredient of threshold automata are threshold guards.
We have already mentioned their role in distributed algorithms and here we precisely
define them.

Definition 2.1. A threshold guard (or just a guard) is an inequality of one of the
following two forms:

(R) x ≥ a0 + a1 · p1 + . . .+ a|Π| · p|Π|, or

(F) x < a0 + a1 · p1 + . . .+ a|Π| · p|Π|,

where x is a shared variable from Γ, p1, . . . , p|Π| ∈ Π are parameter variables, and
a0, a1, . . . , a|Π| ∈ Q are rational coefficients. The set of all threshold guards of type (R)
is denoted by Φrise, and the set of all type (F ) by Φfall.
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Every guard compares a shared variable with an expression that is called threshold.
Sometimes we call guards of type (R) rissing guards, and those of type (F ) we call falling
guards. In Section 2.2 we discusse the motivation for these names.

Note that guards are not necessarily given in linear integer arithmetic because of the
rational coefficients, but since there are only finitely many parameters, every guard can
easily be transformed into an inequality in linear integer arithmetic.

Rules. A rule is a conditional transition between two local states that may update
shared variables. It is formally defined as a tuple (from, to, ϕrise, ϕfall,u), where from
and to are local states from L, formulas ϕrise and ϕfall are conjunctions of the guards
from the sets Φrise and Φfall, respectively, and u ∈ N|Γ|0 is an update vector. We explain
the semantics of a rule in the following section, but intuitively one can understand an
execution of a rule as a transition of a process from the local state from to to, under the
condition that both ϕrise and ϕfall evaluate to true, and the shared variables are updated
by adding the vector u to the vector of all shared variables. The set of all rules is denoted
by R.

Example 2.3. An example of a threshold automaton is depicted in Figure 2.1. There
are four local states, L = {`0, `1, `2, `3}, among which `0 and `1 are initial states. There
is one shared variable x and eight rules. For example, as γ2 ∈ Φrise, rule r3 is formally
defined as (`0, `3, γ2,>, 1). Note that the first two components encode the edge, and
the last three encode the edge label (two different types of guards, and the update
vector). Thus, a rule corresponds to a (guarded) statement from Figure 1.1 (or combined
statements as discussed in Example 2.1) /

Threshold automata for fault-tolerant distributed algorithms. The above def-
inition of TAs is quite general. It allows loops, increase of shared variables in loops,
etc. As has been observed in [KVW17], if one does not restrict increases on shared
variables, the resulting systems may produce runs that visit infinitely many states, and
there is little hope for a complete verification method. Hence, we analyzed the TAs of the
benchmarks [CT96, ST87b, BT85, MMPR03, Ray97, Gue02, DS06, BGMR01, SvR08].
We observed that some states have self-loops (corresponding to busy-waiting for messages
to arrive) and in the case of failure detector based algorithms [Ray97] there are loops
that consist of at most two rules. None of the rules in loops increase shared variables. In
our theory, we allow more general TAs than actually found in the benchmarks. In more
detail, we make the following assumption:

As in [KVW17], we assume that if a rule r is in a loop, then r.u = 0. Automata with
this property are called canonical in [KVW17]. Different types of canonical TAs have
been discussed in [KKW18], where the focus was on exploring the existence of a bounded
diameter. In fact, it is proven in [KKW18] that TAs that are not canonical do not have
bounded diameter.
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In addition, in Chapter 4 we use the restriction that all the cycles of a TA are simple,
i.e., between any two locations in a cycle there exists exactly one node-disjoint directed
path (nodes in cycles may have self-loops). The technique from Chapter 3 for verifying
reachability properties does not rely on this assumption, and thus it can be applied
to threshold automata with more complex cycles (but still without updates of shared
variables). Still, this restriction is crucial for checking safety and liveness properties from
Chapter 4, and therefore also for the techniques from Chapter 5 and Chapter 6 that
extend safety and liveness verification.

A possibility to relax this restriction for verification of safety and liveness properties,
similarly as for reachability properties, remains a conjecture.

Example 2.4. In the TA from Figure 2.1 we use the shared variable x as the number
of correct processes that have sent a message. One easily observes that the rules that
update x do not belong to loops. Indeed, all the benchmarks [CT96, ST87b, BT85,
MMPR03, Ray97, Gue02, DS06, BGMR01, SvR08] share this structure. This is because
at the algorithmic level, all these algorithms are based on the reliable communication
assumption (no message loss and no spurious message generation/duplication), and not
much is gained by resending the same message. In these algorithms a process checks
whether sufficiently many processes (e.g., a majority) have sent a message to signal that
they are in some specific local state. Consequently, a receiver would ignore duplicate
messages from the same sender. In our analysis we exploit this characteristic of distributed
algorithms with threshold guards, and make the corresponding assumption that processes
do not send (i.e., increase x) from within a loop. Similarly, as a process cannot make
the sending of a message undone, we assume that shared variables are never decreased.
So, while we need these assumptions to derive our results, they are justified by our
application domain. /

2.2 Parameterized Counter Systems

A threshold automaton models a single process. Now the question arises how we define
the composition of multiple processes that will result in a distributed system. It is
well-known that the system state of a specific distributed or concurrent system can be
represented as a counter system [Lub84, PXZ02, AGP16, KVW17]: instead of recording
for some local state `, which processes are in `, we are only interested in how many
processes are in `. In this way, we can efficiently encode transition systems in SMT
with linear integer arithmetics. Therefore, we formalize the semantics of the threshold
automata by counter systems.

Fix a threshold automaton TA, admissible parameter values p ∈ PRC , and a function
(expressible as linear combination of parameters) N : PRC → N0 that determines the
number of modeled processes. For example, if we want to tolerate Byzantine faults, we
model only N(n, t, f) = n− f (correct) processes; if we have crash faults, we model all
N(n, t, f) = n processes.
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A counter system Sys(TA) is defined as a transition system (Σ, I, R), with configurations
Σ and I and transition relation R defined below.

Configurations. Every configuration keeps track of how many processes are in each
local state, as well as of values of shared and parameter variables.

Definition 2.2. A configuration σ = (κ,g,p) consists of a vector of counter values
σ.κ ∈ N|L|0 , a vector of shared variable values σ.g ∈ N|Γ|0 , and a vector of parameter
values σ.p = p. The set Σ contains all configurations. The initial configurations are
in set I, and each initial configuration σ satisfies σ.g = 0, ∑i∈I σ.κ[i] = N(p), and∑

i 6∈I σ.κ[i] = 0.

Example 2.5. The safety property from Example 2.2, refers to an initial configuration
that satisfies resilience condition n > 3t ∧ t ≥ f ≥ 0, e.g., σ.p = (4, 1, 0), with resilience
condition 4 > 3 · 1∧ 1 ≥ 0 ≥ 0. In our encodings we typically have that N is the function
(n, t, f) 7→ n− f . Further, σ.κ[`0] = N(p) = n− f = 4 and σ.κ[`i] = 0, for `i ∈ L \ {`0},
and the shared variable σ.g = 0. /

Transitions and transition relation. A transition is a pair t = (rule, factor) of a
rule and a non-negative integer called the acceleration factor. For t = (rule, factor) we
write t.u for rule.u, etc. A transition t is unlocked in σ if

∀k ∈ {0, . . . , t.factor − 1}. (σ.κ, σ.g + k · t.u, σ.p) |= t.ϕrise ∧ t.ϕfall.

A transition t is applicable (or enabled) in σ, if it is unlocked, and σ.κ[t.from] ≥ t.factor ,
or t.factor = 0.

To simplify notation, sometimes we write rulefactor instead of (rule, factor).

Example 2.6. This notion of applicability contains acceleration and is central for our
approach. Intuitively, the value of the factor corresponds to how many times the rule
is executed by different processes. In this way, we can subsume steps by an arbitrary
number of processes into one transition. Consider Figure 2.1. If for some k, k processes
are in location `1, then in classic modeling it takes k transitions to move these processes
one-by-one to `2. With acceleration, however, these k processes can be moved to `2 in one
step, independently of k. In this way, the bounds we compute will be independent of the
parameter values. However, assuming x to be a shared variable and f being a parameter
that captures the number of faults, our (crash-tolerant) benchmarks include rules like
“x < f 7→ x++” for local transition to a special “crashed” state. The above definition
ensures that at most f − x of these transitions are accelerated into one transition (whose
factor thus is at most f − x). This precise treatment of threshold guards is crucial for
fault-tolerant distributed algorithms. For instance, the central contribution of Chapter 4
is to show how acceleration can be used to shorten schedules while maintaining specific
temporal logic properties. /
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Definition 2.3. The configuration σ′ is the result of applying the applicable transition t
to σ, if

1. σ′.g = σ.g + t.factor · t.u

2. σ′.p = σ.p

3. if t.from 6= t.to then

• σ′.κ[t.from] = σ.κ[t.from]− t.factor ,
• σ′.κ[t.to] = σ.κ[t.to] + t.factor , and
• ∀` ∈ L \ {t.from, t.to}. σ′.κ[`] = σ.κ[`].

4. if t.from = t.to then σ′.κ = σ.κ.

In this case we use the notation σ′ = t(σ).

The transition relation R is defined as follows: Transition (σ, σ′) belongs to R iff there is
a rule r ∈ R and a factor k ∈ N0 such that σ′ = t(σ) for t = (r, k).

Since every threshold is a linear combination of parameters, its value depends only on
parameter values, and thus by Definition 2.3 it does not change in a run. Therefore, the
evaluation of a guard in a run depends only on shared variable values. As updates can
only increase the values of shared variables, the shape of threshold guards suggests that
once a rising guard becomes true in a run, it remains true, and similarly, once a falling
guard becomes false in a run, it remains false. This monotonic behavior is a crucial
property and it has been a motivation for the names of rising and falling guards. We
recall this property formally in the following proposition from [KVW17, Proposition 7]:

Proposition 2.1 (Monotonicity of guards). For all configurations σ, all rules r, and all
transitions t applicable to σ, the following holds:
1. If σ |= r.ϕrise then t(σ) |= r.ϕrise 3. If σ 6|= r.ϕfall then t(σ) 6|= r.ϕfall

2. If t(σ) 6|= r.ϕrise then σ 6|= r.ϕrise 4. If t(σ) |= r.ϕfall then σ |= r.ϕfall

Example 2.7. Let us again consider Figure 2.1 with n = 4, t = 1, and f = 1. We
consider the initial configuration σ0 such that σ0.κ[`1] = n − f = 3 and σ0.κ[`i] = 0,
for `i ∈ L \ {`0}. The guard of rule r5, γ2 : x ≥ (n − t) − f = 2, initially evaluates to
false because x = 0. The guard of rule r1 is true, and thus any transition (r1, factor)
is unlocked, but as σ0.κ[`1] = 3, only for 0 ≤ factor ≤ 3, transitions (r1, factor) are
applicable to σ0. If the transition (r1, 2) is applied to the initial configuration, we obtain
a configuration σ1 where x = 2, and therefore, γ2 evaluates to true in σ1. Then r5 is
unlocked and the transitions (r5, 1) and (r5, 0) are applicable to σ1 as σ1.κ[`1] = 1. Since
γ2 ∈ Φrise, once it becomes true, it remains true. /

25



2. Threshold Automata

Schedules and paths. A schedule is a (finite or infinite) sequence of transitions.
For a schedule τ and an index i : 1 ≤ i ≤ |τ |, by τ [i] we denote the ith transition
of τ , and by τ i we denote the prefix τ [1], . . . , τ [i] of τ . A schedule τ = t1, . . . , tm is
applicable to configuration σ0, if there is a sequence of configurations σ1, . . . , σm with
σi = ti(σi−1) for 1 ≤ i ≤ m. A schedule t1, . . . , tm where ti.factor = 1 for 0 < i ≤ m is
called conventional. If there is a ti.factor > 1, then a schedule is accelerated. By τ · τ ′ we
denote the concatenation of two schedules τ and τ ′. Similarly we define applicability of
infinite schedules, and conventional and accelerated infinite schedules.

To reason about temporal logic properties, we need to reason about the configurations
that are “visited” by a schedule. For that we introduce paths.

A finite or infinite sequence σ0, t1, σ1, . . . , σk−1, tk, σk, . . . of alternating configurations
and transitions is called a path, if for every transition ti, i ∈ N, in the sequence, holds
that ti is enabled in σi−1, and σi = ti(σi−1). For a configuration σ0 and a finite schedule τ
applicable to σ0, by path(σ0, τ) we denote σ0, t1, σ1, . . . , t|τ |, σ|τ | with σi = ti(σi−1), for
1 ≤ i ≤ |τ |. Similarly, if τ is an infinite schedule applicable to σ0, then path(σ0, τ)
represents an infinite sequence σ0, t1, σ1, . . . , tk, σk, . . . where σi = ti(σi−1), for all i > 0.
Given a path path(σ, τ), the set of all configurations in the path is denoted by Cfgs(σ, τ).

Due to the resilience conditions and admissible parameters, our counter systems are in
general infinite state. The following proposition establishes an important property for
verification.

Proposition 2.2. Every (finite or infinite) path visits finitely many configurations.

Proof. By Definition 2.3(3), if a transition t is applied to a configuration σ, then the sum
of the counters remains unchanged, that is, ∑`∈L σ.κ[`] = ∑

`∈L t(σ).κ[`]. By repeating
this argument, the sum of the counters remains stable in a path. By Definition 2.3(2)
the parameter values also remain stable in a path.

By Definition 2.3(1), it remains to show that in each path eventually the shared variable
g stop increasing. Let us fix a rule r = (from, to, ϕrise, ϕfall,u) that increases g. By
the definition of a transition, applying some transition (r, factor) decreases κ[r.from] by
factor . As by assumption on TAs, r is not in a cycle, κ[r.from] is increased only finitely
often, namely, at most N(p) times. As there are only finitely many rules in a TA, the
proposition follows.

2.3 Fault-Tolerant Temporal Logic

In order to formalize a reachability property, we only need to describe a global state,
that can easily be expressed as a Boolean formula over atomic propositions1

AP = {κ[`] = 0 | ` ∈ L}.
1 As a counter of a location represents a number of processes in that location, and thus is a non-negative

natural number, the negation of κ[`] = 0 becomes κ[`] > 0.
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Formalizing safety and liveness specifications requires reasoning about possibly infinite
paths, and therefore also more involved temporal formulas. Moreover, as the techniques
introduced in Chapters 3 and 4 check if a system can violate specifications, we focus on
negations of specifications. We observe that such formulas use a simple subset of linear
temporal logic that contains only the temporal operators F and G .

Example 2.8. Consider the liveness property called Correctness from Section 1.1 for-
mulated in the spirit of the threshold automaton from Figure 2.1:

GFψfair → (κ[`0] = 0→ Fκ[`3] 6= 0). (2.1)

Formula ψfair expresses the reliable communication assumption of distributed algo-
rithms [FLP85]. In this example, this is formally expressed as follows:

ψfair ≡ κ[`1] = 0∧(x ≥ t+1→ κ[`0] = 0∧κ[`1] = 0)∧(x ≥ n−t→ κ[`0] = 0∧κ[`2] = 0).

Intuitively, GFψfair means that all processes in `1 should eventually leave this state, and
if sufficiently many messages of type x are sent (γ1 or γ2 holds true), then all processes
eventually receive them. If they do so, they have to eventually fire rules r1, r2, r3, or r4
and thus leave locations `0, `1, and `2.

Our approach is based on possible shapes of counterexamples. Therefore, we consider
the negation of the specification (2.1), that is, GFψfair ∧ κ[`0] = 0 ∧ Gκ[`3] = 0. In the
following we define the logic that can express such counterexamples. /

The fragment of LTL limited to F and G was studied in [EVW02, KOS+11]. We further
restrict it to the logic that we call Fault-Tolerant Temporal Logic (ELTLFT), whose syntax
is shown in Table 2.1. The formulas derived from cform—called counter formulas—
restrict counters, while the formulas derived from gform—called guard formulas—restrict
shared variables. The formulas derived from pform are propositional formulas. The
temporal operators F and G follow the standard semantics [CGP99, BK08], that is, for
a configuration σ and an infinite schedule τ , it holds that path(σ, τ) |= ϕ, if:

1. σ |= ϕ, when ϕ is a propositional formula,

2. ∃τ ′, τ ′′ : τ = τ ′ · τ ′′. path(τ ′(σ), τ ′′) |= ψ, when ϕ = Fψ,

3. ∀τ ′, τ ′′ : τ = τ ′ · τ ′′. path(τ ′(σ), τ ′′) |= ψ, when ϕ = Gψ.

To stress that the formula should be satisfied by at least one path, we prepend ELTLFT-
formulas with the existential path quantifier E . We use the shorthand notation true for
a valid propositional formula, e.g., ∧i∈∅ κ[i] = 0. We also denote with ELTLFT the set of
all formulas that can be written using the logic ELTLFT.

Given a configuration σ, a finite schedule τ applicable to σ, and a propositional formula ψ,
by Cfgs(σ, τ) |= ψ we denote that ψ holds in every configuration σ′ visited by the
path path(σ, τ). In other words, for every prefix τ ′ of τ , we have that τ ′(σ) |= ψ.
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2. Threshold Automata

ψ ::= pform | Gψ | Fψ | ψ ∧ ψ
pform ::= cform | gform ∨ cform
cform ::=

∨
`∈Locs

κ[`] 6= 0 |
∧

`∈Locs
κ[`] = 0 | cform ∧ cform

gform ::= guard | ¬gform | gform ∧ gform

Table 2.1: The syntax of ELTLFT-formulas: pform defines propositional formulas, and ψ
defines temporal formulas. We assume that Locs ⊆ L and guard ∈ Φrise ∪ Φfall.

2.4 Benchmarks

We list a number of examples of fault-tolerant distributed algorithms found in the
literature, which we also used to conduct the experiments in Chapter 3 and Chapter 4.
We illustrate their threshold automata and formalize their specifications. As our method
requires negations of original specifications, we give only the negated formulas in ELTLFT.

Consistent broadcast (STRB) [ST87b]. This is the example from Figure 1.1, whose
threshold automaton is given in Figure 2.1. In Section 1.1 we have presented its safety
specification unforgeability, here denoted by S1, and two liveness specifications, namely
correctness and relay, here respectively denoted by L1 and L2. The negated safety
specification S1 is as follows:

S1: E ((∨`=`1 κ[`] 6= 0) ∧ F ∨`=`3 κ[`] 6= 0).

For liveness specifications, all our benchmarks have similar fairness constraints, that is the
property of reliable communication that requires the processes to eventually receive the
messages from all other correct processes. The fairness constraint that encodes reliable
communication for STRB is as follows:

ϕrc ≡ (x < t+ 1 ∨
∧
`=`0

κ[`] = 0) ∧ (x < n− t ∨
∧

`∈{`0,`1,`2}
κ[`] = 0),

where locations are chosen because they have an outgoing edge with the corresponding
threshold guard.

Using ϕrc, we write the liveness properties L1 and L2 as:

L1: E
(
GFϕrc ∧

∧
`=`0 κ[`] = 0 ∧ G ∧

`=`3 κ[`] = 0
)
,

L2: E
(
GFϕrc ∧ F

(∨
`=`3 κ[`] 6= 0 ∧ G (∨`6=`3 κ[`] 6= 0)

)
.
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`0

`1

`AC `CR

x > 1 7→
x++

nc < f 7→ nc++

nc < f 7→
nc++

nc < f 7→ nc++, xF ++

true 7→
x++

nc < f 7→ nc++

Figure 2.2: The threshold automaton corresponding to the Folklore Reliable Broadcast
(FRB). Shared variables x and xF represents numbers of messages sent by correct and
faulty processes, respectively, and nc is the number of crashed processes.

Folklore Reliable Broadcast (FRB). [CT96] This algorithms tolerates crash faults,
and its threshold automaton is given in Figure 2.2. FRB has exactly the same specifi-
cations S1, L1, and L2 as STRB, but fewer local states. Note that the accepting local
state is here denoted by `AC instead of `3. We also have a special state `CR, such that a
process is in this state if and only if it has crashed. As a process can crash at any time,
there is a rule from every location to the crash state, but clearly, there is no outgoing
rule from `CR.

Asynchronous Byzantine agreement (ABA). [BT85] ABA has exactly the same
specifications S1, L1, and L2 as STRB, but more local states and guards. As we will
use it in the following chapter, its threshold automaton is depicted in Figure 3.1, and
the accepting location is denoted by `5. In addition to ϕrc, ABA has four fairness
constraints that enforce local progress of enabled process transitions, e.g., GF (x <
2t+ 1 ∨∧`=`4 κ[`] = 0).

Condition-based consensus (CBC). [MMPR03] CBC has two unique initial local
states, where the processes are initialized with values 0 and 1 respectively, and two
accepting states AC0 and AC1. In total, our threshold automaton contains 7 locations
and 14 rules, which is why we omit illustrating it here. The negation of termination is
defined as follows:

L1: E
(
GFϕrc ∧ |κ[`0]− κ[`1]| > t ∧ G ∨

` 6∈{AC,CR} κ[`] 6= 0
)

The negations of validity and agreement are as follows:

S1: E ((∨`=V1 κ[`] 6= 0) ∧ F ∨`=AC0 κ[`] 6= 0)

S2: E (|κ[`0]− κ[`1]| > t ∧ F (∨`∈{AC0,AC1} κ[`] 6= 0))
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no

yes

sent
no++

yes++

abort

commit

no ≥ 1

yes ≥ n
crash

suspect

Figure 2.3: Threshold automaton for the non-blocking atomic commit algorithms.

Non-blocking atomic commit. [Ray97, Gue02] Threshold automaton of these
algorithms is provided in Figure 2.3. There are two shared variables yes and no, and two
simple threshold guards, namely one universal (yes ≥ n) and one existential (no ≥ 1).

In addition to the fairness constraint ϕrc, the algorithms NBAC, NBACC, NBACG
use a fairness constraint ϕfd on a failure detector defined as: ∧`=SUSPECT κ[`] = 0 ∧
G (∧`=CRASH κ[`] = 0).

The negation of termination is defined as follows:

L1: E (GFϕrc ∧ ϕfd ∧ G
∨
6̀∈{COMMIT,ABORT,CRASH} κ[`] 6= 0)

The negations of abort-validity and agreement are as follows:

S1: E ((∨`=NO κ[`] 6= 0) ∧ F ∨`=COMMIT κ[`] 6= 0).

S2: E (F (∨`=ABORT κ[`] 6= 0 ∧∨`=COMMIT κ[`] 6= 0)).

CFCS and C1CS. [DS06, BGMR01] Threshold automata corresponding to these
algorithms contain 9 local states and 34 rules. The negation of fast termination for value
0 is:

L1: E (GFϕrc ∧
∧
` 6=V0 κ[`] = 0 ∧ G ∨

`6∈{D0,CR} κ[`] 6= 0)

The negation of one-step for value 0 is:

S1: E (∧ 6̀=V0 κ[`] = 0 ∧ F ∨`∈{D1,U0,U1} κ[`] 6= 0)
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BOSCO. [SvR08] One-step Byzantine asynchronous consensus is our most challenging
benchmark. Its threshold automaton contains 8 locations, 20 transitions, three non-trivial
threshold guards, and different properties are expected to hold under three different
resilience conditions. We illustrate it in Figure 5.9 in Chapter 6, with threshold guards
τA = n− t, τD0 = τD1 = n+3t+1

2 , and τU0 = τU1 = n−t
2 .

The negation of fast termination for value 0 is:

L1: E (GFϕrc ∧
∧
` 6=V0 κ[`] = 0 ∧ G ∨

`6∈{D0,CR} κ[`] 6= 0)

The negations of Lemma 3 and Lemma 4 of [SvR08] are:

S1: E (F (∨`=D0 κ[`] 6= 0 ∧∨`=D1 κ[`] 6= 0))

S2: E (F (∨`=D0 κ[`] 6= 0 ∧∨`=U1 κ[`] 6= 0))

2.5 Verification Problems

In this section we discuss the verification problems for fault-tolerant distributed algorithms.
In Section 1.2 we have roughly stated four challenges C1—C4, and here we formulate
them more precisely.

In each of the challenges, it is important to handle the resilience conditions precisely.

Example 2.9. Unforgeability, the safety property from Section 1.1, expressed in terms
of Figure 2.1 means that no process should ever enter `3 if initially all processes are
in `0, given that n > 3t ∧ t ≥ f ≥ 0. We can express this in the counter system:
under the resilience condition n > 3t ∧ t ≥ f ≥ 0, given an initial configuration σ, with
σ.κ[`0] = n− f , to verify safety, we have to establish the absence of a schedule τ that
satisfies σ′ = τ(σ) and σ′.κ[`3] > 0.

In order to be able to answer this question, we have to deal with resilience conditions
precisely: Observe that `3 is unreachable, as all outgoing transitions from `0 contain
guards that evaluate to false initially, and since all processes are in `0 no process ever
increases x. A slight modification of t ≥ f to t+ 1 ≥ f in the resilience condition changes
the result, i.e., one fault too many breaks the system. For example, if n = 4, t = 1, and
f = 2, then the new resilience condition holds, but as the guard γ1 : x ≥ (t + 1) − f
is now initially true, then one correct process can fire the rule r2 and increase x. Now
when x = 1, the guard γ2 : x ≥ (n − t) − f becomes true, so that the process can fire
the rule r4 and reach the state `3. This tells us that unforgeability is not satisfied in the
system where the resilience condition is n > 3t ∧ t+ 1 ≥ f ≥ 0. /

Analysis of reachability properties is addressed in the verification challenge C1, and
solved in Chapter 3. We formalize it as follows:
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Challenge 2.1 (Parameterized reachability). Given a threshold automaton TA and
a Boolean formula B over {κ[`] = 0 | ` ∈ L}, check whether there are parameter
values p ∈ PRC , an initial configuration σ0 ∈ I with σ0.p = p and a finite schedule τ
applicable to σ0 such that τ(σ0) |= B.

In Chapter 3 we show that, if such a schedule exists, then there is also a schedule of
bounded length. In Chapter 4, we address the challenge C2, that is, we extend the
reachability question to specifications of counterexamples to safety and liveness of FTDAs
from the literature.

Challenge 2.2 (Parameterized unsafety & non-liveness). Given a threshold automa-
ton TA and an ELTLFT formula ψ, check whether there are parameter values p ∈ PRC ,
an initial configuration σ0 ∈ I with σ0.p = p, and an infinite schedule τ of Sys(TA)
applicable to σ0 such that path(σ0, τ) |= ψ.

Recall that the ELTLFT logic formalizes negations of specifications. Checking if there are
parameter values and a path in this concrete system (with these parameters) that satisfies
a formula from ELTLFT, is equivalent to checking if the system satisfies the specifications
for all values of parameters. If we find parameter values and a path that satisfies ψ, this
is a witness that the specification ¬ψ is violated in the system with those parameter
values. If there are no such parameter values and no path satisfying ψ, we know that
the specification ¬ψ cannot be violated, that is, the system is correct for any values of
parameters.

Parameterized unsafety & non-liveness is the core of this thesis and it is addressed in
Chapter 4. The solution is based on the solution of the Parameterized reachability, which
is the topic of Chapter 3. In this work we also extend these questions in two different
research directions.

Namely, in Chapter 5 we focus on the C3 challenge, that will be formally introduced
as Challenge 5.1. We define a skeleton of a threshold automaton, that can intuitively
be understood as a threshold automaton with undefined threshold guards. Then C3
becomes a problem of automatically finding threshold guards that together with the
given skeleton form a threshold automaton, whose counter system satisfies the given
specifications (whose negations are expressed in ELTLFT).

In order to address the C4 challenge, in Chapter 6 we define a probabilistic threshold
automaton (PTA) that formalizes randomized distributed algorithms, and to capture
their specifications, we introduce an extension of the ELTLFT logic, called multi-round
ELTLFT. We formalize Challenge 6.1, similarly as Challenge 2.2: given a PTA and a
multi-round ELTLFT formula ψ, find (if there exist) parameter values p ∈ PRC , an initial
configuration σ0 ∈ I with σ0.p = p, and an infinite schedule τ of Sys(PTA) applicable
to σ0 such that path(σ0, τ) |= ψ. Sometimes we require that the probability of finding
such a path, that violates the specification, is 0.
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2.6 Discussion

Classically, modeling a distributed system is done by parallel composition and interleaving
semantics: A state of a distributed system that consists of n processes is modeled as
n-dimensional vector of local states. The transition to a successor state is then defined by
non-deterministically picking a process, say i, and changing the ith component of the n-
dimensional vector according to the local transition relation of the process. This encoding
is not convenient for parameterized verification, as we allow n to grow unboundedly, which
would require vectors of unbounded length. However, for our domain of threshold-guarded
algorithms, we do not take into account the precise n-dimensional vector so that we use
a more efficient encoding, namely counter systems [Lub84, PXZ02, AGP16, KVW17].

There are two reasons for our restrictions in the temporal logic: On one hand, in our
benchmarks, there is no need to find counterexamples that contain a configuration that
satisfies κ[`] = 0 ∨ κ[`′] = 0 for some `, `′ ∈ L. One would only need such a formula to
specify requirement that at least one process is at location ` and at least one process is
at location `′ (the disjunction would be negated in the specification), which is unnatural
for fault-tolerant distributed algorithms. On the other hand, enriching our logic with∨
i∈Locs κ[i] = 0 allows one to express tests for zero in the counter system, which leads to

undecidability [BJK+15]. For the same reason, we avoid disjunction, as it would allow
one to indirectly express test for zero: κ[`] = 0 ∨ κ[`′] = 0.

An existing tool for reachability analysis of counter systems is FAST [BFLP08]. We
compare our approach in reachability analysis with FAST in Section 3.10. This tool uses
acceleration in order to compute the set of reachable states. The method is complete for
the class of flattable systems [BFLS05]. The relation between threshold automata and
flattable systems is discussed in [KKW18]. In this work it is proven that the restrictions
we impose on threshold automata imply that our systems are flattable. Moreover,
multiple relaxations of our restrictions have been studied in [KKW18]. For instance, they
introduce extensions of threshold automata that use the following properties and their
combinations: (i) non-linear (but piecewise monotone) functions in threshold guards, (ii)
guards that compare the difference between two shared variables against a threshold,
(iii) decrementing shared variables, and (iv) incrementing variables inside self-loops.
Furthermore, for each of the classes they investigate the existence of a bounded diameter,
and check decidability for reachability properties.

Recently, in [SKWZ18], threshold automata have been used for modeling synchronous
threshold-based FTDAs, for example synchronous byzantine resilient reliable broad-
cast [ST87a]. Characteristics of threshold guards are the key insight for (i) investigating
whether an algorithm induces a bounded diameter despite the parameterization, and (ii)
for computing the diameter when it exists. This allows parameterized bounded model
checking of reachability properties in synchronous FTDAs that have bounded diameter.
It also yields that in general this problem is undecidable for synchronous FTDAs.
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CHAPTER 3
Parameterized Reachability

This chapter addresses Challenge 2.1 introduced in Section 2.5, that we recall here:

Challenge 2.1 (Parameterized reachability). Given a threshold automaton TA and
a Boolean formula B over {κ[`] = 0 | ` ∈ L}, check whether there are parameter
values p ∈ PRC , an initial configuration σ0 ∈ I with σ0.p = p and a finite schedule τ
applicable to σ0 such that τ(σ0) |= B.

This question has also been addressed in [KVW17]. The technique there first applies data
and counter abstraction, and then runs bounded model checking (BMC). Given an FTDA,
it computes an upper bound on the diameter of the system. This makes BMC complete
for reachability properties: it always finds a counterexample, if there is an actual error.
Nonetheless, to verify state-of-the-art FTDAs, we need to enumerate all possible traces
of bounded length, which is often inefficient. Therefore, further improvement is needed.

In contrast to the SAT-based method in [KVW17], we suggest a new method: encoding
bounded executions over integer counters in SMT. In addition, we introduce a new form of
reduction that exploits acceleration and the structure of the FTDAs, called parameterized
path reduction with acceleration (PARA2). Namely, we introduce so called schemas,
that generate families of traces, and prove that for checking reachability, it is enough
to analyze schemas. This aggressively prunes the execution space to be explored by the
solver. In this way, we verify safety of seven FTDAs that were out of reach before.

An intuitive explanation of our method is given in Section 3.1, for a threshold automaton
from Figure 3.1 that is motivated by the distributed asynchronous broadcast protocol
from [BT85]. For the formal explanation, we present the necessary definitions in Sec-
tion 3.2, with the exception of the definition of a schema that is introduced in Section 3.3
together with the main result, stating the following: There is a set of schemas, whose
cardinality depends only on the number of guards in the algorithm, such that the set of
states reachable using schemas matches the set of all reachable states. Our construction
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`1

`2

`3 `4 `5

r3 : ϕ1 7→ x++

r2 : ϕ2 7→ x++

r1 : true 7→ x++

r4 : ϕ1 7→ y++

r5 : ϕ2 7→ y++

r6 : ϕ3

Figure 3.1: A threshold automaton with threshold guards “ϕ1 : x ≥ d(n + t)/2e − f”,
“ϕ2 : y ≥ (t + 1) − f”, and “ϕ3 : y ≥ (2t + 1) − f”, that corresponds to the ABA
algorithm [BT85].

of schemas is done in layers, and the first step is described in Section 3.4, where we
construct schemas for finite paths that consist of only one loop or one transition, and
where the evaluation of the guards does not change. Technical proofs of this section
can be found in Section 3.8. The second layer combines the results of the first one,
where we allow multiple loops or transitions, but still no change of guards, which is
demonstrated in Section 3.5. Again, we leave the technical proofs for Section 3.9. The
final step for obtaining schemas combines the previous steps, by cutting an arbitrary
path to segments where guards do not change their evaluations, which is illustrated in
Section 3.6. In Section 3.7.1 we see how this construction can be optimized, and in
Section 3.7.2 we present our encoding of schemas in SMT. We recall the experimental
evaluation from [KLVW17a] in Section 3.7.3.

3.1 Our approach at a glance

We use Figure 3.1 to describe our contributions in this section. The figure presents a
threshold automaton TA over two shared variables x and y and parameters n, t, and f ,
which is inspired by the distributed asynchronous broadcast protocol from [BT85]. There,
n− f correct processes concurrently follow the control flow of TA, and f processes are
Byzantine faulty. As is typical for fault-tolerant distributed algorithms, the parameters
must satisfy a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0, that is, less than a third of
the processes are faulty.

In order to intuitively explain results of this chapter, we address an instance of the
parameterized reachability problem, e.g., can at least one correct process reach the
local state `5, when n− f correct processes start in the local state `1? Or, in terms of
counter systems, is a configuration with κ[`5] 6= 0 reachable from an initial configuration
with κ[`1] = n− f ∧ κ[`2] = 0? As discussed in [KVW17], acceleration does not affect
reachability, and precise treatment of the resilience condition and threshold guards is
crucial for solving this problem.
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3.1.1 Schemas

As initially x and y are zero, threshold guards ϕ1, ϕ2, and ϕ3 evaluate to false. As rules
may increase variables, these guards may eventually become true. (In this example we
do not consider guards like x < t that are initially true and become false, although we
treat them later.) In fact, initially only r1 is unlocked. Because r1 increases x, it may
unlock ϕ1. Thus r4 becomes unlocked. Rule r4 increases y and thus repeated application
of r4 (by different processes) first unlocks ϕ2 and then ϕ3. We introduce a notion of a
context that is the set of threshold guards that evaluate to true in a configuration. For our
example we observe that each path goes through the following sequence of contexts {},
{ϕ1}, {ϕ1, ϕ2}, and {ϕ1, ϕ2, ϕ3}. In fact, the sequence of contexts in a path is always
monotonic, as the shared variables can only be increased.

The conjunction of the guards in the context {ϕ1, ϕ2} implies the guards of the rules
r1, r2, r3, r4, r5; we call these rules unlocked in the context. This motivates our definition
of a schema: a sequence of contexts and rules. We give an example of a schema below,
where inside the curly brackets we give the contexts, and fixed sequences of rules in
between. (We discuss the underlined rules below.)

S = {} r1, r1 {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}
r1, r2, r3, r4, r5, r4, r5 {ϕ1, ϕ2, ϕ3} r1, r2, r3, r4, r5, r6 {ϕ1, ϕ2, ϕ3} (3.1)

Next we introduce a notion of a schedule generated by a schema. To this end, we analyze
the following schedule, where, e.g., r1

1 is an abbreviation for the transition (r1, 1):

τ ′ = r1
1,

τ ′1

r1
1︸︷︷︸
t1

, r1
1, r

1
3

τ ′2

, r1
4︸︷︷︸
t2

,

τ ′3

r1
5︸︷︷︸
t3

, r2
5, r

4
6

τ ′4

(3.2)

We say that τ ′ is generated by schema S, because the sequence of the underlined rules
in S matches the sequence of rules appearing in τ ′. In this chapter, we show that the
schedules generated by a few schemas—one per each monotonic sequence of contexts—
span the set of all reachable configurations. To this end, we apply the PARA2 technique
to relate arbitrary schedules to their representatives, which are generated by schemas.

3.1.2 PARAmeterized PAth Reduction with Acceleration - PARA2

Consider, e.g., the initial state σ0 with n = 5, t = f = 1, κ[`1] = 1, and κ[`2] = 3. We are
interested in whether there is a schedule that reaches a configuration, where all processes
are in state `5. Consider the following schedule:

τ = r1
1,
τ1

r1
1︸︷︷︸
t1

, r1
3, r

1
1

τ2

, r1
4︸︷︷︸
t2

,

τ3

r1
5︸︷︷︸
t3

, r1
6, r

1
5, r

1
5, r

1
6, r

1
6, r

1
6

τ4

Observe that after r1
1, r

1
1, variable x = 2, and thus ϕ1 is true. Hence transition t1 changes

the context from {} to {ϕ1}. Similarly t2 and t3 change the context. Context changing
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transitions are marked with curly brackets. Between them we have the subschedules
τ1, . . . , τ4 (τ3 is empty) marked with square brackets.

To show that this schedule is captured by the schema, we apply our reduction arguments
inspired by the mover analysis [Lip75, EF82], regarding distributed computations: As
the guards ϕ2 and ϕ3 evaluate to true in τ4, and r5 precedes r6 in the control flow of the
TA, all transitions r1

5 can be moved to the left in τ4. Similarly, r1
1 can be moved to the

left in τ2. The resulting schedule is applicable and leads to the same configuration as the
original one. Further, we can accelerate the adjacent transitions with the same rule, e.g.,
the sequence r1

5, r
1
5 can be transformed into r2

5. Thus, we transform subschedules τi into τ ′i ,
and arrive at the schedule τ ′ from (3.2), which we call the representative schedule of τ .
Importantly for reachability checking, if τ and τ ′ are applied to the same configuration,
they end in the same configuration. These arguments are formalized in Sections 3.4–3.6.

3.1.3 Encoding a Schema in SMT

One of the key insights in this work is that reachability checking via schemas can be
encoded efficiently as SMT queries in linear integer arithmetic. In more detail, finite paths
of counter systems can be expressed with inequalities over counters such as κ[`2] and
κ[`3], shared variables such as x and y, parameters such as n, t, and f , and acceleration
factors. In particular, threshold guards and resilience conditions are expressions in linear
integer arithmetic.

We give an example of reachability checking with SMT using the following simple schema:

{} r1, r1 {ϕ1}

that is a part of the schema S in (3.1). To obtain a complete encoding for S, one can
encode similarly the other simple schemas and combine them.

To this end, we have to express constraints on three configurations σ0, σ1, and σ2. For
the configuration σ0, we introduce integer variables: κ0

1, . . . ,κ
0
5 for local state counters,

x0 and y0 for shared variables, and n, t, and f for parameters. As it is written in
Equations (3.3), the configuration σ0 should satisfy the initial constraints, and its context
should be empty:

κ0
1 + κ0

2 = n− f ∧ κ0
3 = κ0

4 = κ0
5 = 0 ∧ x0 = y0 = 0

∧n ≥ 3t ∧ t ≥ f ≥ 0 ∧ (¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)[x0/x, y0/y] (3.3)

The configuration σ1 is reached from σ0 by applying a transition with the rule r1 and an
acceleration factor δ1, and the configuration σ2 is reached from σ1 by applying a transition
with the rule r1 and an acceleration factor δ2. Applying transition with the rule r1 to σ0
just means to increase both κ[`3] and x by δ1 and decrease κ[`2] by δ1. Hence, we
introduce four fresh variables per transition and write down the arithmetic operations.
According to the schema, configuration σ2 has the context {ϕ2}. Equations (3.4) and (3.5)
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express these constraints:

κ1
3 = κ0

3 + δ1 ∧ κ1
2 = κ0

2 − δ1 ∧ x1 = x0 + δ1 ∧ x1 ≥ 0 (3.4)
κ2

3 = κ1
3 + δ2 ∧ κ2

2 = κ1
2 − δ2 ∧ x2 = x1 + δ2 ∧ x2 ≥ 0

∧ (ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3)[x2/x, y0/y] (3.5)

Finally, we have to express the reachability question for all paths generated by the simple
schema {} r1, r1 {ϕ1}. Recall, that we want to check, whether there is a configuration
with κ[`5] 6= 0 reachable from an initial configuration with κ[`1] = n− f and κ[`2] = 0.
This is formally written as:

κ0
1 = n− f ∧ κ0

2 = 0 ∧ κ0
5 6= 0 (3.6)

Note that we only check κ0
5 against zero, as the local state `5 is never updated by the

rule r1. It is easy to see that Equations (3.3)–(3.6) do not have a solution, and thus all
paths generated by the schema {} r1, r1 {ϕ1} are safe. By writing down constraints for
the other three simple schemas in Equation (3.1), we can ensure that the paths generated
by the whole schema are safe as well. As discussed in Section 3.1.2, our results also imply
safety of the paths whose representatives are generated by the schema. Details on the
SMT encoding can be found in Section 3.7.2.

3.2 Preliminaries

Before we start explaining in details the technique intuitively described in Section 3.1,
we formally introduce necessary definitions.

3.2.1 Looplets

Definition 3.1. Given a threshold automaton (L,V,R,RC ), we define the precedence
relation ≺P: for a pair of rules r1, r2 ∈ R, it holds that r1 ≺P r2 if and only if r1.to =
r2.from. We denote by ≺+

P the transitive closure of ≺P. Further, we say that r1 ∼P r2, if
r1 ≺+

P r2 ∧ r2 ≺+
P r1, or r1 = r2.

Example 3.1. Recall from Section 2.1 that we limit ourselves to canonical threshold
automata, i.e., those where r.u = 0 for all rules r ∈ R that satisfy r ≺+

P r. In the threshold
automaton from Figure 3.2 we have that r2 ≺P r3 ≺P r4 ≺P r5 ≺P r6 ≺P r8 ≺P r2. Thus,
we have that r2 ≺+

P r2. In our case this implies that r2.u = 0 by definition. Similarly we
can conclude that r3.u = r4.u = r5.u = r6.u = r7.u = r8.u = 0. /

The relation ∼P defines equivalence classes of rules. An equivalence class corresponds to
a loop or to a single rule that is not part of a loop. Hence, we use the term looplet for one
such equivalence class. For a given set of rules R let R/∼ be the set of equivalence classes
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`1 `2

`3

`4

`5

`6 `7
`8

`9

r1
r2

r3
r4

r5

r6

r7

r8

r9
r10

r11

Figure 3.2: A threshold automaton TA with local states L = {`i : 1 ≤ i ≤ 9} and rules
R = {ri : 1 ≤ i ≤ 11}. The rules drawn with solid arrows {r2, . . . , r8} constitute a single
equivalence class, while all other rules are singleton equivalence classes.

defined by ∼P. We denote by [r] the equivalence class of rule r. For two classes c1 and
c2 from R/∼ we write c1 ≺C c2 iff there are two rules r1 and r2 in R satisfying [r1] = c1
and [r2] = c2 and r1 ≺+

P r2 and r1 6∼P r2. As the relation ≺C is a strict partial order,
there are linear extensions of ≺C . Below, we fix an arbitrary of these linear extensions to
sort transitions in a schedule: We denote by ≺lin

C a linear extension of ≺C .

Example 3.2. Consider Figure 3.2. Here, r9 ≺P r10, since r9.to = `7 = r10.from.
By transitivity we have r4 ≺+

P r10. Further, inside a looplet we have, e.g., r4 ≺+
P r2,

because r4 ≺P r5 ≺P r8 ≺P r2. The threshold automaton has five looplets: c1 = {r1},
c2 = {r2, . . . , r8}, c3 = {r9}, c4 = {r10}, and c5 = {r11}. From r9 ≺P r10, it follows that
c3 ≺C c4, and from r4 ≺+

P r10, it follows that c2 ≺C c4. We can pick two linear extensions
of ≺C , denoted by ≺1 and ≺2. We have c1 ≺1 · · · ≺1 c5, and c1 ≺2 c2 ≺2 c3 ≺2 c5 ≺2 c4.
In this work we always fix one linear extension. /

Remark 3.1. It may seem natural to collapse such loops into singleton local states. In
our case studies, e.g, [Gue02], non-trivial loops are used to express non-deterministic
choice due to failure detectors [CT96], as shown in Figure 3.3. Importantly, some local
states inside the loops appear in the specifications. Thus, one would have to use arguments
from distributed computing to characterize when collapsing states is sound. In this work,
we present a technique that deals with the loops without need for additional modeling
arguments.

3.2.2 Contexts and Slices

The evaluation of the guards in the sets Φrise and Φfall in a configuration solely defines
whether certain transitions are unlocked (but not necessarily enabled). From Proposi-
tion 2.1 (Monotonicity of guards), one can see that after a transition has been applied,
more guards from Φrise may get unlocked and more guards from Φfall may get locked. In
other words, more guards from Φrise may evaluate to true and more guards from Φfall

may evaluate to false. To capture this intuition, we define:
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`1

`′1

`2

`′2

no crash detected

a crash detected

Figure 3.3: A typical structure found in threshold automata that model fault-tolerant
algorithms with a failure detector [CT96]. The gray circles depict those local states, where
the failure detector reports a crash. The local states `i and `′i differ only in the output of
the failure detector. As the failure detector output changes non-deterministically, the
threshold automaton contains loops of size two.

Definition 3.2. A context is a pair (Ωrise,Ωfall) with Ωrise ⊆ Φrise and Ωfall ⊆ Φfall. We
denote by Ω the pair (Ωrise,Ωfall), and by |Ω| = |Ωrise|+ |Ωfall|.

For two contexts (Ωrise
1 ,Ωfall

1 ) and (Ωrise
2 ,Ωfall

2 ), we define that (Ωrise
1 ,Ωfall

1 ) < (Ωrise
2 ,Ωfall

2 )
if and only if Ωrise

1 ∪ Ωfall
1 ⊂ Ωrise

2 ∪ Ωfall
2 . Then, a sequence of contexts Ω1, . . . ,Ωm is

monotonically increasing, if Ωi < Ωi+1, for 1 ≤ i < m. Further, a monotonically increasing
sequence of contexts Ω1, . . . ,Ωm is maximal, if Ω1 = (∅, ∅) and Ωm = (Φrise,Φfall) and
|Ωi+1| = |Ωi|+ 1, for 1 ≤ i < m. We obtain:

Proposition 3.1. Every maximal monotonically increasing sequence of contexts is of
length |Φrise|+ |Φfall|+ 1. There are at most (|Φrise|+ |Φfall|)! such sequences.

Example 3.3. For the example in Figure 3.1, we have Φrise = {ϕ1, ϕ2, ϕ3}, and Φfall = ∅.
Thus, there are (|Φrise| + |Φfall|)! = 6 maximal monotonically increasing sequences
of contexts. Two of them are (∅, ∅) < ({ϕ1}, ∅) < ({ϕ1, ϕ2}, ∅) < ({ϕ1, ϕ2, ϕ3}, ∅)
and (∅, ∅) < ({ϕ3}, ∅) < ({ϕ1, ϕ3}, ∅) < ({ϕ1, ϕ2, ϕ3}, ∅). All of them have length
|Φrise|+ |Φfall|+ 1 = 4. /

To every configuration σ, we attach the context consisting of all guards in Φrise that
evaluate to true in σ, and all guards in Φfall that evaluate to false in σ:

Definition 3.3. Given a threshold automaton, we define its configuration context as
a function ω : Σ → 2Φrise × 2Φfall that for each configuration σ ∈ Σ gives a context
(Ωrise,Ωfall) with Ωrise = {ϕ ∈ Φrise : σ |= ϕ} and Ωfall = {ϕ ∈ Φfall : σ 6|= ϕ}.

The following monotonicity result is a direct consequence of Proposition 2.1.

Proposition 3.2. If a transition t is enabled in a configuration σ, then either ω(σ) <
ω(t(σ)), or ω(σ) = ω(t(σ)).
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Definition 3.4. A schedule τ is steady for a configuration σ, if for every prefix τ ′ of τ ,
the context does not change, i.e., ω(τ ′(σ)) = ω(σ).

Proposition 3.3. A schedule τ is steady for a configuration σ if and only if ω(σ) =
ω(τ(σ)).

In the following definition, we associate a sequence of contexts with a path:

Definition 3.5. Given a configuration σ and a schedule τ applicable to σ, we say that
path(σ, τ) is consistent with a sequence of contexts Ω1, . . . ,Ωm, if there exist indices
n0, . . . , nm, with 0 = n0 ≤ n1 ≤ . . . ≤ nm = |τ |+ 1, such that for every k, 1 ≤ k ≤ m,
and every i with nk−1 ≤ i < nk, it holds that ω(τ i(σ)) = Ωk.

In fact, every path is consistent with a uniquely defined maximal monotonically increasing
sequence of contexts. (Some of the indices n0, . . . , nm in Definition 3.5 may be equal.)
In Section 3.3, we use this sequence of contexts to construct a schema recognizing many
paths that are consistent with the same sequence of contexts.

A context defines which rules of the TA are unlocked. A schedule that is steady for a
configuration visits only one context, and thus we can statically remove TA’s rules that
are locked in the context:

Definition 3.6. Given a threshold automaton TA = (L,V,R,RC ) and a context Ω, we
define the slice of TA with context Ω = (Ωrise,Ωfall) as a threshold automaton TA|Ω =
(L,V,R|Ω,RC ), where a rule r ∈ R belongs to R|Ω if and only if

(∧
ϕ∈Ωrise ϕ

)
→ r.ϕrise

and
(∧

ψ∈Φfall\Ωfall ψ
)
→ r.ϕfall.

In other words, R|Ω contains those and only those rules r that are using guards that
evaluate to true in all configurations σ with ω(σ) = Ω. These are exactly the guards
from Ωrise ∪ (Φfall \ Ωfall). When ω(σ) = Ω, then all guards from Ωrise evaluate to true,
and then r.ϕrise must also be true. As Ωfall contains those guards from Φfall that evaluate
to false in σ, then all other guards from Φfall must evaluate to true, and then r.ϕfall must
be true as well.

3.3 Main Result: A Complete Set of Schemas

To address parameterized reachability, we introduce schemas: alternating sequences of
contexts and rule sequences. A schema serves as a pattern for infinitely many paths, and
it is used to efficiently encode parameterized reachability in SMT. As parameters give rise
to infinitely many initial states, a schema captures an infinite set of paths. We show how
to construct a finite set of schemas S with the following property: for each configuration σ,
and each schedule τ applicable to σ, there is a representative schedule s(τ) such that: (1)
applying s(τ) to σ results in τ(σ), and (2) path(σ, s(τ)) is generated by a schema from S.
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Definition 3.7. A schema is a sequence Ω0, ρ1,Ω1, . . . , ρm,Ωm of alternating contexts
and rule sequences. We often write {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm} for a schema. A
schema with two contexts is called simple.

Given two schemas S1 = Ω0, ρ1, . . . , ρk,Ωk and S2 = Ω′0, ρ′1, . . . , ρ′m,Ω′m with Ωk = Ω′0,
we define their composition S1 ◦ S2 to be the schema that is obtained by concatenation
of the two sequences: Ω0, ρ1, . . . , ρk,Ω′0, ρ′1, . . . , ρ′m,Ω′m.

Definition 3.8. Given a configuration σ and a schedule τ applicable to σ, we say that
path(σ, τ) is generated by a simple schema {Ω} ρ {Ω′}, if the following hold:

• If ρ = r1, . . . , rk, then there exists a monotonically increasing sequence of indices
i(1), . . . , i(m), i.e., 1 ≤ i(1) < · · · < i(m) ≤ k, and there are factors f1, . . . , fm ≥ 0,
so that schedule (ri(1), f1), . . . , (ri(m), fm) = τ .

• The first and the last states match the contexts: ω(σ) = Ω and ω(τ(σ)) = Ω′.

In general, we say that path(σ, τ) is generated by a schema S, if S = S1 ◦ · · · ◦ Sk for
simple schemas S1, . . . , Sk and τ = τ1 · · · τk such that each path(πi(σ), τi) is generated by
the simple schema Si, for πi = τ1 · · · τi−1 and 1 ≤ i ≤ k.

Remark 3.2. Definition 3.8 allows schemas to generate paths that have transitions with
zero acceleration factors. Applying a transition with a zero factor to a configuration σ
results in the same configuration σ, which corresponds to a stuttering step. This does
not affect reachability. In the following, we apply Definition 3.8 to representative paths
that may have transitions with zero factors.

Example 3.4. Let us go back to the example of a schema S and a schedule τ ′ introduced
in Equations (3.1) and (3.2) in Section 3.1.2. It is easy to see that schema S can
be decomposed into four simple schemas S1 ◦ · · · ◦ S4, e.g., S1 = {} r1, r1 {ϕ1} and
S2 = {ϕ1} r1, r3, r4, r4 {ϕ1, ϕ2}. Consider an initial state σ0 with n = 5, t = f = 1,
x = y = 0, κ[`1] = 1, κ[`2] = 3, and κ[`i] = 0 for i ∈ {3, 4, 5}. To ensure that path(σ0, τ ′)
is generated by schema S, one has to check Definition 3.8 for schemas S1, . . . , S4 and
schedules (τ ′1 · t1), (τ ′2 · t2), (τ ′3 · t3), and τ ′4, respectively.

For instance, path(σ0, τ ′1 · t1) is generated by S1. Indeed, take the sequence of indices 1
and 2 and the sequence of acceleration factors 1 and 1. The path path(σ0, τ ′1 · t1) ends in
the configuration σ1 that differs from σ0 in that κ[`2] = 1, κ[`3] = 2, and x = 2. The
contexts ω(σ0) = ({}, {}) and ω(σ1) = ({ϕ1}, {}) match the contexts of schema S1, as
required by Definition 3.8.

Similarly, path(σ1, τ ′2 · t2) is generated by schema S2. To see that, compare the contexts
and use the index sequence 1, 2, 4, and unary acceleration factors. /

The language of a schema S—denoted with L(S)—is the set of all paths generated by S.
For a set of configurations C ⊆ Σ and a set of schemas S, we define the set Reach(C,S)
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to contain all configurations reachable from C via the paths generated by the schemas
from S, i.e.,

Reach(C,S) = {τ(σ) | σ ∈ C, ∃S ∈ S. path(σ, τ) ∈ L(S)}.

We say that a set S of schemas is complete, if for every set of configurations C ⊆ Σ it
is the case that the set of all states reachable from C via the paths generated by the
schemas from S, is exactly the set of all possible states reachable from C. Formally,

∀C ⊆ Σ. {τ(σ) | σ ∈ C, τ is applicable to σ} = Reach(C,S).

In [KVW17], a quantity C has been introduced that depends on the number of conditions
in a TA. It has been shown that for every configuration σ and every schedule τ applicable
to σ, there is a schedule τ ′ of length at most d = |R| · (C + 1) + C that is also applicable
to σ and results in τ(σ) [KVW17, Theorem. 8]. Hence, by enumerating all sequences of
rules of length up to d, one can construct a complete set of schemas:

Theorem 3.4. For a threshold automaton, there is a complete schema set Sd of cardinality
|R||R|·(C+1)+C.

Although the set Sd is finite, enumerating all its elements is impractical. We show that
there is a complete set of schemas whose cardinality solely depends on the number of
guards that syntactically occur in the TA. These numbers |Φrise| and |Φfall| are in practice
much smaller than the number of rules |R|:

Theorem 3.5. For all threshold automata, there exists a complete schema set of cardi-
nality at most (|Φrise|+ |Φfall|)!. In this set, the length of each schema does not exceed
(3 · |Φrise ∪ Φfall|+ 2) · |R|.

Proof Sketch: In the following sections we prove the ingredients of the following argument
for the theorem: Construct the set Z of all maximal monotonically increasing sequences of
contexts. From Proposition 3.1, we know that there are at most (|Φrise|+ |Φfall|)! maximal
monotonically increasing sequences of contexts. Therefore, |Z| ≤ (|Φrise|+ |Φfall|)!. Then,
for each sequence z ∈ Z, we do the following:

(1) We show that for each configuration σ and each schedule τ applicable to σ and
consistent with the sequence z, there is a schedule s(τ) that has a specific structure,
and is also applicable to σ. We call s(τ) the representative of τ . We introduce and
formally define this specific structure of representative schedules in Sections 3.4–3.6.
We prove existence and properties of the representative schedule in Theorem 3.14
(Section 3.6). Before that we consider special cases: when all rules of a schedule
belong to the same looplet (Theorem 3.9, Section 3.4), and when a schedule is
steady (Theorem 3.11, Section 3.5).
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(2) Next we construct a schema (for the sequence z) and show that it generates
all paths of all schedules s(τ) found in (1). The length of the schema is at
most (3 · (|Φrise|+ |Φfall|) + 2) · |R|. This is shown in Theorem 3.15 (Section 3.6).

Theorem 3.5 follows from the above mentioned theorems, which we prove in the following
sections. Auxiliary lemmas and technical proofs of Section 3.4 and Section 3.5 are
either only sketched or omitted, but the detailed proofs can be found in Section 3.8 and
Section 3.9.

Remark 3.3. Let us stress the difference between [KVW17] and this work. From the work
of [KVW17], it follows that in order to check correctness of a TA it is sufficient to check
only the schedules of bounded length d(TA). The bound d(TA) does not depend on the
parameters, and can be computed for each TA. The proofs in [KVW17] demonstrate that
every schedule longer than d(TA) can be transformed into an “equivalent” representative
schedule, whose length is bounded by d(TA). Consequently, one can treat every schedule
of length up to d(TA) as its own representative schedule. Similar reasoning does not
apply to the schemas we construct here: (i) We construct a complete set of schemas,
whose cardinality is substantially smaller than |Sd|, and (ii) the schemas constructed in
this chapter can be twice as long as the schemas in Sd.

As discussed in Remark 3.1, the looplets in our case studies are typically either singleton
looplets or looplets of size two. In fact, most of our benchmarks have singleton looplets
only, and thus their threshold automata can be reduced to directed acyclic graphs. The
theoretical constructs of Section 3.4.2 are presented for the more general case of looplets
of any size. For most of the benchmarks— the ones not using failure detectors—we need
only the simple construction laid out in Section 3.4.1.

3.4 Case I: One Context and One Looplet

We show that for each schedule that uses only the rules from a fixed looplet and does not
change its context, there exists a representative schedule of bounded length that reaches
the same final state. The goal is to construct a single schema per looplet. The technical
challenge is that this single schema must generate representative schedules for all possible
schedules, where, intuitively, processes may move arbitrarily between all local states in
the looplet. As a consequence, the rules that appear in the representative schedules can
differ from the rules that appear in the arbitrary schedules visiting a looplet.

We fix a threshold automaton, a context Ω, a configuration σ with ω(σ) = Ω, a looplet c,
and a schedule τ applicable to σ and using only rules from c. We then construct the
representative schedule crepc[σ, τ ] and the schema cschemac.

The construction of crepc[σ, τ ] for the case when |c| = 1 is given in Section 3.4.1, and for
the case when |c| > 1, in Section 3.4.2.
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We show in Section 3.4.3 that these constructions give us a schedule that has the desired
properties: it reaches the same final state as the given schedule τ , and its length does
not exceed 2 · |c|. Technical details can be found in Section 3.8.

Note that in [KVW17], the length of the representative schedule was bounded by |c|.
However, all representative schedules of a looplet in this section can be generated by a
single looplet schema.

3.4.1 Singleton Looplet

Let us consider the case of the looplet c = {r} containing only one rule, that is, |c| = 1.
There is a trivial representative schedule of a single transition:

Lemma 3.6. Given a threshold automaton, a configuration σ, and a schedule τ = (r, f1),
. . . , (r, fm) applicable to σ, one of the two schedules is also applicable to σ and results
in τ(σ): either schedule (r, f1 + . . .+ fm), or schedule (r, 0).

A complete proof of Lemma 3.6 can be found in Section 3.8.

Consequently, when c has a single rule r, for configuration σ and a schedule τ =
(r, f1), . . . , (r, fm), Lemma 3.6 allows us to take the singleton schedule (r, f) as crepc[σ, τ ]
and to take the singleton schema {Ω} r {Ω} as cschemac. The factor f is either f1+. . .+fm
or zero.

3.4.2 Non-singleton Looplet

Next we focus on non-singleton looplets. Thus, we assume that |c| > 1. Our construction
is based on two directed trees, whose undirected versions are spanning trees, sharing
the same root. In order to find a representative of a steady schedule τ which leads
from σ to τ(σ), we determine for each local state how many processes have to move
in or out of the state, and then we move them along the edges of the trees. First, we
give the definitions of such trees, and then we show how to use them to construct the
representative schedules and the schema.

Spanning out-trees and in-trees. We construct the underlying graph of looplet c,
that is, a directed graph Gc, whose vertices consist of local states that appear as
components from or to of the rules from c, and the edges are the rules of c. More
precisely, we construct a directed graph Gc = (Vc, Ec, Lc), whose edges from Ec are
labeled by function Lc : Ec → c with the rules of c, as follows:

Vc = {` | ∃r ∈ c, r.to = ` ∨ r.from = `},
Ec = {(`, `′) | ∃r ∈ c, r.from = `, r.to = `′},

Lc((`, `′)) = r, if r.from = `, r.to = `′ for (`, `′) ∈ Ec and r ∈ c.

Lemma 3.7. Given a threshold automaton and a non-singleton looplet c ∈ R/∼, graph
Gc is non-empty and strongly connected.

46



3.4. Case I: One Context and One Looplet

`2

`3

`4

`5

`6

r2
r3

r4

r5
r6
r7

r8 `2

`3

h = `4

`5

`6

ein (1)
ein(2) e in

(3)

ein(4) `2

`3

h = `4

`5

`6eout(1)

eout (2)
eout (3)

e ou
t(4

)

Figure 3.4: The underlying graph of the looplet c2 of the threshold automaton from
Example 3.2 and Figure 3.2 (left), together with trees Tin (middle) and Tout (right).

Proof. As, |c| > 1 and thus Ec ≥ 2, graph Gc is non-empty. To prove that Gc is strongly
connected, we consider a pair of rules r1, r2 ∈ c. By the definition of a looplet, it holds
that r1 ≺+

P r2 and r2 ≺+
P r1. Thus, there is a path in Gc from r1.to to r2.from, and there

is a path in Gc from r2.to to r1.from. As r1 and r2 correspond to some edges in Gc, there
is a cycle that contains the vertices r1.from, r1.to, r2.from, and r2.to. Thus, graph Gc is
strongly connected.

As Gc is non-empty and strongly connected, we can fix an arbitrary node h ∈ Vc — called
a hub — and construct two directed trees with the roots at h, whose undirected versions
are spanning trees of the undirected version of Gc. These are two subgraphs of Gc: a
directed tree Tout = (Vc, Eout), whose edges Eout ⊆ Ec are pointing away from h (out-tree);
a directed tree Tin = (Vc, Ein), whose edges Ein ⊆ Ec are pointing to h (in-tree). For every
node v ∈ Vc \ {h}, it holds that |{u : (u, v) ∈ Eout}| = 1 and |{w : (v, w) ∈ Ein}| = 1.

Further, we fix a topological order �in on the edges of tree Tin. More precisely, �in is
such a partial order on Ein that for each pair of adjacent edges (`, `′), (`′, `′′) ∈ Ein, it
holds that (`, `′) �in (`′, `′′). In the same way, we fix a topological order �out on the
edges of tree Tout.

Example 3.5. Consider again the threshold automaton from Example 3.2 and Figure 3.2.
We construct trees Tin and Tout for looplet c2, shown in Figure 3.4.

The underlying graph has the set of vertices Vc = {`2, `3, `4, `5, `6}, and the set of edges is
Ec = {(`2, `3), (`3, `5), (`5, `6), (`6, `4), (`4, `4), (`4, `5), (`4, `2)}. Fix `4 as a hub. We can
fix a linear order �in such that (`2, `3) �in (`3, `5) �in (`5, `6) �in (`6, `4), and a linear
order �out such that (`4, `2) �out (`2, `3) �out (`4, `5) �out (`5, `6).

Note that for the chosen hub `4 and this specific example, Tin and �in are uniquely defined,
while an out-tree can be different from Tout from our Figure 3.4 (the rules r8, r2, r3, r4
constitute a different tree from the same hub). Because out-tree Tout is not a chain,
several linear orders different from �out can be chosen, e.g., (`4, `2) �out (`4, `5) �out
(`2, `3) �out (`5, `6). /
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Representatives of non-singleton looplets. Using these trees, we show how to con-
struct a representative crepc[σ, τ ] of a schedule τ applicable to σ with σ′ = τ(σ). For a con-
figuration σ and a schedule τ applicable to σ, consider the trees Tin and Tout. We construct
two sequences: the sequence ein(1), . . . , ein(|Ein|) of all edges of Tin following the order �in,
i.e., if ein(i) �in ein(j), then i ≤ j; the sequence eout(1), . . . , eout(|Eout|) of all edges of
Tout following the order �out. Further, we define the sequence of rules rin(1), . . . , rin(|Ein|)
with rin(i) = Lc(ein(i)) for 1 ≤ i ≤ |Ein|, and the sequence of rules rout(1), . . . , rout(|Eout|)
with rout(i) = Lc(eout(i)) for 1 ≤ i ≤ |Eout|. Using σ and σ′ = τ(σ), we define:

δin(i) = σ.κ[f ]− σ′.κ[f ], for f = rin(i).from and 1 ≤ i ≤ |Ein|,
δout(j) = σ′.κ[t]− σ.κ[t], for t = rout(j).to and 1 ≤ j ≤ |Eout|.

If δin(i) ≥ 0, then δin(i) processes should leave the local state rin(i).from towards the hub,
and they do it exclusively using the edge ein(i). If δout(j) ≥ 0, then δout(j) processes should
reach the state rout(j).to from the hub, and they do it exclusively using the edge eout(j).
The negative values of δin(i) and δout(j) do not play any role in our construction, and
thus, we use max(δin(i), 0) and max(δout(j), 0).

The main idea of the representative construction is as follows: First, we fire the sequence
of rules rin(1), . . . , rin(k) to collect sufficiently many processes in the hub. Then, we fire
the sequence of rules rout(1), . . . , rout(k) to distribute the required number of processes
from the hub. As a result, for each location ` in the graph, if σ[`] > σ′[`], then the
processes are transferred from ` to the other locations, and if σ[`] < σ′[`], additional
processes arrive at `. Using δin(i) and δout(i), we define the acceleration factors for each
rule as follows:

win(i) =
∑

j : ein(j)�in ein(i)
max(δin(j), 0) and

wout(i) =
∑

j : eout(i)�out eout(j)
max(δout(j), 0).

Finally, we construct the schedule crepc[σ, τ ] as follows:

crepc[σ, τ ] = (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)),
(rout(1), wout(1)), . . . , (rout(|Eout|), wout(|Eout|)). (3.7)

Example 3.6. Consider the TA shown in Figure 3.5, with four local states and four rules.
Let c be the four-element looplet that contains the rules r1, r2, r3, and r4, and let τ be
the schedule τ = (r4, 1), (r3, 1), (r4, 1), (r1, 1), (r2, 1), (r3, 1), (r1, 1), (r4, 1), (r1, 1), which
uses the rules of the looplet c. Consider a configuration σ with σ.κ[`3] = σ.κ[`4] = 1,
and σ.κ[`1] = σ.κ[`2] = 0. The final configuration σ′ = τ(σ) has the following properties:
σ′.κ[`2] = 2 and σ′.κ[`1] = σ′.κ[`3] = σ′.κ[`4] = 0. By comparing σ and σ′, we notice
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σ :

`1

`2

`3

`4

r1 r2

r3r4

σ′ :

`1

`2

`3

`4

r1 r2

r3r4
τ = r4, r3, r4, r1, r2, r3, r1, r4, r1

Tin :
h = `1 `4 `3 `2ein(3)

rin(3) = r4

δin(3) = 1− 0 = 1
win(3) = 1 + 1 + 0 = 2

ein(2)
rin(2) = r3

δin(2) = 1− 0 = 1
win(2) = 1 + 0 = 1

ein(1)
rin(1) = r2

δin(1) = 0− 2 = −2
win(1) = 0

Tout :
h = `1 `2 `3 `4eout(1)

rout(1) = r1

δout(1) = 2− 0 = 2
wout(1) = 2 + 0 + 0 = 2

eout(2)
rout(2) = r2

δout(2) = 0− 1 = −1
wout(2) = 0 + 0 = 0

eout(3)
rout(3) = r3

δout(3) = 0− 1 = −1
wout(3) = 0

Figure 3.5: Construction of Tin and Tout for the four-element cycle, following Example 3.6.

that one process should move from `3 to `2, and one from `4 to `2. We will now show
how this is achieved by our construction.
For constructing the representative schedule crepc[σ, τ ], we first define trees Tin and Tout.
If we choose `1 to be the hub, then by following the construction we obtain that
Ein = {(`4, `1), (`3, `4), (`2, `3)}, and thus the order is (`2, `3) �in (`3, `4) �in (`4, `1). This
explains why ein(1) = (`2, `3), ein(2) = (`3, `4), ein(3) = (`4, `1). By calculating δin(i) for
every i ∈ {1, 2, 3}, we see that δin(2) = 1 and δin(3) = 1 are positive. Consequently, two
processes go to the hub: one from rin(2).from = `3 and one from rin(3).from = `4. The
coefficients win give us acceleration factors for all rules.
Similarly, we obtain Eout = {(`1, `2), (`2, `3), (`3, `4)}, and the order must be (`1, `2) �out
(`2, `3) �out (`3, `4). Thus, we have eout(1) = (`1, `2), ein(2) = (`2, `3), and eout(3) =
(`3, `4). Here only δout(1) = 2 has a positive value, and hence, two processes should move
from hub to the local state rout(1).to = `2. To achieve this, the acceleration factor of
every rule rout(i), 1 ≤ i ≤ 3, must be wout(i).
Therefore, by Equation (3.7), the representative schedule is

crepc[σ, τ ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0).

Choosing another hub gives us another representative. For each hub, the representative
is not longer than 2|c| = 8, and leads to σ′ when applied to σ. /
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This construction is defined in such a way that the following lemma holds. As its proof
is rather technical, we present it in Section 3.8.

Lemma 3.8. Fix a threshold automaton TA, a context Ω, and a non-singleton looplet c
of the slice TA|Ω. Let σ be a configuration of TA and let τ be a schedule that is contained
in c and it is applicable to σ. Then the schedule crepc[σ, τ ] has the following properties:

a) crepc[σ, τ ] is applicable to σ, and

b) crepc[σ, τ ] results in τ(σ) when applied to σ.

3.4.3 Representatives for One Context and One Looplet

We now summarize results from Sections 3.4.1 and 3.4.2, giving the representative of a
schedule τ in the case when τ uses only the rules from one looplet, and does not change
its context. If the given looplet consists of a single rule, the construction is given in
Section 3.4.1, and otherwise in Section 3.4.2. We show that these constructions indeed
give us a schedule of bounded length, that reaches the same state as τ .

In the following, given a threshold automaton TA and a looplet c, we will say that a
schedule τ = t1, . . . , tn is contained in c, if [ti.rule] = c for 1 ≤ i ≤ n.

Theorem 3.9. Fix a threshold automaton, a context Ω, and a looplet c in the slice TA|Ω.
Let σ be a configuration and let τ be a steady schedule contained in c and applicable to σ.
There exists a representative schedule crepc[σ, τ ] with the following properties:

a) schedule crepc[σ, τ ] is applicable to σ, and crepc[σ, τ ](σ) = τ(σ),

b) the rule of each transition t in crepc[σ, τ ] belongs to c, that is, [t.rule] = c,

c) schedule crepc[σ, τ ] is not longer than 2 · |c|.

Proof. If |c| = 1, then we use a single accelerated transition or the empty schedule as
representative, as described in Lemma 3.6.

If |c| > 1, we construct the representative as in Section 3.4.2 and Equation (3.7), so that
by Lemma 3.8 property a) follows. For every edge e ∈ Ec, the rule Lc(e) belongs to c,
and thus crepc[σ, τ ] satisfies property b). As |Ein| ≤ |c| and |Eout| ≤ |c|, we conclude that
|crepc[σ, τ ]| ≤ 2 · |c|, and thus property c) is also satisfied. From this and Lemma 3.8, we
conclude that crepc[σ, τ ] is the required representative schedule.

Theorem 3.9 gives us a way to construct schemas that generate all representatives of the
schedules contained in a looplet:
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Theorem 3.10. Fix a threshold automaton TA, a context Ω, and a looplet c in the
slice TA|Ω. There exists a schema cschemac with the following properties:

Fix an arbitrary configuration σ and a steady schedule τ applicable to σ that is contained
in c. Let τ ′ = crepc[σ, τ ] be the representative schedule of τ , from Theorem 3.9. Then,
path(σ, τ ′) is generated by cschemac. Moreover, the length of cschemac is at most 2 · |c|.

Proof. Note that τ ′ = crepc[σ, τ ] can be constructed in two different ways depending on
the looplet c.

If |c| = 1, then by Lemma 3.6 we have that τ ′ = (r, f) for a rule r ∈ c and a factor
f ∈ N0. In this case we construct cschemac to be

cschemac = {Ω} r {Ω}.

It is easy to see that path(σ, τ ′) is generated by cschemac, as well as that the length
of cschemac is exactly 1, that is less than 2 · |c|.

If |c| > 1, then we use the trees Tin and Tout to construct the schema cschemac as follows:

cschemac = {Ω} rin(1) · · · rin(|Ein|) · rout(1) · · · rout(|Eout|) {Ω}. (3.8)

Since for an arbitrary configuration σ and a schedule τ , we use the same sequence of edges
in Equations (3.7) and (3.8) to construct crepc[σ, τ ] and cschemac, the schema cschemac
generates all paths of the representative schedules, and its length is at most 2 · |c|.

3.5 Case II: One Context and Multiple Looplets

In this section, we show that for each steady schedule, there exists a representative steady
schedule of bounded length that reaches the same final state.

Theorem 3.11. Fix a threshold automaton and a context Ω. For every configuration σ
with ω(σ) = Ω and every steady schedule τ applicable to σ, there exists a steady schedule
srep[σ, τ ] with the following properties:

a) srep[σ, τ ] is applicable to σ, and srep[σ, τ ](σ) = τ(σ),

b) |srep[σ, τ ]| ≤ 2 · |(R|Ω)|

Let us first explain the construction of the representative srep[σ, τ ], and leave the proof
of this theorem for later in this section.

To construct a representative schedule, we fix a context Ω of a TA, a configuration σ with
ω(σ) = Ω, and a steady schedule τ applicable to σ. The key notion in our construction
is a projection of a schedule on a set of looplets:
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σ :

`1

`2

`3
`4

`5 `6
r1 r2

r3r4

r5

r6

r7

r8

σ′ :

`1

`2

`3
`4

`5 `6
r1 r2

r3r4

r5

r6

r7

r8
τ

π1(σ) :

`1

`2

`3
`4

`5 `6
r1 r2

r3r4

r5

r6

r7

r8

π2(σ) :

`1

`2

`3
`4

`5 `6
r1 r2

r3r4

r5

r6

r7

r8
τ |c2

τ |c1 τ |c3

Figure 3.6: Threshold automaton and its configurations used in Example 3.7. The number
of dots inside a local state ` represents the value of its counter κ[`].

Definition 3.9. Let τ = t1, . . . , tk, for k > 0, be a schedule, and let C be a set of looplets.
Given an increasing sequence of indices i(1), . . . , i(m) ∈ {1, . . . , k}, where m ≤ k, i.e.,
i(j) < i(j + 1), for 1 ≤ j < m, a schedule ti(1) . . . ti(m) is a projection of τ on C, if each
index j ∈ {1, . . . , k} belongs to {i(1), . . . , i(m)} if and only if [tj .rule] ∈ C.

In fact, each schedule τ has a unique projection on a set C. In the following, we
write τ |c1,...,cm to denote the projection of τ on a set {c1, . . . , cm}.

Provided that c1, . . . , cm are all looplets of the slice R|Ω ordered with respect to ≺lin
C ,

we construct the following sequences of projections on each looplet (note that π0 is the
empty schedule): πi = τ |c1 · . . . · τ |ci , for 0 ≤ i ≤ m.

Having defined {πi}0≤i≤m, we construct the representative srep[σ, τ ] simply as a concate-
nation of the representatives of each looplet:

srep[σ, τ ] = crepc1 [π0(σ), τ |c1 ] · crepc2 [π1(σ), τ |c2 ] · . . . · crepcm
[πm−1(σ), τ |cm ]

Example 3.7. Consider the TA shown in Figure 3.6. It has three looplets, namely
c1 = {r1, r2, r3, r4}, c2 = {r5}, c3 = {r6, r7, r8}, and the rules are depicted as solid,
dotted, and dashed, respectively. These looplets are ordered such that c1 ≺lin

C c2 ≺lin
C c3.

Let σ be the upper left configuration in Figure 3.6, with κ[`3] = κ[`4] = κ[`5] = 1 and
κ[`1] = κ[`2] = κ[`6] = 0. Let τ be the schedule (r4, 1), (r6, 1), (r3, 1), (r4, 1), (r1, 1), (r2, 1),
(r7, 1), (r3, 1), (r1, 1), (r5, 1), (r7, 1), (r4, 1), (r8, 1), (r1, 1), (r6, 1), (r7, 1), (r5, 1), (r8, 1), (r7, 1).
Note that τ is applicable to σ and that τ(σ) is the configuration σ′ from Figure 3.6 top
right, i.e. κ[`5] = 1, κ[`6] = 2 and κ[`1] = κ[`2] = κ[`3] = κ[`4] = 0. We construct the
representative schedule srep[σ, τ ].
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Projection of τ on the looplets c1, c2, and c3, gives us the following schedules:

τ |c1 = (r4, 1), (r3, 1), (r4, 1), (r1, 1), (r2, 1), (r3, 1), (r1, 1), (r4, 1), (r1, 1),
τ |c2 = (r5, 1), (r5, 1),
τ |c3 = (r6, 1), (r7, 1), (r7, 1), (r8, 1), (r6, 1), (r7, 1), (r8, 1), (r7, 1).

Recall that

srep[σ, τ ] = crepc1 [π0(σ), τ |c1 ] · crepc2 [π1(σ), τ |c2 ] · crepc3 [π2(σ), τ |c3 ].

In order to construct this schedule, we firstly construct the required configurations. Note
that π0(σ) = σ. Then π1(σ) = τ |c1(σ), and this is the configuration from Figure 3.6
lower left, i.e. κ[`2] = 2, κ[`5] = 1 and κ[`1] = κ[`3] = κ[`4] = κ[`6] = 0. Configuration
π2(σ) = τ |c1 · τ |c2(σ) = τ |c2(π1(σ)) is represented on Figure 3.6 lower right, i.e. κ[`5] = 3
and all other counters are zero.

Section 3.4 deals with the construction of representatives of schedules that contain rules
from only one looplet. Recall that construction of crepc1 [π0(σ), τ |c1 ] corresponds to the
one from Example 3.6. Thus, we know that

crepc1 [π0(σ), τ |c1 ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0).

As c2 is a singleton looplet, we use the result of Section 3.4.1. Thus,

crepc2 [π1(σ), τ |c2 ] = (r5, 2).

Using the result from Section 3.4.2 we obtain that

crepc3 [π2(σ), τ |c3 ] = (r8, 0), (r7, 2),

and finaly we have the representative for τ that is

srep[σ, τ ] = (r2, 0), (r3, 1), (r4, 2), (r1, 2), (r2, 0), (r3, 0), (r5, 2), (r8, 0), (r7, 2),

obtained by concatenating the previous three looplet representatives. /

The following lemma serves for reordering transitions inside a schedule, in a way that
respects the order of looplets. Its proof is in Section 3.9.

Lemma 3.12 (Looplet sorting). Given a threshold automaton, a context Ω, a configura-
tion σ, a steady schedule τ applicable to σ, and a sequence c1, . . . , cm of all looplets in
the slice R|Ω with the property ci ≺lin

C cj for 1 ≤ i < j ≤ m, the following holds:

a) Schedule τ |c1 is applicable to the configuration σ.

b) Schedule τ |c2,...,cm is applicable to the configuration τ |c1(σ).
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c) Schedule τ |c1 · τ |c2,...,cm, when applied to σ, results in configuration τ(σ).

Now we are ready to prove Theorem 3.11 from the beginning of this section.

Proof of Theorem 3.11 By iteratively applying Lemma 3.12, we prove by induction that
schedule τ |c1 · . . . · τ |cm is applicable to σ and results in τ(σ). From Theorem 3.9, we
conclude that each schedule τ |ci can be replaced by its representative crepci

[πi−1(σ), τ |ci ].
Thus, srep[σ, τ ], which is the concatenation of these representatives, is applicable to σ and
results in τ(σ). By Proposition 3.3, schedule srep[σ, τ ] is steady, since ω(σ) = ω(τ(σ)).

Finally, we show that for a given context, there is a schema that generates all paths of
such representative schedules.

Theorem 3.13. Fix a threshold automaton and a context Ω. Let c1, . . . , cm be the sorted
sequence of all looplets of the slice R|Ω, i.e., c1 ≺lin

C . . . ≺lin
C cm. Schema sschema =

cschemac1 ◦ · · · ◦ cschemacm has two properties:

a) For a configuration σ with ω(σ) = Ω and a steady schedule τ applicable to σ,
path(σ, τ ′) of the representative τ ′ = srep[σ, τ ] is generated by sschema; and

b) the length of sschema is at most 2 · |(R|Ω)|.

Proof. Fix a configuration σ with ω(σ) = Ω and a steady schedule τ applicable to σ. As
srep[σ, τ ] is a sorted sequence of the looplet representatives, all paths of srep[σ, τ ] are
generated by sschema, which is not longer than 2 · |(R|Ω)|.

3.6 Proving the Main Result

Using the results from Sections 3.4 and 3.5, for each configuration and each schedule
(without restrictions) we construct a representative schedule.

Theorem 3.14. Given a threshold automaton, a configuration σ, and a schedule τ
applicable to σ, there exists a schedule rep[σ, τ ] with the following properties:

a) rep[σ, τ ] is applicable to σ, and rep[σ, τ ](σ) = τ(σ),

b) |rep[σ, τ ]| ≤ 2 · |R| · (|Φrise|+ |Φfall|+ 1) + |Φrise|+ |Φfall|.

Proof. Given a threshold automaton, fix a configuration σ and a schedule τ applicable to σ.
Let Ω1, . . . ,ΩK+1 be the maximal monotonically increasing sequence of contexts such
that path(σ, τ) is consistent with the sequence by Definition 3.5. From Proposition 3.1,
the length of the sequence is K + 1 = |Φrise| + |Φfall| + 1. Thus, there are at most K
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transitions t?1, . . . , t?K in τ that change their context, i.e., for i ∈ {1, . . . ,K}, it holds
ω(σi) < ω(t?i (σi)) for t?i ’s respective state σi in τ . Therefore, we can divide τ into K + 1
steady schedules separated by the transitions t?1, . . . , t?K :

τ = ν1 · t?1 · ν2 · · · νK · t?K · νK+1.

Now, the main idea is to replace the steady schedules with their representatives from Theo-
rem 3.11. That is, using t?1, . . . , t?K and ν1, . . . , νK+1, we construct the schedules ρ1, . . . , ρK
(by convention, ρ0 is the empty schedule):

ρi = ρi−1 · νi · t?i for 1 ≤ i ≤ K.

Finally, the representative schedule rep[τ, σ] is constructed as follows:

rep[σ, ν1] · t?1 · rep[ρ1(σ), ν2] · · · rep[ρK−1(σ), νK ] · t?K · rep[ρK(σ), νK+1]

From Theorem 3.11, it follows that rep[τ, σ] is applicable to σ and it results in τ(σ).
Moreover, the representative of a steady schedule is not longer than 2|R|, which together
withK transitions gives us the bound 2|R|(K+1)+K. As we have thatK = |Φrise|+|Φfall|,
this gives us the required bound.

Further, given a maximal monotonically increasing sequence z of contexts, we construct
a schema that generates all paths of the schedules consistent with z:

Theorem 3.15. For a threshold automaton and a monotonically increasing sequence z
of contexts, there exists a schema schema(z) that generates all paths of the representative
schedules that are consistent with z, and the length of schema(z) does not exceed 3 · |R| ·
(|Φrise|+ |Φfall|) + 2 · |R|.

Proof. Given a threshold automaton, let ρall be the sequence r1, . . . , r|R| of all rules
from R, and let z = Ω0, . . . ,Ωm be a monotonically increasing sequence of contexts. By
the construction in Theorem 3.14, each representative schedule rep[σ, τ ] consists of the
representatives of steady schedules terminated with transitions that change the context.
Then, for each context Ωi, for 0 ≤ i < m, we compose sschema and {Ωi} ρall {Ωi+1}. This
composition generates the representative of a steady schedule and the transition changing
the context from Ωi to Ωi+1. Consequently, we construct the schema(z) as follows:

(sschemaΩ0 ◦ {Ω0} ρall {Ω1}) ◦ . . . ◦ (sschemaΩm−1 ◦ {Ωm−1} ρall {Ωm}) ◦ sschemaΩm

By inductively applying Theorem 3.13, we prove that schema(z) generates all paths of
schedules rep[σ, τ ] that are consistent with the sequence z. We get the needed bound on
the length of schema(z) by using an argument similar to Theorem 3.14 and by noting
that for every context, instead of one rule that is changing it, we add |R| extra rules.
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3.7 Application of the PARA2 technique for reachability

3.7.1 Complete Set of Schemas and Optimizations

Our proofs show that the set of schemas is easily computed from the TA: The threshold
guards are syntactic parts of the TA, and enable us to directly construct increasing
sequences of contexts. To find a slice of the TA for a given context, we filter the rules
with unlocked guards, i.e., check whether the context contains the guard. To produce
the simple schema of a looplet, we compute a spanning tree over the slice. To construct
simple schemas, we do a topological sort over the looplets. For example, it takes just 30
seconds to compute the schemas in our longest experiment that runs for 4 hours. In our
tool, the following optimizations have been implemented, that lead to simpler and fewer
SMT queries.

Entailment optimization. We say that a guard ϕ1 ∈ Φrise entails a guard ϕ2 ∈ Φrise,
if for all combinations of parameters p ∈ PRC and shared variables g ∈ N|Γ|0 , it holds
that (g,p) |= ϕ1 → ϕ2. For instance, in our example, ϕ3 : y ≥ (2t + 1) − f entails
ϕ2 : y ≥ (t + 1) − f . If ϕ1 entails ϕ2, then we can omit all monotonically increasing
sequences that contain a context (Ωrise,Ωfall) with ϕ1 ∈ Ωrise and ϕ2 6∈ Ωrise. If the
number of schemas before applying this optimization is m! and there are k entailments,
then the number of schemas reduces from m! to (m − k)!. A similar optimization is
introduced for the guards from Φfall.

Control flow optimization. Based on the proof of Lemma 3.12, we introduce the following
optimization for TAs that are directed acyclic graphs (possibly with self loops). We say
that a rule r ∈ R may unlock a guard ϕ ∈ Φrise, if there is a p ∈ PRC and g ∈ N|Γ|0
satisfying: (g,p) |= r.ϕrise∧ r.ϕfall (the rule is unlocked); (g,p) 6|= ϕ (the guard is locked);
(g + r.u,p) |= ϕ (the guard is now unlocked).

In our example from Figure 3.1, the rule r1 : true 7→ x++ may unlock the guard ϕ1 : x ≥
d(n+ t)/2e − f .

Let ϕ ∈ Φrise be a guard, r′1, . . . , r′m be the rules that use ϕ, and r1, . . . , rk be the rules that
may unlock ϕ. If ri ≺lin

C r′j , for 1 ≤ i ≤ k and 1 ≤ j ≤ m, then we exclude some sequences
of contexts as follows (we call ϕ forward-unlockable). Let ψ1, . . . , ψn ∈ Φrise be the guards
of r1, . . . , rk. Guard ϕ cannot be unlocked before ψ1, . . . , ψn, and thus we can omit all
sequences of contexts, where ϕ appears in the contexts before ψ1, . . . , ψn. Moreover, as
ψ1, . . . , ψn are the only guards of the rules unlocking ϕ, we omit the sequences with
different combinations of contexts involving ϕ and the guards from Φrise \ {ϕ,ψ1, . . . , ψn}.
Finally, as the rules r′1, . . . , r′m appear after the rules r1, . . . , rk in the order ≺lin

C , the rules
r′1, . . . , r

′
m appear after the rules r1, . . . , rk in a rule sequence of every schema. Thus, we

omit the combinations of the contexts involving ϕ and ψ1, . . . , ψn.

Hence, we add all forward-unlockable guards to the initial context (we still check the
guards of the rules in the SMT encoding in Section 3.7.2). If the number of schemas
before applying this optimization is m! and there are k forward-unlocking guards, then
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the number of schemas reduces from m! to (m− k)!. A similar optimization is introduced
for the guards from Φfall.

3.7.2 Checking a Schema with SMT

We decompose a schema into a sequence of simple schemas, and encode the simple
schemas. Given a simple schema S = {Ω1} r1, . . . , rm {Ω2}, which contains m rules,
we construct an SMT formula such that every model of the formula represents a path
from L(S)—the language of paths generated by schema S—and for every path in L(S)
there is a corresponding model of the formula. Thus, we need to model a path of m+ 1
configurations and m transitions (whose acceleration factors may be 0).

To represent a configuration σi, for 0 ≤ i ≤ m, we introduce two vectors of SMT variables:
Given the set of local states L and the set of shared variables Γ, a vector ki = (ki1, . . . , ki|L|)
to represent the process counters, a vector xi = (xi1, . . . , xi|Γ|) to represent the shared
variables. We call the pair (ki,xi) the layer i, for 1 ≤ i ≤ m.

Based on this we encode schemas, for which the sequence of rules r1, . . . , rm is fixed.
We exploit this in two ways: First, we encode for each layer i the constraints of rule ri.
Second, as this constraint may update only two counters—the processes move from
and move to according to the rule—we do not need |L| counter variables per layer, but
only encode the two counters per layer that have actually changed. As is a common
technique in bounded model checking, the counters that are not changed are “reused”
from previous layers in our encoding. By doing so, we encode the schema rules with
|L|+ |Γ|+m · (2 + |Γ|) integer variables, 2m equations, and inequalities in linear integer
arithmetic that represent threshold guards that evaluate to true (at most the number of
threshold guards times m of these inequalities).

In the following, we use the notation [k : m] to denote the set {k, . . . ,m}. In order to reuse
the variables from the previous layers, we introduce a function υ : L× [0 : m]→ [0 : m]
that for a layer i ∈ [0 : m] and a local state ` ∈ L, gives the largest number j ≤ i of the
layer, where the counter kj` is updated:

υ(`, i) =
{
i, if i = 0 ∨ ` ∈ {ri.from, ri.to}
υ(`, i− 1), otherwise.

Having defined layers, we encode: the effect of rules on counters and shared variables
(in formulas M and U below), the effect of rules on the configuration (T ), restrictions
imposed by contexts (C), and, finally, the reachability question.

To represent m transitions, for each transition i ∈ [1 : m], we introduce a non-negative
variable δi for the acceleration factor, and define two formulas: formula M `(i − 1, i)
to express the update of the counter of local state ` ∈ L, and formula Ux(i − 1, i) to
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represent the update of the shared variable x ∈ Γ:

M `(i− 1, i) ≡


ki` = k

υ(`,i−1)
` + δi, for ` = ri.to and i ∈ [1 : m]

ki` = k
υ(`,i−1)
` − δi, for ` = ri.from and i ∈ [1 : m]

true, otherwise

Ux(i− 1, i ) ≡
{
xi = xi−1 + δi · u, if u = ri.u[j] > 0,
true, otherwise.

The formula T (i− 1, i) collects all constraints by the rule ri:

T (i− 1, i) ≡
∧
`∈L

M `(i− 1, i) ∧
∧
x∈Γ

Ux(i− 1, i).

For a formula ϕ, we denote by ϕ[xi] the formula, where each variable x ∈ Γ is substituted
with xi. Then, given a context Ω = (Ωrise,Ωfall), a formula CΩ(i) adds the constraints of
the context Ω on the layer i:

CΩ(i) ≡
∧

ϕ∈Ωrise

ϕ[xi] ∧
∧

ϕ∈Φrise\Ωrise

¬ϕ[xi] ∧
∧

ϕ∈Ωfall

¬ϕ[xi] ∧
∧

ϕ∈Φfall\Ωfall

ϕ[xi].

Finally, the formula CΩ1(0) ∧ T (0, 1) ∧ · · · ∧ T (m − 1,m) ∧ CΩ2(m) captures all the
constraints of the schema S = {Ω1} r1, . . . , rm {Ω2}, and thus, its models correspond to
the paths of schedules that are generated by S.

Let I(0) be the formula over the variables of layer i that captures the initial states of the
threshold automaton, and B(i) be a state property over the variables of layer i. Then,
parameterized reachability for the schema S is encoded with the following formula in
linear integer arithmetic:

I(0) ∧ CΩ1(0) ∧ T (0, 1) ∧ · · · ∧ T (m− 1,m) ∧ CΩ2(m) ∧
(
B(0) ∨ · · · ∨B(m)

)
.

3.7.3 Experiments

The technique presented in this chapter has been implemented by our team in the tool
ByMC (Byzantine Model Checker [KW18]). In this section we recall the experimental
evaluation from [KLVW17a]. All of our benchmark algorithms were originally published
in pseudo-code, and we model them in a parametric extension of Promela, which was
discussed in [JKS+13b, GKS+14].

Comparison to data and counter abstractions. In [KVW17], the following au-
tomated method has been introduced, which combines reduction methods with data
abstraction [JKS+13a]:
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Tool chain described in this chapter
(SMT-based bounded model checking)

Figure 3.7: Tool chain with counter abstraction [JKS+13a, GKS+14, KVW17] on top,
and with SMT-based bounded model checking on bottom.

1. Apply a parametric data abstraction to the process code to get a finite state process
description, and construct the threshold automaton (TA) [JKS+13a, KP00].

2. Compute the diameter bound, based on the control flow of the TA.

3. Construct a system with abstract counters, i.e., a counter abstraction [PXZ02,
JKS+13a].

4. Perform SAT-based bounded model checking [BCCZ99, CKOS04] up to the diameter
bound, to check whether bad states are reached in the counter abstraction.

5. If a counterexample is found, check its feasibility and refine, if needed [CGJ+03,
JKS+13a].

The top of Figure 3.7 gives a diagram that shows the technique [KVW17] based on
counter abstraction.

The message counters are first mapped to parametric intervals, e.g., counters range over
the abstract domain D̂ = {[0, 1), [1, t + 1), [t + 1, n − t), [n − t,∞)}. By doing so, we
obtain a finite (data) abstraction of each process, and thus it is possible to represent the
system as a counter system: We maintain one counter κ[`] per local state ` of a process,
as well as the counters for the sent messages. Then, in the counter abstraction step, every
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process counter κ[`] is mapped to the set of parametric intervals D̂. As the abstractions
may produce spurious counterexamples, we run them in an abstraction-refinement loop
that incrementally prunes spurious transitions and unfair executions. More details on
the data and counter abstractions and refinement can be found in [JKS+13a]. In our
experiments based on the tool chain from the top of Figure 3.7, we use two kinds of
model checkers as backend:

1. BDD. The counter abstraction is checked with nuXmv [CCD+14] using Binary
Decision Diagrams (BDDs). For safety properties, the tool executes the command
check_invar. In the experiments, we used the timeout of three days, as there
was at least one benchmark that needed a bit more than a day to complete.

2. BMC. The counter abstraction is checked with nuXmv using bounded model
checking [BCCZ99]. To ensure completeness (at the level of counter abstraction),
we explore the computations of the length up to the diameter bounds that were
obtained in [KVW17]. To efficiently eliminate shallow spurious counterexamples,
we first run the bounded model checker in the incremental mode up to length of 30.
This is done by issuing the nuXmv command check_ltlspec_sbmc_inc, which
uses the built-in SAT solver MiniSAT. Then, we run a single-shot SAT problem
by issuing the nuXmv command gen_ltlspec_sbmc and checking the generated
formula with the SAT solver lingeling [Bie13]. In our experiments, we set the
timeout to one day.

Reachability for threshold automata. Based on the results of this chapter, to
obtain a threshold automaton, our tool first applies data abstraction over the domain D̂
to the Promela code, which abstracts the message counters that keep the number of
messages received by every process, while the message counters for the sent messages are
kept as integers. More details can be found in [KVW16]. Having constructed a threshold
automaton, we compare two verification approaches:

1. PARA2. Bounded model checking with SMT. The approach of this chapter. BYMC
enumerates the schemas (as explained in Section 3.3), encodes them in SMT (as
explained in Section 3.7.2) and checks every schema with the SMT solver Z3 [MB08].

2. FAST. Acceleration of counter automata. In this chain, our tool constructs a
threshold automaton and checks the reachability properties with the existing
tool FAST [BFLP08]. For comparison with our tool, we run FAST with the MONA
plugin that produced the best results in our experiments.

The challenge in the verification of FTDAs is the immense non-determinism caused
by interleavings, asynchronous message passing, and faults. In our modeling, all these
are reflected in non-deterministic choices in the Promela code. To obtain threshold
automata, as required for our technique, our tool constructs a parametric interval data
abstraction [JKS+13a] that adds to non-determinism.
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Table 3.1: The benchmarks used in our experiments. Some benchmarks, e.g., ABA,
require us to consider several cases on the parameters, which are mentioned in the column
“Case”. The meaning of the other columns is as follows: |L| is the number of local states
in TA, |R| is the number of rules in TA, |Φrise| and |Φfall| is the number of (R)- and
(F)-guards respectively. Finally, |S| is the number of enumerated schemas, and Bound is
the theoretical upper bound on |S|, as given in Theorem 3.5.

# Input Case Threshold Automaton Schemas
FTDA (if more than one) |L| |R| |Φrise| |Φfall| |S| Theor. Bound

1 FRB — 7 10 1 0 1 1
2 STRB — 7 15 3 0 4 6
3 NBACC — 78 1356 0 0 1 1
4 NBAC — 77 988 6 0 448 720
5 NBACG — 24 44 4 0 14 24
6 CF1S f = 0 41 266 4 0 14 24
7 CF1S f = 1 41 266 4 1 60 120
8 CF1S f > 1 68 672 6 1 3429 5040
9 C1CS f = 0 101 1254 8 0 70 4 · 104

10 C1CS f = 1 70 629 6 1 140 5040
11 C1CS f > 1 101 1298 8 1 630 3.6 · 105

12 BOSCO bn+3t
2 c+ 1 = n− t 28 126 6 0 20 720

13 BOSCO bn+3t
2 c+ 1 > n− t 40 204 8 0 70 4 · 104

14 BOSCO bn+3t
2 c+ 1 < n− t 32 158 6 0 20 720

15 BOSCO n > 5t ∧ f = 0 82 1292 12 0 924 4.8 · 108

16 BOSCO n > 7t 90 1656 12 0 924 4.8 · 108

17 ABA n+t
2 = 2t+ 1 37 180 6 0 448 720

18 ABA n+t
2 > 2t+ 1 61 392 8 0 2100 4 · 104

19 CBC bn
2 c < n− t ∧ f = 0 164 1996 22 12 2 2.9 · 1038

20 CBC bn
2 c = n− t ∧ f = 0 73 442 17 12 2 8.8 · 1030

21 CBC bn
2 c < n− t ∧ f > 0 304 6799 27 12 5 2 · 1046

22 CBC bn
2 c = n− t ∧ f > 0 161 2040 22 12 5 2.9 · 1038

Comparing to [KVW15], the presented implementation uses an optimization to schema
checking that dramatically reduced the running times for some of the benchmarks. In
this optimization, we group schemas in a prefix tree, whose nodes are contexts and edges
are simple schemas. In each node of the prefix tree, our tool checks, whether there are
configurations that are reachable from the initial configurations by following the schemas
in the prefix. If there are no such reachable configurations, we can safely prune the whole
suffix and thus prove many schemas to be unsatisfiable at once.

Evaluation. Table 3.1 summarizes the features of threshold automata that are automat-
ically constructed by ByMC from parametric Promela. The number of local states |L|
varies from 7 (FRB and STRB) to hundreds (C1CS and CBC). Our threshold automata
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Table 3.2: Summary of our experiments on AMD Opteron®6272, 32 cores, 192 GB. The
symbols are: “�” for timeout (72 h. for BDD and 24 h. otherwise); “L” for memory
overrun of 32 GB; “B” for BDD nodes overrun; “!” for timeout in the refinement loop
(72 h. for BDD and 24 h. otherwise); “M” for spurious counterexamples due to counter
abstraction.

Input Time, seconds Memory, GB
# FTDA PARA2 FAST BMC BDD PARA2 FAST BMC BDD

1 FRB 1 1 1 1 0.1 0.1 0.1 0.1
2 STRB 1 1 3 2 0.1 0.1 0.1 0.1
3 NBACC 13 L � � 0.1 L � �
4 NBAC 88 L ! � 0.1 L ! �
5 NBACG 1 B / ! 0.1 B / !
6 CF1S 6 2227 723 122 0.1 10.7 1.5 0.2
7 CF1S 11 6510 2235 2643 0.1 22.1 2.0 0.4
8 CF1S 263 B � 40451 0.3 B � 1.9
9 C1CS 45 L L 10071 0.1 L L 2.5
10 C1CS 21 L 94962 87141 0.1 L 9.3
11 C1CS 171 L L � 0.3 L L �
12 BOSCO 3 B 17892 294 0.1 B 1.4 0.2
13 BOSCO 17 B ! / 0.1 B ! /
14 BOSCO 5 B 2424 4 0.1 B 1.9 0.1
15 BOSCO 1013 L � 405 0.2 L � 0.7
16 BOSCO 1459 B � 847 0.4 B � 1.3
17 ABA 16 767 / 11 0.1 3.5 / 0.1
18 ABA 294 5757 / 41 0.3 12.4 / 0.2
19 CBC 128 L L L 0.6 L L L

20 CBC 9 B 2671 41873 0.1 B 2.8 9.9
21 CBC 3351 3304 L L 19.3 0.1 L L

22 CBC 215 B L L 4.0 B L L

are obtained by applying interval abstraction to Promela code, which keeps track of
the number of messages received by each process. Thus, the number |L| is proportional
to the number of control states and |D̂|k, where D̂ is the domain of parametric intervals
(discussed above) and k is the number of message types. Sometimes, one can manually
construct a more efficient threshold automaton that models the same fault-tolerant
distributed algorithm and preserves the same safety properties. For instance, Figure 3.1
shows a manual abstraction of ABA that has only 5 local states, in contrast to 61 local
states in the automatic abstraction (cf. Table 3.1). We leave open the question of whether
one can automatically construct a minimal threshold automaton with respect to given
specifications. Experiments on manual encodings are given in [KW18].

Table 3.2 summarizes the experiments conducted with the techniques introduced earlier
in this section: BDD, BMC, PARA2, and FAST. On large problems, our new technique
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Figure 3.8: The times required to check individual schemas and the distribution of
schemas over these times (the value 0 refers to the running times of less than a second).
The benchmarks containing the schemas that are verified in (a) T ≥ 8 sec. and (b)
T ≥ 18 sec. are: (a) C1CS, CBC, CF1S, and (b) CBC and CF1S.

works significantly better than BDD- and SAT-based model checking. BDD-based model
checking works very well on top of counter abstraction. Importantly, our new technique
does not use abstraction refinement. In comparison to the experiments from [KVW15],
we verified safety of a larger set of benchmarks with nuXmv. We believe that this is due
to the improvments in nuXmv and, probably, slight modifications of the benchmarks
from [KLVW17b].

NBAC and NBACC are challenging as the model checker produces many spurious
counterexamples, which are an artifact of counter abstraction losing or adding processes.
When using SAT-based model checking, the individual calls to nuXmv are fast, but the
abstraction-refinement loop times out, due to a large number of refinements (about
500). BDD-based model checking times out when looking for a counterexample. Our
new technique, preserves the number of proceses, and thus, there are no spurious
counterexamples of this kind. In comparison to the general-purpose acceleration tool
FAST, our tool uses less memory and is faster on the benchmarks where FAST is
successful.

Sets of schemas and time to check a single schema. On one hand, Theorem 3.5
gives us a theoretical bound on the number of schemas to be explored. On the other hand,
optimizations discussed in Section 3.7.1 introduce many ways of reducing the number
of schemas. Two columns in Table 3.1 compare the theoretical bound and the practical
number of schemas: the column “Theoretical bound” shows the bound of (|Φrise|+ |Φfall|)!,
while the column |S| shows the actual number of schemas. (For reachability, we are
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merging the schemas with the prefix tree, and thus the actual number of explored schemas
is even smaller.) As one can see, the theoretical bound is quite pessimistic, and is only
useful to show completeness of the set of schemas. The much smaller numbers for
the fault-tolerant distributed algorithms are due to a natural order on guards, e.g., as
x ≥ t+ 1 becomes true earlier than x ≥ n− t under the resilience condition n > 3t. The
drastic reduction in the case of CBC is due to the control flow optimization discussed in
Section 3.7.1 and the fact that basically all guards are forward-unlocking.

3.8 Detailed Proofs for Section 3.4

In this section we recall claims from Section 3.4, and present their formal proofs.

Lemma 3.6. Given a threshold automaton, a configuration σ, and a schedule τ = (r, f1),
. . . , (r, fm) applicable to σ, one of the two schedules is also applicable to σ and results
in τ(σ): either schedule (r, f1 + . . .+ fm), or schedule (r, 0).

Proof. We distinguish two cases:

Case r.to = r.from. Then, r.u = 0, and τk(σ) = σ for 0 ≤ k ≤ |τ |. Consequently, the
schedule (r, 0) is applicable to σ, and it results in τ(σ) = σ.

Case r.to 6= r.from. We prove by induction on the length k : 1 ≤ k ≤ m of a prefix
of τ , that the following constraints hold for all k:

(τk(σ)).κ[r.from] = σ.κ[r.from]− (f1 + · · ·+ fk) (3.9)
(τk(σ)).g = σ.g + (f1 + · · ·+ fk) · r.u (3.10)

(σ.κ, σ.g + f · r.u, σ.p) |= r.ϕfall ∧ r.ϕrise for all f ∈ {0, . . . , f1 + · · ·+ fk} (3.11)

Base case: k = 1. As schedule τ is applicable to σ, its first transition is enabled in σ.
Thus, by the definition of an enabled transition, the rule r is unlocked, i.e., for all
f ∈ {0, . . . , f1}, it holds (σ.κ, σ.g + f1 · r.u, σ.p) |= r.ϕfall ∧ r.ϕrise. By the definition,
once the transition τ [1] is applied, it holds that τ1(σ).κ[from] = σ.κ[from] − f1 and
(τk(σ)).g = σ.g + f1 · r.u. Thus, constraints (3.9)–(3.11) are satisfied for k = 1.

Inductive step: k > 1. As schedule τ is applicable to σ, its prefix τk is applicable to σ.
Hence, transition τ [k] is applicable to τk−1(σ).

By the definition of an enabled transition, for all f ∈ {0, . . . , fk}, it holds

((τk−1(σ)).κ, ((τk−1(σ)).g + f · r.u, σ.p) |= r.ϕfall ∧ r.ϕrise.

By applying the Equation (3.10) for k− 1 of the inductive hypothesis, we obtain that for
all f ∈ {0, . . . , fk}, it holds that (σ.κ, σ.g+(f1 + · · ·+fk−1 +f ·r.u, σ.p) |= r.ϕfall∧r.ϕrise.
By combining this constraint with the constraint (3.11) for k − 1, we arrive at the
constraint (3.11) for k.

64



3.8. Detailed Proofs for Section 3.4

By applying τ [k], we get that (τk(σ)).κ[r.from] = (τk−1(σ)).κ[r.from]−fk and (τk(σ)).g =
(τk−1(σ)).g + fk · r.u. By applying (3.9) and (3.10) for k− 1 to these equations, we arrive
at the Equations (3.9) and (3.10) for k.

Based on (3.9) and (3.11) for all values of k, and in particular k = m, we can now show
applicability. From Equation (3.9), we immediately obtain that σ.κ[r.from] ≥ f1+· · ·+fm.
From constraint (3.11), we obtain that (σ.κ, σ.g + f · r.u, σ.p) |= r.ϕfall ∧ r.ϕrise for
all f ∈ {0, . . . , f1 + · · · + fm}. These are the required conditions for the transition
(r, f1 + · · ·+ fm) to be applicable to the configuration σ.

In the following, we fix a threshold automaton TA, a context Ω, and a non-singleton
looplet c of the slice TA|Ω. We also fix a configuration σ of TA and a schedule τ that is
contained in c and it is applicable to σ. Our goal is to prove Lemma 3.8, which states
that crepc[σ, τ ] is indeed applicable to σ and ends in τ(σ). To this end, we first prove
auxiliary Lemmas 3.16–3.20.

Lemma 3.16. For every i : 1 ≤ i ≤ |Ein|, it holds that σ.κ[ri.from] ≥ max(δin(i), 0),
where ri = Lc(ein(i)).

Proof. Recall that by the definition of a configuration, every counter σ.κ[`] is non-negative.
If δin(i) ≥ 0, then max(δin(i), 0) = δin(i) = σ.κ[ri.from]− σ′.κ[ri.from], which is bound
from above by σ.κ[ri.from]. Otherwise, δin(i) ≤ 0, and we trivially have max(δin(i), 0) = 0
and 0 ≤ σ.κ[ri.from].

Lemma 3.17. Schedule τin = (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)) is applicable to σ.

Proof. We denote by αi the schedule (rin(1), win(1)), . . . , (rin(i), win(i)), for 1 ≤ i ≤ |Ein|.
Then τin = α|Ein|.

All rules rin(1), . . . , rin(|Ein|) are from R|Ω, and thus are unlocked. Hence, it is sufficient
to show that the values of the locations from the set Vc are large enough to enable
each transition (rin(i), win(i)) for 1 ≤ i ≤ |Ein|. To this end, we prove by induction that
(αi−1(σ)).κ[ri.from] ≥ win(i), for 1 ≤ i ≤ |Ein| and ri = Lc(ein(i)).

Base case: i = 1. For r1 = Lc(ein(1)), we want to show that σ.κ[r1.from] ≥ win(1).
As ein(1) is the first element of the sequence ein(1), . . . , ein(Ein), which respects the
order �in, we conclude that win(1) = max(δin(1), 0). From Lemma 3.16, it follows that
σ.κ[r1.from] ≥ max(δin(1), 0).

Inductive step k: assume that for all i : 1 ≤ i ≤ k − 1 < |Ein|, schedule αi is applicable
to σ and show that (αk−1(σ)).κ[rk.from] ≥ win(k) with rk = Lc(ein(k)).

To this end, we construct the set of edges Pk that precede the edge ein(k) in the topological
order �in, that is, Pk = {e | e ∈ Ein, e �in ein(k), e 6= ein(k)}. We show that the following
equation holds:

αk−1(σ)).κ[rk.from] = σ.κ[rk.from] +
∑

ein(j)∈Pk

max(δin(j), 0). (3.12)
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Indeed, pick an edge ein(j) ∈ Pk. Edge ein(j) adds win(j) to the counter κ[rk.from]. As
the sequence {ein(i)}i≤k is topologically sorted, it follows that j < k. Moreover, as the
tree Tin is oriented towards the root, ein(k) is the only edge leaving the local state rk.from.
Thus, no edge ein(i) with i < k decrements the counter σ.κ[rk.from].

From Equation (3.12) and Lemma 3.16, we conclude that (αk−1(σ)).κ[rk.from] is not
less than max(δin(k), 0) +∑

ein(j) : ein(j)�in ein(k), j 6=k max(δin(j), 0), which equals to win(k).
This proves the inductive step.

Therefore, we have shown that τin = α|Ein| is applicable to σ.

The following lemma is easy to prove by induction on the length of a schedule. The base
case for a single transition follows from the definition of a counter system.

Lemma 3.18. Let σ and σ′ be two configurations and τ be a schedule applicable to σ
such that τ(σ) = σ′. Then it holds that ∑`∈L(σ′[`]− σ[`]) = 0.

Further, we show that the required number of processes is reaching (or leaving) the hub,
when the transitions derived from the trees Tin and Tout are executed:

Lemma 3.19. The following equality holds:

σ′.κ[h]− σ.κ[h] =
∑

1≤i≤|Ein|
max(δin(i), 0)−

∑
1≤i≤|Eout|

max(δout(i), 0).

Proof. Recall that Tin is a tree directed towards h, and the undirected version of Tin is a
spanning tree of graph C. Hence, for each local state ` ∈ Vc \ {h}, there is exactly one
edge e ∈ Ein with Lc(e).from = `. Thus, the following equation holds:∑

1≤i≤|Ein|
max(δin(i), 0) =

∑
`∈Vc\{h}

max(σ.κ[`]− σ′.κ[`], 0). (3.13)

Similarly, Tout is a tree directed outwards h, and the undirected version of Tout is a
spanning tree of graph C. Hence, for each local state ` ∈ Vc \ {h}, there is exactly one
edge e ∈ Eout with Lc(e).to = `. Thus, the following equation holds:∑

1≤i≤|Eout|
max(δout(i), 0) =

∑
`∈Vc\{h}

max(σ′.κ[`]− σ.κ[`], 0). (3.14)

By combining (3.13) and (3.14), we obtain the following:∑
1≤i≤|Ein|

max(δin(i), 0)−
∑

1≤i≤|Eout|
max(δout(i), 0)

=
∑

`∈Vc\{h}

(
max(σ.κ[`]− σ′.κ[`], 0)−max(σ′.κ[`]− σ.κ[`], 0)

)
=

∑
`∈Vc\{h}

(
σ.κ[`]− σ′.κ[`]

)
=
( ∑
`∈Vc

σ.κ[`]− σ′.κ[`]
)
−
(
σ.κ[h]− σ′.κ[h]

)
.
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As the initial schedule τ is applicable to σ, and τ(σ) = σ′, by Lemma 3.18, ∑`∈L(σ.κ[`]−
σ′.κ[`]) = 0. As all rules in crepc[σ, τ ] are from R|Ω and thus change only the counters of
local states in Vc, for each local state ` ∈ L \ Vc, its respective counter does not change,
that is, σ.κ[`]− σ′.κ[`] = 0. Hence, ∑`∈Vc

(σ.κ[`]− σ′.κ[`]) = 0. From this and the above
equation, we obtain the required.

Lemma 3.20. With τin denote the schedule (rin(1), win(1)), . . . , (rin(|Ein|), win(|Ein|)).
The following equation holds:

τin(σ).κ[`] =
{
σ′.κ[h] +∑

1≤i≤|Eout|max(δout(i), 0), if ` = h

min(σ.κ[`], σ′.κ[`]), if ` ∈ Vc \ {h}.

Proof. We prove the lemma by case distinction:

Case ` = h. We show that (τin(σ)).κ[h] = σ.κ[h] + ∑
1≤i≤|Ein|max(δin(i), 0). Indeed,

let P be the indices of edges coming into h, i.e., P = {i | 1 ≤ i ≤ |Ein|, Lc(ein(i)) =
r, h = r.to}. As all edges in Tin are oriented towards h, it holds that (τin(σ)).κ[h]
equals to σ.κ[h] + ∑

i∈P win(i). By unfolding the definition of win, we obtain that
(τin(σ)).κ[h] = σ.κ[h] +∑

1≤i≤|Ein|max(δin(i), 0). It is easy to see that by Lemma 3.19,
this sum equals to σ′.κ[h] +∑

1≤i≤|Eout|max(δout(i), 0). This proves the first case.

Case ` ∈ Vc \ {h}. We show that (τin(σ)).κ[`] = min(σ.κ[`], σ′.κ[`]). Indeed, fix a
node ` ∈ Vc \ {h} and construct two sets: the set of incoming edges In = {ein(i) |
∃`′ ∈ Vc. ein(i) = (`′, `)} and the singleton set of outgoing edges Out = {ein(i) | ∃`′ ∈
Vc. ein(i) = (`, `′)}. By summing up the effect of all transitions in τin, we obtain
(τin(σ)).κ[`] = σ.κ[`] +∑

ein(i)∈In win(i)−∑eout(i)∈Out wout(i). By unfolding the definition
of win, we obtain (τin(σ)).κ[`] = σ.κ[`] −∑ein(i)∈Out δin(i), which can be rewritten as
σ.κ[`]−max(σ.κ[`]−σ′.κ[`], 0), which, in turn, equals to min(σ.κ[`], σ′.κ[`]). This proves
the second case.

Now we are in a position to prove that schedule crepc[σ, τ ] is applicable to configuration σ
and results in configuration τ(σ):

Lemma 3.8. Fix a threshold automaton TA, a context Ω, and a non-singleton looplet c
of the slice TA|Ω. Let σ be a configuration of TA and let τ be a schedule that is contained
in c and it is applicable to σ. Then the schedule crepc[σ, τ ] has the following properties:

a) crepc[σ, τ ] is applicable to σ, and

b) crepc[σ, τ ] results in τ(σ) when applied to σ.

Proof. Denote with τin the prefix (rin(1), win(1)), · · · , (rin(|Ein|), win(|Ein|)) of the schedule
crepc[σ, τ ]. For each j : 1 ≤ j ≤ |Eout|, denote with βj the prefix of crepc[σ, τ ] that has
length of |Ein|+ j. Note that β|Eout| = crepc[σ, τ ].
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Proving applicability of crepc[σ, τ ] to σ.. We notice that all rules in crepc[σ, τ ] are fromR|Ω
and thus are unlocked, and that τin is applicable to σ by Lemma 3.17. Hence, we only
have to check that the values of counters from Vc are large enough, so that transitions
(rout(j), wout(j)) can fire.
We prove that each schedule βj is applicable to σ, for j : 1 ≤ j ≤ |Eout|. We do so by
induction on the distance from the root h in the tree Tout.
Base case: root node h. Denote with Oh the set {(`, `′) ∈ Eout | ` = h}. Let j1, . . . , jm
be the indices of all edges in Oh, and jm be the maximum among them.
From Lemma 3.20, (τin(σ)).κ[h] = σ′.κ[h] + ∑

1≤i≤|Eout|max(δout(i), 0) = σ′.κ[h] +∑
eout(j)∈Oh

wout(j). Thus, every transition (eout(j), wout(j)) with eout(j) ∈ Oh, is ap-
plicable to βj−1(σ). Also, (βjm(σ)).κ[h] = σ′.κ[h].
Inductive step: assume that for a node ` ∈ Vc and an edge eout(k) = (`, `′) ∈ Eout outgoing
from node `, schedule βk is applicable to configuration σ. Show that for each edge eout(i)
outgoing from node `′ the following hold: (i) schedule βi is also applicable to σ; and (ii)
β|Eout|(σ).κ[`′] = σ′.κ[`′].
(i) As the sequence {eout(j)}j≤|Eout| is topologically sorted, for each edge eout(i) outgoing
from node `′, it holds that k < i.
From Lemma 3.20, we have that βk(σ).κ[`′] = min(σ.κ[`′], σ′.κ[`′]). Because the transi-
tion (eout(k), wout(k)) adds wout(k) to βk−1(σ).κ[`′], we have βk(σ).κ[`′] = min(σ.κ[`′], σ′.κ[`′])+
wout(k). Let S be the set of all immediate successors of eout(k), i.e., S = {i | ∃`′′. (`′, `′′) =
eout(i)}. From the definition of wout(k), it follows that wout(k) = max(δout(k), 0) +∑
s∈S wout(s). Thus, the transition (eout(i), wout(i)) for edge eout(i) outgoing from node `′,

can be executed.
(ii) Let j1, . . . , jm be the indices of all edges outgoing from `′, and jm be the maxi-
mum among them. From (i), it follows that (βjm(σ)).κ[`′] = min(σ.κ[`′], σ′.κ[`′]) +
max(δout(k), 0), which equals to σ′.κ[`′].
This proves that the schedule β|Eout| = crepc[σ, τ ] is applicable to σ.

Proving that crepc[σ, τ ] results in τ(σ). From the induction above, we conclude that
for each ` ∈ Vc, it holds that (β|Eout|(σ)).κ[`] = σ′.κ[`]. Edges in the trees Tin and
Tout change only local states from Vc. We conclude that for all ` ∈ L, it holds that
crepc[σ, τ ](σ).κ[`] = σ′.κ[`]. As the rules in non-singleton looplets do not change shared
variables, we have crepc[σ, τ ](σ).g = σ.g = σ′.g. Therefore, it holds that crepc[σ, τ ](σ) =
σ′.

3.9 Detailed Proofs for Section 3.5

Lemma 3.12. Given a threshold automaton, a context Ω, a configuration σ, a steady
schedule τ applicable to σ, and a sequence c1, . . . , cm of all looplets in the slice R|Ω with
the property ci ≺lin

C cj for 1 ≤ i < j ≤ m, the following holds:
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a) Schedule τ |c1 is applicable to the configuration σ.

b) Schedule τ |c2,...,cm is applicable to the configuration τ |c1(σ).

c) Schedule τ |c1 · τ |c2,...,cm, when applied to σ, results in configuration τ(σ).

Proof. In the following, we show Points a)–c) one-by-one.

We need extra notation. For a local state ` we denote by 1` the |L|-dimensional vector,
where the `th component is 1, and all the other components are 0. Given a schedule
ρ = t1 · · · tk, we introduce a vector ∆κ(ρ) ∈ Z|L| to keep counter difference and a vector
∆g(ρ) ∈ N|Γ|0 to keep difference on shared variables as follows:

∆κ(ρ) =
∑

1≤i≤|ρ|
ti.factor · (1ti.to − 1ti.from) and ∆g(ρ) =

∑
1≤i≤|ρ|

ti.u

Proof of a). Assume, on contrary, that schedule τ |c1 is not applicable to configuration σ.
Thus, there is a schedule τ ′ and a transition t∗ that constitute a prefix of τ |c1 , with
the following property: τ ′ is applicable to σ, whereas τ ′ · t∗ is not applicable to σ. Let
` = t∗.from and `′ = t∗.to.

There are three cases of why t∗ may be not applicable to τ ′(σ):

(i) There is not enough processes to move: (σ.κ+ ∆κ(τ ′ · t∗))[`] < 0. As τ is applicable
to σ, there is a transition t of τ with [t.rule] 6= c1 and t.to = ` as well as t.factor > 0.
From this, by definition of ≺lin

C , it follows that [t.rule] ≺lin
C c1. This contradicts the

lemma’s assumption on the order c1 ≺lin
C · · · ≺lin

C cm.

(ii) The condition t∗.ϕrise is not satisfied, that is, τ ′(σ) 6|= t∗.ϕrise. Then, there is a guard
ϕ ∈ ‘(’t∗.ϕrise) with τ ′(σ) 6|= ϕ.

Since τ is applicable to σ, there is a prefix ρ · t of τ , for a schedule ρ and a transition t
that unlocks ϕ in ρ(σ), that is, ρ(σ) 6|= ϕ and t(ρ(σ)) |= ϕ. Thus, transition t changes
the context: ω(ρ(σ)) 6= ω(t(ρ(σ))). This contradicts the assumption that schedule τ is
steady.

(iii) The condition t∗.ϕfall is not satisfied: τ ′(σ) 6|= t∗.ϕfall. Then, there is a guard
ϕ ∈ ‘(’t∗.ϕfall) with τ ′(σ) 6|= ϕ.

Let ρ be the longest prefix of τ satisfying ρ|c1 = τ ′. Note that ρ · t∗ is also a prefix of
τ . As ρ|c1 = τ ′ and no transition decrements the shared variables, we conclude that
(τ ′(σ)).g ≤ (ρ(σ)).g. From this and from the fact that τ ′(σ) 6|= ϕ, it follows that ρ(σ) 6|= ϕ.
Thus transition t∗ is not applicable to ρ(σ). This contradicts the assumption that τ is
applicable to σ.

From (i), (ii), and (iii), we conclude that a) holds.

69



3. Parameterized Reachability

Proof of b). We show that τ |c2,...,cm is applicable to τ |c1(σ).

To this end, we fix an arbitrary prefix τ ′ of τ , a transition t, and a suffix τ ′′, that
constitute τ , that is, τ = τ ′ · t · τ ′′. We show that if schedule τ ′|c2,...,cm is applicable
to τ |c1(σ), then so is (τ ′ · t)|c2,...,cm .

Let us assume that τ ′|c2,...,cm is applicable to τ |c1(σ), and let σ′′ denote the resulting
state (τ |c1 · τ ′|c2,...,cm)(σ). We consider two cases:

• [t.rule] = c1. This case holds trivially, as (τ ′ · t)|c2,...,cm equals to τ ′|c2,...,cm , which
is applicable to τ |c1(σ) by assumption.

• [t.rule] 6= c1. In order to prove that(τ ′ · t)|c2,...,cm is applicable to τ |c1(σ), we show
that counters σ′′.κ and shared variables σ′′.g are large enough, so that transition t
is applicable to σ′′:

(i) We start by showing that σ′′.κ[t.from] ≥ t.factor . We distinguish between different
cases on source and target states of transition t.

(i.A) If there is a rule r ∈ c1 with t.to = r.from. On one hand, as [t.rule] 6= c1, by
definition of ≺lin

C , it follows that [t.rule] ≺lin
C . . . ≺lin

C c1. On the other hand, as
[t.rule] 6= c1 and c1, . . . , cm are all classes of the rules used in τ , it holds that
[t.rule] ∈ {c2, . . . , cm}. By the lemma’s assumption, c1 ≺lin

C · · · ≺lin
C cm, and thus,

c1 ≺lin
C · · · ≺lin

C [t.rule]. We arrive at a contradiction.

(i.B) If there is a rule r ∈ c1 with r.to = t.from. Assume, on contrary, that t is not
applicable to σ′′, that is, σ′′.κ[t.from] < t.factor . On one hand, transition t is not
applicable to σ′′ = (τ |c1 · τ ′|c2,...,cm)(σ). Then by the definition of ∆κ, it holds
that σ[t.from] + (∆κ(τ |c1 · τ ′|c2,...,cm) + ∆κ(t))[t.from] < 0. By observing that
τ |c1 = τ ′|c1 + τ ′′|c1 , we derive the following inequality:

σ[t.from]+
(∆κ(τ ′|c1) + ∆κ(τ ′′|c1) + ∆κ(τ ′|c2,...,cm) + ∆κ(t))[t.from] < 0 (3.15)

On the other hand, schedule τ = τ ′ · t · τ ′′ is applicable to configuration σ. Thus,
σ[t.from] + (∆κ(τ ′) + ∆κ(t) + ∆κ(τ ′′))[t.from] ≥ 0. By observing that τ |c1 =
τ ′|c1 + τ ′′|c1 and τ |c2,...,cm = τ ′|c2,...,cm + τ ′′|c2,...,cm , we arrive at:

σ[t.from] + (∆κ(τ ′|c1) + ∆κ(τ ′|c2,...,cm)
+ ∆κ(t) + ∆κ(τ ′′|c1) + ∆κ(τ ′′|c2,...,cm))[t.from] ≥ 0 (3.16)

By subtracting (3.16) from (3.15), and by commutativity of vector addition, we
arrive at ∆κ(τ ′′|c2,...,cm)[t.from] > 0. Thus, there is a transition t′ in τ ′′|c2,...,cm and
a rule r′ ∈ c1 such that t′.to = r′.from. We again arrived at the contradictory
Case (i.A). Hence, transition t must be applicable to configuration σ′′.
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(i.C) Otherwise, neither t.from nor t.to belong to the set of local states affected by
the rules from c1, i.e., {t.from, t.to} ∩ {` | ∃r ∈ c1. r.from = ` ∨ r.to = `} is empty.
Then, schedule τ |c1 does not change the counter κ[t.from], and ∆κ(τ ′)[t.from] =
∆κ(τ ′|c2,...,cm)[t.from]. As t is applicable to τ ′(σ), that is, (τ ′(σ)).κ[t.from] ≥
t.factor , we conclude that σ′′.κ[t.from] ≥ t.factor .

(ii) We now show that σ′′ |= t.ϕrise∧ t.ϕfall. On contrary, assume that σ′′ 6|= t.ϕrise∧ t.ϕfall.
There are two cases to consider.

If σ′′ 6|= t.ϕrise. By definition, the shared variables are never decremented. As τ ′ is a prefix
of τ , schedule τ |c1 ·τ ′|c2,...,cm includes all transitions of τ ′. Thus, ∆g(τ |c1 ·τ ′|c2,...,cm) ≥
∆g(τ ′). From this and σ′′ 6|= t.ϕrise, it follows that τ ′(σ) 6|= t.ϕrise. This contradicts
applicability of τ to σ.

If σ′′ 6|= t.ϕfall. Then, there is a guard ϕ ∈ ‘(’t.ϕfall) with τ ′′(σ) 6|= ϕ. On one hand,
τ |c1 · τ ′|c2,...,cm is applicable to σ. On the other hand, τ is applicable to σ.
We notice that ∆g(τ) = ∆g(τ |c1) + ∆g(τ ′|c2,...,cm) + ∆g(τ ′′|c2,...,cm) + ∆g(t) ≥
∆g(τ |c1) + ∆g(τ ′|c2,...,cm). As shared variables are never decreased, it follows that
(τ |c1 · τ ′|c2,...,cm)(σ) 6|= ϕ. Thus, ω(σ) 6= ω(τ(σ)). This contradicts the assumption
on that schedule τ is steady.

Having proved that, we conclude that transition t is applicable to configuration (τ |c1 ·
τ ′|c2,...,cm)(σ). Thus, by induction (τ |c1 · τ |c2,...,cm)(σ) is applicable to σ. We conclude
that Point b) of the theorem holds.

Proof of c). By the commutativity property of vector addition,

∆κ(τ |c1 · τ |c2,...,cm) = ∆κ(τ |c1) + ∆κ(τ |c2,...,cm) =
∑

1≤i≤|τ |
∆κ(ti) = ∆κ(τ).

Thus, (τ |c1 · τ |c2,...,cm)(σ) = τ(σ), and Point c) follows.

We have thus shown all three points of Lemma 3.12.

3.10 Discussion

While an automated verification of FTDAs has been introduced in [KVW17], there
remained two bottlenecks for scalability to larger and more complex protocols: First,
counter abstraction can lead to spurious counterexamples. As counters range over a finite
abstract domain, the semantics of abstract increment and decrements on the counters
introduce non-determinism. For instance, the value of a counter can remain unchanged
after applying an increment. Intuitively, processes or messages can be “added” or “lost”,
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which results in that, e.g., in the abstract model the number of messages sent is smaller
than the number of processes that have sent a message, which obviously is spurious
behavior. Second, counter abstraction works well in practice only for processes with a
few dozens of local states. It has been observed in [BMWK09] that counter abstraction
does not scale to hundreds of local states, and the experiments in [KVW17] confirm this.
A conjecture is that this is partly due to the many different interleavings, which result in
a large search space.

To address these bottlenecks, we make two crucial contributions in this chapter:

1. To eliminate one of the two sources of spurious counterexamples, namely, the
non-determinism added by abstract counters, we do bounded model checking using
SMT solvers with linear integer arithmetic on the accelerated system, instead of
SAT-based bounded model checking on the counter abstraction.

2. We reduce the search space dramatically: We introduce the notion of an execution
schema that is defined as a sequence of local rules of the TA. By assigning to
each rule of a schema an acceleration factor (that models the number of processes
simultaneously executing the rule, possibly 0), one obtains a run of the counter
system. Hence, due to parameterization, each schema represents infinitely many
runs. We show how to construct a set of schemas whose set of reachable states
coincides with the set of reachable states of the accelerated counter system.

The resulting method is depicted at the bottom of Figure 3.7. Our construction can
be seen as an aggressive form of reduction, where each run has a similar run generated
by a schema from the set. To show this, we capture the guards that are locked and
unlocked in a context. Our key insight is that a bounded number of transitions changes
the context in each run. For example, of all transitions increasing a variable x, at most
one makes x ≥ n− t true, and at most one makes x < t+ 1 false (the parameters n and
t are fixed in a run, and shared variables can only be increased). We fix those transitions
that change the context, and apply the ideas of reduction to the subexecutions between
these transitions.

From a methodological viewpoint, our approach combines techniques from several areas
including compact programs [Lub84], counter abstraction [PXZ02, BMWK09], complete-
ness thresholds for bounded model checking [BCCZ99, CKOS04, KS03], partial order
reduction [God90, Val91, Pel93, BKSS11], and offline reduction methods [Lip75, EF82].
Regarding counter automata, as discussed in [KKW18], our result entails flattabil-
ity [LS05] of every counter system of threshold automata: a complete set of schemas
immediately gives us a flat counter automaton. Hence, the acceleration-based semi-
algorithms [LS05, BFLP08] should in principle terminate on the systems of TAs, though
it did not always happen in our experiments. Similar to our SMT queries based on
schemas, the inductive data flow graphs iDFG introduced in [FKP13] are a succinct
representations of schedules (they call them traces) for systems where the number of
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processes (or threads) is fixed. The work presented in [FKP15] then considers param-
eterized verification. Further, our execution schemas are inspired by a general notion
of semi-linear path schemas SLPS [LS04, LS05]. We construct a small complete set
of schemas and thus a provably small SLPS. Besides, we distinguish counter systems
and counter abstraction: the former counts processes as integers, while the latter uses
counters over a finite abstract domain, e.g., {0, 1,many} [PXZ02].

Our method uses integer counters and thus does not introduce spurious behavior due to
counter abstraction, but still has spurious behavior due to data abstraction on complex
FTDAs such as BOSCO, C1CS, and NBAC. In these cases, we manually refine the
interval domain by adding new symbolic interval borders, see [JKS+13a]. We believe
that these intervals can be obtained directly from threshold automata, and no refinement
is necessary. We leave this question to future work.

As predicted by the distributed algorithms literature, our tool finds counterexamples,
when we relax the resilience condition. In contrast to counter abstraction, our technique
gives us concrete values of the parameters and shows how many processes move at each
step of the counterexample.

When doing experiments, we noticed that the only kinds of guards that cannot be
treated by our optimizations and blow up the number of schemas are the guards that use
independent shared variables. For instance, consider the guards x0 ≥ n− t and x1 ≥ n− t
that are counting the number of 0’s and 1’s sent by the correct processes. Even though
they are mutually exlusive under the resilience condition n > 3t, our tool has to explore
all possible orderings of these guards. We are not aware of a reduction that would prevent
our method from exploding in the number of schemas for this example.

Since the schemas can be checked independently, one can check them in parallel. Figure 3.8
shows a distribution of schemas along with the time needed to check an individual schema.
There are only a few divergent schemas that required more than seven seconds to get
checked, while the large portion of schemas require 1–3 seconds. Hence, a parallel
implementation of the tool should verify the algorithms significantly faster, which is
confirmed by the experiments discussed in Chapter 5, where the technique requires
multiple repetition of verification procedures for slight modifications of the model.
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CHAPTER 4
Parameterized Safety and

Liveness

In Chapter 3 we have presented a technique for efficient checking of reachability properties.
It is based on reduction, that is, the main ingredient is changing the order of transitions
in an execution, and proving that the obtained execution reaches the same state as the
original one. This technique cannot be directly used for more involved specifications, e.g.,
those where we also need to preserve a certain property along the execution, apart from
reaching a target state.

This chapter deals with verification of safety and liveness properties. The technique
presented here extends the one from Chapter 3. The challenge addressed in this chapter
is formalized in Section 2.5, and we recall it here:

Challenge 2.2 (Parameterized unsafety & non-liveness). Given a threshold automa-
ton TA and an ELTLFT formula ψ, check whether there are parameter values p ∈ PRC ,
an initial configuration σ0 ∈ I with σ0.p = p, and an infinite schedule τ of Sys(TA)
applicable to σ0 such that path(σ0, τ) |= ψ.

We solve this problem by showing how to reduce it to bounded model checking while
guaranteeing completeness. To this end, we have to construct a bounded-length encoding
of infinite schedules.

In the seminal paper [VW86], Vardi and Wolper showed that if a finite-state transition
system M violates an LTL formula—which requires all paths to satisfy the formula—
then there is a path in M that (i) violates the formula and (ii) has a lasso shape. That
is, it starts with a finite prefix, and ends in an infinite cycle. As our logic ELTLFT
specifies counterexamples to the properties of fault-tolerant distributed algorithms, we
are interested in this result in the following form: if the transition system satisfies
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algorithm parameterized_model_checking(TA, ϕ): // see Challenge 2.2
G := cut_graph (ϕ) /∗ Section 4.2.1 ∗/
H := threshold_graph(TA) /∗ Section 4.2.3 ∗/
for each ≺ in topological_orderings(G ∪ H) do // e.g., using [CW95]
check_one_order(TA, ϕ, G, H, ≺) /∗ Section 4.4 ∗/
if SMT_sat() then report the SMT model as a counterexample

Figure 4.1: A high-level description of the verification algorithm. For details of
check_one_order, see Section 4.4.2 and Figure 4.9.

an ELTL formula—which requires one path to satisfy the formula—then M has a path
that (i) satisfies the formula and (ii) has lasso shape.

As counter systems in general are infinite state, one cannot apply the results of [VW86]
directly. However, recall that Proposition 2.2 states that paths in our setting visit finitely
many configurations. Consequently, we show that a similar result to the one from [VW86]
holds for counter systems of threshold automata and ELTLFT. A complete proof of the
following proposition can be found in Section 4.5.

Proposition 4.1. Given a threshold automaton TA and an ELTLFT formula ϕ, if
Sys(TA) |= Eϕ, then there are an initial configuration σ1 ∈ I and a schedule τ · ρω
with the following properties:

(a) the path satisfies the formula: path(σ1, τ · ρω) |= ϕ,

(b) application of ρ forms a cycle: ρk(τ(σ1)) = τ(σ1) for k ≥ 0.

Although Proposition 4.1 makes it sufficient to search for counterexamples of lasso shape,
it is not sufficient for model checking: (i) counter systems are infinite state, so that state
enumeration may not terminate, and (ii) Proposition 4.1 does not provide us with bounds
on the length of the lassos needed for bounded model checking. Our strategy is to split a
lasso schedule in finite segments and to find constraints on lasso schedules that satisfy an
ELTLFT formula. Then we construct shorter (bounded length) segments.

In more detail, our method can be summarized in the following four steps:

• We observe that if path(σ0, τ) |= ψ, then there is an initial state σ and two finite
schedules ϑ and ρ (of unknown length) that can be used to construct an infinite
(lasso-shaped) schedule ϑ · ρω, such that path(σ, ϑ · ρω) |= ψ (Proposition 4.1).

• Now given ϑ and ρ, we prove that we can use a ψ-specific reduction, to cut ϑ and ρ
into subschedules ϑ1, . . . , ϑm and ρ1, . . . , ρn, respectively so that the subschedules
satisfy subformulas of ψ (Section 4.2).
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• We use an adapted PARA2 technique, specific to the subformulas of ψ, to construct
representative schedules rep[ϑi] and rep[ρj ] that satisfy the required ELTLFT formulas
that are satisfied by ϑi and ρj , respectively for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Moreover,
rep[ϑi] and rep[ρj ] are fixed sequences of rules, where bounds on the length of the
sequences are known (Section 4.3).

• These fixed sequences of rules can be used to encode a query to the SMT solver
(Section 4.4.1). We ask whether there is an applicable schedule in the counter
system that satisfies the sequence of rules and ψ (Section 4.4.3). If the SMT solver
reports unsatisfiability, there exists no counterexample.

Based on these theoretical results, our ByMC tool implements the high-level verification
algorithm from Figure 4.1 (in the comments we give the sections that are concerned with
the respective steps).

4.1 Overview of the Method

4.1.1 Enumerating Lassos

We characterize all possible shapes of lasso schedules that satisfy an ELTLFT formula ϕ.
These shapes are characterized by so-called cut points: We show that every lasso satisfy-
ing ϕ has a fixed number of cut points, one cut point per a subformula of ϕ that starts
with F . The configuration in the cut point of a subformula Fψ must satisfy ψ, and all
configurations between two cut points must satisfy certain propositional formulas, which
are extracted from the subformulas of ϕ that start with G . Our notion of a cut point is
motivated by extreme appearances of temporal operators [EVW02].

Example 4.1. Consider the ELTLFT formula ϕ ≡ EF (a∧ F d∧ F e∧G b∧GF c), where
a, . . . , e are propositional formulas, whose structure is not of interest in this section.
Formula ϕ is satisfiable by certain paths that have lasso shapes, i.e., a path consists of a
finite prefix and a loop, which is repeated infinitely. These lassos may differ in the actual
occurrences of the propositions and the start of the loop: For instance, at some point, a
holds, and since then b always holds, then d holds at some point, then e holds at some
point, then the loop is entered, and c holds infinitely often inside the loop. This is the
case (a) shown in Figure 4.2, where the configurations in the cut points A, B, C, and D
must satisfy the propositional formulas a, d, e, and c respectively, and the configurations
between A and F must satisfy the propositional formula b. This example does not restrict
the propositions between the initial state and the cut point A, so that this lasso shape, for
instance, also captures the path where b holds from the beginning. There are 20 different
lasso shapes for ϕ, five of them are shown in the figure. We construct lasso shapes that
are sufficient for finding a path satisfying an ELTLFT formula. In this example, it is
sufficient to consider lasso shapes (a) and (b), since the other shapes can be constructed
from (a) and (b) by unrolling the loop several times. /
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(a)
A B C D E F

b
a d e c

(b)
A BC D E F

b
a de c

(c)
A B CD E F

b
a d e c

(d)
ABCD E F

b
adec

(e)
A BCD E F

b
a de c

(and 15 more...)

Figure 4.2: The shapes of lassos that satisfy the formula EF (a ∧ F d ∧ F e ∧ G b ∧ GF c).
The crosses show cut points for: (A) formula F (a ∧ F d ∧ F e ∧ G b ∧ GF c), (B) formula
F d, (C) formula F e, (D) loop start, (E) formula F c, and (F) loop end.

4.1.2 Inadequacy of the PARA2 technique from Chapter 3

Our verification approach focuses on counterexamples, and as discussed in Section 2.5,
negations of specifications are expressed in ELTLFT. In the case of reachability properties,
counterexamples are finite schedules reaching a bad state from an initial state. We
presented an efficient method for finding counterexamples to reachability in Chapter 3.
It is based on the short counterexample property. Namely, we proved that for each
threshold automaton, there is a constant d such that if there is a schedule that reaches
a bad state, then there must also exist an accelerated schedule that reaches that state
in at most d transitions (i.e., d is the diameter of the counter system). Recall that the
proof in Chapter 3 is based on the following three steps:

1. each finite schedule (which may or may not be a counterexample), can be divided
into a few steady schedules,

2. for each of these steady schedules we find a representative, i.e., an accelerated
schedule of bounded length, with the same starting and ending configurations as
the original schedule,

3. at the end, all these representatives are concatenated in the same order as the
original steady schedules.

This result guarantees that the system is correct if no counterexample to reachability
properties is found using bounded model checking with bound d. In this section, we
extend the technique from Point 2 from reachability properties to ELTLFT formulas. The
central result regarding Point 2 is the following proposition which is a specialization of
Theorem 3.11 from page 51:
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τup: σ1 σ2 σ3
κ[`]++ κ[`]--

τdown: σ1 σ′2 σ3
κ[`]-- κ[`]++

Figure 4.3: Changing the order of transitions can violate ELTLFT formulas. If σ1.κ[`] = 1,
then for the upper schedule τup holds that Cfgs(σ1, τup) |= κ[`] > 0, while for the lower
one this is not the case, because σ′2 6|= κ[`] > 0.

Proposition 4.2. Let TA = (L,V,R,RC ) be a threshold automaton. For every con-
figuration σ and every steady schedule τ applicable to σ, there exists a steady schedule
srep[σ, τ ] with the following properties:

a) srep[σ, τ ] is applicable to σ, and srep[σ, τ ](σ) = τ(σ), and

b) |srep[σ, τ ]| ≤ 2 · |R|.

We observe that the proposition refers only to σ and τ(σ), while it ignores intermediate
configurations. However, for ELTLFT formulas, we have to consider all configurations in
a schedule, and not just the first and the last one.

Example 4.2. Figure 4.3 shows the result of swapping transitions. The PARA2 approach
for reachability from Chapter 3 is only concerned with the first and the last configurations:
it uses the property that after swapping transitions, σ3 is still reached from σ1. The
argument of PARA2 for reachability does not take into account the fact that the resulting
path visits a different intermediate state (σ′2 instead of σ2). However, swapping transitions
may change the evaluation of ELTLFT formulas, e.g., G (κ[`] > 0). If σ1.κ[`] = 1, then
σ2.κ[`] > 0, while σ′2.κ[`] = 0. /

4.1.3 The Short Counterexample Property

Another challenge in verification of ELTLFT formulas is that counterexamples to liveness
properties are infinite paths. As discussed previously in this chapter, we consider infinite
paths of lasso shape ϑ · ρω. For a finite part of a schedule, ϑ · ρ, satisfying an ELTLFT
formula, we show the existence of a new schedule, ϑ′ · ρ′, of bounded length satisfying the
same formula as the original one. Regarding the shortening, this approach uses a similar
idea as the one from Chapter 3. We follow a modified steps from reachability analysis:

1. We split ϑ·ρ into several steady schedules, using cut points introduced in Section 4.2.
The cut points depend not only on threshold guards, but also on the ELTLFT
formula ϕ representing the negation of a specification we want to check. Given
such a steady schedule τ , each configuration of τ satisfies a set of propositional
subformulas of ϕ, which are covered by the operator G in ϕ.
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2. For each of these steady schedules we find a representative, that is, an accelerated
schedule of bounded length that satisfies the necessary propositional subformulas
as in the original schedule (i.e., not just that starting and ending configurations
coincide).

3. We concatenate the obtained representatives in the original order.

In Section 4.3 we present the mathematical details for obtaining these representative sched-
ules. In Sections 4.3.1–4.3.3, we prove different cases in Theorem 4.34 and Theorem 4.37,
that taken together establish our following main theorem:

Theorem 4.3. Let TA = (L,V,R,RC ) be a threshold automaton, and let Locs ⊆ L
be a set of locations. Let σ be a configuration, let τ be a steady conventional schedule
applicable to σ, and let ψ be one of the following formulas:∨

`∈Locs
κ[`] 6= 0, or

∧
`∈Locs

κ[`] = 0.

If all configurations visited by τ from σ satisfy ψ, i.e., Cfgs(σ, τ) |= ψ, then there is a
steady representative schedule repr[ψ, σ, τ ] with the following properties:

a) The representative is applicable, and ends in the same final state: repr[ψ, σ, τ ] is
applicable to σ, and repr[ψ, σ, τ ](σ) = τ(σ),

b) The representative has bounded length: |repr[ψ, σ, τ ]| ≤ 6 · |R|,

c) The representative maintains the formula ψ, i.e., Cfgs(σ, repr[ψ, σ, τ ]) |= ψ,

d) The representative is a concatenation of three representative schedules srep from
Proposition 4.2: there exist τ1, τ2 and τ3, (possibly empty) subschedules of τ , such
that τ1 · τ2 · τ3 is applicable to σ, and it holds that (τ1 · τ2 · τ3)(σ) = τ(σ), and

repr[ψ, σ, τ ] = srep[σ, τ1] · srep[τ1(σ), τ2] · srep[(τ1 · τ2)(σ), τ3].

Our approach is slightly different in the case when the formula ψ has a more complex
form: ∧1≤m≤n

∨
`∈Locsm

κ[`] 6= 0, for Locsm ⊆ L, where 1 ≤ m ≤ n and n ∈ N. In this
case, our proof requires the schedule τ to have sufficiently large counter values. To ensure
that there is an infinite schedule with sufficiently large counter values, we first prove that
if a counterexample exists in a small system, there also exists one in a larger system,
that is, we consider configurations where each counter is multiplied with a constant
finite multiplier µ. For resilience conditions that do not correspond to parameterized
systems (i.e., fix the system size to, e.g., n = 4) or pathological threshold automata, such
multipliers may not exist. However, all our benchmarks have multipliers, and existence
of multipliers can easily be checked using simple queries to SMT solvers in preprocessing.
This additional restriction leads to slightly smaller bounds on the lengths of representative
schedules:
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Theorem 4.4. Fix a threshold automaton TA = (L,V,R,RC ) that has a finite mul-
tiplier µ, and a configuration σ. For an n ∈ N, fix sets of locations Locsm ⊆ L for
1 ≤ m ≤ n. If we have

ψ =
∧

1≤m≤n

∨
`∈Locsm

κ[`] 6= 0,

then for every steady conventional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there
exists a schedule repr∧∨[ψ, µσ, µτ ] with the following properties:

a) The representative is applicable and ends in the same final state: repr∧∨[ψ, µσ, µτ ]
is a steady schedule applicable to µσ, and repr∧∨[ψ, µσ, µτ ](µσ) = µτ(µσ),

b) The representative has bounded length: |repr∧∨[ψ, µσ, µτ ]| ≤ 4 · |R|,

c) The representative maintains the formula ψ, i.e., Cfgs(µσ, repr∧∨[ψ, µσ, µτ ]) |= ψ,

d) The representative is a concatenation of two representative schedules srep from
Proposition 4.2:

repr∧∨[ψ, µσ, µτ ] = srep[µσ, τ ] · srep[τ(µσ), (µ− 1)τ ].

The main technical challenge for proving Theorems 4.3 and 4.4 is that we want to swap
transitions and maintain ELTLFT formulas at the same time. As discussed in Example 4.2,
simply applying the ideas from the reachability analysis in Chapter 3 is not sufficient.

We address this challenge in Section 4.3 by more refined swapping strategies depending
on the property ψ of Theorem 4.3. For instance, the intuition behind ∨`∈Locs κ[`] 6= 0
is that in a given distributed algorithm, there should always be at least one process in
one of the states in Locs. Hence, we would like to consider individual processes, but
in the context of counter systems. Therefore, we introduce a mathematical notion of a
thread, which is a schedule that can be executed by an individual process. A thread is
then characterized depending on whether it starts in Locs, ends in Locs, or visits Locs at
some intermediate step. Based on this characterization, we show that ELTLFT formulas
are preserved if we move carefully chosen threads to the beginning of a steady schedule
(intuitively, this corresponds to τ1, and τ2 from Theorem 4.3). Then, we replace the
threads, one by one, by their representative schedules from Proposition 4.2, and append
another representative schedule for the remainder of the schedule. In this way, we then
obtain the representative schedules in Theorem 4.3(d).

Example 4.3. We consider the TA in Figure 2.1, and show how a schedule τ =
(r1, 1), (r6, 1), (r4, 1), (r2, 1), (r4, 1) applicable to σ1, with τ(σ1) = σ2 can be short-
ened. Figure 4.4 follows this example where τ is the upper schedule. Note that
Cfgs(σ1, τ) |= κ[`2] 6= 0. We want to construct a shorter schedule that produces a
path whose all visited configurations satisfy the same formula κ[`2] 6= 0.

In our theory, subschedule (r1, 1), (r4, 1) is a thread of σ1 and τ for two reasons: (1) the
counter of the starting local state of (r1, 1) is greater than 0, i.e., σ1.κ[`0] = 1, and (2)
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`0

`1
`2 `3

r2

r1

r3

r4

r5

r6
r7 r8

Configuration σ1

`0

`1
`2 `3

r2

r1

r3

r4

r5

r6
r7 r8

Configuration σ2

r1 r6 r4 r2 r4

r6 r2 r1 r4 r4

One thread All other threads

Figure 4.4: Example of constructing a representative schedule by moving a thread to
the beginning. The number of dots in the local states correspond to counter values, i.e.,
σ1.κ[`0] = σ1.κ[`1] = σ1.κ[`2] = 1 and σ1.κ[`3] = 0.

it is a sequence of rules in the control flow of the threshold automaton, i.e., it starts
from `0, then uses (r1, 1) to go to local state `2 and then (r4, 1) to arrive at `3. The
intuition of (2) is that a thread corresponds to a process that executes the threshold
automaton. Similarly, (r6, 1), (r2, 1) and (r4, 1) are also threads of σ1 and τ . In fact, we
can show that each schedule can be decomposed into threads. Based on this, we analyze
which local states are visited when a thread is executed.

Our formula Cfgs(σ1, τ) |= κ[`2] 6= 0 considers `2. Thus, we are interested in a thread
that ends at `2, because after executing this thread, intuitively there will always be at
least one process in `2, i.e., the counter κ[`2] will be nonzero, as required. Such a thread
will be moved to the beginning. We find that thread (r6, 1), (r2, 1) meets this requirement.
Similarly, we are also interested in a thread that starts from `2. Before we execute such
a thread, at least one process must always be in `2, i.e., κ[`2] will be nonzero. For this,
we single out the thread (r4, 1), as it starts from `2. These conclusions are formalized in
Lemma 4.25 and Lemma 4.26.

Independently of the actual positions of these threads within a schedule, our condition
κ[`2] 6= 0 is true before (r4, 1) starts, and after (r6, 1), (r2, 1) ends. Hence, we move the
thread (r6, 1), (r2, 1) to the beginning, and obtain a schedule that ensures our condition
in all visited configurations; cf. the lower schedule in Figure 4.4. Then we replace
the thread (r6, 1), (r2, 1), by a representative schedule from Proposition 4.2, and the
remaining part (r1, 1), (r4, 1), (r4, 1), by another one. Indeed in our example, we could
merge (r4, 1), (r4, 1) into one accelerated transition (r4, 2) and obtain a schedule which is
shorter than τ while maintaining κ[`2] 6= 0. /

4.2 Shapes of Schedules that Satisfy ELTLFT
As discussed in 4.1.1, the first step of our method is to enumerate all possible lasso-shaped
schedules that satisfy a given ELTLFT formula ϕ. The goal is to introduce a cut graph
that follows the nature of the ELTLFT formula (Section 4.2.1), and use it to impose the
constraints on the lasso (Section 4.2.2). Finally, we also need to take into account the
evaluation of threshold guards by introducing a threshold graph (Section 4.2.3).
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can(ϕ)
[0]

a

[0.0]
F (d ∧ G true)

[0.1]

d

[0.1.0]
G true
[0.1.1]

F (e ∧ . . . )
[0.2]

e

[0.2.0]
G true
[0.2.1]

G (b ∧ F (c ∧ G true) ∧ G true)
[0.3]

b

[0.3.0]
F (c ∧ G true)

[0.3.1]

c

[0.3.1.0]
G true
[0.3.1.1]

G true
[0.3.2]

Figure 4.5: A canonical syntax tree of the ELTLFT formula ϕ ≡ F (a∧F d∧F e∧G b∧GF c)
considered in Example 4.1. The labels [w] denote identifiers of the tree nodes.

4.2.1 Characterizing Shapes of Lasso Schedules by Cut Graphs

We now construct a cut graph of an ELTLFT formula: Cut graphs constrain the orders
in which subformulas that start with the operator F are witnessed by configurations.
The nodes of a cut graph correspond to cut points, while the edges constrain the order
between the cut points. Using cut points, we give necessary and sufficient conditions for
a lasso to satisfy an ELTLFT formula in Theorems 4.7 and 4.8. Before defining cut graphs,
we give the technical definitions of canonical formulas and canonical syntax trees.

Definition 4.1. We inductively define canonical ELTLFT formulas:

• if p is a propositional formula, then the formula p ∧ G true is a canonical formula
of rank 0,

• if p is a propositional formula and formulas ψ1, . . . , ψk are canonical formulas (of
any rank) for some k ≥ 1, then the formula p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ G true is a
canonical formula of rank 1,

• if p is a propositional formula and formulas ψ1, . . . , ψk are canonical formulas (of
any rank) for some k ≥ 0, and ψk+1 is a canonical formula of rank 0 or 1, then the
formula p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1 is a canonical formula of rank 2.

Example 4.4. Let p and q be propositional formulas. The formulas p ∧ G true and
true∧F (q∧G true)∧G (p∧G true) are canonical, while the formulas p, F q, and G p are not
canonical. Continuing Example 4.1, the canonical version of the formula F (a∧F d∧F e∧
G b∧GF c) is the formula F (a∧F (d∧G true)∧F (e∧G true)∧G (b∧F (c∧G true)∧G true)).

/

We will use formulas in the following canonical form in order to simplify presentation.

Observation 1. The properties of canonical ELTLFT formulas:
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1. Every canonical formula consists of canonical subformulas of the form p ∧ Fψ1 ∧
· · ·∧Fψk∧Gψk+1 for some k ≥ 0, for a propositional formula p, canonical formulas
ψ1, . . . , ψk, and a formula ψk+1 that is either canonical, or equals to true.

2. If a canonical formula contains a subformula G (· · · ∧ Gψ), then ψ equals true.

As expected, every ELTLFT formula has an equivalent canonical formula:

Proposition 4.5. There is a function can : ELTLFT → ELTLFT that produces for each
formula ϕ ∈ ELTLFT an equivalent canonical formula can(ϕ).

For an ELTLFT formula, there may be several equivalent canonical formulas, e.g., p ∧
F (q∧G true)∧F (p∧G true)∧G true and p∧F (p∧G true)∧F (q∧G true)∧G true differ
in the order of F -subformulas. With the function can we fix one such a formula.

Indeed, a canonical formula usually contains many trivially valid subformulas, e.g.,
can(F p) is true ∧ F (p ∧ G true) ∧ G true. In the following, we often omit such trivially
valid formulas for ease in presentation.

Canonical syntax trees. The canonical syntax tree of the formula introduced in
Example 4.1 is shown in Figure 4.5. With N∗0 we denote the set of all finite words over
natural numbers— these words are used as node identifiers.

Definition 4.2. The canonical syntax tree of a formula ϕ ∈ ELTLFT is the set T (ϕ) ⊆
ELTLFT × N∗0 constructed inductively as follows:

1. The tree contains the root node labeled with the canonical formula can(ϕ) and id 0,
that is, 〈can(ϕ), 0〉 ∈ T (ϕ).

2. Consider a tree node 〈ψ,w〉 ∈ T (ϕ) such that for some canonical formula ψ′ ∈
ELTLFT one of the following holds: (a) ψ = ψ′ = can(ϕ), or (b) ψ = Fψ′, or
(c) ψ = Gψ′.
If ψ′ is p ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1 for some k ≥ 0, then the tree T (ϕ) contains
a child node for each of the conjuncts of ψ′, that is, 〈p, w.0〉 ∈ T (ϕ), as well as
〈Fψi, w.i〉 ∈ T (ϕ) and 〈Gψj , w.j〉 ∈ T (ϕ) for 1 ≤ i ≤ k and j = k + 1.

Observation 2. The canonical syntax tree T (ϕ) of an ELTLFT formula ϕ has the
following properties:

• Every node 〈ψ,w〉 has the unique identifier w, which encodes the path to the node
from the root.

• Every intermediate node is labeled with a temporal operator F or G over the
conjunction of the formulas in the children nodes.
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[0]

[0.1]

[0.2] loopstart

[0.3.1]

loopend

Figure 4.6: The cut graph of the canonical syntax tree in Figure 4.5

• The root node is labeled with the formula ϕ itself, and ϕ is equivalent to the
conjunction of the root’s children formulas, possibly preceded with a temporal
operator F or G .

The temporal formulas that appear under the operator G have to be dealt with by the
loop part of a lasso. To formalize this, we say that a node with id w ∈ N∗0 is covered by
a G -node, if w can be split into two words u1, u2 ∈ N∗0 with w = u1.u2, and there is a
formula ψ ∈ ELTLFT such that 〈Gψ, u1〉 ∈ T (ϕ).

Cut graphs. Using the canonical syntax tree T (ϕ) of a formula ϕ, we capture in a
so-called cut graph the possible orders in which formulas Fψ should be witnessed by
configurations of a lasso-shaped path. We will then use the occurrences of the formula ψ
to cut the lasso into bounded finite schedules.

Example 4.5. Figure 4.6 shows the cut graph of the canonical syntax tree in Figure 4.5.
It consists of tree node ids for subformulas starting with F , and two special nodes for
the start and the end of the loop. In the cut graph, the node with id 0 precedes the node
with id 0.1, since at least one configuration satisfying (a ∧ F (d ∧ . . . ) ∧ . . . ) should occur
on a path before (or at the same moment as) a state satisfying (d ∧ . . . ). Similarly, the
node with id 0 precedes the node with id 0.2. The nodes with ids 0.1 and 0.2 do not have
to precede each other, as the formulas d and e can be satisfied in either order. Since the
nodes with the ids 0, 0.1, and 0.2 are not covered by a G -node, they both precede the
loop start. The loop start precedes the node with id 0.3.1, as this node is covered by a
G -node. /

Definition 4.3. The cut graph G(ϕ) of an ELTLFT formula is a directed acyclic graph
(VG , EG) with the following properties:

1. The set of nodes VG = {loopstart, loopend}∪{w ∈ N∗0 | ∃ψ. 〈Fψ,w〉 ∈ T (ϕ)} contains
the tree ids that label F -formulas and two special nodes loopstart and loopend, which
denote the start and the end of the loop respectively.

2. The set of edges EG satisfies the following constraints:

a) Each tree node 〈Fψ,w〉 ∈ T (ϕ) that is not covered by a G -node precedes the
loop start, i.e., (w, loopstart) ∈ EG.
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b) For each tree node 〈Fψ,w〉 ∈ T (ϕ) covered by a G -node:
• the loop start precedes w, i.e., (loopstart, w) ∈ EG, and
• w precedes the loop end, i.e., (w, loopend) ∈ EG.

c) For each pair of tree nodes 〈Fψ1, w〉 , 〈Fψ2, w.i〉 ∈ T (ϕ) not covered by a
G -node, we require (w,w.i) ∈ EG.

d) For each pair of tree nodes 〈Fψ1, w1〉 , 〈Fψ2, w2〉 ∈ T (ϕ) that are both covered
by a G -node, we require either (w1, w2) ∈ EG, or (w2, w1) ∈ EG (but not both).

Definition 4.4. Given a lasso τ · ρω and a cut graph G(ϕ) = (VG , EG), we call a function
ζ : VG → {0, . . . , |τ |+ |ρ| − 1} a cut function, if the following holds:

• ζ(loopstart) = |τ | and ζ(loopend) = |τ |+ |ρ| − 1,

• if (v, v′) ∈ EG, then ζ(v) ≤ ζ(v′).

We call the indices {ζ(v) | v ∈ VG} the cut points. Given a schedule τ and an index k :
0 ≤ k < |τ |+ |ρ|, we say that the index k cuts τ into π′ and π′′, if τ = π′ ·π′′ and |π′| = k.

Informally, for a tree node 〈Fψ,w〉 ∈ T (ϕ), a cut point ζ(w) witnesses satisfaction of Fψ,
that is, the formula ψ holds at the configuration located at the cut point. It might
seem that Definitions 4.3 and 4.4 are too restrictive. For instance, assume that the node
〈Fψ,w〉 is not covered by a G -node, and there is a lasso schedule τ · ρω that satisfies the
formula ϕ at a configuration σ. It is possible that the formula ψ is witnessed only by a
cut point inside the loop. At the same time, Definition 4.4 forces ζ(w) ≤ ζ(loopstart). We
show that this problem is resolved by unwinding the loop K times for some K ≥ 0, so
that there is a cut function for the lasso with the prefix τ · ρK and the loop ρ:

Proposition 4.6. Let ϕ be an ELTLFT formula, σ be a configuration and τ ·ρω be a lasso
schedule applicable to σ such that path(σ, τ · ρω) |= ϕ holds. There is a constant K ≥ 0
and a cut function ζ such that for every 〈Fψ,w〉 ∈ G(T (ϕ)) if ζ(w) cuts (τ · ρK) · ρ into
π′ and π′′, then ψ is satisfied at the cut point, that is, path(π′(σ), π′′ · ρω) |= ψ.

Proof Sketch: The detailed proof is given in Section 4.5. We will present the required
constant K ≥ 0 and the cut function ζ. To this end, we use extreme appearances of
F -formulas (cf. [EVW02, Sec. 4.3]) and use them to find ζ. An extreme appearance of a
formula Fψ is the furthest point in the lasso that still witnesses ψ. There might be a
subformula that is required to be witnessed in the prefix, but in τ · ρω it is only witnessed
by the loop. To resolve this, we replace τ by a a longer prefix τ · ρK , by unrolling the
loop ρ several times; more precisely, K times, where K is the number of nodes that
should precede the lasso start. In other words, if all extreme appearances of the nodes
happen to be in the loop part, and they appear in the order that is against the topological
order of the graph G(T (ϕ)), we unroll the loop K times (the number of nodes that have
to be in the prefix) to find the prefix, in which the nodes respect the topological order of
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the graph. In the unrolled schedule we can now find extreme appearances of the required
subformulas in the prefix.

We show that to satisfy an ELTLFT formula, a lasso should (i) satisfy propositional
subformulas of F -formulas in the respective cut points, and (ii) maintain the propositional
formulas of G -formulas from some cut point on. This is formalized as a witness.

In the following definition, we use a short-hand notation for propositional subformulas:
given an ELTLFT formula ψ and its canonical form can(ψ) = ψ0∧Fψ1∧· · ·∧Fψk∧Gψk+1,
we use the notation prop(ψ) to denote the formula ψ0.

Definition 4.5. Given a configuration σ, a lasso τ · ρω applicable to σ, and an ELTLFT
formula ϕ, a cut function ζ of G(T (ϕ)) is a witness of path(σ, τ · ρω) |= ϕ, if the three
conditions hold:

(C1) For can(ϕ) ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1:

a) σ |= ψ0, and
b) Cfgs(σ, τ · ρ) |= prop(ψk+1).

(C2) For 〈Fψ, v〉 ∈ T (ϕ) with ζ(v) < |τ |, if ζ(v) cuts τ · ρ into π′ and π′′ and ψ ≡
ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, then:

a) π′(σ) |= ψ0, and
b) Cfgs(π′(σ), π′′) |= prop(ψk+1).

(C3) For 〈Fψ, v〉 ∈ T (ϕ) with ζ(v) ≥ |τ |, if ζ(v) cuts τ · ρ into π′ and π′′ and ψ ≡
ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, then:

a) π′(σ) |= ψ0, and
b) Cfgs(τ(σ), ρ) |= prop(ψk+1).

Conditions (a) require that propositional formulas hold in a configuration, while condi-
tions (b) require that propositional formulas hold on a finite suffix. Hence, to ensure that
a cut function constitutes a witness, one has to check the configurations of a fixed number
of finite paths (between the cut points). This property is crucial for the path reduction
(see Section 4.1.3). Theorems 4.7 and 4.8 show that the existence of a witness is a sound
and complete criterion for the existence of a lasso satisfying an ELTLFT formula.

Theorem 4.7 (Soundness). Let σ be a configuration, τ ·ρω be a lasso applicable to σ, and
ϕ be an ELTLFT formula. If there is a witness of path(σ, τ · ρω) |= ϕ, then the lasso τ · ρω
satisfies ϕ, that is path(σ, τ · ρω) |= ϕ.
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Theorem 4.8 (Completeness). Let ϕ be an ELTLFT formula, σ be a configuration and
τ · ρω be a lasso applicable to σ such that path(σ, τ · ρω) |= ϕ holds. There is a witness of
path(σ, (τ · ρK) · ρω) |= ϕ for some K ≥ 0.

Theorem 4.7 is proven for subformulas of ϕ by structural induction on the intermediate
nodes of the canonical syntax tree. In the proof of Theorem 4.8 we use Proposition 4.6
to prove the points of Definition 4.5. (The detailed proofs are given in Section 4.5.)

4.2.2 Using Cut Graphs to Enumerate Shapes of Lassos

Proposition 4.1 and Theorem 4.8 suggest that in order to find a schedule that satisfies an
ELTLFT formula ϕ, it is sufficient to look for lasso schedules that can be cut in such a way
that the configurations at the cut points and the configurations between the cut points
satisfy certain propositional formulas. In fact, the cut points as defined by cut functions
(Definition 4.4) are topological orderings of the cut graph G(T (ϕ)). Consequently, by
enumerating the topological orderings of the cut graph G(T (ϕ)) we can enumerate the
lasso shapes, among which there is a lasso schedule satisfying ϕ (if ϕ holds on the counter
system). These shapes differ in the order, in which F -subformulas of ϕ are witnessed.
For this, one can use fast generation algorithms, e.g., [CW95].

Example 4.6. Consider the cut graph in Figure 4.6. The ordering of its vertices
0, 0.1, 0.2, loopstart, 0.3.1, loopend corresponds to the lasso shape (a) shown in Figure 4.2,
while the ordering loopstart, 0, 0.2, 0.1, loopstart, 0.3.1, loopend corresponds to the lasso
shape (b). These are the two lasso shapes that one has to analyze, and they are
the result of our construction using the cut graph. The other 18 lasso shapes in the figure
are not required, and not constructed by our method. /

From this observation, we conclude that given a topological ordering v1, . . . , v|VG | of the
cut graph G(T (ϕ)) = (VG , EG), one has to look for a lasso schedule that can be written
as an alternating sequence of configurations σi and schedules τj :

σ0, τ0, σ1, τ1, . . . , σ`, τ`, . . . , σ|VG |−1, τ|VG |, σ|VG |, (4.1)

where v` = loopstart, v|VG | = loopend, and σ` = σ|VG |. Moreover, by Definition 4.5, the
sequence of configurations and schedules should satisfy (C1)–(C3), e.g., if a node vi
corresponds to the formula F (ψ0∧· · ·∧Gψk+1) and this formula matches Condition (C2),
then the following should hold:

1. Configuration σi satisfies the propositional formula: σi |= ψ0.

2. All configurations visited by the schedule τi·. . .·τ|VG | from the configuration σi satisfy
the propositional formula prop(ψk+1). Formally, Cfgs(σi, τi · . . . ·τ|VG |) |= prop(ψk+1).
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Discussion. One can write an SMT query for the sequence (4.1) satisfying Condi-
tions (C1)–(C3). However, this approach has two problems:

1. The order of rules in schedules τ0, . . . , τ|VG | is not fixed. Non-deterministic choice
of rules complicates the SMT query.

2. To guarantee completeness of the search, one requires a bound on the length of
schedules τ0, . . . , τ|VG |.

For reachability properties these issues were addressed in Chapter 3 by showing that one
only has to consider representative schedules, that is, specific orders of the rules. To lift
this technique to ELTLFT, we are left with two issues:

1. The shortening technique applies to steady schedules, i.e., the schedules that do not
change evaluation of the guards. Thus, we have to break the schedules τ0, . . . , τ|VG |
into steady schedules. This issue is addressed in Section 4.2.3.

2. The shortening technique preserves state reachability, e.g., after shortening of τi, the
resulting schedule still reaches configuration σi+1. But it may violate an invariant
such as Cfgs(σi, τi · . . . · τ|VG |) |= prop(ψk+1). This issue is addressed in Section 4.3.

4.2.3 Cutting Lassos with Threshold Guards

We introduce threshold graphs to cut a lasso into steady schedules, in order to apply the
shortening technique of Section 4.1.3. Then, we combine the cut graphs and threshold
graphs to cut a lasso into smaller finite segments, which can be first shortened and then
checked with the similar approach as the one introduced in Chapter 3.

Given a configuration σ, its context ω(σ) is the set that consists of the rising guards
unlocked in σ and the falling guards locked in σ, i.e., ω(σ) = Ωrise ∪ Ωfall, where
Ωrise = {g ∈ Φrise | σ |= g} and Ωfall = {g ∈ Φfall | σ 6|= g}. As discussed previously, e.g.,
in Example 2.7 on page 25, since the shared variables are never decreased, the contexts in
a path are monotonically non-decreasing. This was formalized in Section 3.2.2 as follows:

Proposition 3.2. If a transition t is enabled in a configuration σ, then either ω(σ) <
ω(t(σ)), or ω(σ) = ω(t(σ)).

Example 4.7. Continuing Example 2.7, which considers the TA in Figure 2.1. Both
threshold guards γ1 and γ2 are false in the initial state σ. Thus, ω(σ) = ∅. The transition
t = (r1, 1) unlocks the guard γ1, i.e., ω(t(σ)) = {γ1}. /

As the transitions of the counter system Sys(TA) never decrease shared variables, the
loop of a lasso schedule must be steady:
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(a)

κ[`3] = 0
γ1 γ2 ψfair

(b)

κ[`3] = 0
γ1 ψfair

(c)

κ[`3] = 0
ψfair

Figure 4.7: The shapes of lassos to check the correctness property in Example 2.8. Recall
that γ1 and γ2 are the threshold guards, defined as x ≥ t + 1 − f and x ≥ n − t − f
respectively.

Proposition 4.9. For each configuration σ and a schedule τ · ρω applicable to σ, if
ρk(τ(σ)) = τ(σ) for k ≥ 0, then the loop ρ is steady for τ(σ), that is, ω(ρ(τ(σ))) =
ω(τ(σ)).

In Chapter 3, Proposition 3.2 was used to cut a finite path into segments, one per context.
We introduce threshold graphs and their topological orderings to apply this idea to lasso
schedules.

Definition 4.6. A threshold graph is H(TA) = (VH, EH) such that:

• The vertices set VH contains the threshold guards and the special node loopstart, i.e.,
VH = Φrise ∪ Φfall ∪ {loopstart}.

• There is an edge from a guard g1 ∈ Φrise to a guard g2 ∈ Φrise, if g2 cannot be
unlocked before g1, i.e., (g1, g2) ∈ EH, if for each configuration σ ∈ Σ, σ |= g2
implies σ |= g1.

• There is an edge from a guard g1 ∈ Φfall to a guard g2 ∈ Φfall, if g2 cannot be locked
before g1, i.e., (g1, g2) ∈ EH, if for each configuration σ ∈ Σ, σ 6|= g2 implies σ 6|= g1.

Note that the conditions in Definition 4.6 can be easily checked with an SMT solver, for
all configurations.

Example 4.8. The threshold graph of the TA in Figure 2.1 has the vertices VH =
{γ1, γ2, loopstart} and the edges EH = {(γ1, γ2)}. /

Similar to Section 4.2.2, we consider a topological ordering g1, . . . , g`, . . . , g|VH| of the
vertices of the threshold graph. The node g` = loopstart indicates the point where a loop
should start, and thus by Proposition 4.9, after that point the context does not change.
Thus, we consider only the subsequence g1, . . . , g`−1 and split the path path(σ, τ · ρ) of a
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lasso schedule τ ·ρω into an alternating sequence of configurations σi and schedules τ0 and
tj · τj , for 1 ≤ j < `, ending up with the loop ρ (starting in σ`−1 and ending in σ` = σ`−1):

σ0, τ0, σ1, (t1 · τ1), . . . , σ`−2, (t`−1 · τ`−1), σ`−1, ρ, σ` (4.2)

Transitions t1, . . . , t`−1 change the context, and schedules τ0, τ1, . . . , τ`−1, ρ are steady.
Finally, we interleave a topological ordering of the vertices of the cut graph with a
topological ordering of the vertices of the threshold graph. More precisely, we use a
topological ordering of the vertices of the union of the cut graph and the threshold
graph. We use the resulting sequence to cut a lasso schedule following the approach in
Section 4.2.2 (cf. Equation (4.1)). By enumerating all such interleavings, we obtain all
lasso shapes. Again, the lasso is a sequence of steady schedules and context-changing
transitions.

Example 4.9. Continuing Example 2.1 given on page 27, we consider the lasso shapes
that satisfy the ELTLFT formula GFψfair ∧ κ[`0] = 0 ∧ Gκ[`3] = 0. Figure 4.7 shows the
lasso shapes that have to be inspected by an SMT solver. In case (a), both threshold
guards γ1 and γ2 are eventually changed to true, while the counter κ[`3] is never increased
in a fair execution. For n = 3t, this is actually a counterexample to the correctness
property explained in Example 2.1. In cases (b) and (c) at most one threshold guard is
eventually changed to true, so these lasso shapes cannot produce a counterexample. /

In the following section, we will show how to shorten steady schedules, while maintaining
Conditions (C1)–(C3) of Definition 4.5, required to satisfy the ELTLFT formula.

4.3 Property specific PARA2 for Safety and Liveness

Let us now formally describe the construction of representative schedules, that was
discussed in Section 4.1.3. We start by introducing the necessary definitions and some
properties of the introduced notions. As the construction itself depends on the shape of
the formula we want to preserve while swapping transitions, in Sections 4.3.1–4.3.3 we
address all possible strategies. Technical proofs together with auxiliary lemmas can be
found in Section 4.6. We fix a threshold automaton TA = (L,V,R,RC ) and conduct our
analysis in this section for this TA.

We start by formalizing the notion of a thread.

Definition 4.7 (Thread). For a configuration σ and a schedule τ = τ1 · t1 ·τ2 · . . . · tk ·τk+1
applicable to σ, we define the sequence of transitions ϑ = t1, . . . , tk, k > 0 to be a thread
of σ and τ if

1. ti.factor = 1, for every 1 ≤ i ≤ k,

2. ti.to = ti+1.from, for every 1 ≤ i < k.
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For thread ϑ, by ϑ.from and ϑ.to we denote t1.from and tk.to, respectively.

Definition 4.8 (Naming, Projection, and Decomposition). A naming is a function
η : N → N. For a schedule τ , and a set S ⊆ N, by τ |η,S we denote the sequence of
transitions τ [j] satisfying η(j) ∈ S that preserves the order of transitions from τ , i.e.,
for all j1, j2, l1, l2, j1 < j2, if τ |η,S [l1] = τ [j1] and τ |η,S [l2] = τ [j2], then l1 < l2. If S is
a one-element set {i}, we write τ |η,i instead of τ |η,{i}. We use the notation Θ(σ, τ, η)
for the set {i : τ |η,i is a thread of σ and τ}. For a configuration σ and a schedule τ , a
naming η is called a decomposition of σ and τ if

1. for all i ∈ N, the schedule τ |η,i is either a thread of σ and τ , or the empty sequence,

2. for every local state ` ∈ L, the value of its counter in σ is greater than or equal to
the number of threads starting in that state, that is,

σ.κ[`] ≥ |{i : i ∈ Θ(σ, τ, η) ∧ τ |η,i.from = `}|.

Example 4.10. Let us reconsider Example 4.3 and Figure 4.4, with configuration σ1
where σ1.κ[`0] = σ1.κ[`1] = σ1.κ[`2] = 1 and σ1.κ[`3] = 0, and the schedule τ = (r1, 1),
(r6, 1), (r4, 1), (r2, 1), (r4, 1). The function η : N → N with η(1) = η(5) = 1, η(2) =
η(4) = 2, η(3) = 3, and η(k) = 4 for every k ≥ 6, is a naming. We will now see that η is
a decomposition by checking the two points.

(1) Since η(1) = η(5) = 1, the projection τ |η,1 consists of the first and the fifth transition,
in that particular order, i.e., τ |η,1 = (r1, 1), (r4, 1). This is a thread, as the factor of
both transitions is 1, and r1.to = `2 = r4.from. Similarly, τ |η,2 = (r6, 1), (r2, 1), and
τ |η,3 = (r4, 1) are threads. Besides, τ |η,4 is the empty sequence, as numbers mapping
to 4 are n ≥ 6, and τ has length 5, i.e., there is no transition τ [n] for n ≥ 6. Further,
for every i > 4, τ |η,i is the empty sequence, as there is no m ∈ N, with η(m) = i. Thus,
Θ(σ, τ, η) = {1, 2, 3}. Note that τ |η,N\{2} = τ |η,{1,3} = (r1, 1), (r4, 1), (r4, 1).

(2) As τ |η,2 = r6.from = `0, we obtain {i : i ∈ Θ(σ, τ, η) ∧ τ |η,i.from = `0} = {2}, and
σ1.κ[`0] = 1 ≥ |{2}|. Similarly we check this inequality for other local states, and
conclude that η is a decomposition of σ1 and τ . /

Note that a prefix of a schedule has at least as many threads as the original schedule.

Proposition 4.10. If σ is a configuration, τ is a steady schedule applicable to σ, and η is
a decomposition of σ and τ , then for each prefix τ ′ of τ , the naming η is a decomposition
of σ and τ ′. Further Θ(σ, τ ′, η) ⊆ Θ(σ, τ, η).

From [KVW17, Prop. 12] we directly obtain:

Proposition 4.11. If σ is a configuration, τ is a steady schedule applicable to σ, and η
is a decomposition of σ and τ , then for all ` in L the following holds:

τ(σ).κ[`] = σ.κ[`]+|{i : i ∈ Θ(σ, τ, η)∧τ |η,i.to = `}|−|{i : i ∈ Θ(σ, τ, η)∧τ |η,i.from = `}|.
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The following proposition says that every steady conventional schedule can be decomposed
into threads. The detailed proof can be found in Section 4.6

Proposition 4.12. If σ is a configuration, τ is a steady conventional schedule applicable
to σ, then there exists a decomposition of σ and τ .

The following lemma will be useful for proving that a transition ti of a thread is applicable
to a configuration, as it assures that there is a process in ti.from. Its proof can be found
in Section 4.6.

Proposition 4.13. If σ is a configuration, τ = τ1·ti−1·ti·τ2 is a steady schedule applicable
to σ, η is a decomposition of σ and τ , and η(i− 1) 6= η(i), then τ1(σ).κ[ti.from] ≥ 1.

As in a steady schedule guards do not change, and thus do not play a role, applicability
depends only on the process that can execute the transition. Therefore, Proposition 4.13
implies that a transition of a thread commutes with the adjacent transition of a different
thread. This will allow us to move a whole thread.

Definition 4.9 (Move). For a schedule τ , and a natural number i, 1 < i ≤ |τ |, the
schedule τi← is obtained by moving the ith transition of τ to the left, and naming ηi←(k)
is defined accordingly, for every k ∈ N, i.e.,

τi←[k] =


τ [i] if k = i− 1
τ [i− 1] if k = i

τ [k] otherwise,
and ηi←(k) =


η(i) if k = i− 1
η(i− 1) if k = i

η(k) otherwise.

For natural numbers n and m, where 1 ≤ n ≤ m ≤ |τ |, we define τn�m to be the schedule
obtained from τ by moving the mth transition of τ to the nth position (that is m − n
times to the left), and naming ηn�m(k) accordingly, for every k ∈ N, i.e.,

τn�m = (. . . ((τm←)m−1←) . . .)n+1← and

ηn�m(k) = (. . . ((ηm←)m−1←) . . .)n+1←(k).

Example 4.11. Note that if we have m = n, then it holds that τn�m = τ and ηn�m = η.
If τ = t1, t2, . . . , t|τ |, then for i, n,m ∈ N with n < m ≤ |τ |, and i ≤ |τ |, it is

τi← = t1, . . . , ti−2, ti, ti−1, ti+1, . . . , t|τ |, and

τn�m = t1, . . . , tn−1, tm, tn, tn+1, . . . , tm−1, tm+1, . . . , t|τ |.

/

Finally, we show that swapping a transition of a thread with a transition of a different
thread, gives us a schedule that reaches the same state as the original schedule. We leave
the formal proof for Section 4.6.
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Proposition 4.14. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . For every i ∈ N, if 1 < i ≤ |τ | and η(i−1) 6= η(i),
then the following holds:

1. τi← is a steady schedule applicable to σ,

2. ηi← is a decomposition of σ and τi←, and τi←|ηi←,j = τ |η,j, for every j ∈ Θ(σ, τ, η),

3. τi←(σ) = τ(σ).

Consequently, the same holds if we apply the previous proposition multiple times.

Proposition 4.15. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . If for n,m ∈ N holds that 1 ≤ n ≤ m ≤ |τ | and
η(m) 6= η(i), for every i with n ≤ i < m, then

1. τn�m is a steady schedule applicable to σ,

2. ηn�m is a decomposition of σ and τn�m, and τn�m|ηn�m,j = τ |η,j, for every
j ∈ Θ(σ, τ, η),

3. τn�m(σ) = τ(σ).

Proof. This statement is a consequence of Proposition 4.14 applied inductively m− n
times, as Definition 4.9 suggests. In the case when m = n, the statement is trivially
satisfied.

The previous reasoning helps us to move one whole thread in a certain way.

Proposition 4.16. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . Fix an i ∈ Θ(σ, τ, η). Let us denote

τ∗ = τ ′ · τ |η,i · τ ′′,

such that τ ′ is a possibly empty prefix of τ which contains no transitions from τ |η,i, and
τ ′ · τ ′′ = τ |η,N\{i}. Then we have the following:

1. τ∗ is a steady schedule applicable to σ,

2. there exists a decomposition η∗ of σ and τ∗ such that τ∗|η∗,l = τ |η,l, for every
l ∈ Θ(σ, τ, η).

3. τ∗(σ) = τ(σ).
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Proof Sketch: We enumerate all transitions from τ |η,i, for example, τ |η,i = tn1 , tn2 , . . . , tnk
,

for 1 ≤ n1 < n2 < · · · < nk ≤ |τ |. Thus, τ ′ = t1, . . . , ts, for 0 ≤ s < n1. The idea is that
we move transitions from τ |η,i, one by one, to the left, namely tn1 to the place (s+ 1) in
τ , then tn2 to the place s+ 2, and so on, by repeatedly applying Proposition 4.14, that
preserves the required properties. Formally, τ∗ = (. . . ((τs+1�n1)s+2�n2) . . .)s+k�nk

.

Inductively, we prove in details in Section 4.6 that all three requirements hold.

Special cases of Proposition 4.16 allow us to single out threads. Proposition 4.17 and
Proposition 4.18 are such special cases, and they will be crucial for finding witnessing
threads later in Section 4.3.1 and Section 4.3.2, respectively.

Proposition 4.17. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . If i ∈ Θ(σ, τ, η), and we denote

τ∗ = τ |η,i · τ |η,N\{i},

then the following holds:

1. τ∗ is a steady schedule applicable to σ,

2. there exists a decomposition η∗ of σ and τ∗ such that τ∗|η∗,l = τ |η,l, for every
l ∈ Θ(σ, τ, η),

3. τ∗(σ) = τ(σ).

Proof. This Proposition is a special case of Proposition 4.16, when τ ′ is the empty
schedule.

Proposition 4.18. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . Fix i, j ∈ Θ(σ, τ, η). If τ |η,j can be written as
τ |1η,j · τ |2η,j, for some schedules τ |1η,j and τ |2η,j, and if we denote

τ∗ = τ |1η,j · τ |η,i · τ |2η,j · τ |η,N\{i,j},

then the following holds:

1. τ∗ is a steady schedule applicable to σ,

2. there exists a decomposition η∗ of σ and τ∗ such that τ∗|η∗,i = τ |η,i and τ∗|η∗,j =
τ |η,j, and

3. τ∗(σ) = τ(σ).
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Proof. Firstly, we apply Proposition 4.17 for configuration σ, schedule τ , decomposition η
and j ∈ Θ(σ, τ, η). Then we obtain schedule ρ = τ |η,j ·τ |η,N\{j} and decomposition ηρ of σ
and ρ. Then we apply Proposition 4.16 for configuration σ, schedule ρ, decomposition
ηρ, i ∈ Θ(σ, τ, η), and a prefix τ |1η,j of ρ (as τ ′ from the proposition).

Until now, we discussed when transitions can be moved. In Chapter 3, the goal of this
moving is to transform a schedule into a representative schedule that reaches the same final
configuration (cf. Example 4.2). These representative schedules are highly accelerated,
and their length can be bounded. We recall how these representative schedules are
constructed in Chapter 3, but with our restrictions on loops, this procedure becomes
simplified. Next, Proposition 4.21 establishes that representatives maintain an important
trace property.

Constructing Representative Schedules. Given a configuration σ, and a steady
schedule τ applicable to σ, srep[σ, τ ] is generated from τ by repeatedly swapping two
neighboring transitions t1 and t2 if [t2] ≺lin

C [t1] until no more such transitions exist. Then
all neighboring transitions that belong to the same rule are merged into a single (possibly
accelerated) transition.

Then the transitions belonging to loops are replaced by a quite involved construction from
Section 3.4. As discussed in Section 2.1, in this chapter we consider the restriction that
loops are simple. Hence, we can have a simplified construction: Assume for some j, the
rules r1, r2, . . . , rj build a loop, and assume τloop is a subschedule of τ that contains all
transitions of this particular loop in τ . Let σ0 and σend be two configurations defined such
that σend = τloop(σ0). In order to construct a representative of τ , we need to replace τloop
using the following steps:

1. first we construct τ ′ = (r1, f1), (r2, f2), . . . , (rj , fj), (r1, fj+1), (r2, fj+2), . . . , (rj , f2j)
with the acceleration factors obtained as follows:

• If r1, . . . , rj appear in τloop: inductively assigning values to the acceleration
factors fi, for 1 ≤ i ≤ 2j as follows:
– for 1 ≤ i ≤ j:
fi = σi−1.κ[ri.from]−min(σ0.κ[ri.from], σend.κ[ri.from])
and for ti = (ri, fi), we get σi = ti(σi−1)

– for j + 1 ≤ i ≤ 2j:
fi = σi−1.κ[ri−j .from]− σend.κ[ri−j .from] and
for ti = (ri, fi), we obtain σi = ti(σi−1)

• otherwise, that is, if some rules are missing in the schedule, then we set their
acceleration factors to zero. Note that due to the missing rules, the loop falls
apart into several independent chains. Each of this chains is a subschedule
of τ ′, we just have to sum up the acceleration factors for the present rules.
Formally, we proceed in two steps: First, if ri is not present in τloop, and for all
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k < i, rk is present in τloop then f` = 0, for all l that satisfy l ≤ i or l ≥ j + i.
Second, for l with i < l ≤ j, the factor fl is the sum of the acceleration factors
of transitions in τloop with the rule rl. For l with j < l < i+ j, fl is the sum
of the acceleration factors of transitions in τloop with the rule rl−j .

2. τ ′′ is obtained from τ ′ by removing all transitions with zero acceleration factors

3. we replace τloop with τ ′′.

By this construction, every location that is non-empty at the beginning and at the end
of τloop, must also be non-empty in every visited configuration of its representative.

Proposition 4.19. Let τloop be a schedule applicable to σ0 that consists of transitions
whose rules all belong to the same loop. For all ` ∈ L, if σ0.κ[`] > 0 and τloop(σ0).κ[`] > 0,
then Cfgs(σ0, srep[σ0, τloop]) |= κ[`] > 0.

In this way, in contrast to the representatives from Section 3.4, here srep[σ, τ ] contains a
subset of the rules of τ but ordered according to the linear extension ≺lin

C of the control
flow of the automaton. Thus, from the above construction we directly obtain:

Proposition 4.20. Let σ be a configuration and let τ be a steady schedule applicable
to σ. The rules contained in transitions of srep[σ, τ ] are a subset of the rules contained
in transitions of τ .

From Proposition 4.2, we know that we can replace a schedule by its representative,
and maintain the same final state. In the following propositions, we show that the
representative schedule also maintains non-zero counters.

Proposition 4.21. Let σ be a configuration, and let τ be a steady schedule applicable to σ.
For every ` ∈ L, it holds that Cfgs(σ, τ) |= κ[`] > 0 implies Cfgs(σ, srep[σ, τ ]) |= κ[`] > 0.

Proof. Schedule srep[σ, τ ] is constructed by first swapping transitions and then reducing
loops. We first show that swapping maintains κ[`] > 0, and then that reducing loops
does so, too.

Consider the sub-path σi−1, ti, σi, ti+1, σi+1 of one schedule in the construction and
σi−1, ti+1, σ′i, ti, σi+1 be the path obtained by swapping. Assume by ways of contradiction
that σi−1.κ[`] > 0, σi.κ[`] > 0, and σi+1.κ[`] > 0, but σ′i.κ[`] = 0. As κ[`] reduces from
σi−1 to σ′i, we get ti+1.from = `. By similar reasoning on σ′i and σi+1 we obtain ti.to = `.
It thus holds that ti ≺P ti+1, which contradicts that these transitions are swapped in the
construction of srep[σ, τ ].

Let . . . , σ, τ, σ′, . . . be the path before the loops are replaced and τ consist of all the
transition belonging to one loop. From the above paragraph we know that σ.κ[`] > 0
and σ′.κ[`] > 0. We may thus apply Proposition 4.19 and the proposition follows.
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Discussion. For threshold-guarded fault-tolerant algorithms, the restrictions we put
on threshold automata are well justified. In this chapter we used the assumption that all
the cycles in threshold automata are simple. In fact this assumption is a generalization
of the TAs we found in our benchmarks. In Chapter 3 we do not make this assumption.
As a consequence, we have to explicitly treat contexts (the guards that currently evaluate
to true), which lead to context-specific representative schedules. Our restriction allows
us to use only one way to construct simple representative schedules (cf. Section 4.3). In
addition, with this restriction, we can easily prove Proposition 4.20, while this proposition
is not true under the assumptions in Chapter 3, since there we often introduce new
transitions. We conjecture that even without this restriction, a proposition similar
to our Proposition 4.21 can be proven, so that our results can be extended. As our
analysis already is quite involved, these restrictions allow us to concentrate on our central
results without obfuscating the notation and theoretical results. Still, from a theoretical
viewpoint it might be interesting to lift the restrictions on loops and obtain results
similar to canonical automata in Chapter 3. Note that more general forms of loops were
investigated in [KKW18] for reachability properties.

We have now seen how to construct simple representative schedules. In the following
Sections 4.3.1 to 4.3.3, we will see how we can construct representative schedules that
maintain different forms of temporal properties.

4.3.1 Representative Schedules that maintain ∨
i∈Locs κ[i] 6= 0

Maintaining formulas of the shape ∨i∈Locs κ[i] 6= 0 means preserving the existence of
a process in one of the critical states, that is a state from Locs. Our strategy for
constructing representatives in this case is quite complex, as it requires finding a witness
for the non-emptiness. This witness depends on the features of the existing threads in a
schedule. Here we define all possible types of threads in a schedule, and illustrate them
intuitively in Figure 4.8.

Definition 4.10 (Thread Types). Let σ be a configuration, τ be a schedule applicable to
σ, ϑ = t1, . . . , tn be a thread of σ and τ , first(ϑ) = t1.from, last(ϑ) = tn.to, middle(ϑ) =
{ti.to : 1 ≤ i < n}, and Locs ⊆ L. We say that ϑ is of Locs-type:

• A, if {first(ϑ), last(ϑ)} ∪middle(ϑ) ⊆ Locs;

• B, if first(ϑ) ∈ Locs, last(ϑ) 6∈ Locs;

• C, if first(ϑ) 6∈ Locs, last(ϑ) ∈ Locs;

• D, if first(ϑ) 6∈ Locs, last(ϑ) 6∈ Locs, middle(ϑ) ∩ Locs 6= ∅;

• E, if first(ϑ) ∈ Locs, last(ϑ) ∈ Locs, middle(ϑ) * Locs;

• F , if ({first(ϑ), last(ϑ)} ∪middle(ϑ)) ∩ Locs = ∅.
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A) . . .

B) . . .

C) . . .

D) . . .

E) . . .

F) . . .

Figure 4.8: We graphically illustrate all six Locs-types of threads. Nodes represent (not
necessarily different) local states visited by the thread, and the gray nodes are locations
that belong to Locs. The leftmost location of each thread ϑ is first(ϑ), and the rightmost
one is last(ϑ).

Example 4.12. Let us consider the threshold automaton from Figure 4.4, and the subset
of local states Locs = {`2}. Schedule (r4, 1) is of Locs-type B, schedule (r6, 1), (r2, 1) is
of Locs-type C, and (r1, 1), (r4, 1) is of Locs-type D. /

Proposition 4.22. Given a configuration σ, a schedule τ applicable to σ, and a subset
of local states Locs, every thread ϑ of σ and τ is of exactly one Locs-type.

Proof. We consider an arbitrary thread ϑ of σ and τ . There are two possibilities for
first(ϑ), namely, first(ϑ) ∈ Locs or first(ϑ) 6∈ Locs, and similarly for last(ϑ), last(ϑ) ∈ Locs
or last(ϑ) 6∈ Locs. Combining these possibilities, we obtain four cases:

• Assume first(ϑ) ∈ Locs and last(ϑ) ∈ Locs. If middle(ϑ) ⊆ Locs, then ϑ is of
Locs-type A. Otherwise, if middle(ϑ) * Locs, then ϑ is of Locs-type E.

• If first(ϑ) ∈ Locs and last(ϑ) 6∈ Locs, then ϑ is of Locs-type B.

• If first(ϑ) 6∈ Locs and last(ϑ) ∈ Locs, then ϑ is of Locs-type C.

• Finally, assume first(ϑ) 6∈ Locs and last(ϑ) 6∈ Locs. If middle(ϑ) ∩ Locs 6= ∅, then ϑ
is of Locs-type D. Otherwise, if middle(ϑ) ∩ Locs = ∅, then ϑ is of Locs-type F .

In the following proposition we see the benefit of our simplified construction of represen-
tatives (in comparison to Chapter 3), allowed by the loop restriction. Namely, we show
that the representative of a thread of Locs-type A is still a thread of Locs-type A.

Proposition 4.23. Let σ be a configuration, and let τ be a steady conventional schedule
applicable to σ. If there exists a decomposition η of σ and τ that satisfies |Θ(σ, τ, η)| = 1,
and if τ is of Locs-type A, then srep[σ, τ ] is a thread of Locs-type A.
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Proof. By definition of a thread, the transitions in τ are ordered by the flow relation ≺P.
Due to our restriction of loops and the construction of representative schedules, srep[σ, τ ]
does not contain rules that are not contained in τ . Hence, no new intermediate states
are added in the construction of srep[σ, τ ] which proves the proposition.

Moreover, a process that moves along a thread of Locs-type A is a witness that there is
always a process in the critical section Locs.

Proposition 4.24. Let σ be a configuration, and let τ be a steady conventional schedule
applicable to σ. Fix a set Locs ⊆ L. If there exists a decomposition η of σ and τ that
satisfies |Θ(σ, τ, η)| = 1 and τ is of Locs-type A, then we have that

Cfgs(σ, srep[σ, τ ]) |=
∨

`∈Locs
κ[`] 6= 0.

Proof. Let srep[σ, τ ] = t1, . . . , tn, for an n ∈ N. Since τ is of Locs-type A, by Proposi-
tion 4.23, srep[σ, τ ] is of Locs-type A, which yields that for all 1 ≤ i ≤ n both ti.from
and ti.to are in Locs.

• Since srep[σ, τ ] is applicable to σ, it must be the case that σ |= κ[`∗] 6= 0, where
`∗ = t1.from ∈ Locs.

• If τ ′ = t1, . . . , tk, 1 ≤ k ≤ n, is a nonempty prefix of srep[σ, τ ], then, by definition
of a counter system from Section 2.2, we have that τ ′(σ).κ[tk.to] > 0, and also
tk.to ∈ Locs.

Therefore, Cfgs(σ, srep[σ, τ ]) |= ∨
`∈Locs κ[`] 6= 0.

If a decomposition gives no threads of Locs-type A, then finding a witness for non-
emptiness of Locs is nontrivial. The following lemma suggests a new direction if the last
location of a thread is in Locs. It claims that after executing a thread in a path, its last
state remains non-empty.

Lemma 4.25. Let σ be a configuration, let τ be a steady conventional schedule applicable
to σ, and let η be a decomposition of σ and τ . If k ∈ Θ(σ, τ, η) and n ∈ N are such that
tn is the last transition from τ |η,k, that is, n is the maximal number with η(n) = k, then
for every prefix τ ′ of τ , of length |τ ′| ≥ n, we have that τ ′(σ).κ[`] 6= 0, for ` = last(τ |η,k).

Proof. Fix a prefix τ ′ of τ of length at least n. Then, by Proposition 4.10, η is a
decomposition of σ and τ ′. Note that k ∈ Θ(σ, τ ′, η), and τ |η,k = τ ′|η,k. Therefore
τ ′|η,k.to = τ |η,k.to = tn.to. Proposition 4.11, when applied to τ ′, yields

τ ′(σ).κ[tn.to] = σ.κ[tn.to]
+ |{i : i ∈ Θ(σ, τ ′, η) ∧ τ ′|η,i.to = tn.to}|

− |{i : i ∈ Θ(σ, τ ′, η) ∧ τ ′|η,i.from = tn.to}|
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By Definition 4.8, we have that σ.κ[tn.to]− |{i : i ∈ Θ(σ, τ ′, η) ∧ τ ′|η,i.from = tn.to}| ≥ 0.
Since η(n) = k ∈ {i : i ∈ Θ(σ, τ ′, η) ∧ τ ′|η,i.to = tn.to}, we conclude that |{i : i ∈
Θ(σ, τ ′, η) ∧ τ ′|η,i.to = tn.to}| ≥ 1. Thus τ ′(σ).κ[tn.to] ≥ 1.

Previous lemma yields a witness after a thread has been executed. The following lemma
tells us what happens before a thread is executed. Namely, the first location of a thread
is non-empty in every configuration before executing the thread. This gives us a witness
when the first state is in Locs.

Lemma 4.26. Let σ be a configuration, let τ be a steady conventional schedule applicable
to σ, and let η be a decomposition of σ and τ . If k ∈ Θ(σ, τ, η) and n ∈ N are such that
tn is the first transition from τ |η,k, i.e., n is the minimal number with η(n) = k, then for
every prefix τ ′ of τ , of length |τ ′| < n, we have that τ ′(σ).κ[`] 6= 0, for ` = first(τ |η,k).

Proof. By repeated application of Proposition 4.14, the first transition of τ |η,k can be
moved to the beginning of the schedule. Applying Proposition 4.13 to the resulting
schedule proves this lemma.

In order to be sure that Cfgs(σ, τ) |= ∨
`∈Locs κ[`] 6= 0, we need a witness for the whole

path, and not only before or after a certain thread. Thus, we have to combine threads.
We prove that this is possible even in the non-trivial case, that is, when there is no a
single local state ` ∈ Locs that is non-empty in every configuration from Cfgs(σ, τ). First
we show which threads we are guaranteed to have in this case. The detailed proof can be
found in Section 4.6.1.

Proposition 4.27. Let σ be a configuration, let τ = t1, . . . , t|τ | be a nonempty steady
conventional schedule applicable to σ, and let η be a decomposition of σ and τ . Fix a set
Locs of local states. If there is no local state ` ∈ Locs such that Cfgs(σ, τ) |= κ[`] 6= 0, but
it holds that Cfgs(σ, τ) |= ∨

`∈Locs κ[`] 6= 0, then at least one of the following cases is true:

1. There is at least one thread of σ and τ , which is of Locs-type A;

2. There is a thread of Locs-type B or E, and an additional of Locs-type C or E;

3. There is a thread of Locs-type E, and one of Locs-type D.

Applying thread types. Now when we know which threads we can have, we consider
them one by one. Proposition 4.17 and Proposition 4.18 come to play here, as they allow
us to move threads in a convenient way.

If there is a thread of Locs-type A and if we move it to the beginning of its schedule,
then by Lemma 4.25 even after executing it, there is a witness that Locs is non-empty.
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Proposition 4.28. Let σ be a configuration, let τ be a steady conventional schedule
applicable to σ, and let η be a decomposition of σ and τ . Fix a set Locs of local states,
and an i ∈ Θ(σ, τ, η). If τ |η,i is a thread of Locs-type A, and if we denote `∗ = last(τ |η,i),
then `∗ ∈ Locs, and

Cfgs(τ |η,i(σ), τ |η,N\{i}) |= κ[`∗] 6= 0.

Proof. Firstly note that τ |η,i · τ |η,N\{i} is a steady schedule applicable to σ, and τ |η,i ·
τ |η,N\{i}(σ) = τ(σ), by Proposition 4.17. Let τ ′ be a prefix of τ |η,N\{i}. Then τ |η,i · τ ′ is
a prefix of τ |η,i · τ |η,N\{i} of length l ≥ |τ |η,i|. By Lemma 4.25, it is τ |η,i · τ ′(σ).κ[`∗] 6= 0,
where `∗ = last(τ |η,i). As τ |η,i is of Locs-type A, then `∗ ∈ Locs.

Next we look for the witnesses of non-emptiness of Locs when we are given one thread of
Locs-type either B or E, and an additional one of Locs-type either C or E.

Proposition 4.29. Let σ be a configuration, let τ be a steady conventional schedule
applicable to σ, let η be a decomposition of σ and τ , and let Locs be a subset of L. If
i, j ∈ Θ(σ, τ, η) are such that i 6= j, τ |η,i is a thread of Locs-type B or E, and τ |η,j is a
thread of Locs-type C or E, then it holds that

1) Cfgs(σ, τ |η,j) |= κ[`1] 6= 0, for `1 = first(τ |η,i) ∈ Locs,

2) Cfgs(τ |η,j(σ), τ |η,N\{j}) |= κ[`2] 6= 0, for `2 = last(τ |η,j) ∈ Locs.

Proof. Firstly note that τ |η,j · τ |η,N\{j} is a steady schedule applicable to σ, and τ |η,j ·
τ |η,N\{j}(σ) = τ(σ), by Proposition 4.17.

1) Let τ ′ be a prefix of τ |η,j . Note that in this case τ ′ is a prefix of τ |η,j · τ |η,N\{j} of
length l ≤ |τ |η,j |. From Lemma 4.26 we obtain τ ′(σ) |= κ[`1] 6= 0, where `1 = first(τ |η,i).
Since τ |η,i is of type B or E, we have that `1 ∈ Locs.

2) Let τ ′ be a prefix of τ |η,N\{j}. In this case, τ |η,j · τ ′ is a prefix of τ |η,j · τ |η,N\{j} of
length l ≥ |τ |η,j |. By Lemma 4.25 we have that τ |η,j · τ ′(σ) |= κ[`2] 6= 0, or, equivalently,
τ ′(τ |η,j(σ)) |= κ[`2] 6= 0, where `2 = last(τ |η,j). Since τ |η,j is of Locs-type C or E, then
`2 ∈ Locs.

And finally, we find witnesses also in the case when there is a thread of Locs-type E, and
a thread of Locs-type D.

Proposition 4.30. Let σ be a configuration, let τ be a steady conventional schedule
applicable to σ, and let η be a decomposition of σ and τ . Fix a subset Locs of L. For
i, j ∈ Θ(σ, τ, η), let τ |η,i be a thread of Locs-type E, and let τ |η,j be a thread of Locs-type
D. Let us write τ |η,j as τ |1η,j · τ |2η,j, where last(τ |1η,j) ∈ Locs. If we denote

τ∗ = τ |1η,j · τ |η,i · τ |2η,j · τ |η,N\{i,j},

then we obtain that
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1. Cfgs(σ, τ |1η,j) |= κ[`1] 6= 0, for `1 = first(τ |η,i) ∈ Locs,

2. Cfgs(τ |1η,j(σ), τ |η,i) |= κ[`2] 6= 0, for `2 = last(τ |1η,j) ∈ Locs,

3. Cfgs(τ |1η,j · τ |η,i(σ), τ |2η,j · τ |η,N\{i,j}) |= κ[`3] 6= 0, for `3 = last(τ |η,i) ∈ Locs.

Proof. By Proposition 4.18, τ∗ is a steady schedule applicable to σ, τ∗(σ) = τ(σ), and
there exists a decomposition η∗ of σ and τ∗ such that τ |η,i = τ∗|η∗,i and τ |η,j = τ∗|η∗,j .
Let l1 = |τ |1η,j | and l2 = |τ |η,i|.

1) Let τ ′ be a prefix of τ |1η,j , and therefore a prefix of τ∗ of length l ≤ l1. By Lemma 4.26,
we have that τ ′(σ) |= κ[`1] 6= 0, where `1 = first(τ |η,i). Since τ |η,i is of Locs-type E, it is
`1 ∈ Locs.

2) Let τ ′ be a prefix of τ |η,i. Then τ |1η,j · τ ′ is a prefix of τ |1η,j · τ |η,i of length l ≥ l1. We
apply Lemma 4.25 for the configuration σ, the schedule τ |1η,j ·τ |η,i, and the decomposition
η∗. With the decomposition η∗, schedule τ |1η,j is a thread of σ and τ |1η,j · τ |η,i, and
therefore from Lemma 4.25 we obtain that τ |1η,j · τ ′(σ) |= κ[`2] 6= 0, or, equivalently,
τ ′(τ |1η,j(σ)) |= κ[`2] 6= 0, where `2 = last(τ |1η,j). From the construction of τ |1η,j follows
that `2 ∈ Locs.

3) Let τ ′ be a prefix of τ |2η,j · τ |η,N\{i,j}. Then τ ′′ = τ |η,i · τ ′ is a prefix of τ∗1 =
τ |η,i · τ |2η,j · τ |η,N\{i,j} of length l ≥ l2. We define a naming η1 of τ |1η,j(σ) and τ∗1 , for every
n ∈ N, as follows:

η1(n) = η∗(n+ l1).

Note that η1 is a decomposition of τ |1η,j(σ) and τ∗1 , and τ∗1 |η1,i = τ∗|η∗,i = τ |η,i. We apply
Lemma 4.25 for the configuration τ |1η,j(σ), the schedule τ∗1 , and the decomposition η1,
and obtain that for the prefix τ ′′ of τ∗1 holds τ ′′(τ |1η,j(σ)).κ[`3] ≥ 1, or, equivalently,

τ ′(τ |η,i(τ |1η,j(σ))).κ[`3] ≥ 1,

where `3 = last(τ∗1 |η1,i) = last(τ |η,i). Again, as τ |η,i is of Locs-type E, then `3 ∈ Locs.

Constructing representative schedules. We first consider building a representa-
tive for the trivial case, when there is a location that is globally non-empty in a path. It
remains non-empty in the representative path, and therefore, the representative maintains
the required property.

Proposition 4.31. Let σ be a configuration, and let τ be a steady conventional schedule
applicable to σ. Fix a set Locs ⊆ L. If there exist a local state `∗ ∈ Locs such that
Cfgs(σ, τ) |= κ[`∗] 6= 0, then

Cfgs(σ, srep[σ, τ ]) |=
∨

`∈Locs
κ[`] 6= 0.
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Proof. If there is a local state `∗ ∈ Locs such that Cfgs(σ, τ) |= κ[`∗] 6= 0, then we
have Cfgs(σ, srep[σ, τ ]) |= κ[`∗] 6= 0, by Proposition 4.21. Therefore, Cfgs(σ, srep[σ, τ ]) |=∨
`∈Locs κ[`] 6= 0.

When constructing a representative schedule, a standard strategy is to find representatives
of its subschedules, and concatenate them.

Proposition 4.32. Let σ be a configuration, let τ = τ1 · . . . · τn, for n ≥ 1, be a steady
conventional schedule applicable to σ. Fix a set Locs ⊆ L. If we denote

τ∗ = srep[σ, τ1] · srep[τ1(σ), τ2] · . . . · srep[τ1 · . . . · τn−1(σ), τn],

then the following holds:

a) τ∗ is applicable to σ, and τ∗(σ) = τ(σ),

b) |τ∗| ≤ 2 · n · |R|.

Proof. Firstly note that for every k with 1 ≤ k ≤ n, τk is a steady conventional schedule
applicable to τ1 · . . . · τk−1(σ). Therefore, by Proposition 4.2, for every k with 1 ≤ k ≤ n
holds that

• srep[τ1 · . . . · τk−1(σ), τk] is applicable to τ1 · . . . · τk−1(σ),

• srep[τ1 · . . . · τk−1(σ), τk](τ1 · . . . · τk−1(σ)) = τk(τ1 · . . . · τk−1(σ)) = τ1 · . . . · τk(σ),

• |srep[τ1 · . . . · τk−1(σ), τk]| ≤ 2 · |R|.

The first two observations imply the statement a), and the third one implies b).

This allows us to construct representatives that maintain formula ∨`∈Locs κ[`] 6= 0
whenever subschedules are either of Locs-type A, or if there is a witness during their
execution, as it was the case in Propositions 4.28–4.30.

Proposition 4.33. Fix a set Locs ⊆ L. Let σ be a configuration, let τ1 · . . . · τn, for
n ≥ 1, be a steady conventional schedule applicable to σ, and let ψ ≡ ∨`∈Locs κ[`] 6= 0. If
for every k with 1 ≤ k ≤ n holds at least one of the following:

a) τk is a thread of σ and τ1 · . . . · τn, of Locs-type A,

b) Cfgs(τ1 · . . . · τk−1(σ), τk) |= κ[`] 6= 0, for some ` ∈ Locs,

then Cfgs(σ, τ∗) |= ψ, for τ∗ = srep[σ, τ1] · srep[τ1(σ), τ2] · . . . · srep[τ1 · . . . · τn−1(σ), τn].
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Proof. For every k, 1 ≤ k ≤ n, we know that τk is a steady conventional schedule
applicable to τ1 · . . . · τk−1(σ). We prove the statement by showing that for every k with
1 ≤ k ≤ n holds that

Cfgs(τ1 · . . . · τk−1(σ), srep[τ1 · . . . · τk−1(σ), τk]) |= ψ.

If we fix one such k, then there are two cases:

• If τk is a thread of σ and τ1 · . . . · τn of Locs-type A, then Proposition 4.24 yields
the required.

• If there exists an ` ∈ Locs such that Cfgs(τ1 · . . . · τk−1(σ), τk) |= κ[`] 6= 0, then by
Proposition 4.21 we know that Cfgs(τ1 · . . . · τk−1(σ), srep[τ1 · . . . · τk−1(σ), τk]) |=
κ[`] 6= 0, which implies the required.

Bringing it all together. Let us now prove that we can always find a representative
schedule of bounded length that maintains ∨`∈Locs κ[`] 6= 0. A complete proof of the
following theorem is in Section 4.6.1.

Theorem 4.34. Fix a threshold automaton TA = (L,V,R,RC ), and a set Locs ⊆ L.
Let σ be a configuration such that ω(σ) = Ω, and let ψ ≡ ∨`∈Locs κ[`] 6= 0. Then for
every steady conventional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there is a
steady schedule repr∨[ψ, σ, τ ] with the properties:

a) repr∨[ψ, σ, τ ] is applicable to σ, and repr∨[ψ, σ, τ ](σ) = τ(σ),

b) |repr∨[ψ, σ, τ ]| ≤ 6 · |R|,

c) Cfgs(σ, repr∨[ψ, σ, τ ]) |= ψ,

d) there exist τ1, τ2 and τ3, (not necessarily nonempty) subschedules of τ , such that
τ1 · τ2 · τ3 is applicable to σ, it holds that τ1 · τ2 · τ3(σ) = τ(σ), and

repr∨[ψ, σ, τ ] = srep[σ, τ1] · srep[τ1(σ), τ2] · srep[τ1 · τ2(σ), τ3].

Proof Sketch: Proposition 4.27 provides us with a case distinction. To prove the theorem,
for each of the cases we construct a representative schedule. We do so by repeatedly
using Proposition 4.14, to reorder transitions in the following way: In Case 1 we move
the thread of Locs-type A to the beginning of the schedule. Then, the representative
schedule is obtained by applying Proposition 4.2 to the thread of Locs-type A and then
to the rest. In Case 2 we move the thread of Locs-type C or E to the beginning, and
again apply Proposition 4.2 to the thread and the rest. Case 3 is the most involved
construction. A prefix of the Locs-type D thread is moved to the beginning followed by
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the complete Locs-type E thread. Proposition 4.2 is applied to the prefix, the thread and
the rest. In the trivial case, when the assumption of the proposition is not satisfied, that
is, if there is a local state ` ∈ Locs such that Cfgs(σ, τ) |= κ[`] 6= 0, then we just apply
Proposition 4.2 to τ .

4.3.2 Representative Schedules maintaining ∧Locs∈Y
∨
i∈Locs κ[i] 6= 0

The construction we give in this section requires us to apply the same schedule twice.
We confirm that we can do that by proving in Proposition 4.35 that if a counterexample
exists in a small system, there also exists one in a bigger system. In the context of
counter systems we formalize this using a multiplier:

Definition 4.11 (Multiplier). A multiplier µ of a threshold automaton is a number µ ∈ N,
such that for every guard ϕ, if (σ.κ, σ.g, σ.p) |= ϕ, then also (µ · σ.κ, µ · σ.g, µ · σ.p) |= ϕ,
and µ · σ.p ∈ PRC .

For specific pathological threshold automata, such multipliers may not exist. However,
all our benchmarks have multipliers, and as can be seen from the definitions, existence of
multipliers can easily be checked using simple queries to SMT solvers in preprocessing.

Definition 4.12. If σ is a configuration, and µ ≥ 1 is a multiplier, then we define µσ
to be the configuration with (µσ).κ = µ · σ.κ, (µσ).g = µ · σ.g, and (µσ).p = µ · σ.p. If τ
is a conventional schedule, we define µτ = τ · . . . · τ︸ ︷︷ ︸

µ times
.

Let us present some properties of a multiplied system.

Proposition 4.35. Let σ1, σ′1 and σ2 be configurations, let τ be a steady conventional
schedule applicable to σ1 and σ2, and let ` be an arbitrary local state. If a multiplier is
µ > 1, then the following holds:

1. µτ is applicable to µσ1, and if τ(σ1) = σ′1 then µτ(µσ1) = µσ′1,

2. for every propositional formula ψ, if σ |= ψ, then µσ |= ψ,

3. if σ1.κ[`] < σ2.κ[`], then τ(σ1).κ[`] < τ(σ2).κ[`],

4. if σ1.κ[`] > 0 then µσ1.κ[`] > σ1.κ[`].

Proof. All properties follow directly from the definition of a counter system.

Proposition 4.36. Let σ be a configuration, let τ be a steady conventional schedule
applicable to σ, and let ψ be a propositional formula. If µ is a multiplier and if Cfgs(σ, τ) |=
ψ, then Cfgs(µσ, µτ) |= ψ.
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Proof. Paths Cfgs(σ, τ) and Cfgs(µσ, µτ) are trace equivalent by Proposition 4.35 (1)
and (2). Therefore, by [BK08, Corollary 3.8], they satisfy the same linear temporal
properties.

Following a similar argument as in the previous cases, namely by cutting a schedule
to convenient subschedules, gives us a strategy for constructing representatives that
maintain formula ∧1≤m≤n

∨
`∈Locsm

κ[`] 6= 0.

Theorem 4.4. Fix a threshold automaton TA = (L,V,R,RC ) that has a finite mul-
tiplier µ, and a configuration σ. For an n ∈ N, fix sets of locations Locsm ⊆ L for
1 ≤ m ≤ n. If we have

ψ =
∧

1≤m≤n

∨
`∈Locsm

κ[`] 6= 0,

then for every steady conventional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there
exists a schedule repr∧∨[ψ, µσ, µτ ] with the following properties:

a) The representative is applicable and ends in the same final state: repr∧∨[ψ, µσ, µτ ]
is a steady schedule applicable to µσ, and repr∧∨[ψ, µσ, µτ ](µσ) = µτ(µσ),

b) The representative has bounded length: |repr∧∨[ψ, µσ, µτ ]| ≤ 4 · |R|,

c) The representative maintains the formula ψ, i.e., Cfgs(µσ, repr∧∨[ψ, µσ, µτ ]) |= ψ,

d) The representative is a concatenation of two representative schedules srep from
Proposition 4.2:

repr∧∨[ψ, µσ, µτ ] = srep[µσ, τ ] · srep[τ(µσ), (µ− 1)τ ].

Proof Sketch: To prove the theorem, we use the schedule µτ . As in the previous cases, we
divide it into two parts, namely to τ and (µ− 1)τ , and then apply Proposition 4.2 to both
of them separately. For the proof, we use statements (3) and (4) from Proposition 4.35.
Detailed proof is in Section 4.6.2.

4.3.3 Representative Schedules maintaining ∧i∈Locs κ[i] = 0

This case is the simplest one, so that srep[σ, τ ] from Section 4.3 can directly be used as
representative schedule.

Theorem 4.37. Fix a threshold automaton TA = (L,V,R,RC ), and a configuration σ.
If we have that

ψ ≡
∧

i∈Locs
κ[i] = 0,

for Locs ⊆ L, then for every steady schedule τ applicable to σ, and with Cfgs(σ, τ) |= ψ,
schedule srep[σ, τ ] satisfies:
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a) srep[σ, τ ] is applicable to σ, and srep[σ, τ ](σ) = τ(σ),

b) |srep[σ, τ ]| ≤ 2 · |R|,

c) Cfgs(σ, srep[σ, τ ]) |= ψ.

Proof. Since Cfgs(σ, τ) |= ψ, we know that for every transition t from τ and for every
local state ` ∈ Locs it holds t.from 6= ` and t.to 6= `. Let repr∨[ψ, σ, τ ] = srep[σ, τ ].
By Proposition 4.20, srep[σ, τ ] contains a subset of the rules that appear in τ . Hence,
repr∨[ψ, σ, τ ] does not change counters of states in Locs. Other properties follow from
Proposition 4.2

4.3.4 Proof of the Central Theorem 4.3

Now we are ready to prove our main theorem, given in Section 4.1.3, that we recall here:

Theorem 4.3. Let TA = (L,V,R,RC ) be a threshold automaton, and let Locs ⊆ L
be a set of locations. Let σ be a configuration, let τ be a steady conventional schedule
applicable to σ, and let ψ be one of the following formulas:

∨
`∈Locs

κ[`] 6= 0, or
∧

`∈Locs
κ[`] = 0.

If all configurations visited by τ from σ satisfy ψ, i.e., Cfgs(σ, τ) |= ψ, then there is a
steady representative schedule repr[ψ, σ, τ ] with the following properties:

a) The representative is applicable, and ends in the same final state: repr[ψ, σ, τ ] is
applicable to σ, and repr[ψ, σ, τ ](σ) = τ(σ),

b) The representative has bounded length: |repr[ψ, σ, τ ]| ≤ 6 · |R|,

c) The representative maintains the formula ψ, i.e., Cfgs(σ, repr[ψ, σ, τ ]) |= ψ,

d) The representative is a concatenation of three representative schedules srep from
Proposition 4.2: there exist τ1, τ2 and τ3, (possibly empty) subschedules of τ , such
that τ1 · τ2 · τ3 is applicable to σ, and it holds that (τ1 · τ2 · τ3)(σ) = τ(σ), and

repr[ψ, σ, τ ] = srep[σ, τ1] · srep[τ1(σ), τ2] · srep[(τ1 · τ2)(σ), τ3].

The theorem follows from Theorem 4.34 and 4.37.
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4.4 Application of the Short Counterexample Property
and Experiments

4.4.1 SMT Encoding

We use the theoretical results from Section 4.1.3 and Section 4.3 to give an efficient
encoding of lasso-shaped executions in SMT with linear integer arithmetic.

We encode the lassos in SMT using the same idea as in the previous chapter in Section 3.7.2.
Namely, given a schedule τ , we encode in linear integer arithmetic the paths that follow
this schedule from an initial state as follows:

E(τ) ≡ init(0) ∧ T (0, 1) ∧ T (1, 2) ∧ . . . ,

where init(0) is the predicate describing the initial state, and T (i− 1, i) encodes the i-th
transition in τ .

If τ encodes a lasso shape, and the SMT solver reports a satisfying assignment, this
assignment is a counterexample. If the SMT solver reports unsatisfiability of the formula
on all lassos discussed in Section 4.2.3, then there does not exist a counterexample and
the algorithm is verified.

Example 4.13. In Example 2.8 we have seen the fairness requirement ψfair, which is
a property of a configuration that can be encoded as fair(i) ≡ κi1 = 0 ∧ (xi ≥ t+ 1 →
κi0 = 0 ∧ κi1 = 0) ∧ (xi ≥ n− t→ κi0 = 0 ∧ κi2 = 0), which is a formula in linear integer
arithmetic. Then, e.g., fair(5) encodes that the fifth configuration satisfies the predicate.
Such state formulas can be added as conjunct to the formula E(τ) that encodes a path. /

As discussed in Sections 4.2 and 4.2.3 we have to encode lassos of the form ϑ · ρω starting
from an initial configuration σ. We immediately obtain a finite representation by encoding
the fixed length execution E(ϑ · ρ) as in Section 3.7.2, and adding the constraint that
applying ρ returns to the start of the lasso loop, that is, ϑ(σ) = ρ(ϑ(σ)). In SMT this is
directly encoded as equality on integer variables.

4.4.2 Generating the SMT Queries

The high-level structure of the verification algorithm is given in Figure 4.1 on page 76.
In this section, we give the details of the procedure check_one_order, whose pseudo
code is given in Figure 4.9. It receives as the input the following parameters: a threshold
automaton TA, an ELTLFT formula ϕ, a cut graph G of ϕ, a threshold graph H of TA,
and a topological order ≺ on the vertices of the graph G ∪ H.

The procedure check_one_order constructs SMT assertions about the configurations
of the lassos that correspond to the order ≺. Similarly as in Section 3.7.2, an ith
configuration is defined by the vectors of SMT variables (κi,gi,p). We use two global
variables: the number fn of the configuration under construction, and the number fs of
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1 variables fn, fs; // the current configuration number and the loop start
2 // Try to find a witness lasso for: a threshold automaton TA,
3 // an ELTLFT formula ϕ, a cut graph G, a threshold graph H, and
4 // a topological order ≺ on the nodes of G ∪ H.
5 procedure check_one_order(TA, ϕ, G, H, ≺):
6 fn := 0; fs := 0;
7 SMT_start(); // start (or reset) the SMT solver
8 assume(can(ϕ) = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1);
9 SMT_assert(κ0,g0,p |= init(0) ∧ ψ0 ∧ ψk+1);
10 v0 := min≺(VG ∪ VH); // the minimal node w.r.t. the linear order ≺
11 check_node(G, H, ≺, v0, ψk+1, ∅);
12
13 // Try to find a witness lasso starting with the node v and the context Ω,
14 // while preserving the invariant ψinv.
15 recursive procedure check_node(G, H, ≺, v, ψinv, Ω):
16 if not SMT_sat() then:
17 return no_witness;
18 case (a) v ∈ VG \ {loopstart, loopend}:
19 find ψ s.t. 〈Fψ, v〉 ∈ T (ϕ); // v labels a formula in the syntax tree
20 assume(ψ = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1);
21 SMT_assert(κfn,gfn,p |= ψ0);
22 push_segment(ψinv ∧ ψk+1);
23 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
24 check_node(G, H, ≺, v′, ψinv ∧ ψk+1, Ω);
25 case (b) v ∈ VH \ {loopstart, loopend}: // v is a threshold guard
26 if v ∈ Φrise then: // v is an unlocking guard, e.g., x ≥ t+ 1− f
27 push_segment(ψinv); // one rule unlocks v
28 SMT_assert(κfn,gfn,p |= v); // v is unlocked
29 push_segment(ψinv); // execute all unlocked rules
30 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
31 check_node(G, H, ≺, v′, ψinv, Ω ∪ {v});
32 else: /∗ v ∈ Φfall, e.g., x < f , similar to the locking case: use ¬v ∗/
33 case (c) v = loopstart:
34 fs := fn; // the loop starts at the current configuration
35 push_segment(ψinv); // execute all unlocked rules
36 v′ := min≺(VG ∪ VH) ∩ {w : v ≺ w}; // the next node after v
37 check_node(G, H, ≺, v′, ψinv, Ω);
38 case (d) v = loopend:
39 SMT_assert(κfn = κfs ∧ gfn = gfs); // close the loop
40 if SMT_sat() then:
41 return witness(SMT_model())
42
43 // Encode a segment of rules as prescribed by [KVW15] and Theorems 4.3–4.4.
44 procedure push_segment(ψinv):
45 // find the number of schedules to repeat in (d) of Theorems 4.3, 4.4
46 nrepetitions := compute_repetitions(ψinv);
47 r1, . . . , rk := compute_rules(Ω); // use sschemaΩ from [KVW15]
48 for _ from 1 to nrepetitions:
49 for j from 1 to k:
50 SMT_assert(κfn,gfn,p |= ψinv);
51 SMT_assert(T (fn, rj));
52 fn := fn + 1; // move to the next configuration

Figure 4.9: Checking one topological order with SMT.
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the configuration that corresponds to the loop start. Thus, with the expressions κfn and
gfn we refer to the SMT variables of the configuration whose number is stored in fn.
In the pseudocode in Figure 4.9, we call SMT_assert(κfn, gfn, p |= ψ) to add an
assertion ψ about the configuration (κfn,gfn,p) to the SMT query. Finally, the call
SMT_sat() returns true, only if there is a satisfying assignment for the assertions
collected so far. Such an assignment can be accessed with SMT_model() and gives the
values for the configurations and acceleration factors, which together constitute a witness
lasso.
The procedure check_one_order creates the assertions about the initial configurations.
The assertions consist of: the assumptions init(0) about the initial configurations of
the threshold automaton, the top-level propositional formula ψ0, and the invariant
propositional formula ψk+1 that should hold from the initial configuration on. By writing
assume(ψ = ψ0 ∧ F ∧ ψ1 . . .Fψk ∧ Gψk+1), we extract the subformulas of a canonical
formula ψ (see Section 4.2.1). The procedure finds the minimal node in the order ≺ on
the nodes of the graph G ∪ H and calls the procedure check_node for the initial node,
the initial invariant ψk+1, and the empty context ∅.
The procedure check_node is called with a node v of the graph G ∪ H as a parameter.
It adds assertions that encode a finite path and constraints on the configurations of
this path. The finite path leads from the configuration that corresponds to the node v
to the configuration that corresponds to v’s successor in the order ≺. The constraints
depend on v’s origin: (a) v labels a formula Fψ in the syntax tree of ϕ, (b) v carries a
threshold guard from the set Φrise∪Φfall, (c) v denotes the loop start, or (d) v denotes the
loop end. In case (a), we add an SMT assertion that the current configuration satisfies
the propositional formula prop(ψ) (line 21), and add a sequence of rules that leads to
v’s successor while maintaining the invariants ψinv of the preceding nodes and the v’s
invariant ψk+1 (line 22). In case (b), in line 27, we add a sequence of rules, one of which
should unlock (resp. lock) the threshold guard in v ∈ Φrise (resp. v ∈ Φfall). Then, in
line 29, we add a sequence of rules that leads to a configuration of v’s successor. All
added configurations are required to satisfy the current invariant ψinv . As the threshold
guard in v is now unlocked (resp. locked), we include the guard (resp. its negation) in
the current context Ω. In case (c), we store the current configuration as the loop start in
the variable fs and, as in (a) and (b), add a sequence of rules leading to v’s successor.
Finally, in case (d), we should have reached the ending configuration that coincides with
the loop start. To this end, in line 39, we add the constraint that forces the counters of
both configurations to be equal. At this point, all the necessary SMT constraints have
been added, and we call SMT_sat to check whether there is an assignment that satisfies
the constraints. If there is one, we report it as a lasso witnessing the ELTLFT-formula ϕ
that consists of: the concrete parameter values, the values of the counters and shared
variables for each configuration, and the acceleration factors. Otherwise, we report that
there is no witness lasso for the formula ϕ.
The procedure push_segment constructs a sequence of currently unlocked rules, as in
the case of reachability from Chapter 3. However, this sequence should be repeated several
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Figure 4.10: The plots summarize the following results of running our implementation
on all benchmarks: used time in seconds (top left), used memory in megabytes (top
right), the number of checked lassos (bottom left), time used both by our implementation
and [KVW15] to check safety only (bottom right). Several occurrences of the same
benchmark correspond to different cases, such as f > 1, f = 1, and f = 0. Symbols �
and � correspond to the safety properties of each benchmark, while symbols � and ♦
correspond to the liveness properties.

times, as required by Theorems 4.3 and 4.4. Moreover, the freshly added configurations
are required to satisfy the current invariant ψinv .

4.4.3 Experiments

Negations of the safety and liveness specifications of our benchmarks—written in ELTLFT —
follow three patterns: unsafety E (p ∧ F q), non-termination E (p ∧ GF r ∧ G q), and
non-response E (GF r ∧ F (p ∧ G q)). The propositions p, q, and r follow the syntax
of pform (cf. Table 2.1), e.g., p ≡ ∧`∈Locs1 κ[`] = 0 and q ≡ ∨`∈Locs2 κ[`] 6= 0 for some
sets of locations Locs1 and Locs2.

The results of these experiments are summarized in Figure 4.10. Given the properties
of the distributed algorithms found in the literature, we checked for each benchmark
one or two safety properties (depicted with � and �) and one or two liveness properties
(depicted with � and ♦). For each benchmark, we display the running times and the
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memory used together by ByMC and the SMT solver Z3 [MB08], as well as the number
of exercised lasso shapes as discussed in Section 4.2.3.

For safety properties, we also show the comparison of this implementation against the
initial implementation presented in the conference paper [KVW15]. The results are
summarized the bottom right plot in Figure 4.10, which shows that there is no clear
winner. For instance, this implementation is 170 times faster on BOSCO for the case
n > 5t. However, for the benchmark ABA we experienced a tenfold slowdown. In these
experiments, attempts to improve the SMT encoding for liveness usually impaired safety
results.

This implementation has verified safety and liveness of all ten parameterized algorithms
in less than a day. Moreover, the tool reports counterexamples to liveness of CF1S and
BOSCO exactly for the cases predicted by the distributed algorithms literature, i.e.,
when there are not enough correct processes to reach consensus in one communication
step. Noteworthy, liveness of only the two simplest benchmarks (STRB and FRB) had
been automatically verified before [JKS+13a].

4.5 Detailed Proofs for Section 4.2

Proposition 4.1. Given a threshold automaton TA and an ELTLFT formula ϕ, if
Sys(TA) |= Eϕ, then there are an initial configuration σ1 ∈ I and a schedule τ · ρω
with the following properties:

(a) the path satisfies the formula: path(σ1, τ · ρω) |= ϕ,

(b) application of ρ forms a cycle: ρk(τ(σ1)) = τ(σ1) for k ≥ 0.

Proof. We do not give details on Büchi automata and the construction by Vardi and
Wolper, since this construction is well-known and can be found in the original pa-
per [VW86] as well as in a number of textbooks, e.g., [CGP99][Ch. 9] and [BK08][Ch. 5].

Using the construction from [VW86], we translate the formula ϕ into a Büchi automaton
B = (AP, Q,∆, Q0, F ), which has a finite set Q of states, a finite set Q0 ⊆ Q of initial
states, a finite set F of accepting states, a finite alphabet AP of atomic propositions
(which corresponds to the propositional formulas derived from pform), and the transition
relation ∆ ⊆ Q×AP×Q. The key property is that the automaton B recognizes exactly
those sequences of propositions that satisfy the formula ϕ.

Let (Σ, I, R) be the counter system Sys(TA) as defined in Section 2.2. The system
Sys(TA) is a transition system, so following [VW86] we can construct the product Büchi
automaton Sys(TA)⊗B that corresponds to the synchronous product of Sys(TA) and B.
Formally, Sys(TA)⊗B is the Büchi automaton (AP, QP ,∆P , Q

0
P , FP ) defined as follows:
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• The set of states QP is the Cartesian product (Σ ∪ {ι}) × Q, where ι 6∈ Σ is a
dummy configuration, which is used to delay initialization of the counter system by
one step.

• The set of initial states Q0
P is the Cartesian product {ι} ×Q0.

• The set of accepting states FP is the Cartesian product Σ× F .

• The transition relation ∆P includes the following triples:

– an initial transition ((ι, q0), p, (σ, q)) for q0 ∈ Q0, σ ∈ I, and q ∈ Q such that
(q0, p, q) ∈ ∆ and σ |= p.

– a transition ((σ, q), p, (σ′, q′)) for q, q′ ∈ Q and σ, σ′ ∈ Σ such that (q, p, q′) ∈ ∆
and σ′ |= p.

A run of the product automaton is an infinite sequence (ι, q0), (σ1, q1), . . . , (σi, qi), . . .
such that ((ι, q0), p0, (σ1, q1)) ∈ ∆ and ((σi, qi), pi, (σi+1, qi+1)) ∈ ∆ for i ≥ 1 and some
propositions p0, p1, · · · ∈ AP. The run is accepting, if there is a state (σj , qj) ∈ FP that
appears infinitely often in the run.

In contrast to [VW86], the product automaton Sys(TA)⊗B has infinitely many states.
However, by Proposition 2.2, every path of Sys(TA) visits only finitely many states, and
thus every run of the product automaton visits finitely many states too. Hence, in each
run there are finitely many accepting states. Due to this, and since, by assumption,
Sys(TA) |= Eϕ, the product has an accepting run (ι, q0), (σ1, q1), . . . , (σi, qi), . . . with
state (σj , qj) ∈ FP appearing infinitely often for some j ≥ 1. Hence, there is an index
k ≥ 0 such that (σj+k+1, qj+k+1) = (σj , qj). Consequently, we construct a lasso run by
taking the sequence of states (ι, q0), (σ1, q1), . . . , (σj−1, qj−1) as a prefix and the sequence
(σj , qj), . . . , (σj+k, qj+k) as a loop, which is repeated infinitely. This lasso run is also an
accepting run of the product automaton.

It is immediate from the construction, that the infinite sequence of configurations
σ1, . . . , σj−1, (σj , . . . , σj+k)ω corresponds to a path of Sys(TA) starting from an initial
configuration σ1 ∈ I, and this path satisfies the formula ϕ. Thus, there are schedules
τ = t1, . . . , tj−1 and ρ = tj , . . . , tj+k such that:

1. Schedule τ is applicable to σ1 and the prefixes of τ visit the intermediate configura-
tions:

(t1, . . . , ti)(σ1) = σi for 1 ≤ i < j,

2. Schedule ρ is applicable to σj , the prefixes of ρ visit the intermediate configurations,
and ρ closes the loop:

(tj , . . . , tm)(σj) =
{
σm, when j ≤ m < j + k

σj , when m = j + k.
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The infinite schedule τ · ρω is the required schedule. Indeed, path(σ1, τ · ρω) |= ϕ and
ρi(τ(σ1)) = τ(σ1) for i ≥ 0.

In this particular proof we use Büchi automata, but not in the rest of the thesis. Since
ELTLFT uses only the temporal operators F and G , we found it much easier to reason
about the structure of ELTLFT formulas directly (in the spirit of [EVW02]) and then
apply path reductions, rather than constructing the synchronous product of a Büchi
automaton and of a counter system and then finding proper path reductions.

Proposition 4.6. Let ϕ be an ELTLFT formula, σ be a configuration and τ ·ρω be a lasso
schedule applicable to σ such that path(σ, τ · ρω) |= ϕ holds. There is a constant K ≥ 0
and a cut function ζ such that for every 〈Fψ,w〉 ∈ G(T (ϕ)) if ζ(w) cuts (τ · ρK) · ρ into
π′ and π′′, then ψ is satisfied at the cut point, that is, path(π′(σ), π′′ · ρω) |= ψ.

Proof. For each node 〈Fψ,w〉 ∈ T (ϕ), we define an extreme appearance EA(w) as
follows:

1. If there is an index k ∈ {|τ |, . . . , |τ |+ |ρ| − 1} such that k cuts τ · ρ in τ · ρ′ and ρ′′,
and it holds that path((τ · ρ′)(σ), ρ′′ · ρω) |= ψ, then we set EA(w) to the maximal
such k ≥ |τ |.

2. Otherwise, we set EA(w) to the maximal k < |τ | such that k cuts τ in τ ′, τ ′′ and
path(τ ′(σ), τ ′′ · ρω) |= ψ. (Such k exists, as the case 1 does not apply, it holds
path(σ, τ · ρω) |= Fψ, and since temporal formulas are connected only with the
conjunction ∧.)

Consider a topologically ordered sequence v1, v2, . . . , v|VG | of the vertices of the cut
graph G(T (ϕ)) = (VG , EG), that is, the condition (vi, vj) ∈ EG implies i < j for 1 ≤ i, j ≤
|VG |. Such a sequence exists, since the graph G(T (ϕ)) is a directed acyclic graph. Let
` ∈ {1, . . . , |VG |} be the index of the node loopstart, i.e., v` = loopstart.

We unroll the loop K = `− 1 times. Formally, for 1 ≤ i ≤ |VG |, we set the cut point ζ(vi)
as follows:

ζ(vi) =



|τ |+ |ρ| ·K, if vi = loopstart
|τ |+ |ρ| · (K + 1)− 1, if vi = loopend
EA(vi), if EA(vi) < |τ |
EA(vi) + |ρ| · (i− 1), if i < ` and |τ | ≤ EA(vi)
EA(vi) + |ρ| ·K, if i ≥ `

It is easy to see that ζ satisfies Definition 4.4. By the construction of extreme appearances,
for a node 〈Fψ,w〉, the formula ψ is satisfied at the extreme appearance EA(w). Since
ζ(w)−EA(w) = |ρ| · i for some i ≥ 0, it follows that if ζ(w) cuts (τ · ρK) · ρω into π′ and
π′′, then path(π′(σ), π′′ · ρω) |= ψ holds.
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Lemma 4.38. Let σ be a configuration, τ ·ρω be a lasso schedule applicable to σ, and ϕ be
an ELTLFT formula. If an index k < |τ | cuts τ into π′ and π′′ and Cfgs(π′(σ), π′′ · ρ) |= ϕ
holds, then path(π′(σ), π′′ · ρω) |= Gϕ holds.

Proof. From Cfgs(π′(σ), π′′ · ρ) |= ϕ, we immediately conclude that two subsets of
Cfgs(π′(σ), π′′ · ρ) also satisfy ϕ:

Cfgs(π′(σ), π′′) |= ϕ (4.3)
Cfgs(τ(σ), ρ) |= ϕ (4.4)

Since τ · ρω is a lasso schedule, we have ρi(τ(σ)) = τ(σ) for i ≥ 0. From this and
Equation (4.4), we conclude that path(τ(σ), ρω) |= Gϕ holds. By combining this with
Equation (4.3), we arrive at the required property path(π′(σ), π′′ · ρω) |= Gϕ.

Lemma 4.39. Let σ be a configuration, τ · ρω be a lasso schedule applicable to σ, and ϕ
be an ELTLFT formula. If an index k : |τ | ≤ k < |τ |+ |ρ| cuts τ · ρ into π′ and π′′ and
Cfgs(τ(σ), ρ) |= ϕ holds, then path(π′(σ), π′′ · ρω) |= Gϕ holds.

Proof. Since τ · ρω is a lasso schedule, we have ρi(τ(σ)) = τ(σ) for i ≥ 0. Thus,
Cfgs(τ(σ), ρ) |= ϕ implies path(τ(σ), ρω) |= Gϕ. As path(π′(σ), π′′ · ρω) is a subsequence
of path(τ(σ), ρω), we arrive at path(π′(σ), π′′ · ρω) |= Gϕ.

Theorem 4.7. Let σ be a configuration, τ · ρω be a lasso applicable to σ, and ϕ be
an ELTLFT formula. If there is a witness of path(σ, τ · ρω) |= ϕ, then the lasso τ · ρω
satisfies ϕ, that is path(σ, τ · ρω) |= ϕ.

Proof. Let the cut graph G(T (ϕ)) be (VG , EG). We start with defining the notion of the
parent cutpoint for a formula that has the form Gψ. Given a tree node 〈Gψ, u.j〉 ∈ T (ϕ)
with ψ 6= true, we denote with p-node(u.j) the parent node 〈ψ′, u〉 ∈ T (ϕ). (By the
definition of a canonical syntax tree, the formula Gψ alone cannot be the formula of the
root node.) Note that the id u always points to either the root node, or a node of the
form 〈Fψ′′, u〉 for some formula ψ′′ ∈ ELTLFT. We define the parent cutpoint as follows:

p-cutpoint(w) =
{
ζ(u), when u ∈ VG , w = u.j for some j ∈ N0,

0, otherwise.

We prove the following statements about the intermediate tree nodes using structural
induction on the tree T (ϕ):

(i) for a node 〈Gψ,w〉 with ψ 6= true, if p-cutpoint(w) cuts τ · ρ into π′ and π′′, then
path(π′(σ), π′′ · ρω) |= Gψ.

(ii) for a node 〈Fψ,w〉, if ζ(w) cuts τ · ρ into π′ and π′′, then path(π′(σ), π′′ · ρω) |= ψ.
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Based on this we finally prove

(iii) for the root node 〈can(ϕ), 0〉 ∈ T (ϕ), it holds that path(σ, τ · ρω) |= can(ϕ).

which establishes the theorem.

Proving (i). Fix a tree node 〈Gψ,w〉 with ψ 6= true. Let p-cutpoint(w) cut τ · ρ into
π′ and π′′. We have to show that path(π′(σ), π′′ · ρω) |= Gψ. Since ψ 6= true, by the
definition of a canonical formula, ψ has the form ψ0 ∧ Fψ1 . . .Fψk ∧ G true for some
k ≥ 0, a propositional formula ψ0 and canonical formulas ψ1, . . . , ψk. It is sufficient to
show that: (a) π′(σ) |= Gψ0, and (b) path(π′(σ), π′′ · ρω) |= GFψi for 1 ≤ i ≤ k.

To show (a), we consider three cases:

1. Case: p-node(w) is the root and ϕ is not of the form F (. . . ). Then can(ϕ) = · · ·∧Gψ,
and by Condition (C1) of Definition 4.5, we have Cfgs(σ, τ ·ρ) |= prop(ψ). As τ ·ρω
is a lasso, i.e., (τ · ρk(σ)) = τ(σ) for k ≥ 0, we have that σ |= G prop(ψ). From this,
and prop(ψ) = ψ0, we conclude that π′(σ) |= Gψ0, as p-cutpoint(w) = 0 and thus
π′ is the empty schedule.

2. Case: p-node(w) = 〈Fψ′′, u〉 for some ψ′′ ∈ ELTLFT and u ∈ Nω0 , and ζ(u) < |τ |. In
this case, ψ′′ = · · · ∧ Gψ. By Condition (C2) of Definition 4.5, Cfgs(π′(σ), π′′) |=
prop(ψ). By noticing prop(ψ) = ψ0 and applying Lemma 4.38, we have path(π′(σ), π′′·
ρω) |= Gψ0.

3. Case: p-node(w) = 〈Fψ′′, u〉 for some ψ′′ ∈ ELTLFT and u ∈ Nω0 , and |τ | ≤ ζ(u) <
|τ | + |ρ|. In this case, ψ′′ = · · · ∧ Gψ. By Condition (C3) of Definition 4.5,
Cfgs(τ(σ), ρ) |= prop(ψ). By noticing prop(ψ) = ψ0 and applying Lemma 4.39, we
arrive at path(π′(σ), π′′ · ρω) |= Gψ0.

To show (b), we fix an index i : 1 ≤ i ≤ k and prove path(π′(σ), π′′ · ρω) |= GFψi. Let wi
be the node id of the ψ’s subformula Fψi in the syntax tree T (ϕ). Note that 〈Fψi, wi〉 is
covered by a G -node, since it is created from a subformula of Gψ. Thus, (loopstart, wi) ∈
EG , and by the definition of the cut function ζ, we have ζ(wi) ≥ ζ(loopstart) ≥ |τ |.
Let ζ(wi) cut τ · ρ in τ · β′ and β′′. By the inductive hypothesis, Point (ii) holds for the
tree node wi, and thus path((τ · β′)(σ), β′′ · ρω) |= ψi holds. Since τ · ρω is a lasso-shaped
schedule, we have τ(σ) = (τ · ρj)(σ) for j ≥ 0, that is, the state τ(σ) occurs infinitely
often in the path path((τ · β′)(σ), β′′ · ρω). Hence, we arrive at:

path((τ · β′)(σ), β′′ · ρω) |= GFψi, for 1 ≤ i ≤ k.

From (a) and (b), and the standard LTL property (GA) ∧ (GB)⇒ G (A ∧B), Point (i)
follows for the tree node 〈Gψ,w〉.
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Proving (ii). Fix a tree node 〈Fψ,w〉, and let ζ(w) cut τ · ρ into π′ and π′′. We have
to show that path(π′(σ), π′′ · ρω) |= ψ holds.

By the definition of a canonical formula, ψ has the form ψ0∧Fψ1∧· · ·∧Fψk∧Gψk+1 for
some k ≥ 0, a propositional formula ψ0, canonical formulas ψ1, . . . , ψk, and a formula ψk+1
that is either a canonical formula, or equals true. We will show that: (a) π′(σ) |= ψ0,
and (b) path(π′(σ), π′′ · ρω) |= Gψk+1, and (c) path(π′(σ), π′′ · ρω) |= Fψi for 1 ≤ i ≤ k.
From (a)–(c), the required statement immediately follows.

To show (a), we notice that there are two cases: ζ(w) < |τ |, or ζ(w) ≥ |τ |. In these cases,
either Assumption ((C2)) or Assumption ((C3)) implies that π′(σ) |= ψ0.

To show (b), we focus on the case ψk+1 6= true, as the case ψk+1 = true is trivial. Notice
that by the definition of the syntax tree T (ϕ), the subformula Gψk+1 has the id w.j for
j = k+ 1, and thus p-cutpoint(w.j) = ζ(w). Thus, (b) follows directly from the inductive
hypothesis (i), which has already been shown to hold for the tree node 〈Gψk+1, w.j〉.

To show (c), fix an index i ∈ {1, . . . , k}. Let ζ(w.i) cut τ ·ρ into β′ and β′′. The inductive
hypothesis (ii) has been shown to hold for the tree node 〈Fψi, w.i〉 ∈ T (ϕ), and thus we
have:

path(β′(σ), β′′ · ρω) |= ψi. (4.5)

We consider three cases, based on whether w and w.i are covered by a G -node:

1. Case: neither w, nor w.i is covered by a G -node. By the definition of the cut graph,
(w,w.i) ∈ EG , and thus by the definition of the cut function ζ, it holds that ζ(w) ≤
ζ(w.i). From this and Equation (4.5), it follows that path(π′(σ), π′′ · ρω) |= Fψi.

2. Case: w.i is covered by a G -node. By the definition of the cut graph, the node w.i
has to be inside the loop: (loopstart, w.i) ∈ EG . Consequently, by the definition of the
cut function ζ, it holds that ζ(w.i) ≥ |τ |. Let β′l be the suffix of β′ inside the loop,
i.e., β′ = τ · β′l. As τ · ρω is a lasso-shaped schedule, we have (τ · ρ · β′l)(σ) = β′(σ).
Consequently, we can advance one iteration of the loop and derive the following
from Equation (4.5):

path((τ · ρ · β′l)(σ), β′′ · ρω) |= ψi (4.6)

Notice that in Equation (4.6) we use τ · ρ · β′′l , not τ · ρ. The definition of ζ requires
that ζ(w) < |τ |+ |ρ|. Since |τ · ρ| ≤ |τ · ρ · β′l|, we have ζ(w) ≤ |τ · ρ · β′l|, that is,
the formula ψi is satisfied at the state (τ · ρ · β′l)(σ) that either coincides with the
state π′(σ) or occurs after the state π′(σ) in the path path(π′(σ), π′′ · ρω). From
this and Equation (4.6), we conclude that path(π′(σ), π′′ · ρω) |= Fψi holds.

3. Case: w is covered by a G -node, while w.i is not. This case is impossible, since the
node with id w.i is the child of the node with id w in the syntax tree T (ϕ).

From (a)–(c), Point (ii) follows for the tree node 〈Fψ,w〉.
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Proving (iii). Let can(ϕ) ≡ ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1, for some k ≥ 0, a
propositional formula ψ0, canonical formulas ψ1, . . . , ψk, and a formula ψk+1 that is
either a canonical formula, or equals to true. We have to show path(σ, τ · ρω) |= can(ϕ).
To this end, we will show that: (a) σ |= ψ0, and (b) path(σ, τ · ρω) |= Gψk+1, and
(c) path(σ, τ ·ρω) |= Fψi for 1 ≤ i ≤ k. From (a)–(c), the required statement immediately
follows.

Point (a) follows directly from Condition (C1) of Definition 4.5.

To show (b), we focus on the case ψk+1 6= true, as the case ψk+1 = true is trivial. Notice
that by the definition of the syntax tree T (ϕ), the subformula Gψk+1 has the id 0.j for
j = k + 1, and thus p-cutpoint(0.j) = 0, which cuts τ · ρ into the empty schedule and
τ · ρ itself. Thus, (b) follows directly from the inductive hypothesis (i), which has already
been shown to hold for the tree node 〈Gψk+1, 0.j〉.

To show (c), fix an index i ∈ {1, . . . , k}. Let ζ(0.i) cut τ · ρ into β′ and β′′. The inductive
hypothesis (ii) has been shown to hold for the tree node 〈Fψi, 0.i〉 ∈ T (ϕ), and thus we
have:

path(β′(σ), β′′ · ρω) |= ψi. (4.7)

Since path(β′(σ), β′′ ·ρω) is a suffix of path(σ, τ ·ρω), from Equation (4.7), we immediately
obtain the required statement: path(σ, τ · ρω) |= Fψi.

By collecting Points (a)–(c), we immediately arrive at: path(σ, τ · ρω) |= can(ϕ). By
Definition 4.5, the formula ϕ is equivalent to can(ϕ). This finishes the proof.

Theorem 4.8. Let ϕ be an ELTLFT formula, σ be a configuration and τ · ρω be a lasso
applicable to σ such that path(σ, τ · ρω) |= ϕ holds. There is a witness of path(σ, (τ · ρK) ·
ρω) |= ϕ for some K ≥ 0.

Proof. We apply Proposition 4.6 to find the required numberK ≥ 0 and the cut function ζ.
It remains to show that Conditions (C1)–(C3) of Definition 4.5 are satisfied for the
configuration σ and the lasso (τ · ρK) · ρω.

Showing Condition (C1). This condition does not depend on the structure of ζ. Let
can(ϕ) = ψ0 ∧ Fψ1 ∧ . . .Fψk ∧ Gψk+1. Since path(σ, (τ · ρK) · ρω) |= ϕ, we immediately
have σ |= ψ0 and path(σ, (τ · ρK) · ρω) |= Gψk+1. By the semantics of LTL, the latter
implies that for all configurations σ′ visited by the path path(σ, (τ · ρK) · ρω), it holds
that σ′ |= prop(ψk+1). Since path(σ, (τ · ρK) · ρ) is a subsequence of path(σ, (τ · ρK) · ρω),
we immediately arrive at Cfgs(σ, (τ · ρK) · ρ) |= prop(ψk+1).

Showing Conditions (C2) and (C3). Let ψ = ψ0 ∧ Fψ1 ∧ · · · ∧ Fψk ∧ Gψk+1.
Further, assume that ζ(v) cuts (τ · ρK) · ρ into π′ and π′′. By Proposition 4.6, we have
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path(π′(σ), π′′ · ρω) |= ψ. Thus, we have the following:

path(π′(σ), π′′ · ρω) |= ψ0 (4.8)
path(π′(σ), π′′ · ρω) |= G prop(ψk+1) (4.9)

It remains to prove the specific statements about (C2) and (C3):

1. Case ζ(v) < |τ · ρK |. We have to show Condition (C2).
The path path(π′(σ), π′′) is a subsequence of path(π′(σ), π′′ · ρω). Thus, from
Equation (4.9), we obtain that for every configuration σ′ visited by the finite path
path(π′(σ), π′′), it holds that σ′ |= prop(ψk+1). In other words:

Cfgs(π′(σ), π′′) |= prop(ψk+1) (4.10)

Equations (4.8) and (4.10) give us Condition (C2).

2. Case ζ(v) ≥ |τ ·ρK |. We have to show Condition (C3). In this case, π′ = (τ ·ρK) ·π′l
for some schedule π′l.
Consider the configuration σ′ = (τ ·ρK ·ρ ·π′l)(σ), that is, σ′ is the result of applying
to σ the prefix τ · ρK , one iteration of the loop ρ, and then the first part of the
loop π′l. The configuration σ′ is located at the cut point ζ(v) in the loop, and the
path path(σ′, π′′ · π′l) reaches the same configuration again, i.e., (π′′ · π′l)(σ′) = σ′.
From Equation (4.9), we have that the propositional formula prop(ψk+1) holds on
the path path(σ′, π′′ · π′l). Since both paths path(σ′, π′′ · π′l) and path((τ · ρK)(σ), ρ)
visit all configurations of the loop, we have:

Cfgs((τ · ρK)(σ), ρ) |= G prop(ψk+1) (4.11)

Equations (4.8) and (4.11) give us Condition (C3).

The theorem follows.

4.6 Detailed Proofs for Section 4.3

Let us first present some useful properties of a decomposition.

Proposition 4.12. If σ is a configuration, τ is a steady conventional schedule applicable
to σ, then there exists a decomposition of σ and τ .

Proof. We have to prove the two properties of Definition 4.8. We do so by induction on
the length of τ .
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• |τ | = 1. Let τ = t1 for a transition t1, and let η be the identity function. Then,
τ |η,1 = t1 is a thread and for all i > 1, the sequence τ |η,i is empty. As τ is applicable
to σ, σ.κ[t1.from] ≥ 1.

• |τ | > 1. Let τ = τ ′ · t|τ |, and let η′ be a decomposition of σ and τ ′, which
exists by the induction hypothesis. We distinguish two cases for T = {i : i ∈
Θ(σ, τ ′, η′) ∧ τ ′|η′,i.to = t|τ |.from}:

– If T 6= ∅, then for some j ∈ T let

η(k) =
{
j if k = |τ |
η′(k) otherwise,

that is, we append transition t|τ | to thread j. Therefore, Θ(σ, τ, η) = Θ(σ, τ ′, η′)
and consequently for all ` ∈ L we have {i : i ∈ Θ(σ, τ, η) ∧ τ |η,i.from = `} =
{i : i ∈ Θ(σ, τ ′, η′) ∧ τ ′|η′,i.from = `}. Hence, it follows from the induction
hypothesis that for all ` ∈ L, σ.κ[`] ≥ |{i : i ∈ Θ(σ, τ, η) ∧ τ |η,i.from = `}|.

– If T = ∅, then for some j 6∈ Θ(σ, τ ′, η′) let

η(k) =
{
j if k = |τ |
η′(k) otherwise,

that is, we add a new thread consisting of t|τ | only. From applicability of τ to
σ follows that τ ′(σ).κ[t|τ |.from] ≥ 1. Now from Proposition 4.11 follows that

σ.κ[t|τ |.from] ≥ 1− |T |+ |{i : i ∈ Θ(σ, τ ′, η′) ∧ τ ′|η′,i.from = t|τ |.from}|.

As |T | = 0 in this case and since by construction |{i : i ∈ Θ(σ, τ ′, η′) ∧
τ ′|η′,i.from = t|τ |.from}| = |{i : i ∈ Θ(σ, τ, η) ∧ τ |η,i.from = t|τ |.from}| − 1,
we obtain that σ.κ[t|τ |.from] ≥ |{i : i ∈ Θ(σ, τ, η) ∧ τ |η,i.from = t|τ |.from}| as
required. For the other components of σ.κ, the proposition follows from the
induction hypothesis as Θ(σ, τ, η) = Θ(σ, τ ′, η′) ∪ {j}.

Our goal is to prove Proposition 4.16, that allows us to move a whole thread in a schedule,
while still reaching the same configuration as the original schedule. For that we first need
to prove in the following two propositions, that we are allowed to swap one transition of
a thread, with transitions of different threads.

Proposition 4.13. If σ is a configuration, τ = τ1·ti−1·ti·τ2 is a steady schedule applicable
to σ, η is a decomposition of σ and τ , and η(i− 1) 6= η(i), then τ1(σ).κ[ti.from] ≥ 1.
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Proof. From Proposition 4.11 it follows that

τ1(σ).κ[ti.from] = σ.κ[ti.from] + |{k : τ1|η,k.to = ti.from}| − |{k : τ1|η,k.from = ti.from}|.

We distinguish two cases:

• If ti = τ |η,η(i)[1], that is, if ti is the first transition in a thread, then we have
that |{k : τ |η,k.from = ti.from}| > |{k : τ1|η,k.from = ti.from}|. By assumption,
σ.κ[ti.from] ≥ |{k : τ |η,k.from = ti.from}|. Thus, τ1(σ).κ[ti.from] > |{k : τ1|η,k.to =
ti.from}| ≥ 0, which proves the proposition in this case.

• Otherwise, by Definition 4.8 (2), we have that σ.κ[ti.from] − |{k : τ1|η,k.from =
ti.from}| ≥ 0. Therefore, it holds that τ1(σ).κ[ti.from] ≥ |{k : τ1|η,k.to = ti.from}|.
As τ1 contains the prefix of τ |η,η(i), we find that |{k : τ1|η,k.to = ti.from}| ≥ 1 such
that τ1(σ).κ[ti.from] ≥ 1 as required.

Proposition 4.14. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . For every i ∈ N, if 1 < i ≤ |τ | and η(i−1) 6= η(i),
then the following holds:

1. τi← is a steady schedule applicable to σ,

2. ηi← is a decomposition of σ and τi←, and τi←|ηi←,j = τ |η,j, for every j ∈ Θ(σ, τ, η),

3. τi←(σ) = τ(σ).

Proof. (1) To prove this we have to show that (1a) τ [i] is applicable to τ i−2(σ), and that
(1b) τ [i− 1] is applicable to τ i−2 · τ [i](σ). Point (1) then follows from commutativity of
addition and subtraction on the counters.

1a Since τ is a steady schedule, then it suffices to show that τ i−2(σ).κ[τ [i].from] ≥ 1,
which follows from Proposition 4.13.

1b If τ [i].from 6= τ [i − 1].from, then τ i−2 · τ [i](σ).κ[τ [i − 1].from] ≥ τ i−2(σ).κ[τ [i −
1].from] and the statement follows from applicability of τ to σ. Otherwise, from
applicability of τ to σ for the case τ [i − 1].from = τ [i − 1].to it follows that
τ i−2(σ).κ[τ [i − 1].from] ≥ 1, and for τ [i − 1].from 6= τ [i − 1].to it follows that
τ i−2(σ).κ[τ [i− 1].from] ≥ 2. In both cases the statement follows.

(2) We firstly show that every transition from τi←|ηi←,j is also in τ |η,j . Let τi←[k] be a
transition from τi←|ηi←,j . Thus, ηi←(k) = j. We want to show that τi←[k] is also in τ |η,j .
We consider three cases:
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• If k = i− 1, then τi←[k] = τi←[i− 1] = τ [i] and η(i) = ηi←(i− 1) = ηi←(k) = j. As
η(i) = j, then τ [i] belongs to τ |η,j . Now τ [i] = τi←[k] gives the required.

• If k = i, then τi←[k] = τi←[i] = τ [i − 1] and η(i − 1) = ηi←(i) = ηi←(k) = j. As
η(i− 1) = j, then τ [i− 1] = τi←[k] belongs to τ |η,j .

• If k 6= i − 1 and k 6= i, then by Definition 4.9 we have τi←[k] = τ [k] and η(k) =
ηi←(k) = j. Since η(k) = j, then τ [k] is in τ |η,j . Now τ [k] = τi←[k] gives the
required.

Proving that every transition from τ |η,j is also in τi←|ηi←,j , is analogous to the previous
direction.

Now we know that for every j ∈ Θ(σ, τ, η), schedules τi←|ηi←,j and τ |η,j contain same
transitions. The order of these transitions remains the same, since the only two transitions
with different positions in τ and τi← are adjacent transitions from two different threads.

Now, knowing that η is a decomposition of σ and τ , and that all threads remain the
same, we conclude that ηi← is a decomposition of σ and τi←.

(3) Follows from the step (2) and Proposition 4.11.

Proposition 4.16. Let σ be a configuration, let τ be a steady schedule applicable to σ,
and let η be a decomposition of σ and τ . Fix an i ∈ Θ(σ, τ, η). Let us denote

τ∗ = τ ′ · τ |η,i · τ ′′,

such that τ ′ is a possibly empty prefix of τ which contains no transitions from τ |η,i, and
τ ′ · τ ′′ = τ |η,N\{i}. Then we have the following:

1. τ∗ is a steady schedule applicable to σ,

2. there exists a decomposition η∗ of σ and τ∗ such that τ∗|η∗,l = τ |η,l, for every
l ∈ Θ(σ, τ, η).

3. τ∗(σ) = τ(σ).

Proof. Let us firstly enumerate all transitions from τ |η,i, for example, let τ |η,i =
tn1 , tn2 , . . . , tnk

, for 1 ≤ n1 < n2 < · · · < nk ≤ |τ |. Thus, τ ′ = t1, . . . , ts, for
0 ≤ s < n1. The idea is that we move transitions from τ |η,i, one by one, to the
left, namely tn1 to the place (s + 1) in τ , then tn2 to the place s + 2, and so on, by
repeatedly applying Proposition 4.14, that preserves the required properties. Formally,
τ∗ = (. . . ((τs+1�n1)s+2�n2) . . .)s+k�nk

.

For every j with 1 ≤ j ≤ k, we denote

τj = (. . . ((τs+1�n1)s+2�n2) . . .)s+j�nj and
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ηj = (. . . ((ηs+1�n1)s+2�n2) . . .)s+j�nj .

We prove by induction that for every j, with 1 ≤ j ≤ k, it holds that:

a) τj is a steady schedule applicable to σ,

b) ηj is a decomposition of σ and τj , and τj |ηj ,l = τ |η,l, for every l ∈ Θ(σ, τ, η),

c) τj(σ) = τ(σ).

If j = 1, then τj = τs+1�n1 . Note that η(n1) 6= η(m), for every m with s+ 1 ≤ m < n1,
since tn1 is the first transition in τ |η,i, or in other words, the smallest number mapped to
i by η. Now, as 1 ≤ s+ 1 ≤ n1 ≤ |τ |, the required holds by Proposition 4.15.

Assume that the statement holds for j, and let us show that then it holds for j + 1 as
well. Note that τj+1 = (τj)(s+j+1)�n(j+1) . We show that we can apply Proposition 4.15
to σ, τj , ηj , s + j + 1 and nj+1. By induction hypothesis, τj is a steady schedule
applicable to σ, and ηj is a decomposition of σ and τj . From the assumption that
1 ≤ s + 1 ≤ n1 < n2 < · · · < nk ≤ |τ |, follows that 1 ≤ s + j + 1 ≤ nj+1 ≤ |τ |. By
construction, τj has a form τ ′ · tn1 · tn2 · . . . · tnj · ρ1 · tnj+1 · ρ2, where ρ1 · ρ2 = τ ′′. Note
that no transition from ρ1 is in τ |η,i, which is, by induction hypothesis, same as τj |ηj ,i.
Thus, ηj(nj+1) 6= ηj(m), for every m with s + j + 1 < m ≤ nj+1. Now we can apply
Proposition 4.15, and obtain the required.

4.6.1 Detailed Proofs for Section 4.3.1

Proposition 4.27. Let σ be a configuration, let τ = t1, . . . , t|τ | be a nonempty steady
conventional schedule applicable to σ, and let η be a decomposition of σ and τ . Fix a set
Locs of local states. If there is no local state ` ∈ Locs such that Cfgs(σ, τ) |= κ[`] 6= 0, but
it holds that Cfgs(σ, τ) |= ∨

`∈Locs κ[`] 6= 0, then at least one of the following cases is true:

1. There is at least one thread of σ and τ , which is of Locs-type A;

2. There is a thread of Locs-type B or E, and an additional of Locs-type C or E;

3. There is a thread of Locs-type E, and one of Locs-type D.

Proof. Firstly, if |Θ(σ, τ, η)| = 1, we prove by contradiction that τ must be of Locs-type
A. Namely, if we suppose the opposite, we distinguish three cases:

• If τ is of Locs-type C, D or F , then σ 6|= ∨
`∈Locs κ[`] 6= 0, and therefore Cfgs(σ, τ) 6|=∨

`∈Locs κ[`] 6= 0;

• If τ is of Locs-type B, then τ(σ) 6|= ∨
`∈Locs κ[`] 6= 0, and therefore again Cfgs(σ, τ) 6|=∨

`∈Locs κ[`] 6= 0;

124



4.6. Detailed Proofs for Section 4.3

• If τ is of Locs-type E, and a k, 1 ≤ k < |τ |, is such that tk.to 6∈ Locs, then for the
prefix τ ′ of τ of length k holds that τ ′(σ) 6|= ∨

`∈Locs κ[`] 6= 0.

Thus, for all three options we get a contradiction, which tells us that τ cannot be of any
other type, and leaves the only remaining option: that τ is of Locs-type A. This gives us
the case 1.

Otherwise, if |Θ(σ, τ, η)| ≥ 2, we have two options:

• If one of the threads is of Locs-type A, then this is the case 1.

• If there is no thread of Locs-type A, we consider two possibilities:

– There is a thread τ |η,i of Locs-type E, for some i ∈ Θ(σ, τ, η). Then, by
definition, there is a k ∈ N such that η(k) = i and tk.to 6∈ Locs. Assume
by contradiction that we are not is cases 2. nor 3. Then, among the other
threads, there are no threads of Locs-type A, B, C, D, nor E. In other words,
all the other threads are of Locs-type F . Then the prefix τ ′ of τ of length k
has the property that τ ′(σ) 6|= ∨

`∈Locs κ[`] 6= 0. This is a contradiction with
the assumption that Cfgs(σ, τ) |= ∨

`∈Locs κ[`] 6= 0.
– There is no thread of Locs-type E. Since σ |= ∨

`∈Locs κ[`] 6= 0, there exists
an `′ ∈ Locs such that σ |= κ[`′] 6= 0. From the assumption that Cfgs(σ, τ) 6|=
κ[`′] 6= 0, we obtain that there must exist a thread ϑ1 with first(ϑ1) = `′ ∈ Locs.
Since in this case there are no threads of Locs-type A nor E, this implies that
ϑ1 is of Locs-type B.
Similarly, since τ(σ) |= ∨

`∈Locs κ[`] 6= 0, there exists an `′′ ∈ Locs such that
τ(σ) |= κ[`′′] 6= 0. Now, from the assumption that Cfgs(σ, τ) 6|= κ[`′′] 6= 0, we
obtain that there exists a thread ϑ2 with last(ϑ2) = `′′ ∈ Locs. Thus, ϑ2 is of
Locs-type C, and this case is the case 2.

Therefore, at least one of the given cases is true.

Theorem 4.34. Fix a threshold automaton TA = (L,V,R,RC ), and a set Locs ⊆ L.
Let σ be a configuration such that ω(σ) = Ω, and let ψ ≡ ∨`∈Locs κ[`] 6= 0. Then for
every steady conventional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there is a
steady schedule repr∨[ψ, σ, τ ] with the properties:

a) repr∨[ψ, σ, τ ] is applicable to σ, and repr∨[ψ, σ, τ ](σ) = τ(σ),

b) |repr∨[ψ, σ, τ ]| ≤ 6 · |R|,

c) Cfgs(σ, repr∨[ψ, σ, τ ]) |= ψ,
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d) there exist τ1, τ2 and τ3, (not necessarily nonempty) subschedules of τ , such that
τ1 · τ2 · τ3 is applicable to σ, it holds that τ1 · τ2 · τ3(σ) = τ(σ), and

repr∨[ψ, σ, τ ] = srep[σ, τ1] · srep[τ1(σ), τ2] · srep[τ1 · τ2(σ), τ3].

Proof. We give a constructive proof, and therefore τ1, τ2, τ3 and its properties will be
obvious from the construction.

If there is a local state `∗ ∈ Locs such that Cfgs(σ, τ) |= κ[`∗] 6= 0, by Proposition 4.31 we
have Cfgs(σ, srep[σ, τ ]) |= ψ. Using properties of srep[σ, τ ] described in Proposition 4.2,
we see that the required schedule is

repr∨[ψ, σ, τ ] = srep[σ, τ ].

If this is not the case, and η is a decomposition of σ and τ , then, since Cfgs(σ, τ) |= ψ,
by Proposition 4.27 at least one of the following cases is true:

(1) Assume there is an i ∈ Θ(σ, τ, η) such that τ |η,i is of Locs-type A. We claim that
the required schedule is

repr∨[ψ, σ, τ ] = srep[σ, τ |η,i] · srep[τ |η,i(σ), τ |η,N\{i}].

By Proposition 4.17, τ |η,i · τ |η,N\{i} is a steady schedule applicable to σ, and
τ |η,i · τ |η,N\{i}(σ) = τ(σ). Therefore, we can apply Proposition 4.32 to obtain a)
and b). Since τ |η,i is a thread of σ and τ , of Locs-type A, and by Proposition 4.28
there is an `∗ ∈ Locs such that Cfgs(τ |η,i(σ), τ |η,N\{i}) |= κ[`∗] 6= 0, then c) holds
by Proposition 4.33.

(2) Here we assume there exist i, j ∈ Θ(σ, τ, η) such that i 6= j, τ |η,j is of Locs-type B
or E, and τ |η,i is of Locs-type C or E. We show that the required schedule is

repr∨[ψ, σ, τ ] = srep[σ, τ |η,j ] · srep[τ |η,j(σ), τ |η,N\{j}].

Again, by Proposition 4.17, τ |η,j · τ |η,N\{j} is a steady schedule applicable to σ, and
τ |η,j ·τ |η,N\{j}(σ) = τ(σ). Therefore, we can apply Proposition 4.32 to obtain a) and
b). By Proposition 4.29, there exist `1, `2 ∈ Locs such that Cfgs(σ, τ |η,j) |= κ[`1] 6= 0
and Cfgs(τ |η,j(σ), τ |η,N\{j}) |= κ[`2] 6= 0. Thus, c) holds by Proposition 4.33.

(3) For the last case we assume there exist i, j ∈ Θ(σ, τ, η) such that τ |η,i is of Locs-
type E, and τ |η,j is of Locs-type D. We represent τ |η,j as τ |1η,j · τ |2η,j , where
last(τ |1η,j) ⊆ Locs. With a similar idea as in the previous cases, we show that the
required schedule is

repr∨[ψ, σ, τ ] = srep[σ, τ |1η,j ] ·
·srep[τ |1η,j(σ), τ |η,i] ·
·srep[τ |1η,j · τ |η,i(σ), τ |2η,j · τ |η,N\{i,j}].
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Again, statements a) and b) follow from Proposition 4.18 and Proposition 4.32. By
Proposition 4.30, there exist `1, `2, `3 ∈ Locs such that

– Cfgs(σ, τ |1η,j) |= κ[`1] 6= 0,
– Cfgs(τ |1η,j(σ), τ |η,i) |= κ[`2] 6= 0, and
– Cfgs(τ |1η,j · τ |η,i(σ), τ |2η,j · τ |η,N\{i,j}) |= κ[`3] 6= 0.

Using these three facts and Proposition 4.33, we obtain c).

4.6.2 Detailed Proofs for Section 4.3.2

Theorem 4.4. Fix a threshold automaton TA = (L,V,R,RC ) that has a finite mul-
tiplier µ, and a configuration σ. For an n ∈ N, fix sets of locations Locsm ⊆ L for
1 ≤ m ≤ n. If we have

ψ =
∧

1≤m≤n

∨
`∈Locsm

κ[`] 6= 0,

then for every steady conventional schedule τ , applicable to σ, with Cfgs(σ, τ) |= ψ, there
exists a schedule repr∧∨[ψ, µσ, µτ ] with the following properties:

a) The representative is applicable and ends in the same final state: repr∧∨[ψ, µσ, µτ ]
is a steady schedule applicable to µσ, and repr∧∨[ψ, µσ, µτ ](µσ) = µτ(µσ),

b) The representative has bounded length: |repr∧∨[ψ, µσ, µτ ]| ≤ 4 · |R|,

c) The representative maintains the formula ψ, i.e., Cfgs(µσ, repr∧∨[ψ, µσ, µτ ]) |= ψ,

d) The representative is a concatenation of two representative schedules srep from
Proposition 4.2:

repr∧∨[ψ, µσ, µτ ] = srep[µσ, τ ] · srep[τ(µσ), (µ− 1)τ ].

Proof. We show that the required schedule is

repr∧∨[ψ, µσ, µτ ] = srep[µσ, τ ] · srep[τ(µσ), (µ− 1)τ ].

By the properties of srep[µσ, τ ] and srep[τ(µσ), (µ− 1)τ ] from Proposition 4.2, we see
that repr∧∨[ψ, µσ, µτ ] is a steady schedule applicable to µσ, that repr∧∨[ψ, µσ, µτ ](µσ) =
µτ(µσ), and finally |repr∧∨[ψ, µσ, µτ ]| ≤ 4 · |R|. Now it remains just to show that c)
holds.

For every m ≤ n, we denote ∨`∈Locsm
κ[`] 6= 0 by ψm. Since ψ = ∧

1≤m≤n ψm, we prove
that for every m ≤ n, holds Cfgs(µσ, repr∧∨[ψ, µσ, µτ ]) |= ψm. Let us fix an m ≤ n. Since
Cfgs(σ, τ) |= ψ, it is also true that Cfgs(σ, τ) |= ψm. Therefore, we have that
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• σ |= ψm, which implies that there exist an `1m ∈ Locsm with σ.κ[`1m] ≥ 1, and

• τ(σ) |= ψm, which implies that there is an `2m ∈ Locsm with τ(σ).κ[`2m] ≥ 1.

Now we show that:
i) Cfgs(µσ, τ) |= κ[`1m] ≥ 1, and
ii) Cfgs(τ(µσ), (µ− 1)τ) |= κ[`2m] ≥ 1.

i) Let τ ′ be an arbitrary prefix of τ . From the assumption and Proposition 4.35 (4) we have
that 1 ≤ σ.κ[`1m] < (fσ).κ[`1m]. Then, from Proposition 4.35 (3) we see that τ ′(σ).κ[`1m] <
τ ′(µσ).κ[`1m]. Now, since τ ′ is applicable to σ, and therefore it is τ ′(σ).κ[`1m] ≥ 0, we
obtain that τ ′(µσ).κ[`1m] ≥ 1. Hence, we have Cfgs(µσ, τ) |= κ[`1m] ≥ 1.

ii) Let us denote {i : i ∈ Θ(µσ, τ, η) ∧ τ |η,i.to = `2m} by T , and {i : i ∈ Θ(µσ, τ, η) ∧
τ |η,i.from = `2m} by F . By Proposition 4.11 we have that 0 < τ(σ).κ[`2m] = σ.κ[`2m] +
|T | − |F |. This implies that σ.κ[`2m] > |F | − |T |. By Proposition 4.11, we also obtain

τ(µσ).κ[`2m] = µσ.κ[`2m] + |T | − |F | =
= (µ− 1)σ.κ[`2m] + σ.κ[`2m]− (|F | − |T |),

which combined with σ.κ[`2m] > |F | − |T | yields

(µ− 1)σ.κ[`2m] < τ(µσ).κ[`2m].

Let now τ ′ be an arbitrary prefix of (µ− 1)τ . Using the fact that τ ′ is applicable to
(µ− 1)σ, and Proposition 4.35 (3), we obtain that

0 ≤ τ ′((µ− 1)σ).κ[`2m] < τ ′(τ(µσ)).κ[`2m].

Therefore, we obtain that τ ′(τ(µσ)).κ[`2m] ≥ 1, and hence Cfgs(τ(µσ), (µ− 1)τ) |=
κ[`2m] ≥ 1.

Now, when the statements i) and ii) are proved, we can apply Proposition 4.33 This gives
us that Cfgs(µσ, repr∧∨[ψ, µσ, µτ ]) |= ψm, for an arbitrary m ≤ n, which implies that c)
is true, and concludes the proof.

4.7 Discussion

Although the verification literature predominantly deals with safety, parameterized
verification for liveness properties is of growing interest, and has been addressed mostly
in the context of programs that solve mutual exclusion or dining philosophers [ABEL12,
FKP16, PXZ02, FPPZ06]. These techniques do not apply to fault-tolerant distributed
algorithms that have arithmetic conditions on the fraction of faults, threshold guards,
and typical specifications that evaluate a global system state.

Our main technical contribution is to combine and extend several important techniques:
First, we extend the ideas by Etessami et al. [EVW02] to reason about shapes of
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infinite executions of lasso shape. These executions are counterexample candidates.
Then we extend reductions introduced in [Lip75, EF82] and Chapter 3, to deal with
ELTLFT formulas. (Techniques that extend Lipton’s in other directions can be found
in [CL98, Doe77, LS89, EQT09, FFQ05, KVW17].) Our reduction is specific to threshold
guards which are typical for fault-tolerant distributed algorithms and are found in domain-
specific languages. Besides using this particular reduction, we apply acceleration [BFLP08,
KVW17] in order to arrive at our short counterexample property.

Our short counterexample property implies a completeness threshold, that is, a bound
b that ensures that if no lasso of length up to b is satisfying an ELTLFT formula, then
there is no infinite path satisfying this formula. For linear temporal logic with the F and
G operators, Kroening et al. [KOS+11] prove bounds on the completeness thresholds
on the level of Büchi automata. Their bound involves the recurrence diameter of the
transition systems, which is prohibitively large for counter systems. Similarly, the general
method to transfer liveness with fairness to safety checking by Biere et al. [BAS02] leads
to an exponential growth of the diameter, and thus to too large values of b. Hence, we
decided to conduct an analysis on the level of threshold automata, accelerated counter
systems, and a fragment of linear temporal logic, which allows us to exploit specifics of
the domain, and get bounds that can be used in practice.

Acceleration has been applied for parameterized verification by means of regular model
checking [PS00, BHV04, ABJ98, SB06]. As noted by Fisman et al. [FKL08], to verify
fault-tolerant distributed algorithms, one would have to intersect the regular languages
that describe sets of states with context-free languages that enforce the resilience condition
(e.g., n > 3t). Our approach of reducing to SMT handles resilience conditions naturally
in linear integer arithmetic.

The restrictions we put on threshold automata are justified from a practical viewpoint
of our application domain, namely, threshold-guarded fault-tolerant algorithms. We
assumed in Section 2.1 that all the cycles in threshold automata are simple (while
the benchmarks have only self-loops or cycles of length 2). As our analysis already is
quite involved, these restrictions allow us to concentrate on our central results without
obfuscating the notation and theoretical results. Still, from a theoretical viewpoint it
might be interesting to relax the restrictions on cycles in the future.
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CHAPTER 5
Synthesis of Parameterized

Threshold Guards

Synthesis is a technique for automated construction of a system, given its input-output
relation in a form of a temporal formula [Chu63, PR89]. Verification and synthesis
both assure correctness of systems, but while verification requires manual code writing,
synthesis automatically derives systems that are correct by construction. The drawback
of synthesis is its complexity [PR89]. For fault-tolerant distributed algorithms, this
problem is particularly hard [DF09]. Moreover, if we require construction of a system
that satisfies the given formula for any system size, that is, in the parameterized case,
this problem is in general undecidable [JB14].

In the previous two chapters we have developed a technique for automatically checking
safety and liveness properties of threshold-based fault-tolerant distributed algorithms,
for any number of processes. As input it receives a threshold automaton as a model for
an algorithm, an ELTLFT formula describing specifications, and a resilience condition
defining the maximum of faulty processes, e.g., less than a third of all processes. The
method either confirms that the algorithm satisfies the specifications under the resilience
condition, or it produces a counterexample.

In this chapter we use our verification results as a building stone for synthesis. The user
just provides required properties, a sketch of an asynchronous algorithm, and a resilience
condition, and our tool automatically finds a correct distributed algorithm, or it reports
that it does not exist for the given input. In this way we generate new fault-tolerant
algorithms that are correct by construction. In our experiments we first focus on existing
specifications [ST87b, CT96, WS07, SvR08] from the literature, in order to be able to
compare the output of our tool with known algorithms. We then give new variations of
safety and liveness specifications, and our tool generates new distributed algorithms for
them.
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Code of a correct process i:
va r myvali ∈ {0, 1}
va r accepti ∈ {false, true} ← false

whi le true do (in one step)
i f myvali = 1 and not s en t ECHO be f o r e
then send ECHO to a l l

i f received ECHO from ≥ τ0toSE d i s t i n c t p r o c e s s e s
and not s en t ECHO be f o r e

then send ECHO to a l l

i f received ECHO from ≥ τAC d i s t i n c t p r o c e s s e s
then accepti ← true

od

Figure 5.1: A single-round version of the reliable broadcast algorithm [ST87b] with holes.

More precisely, we address the following challenge:

Challenge 5.1 (Parameterized synthesis of threshold guards). Given a skeleton of a
threshold automaton (that is, a threshold automaton with undefined thresholds) and an
ELTLFT formula ¬ψ (that is, ψ is a specification), find the thresholds that together with
the given skeleton form a threshold automaton TA with Sys(TA) |= ψ, for all values of
parameters under the given resilience condition.

We start by demonstrating the essence of our method for solving this challenge in
Section 5.1, including a concrete example. Next, in Section 5.2 we precisely define new
notions, like sketch threshold automata. We accurately describe out synthesis method in
Section 5.3, but the extensive technical proofs are left for Section 5.5. Finally, our case
studies and experimental evaluation of our results are presented in Section 5.4.

5.1 Our approach at a glance

Similar to the verification approaches in the previous chapters, we are interested in the
parameterized version of the problem: Rather than synthesizing a distributed algorithm
that consists of, say, four processes and tolerates one fault, our goal is to synthesize an
algorithm that works for n processes, out of which t may fail, for all values of n and t that
satisfy a resilience condition, e.g., n > 3t. However, the parameterized synthesis problem
is in general undecidable [JB14]. As in the parameterized verification approach in the
previous two chapters, we will therefore limit ourselves to a specific class of distributed
algorithms, namely, to threshold-guarded distributed algorithms. Recall that thresholds
are arithmetic expressions over parameters, e.g., n/2, and determine how many messages
processes should wait for (a majority in the example of n/2).
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`0

`1
`SE `AC

r
′
1 : true 7→ echos++

r′2 : echos + f ≥ τAC 7→ echos++r ′3 : echos + f ≥ τ0toSE 7→ echos++

r′4 : echos + f ≥ τAC 7→ echos++

r′5 : echos + f ≥ τAC

Figure 5.2: A sketch threshold automaton

`0

`1
`SE `AC

r1 : true 7→ echos++

r2 : echos + f ≥ n− t 7→ echos++r3 : echos + f ≥ t+ 1 7→ echos++

r4 : echos + f ≥ n− t 7→ echos++

r5 : echos + f ≥ n− t

Figure 5.3: A synthesized threshold automaton

More specifically, the user provides as input a distributed algorithm with holes as in
Figure 5.1: The user defines the control flow, and keeps the threshold expressions—noted
as τ0toSE and τAC in the figure—unspecified. Similarly as before, as pseudo code has no
formal semantics, it cannot be used as a tool input. Rather, our tool takes as input a
sketch threshold automaton.

Example 5.1. Figure 5.1 is a pseudo code representation of the input, and Figure 5.2
shows the corresponding sketch threshold automaton. Relation between them follows
the relation between a fully defined algorithm, e.g., the one from Figure 1.1, and its
threshold automaton from Figure 2.1. One can even notice that the sketch algorithm
from Figure 5.1 is inspired by the algorithm from Figure 1.1.

The “holes” τ0toSE and τAC in Figure 5.2 are the missing thresholds, which should be linear
combination of the parameters n and t. Therefore τ0toSE has the form ?1 · n+ ?2 · t+ ?3,
and τAC has the form ?4 ·n+?5 · t+?6. The unknown coefficients ?i, for 1 ≤ i ≤ 6, have to
be found by the synthesis tool. Given a sketch threshold automaton from Figure 5.2, the
three specifications from Section 1.1, and a resilience condition n > 3t, one synthesized
solution is ?1 = 0, ?2 = 1, ?3 = 1, ?4 = 1, ?5 = −1, and ?6 = 0, that is, τ0toSE = t+ 1 and
τAC = n− t. This solution is depicted in Figure 5.3, and it coincides with the threshold
automaton from Figure 2.1. /

In addition to a sketch threshold automaton, the user has to provide a specification, that
is, safety and liveness properties the distributed algorithm should satisfy (see Section 2.4).
Based on these inputs, our tool generates the required coefficients, that is, a threshold
automaton as in Figure 5.3. The synthesis approach of this chapter is enabled by the
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generator
a

verifier
XXVy

CEGIS Loop

coefficients

counterexample

sketch + specification + RC

correct dis-
tributed algorithm
or “none exists”

Figure 5.4: The synthesis loop describing our approach.

advance in parameterized model checking of safety and liveness properties of distributed
algorithms, presented in Chapter 4.

As shown in the previous two chapters, resilience conditions, executions of threshold-
guarded distributed algorithms, and specifications can be encoded as logical formulas,
whose satisfiability can be checked by solvers such as Z3 [MB08] and CVC4 [BCD+11]. In
particular, the queries used in Chapter 3 and Chapter 4 correspond to counterexamples
to a specification: If the SMT solver finds all queries to be unsatisfiable, the distributed
algorithm is correct. Otherwise, if a query is satisfiable, the SMT solver outputs a
satisfying assignment, that is an error trace, i.e., a counterexample.

Our synthesis approach. Figure 5.4 gives an overview of our method that takes as
input (i) a sketch of a distributed algorithm, (ii) a set of safety and liveness specifications,
and (iii) a resilience condition, e.g., n > 3t, and produces as output a correct distributed
algorithm, or informs the user that none exist.

We follow the CEGIS approach to synthesis [ABJ+13], which proceeds in a refinement
loop. Roughly speaking, the verifier starts by picking default values for the missing
coefficients—e.g., a vector of zeroes—and checks whether the algorithm is correct with
these coefficients. Typically this is not the case and the verifier produces a counterexample.
By automatically analyzing this counterexample, the generator learns constraints on
the coefficients that are known to produce counterexamples. The generator gives these
constraints to an SMT solver that generates new values for the coefficients, which are used
in a new verifier run. If the verifier eventually reports that the current coefficients induce
a correct distributed algorithm, we output this algorithm. The theory from Chapter 4
then implies correctness of the algorithm.

Termination of synthesis. The central theoretical problem that we address in
this chapter is termination of the refinement loop: In principle, the generator can produce
infinitely many vectors of coefficients. In case there is no solution (which is typically
the case in Byzantine fault tolerance if n ≤ 3t), the naïve approach from the previous
paragraph does not terminate, unless we restrict the guards to “reasonable” values. In
this work, we require the guards to lie in the interval [0, n]. We call such guards sane.
For instance, although syntactically the expressions echos ≤ −42n and echos > 2n are
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Figure 5.5: Reducing the search space for every loop iteration in Example 5.2. Bellow
each plot we indicate the property whose violation led to the search space reduction.

threshold guards, they are not sane, while echos ≥ t+1 is sane. We mathematically prove
that all sane guards of a specific structure have coefficients within a hyperrectangle. We
call this hypperrectangle a sanity box, and prove that its boundaries depend only on the
resilience condition. Within the sanity box, there is only a finite number of coefficients,
if we restrict them to integers or rationals with a fixed denominator. We thus obtain a
finite search space and a completeness result for the synthesis loop.

Safety, liveness, and the fraction of faults. We consider the conjunction of
safety and liveness specifications, as these specifications in isolation typically have trivial
solutions; e.g., “do nothing” is always safe. If just given a safety specification, our tool
generates thresholds like n for all guards, which leads to all guards evaluating to false
initially. Hence, no action can ever be taken, which is a valid solution if liveness is not
required.

Besides, our tool treats resilience conditions precisely. On one hand, given the sketch
from Figure 5.2, and the resilience condition n > 3t, in a few seconds our tool generates
the threshold automaton in Figure 5.3. On the other hand, in the case of n ≥ 3t, our
tool reports (also within seconds) that no such algorithm exists, which in fact constitutes
an automatically generated impossibility result for sane thresholds and a fixed sketch.

Example 5.2. Let us consider the synthesis problem with the following input: (i) the
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5. Synthesis of Parameterized Threshold Guards

sketch threshold automaton from Figure 5.2, with simplified sketch threshold guards

τ0toSE = ?2 · t+ 1 and τAC = ?5 · t+ 1,

(ii) specifications unforgeability, correctness and relay, as defined in Section 1.1 or recalled
in Section 5.4.1, and (iii) resilience condition n > 3t. In other words, for simplicity, we
already assume that ?1 = ?4 = 0 and ?3 = ?6 = 1. This allows us to graphically represent
this reasoning in Figure 5.5.

A way to compute an over-approximation of the sanity box will be discussed and given
in Theorem 5.1. In this case, we have that both ?2 and ?5 belong to the interval [−4, 4].
As the cardinality of this interval is |[−4, 4]| = 9, we have 9 · 9 = 81 possibilities for the
values of the vector (?2, ?5). In order to check whether each of these options yields a
correct algorithm, we would need to call the verification procedure 81 times. For more
sophisticated benchmarks this number is much larger, and verification can be costly. In
this example we show how to reduce the number of calls to the verifier, and explore all
possibilities by calling the verification procedure only 6 times instead of 81.

We start the procedure by guessing that ?2 = ?5 = 0, and check if this is a correct guess.
As expected, our model checker finds an error trace that contradicts unforgeability, when
parameter values are (n, t, f) = (4, 1, 1). Thus, there is a path in the system with 4
processes and one of them is faulty, where all correct processes start in `0, but eventually a
correct process enters `AC. Recall that in the case of Byzantine faults, we model (correct)
n− f = 3 processes.

Namely, the path that violates unforgeability is

π = σ0, r
1
3, σ1, r

1
5, σ2,

and here we discuss configurations σ0, σ1 and σ2. The path starts in a configuration σ0
with all 3 processes in `0, and all other locations are empty. In this configuration, the
threshold guard of the rule r3, that is, echos + f ≥ ?2 · t+ 1, is true as 0 + 1 ≥ 0 · 1 + 1.
This allows us to move one process along the r3 edge. The obtained configuration σ1
has κ[`SE] = 1 and echos = 1. This makes the rule r5 applicable in σ1, as its threshold
echos + f ≥ ?5 · t + 1 is true by 1 + 1 ≥ 0 · 1 + 1. Hence, after applying r5 to σ1, one
correct process enters location `AC in σ2, which violates unforgeability.

We want the generator to learn from this counterexample π. The questions we ask are
the following: Which other guesses could lead to the same counterexample? For which
values of ?2 and ?5 would r3 still be applicable to σ0, and r5 applicable to σ1? For such
values, the same path π = σ0, r1

3, σ1, r1
5, σ2 would be a legal path in the system with

(n, t, f) = (4, 1, 1). Thus, the system would again violate unforgeability.

Therefore, we want to exclude all the values of ?2 and ?5 for which the guard of r3 is
true in σ0, and the guard of r5 is true in σ1, as they do not yield a correct parameterized
system. Formally, we check for which ?2 and ?5 we have that 0 + 1 ≥ ?2 · 1 + 1 and
1 + 1 ≥ ?5 · 1 + 1. This excludes all the values from the region [−4, 0]× [−4, 1], that is
represented in a turquoise color on the top left plot from Figure 5.5.
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5.2. Sketch Threshold Automata

The unexplored region now is the yellow region, and we pick another guess from it. For
example, let ?2 = 4 and ?5 = 2. These values yield thresholds that are not sane. For
instance, τ0toSE becomes 4 · t+1. For n = 4 and t = 1 (the resilience condition is satisfies),
we have that the value of τ0toSE does not lie in the interval [0, n], since 4 ·t+1 = 5 > 4 = n.
We exclude all the vectors (?2, ?5) for which 0 ≤ ?2 · t+ 1 ≤ n or 0 ≤ ?5 · t+ 1 ≤ n can
be violated, under the resilience condition n > 3t and t ≥ f . This is the green area in
the top middle plot of Figure 5.5.

The yellow area is not explored, so we pick another guess and call the verification
procedure. In this way, after 6 loop iterations in which we restrict the search space
(colored in yellow), we discover a correct solution, namely ?2 = 1 and ?5 = 2. /

5.2 Sketch Threshold Automata

Threshold-guarded algorithms are formalized by threshold automata. We recall the
notions of threshold automata from Section 2.1 and introduce the new concept of sketches.
As usual, N0 is the set of natural numbers including 0, and Q is the set of rational
numbers. The set Π is a finite set of parameter variables that range over N0. Typically, Π
consists of three variables: n for the total number of processes, f for the number of actual
faults in a run, and t for an upper bound on f . The parameter variables from Π are
restricted to admissible combinations by a resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0.
The set Γ is a finite set that contains shared variables that store the number of distinct
messages sent by distinct (correct) processes, the variables in Γ also range over N0. In
the example in Figure 5.3, Γ = {echos}. For the variables from Γ, we will use names
echos, x, y, etc.

For a set of variables V , a function ν : V → Q is called an assignment; its domain V is
denoted with dom(ν). In this chapter, we use Φ, Ψ, and Θ for first-order logic (FOL)
formulas; e.g., when encoding linear integer constraints in SMT. For a FOL formula Φ, we
write free(Φ) for the set of free variables of Φ, that is, the variables not bounded with a
quantifier. (For convenience, we assume that quantified variables have unique names and
they are different from the names of the free variables.) Given an assignment ν : V → Q
and a FOL formula Φ, we define a substitution Φ[ν] as a FOL formula that is obtained
from Φ by replacing all the variables from V ∩ free(Φ) with their values in ν.

To introduce sketches of threshold automata—such as in Figure 5.2—we define unknowns
such as ?1. The set U is a finite set of unknowns that range over Q. We denote the
variables from U with ?1, ?2, etc. The rational values of unknowns are denoted by a, b,
c, etc.

Sketch threshold guards. In Section 2.1 we have introduced threshold guards,
but here we need to extend this notion in order to be able to express sketches of the
guards. Generalized threshold guards—in this chapter for convenience often called just
guards—are defined according to the grammar:
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Guard ::= Shared ≥ LinForm | Shared < LinForm Shared ::= 〈variable from Γ〉
LinForm ::= FreeCoeff | Prod | Prod + LinForm Param ::= 〈a variable from Π〉
FreeCoeff ::= Rat | Unknown Unknown ::= 〈a variable from U〉
Prod ::= Rat × Param | Unknown × Param Rat ::= 〈a rational from Q〉

For convenience, we assume that every parameter appears in LinForm at most once.
Let π̄ denote the vector (π1, . . . , π|Π|, 1) that contains all the parameter variables from Π
in a fixed order as well as number 1 as the last element. Then, every generalized guard
can be written in one of the two following forms

x ≥ ū · π̄ᵀ or x < ū · π̄ᵀ,

where x is a shared variable from Γ, and ū is a vector of elements from U ∪Q. When
a parameter does not appear in a generalized guard, its corresponding component in ū
equals zero. We say that a guard is a sketch guard if its vector ū contains a variable
from U . A guard that is not a sketch guard is called a fixed guard, and it corresponds to
what is called just a guard in all the other chapters of this thesis. In other words, the
work described in the other chapters is only concerned with fixed guards.

Since threshold guards are a special case of FOL formulas, we can apply substitutions
to them. For instance, given an assignment ν : U → Q and a threshold guard g,
the substitution g[ν] replaces every occurence of an unknown ?i ∈ U in g with the
rational ν(?i).

Sketch threshold automata. In Section 2.1 we have defined a threshold automa-
ton, and denoted it by TA. They are edge-labeled graphs, where vertices are called
locations, and edges are called rules. By the new terminology, rules are labeled by
g 7→ act, where expression g is a fixed threshold guard, and the action act may incre-
ment a shared variable. We define generalized threshold automata GTA, in the same way
as threshold automata, with the only difference that expressions g in the edge labeling
are generalized threshold guards. If all generalized guards in a GTA are fixed, then
that GTA is a TA. If at least one of the edges of a GTA is labeled by a sketch guard, then
we call this automaton a sketch threshold automaton, and we denote it by STA. Given
an STA and an assignment ν : U → Q, we obtain a (fixed) threshold automaton STA[ν]
by applying substitution g[ν] to every sketch guard g in STA.

Counter systems. The definition of counter systems for generalized threshold
automata coincides with the definitions from Section 2.2.

With a TA we associate a set of predicates PTA that track properties of the system
states. The set PTA consists of the TA’s threshold guards and a test κ[`] = 0 for every
location ` in TA. For every configuration σ, one can compute the set ρ(σ) ⊆ PTA of the
predicates that hold true in σ. As was demonstrated in Section 2.3, the predicates from
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5.3. Synthesizing Thresholds

PTA and linear temporal logic are sufficient to express the safety and liveness properties
of threshold-guarded distributed algorithms found in the literature.
A system execution is expressed as a path in the counter system. Formally, recall
that a path is an infinite alternating sequence of configurations and transitions, that
is, σ0, t1, σ1, . . . , ti, σi, . . . , where σ0 is an initial configuration, and σi+1 is the result of
applying ti+1 to σi for i ≥ 0. The infinite sequence ρ(σ0), ρ(σ1), . . . is called the path
trace. With TracesTA we denote the set of all path traces in the TA’s counter system.
Correctness of a distributed algorithm then means that all traces in TracesTA satisfy
a specification expressed in linear temporal logic [CGP99]. The verification approach
from Chapter 4 discussed in Section 5.3.1 specifically looks for traces that violate the
specification. Such traces are characterized by the temporal logic ELTLFT that allows one
to express negations of specifications relevant for fault-tolerant distributed algorithms.

5.3 Synthesizing Thresholds

5.3.1 Verification machinery

In Chapter 3 and Chapter 4 we have introduced a technique for parameterized verification
of threshold-based distributed algorithms. Here we recall the core of this technique, with
the simplified notation, as it will be necessary for this chapter.
Given a fixed threshold automaton TA, a resilience conditionRC, and a set {¬ϕ1, . . . ,¬ϕk}
of ELTLFT formulas representing negation of specifications, we check whether there is an
execution violating the specification (ϕ1 ∧ . . . ∧ ϕk). Thus, as an output, the algorithm
from Chapter 4 either confirms correctness, or gives a counterexample. In this chapter,
we use this technique as a black box, that is, we assume that there is a function

verifyByMC(TA, RC, {¬ϕ1, . . . ,¬ϕk})

that either reports a counterexample, or it confirms that the system Sys(TA) is correct.

5.3.2 Synthesis problem

A temporal logic formula ϕ in ELTLFT describes an (infinite) set of bad traces that the
synthesized algorithm must avoid. Therefore, we consider the following formulation of
the synthesis problem. Given a sketch threshold automaton STA and an (infinite) set of
bad traces TracesBad, either:

• find an assignment µ : U → Q, in order to obtain the fixed threshold automa-
ton STA[µ] whose traces TracesSTA[µ] do not intersect with TracesBad, or

• report that no such assignment exists.

Our approach is to find values for the unknowns in a synthesis refinement loop and test
them with the verification technique from Section 5.3.1.
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1 procedure syntByMC(STA, RC, {¬ϕ1, . . . ,¬ϕk})
2 Θ0 := boundU (RC) and i := 0
3 while (true)
4 call checkSMT(Θi)
5 case unsat ⇒ print ’no more solutions’ and exit()
6 case sat(µ) ⇒ /∗ µ assigns rationals to the variables in U ∗/
7 call verifyByMC(STA[µ], RC, {¬ϕ1, . . . ,¬ϕk})
8 case correct ⇒
9 print ’solution µ’ /∗ exclude this solution and continue ∗/
10 Θi+1 := Θi ∧

∨
?j∈U ?j 6= µ[?j ] and i := i+1

11 case counterexample(S, ν) ⇒ /∗ dom(ν) ∩ U = ∅ ∗/
12 SU := generalize(S, STA)
13 Ψ := formulaSMT(SU )
14 Θi+1 := Θi ∧ ¬Ψ[ν] and i := i+1

Figure 5.6: Pseudo-code of the synthesis loop

5.3.3 Synthesis loop

In Figure 5.6 we show the pseudo-code of the synthesis procedure syntByMC. At its input
the procedure receives a sketch threshold automaton STA, a resilience condition, and a set
of ELTLFT formulas {¬ϕ1, . . . ,¬ϕk}, which capture the bad traces TracesBad. In line 2,
formula Θ0, which captures constraints on the unknowns from U , is initialized using
a function boundU . In principle, boundU can be initialized to true (no constraints).
However, to ensure termination, we will discuss later in this section, how we obtain
constraints that bound the coefficients of sane guards. After initialization we enter the
synthesis loop.

The SMT solver checks whether Θi has a satisfying assignment to the unknowns in U
(line 4). If Θi is unsatisfiable, the loop terminates with a negative outcome in line 5.
Otherwise, the SMT solver gives us an assignment µ : U → Q that is a solution candidate.
To check feasibility of µ, the verifier is called for the fixed threshold automaton STA[µ]
in line 7. The verifier generates multiple schemas, each being one SMT query, which
are checked either sequentially or in parallel. If the verifier reports that a schema that
produces a counterexample does not exist, then the candidate assignment µ and threshold
automaton STA[µ] give us a solution to the synthesis problem. If we were interested
in just one solution, the loop would terminate here with a positive outcome. However,
because we want to enumerate all solutions, our function does a complete search, such
that we exclude the solution µ for the future search in line 10, and continue.

If the verifier finds a counterexample, the loop proceeds with the branch in line 11. A
counterexample is a schema S of STA[µ] and a satisfying assignment ν : V → Q to
the free variables V of the SMT formula formulaSMT, which include the parameters Π,
shared variables xj for x ∈ Γ, and counters κj [`] for each local state ` ∈ L and every
configuration j. In principle, we could exclude µ from consideration similar to line 10.

140



5.3. Synthesizing Thresholds

For efficiency, we want to exclude a larger set of evaluations, namely all that lead to the
same counterexample: We produce a generalized schema SU , by replacing the rules and
guards in S, which belong to the threshold automaton STA[µ], with the rules and guards
of the sketch threshold automaton STA (line 12). In line 13, we generate a generalized
counterexample Ψ. As Ψ is derived from a counterexample with valuations µ and ν, we
know that Ψ[ν][µ] is true. Further, for every evaluation of the unknowns µ′, if Ψ[ν][µ′]
is true, then Ψ[ν][µ′] is a counterexample. To exclude all these evaluations µ′ at once,
we conjoin ¬Ψ[ν] with Θi in line 14, which gives us new constraints on the unknowns,
before entering the next loop iteration.

The synthesis loop terminates only in line 5, that is, if Θi is unsatisfiable. As, in this
case, Θi is equivalent to false, the following observation guarantees that all satisfying
assignments of Θ0 have been explored and all solutions (if any exists) have been reported.

Observation 3. At the beginning of every iteration i ≥ 0 of the synthesis loop in
lines 3–14, the following invariant holds: if µ : U → Q is a satisfying assignment of
formula Θ0 ∧ ¬Θi, then either: (1) µ was previously reported as a solution in line 9, or
(2) µ was previously excluded in line 14 and thus is not a solution.

5.3.4 Completeness and termination for sane guards

Without restricting Θ0, the search space for coefficients is infinite. In the following,
we exploit domain-knowledge on distributed algorithms, and show that restricting the
synthesis problem to sane guards bounds the search space.

The role of threshold guards is typically to check whether the number of distinct senders,
from which messages are received, reaches a threshold. We also use threshold guards in
our models to bound the number of processes that go into a special crash state. In both
cases, one counts distinct processes and it is therefore natural to consider only those
thresholds whose value is in [0, n]. More precisely, if the guard has a form x ≥ ū · π̄ᵀ or
x < ū · π̄ᵀ, then for all parameter values that satisfy resilience condition it holds that
0 ≤ ū · π̄ᵀ ≤ n. We call such guards sane for a given resilience condition.

Theorem 5.1 considers a general case of hybrid failure models [WS07] where different
failure bounds exist for different failure models (e.g., t1 Byzantine faults and t2 crash
faults), and these failure bounds are related to the number of processes n by a resilience
condition of the form n >

∑k
i=1 δiti ∧ ∀i. ti ≥ 0. We bound the values of the coefficients

of sane guards.

Theorem 5.1. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where k ∈ N,

δi ∈ Q and δi > 0, for 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold
guard

x ≥ an+ (b1t1 + . . .+ bktk) + c or x < an+ (b1t1 + . . .+ bktk) + c,
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where x ∈ Γ, and a, b1, . . . , bk, c ∈ Q. If the guard is sane for the resilience condition,
then

0 ≤ a ≤ 1, (5.1)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (5.2)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (5.3)

The proof of this theorem uses the basics of linear algebra, and it is presented in Section 5.5
in details.

The case when k = 1 gives us the classical resilience condition where the system model
assumes one type of faults (e.g., crash), and the assumed number of faults t is related to
the total number of processes n, by a condition n > δt ≥ 0 for some δ > 0. If the guard
that compares a shared variable and an+ bt+ c is sane for the resilience condition, then
we obtain that 0 ≤ a ≤ 1, −δ− 1 < b < δ+ 1, and −2δ− 2 ≤ c ≤ 2δ+ 2. Any restriction
of the intervals from Theorem 5.1 to finite sets gives us completeness: If we reduce the
domain of variables from U to integers, or to rationals with fixed denominator (e.g., z

10
for z ∈ Z), one reduces the search space to a finite set of valuations. All threshold-based
distributed algorithms we are aware of, use guards with coefficients that are either integers
or rationals with a denominator not greater than 3. Thus, we restrict our intervals by
intersecting them with the set of rational numbers whose denominator is at most D, for
a given D ∈ N.

The following corollary is a direct consequence of Theorem 5.1, and it tells us how to
modify intervals if the coefficients are rational numbers with a fixed denominator.

Using the fact that x ≤ d̃
D ≤ y implies that Dx ≤ d̃ ≤ Dy, for a D ∈ N, the following

statement follows directly from Theorem 5.1.

Corollary 5.2. Let n > ∑k
i=1 δiti ∧ ∀i. ti ≥ 0 be a resilience condition, where k ∈ N,

δi ∈ Q and δi > 0, 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard

x ≥ ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
or x <

ã

D
n+

(
b̃1
D
t1 + . . .+ b̃k

D
tk

)
+ c̃

D
,

where x ∈ Γ, ã, b̃1, . . . , b̃k, c̃ ∈ Z, D ∈ N. If the guard is sane for the resilience condition
then

0 ≤ ã ≤ D, (5.4)
D(−δi − 1) < b̃i < D(δi + 1), for all i = 1, . . . , k, (5.5)

D(−2(δ1 + . . .+ δk)− k − 1) ≤ c̃ ≤ D(2(δ1 + . . .+ δk) + k + 1). (5.6)

Constraints (5.4)–(5.6) constitute the sanity box that function boundU computes in
Figure 5.6. By fixing D, we restrict Θ0 to have finitely many satisfying assignments
(integers). Hence, the loop terminates.
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Because a guard that is sane for a weaker resilience condition, is also sane for a stronger
one, Theorem 5.1 and Corollary 5.2 also hold for any resilience condition that follows
from this one, e.g., n > max{δ1t1, . . . , δktk} ∧ ∀i. ti ≥ 0. We can use the same intervals,
confirmed by the same proofs as in Section 5.5. However, our benchmarks use the form
of resilience conditions of Theorem 5.1.

Moreover, the statements similar to Theorem 5.1 and Corollary 5.2 can be derived for
other forms of threshold guards, e.g., for thresholds with floor or ceiling functions. In
Section 5.6 we introduce Theorem 5.4 and Corollary 5.5, that consider floor and ceiling
functions. Despite the theoretical value of these statements, our benchmarks do not make
use of such thresholds.

5.4 Case Studies and Experiments

Our team has extended the ByMC tool with the synthesis technique presented in
this chapter. A virtual machine with the tool and the benchmarks is available from:
http://forsyte.at/software/bymc.1 The experiments reported in [LKWB17]
are conducted on two systems: a laptop and the Vienna Scientific Cluster (VSC-3). The
laptop is equipped with 16 GB of RAM and Intel® Core™ i5-6300U processor with 4 cores,
2.4 GHz. The cluster VSC-3 consists of 2020 nodes, each equipped with 64 GB of RAM
and 2 processors (Intel® Xeon™ E5-2650v2, 2.6 GHz, 8 cores) and is internally connected
with an Intel QDR-80 dual-link high-speed InfiniBand fabric: http://vsc.ac.at.

We synthesize thresholds for asynchronous fault-tolerant distributed algorithms. We
consider reliable broadcast and fast decision for a consensus algorithm. In the case
of reliable broadcast we consider different fault models, namely, crashes [CT96] and
Byzantine faults [ST87b], as well as a hybrid fault model [WS07] with both, Byzantine
and crash failures. For fast decision, we consider the one-step consensus algorithm
BOSCO for Byzantine faults [SvR08].

5.4.1 Reliable broadcast for crash and/or Byzantine failures

Figure 5.8 shows a sketch threshold automaton of a reliable broadcast that should
tolerate fc ≤ tc crash and fb ≤ tb Byzantine faults under the resilience condition n >
3tb + 2tc. For our experiments under simpler failure models—only Byzantine and crash
faults—we use the sketch threshold automata from Figures 5.2 and 5.7. However, the
same thresholds can be obtained by setting tc = fc = 0 and tb = fb = 0 in the automaton
from Figure 5.8, respectively. In Figure 5.2, we do not need a dedicated crash state,
as we only model correct processes explicitly, while Byzantine faults are modeled via
the guards (cf. Example 5.1). The automaton from Figure 5.7 can be obtained from
Figure 5.8 by removing the location `SE.

The algorithms we consider are the core of broadcasting algorithms, and establish
agreement on whether to accept the message by the broadcaster. Similar to Example 5.1,

1See http://forsyte.at/opodis17-artifact/ for detailed instructions on using the tool.
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`0

`1

`AC `CR

φAC 7→ send

φCR 7→ nc++

φCR 7→
nc++

φCR 7→
nc++, se

ndF
true 7→
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d

φCR 7→ nc++

Figure 5.7: A sketch threshold au-
tomaton for folklore reliable broad-
cast

`0

`1

`SE

`AC `CRφ0toSE 7→ send

φAC 7→ send

φCR 7→ nc++

true 7→ send

φCR 7→ nc++

φCR 7→
nc++, s

endF
φAC 7→ send

φAC

φCR 7→ nc++
φCR 7→ nc++

Figure 5.8: A sketch threshold automaton for reli-
able broadcast with Byzantine and crash faults

processes start in locations `1 and `0, which capture that the process has received and has
not received a message by the broadcaster, respectively. A correctly designed algorithm
should satisfy the following properties [ST87b], also discussed in Section 1.1:

(U) Unforgeability: If no correct process starts in `1, then no correct process ever
enters `AC.

(C) Correctness: If all correct processes start in `1, then there exists a correct process
that eventually enters `AC.

(R) Relay: Whenever a correct process enters `AC, all correct processes eventually
enter `AC.

In the following discussion we use Figure 5.8 as example. We have to sketch the
guards φCR, φ0toSE, and φAC. At most fc processes can move to the crashed state `CR.
The algorithm designer does not have control over the crashes, and thus we fix the
guard φCR to be nc < fc: The shared variable nc maintains the actual number of crashes
(initially zero), which is used only to model crashes and thus cannot be used in guards
other than φCR. To properly model that a process can crash during the “send to all”
operation (non-clean crash), we introduce two shared variables: the variable echos stores
the number of echo messages that are sent by the correct processes (some of them may
crash later), and the variable echosCF stores the number of echo messages that are sent
by the correct processes and the faulty processes when crashing. Hence, the action send
increases both echos and echosCF, whereas the action sendF increases only echosCF.

We define the thresholds τ0toSE and τAC as (?SE
a · n + ?SE

b · tb + ?SE
c · tc + ?SE

d ) and
(?AC
a · n + ?AC

b · tb + ?AC
c · tc + ?AC

d ) respectively. Hence, φ0toSE and φAC are defined as
echosCF + fb ≥ τ0toSE and echosCF + fb ≥ τAC. As discussed in Section 2.1, we add fb
to echosCF to reflect that the correct processes may—although do not have to— receive
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Table 5.1: Synthesized solutions for reliable broadcast that tolerates: crashes (Figure 5.7),
Byzantine faults (Figure 5.2), and Byzantine & crash faults (Figure 5.8). We used the
laptop in the experiments.

Resilience
condition

Specs #Solutions
Threshold
τ0toSE

Threshold τAC
Calls to
verifier

Time,
seconds

n > tc, tb = 0 U, C,
R 1 true 1 12 6

n > 3tb, tc = 0 U, C,
R 3

n− 2tb
tb + 1
tb + 1

n− tb
2tb + 1
n− tb

31 16

n ≥ 3tb, tc = 0 U, C,
R None — — 25 7

n > 3tb + 2tc
U, C,
R 3

n− 2tb − 2tc
tb + 1
tb + 1

n− tb − tc
2tb + tc

n− tb − tc
34 50

n ≥ 3tb + 2tc
U, C,
R None — — 21 12

n > 3tb + tc
U, C,
R None — — 29 24

messages from Byzantine processes. For reliable communication, we have to enforce:

Every correct process eventually receives at least echos number of messages.
(RelComm)

As threshold automata do not explicitly store the number of received messages, we
transform (RelComm) into a fairness constraint, which forces processes to eventually
leave a location if the messages by correct processes alone enable a guard of an edge that
is outgoing from this location. That is, there is a time after which the following holds
forever:

κ[`1] = 0∧ (echos < τ0toSE∨κ[`0] = 0)∧ (echos < τAC∨ (κ[`0] = 0∧κ[`SE] = 0)). (Fair)

Table 5.1 summarizes the experimental results from [LKWB17] for reliable broadcast,
when looking for integer solutions only. The cases tb = 0 and tc = 0 correspond
to the algorithms that tolerate only crashes (Figure 5.7) and only Byzantine faults
(Figure 5.2) respectively. For these cases, we obtained the solutions known from the
literature [ST87b, CT96] and some variations. Moreover, when the resilience condition is
changed from n > 3tb to n ≥ 3tb, our tool reports no solution, which also complies with
the literature [ST87b]. In the case of fc crashes and fb Byzantine faults, the tool reports
three solutions. Moreover, when we tried to relax the resilience condition to n ≥ 3tb + 2tc
and n > 3tb + tc, the tool reported that there is no solution, as expected.
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5. Synthesis of Parameterized Threshold Guards

Table 5.2: Synthesized solutions for variations of reliable broadcast and specifications
(X)–(Z).

Resilience condition Specs #Solutions
Threshold
τ0toSE

Threshold τAC

Calls
to

verifier

Time,
sec-
onds

n > 3tb, tc = 0 X, C,
R None — — 15 2

n >
3tb + 2, tc = 0

X, C,
R 3

n− 2tb
tb + 3
tb + 3

n− tb
2tb + 3
n− tb

35 12

n > 3tb, tc = 0 Y, C,
R None — — 28 6

n > 4tb, tc = 0 Y, C,
R 3

n− 2tb
2tb + 1
2tb + 1

n− tb
3tb + 1
n− tb

33 12

n > 3tb + 2tc U, Z, R 2 tb + 1
tb + 1

n− tb − tc
2tb + tc + 1 41 31

Variations of the specification. Our logic allows us to easily change the
specifications. For instance, we can replace the precondition of unforgeability “if no
correct process starts in `1” by giving an upper bound (number or parameter) on correct
processes starting in `1 that still prevents entering `AC, in specifications (X) and (Y).
We also changed the precondition of correctnesss “if all correct processes start in `1” in
specification (Z):

(X) If at most two correct processes start in `1, then no correct process ever enters `AC.

(Y) If at most tb correct processes start in `1, then no correct process ever enters `AC.

(Z) If at least tb + tc + 1 non-Byzantine processes (correct or crash faulty) start in `1,
then there exists a correct process that eventually enters `AC.

Interestingly, we obtain new distributed computing problems that put quantitative
conditions on the initial state. These specifications are related to the specifications of
condition-based consensus [MMPR03]. Our tool automatically generates solutions, or
shows their absence in the case resilience conditions are too strong. Table 5.2 summarizes
these results.

5.4.2 Byzantine one-step consensus

Figure 5.9 shows a sketch threshold automaton of a one-step Byzantine consensus
algorithm that should tolerate f ≤ t Byzantine faults under the assumption n > 3t. It
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`0

`1

`SE0

`SE1

`D0

`D1

`U0

`U1

true 7→ s0++,
s01++

true 7→ s1++, s01++

φA ∧ s0 + f ≥ τD0

φA ∧ s1 + f ≥ τD1

φA ∧ s0 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 + f ≥ τU1

φA ∧ s0 < τD0 ∧ s1 < τD1 ∧ s0 + f ≥ τU0 ∧ s1 < τU1

φA ∧ s0 < τD0 ∧ s1 < τD1 ∧ s0 < τU0 ∧ s1 < τU1

φA ∧ s1 <
τD0 ∧ s1 <

τD1 ∧ s0 + f ≥ τU0 ∧ s1 <
τU1

Figure 5.9: A sketch threshold automaton for one-step Byzantine consensus. Labels
of dashed edges are omitted; they can be obtained from the respective solid edges by
swapping 0 and 1.

is a formalization of the BOSCO algorithm [SvR08]. The purpose of the algorithm is
to quickly reach consensus if (a) n > 5t and f = 0, or (b) n > 7t. In this encoding,
correct processes make a “fast” decision on 0 or 1 by going in the locations `D0 and `D1,
respectively. When neither (a) nor (b) holds, the processes precompute their votes
in the first step and then go to the locations `U0 and `U1, from which an underlying
consensus algorithm is taking over. In this sense, BOSCO can be seen as an asynchronous
preprocessing step for general consensus algorithms, and the properties given below
contain preconditions for calling consensus in a safe way (see Fast Agreement below).
Every run of a synthesized threshold automaton must satisfy the following properties
(for i ∈ {0, 1} and j = 1− i):

(A) Fast agreement [SvR08, Lemmas 3–4]: Condition κ[`Di] 6= 0 implies κ[`Dj] =
κ[`Uj] = 0.

(O) One step: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it always holds
that κ[`Dj] = 0 and κ[`U0] = κ[`U1] = 0. That is, the underlying consensus is never
called.

(F) Fast termination: If n > 5t ∧ f = 0 or n > 7t, and initially κ[`j] = 0, then it
eventually holds that κ[`] = 0 for all local states different from `Di.

(T) Termination: It eventually holds that κ[`0] = κ[`1] = 0 and κ[`SE0] = κ[`SE1] = 0.

We define thresholds τA, τD0, τD1, τU0, τU1 as ?xa ·n+?xb · t+?xc for x ∈ {A,D0,D1,U0,U1}.
Then, the guard φA is defined as: s01 + f ≥ τA. Interestingly, the thresholds appear in
different roles in the guards, e.g., s0 + f ≥ τD0 and s0 < τD0. These cases correspond to
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Specs
Nr. of
solu-
tions

Calls to
verifier

Nr. of
cores

Time
min.

AOFT 4 516 128 39
AOFT 4 432 96 25
AOFT 4 425 64 24
AOFT 4 502 16 44
AOFT 4 440 8 51
AOUT 0 376 8 40
AOVT 0 337 8 33

Table 5.3: Experiments for one-step Byzantine
consensus for n > 3t running the parallel verifier
at VSC-3

39 min

25 min24 min

31 min

44 min

51 min

Ti
m

e,
 s

ec
.

1500

3000

Number of cores (16 cores per node)
816 32 64 128

Figure 5.10: Synthesis times for
BOSCO at Vienna Scientific Cluster
(VSC-3)

BOSCO’s decisions on how many messages have been received and how many messages
have not been received “modulo Byzantine faults.”

As with reliable broadcast, we model reliable communication with the following fairness
constraint: For i ∈ {0, 1}, from some point on, the following holds: κ[`0] = 0 ∧ κ[`1] =
0 ∧ (s01 < τA ∨ si < τDi ∨ κ[`SEi] = 0).

We bound denominators of rationals with two and use the sanity box provided by
Corollary 5.2. To reduce the search space, we assume that the guards for 0 and 1 are
symmetric, that is ?D0

a = ?D1
a and ?U0

a = ?U1
a . Still, BOSCO is a challenging benchmark

both for verification and synthesis. Since the verification procedure from Section 5.3.1
independently checks schemas with SMT, we parallelized schema checking with OpenMPI,
and ran the experiments at Vienna Scientific Cluster (VSC-3) using 8–128 cores; Table 5.3
summarizes the results. The tool has found four solutions for the guards: τA = n− t [−1

2 ],
τD0 = τD1 = n+3t+1

2 , and τU0 = τU1 = n−t
2 [+1

2 ]. In addition to the guards from [SvR08],
the tool also reported that one can add or subtract ½ from several guards. Figure 5.10
demonstrates that increasing the number of cores above 64 slows down synthesis times
for this benchmark.

Variations of the BOSCO specifications. We relaxed the precondition for fast
termination:

(U) If n ≥ 5t ∧ f = 0 and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for
all local states different from `Di.

(V) If n ≥ 7t and initially κ[`j] = 0, then it eventually holds that κ[`] = 0 for all local
states different from `Di.

As can be seen from Table 5.3, specifications (U) and (V ) have no solutions.
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5.5 Detailed Proofs for Section 5.3

In order to prove Theorem 5.1, we first prove its mathematical background.

Lemma 5.3. Fix a k ∈ N, and for every i ∈ {1, . . . , k} fix δi > 0. Let a, b1, . . . , bk, c
be rationals for which the following holds: for every n, t1, . . . , tk ∈ N such that n >∑k

i=1 δiti ≥ 0, it holds that 0 ≤ an+∑k
i=1 biti + c ≤ n. Then it is the case that

0 ≤ a ≤ 1, (5.7)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (5.8)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (5.9)

Proof. Let PRC be the set of all tuples (n, t1, . . . , tk) ∈ Nk+1 that satisfy n >∑k
i=1 δiti ≥

0. Thus, we assume that for a, b1, . . . , bk, c ∈ Q the following holds:

0 ≤ an+
k∑
i=1

biti + c ≤ n, for all (n, t1, . . . , tk) ∈ PRC . (5.10)

We show that if any of the conditions (5.7)–(5.9) is violated, we obtain a contradiction
by finding (n0, t01, . . . , t

0
k) ∈ PRC such that 0 ≤ an0 +∑k

i=1 bit
0
i + c ≤ n0 does not hold.

Proof of (5.7). Let us first show that 0 ≤ a ≤ 1.

Assume by contradiction that a > 1. From (5.10) we know that for every (n, t1, . . . , tk) ∈
PRC holds n ≥ an+∑k

i=1 biti + c, that is, (1− a)n ≥∑k
i=1 biti + c. Since 1− a < 0, we

obtain
n ≤

∑k
i=1 biti + c

1− a , for all (n, t1, . . . , tk) ∈ PRC . (5.11)

Consider any tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where n0 > max

{∑k
i=1 δit

0
i ,

∑k

i=1 bit
0
i +c

1−a

}
. By

construction, we obtain: (i) the tuple is in PRC because n0 >
∑k
i=1 δit

0
i , and (ii) we have

n0 >
∑k

i=1 bit
0
i +c

1−a , such that we arrive at the required contradiction to (5.11).

Assume now that a < 0. Again from (5.10) we have that for all (n, t1, . . . , tk) ∈ PRC

holds an + ∑k
i=1 biti + c ≥ 0, or in other words an ≥ −∑k

i=1 biti − c. As a < 0, this
means that

n ≤ −
∑k
i=1 biti − c
a

, for every (n, t1, . . . , tk) ∈ PRC . (5.12)

Consider a tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 with n0 > max

{∑k
i=1 δit

0
i ,
−
∑k

i=1 bit
0
i−c

a

}
. By

construction it holds that n0 >
∑k
i=1 δit

0
i , and thus the tuple is in PRC . Also by

construction it holds that n0 >
−
∑k

i=1 bit
0
i−c

a which is a contradiction with (5.12).

Proof of (5.8). Let us now prove that −δi − 1 < bi < δi + 1, for an arbitrary
i ∈ {1, . . . , k}.
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Assume by contradiction that bi ≥ δi + 1. Recall from (5.10) that for all (n, t1, . . . , tk) ∈
PRC holds an +∑k

j=1 bjtj + c ≤ n, or in other words (1 − a)n ≥ ∑k
j=1 bjtj + c. Since

a ∈ [0, 1], then (1− a)n ≤ n, for every n ≥ 0. Since bi ≥ δi + 1, and ti ≥ 0, it holds that
biti ≥ (δi + 1)ti. Thus, we have that for every (n, t1, . . . , tk) ∈ PRC holds that

n ≥ (1− a)n ≥
k∑
j=1

bjtj + c ≥ (δi + 1)ti +
∑
j 6=i

bjtj + c.

In other words, we have that

(n− δiti)−
∑
j 6=i

bjtj − c ≥ ti, for all (n, t1, . . . , tk) ∈ PRC . (5.13)

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 such that t0i = max{1,∑j 6=i(δj − bj)− c+ 2},

t0j = 1 for j 6= i, and n0 = ∑k
j=1 δjt

0
j + 1 = ∑

j 6=i δj + δit
0
i + 1. This tuple is in PRC

since n0 >
∑k
j=1 δjt

0
j . Let us check the inequality from (5.13). By construction we have

(n0−δit0i )−
∑
j 6=i bjt

0
j−c = ∑

j 6=i δj+δit0i +1−δit0i−
∑
j 6=i bj−c, that is,

∑
j 6=i(δj−bj)−c+1,

which is strictly smaller than t0i by construction. Thus, we obtained a contradiction
with (5.13).

Let us now assume bi ≤ −δi−1. Recall from (5.10) that for all (n, t1, . . . , tk) ∈ PRC holds
0 ≤ an+∑k

j=1 bjtj+c. Since a ∈ [0, 1], for every n ∈ N holds an ≤ n, and since bi ≤ −δi−1,
we have biti ≤ −δiti − ti, for every ti ≥ 0. Thus, for every (n, t1, . . . , tk) ∈ PRC we have

0 ≤ an+
k∑
j=1

bjtj + c ≤ n+ (−δiti − ti) +
∑
j 6=i

bjtj + c.

In other words, we have that

ti ≤ (n− δiti) +
∑
j 6=i

bjtj + c, for all (n, t1, . . . , tk) ∈ PRC . (5.14)

Consider the tuple (n0, t01, . . . , t
0
k) ∈ Nk+1 where t0i = max{∑j 6=i(δj + bj) + c + 2, 1},

t0j = 1, for every j 6= i, and n0 = ∑k
j=1 δjt

0
j + 1 = ∑

j 6=i δj + δit
0
i + 1. This tuple is

in PRC , since n0 >
∑k
i=1 δit

0
i . Let us check the inequality from (5.14). By construction

we have (n0 − δit0i ) + ∑
j 6=i bjt

0
j + c = ∑

j 6=i δj + δit
0
i + 1 − δit0i + ∑

j 6=i bj + c, that is,∑
j 6=i(δj + bj) + c+ 1, which is strictly smaller than t0i by construction. This gives us a

contradiction with (5.14).

Proof of (5.9). And finally, let us prove that −2∑k
i=1 δi− k− 1 ≤ c ≤ 2∑k

i=1 δi + k+ 1.

Assume by contradiction that c > 2∑k
i=1 δi + k+ 1. Recall that for every (n, t1, . . . , tk) ∈

PRC holds n ≥ an + ∑k
i=1 biti + c, by (5.10). Since a ≥ 0, bi > −δi − 1, for every

i = 1, . . . , k, and c > 2∑k
i=1 δi + k + 1, then we have that

n ≥ an+
k∑
i=1

biti+c >
k∑
i=1

(−δi−1)ti+2
k∑
i=1

δi+k+1, for all (n, t1, . . . , tk) ∈ PRC . (5.15)
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Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 = ∑k

i=1 δit
0
i + 1 =∑k

i=1 δi + 1. The tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds

that ∑k
i=1(−δi − 1)t0i + 2∑k

i=1 δi + k + 1 = ∑k
i=1 δi + 1 = n0, which is a contradiction

with (5.15).

Assume by contradiction that c < −2∑k
i=1 δi − k − 1. Recall that for all (n, t1, . . . , tk) ∈

PRC holds 0 ≤ an+∑k
i=1 biti+c, by (5.10). Since a ≤ 1, bi < δi+1, for every i = 1, . . . , k,

and c < −2∑k
i=1 δi − k − 1, then we have that

0 ≤ an+
k∑
i=1

biti+c < n+
k∑
i=1

(δi+1)ti−2
k∑
i=1

δi−k−1, for all (n, t1, . . . , tk) ∈ PRC . (5.16)

Consider the tuple (n0, t01, . . . , t
0
k) where t01 = . . . = t0k = 1, and n0 = ∑k

i=1 δit
0
i + 1 =∑k

i=1 δi + 1. This tuple is in PRC since n0 >
∑k
i=1 δit

0
i , but by construction it holds that

n0 +∑k
i=1(δi + 1)t0i − 2∑k

i=1 δi − k − 1 = 0, which is a contradiction with (5.16).

Now it is straightforward to prove the main theorem.

Theorem 5.1. Let n > ∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition, where k ∈ N,

δi ∈ Q and δi > 0, for 1 ≤ i ≤ k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold
guard

x ≥ an+ (b1t1 + . . .+ bktk) + c or x < an+ (b1t1 + . . .+ bktk) + c,

where x ∈ Γ, and a, b1, . . . , bk, c ∈ Q. If the guard is sane for the resilience condition,
then

0 ≤ a ≤ 1, (5.17)
−δi − 1 < bi < δi + 1, for all i = 1, . . . , k (5.18)

−2(δ1 + . . .+ δk)− k − 1 ≤ c ≤ 2(δ1 + . . .+ δk) + k + 1. (5.19)

Proof. As the given guard is sane for the resilience condition, the number compared
against a shared variable should have a value from 0 to n. For every tuple (n, t1, . . . , tk)
of parameter values satisfying the resilience condition, it should hold that 0 ≤ an +∑k
i=1 biti + c ≤ n. We may thus apply Lemma 5.3 and the theorem follows.

5.6 Thresholds with floor and ceiling functions

The following theorem considers threshold guards that use the ceiling or the floor function.
It uses the same reasoning as in Theorem 5.1, combined with the properties of these
functions. Namely, for every x ∈ R it holds that x ≤ dxe < x+ 1 and x− 1 < bxc ≤ x.
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Theorem 5.4. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition,

where δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of
the form

x ≥ f (an+ (b1t1 + . . .+ bktk) + c) or x < f (an+ (b1t1 + . . .+ bktk) + c) ,

where x ∈ Γ is a shared variable, a, b1, . . . , bk, c ∈ Q are rationals, and f is either the
ceiling or the floor function. If the guard is sane for the resilience condition, then it holds
that

0 ≤a ≤ 1, (5.20)
−δi − 1 <bi < δi + 1, for all i = 1, . . . , k, (5.21)

−2(δ1 + . . .+ δk)− k − 2 ≤c ≤ 2(δ1 + . . .+ δk) + k, if f is floor, or (5.22)
−2(δ1 + . . .+ δk)− k ≤c ≤ 2(δ1 + . . .+ δk) + k + 2, if f is ceiling. (5.23)

Proof sketch. The proof largely follows the arguments of the proof of Lemma 5.3 with
fixed denominators as in Corollary 5.2. The only remaining issue is that instead of
constraints of the form 0 ≤ an+∑k

i=1 biti + c ≤ n, that are considered in Lemma 5.3,
here we have to argue about constraints of the form 0 ≤ f

(
an+∑k

i=1 biti + c
)
≤ n,

where f is the ceiling or the floor function.

Let us first discuss the case when f is the ceiling function. As for every x ∈ R holds that
x ≤ dxe < x+ 1, we have that

an+(b1t1+. . .+bktk)+c ≤ dan+ (b1t1 + . . .+ bktk) + ce < an+(b1t1+. . .+bktk)+c+1.

Still, as the guard is sane, we have that 0 ≤ dan+ (b1t1 + . . .+ bktk) + ce ≤ n. Combining
these two constraints, we obtain that

0 < an+ (b1t1 + . . .+ bktk) + (c+ 1) and an+ (b1t1 + . . .+ bktk) + c ≤ n.

With these constraints, we can derive a contradiction following the proof of Lemma 5.3.

Similarly, if f is the floor function, we use the fact that for every x ∈ R holds that
x− 1 < bxc ≤ x. Therefore, we have that

an+(b1t1+. . .+bktk)+c−1 < ban+ (b1t1 + . . .+ bktk) + cc ≤ an+(b1t1+. . .+bktk)+c.

As 0 ≤ ban+ (b1t1 + . . .+ bktk) + cc ≤ n, we obtain that

0 ≤ an+ (b1t1 + . . .+ bktk) + c and an+ (b1t1 + . . .+ bktk) + (c− 1) < n.

And again, the rest of the proof follows the line of the proof of Lemma 5.3.

If coefficients in guards have a fixed denominator, we can obtain intervals for numerators
as a direct consequence of Theorem 5.4.
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Corollary 5.5. Fix a k ∈ N. Let n >
∑k
i=1 δiti ∧ ∀i.ti ≥ 0 be a resilience condition,

where δi > 0, i = 1, . . . , k, and n, t1, . . . , tk ∈ Π are parameters. Fix a threshold guard of
the form

x ≥ f
(
ã

D
n+

k∑
i=1

b̃i
D
ti + c̃

D

)
or x < f

(
ã

D
n+

k∑
i=1

b̃i
D
ti + c̃

D

)
,

where x ∈ Γ is a shared variable, ã, b̃1, . . . , b̃k, c̃ ∈ Z are integers, D ∈ N, and f is either
the ceiling or the floor function. If the guard is sane for the resilience condition, then it
holds

0 ≤a ≤ D, (5.24)
D(−δi − 1) <bi < D(δi + 1), for all i = 1, . . . , k, (5.25)

D(−2(δ1 + . . .+ δk)− k − 2) ≤c ≤ D(2(δ1 + . . .+ δk) + k), if f is floor, or (5.26)
D(−2(δ1 + . . .+ δk)− k) ≤c ≤ D(2(δ1 + . . .+ δk) + k + 2), if f is ceiling. (5.27)

5.7 Discussion

The classic approach to establish correctness of a distributed algorithm is to start with
a system model, a specification, and pseudo code, all given in natural language and
mathematical definitions, and then write a manual proof that confirms that “all fits
together.” Manual correctness proofs mix code inspection, system assumptions, and
reasoning about events in the past and the future. Slight modifications to the system
assumptions or the code require us to redo the proof. Thus, the proofs often just establish
correctness of the algorithm, rather than deriving details of the algorithm—like the
threshold guards— from the system assumption or the specification.

We introduced an automated method that synthesizes a correct distributed algorithm from
the specifications and the basic assumptions. Our tool computes threshold expressions
from the resilience condition and the specification, by learning the constraints that are
derived from counterexamples. Learning dramatically reduces the number of verifier
calls. In case of BOSCO, the sanity box contains 236 vectors of unknowns, which makes
exhaustive search impractical, while our technique only needs to check approximately
500 vectors.

In addition to synthesizing known algorithms from the literature, we considered several
modified specifications. For some of them, our tool synthesizes thresholds, while for
others it reports that no algorithm of a specific form exists. The latter results are indeed
impossibility results (lower bounds on the fraction of correct processes) for fixed sketch
threshold automata.

Despite the difficulty of the synthesis of fault-tolerant distributed algorithms [DF09], and
in particular undecidability of parameterized synthesis [JB14], there is still an increasing
interest in different restrictions of these problems.
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Recent work on the synthesis of fault-tolerant distributed algorithms [GT14, FBTK16,
FB15] often only applies to a small fixed size of the system, typically for n < 10.
Bounded synthesis [FS13] deals with the system size by setting SMT constraints for a
fixed small size, and then systematically increases it. This idea gave rise to many research
paths toward synthesis of distributed systems. Bounded synthesis is an important
building block in the development of the semi-decision procedures for token-passing
systems with different topologies, inspired by the undecidability results for parameterized
synthesis [JB14]. This work uses cutoff results to reduce parameterized synthesis to the
synthesis problem for a small number of processes. In [JB14], a framework for exploiting
the existing cutoff results for parameterized verification, has been developed in order to
attack the parameterized synthesis problem. Other approaches using cutoffs can be found
in [BBJ16b, DHJ+16, MPST14]. A recent technique [MFJB18] that combines cutoffs
with an SMT based CEGIS loop, successfully synthesizes self-stabilizing protocols in
symmetric rings for any system size.

A non-standard synthesis of parameterized systems, that does not take a temporal formula
as input, is studied in [KE17] for self-stabilizing rings. This approach allowed the authors
to prove a rather surprising claim, namely that the parameterized synthesis problem
for unidirectional self-stabilizing rings is decidable, while its parameterized verification
problem is undecidable.

The major difference between above mentioned parameterized synthesis approaches and
our approach is that we focus on threshold-based FTDAs, that contain parameters
as a part of the process code through the thresholds. In other words, we consider
parameterized process code, apart from the system size parameterization.
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CHAPTER 6
Model Checking of Randomized

Distributed Algorithms

Theoretical results [FLP85] show that consensus in asynchronous setting is impossible
even in the presence of one faulty process. The attempts to circumvent this result
often consist of restricting asynchrony to partial synchrony [DLS88] or relaxing the
termination requirement to probabilistic termination [Ben83]. Many systems, including
Blockchain [Nak08], provide probabilistic guarantees along unboundedly many rounds.
To check their correctness, one has to exploit probabilistic reasoning. We take a step in
this direction and reason about randomized distributed algorithms. These algorithms
extend asynchronous threshold-guarded distributed algorithms with two features: (i) a
random choice (coin toss), and (ii) repeated execution of a single round until it converges
(with probability 1).

To this end, we extend the results of Chapter 4 in two ways: (i) we extend threshold
automata and introduce probabilistic threshold automata, and (ii) we extend the ELTLFT
logic to the multi-round ELTLFT, to be able to formulate specifications that include round
numbers. More precisely, in this chapter we address the following challenge:

Challenge 6.1. Given a probabilistic threshold automaton PTA and a specification ψ (or
its negation in multi-round ELTLFT), check whether it holds that Sys(PTA) |= ψ, possibly
with probability 1.

We give an overview of our method in Section 6.1. In Section 6.2 we describe properties
of probabilistic consensus and intuitive strategies for their verification. The important
concepts are defined in Section 6.3. In Sections 6.4–6.6 we explain the techniques for
verification of consensus properties for an arbitrary probabilistic threshold automaton.
Namely, for non-probabilistic properties we need to reduce the multiple-round specifi-
cations to one-round specifications (Section 6.4), as well as to reduce infinite systems
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6. Model Checking of Randomized Distributed Algorithms

1 Boolean v := input_value
2 Integer r := 1
3
4 while (true) do
5 send (R,r,v) to all;
6
7 wait till received n − t messages (R,r,∗);
8 if received (n + t) / 2 messages (R,r,w) then
9 send (P,r,w,D) to all

10 else
11 send (P,r,?) to all;
12
13 wait till received n − t messages (P,r,∗);
14 if received at least t + 1 messages (P,r,w,D) then {
15 v := w;
16 if received at least (n + t) / 2 messages (P,r,w,D) then
17 decide w
18 }
19 else v := 0 or 1 randomly
20 r := r + 1

Figure 6.1: Pseudo code of Ben-Or’s algorithm for Byzantine faults

to the one-round systems (Section 6.5). For probabilistic properties, the more involved
reduction is described in Section 6.6. Experimental evaluation of our results is presented
in Section 6.7.

6.1 Overview of the Method

A prominent example of a consensus algorithm is introduced by Ben-Or in [Ben83].
It circumvents the impossibility of asynchronous consensus [FLP85] by relaxing the
termination requirement to almost-sure termination, i.e., termination with probability 1.
This is achieved by a multi-round fault-tolerant distributed algorithm given in Figure 6.1.
Here processes execute the while-loop, and the i-th iteration of this loop is called the
i-th round. Each round consists of two stages where processes first exchange messages
tagged R, wait until the number of received messages reaches a certain threshold (given
as expression over parameters in line 7) and then exchange messages tagged P . If n is
the number of processes in the system, among which at most t are faulty, then all the
thresholds, that is, n− t and (n+ t)/2 and t+ 1, should ensure that, for example, no
two correct processes ever decide on different values, even if up to t Byzantine faulty
processes send conflicting information. At the end of a round, if there is no “strong
majority” for a value, that is, (n+ t)/2 received messages, a process picks a new value
randomly in line 19.

While in principle these complex threshold expressions can be dealt with the method
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`0
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r3 : x ≥ n− f 7→ y++

r4 : true 7→ x++

r5 : y ≥
t

r7 r6 : y < t

1
2

1
2

Figure 6.2: Example of a probabilistic threshold automaton.

from Chapter 4, several challenges remain. Basically, the technique from Chapter 4 can
be used to verify a fixed number of loop iterations from Figure 6.1. However, consensus
algorithms should ensure that there are no two rounds r and r′ such that a process decides
0 in r and another decides 1 in r′. This calls for a compositional approach that allows
one to compose verification results for individual rounds. A challenge in the composition
is that distributed algorithms implement “asynchronous rounds”, that is, during the run
processes may be in different rounds in different times.

In addition, the combination of distributed aspects and probabilities makes reasoning
difficult. Quoting Lehmann and Rabin [LR81], “proofs of correctness for probabilistic
distributed systems are extremely slippery”. This advocates the development of automated
verification techniques for probabilistic properties of randomized distributed algorithms
in the parameterized setting.

We introduce probabilistic threshold automata to model randomized threshold-based
algorithms. An example of such an automaton is given in Figure 6.2. Nodes represent
local states (or locations) of processes, which move along the labeled edges or forks.
Edges and forks are called rules. Labels have the form ϕ 7→ u, meaning that a process
can move along the edge only if ϕ evaluates to true, and this is followed by the update u
of shared variables. Additionally, each tine of a fork is labeled with a number in the [0, 1]
interval, representing the probability of a process moving along the fork to end up at the
target location of the tine.

If we ignore the dashed arrows in Figure 6.2, a threshold automaton captures the behavior
of a process in one round. The dashed edges, called round switch rules, encode how
a process, after finishing a round, starts the next round. A naïve unfolding of rounds
would produce an infinite number of copies of a threshold automaton, and thus it would
produce infinitely many variables.

Threshold automata without probabilistic forks and round switching rules can be auto-
matically checked for safety and liveness (Chapter 4). However, adding forks and round
switches is required to adequately model randomized distributed algorithms.
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In order to overcome the issue of infinitely many rounds, we prove in Section 6.4 and
Section 6.5 that we can verify probabilistic threshold automata by analyzing a one-round
automaton, that fits in the framework of Chapter 4. We prove that we can reorder
transitions of any fair execution such that their round numbers are in an increasing order.
The obtained ordered execution is stutter equivalent to the original one, and thus, they
satisfy the same LTL-X properties over the atomic propositions describing only one round.
In other words, a system of probabilistic threshold automata can be transformed to a
sequential composition of one-round systems.

The main problem with isolating a one-round system is that our specifications often
involve at least two different rounds. In this case we need to come up with round
invariants that imply the specifications. For example, if we want to verify agreement,
we have to check whether two processes can decide different values, possibly in different
rounds. We do this in two steps: (i) we check the round invariant that no process changes
its decision from round to round, and (ii) we check that within a round no two processes
disagree on their decisions.

Finally, we introduce round-rigid adversaries, that respect the natural order of rounds.
Verifying almost-sure termination under round-rigid adversaries is in nature very different
from proving safety specification which are properties that should hold on every path,
and involve no probabilities. It thus calls for special arguments. Our methodology
generalizes the ideas of the manual proof of Ben Or’s consensus algorithm by Aguilera
and Toueg [AT12]. However, our arguments are not specific to Ben Or’s algorithm, and
we apply it to other randomized distributed algorithms (see Section 6.7). Compared to
their paper-and-pencil proof, the threshold automata framework required us to provide a
more formal setting and a more informative proof, also pinpointing the needed hypothesis.
The crucial parts of our proof are automatically checked by the model checker ByMC.
Hence the established correctness stands on more formal ground, which addresses the
mentioned concerns of Lehmann and Rabin.

6.2 Consensus Properties and their Verification

Probabilistic consensus consists of safety specifications and an almost-sure termination
requirement. We discuss here the specifications of Ben-Or’s algorithm shown in Figure 6.1.
Every correct process has an initial value from {0, 1}, and must decide a value, either 0
or 1, such that:

Agreement: No two correct processes decide differently.

Validity: If all correct processes have v as the initial value, then no process decides 1−v.

Probabilistic wait-free termination: Under every round-rigid adversary, with prob-
ability 1 every correct process eventually decides.
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Note that the ELTLFT logic, presented in Section 2.3, is insufficient for expressing consensus
properties, as it does not allow reasoning about different rounds. In Section 6.3.3 we
present the multi-round ELTLFT logic for specifying such properties.

Our verification strategies. Note that Agreement and Validity are non-probabilistic
properties, while Probabilistic wait-free termination requires probability 1. We have
two different strategies for verification of probabilistic and non-probabilistic properties.
Both strategies are based on the verification technique presented in Chapter 4. Given a
threshold automaton TA and an ELTLFT formula ¬ϕ (negation of specification ϕ), the
technique from Chapter 4 checks if Sys(TA) |= ϕ.

Note that a threshold automaton can be seen as a degenerate case of a probabilistic
threshold automaton, where we have only one round and no probabilistic choices (no
forks). Similarly, a formula in ELTLFT can be seen as a multi-round ELTLFT formula,
with only one round. Thus, we need to reduce the probabilistic setting to the form that
fits to Chapter 4.

The main reasons why the technique from Chapter 4 cannot be applied directly to
randomized FTDAs, and our strategies how to overcome them, are as follows:

• Verification of non-probabilistic properties, like Agreement and Validity:

Specifications Non-probabilistic specifications involve multiple rounds. In Sec-
tion 6.4 we reduce them to formulas from multi-round ELTLFT but with only
one round quantifier, that is, we reduce them to ELTLFT from Section 2.3.

System For checking non-probabilistic properties, we replace probabilistic choices
with non-deterministic choices, and introduce infinite non-probabilistic counter
systems in Section 6.3.2. In Section 6.5 we reduce them to one-round non-
probabilistic counter systems, that is, exactly to those counter systems defined
in Section 2.2.

• Verification of probabilistic properties, e.g., Probabilistic wait-free termination:

Specifications Reasoning about properties that hold with probability 1 is out
of the scope of Chapter 4. In Section 6.6 we reduce such requirements to
multi-round ELTLFT formulas with one-round quantifier, that is, again to
ELTLFT.

System For checking probabilistic properties, we already assume that we have
round-rigid adversaries, which impose the natural order on rounds. This makes
the isolation of the one round system trivial.

6.3 Framework of Probabilistic Threshold Automata

For modeling randomized distributed algorithms, we introduce probabilistic threshold
automata. What distinguishes them from threshold automata defined in Section 2.1, are
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differently defined rules (edges and forks), and locations with special roles (border and
final locations).

A probabilistic threshold automaton PTA is a tuple (L,V,R,RC ), where

• L is a finite set of locations, that contains the following disjoint subsets: initial
locations I, final locations F , and border locations B, with |B| = |I|;

• V is a set of variables. It is partitioned in two sets: Π contains parameter variables,
and Γ contains shared variables;

• R is a finite set of rules; and

• RC , the resilience condition, is a formula in linear integer arithmetic over variables
that encode parameters.

A rule r is a tuple (from, δto, ϕ,u) where from ∈ L is the source location, δto ∈ Dist(L)
is a probability distribution over the destination locations, u ∈ N|Γ|0 is the update vector,
and ϕ is a guard of the form x ≥ ā · pᵀ + a0 or x < ā · pᵀ + a0, where x ∈ Γ is a shared
variable, (ā, a0) ∈ Q|Π|+1 is a vector of rational numbers, and p is the vector or all
parameters. If r.δto is a Dirac distribution, i.e., there exists ` ∈ L such that δto(`) = 1, we
call r a Dirac rule, and sometimes write it as (from, `, ϕ,u). We introduce a restriction
that all destination locations of non-Dirac rules are final locations.

Probabilistic threshold automata allow one to model algorithms with successive identical
rounds. Informally, a round happens between border locations and the succeeding final
locations, then round switch rules let processes move from final locations of a given
round to border locations of the next round. From each border location there is exactly
one Dirac rule to an initial location, and it has a form (`, `′,true,0) where ` ∈ B
and `′ ∈ I. As |B| = |I|, one can think of border locations as copies of initial locations.
It remains to model from which final locations to which border locations (that is, initial
for the next round) processes move. This is done by round switch rules. These rules are
deterministic, and can be described by a function ρ : F → B, or equivalently as Dirac
rules (`, `′,true,0) with ` ∈ F and `′ ∈ B. The set of round switch rules is denoted
by S ⊆ R.

We assume the following structure for probabilistic threshold automata. A location is a
border location if and only if all its incoming edges are round switch edges. Similarly, a
location is final if and only if there is only one outgoing edge and this edge is a round
switch rule.

Example 6.1. In Figure 6.2 we have a PTA with border locations B = {`0, `1}, initial
locations I = {`2, `3}, and final locations F = {`5, `6, `7}. The only rule that is not Dirac
is r6. Round switch rules are represented by dashed arrows. /
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6.3.1 Probabilistic Counter Systems

Given a probabilistic threshold automaton PTA, we define its semantics, called the
probabilistic counter system Sys(PTA), to be the infinite-state Markov Decision Process
(MDP) (Σ, I,Act, R), where Σ is the set of configurations for PTA among which I ⊆ Σ are
initial, the set of actions is Act = R× N0 and R : Σ× Act→ Dist(Σ) is the probabilistic
transition function.

As in the non-probabilistic case, every resilience condition RC defines the set of admissible
parameters PRC = {p ∈ N|Π|0 : p |= RC}. A function N : PRC → N0 maps a vector of
admissible parameters to a number of modeled processes in the system. For example, if
we want to tolerate Byzantine faults, we model only N(n, t, f) = n− f processes; if we
have crash faults, we model all N(n, t, f) = n processes.

Configurations. As we need to capture the values of variables for every round, every
configuration σ = (κ,g,p) is determined by the following components:

• a function σ.κ : L × N0 → N0 that defines values of local state counters per
round. That is, σ.κ[`, k] stores the counter value for location ` and round k in
configuration σ.

• a function σ.g : Γ× N0 → N0 defining shared variable values per round. Similarly,
σ.g[x, k] stores the value of the shared variable x in round k in configuration σ.

• a vector σ.p ∈ N|Π|0 of parameter values, which remains the same for every round.

By g[k] we denote the vector (g[x, k])x∈Γ of shared variables in a round k, and similarly
by κ[k] we denote the vector (κ[`, k])`∈L of local state counters in a round k.

A configuration σ = (κ,g,p) is initial if for every x ∈ Γ and k ∈ N0 we have σ.g[x, k] = 0,
if∑`∈B σ.κ[`, 0] = N(p), and finally if σ.κ[`, k] = 0, for every (`, k) ∈ (L\B)×{0}∪L×N.

We say that a threshold guard ϕ : x ≥ ā · pᵀ + a0 evaluates to true in a configuration σ
for a round k, and write σ, k |= ϕ, if σ.g[x, k] ≥ ā · σ.pᵀ + a0. Similarly we define when a
guard of the other form, that is, x < ā · pᵀ + a0, evaluates to true in σ for a round k.

Actions. Actions are induced by the rules of a PTA, and have the form α = (r, k) ∈
R× N0. Intuitively, an action (r, k) stands for a process moving along the rule r in the
round k (either along the edge if r is a Dirac rule, or otherwise, moving along the fork
and ending up in a destination location). We use notation α.from for r.from, α.ϕ for r.ϕ,
etc. If r is a Dirac rule, we say α is a Dirac action.

An action α = (r, k) is unlocked in configuration σ, if its guard evaluates to true in its
round, that is σ, k |= ϕ. An action α = (r, k) is applicable to a configuration σ if α is
unlocked in σ, and σ.κ[r.from, k] ≥ 1.
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Remark 6.1. Note that in the probabilistic case we do not allow acceleration, as in the
previous chapters. Namely, if several processes simultaneously move along a fork, we
cannot guarantee that they will all arrive at the same destination location. Later we
reduce our reasoning to the known non-probabilistic case, and then we are again allowed
to use the ByMC tool that is based on acceleration.

Similarly as when executing a transition in the non-probabilistic case, we show how each
component of a configuration changes when an action is executed in the probabilistic
counter system.

Definition 6.1. We introduce a partial function apply : Act × L × Σ 9 Σ such that
given an action α = (r, k) ∈ Act, a location ` ∈ L, and a configuration σ, the result of
apply(α, `, σ) is defined if and only if α is applicable to σ and α.δto(`) > 0. We have that
apply(α, `, σ) = σ′ if and only if apply(α, `, σ) is defined and the following holds:

• σ′.g[k] = σ.g[k] + α.u, and σ′.g[k′] = σ.g[k′], for every round k′ 6= k,

• σ′.p = σ.p,

• if r ∈ R \ S and α.from 6= `, that is, if r is not a round switch rule and not a
self-loop, then

– σ′.κ[α.from, k] = σ.κ[α.from, k]− 1,

– σ′.κ[`, k] = σ.κ[`, k] + 1,

– ∀` ∈ L \ {α.from, `}, σ′.κ[`, k] = σ.κ[`, k], and

– σ′.κ[k′] = σ.κ[k′], for all rounds k′ 6= k

if r ∈ R\S and α.from = `, that is, if r is a self-loop (and thus not a round switch
rule), then σ′.κ = σ.κ,
if r ∈ S is a round switch rule, then

– σ′.κ[α.from, k] = σ.κ[α.from, k]− 1,

– σ′.κ[`, k + 1] = σ.κ[`, k + 1] + 1, and

– σ′.κ[`′, k′] = σ.κ[`′, k′], for all (`′, k′) ∈ L × N0 \ {(α.from, k), (`, k + 1)}.

A probabilistic transition function R is defined such that for every two configurations σ
and σ′ and for every action α applicable to σ, we have

R(σ, α)(σ′) =
{
α.δto(`) > 0, if apply(α, `, σ) = σ′,

0, otherwise.
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6.3.2 Infinite Non-probabilistic Counter Systems

Specifications of randomized distributed algorithms often include non-probabilistic prop-
erties, like Agreement and Validity in the case of consensus (Section 6.2). For verifying
such properties, concrete values of probability distributions on forks do not play a role.
Thus, we can replace probabilistic choices with non-deterministic choices. In this way,
with any PTA we naturally associate a non-probabilistic threshold automaton, as defined
in Section 2.1.

Definition 6.2. Given a PTA = (L,V,R,RC ), its underlying (non-probabilistic) thresh-
old automaton is TAPTA = (L,V,Rnp,RC ) where the set of rules Rnp is defined as

Rnp = {r` = (from, `, ϕ,u) : r = (from, δto, ϕ,u) ∈ R ∧ ` ∈ L ∧ δto(`) > 0}.

We write TA instead of TAPTA when it is clear which PTA we refer to. Note that every
rule from Rnp corresponds to exactly one rule in R, and for every rule in R there is at
least one corresponding rule in Rnp (and exactly one for Dirac rules).

We present two equivalent definitions of an infinite non-probabilistic counter system of
a PTA. We can either consider the probabilistic counter system Sys(PTA), and then
reduce every action to a transition (Definition 6.3), or we can replace every fork in a PTA
with nondeterminism (multiple edges), and obtain a TA, and then consider its counter
system defined analogously as in Section 2.2 but with multiple rounds (Definition 6.4).
This is illustrated in Figure 6.3.

Definition 6.3. Given a probabilistic counter system Sys(PTA) = (Σ, I,Act, RP ), we
define its non-probabilistic version Sysnp(PTA) to be the tuple (Σ, I, R), where R is a
transition relation defined below.

If Act = R× N0 and if Rnp is defined from R as in Definition 6.2, then every transition
is a tuple t = (r`, k) ∈ Rnp ×N0 such that α = (r, k) is an action from Act and for ` ∈ L
holds that α.δto(`) > 0. Transition t is unlocked in a configuration σ from Sysnp(PTA)
if α is unlocked in σ in Sys(PTA). Similarly we define when t is applicable to σ. We
obtain σ′ by applying an applicable transition t to σ, written t(σ) = σ′, if and only if
there exists a location ` ∈ L such that apply(α, `, σ) = σ′.

Two configurations σ and σ′ are in the transition relation R, i.e., (σ, σ′) ∈ R, if and only
if there exists a transition t such that σ′ = t(σ).

Definition 6.4. Given an arbitrary TA = (L,V,Rnp,RC ), with border, initial, and final
location sets B, I, and F , respectively, we define its infinite counter system Sys∞(TA)
to be the tuple (Σ, I, R). Configurations from Σ and I are defined as in Section 6.3.1.
A transition t is a tuple (r`, k) ∈ Rnp × N0. Since it coincides with Dirac actions, we
define when a transition is unlocked in a configuration and when it is applicable to a
configuration, in the same way as for a Dirac action in Section 6.3.1. A configuration σ′
is obtained by applying an applicable transition t = (r`, k) to σ, written σ′ = t(σ), if and
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PTA TA

Sys∞(TA)

Sys(PTA) Sysnp(PTA)

Definition 6.2

Section 6.3.1

Definition 6.4

Definition 6.3

=

Figure 6.3: Diagram following Proposition 6.1 presents two ways to obtain an infinite
non-probabilistic counter system, given a PTA.

only if apply(α, `, σ) = σ′, for a Dirac action α = (r`, k) and the destination location `
of r.

Now we have (σ, σ′) ∈ R if and only if there exists a transition t such that σ′ = t(σ).

Proposition 6.1. Given a PTA, the non-probabilistic version Sysnp(PTA) of its counter
system coincides with the infinite counter system Sys∞(TA) of its threshold automaton.

It is easy to see that the diagram from Figure 6.3 commutes, and thus every PTA yields
the unique non-probabilistic counter system. The two constructions give us possibility
to remove probabilistic reasoning either on the level of a PTA (using Definition 6.2) or
on the level of a counter system Sys(PTA) (using Definition 6.3). As the definitions are
equivalent, we can use both interchangeably.

Since Sys∞(TA) is a non-probabilistic counter system, we use notions as defined in
Section 2.2. Here we recall those that are needed for this chapter.

A (finite or infinite) sequence of transitions is called schedule, and it is often denoted
by τ . A schedule τ = t1, t2, . . . , t|τ | is applicable to a configuration σ if there exists a
sequence of configurations σ = σ0, σ1, . . . , σ|τ | such that for every 1 ≤ i ≤ |τ | we have
that ti is applicable to σi−1 and σi = ti(σi−1). A path is an alternating sequence of
configurations and transitions, for example σ0, t1, σ1, . . . , t|τ |, σ|τ |, such that for every
ti, 1 ≤ i ≤ |τ |, in the sequence, we have that ti is applicable to σi−1 and σi = ti(σi−1).
Given a configuration σ0 and a schedule τ = t1, t2, . . . , t|τ |, a path σ0, t1, σ1, . . . , t|τ |, σ|τ |
where ti(σi−1) = σi, 1 ≤ i ≤ |τ |, we denote by path(σ0, τ). Similarly we define an infinite
schedule τ = t1, t2, . . ., and an infinite path σ0, t1, σ1, . . ., also denoted by path(σ0, τ). An
infinite path is fair if whenever a transition is applicable, it will eventually be performed.

Since every transition in Sys∞(TA) comes from an action in Sys(PTA), note that every
path in Sys∞(TA) is a valid path in Sys(PTA).
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6.3.3 Multi-round ELTLFT Logic

In order to formally express the negations of consensus specifications, we extend the
ELTLFT logic in the following two aspects:

• Atomic propositions have form κ[`, k] > 0, instead of κ[`] > 0, and κ[`, k] = 0,
instead of κ[`] = 0, where ` is a location, and k is a round.

• We allow existential quantification over rounds, that is, formulas have form

(∃k̄ ∈ Nm0 )Eϕ(k̄), (6.1)

where k̄ is a vector of round variables (k1, . . . , km). Thus, specifications have the
form (∀k̄ ∈ Nm0 )A¬ϕ(k̄).

We call this logic multi-round ELTLFT. Here we express consensus specifications, that is,
formulas whose negations are in multi-round ELTLFT.

Formalization. In order to formulate and analyze specifications, we partition sets I,
B, and F , each into two subsets, e.g., I0 and I1, and an analogous notation for the
subsets of B and F . Here are the restrictions for every v ∈ {0, 1}:

• Processes that are initially in a location ` ∈ Iv have the initial value v.

• Rules connecting locations from B and I respect the partitioning, i.e., they con-
nect Bv and Iv.

• Similarly, rules connecting locations from F and B respect the partitioning.

We also introduce two subsets Dv ⊆ Fv, for v ∈ {0, 1}. Intuitively, a process is in Dv in
a round k if and only if it decides v in that round.

Now we can express consensus specifications, such that their negations are in multi-round
ELTLFT, as follows:

Agreement: For both values v ∈ {0, 1} holds the following:

(∀k ∈ N0)(∀k′ ∈ N0) A (F
∨
`∈Dv

κ[`, k] > 0 → G
∧

`′∈D1−v

κ[`′, k′] = 0) (6.2)

Validity: For both v ∈ {0, 1} it holds

(∀k ∈ N0) A (
∧
`∈Iv

κ[`, 0] = 0 → G
∧

`′∈Dv

κ[`′, k] = 0) (6.3)

Probabilistic wait-free termination: For every round-rigid adversary s

Ps
( ∨
k∈N0

∨
v∈{0,1}

G
∧

`∈F\Dv

κ[`, k] = 0
)

= 1 (6.4)
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6.4 Reduction to Specifications with one Round
Quantifier

While Agreement contains two round variables, Validity talks about round 0 and a
round k ∈ N0. Thus, both of these specifications involve two round numbers. Our goal
is to reduce reasoning from unboundedly many rounds to one round, so we can use
the ByMC tool, that can only analyze one round systems. Therefore, properties are
only allowed to talk about one round number. In this Section we show how to check
formulas (6.2) and (6.3) by checking properties that describe one round. Namely, we
introduce two properties, round invariants (6.5) and (6.6), and prove that they imply our
two specifications.

The first round invariant claims that in every round and in every path, if a process
decides v in a round, no process ever enters a location from F1−v in that round. Formally
written, we have the following:

(∀k ∈ N0) A (F
∨
`∈Dv

κ[`, k] > 0 → G
∧

`′∈F1−v

κ[`′, k] = 0). (6.5)

The second round invariant claims that in every round in every path, if no process starts
a round with a value v, then no process terminates that round with value v. Formally,
the following formula holds:

(∀k ∈ N0) A (G
∧
`∈Iv

κ[`, k] = 0 → G
∧

`′∈Fv

κ[`′, k] = 0). (6.6)

The benefit of analyzing these two formulas instead of (6.2) and (6.3) lies in the fact that
formulas (6.5) and (6.6) describe properties of only one round in a path. Next we want
to prove that formulas (6.5) and (6.6) imply formulas (6.2) and (6.3).

Let us first give some useful properties of Sys∞(TA).

Lemma 6.2 (Round Switch). For every Sys∞(TA) and every v ∈ {0, 1} the following
holds:

(∀k ∈ N0) A (G
∧
`∈Fv

κ[`, k] = 0 → G
∧
`′∈Iv

κ[`′, k + 1] = 0). (6.7)

Proof. By definitions of Fv, Bv and Iv, we have that

(∀k ∈ N0) A (G
∧
`∈Fv

κ[`, k] = 0→ G
∧

`′′∈Bv

κ[`′′, k + 1] = 0), and

(∀k ∈ N0) A (G
∧

`′′∈Bv

κ[`′′, k + 1] = 0→ G
∧
`′∈Iv

κ[`′, k + 1] = 0).

The two formulas together yield the required one for both values of v.
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6.4. Reduction to Specifications with one Round Quantifier

Lemma 6.3. For every Sys∞(TA) such that Sys∞(TA) |= (6.6), and for every v ∈ {0, 1},
the following holds:

(∀k ∈ N0)(∀k′ ∈ N0)
(
k ≤ k′ → A (G

∧
`∈Iv

κ[`, k] = 0→ G
∧
`′∈Iv

κ[`′, k′] = 0)
)
, (6.8)

(∀k ∈ N0)(∀k′ ∈ N0)
(
k ≤ k′ → A (G

∧
`∈Fv

κ[`, k] = 0→ G
∧

`′∈Fv

κ[`′, k′] = 0)
)
. (6.9)

Proof. Assume formula (6.6) holds. Note that Lemma 6.2 together with formula (6.6)
gives us that globally empty initial location is a round invariant. Formally, by transitivity
we have that

(∀k ∈ N0) A (G
∧
`∈Iv

κ[`, k] = 0 → G
∧
`′∈Iv

κ[`′, k + 1] = 0). (6.10)

By induction we obtain the required formula (6.8). Finally, by combining formu-
las (6.7), (6.6) and (6.8) we obtain formula (6.9).

Now we are ready to prove the main claim, that is, formulas (6.5) and (6.6) imply
formulas (6.2) and (6.3).

Proposition 6.4. If Sys∞(TA) |= (6.5) ∧ (6.6), then Sys∞(TA) |= (6.2) ∧ (6.3).

Proof. Assume Sys∞(TA) |= (6.5) ∧ (6.6).

Let us first focus on formula (6.2), and prove that Sys∞(TA) |= (6.2). Assume by contra-
diction that the formula does not hold on Sys∞(TA), that is, there exist rounds k, k′ ∈ N0
and a path π such that:

π |= F
∨

`0∈D0

κ[`0, k] > 0 ∧ F
∨

`1∈D1

κ[`1, k′] > 0. (6.11)

Since by formula (6.11) we have π |= F ∨`0∈D0 κ[`0, k] > 0, then from formula (6.5) with
v = 0 we obtain that it also holds π |= G ∧

`∈F1 κ[`, k] = 0. As D1 ⊆ F1, we know that
no process decides 1 in round k. Now formula (6.9) from Lemma 6.3 for v = 1 yields that
π |= G ∧

`∈F1 κ[`, k1] = 0 for every k1 ≥ k, i.e., in any round greater than k no process
will ever decide 1. As by (6.11) we have that π |= F ∨`1∈D1 κ[`1, k′] > 0, i.e., a process
decides 1 in a round k′, thus it must be that k′ < k.

Now we consider the other part of formula (6.11), i.e., π |= F ∨`1∈D1 κ[`1, k′] > 0. By
following the analogous analysis we conclude that it must be that k < k′. This brings
us to the contradiction with k′ < k, which proves the first part of the statement, that
violation of (6.5) and (6.6) implies violation of (6.2).

Next we focus on formula (6.3), and prove by contradiction that it must hold. We start
by assuming that the formula does not hold, that is, there exists a round k and a path π
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6. Model Checking of Randomized Distributed Algorithms

such that no process starts the first round of π with value v and eventually in a round k
a process decides v. Formally,

π |=
∧
`∈Iv

κ[`, 0] = 0 ∧ F
∨

`′∈Dv

κ[`′, k] > 0. (6.12)

Note first that π |= ∧
`∈Iv

κ[`, 0] = 0 implies π |= G ∧
`∈Iv

κ[`, 0] = 0. Then, since
Sys∞(TA) |= (6.6), that is, since formula (6.6) holds, we have that π |= G ∧

`′∈Fv
κ[`′, 0] =

0. Then by formula (6.9) we have that for every k ∈ N0 it holds π |= G ∧
`′∈Fv

κ[`′, k] = 0.
Since Dv ⊆ Fv, we also have that π |= G ∧

`′∈Dv
κ[`′, k] = 0. As this contradicts our

assumption from (6.12) that π |= F ∨`′∈Dv
κ[`′, k] > 0, it proves the second part of the

statement, that violation of (6.5) and (6.6) implies violation of (6.3).

6.5 Reduction to One-Round Counter System

Given a property describing one round, our goal is to prove that there is a counterexample
to the property in the infinite system if and only if there is a counterexample in a one-
round system. This is formulated in Theorem 6.11, and it allows us to use the existing
technique from Chapter 4 on a one-round system.

The proof idea contains two parts. Firstly, in Section 6.5.2 we prove that one can exchange
an arbitrary finite schedule with a round-rigid one, while preserving atomic propositions
of a fixed round. We show that swapping two neighboring transitions that do not respect
the order in an execution, gives us a legal stutter equivalent execution, i.e., an execution
satisfying the same LTL-X properties.

Secondly, in Section 6.5.3 we extend this reasoning to infinite schedules, and lift it from
schedules to transition systems. The main idea is to do inductive and compositional
reasoning over the rounds. In order to do so, we require that round boundaries are
well-defined, which is the case if every round that is started is also finished; a property
we can automatically check for fair schedules. In more detail, regarding propositions for
one round, we show in Lemma 6.10 that our targeted infinite transition system is stutter
equivalent to a one-round transition system. This holds under the assumption that all
fair executions of a one-round transition system terminate, and this can be checked using
the technique from Chapter 4. As stutter equivalence of systems implies preserving LTL-X
properties, this is enough to prove the main goal of the section.

6.5.1 Stutter Equivalence

We restrict our attention to the atomic propositions that describe non-emptiness of the
locations different from border locations, that is, from L \ B, in a specific round. Note
that these atomic propositions are sufficient for expressing specifications of randomized
distributed algorithms1. Formally, the set of all such propositions for a round k ∈ N0 is

1Border locations are redundant copies of initial locations, so they do not play a role in specifications.
We introduce them, roughly, in order to model a process that has finished round k, but it has not yet
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6.5. Reduction to One-Round Counter System

denoted by
APk = {p(`, k) : ` ∈ L \ B}.

For every round k we define a labeling function λk : Σ→ 2APk such that

p(`, k) ∈ λk(σ) if and only if σ.κ[`, k] > 0,

i.e., if and only if the location ` is nonempty in round k in σ.

For a path π = σ0, t1, σ1, . . . , tn, σn, n ∈ N, and a round k, a trace tracek(π) w.r.t. the
labeling function λk is the sequence λk(σ0)λk(σ1) . . . λk(σn). Similarly, if a path is infinite
π = σ0, t1, σ1, t2, σ2, . . ., then tracek(π) = λk(σ0)λk(σ1) . . ..

We say that two finite traces are stutter equivalent w.r.t. APk, denoted tracek(π1) ,
tracek(π2), if there is a finite sequence A0A1 . . . An ∈ (2APk)+, n ∈ N0, such that
both tracek(π1) and tracek(π2) are contained in the language given by the regular
expression A+

0 A
+
1 . . . A

+
n . If traces of π1 and π2 are infinite, then stutter equivalence

tracek(π1) , tracek(π2) is defined in the standard way [BK08], as we recall it here.
For infinite π1 and π2, we have tracek(π1) , tracek(π2), if there is an infinite sequence
A0A1 . . . with Ai ⊆ APk, and natural numbers n0, n1, n2, . . .,m0,m1,m2 . . . ≥ 1 such
that

tracek(π1) = A0 . . . A0︸ ︷︷ ︸
n0-times

A1 . . . A1︸ ︷︷ ︸
n1-times

A2 . . . A2︸ ︷︷ ︸
n2-times

...

tracek(π2) = A0 . . . A0︸ ︷︷ ︸
m0-times

A1 . . . A1︸ ︷︷ ︸
m1-times

A2 . . . A2︸ ︷︷ ︸
m2-times

...

To simplify notation, we say that paths π1 and π2 are stutter equivalent w.r.t. APk, and
write π1 ,k π2, instead of referring to specific path traces.

Two counter systems C0 and C1 are stutter equivalent w.r.t. APk, written C0 ,k C1, if
for every path π from Ci there is a path π′ from C1−i such that π ,k π′, for i ∈ {0, 1}.

6.5.2 Reduction to round-rigid schedules

In order to isolate one round, we need to reduce the reasoning to paths in which rounds
are ordered in the natural way.

Definition 6.5. A schedule τ = (r1, k1) · (r2, k2) · . . . · (rm, km), m ∈ N0, is called
round-rigid if for every 1 ≤ i < j ≤ m, we have ki ≤ kj.

The following reduction theorem shows that every schedule can be re-ordered into a
round-rigid schedule that is, for all rounds k, stutter equivalent regarding LTL-X formulas
over propositions of round k.

started round k+ 1. Nonetheless, the fact that we do not observe their atomic propositions will be crucial
for our reduction technique.
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6. Model Checking of Randomized Distributed Algorithms

Proposition 6.5. For every configuration σ and every finite schedule τ applicable to σ,
there is a round-rigid schedule τ ′ such that the following holds:

(a) Schedule τ ′ is applicable to σ.

(b) τ ′ and τ reach the same configuration when applied to σ, i.e., τ ′(σ) = τ(σ).

(c) For every k ∈ N0 we have path(σ, τ) ,k path(σ, τ ′).

Proof Sketch: Section 6.8.1 is dedicated to the detailed proof of this claim. The idea
lies in swapping two adjacent transitions every time the earlier one has the bigger round
number. After swapping all such adjacent transitions according to this rule, we obtain a
round-rigid schedule, i.e., we order transitions by their round numbers. Note that we do
not change the order of transitions that belong to the same round.

We prove the claim by first focusing on two transitions t1 and t2. We show that if
t1.k > t2.k, and if t1t2 is applicable to a configuration σ, then t2t1 is also applicable
to σ, and they reach the same configuration, that is, t1t2(σ) = t2t1(σ). Moreover, we
prove that path(σ, t1t2) ,k path(σ, t2t1). Iteratively applying this result, we obtain the
required.

The following proposition follows from the well-known result that stutter equivalent
traces satisfy the same LTL-X specifications [BK08, Thm. 7.92].

Proposition 6.6. Fix a k ∈ N0. If π1 and π2 are paths such that π1 ,k π2, then for
every formula ϕ from LTL-X over APk we have π1 |= ϕ if and only if π2 |= ϕ.

We conclude that instead of reasoning about all schedules of Sys∞(TA), it is thus sufficient
to reason about its round-rigid schedules. In the following section we will use this to
simplify the verification further, namely to a one-round counter system.

6.5.3 From round-rigid schedules to one-round counter system

For each PTA, we define a round threshold automaton that can be analyzed with the tools
of Chapter 4. Roughly speaking, we focus on one round, but also keep the border locations
of the next round, where we add self-loops. We show that for specific fairness constraints,
this automaton shows the same behavior as a round in Sys∞(TA). In Theorem 6.11 we
prove that we can use it for analysis of non-probabilistic properties of Sys∞(TA).

Restrictions. In the proof we restrict ourselves to fair schedules, that is, those where
every transition that is applicable will eventually be performed. We also assume that
every fair schedule of a one-round algorithm terminates. Under the fairness assumption
we check the latter assumption with ByMC [KW18]. Moreover, we restrict ourselves to
deadlock-free threshold automata, that is, we require that in each configuration each
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`0
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Figure 6.4: The TArd obtained from PTA in Figure 6.2

location has at least one outgoing edge unlocked. As we use TAs to model distributed
algorithms, this is no restriction: locations in which no progress should be made unless
certain thresholds are reached, typically have self-loops that are guarded with true.
Thus for our benchmarks one can easily check whether they are deadlock-free using SMT.

Definition 6.6. Given a PTA = (L,V,R,RC ) or its TA = (L,V,Rnp,RC ), we define
a round threshold automaton TArd to be the tuple (L ∪ B′,V,Rrd,RC ), where B′ =
{`′ : ` ∈ B} are copies of border locations, and Rrd is defined as follows. We have
Rrd = (Rnp \ S) ∪ S ′ ∪Rloop, where modifications S ′ of round switch rules are

S ′ = {(from, `′,true,0) : (from, `,true,0) ∈ S with `′ ∈ B′},

and Rloop = {(`′, `′,true,0) : `′ ∈ B′} are self-looping rules at locations from B′. Initial
locations of TArd are locations from B ⊆ L.

For a TArd and a k ∈ N0 we define a counter system Sysk(TArd) as the tuple (Σk, Ik, Rk):
A configuration is a tuple σ = (κ,g,p) ∈ Σk, where σ.κ : D → N0 defines values of the
counters, for D = (L × {k}) ∪ (B′ × {k + 1}); and σ.g : Γ × {k} → N0 defines shared
variable values; and σ.p ∈ N|Π|0 is a vector of parameter values.

Note that by the definition of σ.κ using D, every configuration σ ∈ Sysk(TArd) can be
extended to a valid configuration of Sys∞(TA), by assigning values of all other counters
and global variables to zero. In the following, we identify a configuration in Sysk(TArd)
with its extension in Sys∞(TA), since they have the same labeling function λk, for every
k ∈ N0.

We define Σk
B ⊆ Σk, for a k ∈ N0, to be the set of all configurations σ in which all

processes are in border locations of the round k. Formally, we have that σ.g[x, k] = 0 for
all x ∈ Γ, then ∑`∈B σ.κ[`, k] = N(p), and σ.κ[`, i] = 0 for all (`, i) ∈ D \ (B × {k}). We
call these configurations border configurations for the round k. The set of initial states Ik
is a subset of Σk

B.

The transition relation R in defined as in Sys∞(TA), i.e., two configurations are in the
relation Rk if and only if they (or more precisely, their above described extensions) are
in R.
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6. Model Checking of Randomized Distributed Algorithms

If we do not restrict initial configurations, all these systems are isomorphic, and this is
formalized in the following lemma.

Lemma 6.7. All systems Sysk(TArd), k ∈ N0, are isomorphic to each other w.r.t. Σk
B,

i.e., for every k ∈ N0, if Ik = Σk
B, then we have Sys0(TArd) ∼= Sysk(TArd).

We restrict our attention to fair paths, that is, those paths π such that for every
configuration σ in π the following holds: if a transition is applicable, then it will eventually
be fired in π. Moreover, we assume that all such paths in Sys0(TArd) terminate, that is,
they reach a configuration with all processes in B′. Formally, we assume that for every
fair path π in Sys0(TArd) it holds that π |= F ∧`∈L κ[`, 0] = 0. This can easily be checked
with ByMC [KW18].

Lemma 6.8. If all fair executions in Sys0(TArd) terminate w.r.t. Σ0
B, then the same

holds for Sysk(TArd) w.r.t. Σk
B, for every k ∈ N0.

Proof. It follows directly from Lemma 6.7.

We assume that in TA (and thus also in TArd) holds that for every configuration, every
location, and every round, there is an unlocked outgoing edge from ` in that configuration
and that round. Formally, for every σ, `, and k, there is a rule r such that r.from = `
and σ, k |= r.ϕ. This property assures that systems Sys∞(TA) and Sysk(TArd), k ∈ N0,
are deadlock-free.

In order to relate Sys∞(TA) and Sysk(TArd), k ∈ N0, we define the set of initial configu-
rations I0 of Sys0(TArd) to be the set I of initial configurations of Sys∞(TA), and then
inductively we define Ik+1 ⊆ Σk+1

B to be the set of final configurations of Sysk(TArd).

From now on, we fix a TA and a TArd, and if not specified differently, for every Sysk(TArd)
we assume the above definition of Ik.

Lemma 6.9. If all fair executions of Sys0(TArd) w.r.t. Σ0
B terminate, then for every

k ∈ N0 we have that the set Ik is well-defined and all fair executions of Sysk(TArd)
terminate (w.r.t. Ik).

Proof. We prove this claim by induction on k ∈ N0. The set I0 = I is clearly well-defined,
and since I0 ⊆ Σ0

B, by our assumption we have that all fair executions of Sys0(TArd)
terminate. Since for every k ∈ N0 we have Ik ⊆ Σk

B, by Lemma 6.8 we have that every
fair execution of Sysk(TArd) terminates and therefore Ik+1 is well-defined.

Lemma 6.10. If Sys∞(TA) is deadlock-free, and if all fair executions of Sys0(TArd)
w.r.t. Σ0

B terminate, then for every k ∈ N0 we have

Sysk(TArd) ,k Sys∞(TA),

i.e., the two systems are stutter equivalent w.r.t. APk.
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6.5. Reduction to One-Round Counter System

Proof Sketch: The detailed proof of this statement is given in Section 6.8.2. It is based
on induction on the round k ∈ N0, and every instance consists of two directions.

Given a path π = path(σk, τ) from Sysk(TArd) we find a stutter equivalent path π′ from
Sys∞(TA) by (i) appending a prefix that reaches σk, which is possible by the definition
of Ik, and (ii) extending π by an arbitrary path from τ(σk), that exists since there are
no deadlocks.

For the other direction, given a path π from Sys∞(TA), we construct a stutter equivalent
path π′ from Sysk(TArd) by cutting out all transitions of different round. If necessary, we
add selfloops to imitate an infinite path.

By Lemma 6.7, for every k ∈ N0 and every σ ∈ Σk
B, there is a corresponding configuration

σ′ ∈ Σ0
B obtained from σ by renaming the round k to 0. Let fk be the renaming

function, i.e., σ′ = fk(σ). Let us define Σu ⊆ Σ0
B to be the union of all renamed initial

configurations {fk(σ) : k ∈ N0, σ ∈ Ik}.

Theorem 6.11. Let system Sys∞(TA) be deadlock-free, and let all fair executions
of Sys0(TArd) w.r.t. Σ0

B terminate. Given a formula ϕ[i] from LTL-X over APi, for
a round variable i, the following statements are equivalent:

(a) Sys0(TArd) |= Eϕ[0] w.r.t. initial configurations Σu

(b) there exists a k ∈ N0 such that Sys∞(TA) |= Eϕ[k].

Proof. Let us first assume that Sys0(TArd) |= Eϕ[0] w.r.t. initial configurations Σu.
This means there is a path π = path(σ, τ) such that σ ∈ Σu and π |= ϕ[0]. Since
σ ∈ Σu, there is a k ∈ N0 and a σk ∈ Ik such that σ = fk(σk). From Lemma 6.7
we know that Sys0(TArd) ∼= Sysk(TArd), and thus there is a schedule τk in Sysk(TArd)
such that path(σk, τk) |= ϕ[k]. Now Lemma 6.10 tells us that there must be a path π′
from Sys∞(TA) such that path(σk, τk) ,k π′. By Proposition 6.6 we know that π′ |= ϕ[k],
and thus Sys∞(TA) |= Eϕ[k]. This proves one direction of the statement.

Assume now that there is a k ∈ N0 such that Sys∞(TA) |= Eϕ[k]. Thus, there is a
path π = path(σ, τ) in Sys∞(TA) such that π |= ϕ[k]. By Lemma 6.10 we know that
there is a path π′ = path(σ′, τ ′) in Sysk(TArd) with π ,k π′, and then by Proposition 6.6
also π′ |= ϕ[k]. Finally, by Lemma 6.7 there is an equivalent path π0 in Sys0(TArd)
starting in fk(σ′). Then we have that π0 |= ϕ[0], and since fk(σ′) ∈ Σu, we know that
Sys0(TArd) |= Eϕ[0] w.r.t. initial configurations Σu. This concludes the other direction
of the proof.

Bringing it all together. In Section 6.4 we show how to reduce our specifications
to formulas of the following form:

(∀k ∈ N0) Aψ[k].
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Theorem 6.11 deals with negations of such forms, namely with existence of a round k such
that formula Eϕ[k] holds. Therefore, the theorem allows us to check on the one-round
system instead of on the infinite one, if there is a counterexample to formulas we want to
check.

For instance, if we want to check whether two processes disagree in a round, we would need
to search through all (unboundedly many) rounds. Instead, we search for a disagreement
only in the first round with respect to all possible initial configurations. If there is no
disagreement in the first round, Theorem 6.11 confirms that there is no disagreement in
any other round.

6.6 Probabilistic Wait-Free Termination

6.6.1 Adversaries

In randomized distributed algorithms, some properties are required to hold with at least
a certain probability. This in general means that they are supposed to hold for every
initial configuration and failure pattern. We group executions that differ only in random
choices, and analyze each group. This is done using adversaries. They are typically
considered as fictitious entities that control the choice of the next transition in a system,
but if the transition is probabilistic (an action), they do not have any influence on the
probabilistic choice. Thus, for every adversary and every initial configuration we obtain
a unique execution tree, where branching appears due to probabilistic choices.

Definition 6.7. Let Paths be the set of all finite paths in Sys(PTA). An adversary is
a function s : Paths → Act, that given a path π selects an action applicable to the last
configuration of π.

Given a configuration σ and an adversary s, we generate a family of infinite paths,
depending of the outcomes of non-Dirac transitions. We denote this set by AdvPaths(σ, s).
An adversary s is fair if all paths in AdvPaths(σ, s) are fair.

As usual, the MDP Sys(PTA) together with an initial configuration σ and an adversary
s induce a Markov chain, written Mσ

s . In the sequel, we write Pσs for the probability
measure over infinite paths starting at σ in the latter Markov chain.

Definition 6.8. An adversary s is round-rigid if it is fair, and if every sequence of
actions it produces can be written as s0 · sp0 · s1 · sp1..., where for every k ∈ N0, we have
that sk contains only Dirac transitions of round k, and spk contains only non-Dirac
transitions of round k.

We denote the set of all round-rigid adversaries by AR.
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6.6.2 Sufficient conditions for Probabilistic wait-free termination

Let us first recall Probabilistic wait-free termination from (6.4):

Ps
( ∨
k∈N0

∨
v∈{0,1}

G
∧

`∈F\Dv

κ[`, k] = 0
)

= 1.

We start by introducing two sufficient conditions for Probabilistic Wait-Free Termination
under round-rigid adversaries. This is formalized in Theorem 6.12.

One condition is the existence of a positive probability lower-bound for a certain event to
happen, that is, Theorem 6.12(a). In order to verify it, we reduce it in two steps to the
form that ByMC is able to check. First, in Section 6.6.3 we reduce it to a non-probabilistic
condition, which is not in the multi-round ELTLFT logic, that is, does not have the form
from (6.1). Second, in Section 6.6.4 we modify the system to a non-probabilistic one,
and modify the condition to the convenient form (∀k ∈ N0) Aϕ[k] on the new system.

The other condition, Theorem 6.12(b), already has the correct form, that is, it is in
multi-round ELTLFT with one quantifier. Thus, it can be checked with ByMC without
modifying the system and the formula.

Theorem 6.12. Let p ∈ PRC be a vector of admissible parameters in Sys(PTA).

(a) Assume there is a bound p ∈ (0, 1], such that for every initial configuration σ with
parameters p, every round-rigid adversary s, and every k ∈ N0 holds

Pσs
( ∨
v∈{0,1}

G (
∧
`∈Fv

κ[`, k] = 0)
)
> p. (6.13)

(b) Assume for every v ∈ {0, 1}, holds that

(∀k ∈ N0) A
(
G

∧
`∈I1−v

κ[`, k] = 0 → G
∧

`′∈F\Dv

κ[`′, k] = 0
)
. (6.14)

Then we have Probabilistic Wait-Free Termination, that is, formula (6.4) holds.

Proof. Fix a p ∈ PRC , an initial configuration σ0, and a round-rigid adversary s. Assume
there is a non-zero probability p such that from any initial configuration σ over p and
under any round-rigid adversary s formula (6.13) holds.

Two options may occur along a path π ∈ AdvPaths(σ0, s): (i) either round 0 ends with a
final configuration in which all processes have the same value, say v, or (ii) round 0 ends
with a final configuration with both values present.

(i) In this case we have that π |= G (∧`∈F1−v
κ[`, 0] = 0), and by our assumption, i.e.,

formula (6.13) for k = 0, the probability that this case happens is at least p. Then, by
Lemma 6.2 we also have π |= G (∧`∈I1−v

κ[`, 1] = 0). By formula (6.14), in this case all
processes decide value v in round 1.
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(ii) The probability that the second case happens is at most 1− p. In this case, round 1
starts with an initial configuration σ1 with both initial values 0 and 1. From σ1 under s,
by the same reasoning as from σ0, at the end on the round 1 we have the analogous two
cases, and all processes decide in round 2 with probability at least p.

Iterating this reasoning, almost surely all processes eventually decide. Let us formally
explain this iteration. Let σ0 be an initial configuration, and let s be a round-rigid
adversary. For a k ∈ N, consider the event Ek: from σ0 and under s, not every process
decides in the first k rounds. In particular, at the end of every round i < k it is not the case
that everyone decides. By the reasoning above, namely case (ii) for round i, this happens
with probability at most (1− p). Therefore, for k rounds we have Pσs (Ek) ≤ (1− p)k. The
limit when k tends to infinity yields that the probability for not having Probabilistic
Wait-Free Termination is 0. This is equivalent to the required formula (6.4).

6.6.3 Reduction to one-round non-probabilistic specification

We have previously used the idea of decomposing an infinite counter system Sys∞(TA)
into one-round systems Sysk(TArd). In Sys(PTA), this idea is even more straightforward
since we consider only round-rigid adversaries. They guarantee that rounds are ordered
in all generated paths.

Since the assumption (a) in Theorem 6.12 is a property of one-round k in the whole sys-
tem Sys(PTA), we introduce analogous objects as in the non-probabilistic case. Namely, we
introduce a PTArd (analogously as in Definition 6.6), and its counter system Sysk(PTArd),
for every k ∈ N0. Initial configurations of Sysk(PTArd) are denoted by Ik (as they
do coincide, similarly to the non-probabilistic case). Moreover, for a fixed vector of
parameters p, the set of configurations σ from Ik with σ.p = p is denoted by Ikp.

Now, instead of checking that Theorem 6.12(a) holds on Sys(PTA), since the property
itself refers only to one round k, it can be checked on the one-round system Sysk(PTArd)
as in Lemma 6.13(a).

In the following lemma we explain how to use non-probabilistic reasoning in order to
prove a probabilistic property.

Lemma 6.13. Let k ∈ N0 and let p ∈ PRC be a parameter valuation in Sysk(PTArd).
For every LTL formula ϕ[k] over atomic propositions APk of round k, the following three
formulas are equivalent:

(a) (∃p > 0) (∀σ ∈ Ikp) (∀s ∈ AR) Pσs
(
ϕ[k]

)
> p,

(b) (∀σ ∈ Ikp) (∀s ∈ AR) Pσs
(
ϕ[k]

)
> 0,

(c) (∀σ ∈ Ikp) (∀s ∈ AR) (∃π ∈ AdvPaths(σ, s)) π |= ϕ[k].

Proof. Fix parameters p ∈ PRC .
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The two implications from top to bottom are trivial: if a probability is lower bounded
by a positive constant, then it is positive; and if the probability of a given property is
positive, then there must be at least a path satisfying that property. It is thus sufficient
to prove that the last statement implies the first one to obtain all equivalences.

Assume that from every initial configuration σ with parameter values p, and under
every round-rigid adversary s, there exists a path π ∈ AdvPaths(σ, s) such that π |= ϕ[k].
Observe that, independently of σ and s, since there are no cycles in PTA, and since PTA
contains a fixed number c of non-Dirac transitions, we have that for any path, the prefix
corresponding to round k has at most c ·N(p) non-Dirac transitions, where N(p) is the
number of modeled processes. The probability of the set of all infinite paths that have
the same prefix of round k as π, is thus at least 2−c·N(p). Therefore, we can define a
positive probability p = 2−c·N(p) to be our lower bound, which only depends on PTA
and p such that, in Sysk(PTArd)we have that (∃p > 0)(∀σ ∈ Ikp)(∀s ∈ AR) Pσs

(
ϕ[k]

)
> p.

This concludes the proof.

The following Corollary shows how to apply Lemma 6.13 to the property we need in
Theorem 6.12.

Corollary 6.14. The assumption (a) from Theorem 6.12 is equivalent to the following:
for every k ∈ N0 in Sysk(PTArd) holds that for every vector of parameters p ∈ PRC , for
every initial configuration σ ∈ Ikp, and for every round-rigid adversary s, there is a path
π ∈ AdvPaths(σ, s) such that

π |=
∨

v∈{0,1}
G (

∧
`∈Fv

κ[`, k] = 0).

6.6.4 Reduction to one-round non-probabilistic systems

According to Corollary 6.14, in order to prove assumption (a) from Theorem 6.12, we
only need to prove that for every k ∈ N0 in the system Sysk(PTArd) it holds that

(∀σ ∈ Ikp) (∀s ∈ AR) (∃π ∈ AdvPaths(σ, s)) π |=
∨

v∈{0,1}
G (

∧
`∈Fv

κ[`, k] = 0). (6.15)

Proving this on the one-round system Sysk(PTArd) is not immediate. Indeed, the quantifier
alternation (universal over initial configurations and adversaries vs. existential on paths)
makes its automated verification out-of-reach for the technique from Chapter 4. We
therefore transform Sysk(PTArd) to Sysk(TAm) in order to avoid the quantifier alternation
which is due to the presence of probabilistic rules. Intuitively, paths are stopped before the
series of non-Dirac transitions happen. Doing so, from a configuration σ, an adversary s
yields a unique path, written path(σ, s).

Given a PTA, we define a threshold automaton TAm such that for every non-Dirac
rule r = (from, δto, g,u) in PTA, all locations ` with δto(`) > 0 are merged into a new
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`0

`1

`2

`3

`4 `5
`mrg

r1

r2

r3 : x ≥ n− f 7→ y++

r4 : true 7→ x++

r5 : y ≥
t

r7

r8

r9r6 : y < t

Figure 6.5: A one-round non-probabilistic threshold automaton TAm obtained from
the PTA from Figure 6.2.

location `mrg in TAm. Note that this location must belong to the set of final locations F .
Naturally, instead of a non-Dirac rule r we obtain a Dirac rule (from, `mrg, g,u). Also
we add self-loops at all final locations. The counter system Sysk(TAm) is defined in the
standard non-probabilistic way.

Figure 6.5 illustrates the transformation on our running example from Figure 6.2. The
new final location `mrg represents a coin toss taking place; it belongs neither to F0 nor
F1 (but it is in F).

Initial configurations in Sysk(PTArd) coincide with initial configurations in Sysk(TAm).
This exploits our definition of round-rigid adversaries, where all non-Dirac transitions
are gathered at the end of a round.

Lemma 6.15. Fix k ∈ N0, an initial configuration σ from Sysk(PTArd), and a round-rigid
adversary s. For every LTL formula ϕ[k], the statements are equivalent:

(a) there exists π ∈ AdvPaths(σ, s) such that π |= ϕ[k] in Sysk(PTArd),

(b) for every π ∈ AdvPaths(σ, s) holds π |= ϕ[k] in Sysk(TAm).

Proof. Paths in Sysk(TAm) are prefixes of paths in Sysk(PTArd). Moreover, as all the
forks are removed from the threshold automaton, an adversary does not induce a tree,
but only a single path, since there is no branching. Thus, since every set of paths
AdvPaths(σ, s) in Sysk(TAm) is a singleton, then existential and universal quantification
coincide.

Finally, let us return to Theorem 6.12, now when we have reduced the condition ((a))
to the convenient form. Now, proving Probabilistic Wait-Free Termination under all
round-rigid adversaries boils down to proving formula (6.14) on Sysk(TArd) and also that

Sysk(TAm) |= A
∨

v∈{0,1}
G

∧
`∈Fv

κ[`, k] = 0.

Both can be checked using the technique of Chapter 4, with ByMC. Formally, from
Corollary 6.14 and Lemma 6.15 we obtain the following.
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Corollary 6.16. If Sysk(TArd) |= (6.14), and if

Sysk(TAm) |= A
∨

v∈{0,1}
G

∧
`∈Fv

κ[`, k] = 0,

then Probabilistic Wait-Free Termination holds on Sys(PTA).

6.7 Experiments

We have applied the approach presented in Sections 6.4–6.6 to five randomized fault-
tolerant distributed algorithms 2:

1. Protocol 1 for randomized consensus by Ben-Or [Ben83]. We consider two kinds
of crashes: clean crashes (ben-or-cc) and dirty crashes (ben-or-dc). During a dirty
crash a process can send to a subset of processes, while in clean crashes a process is
either sending to all proceses or none. This algorithm works correctly when n > 2t.

2. Protocol 2 for randomized Byzantine consensus (ben-or-byz) by Ben-Or [Ben83].
This algorithm tolerates Byzantine faults when n > 5t.

3. Protocol 2 for randomized consensus (rabc-c) by Bracha [Bra87]. It runs as a
high-level algorithm together with a low-level broadcast that turns Byzantine faults
into “little more than fail-stop (faults)”. We check only the high-level algorithm for
clean crashes. Our model checker produces counterexamples when Byzantine or
Byzantine-symmetric faults are introduced in rabc-c. The multi-layered protocol is
designed for f < n/3 faults. However, our tool shows that rabc-c itself tolerates
f < n/2 clean crashes.

4. k-set agreement for crash faults (kset) by Raynal [MMR18], for k = 2. This
algorithm works in presense of clean crashes when n > 3t.

5. Randomized asynchronous Byzantine one-step consensus (rs-bosco) by Song and
van Renesse [SvR08]. This algorithm tolerates Byzantine faults when n > 3t, and
it terminates fast when n > 7t or n > 5t and f = 0.

Following the reduction approach of Sections 6.4–6.6, for each benchmark, we have
encoded two versions of one-round threshold automata: an N-automaton that models
a coin toss by a non-deterministic choice, and a P-automaton that never leaves the
coin-toss location, once it entered this location. The N-automaton is used to support
the non-probabilistic reasoning, while the P-automaton is used to prove probabilistic
wait-free termination. Both automata are given as the input to Byzantine Model Checker
(ByMC) [KW18], which implements the parameterized model checking techniques for

2The benchmarks and the instructions on running the experiments are available from: https:
//forsyte.at/software/bymc/artifact82/
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Label Name Automaton Formula
S1 agreement_0 N AG (¬Ex{D0}) ∨ G (¬Ex{D1,E1})
S2 validity_0 N AAll{V0} → G (¬Ex{D1,E1})
S3 completeness_0 N AAll{V0} → G (¬Ex{D1,E1})
S4 round-term N A fair → FAll{D0,D1,E0,E1,CT}
S5 decide-or-flip P A fair → F (All{D0,E0,CT} ∨All{D1,E1,CT})
S1’ sim-agreement N AG (¬Ex{D0,E0} ∨ ¬Ex{D1,E1})
S1” 2-agreement N AG (¬Ex{D0,E0} ∨ ¬Ex{D1,E1} ∨ ¬Ex{D2,E2})

Table 6.1: Temporal properties verified in our experiments for value 0 (the properties for
value 1 can be obtained by swapping 0 and 1). We write fairness constraints as fair to
save space.

safety and liveness of counter systems of threshold-automata (for a bounded number of
rounds and no randomization), as in Chapter 4.

The automata follow the pattern shown in Figure 6.2: They start in one of the initial
locations (e.g., V0 or V1), progress by switching locations and incrementing shared
variables and end up in a final location that corresponds to a decision (e.g., D0 or D1),
an estimate of a decision (e.g., E0 or E1), or a coin toss (CT).

Table 6.1 summarizes the temporal properties that were verified in our experiments.
Given the set of all possible locations L, a set Y = {`1, . . . , `m} ⊆ L of locations, and
the designated crashed location CR ∈ L, we use the shorthand notation: Ex{`1, . . . , `m}
for ∨`∈Y κ[`] 6= 0 and All{`1, . . . , `m} for

∧
`∈L\Y (κ[`] = 0 ∨ ` = CR). For rs-bosco and

kset, instead of checking S1, we check S1’ and S1”.

Table 6.2 presents the computational results of the experiments reported in [BKLW18].
The meaning of the columns is as follows: column |L| shows the number of automata
locations, column |R| shows the number of automata rules, column |S| shows the number
of enumerated schemas (which depends on the structure of the automaton and the
specification), column time shows the computation times — either in seconds or in the
format HH:MM:SS. For |R|, we give the figures for the N-automata, since they have
more rules in addition to the rules in P-automata. To save space, we omit the figures for
memory use from the table: Benchmarks 1–5 need 30–170 MB RAM, whereas rs-bosco
needs up to 1.5 GB RAM per cluster node.

Recall that the benchmark rs-bosco presents a challenge for the schema enumeration
technique of Chapter 4: Its threshold automaton contains 12 threshold guards that
can change their values almost in any order. Additional combinations are produced
by the temporal formulas. ByMC reduces the number of combinations by analyzing
dependencies between the guards. However, this benchmark requires us to enumerate
between 11! and 14! schemas. To this end, we have run the verification experiments for
rs-bosco on 1024 CPU cores of the computing cluster Grid5000. Table 6.2 presents the
wall time results for rs-bosco, that is, the actual number of computation hours on all the
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Automaton S1/S1’/S1” S2 S3 S4 S5
# Name |L| |R| |S| Time |S| Time |S| Time |S| Time |S| Time
1 ben-or-cc 10 27 9 1 5 0 5 0 5 0 5 0
2 ben-or-dc 10 32 9 1 5 1 5 0 5 0 5 1
3 ben-or-byz 9 18 3 1 2 0 2 0 2 0 2 1
4 rabc-cr 11 31 9 0 5 1 5 1 5 0 5 0
5 kset 13 58 65 3 65 17 65 12 65 39 65 40
6 rs-bosco 19 48 156M 3:21:00 156M 3:02:00 156M 3:21:00 n/a n/a 156M 3:43:12

Table 6.2: The experiments for rows 1-5 were run on a single computer (Apple MacBook
Pro 2018, 16GB). The experiments for row 6 (rs-bosco) were run in Grid5000 on 32 nodes
(2 CPUs Intel Xeon Gold 6130, 16 cores/CPU, 192GB). Wall times are given.

cores is the wall time multiplied by 1024.

For all the benchmarks in Table 6.2, ByMC has reported that the specifications hold. By
varying the relations between the parameters (e.g., by changing n > 3t to n > 2t), we
have found that rabc-cr can handle more faults, that is, t < n/2 in contrast to the original
t < n/3 (the original was needed to implement the underlying communication structure
which we assume given in the experiments). In other cases, whenever we changed the
parameters, that is, increased the number of faults beyond the known bound, the tool
reported a counterexample.

6.8 Detailed Proofs for Section 6.5

6.8.1 Detailed Proofs for Section 6.5.2

The following lemma follows directly from the definitions of transitions, and it gives us
the most important transition invariants.

Lemma 6.17. Let σ be a configuration and let t = (r, k) be a transition. If σ′ = t(σ)
then the following holds:

(a) σ′.g[k′] = σ.g[k′], for every round k′ 6= k,

(b) σ′.κ[k′] = σ.κ[k′], for every round k′ ∈ N0 \ {k, k + 1},

(c) σ′.κ[`, k′] = σ.κ[`, k′], for every round k′ 6= k and every location ` ∈ L \ B,

(d) σ′.κ[k + 1] ≥ σ.κ[k + 1],

The following lemma establishes a central argument for inductive round-based reasoning:
a transition belonging to a smaller round can always be moved before a transition of the
larger round.
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Lemma 6.18. Let σ be a configuration, and let t1 = (r1, k1) and t2 = (r2, k2) be
transitions, such that k1 > k2. If t1 · t2 is applicable to σ, then t2 · t1 is also applicable
to σ.

Proof. Let us denote t1(σ) by σ1. As t1 · t2 is applicable to σ, this means that t1 is
applicable to σ and t2 is applicable to σ1. By definition of applicability, this means that

σ.κ[r1.from, k1] ≥ 1 and σ1.κ[r2.from, k2] ≥ 1, (6.16)

and additionally we have that σ, k1 |= t1.ϕ and σ1, k2 |= t2.ϕ.

We show that t2 · t1 is applicable to σ by showing that: (i) t2 is applicable to σ, and
(ii) t1 is applicable to t2(σ).

(i) First we need to show that σ.κ[r2.from, k2] ≥ 1 and σ, k2 |= t2.ϕ.

As σ1 = t1(σ) and k2 < k1, by Lemma 6.17(b) we have σ1.κ[r2.from, k2] = σ.κ[r2.from, k2].
From this and (6.16) we get that σ.κ[r2.from, k2] ≥ 1.

Note that evaluation of the guard t2.ϕ depends only on the values of shared vari-
ables σ.g[k2] in round k2 and parameter values σ.p. As σ1 = t1(σ) and k1 > k2, from
Lemma 6.17(a) we have that σ.g[k2] = σ1.g[k2]. Recall that σ1, k2 |= t2.ϕ, and thus it
must be the case that also σ, k2 |= t2.ϕ. This shows that t2 is applicable to σ.

(ii) Let σ2 = t2(σ). Next we show that t1 is applicable to σ2. Using the same reasoning
as in (i), we prove that σ2.κ[r1.from, k1] ≥ 1 and that σ2, k1 |= t1.ϕ.

As σ2 = t2(σ) and k2 < k1, Lemma 6.17(b) and 6.17(d) yield σ2.κ[r1.from, k1] ≥
σ.κ[r1.from, k1]. Together with (6.16) we obtain that σ2.κ[r1.from, k1] ≥ 1.

To this end, we show that σ2, k1 |= t1.ϕ. Since σ2 = t2(σ) and k1 > k2, by Lemma 6.17(a)
we know that σ.g[k1] = σ2.g[k1]. Since by the initial assumption we have σ, k1 |= t1.ϕ,
and evaluation of the guard only depends on shared variable values and parameter values,
then it also holds σ2, k1 |= t1.ϕ.

Lemma 6.19. Let σ be a configuration, let t1 = (r1, k1) and t2 = (r2, k2) be transitions
such that k1 > k2. If t1 · t2 is applicable to σ, then the following holds:

(a) Both t1 · t2 and t2 · t1 reach the same configuration, i.e., t1 · t2(σ) = t2 · t1(σ).

(b) For every k ∈ N0 we have path(σ, t1 · t2) ,k path(σ, t2 · t1).

Proof. Note that since t1 · t2 is applicable to σ, we also have that t2 · t1 is applicable to σ
by Lemma 6.18, since k1 > k2.

(a) When a transition is applied to a configuration, the obtained configuration has the
same parameter values, and counters and global variables are incremented or decremented
depending on the transition (and independently of the initial configuration). For any
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configuration (κ,g,p), we can write ti(κ,g,p) = (κ+ui,g+vi,p) for i ∈ {1, 2}, and some
vectors u1,u2,v1,v2 of integers. By only using commutativity of addition and subtraction,
we obtain t1 ·t2(σ) = (κ+u1 +u2,g+v1 +v2,p) = (κ+u2 +u1,g+v2 +v1,p) = t2 ·t1(σ).

(b) Let σ1 = t1(σ), let σ2 = t2(σ), and σ3 = t1 · t2(σ). Then tracek(path(σ, t1 · t2)) =
λk(σ)λk(σ1)λk(σ3), and tracek(path(σ, t2 · t1)) = λk(σ)λk(σ2)λk(σ3). We consider three
cases: (i) k 6= k1 and k 6= k2, (ii) k = k1, and (iii) k = k2.

(i) In this case, by Lemma 6.17(c), we have λk(σ) = λk(σ1) = λk(σ2) = λk(σ3). Thus,
both traces are λk(σ)λk(σ)λk(σ), and they are clearly stutter equivalent.

(ii) Since k = k1 > k2, then again by Lemma 6.17(c) we have that λk(σ1) = λk(σ3) and
λk(σ) = λk(σ2). Thus, tracek(path(σ, t1 ·t2)) = λk(σ)λk(σ3)λk(σ3), and tracek(path(σ, t2 ·
t1)) = λk(σ)λk(σ)λk(σ3), and the traces are stutter equivalent.

(iii) The last case is analogous to the previous one.

The following lemma tells us that adding or removing transitions of a round different
from k results in a k-stutter equivalent path. It will be crucial only later, for the proof of
Lemma 6.10.

Lemma 6.20. Let σ be a configuration and let t1 = (r1, k1) and t2 = (r2, k2) be transitions
such that t1t2 is appllicable to σ. Then the following holds:

(a) path(σ, t1t2) ,k path(σ, t1), for every k 6= k2, and

(b) path(σ, t1t2) ,k path(t1(σ), t2), for every k 6= k1.

Proof. It follows directly from Lemma 6.17 (c).

Proposition 6.5. For every configuration σ and every finite schedule τ applicable to σ,
there is a round-rigid schedule τ ′ such that the following holds:

(a) Schedule τ ′ is applicable to σ.

(b) τ ′ and τ reach the same configuration when applied to σ, i.e., τ ′(σ) = τ(σ).

(c) For every k ∈ N0 we have path(σ, τ) ,k path(σ, τ ′).

Proof. Since τ is finite, the claim (a) follows from Lemma 6.18, the second claim follows
from Lemma 6.19(a), and the last one from Lemma 6.19(b).
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6.8.2 Detailed Proofs for Section 6.5.3

In order to prove Lemma 6.10, we introduce and prove a property of every Sys∞(TA).

Lemma 6.21. Let Sys∞(TA) be deadlock-free, fix a k ∈ N0 and let σ be a configuration
in Sys∞(TA) with a non-empty border location in round k+ 1, i.e., ∨`∈B σ.κ[`, k+ 1] ≥ 1.
Then for every configuration σ′ reachable from σ, there is a transition t = (r, f, k1) with
k1 > k that is applicable to σ′.

Proof. Let σ be a configuration with a non-empty border location in round k + 1, and
let σ′ be a configuration reachable from σ. Assume by contradiction that there is no
transition t = (r, f, k1) with k1 > k that is applicable to σ′. Recall that every location
has a non-guarded outgoing rule. Thus, it must hold that for every location ` we have
that σ′.κ[`, k1] = 0, for every k1 > k. This is a contradiction with the assumption that σ′
is reachable from σ and ∨`∈B σ.κ[`, k + 1] ≥ 1.

Lemma 6.10. If Sys∞(TA) is deadlock-free, and if all fair executions of Sys0(TArd)
w.r.t. Σ0

B terminate, then for every k ∈ N0 we have

Sysk(TArd) ,k Sys∞(TA),

i.e., the two systems are stutter equivalent w.r.t. APk.

Proof. We prove the statement by induction on k ∈ N0.

Base case. Let us first show that Sys0(TArd) ,0 Sys∞(TA)

(⇒) Let π = path(σ, τ) be a path in Sys0(TArd). We need to find a path π′ from Sys∞(TA),
such that π ,k π′.

If τ = t1t2 . . ., then every transition ti either exists also in TA, or it is a self-loop at
the copy of a border location. Using this, we construct a schedule τ ′ = t′1t

′
2 . . . in the

following way.

For every i ∈ N, if ti exists in TA, then we define t′i to be exactly ti, and if t′i is a self-loop
at an `′ ∈ B′, then Lemma 6.21 gives us that there exists a transition t̃i from a round
greater than 0 that is applicable to the current configuration, and we define t′i = t̃i. Thus,
τ ′ = t′1t

′
2 . . . is obtained from τ by removing certain self-looping transitions and adding

transitions of rounds greater than 0. By Lemma 6.20 we have path(σ, τ ′) ,0 path(σ, τ).

Now we have that π′ = path(σ, τ ′) ,0 path(σ, τ) = π.

(⇐) Let now π = path(σ, τ) be a path in Sys∞(TA). We construct a path π′ = path(σ′, τ ′)
from Sysk(TArd) such that π ,k π′. Since I = I0, we define σ′ = σ.

Let τ0 be the projection of τ to round 0. There are two cases to consider. First, if τ
and τ0 are either both infinite or both finite schedules, then by Lemma 6.20 they yield
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stutter equivalent paths starting in σ. Observe that by Lemma 6.17 counters κ[`, 0] only
change due to transitions for round 0, so that the applicability of τ0 to σ follows from
the applicability of τ .. Thus, in these cases we define τ ′ to be τ0.

Second, we show the construction of τ ′ in the case when τ is an infinite schedule and τ0
is finite. In this case we construct τ ′ as infinite extension of τ0 as follows: Note that,
since TA is deadlock-free, there must exist at least one location ` ∈ B1 that is nonempty
after executing τ0 from σ, i.e., τ0(σ).κ[`, 1] ≥ 1. This must also be the case in Sys0(TArd),
with a difference that the nonempty location belongs to B′, since B′ plays the role
of B1. If r is the self-looping rule at `, then we obtain τ ′ by concatenating infinitely
many transitions (r, 1) to τ0, i.e., τ ′ = τ0(r, 1)ω. Transition (r, 1) does not affect atomic
propositions of round 0, and thus we have stutter equivalence by Lemma 6.20.

Induction step. Assume that Sysi(TArd) ,i Sys∞(TA) for every 0 ≤ i < k, and let us
prove that the claim holds for k.

(⇒) Let π = path(σ, τ) be a path in Sysk(TArd). We need to find a path π′ from Sys∞(TA),
such that π ,k π′.

First note that σ ∈ Ik. By definition of Ik, there exist a configuration σ0 ∈ I0 and
schedules τ1, τ2, . . . , τk−1, such that every τi contains only transitions from round i, and
τ1τ2 . . . τk−1(σ0) = σ. Since no transition here is from round k, by Lemma 6.20 we have
that path(σ0, τ1τ2 . . . τk−1) ,k path(σ, ε), where ε is the empty schedule. This path will
be a prefix of π′.

If τ = t1t2 . . ., then we use the same strategy as in the base case to define τ ′ = t′1t
′
2 . . .

such that path(σ, τ ′) ,k path(σ, τ).

Now we have that π′ = path(σ0, τ1τ2 . . . τk−1τ
′) ,k path(σ, ετ) = π.

(⇐) Let now π = path(σ, τ) be a path in Sys∞(TA). We construct a path π′ from Sysk(TArd)
such that π ,k π′.

Since we assume that all fair executions of Sys0(TArd) terminate w.r.t. Σ0
B, then by

Lemma 6.9 for every 0 ≤ i < k the set Ii is well-defined and all fair executions of Sysi(TArd)
terminate. By the induction hypothesis, we know that Sysi(TArd) ,i Sys∞(TA). Together,
this gives us that all rounds i, with 0 ≤ i < k, terminate in Sys∞(TA). In other words,
every execution of Sys∞(TA) has a finite prefix that contains all its transitions of rounds
less than k.

Let τpre be such a prefix of τ = τpreτsuf. Because τpre is finite, we may invoke Propo-
sition 6.5, from which follows that there exist schedules τ0, τ1, . . . , τk−1, τ≥k such that
every τi, 0 ≤ i < k contains only round i transitions, τ≥k contains transitions of rounds
at least k, the schedule τ0τ1 . . . τk−1τ≥k is applicable to σ, leads to τpre(σ) when applied
to σ, and

path(σ, τ0τ1 . . . τk−1τ≥kτsuf) ,k path(σ, τpreτsuf). (6.17)

Since σ ∈ I = I0, the existence of schedules τ0, τ1, . . . , τk−1 confirms that the configuration
σ′ = τ0τ1 . . . τk−1(σ) is in Ik. Next we apply the strategy from the base case to construct τ ′
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from τ≥kτsuf, by projecting it to round k, such that

path(σ′, τ≥kτsuf) ,k path(σ′, τ ′). (6.18)

By (6.17) and (6.18) we get π′ = path(σ, τ0τ1 . . . τk−1τ
′) ,k path(σ, τpreτsuf) = π.

6.9 Discussion

In this chapter we lifted the threshold automata framework to multi-round randomized
algorithms. We proved a reduction that allows to check LTL-X specifications over proposi-
tions for one round in a single-round automaton so that the verifications results transfer
directly to the infinite counter system. We have shown, using round-based compositional
reasoning, that it is sufficient to check specifications that span multiple rounds, e.g.,
agreement of consensus. We have applied a distinct reduction argument for almost sure
termination under round-rigid adversaries.

We considered the algorithms that follow the ideas of Ben-Or [Ben83]. Interestingly,
these algorithms were analyzed in [KNS01, KN02] where probabilistic reasoning was done
using the probabilistic model checker PRISM [KNP11] for systems of 10-20 processes,
while only safety was verified in the parameterized setting using Cadence SMV.

By experimental evaluation we showed that the verification conditions that came out of
our reduction can be automatically verified for several challenging randomized consensus
algorithms in the parameterized setting.

Our proof methodology for almost sure termination applies to round-rigid adversaries
only. This restriction is crucial: transforming an adversary into a round-rigid one while
preserving the probabilistic properties over the induced paths, comes up against the fact
that, depending on the issue of a coin toss in some step at round k, different rules may
be triggered later for processes in rounds less than k. As future work we shall prove that
verifying almost-sure termination under round-rigid adversaries is sufficient to prove it
for more general adversaries.

Regarding the structure of rounds, the authors of [NFM03] highlight problems on the
notion of rounds in asynchronous distributed algorithms. The central problem is that the
notion of a round provides some abstraction of time, which might not coincide with the
notion of time that comes from the length of the prefix in asynchronous interleavings. In
this chapter, for algorithms that can be represented as probabilistic threshold automata,
we show that a reduction argument ensures that for interesting specifications we may
focus on the rounds in reasoning about distributed algorithms in a sound way. We
thus provide a precise relation between the asynchronous model and rounds asked for
in [NFM03].

The idea of ordering rounds naturally can be seen as a way to impose a synchronous
behavior on asynchronous systems. Due to the large number of possible interleavings in
asynchronous systems, synchronous algorithm are simpler to specify and verify, and in
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general to reason about. Introducing layers in [MR02], defines submodels of asynchronous
models that are very close to being synchronous, which is used for a model-independent
analysis of consensus problem. Bringing the setting closer to synchronous was also used
for automated verification of distributed algorithms in [KQH18, vGKB+19].

Having rounds (or layers) that are communication closed is the key argument that allows
us to simplify the problem of reasoning about all rounds, to the reasoning about a single
representative round. Checking whether the existing rounds are communication closed,
is a non-trivial problem addressed in [GS86, DDMW19]. A similar idea can be found
in [BEJQ18], where the authors present an algorithm for deciding whether an algorithm
has an equivalent k-synchronous computation, that is, if it can be decomposed to the
sequence of rounds that contain at most k send events and k corresponding receive
events.
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CHAPTER 7
Conclusions

In this thesis we explored the applicability of reduction techniques for computer-aided
verification of fault-tolerant distributed algorithms in the parameterized setting. While
the distributed algorithms literature and verification methods predominantly focus on
safety properties, it is a folklore knowledge that only the interplay between safety and
liveness makes distributed algorithms meaningful. For instance, the algorithm that does
nothing is safe. Our verification technique is designed to support both safety and liveness
properties, expressed in linear temporal logic that only uses temporal operators F and G .
This fragment of linear temporal logic, denoted by ELTLFT, is carefully crafted: (i) it
is expressive enough to contain the specifications of all our benchmarks, and (ii) the
parameterized model checking problem is still decidable for this logic.
We restrict the class of distributed algorithms under analysis. We focus on asynchronous
algorithms where processes do not have IDs, communicate by broadcasting messages, and
compare the number of received messages against thresholds. Examples of such algorithms
are reliable broadcast, condition-based consensus, non-blocking atomic commitment, etc.
By exploiting reduction, we have developed a technique for parameterized model checking
of such algorithms, supported by the fully automated tool Byzantine Model Checker
(ByMC) [KW18].
Thresholds in distributed algorithms are a necessary ingredient for achieving fault-
tolerance. Waiting for an acknowledgment from, e.g., t + 1 messages, where t is an
upper bound on the number of faulty processes, ensures that a process does not make
progress before it receives a message from at least one correct process. The semantics of
more involved thresholds, like (n+ 3t)/2, is not easy to understand from the arithmetic
expression. That is one of the reasons why the design of threshold-based distributed
algorithms is an immensely difficult task. While the literature shows hand-written proofs
of algorithms, which confirm that the given thresholds are the suitable ones, the discussion
on how to come up with such thresholds is usually omitted. Our technique for automatic
synthesis of parameterized thresholds addresses this issue. One only needs to come
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up with (i) specifications, which are well-known from distributed algorithms literature,
and (ii) with a “skeleton” of an algorithm, that is, an algorithm with wholes instead of
thresholds. Our technique synthesizes thresholds such that, when inserted to the skeleton,
they yield the algorithm that is correct for all legal values of parameters. Hence, our
method systematically derives thresholds from specification. This can be seen as a more
structured approach of designing FTDAs.

All the techniques presented in this thesis extend the basic idea of reduction. This is a
method for reasoning about dependency of concurrently executed events in a path. Our
idea is to reorder independent transitions in such a way that the transitions of the same
nature are grouped together. Next we replace this sequence of similar transitions by a
single accelerated transition. This decreases the length of paths, and therefore it allows
us to analyze only “short” paths in a system. This seemingly simple form of reduction
proved to be the key for cutting down the complexity of parameterized model checking
of threshold-based distributed algorithms. We have also seen in this thesis that for the
extension of the setting, e.g., coin tosses and unboundedly many rounds, the extension of
this reduction for multiple rounds made the first automated verification of randomized
distributed algorithms.

This thesis demonstrates that reduction is a powerful and a promising method for
the parameterized analysis, whose extensions can lead to the further development of
parameterized verification and synthesis of fault-tolerant distributed algorithms. We
have set the stable background for such an analysis.

7.1 Technical Contributions

The techniques presented in this thesis allow us to solve challenges C1–C4 from Figure 1.2
in Section 1.2.

Challenge C1 Chapter 3 deals with verification of reachability properties of threshold-
based FTDAs. As a starting point for this work we use the work [KVW14]. We
keep the same modeling, namely threshold automata, and reuse the idea of accelerated
transitions, where multiple processes are allowed to perform the same step in one global
transition. This reduces the size of executions. Nonetheless, the reduction technique
PARA2 presented here, demonstrates a vast improvement in efficiency and reliability of
checking reachability properties. Our contribution can be summarized as follows:

• SMT-based bounded model checking. As we use counter systems, and keep track
of values of counters, that are natural numbers, transitions are described by
incrementing and decrementing counters. This allows us to encode transitions
in linear integer arithmetic. Thus, we can use SMT solvers to efficiently analyze
executions.
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• Execution schemas. Instead of checking all executions of bounded length, we
introduce representatives, so-called schemas, and prove that checking only them is
a necessary and sufficient condition for investigating correctness of an FTDA.

Challenge C2 Building on the results of Chapter 3, in Chapter 4 we raise this idea to
the next level so we can check both safety and liveness of FTDAs. As our contributions,
we single out the following:

• Lasso-shaped executions. As in the classic result by Vardi and Wolper [VW86],
we observe that it is sufficient to search for counterexamples that have the form
of a lasso, i.e., after a finite prefix an infinite loop is entered. Based on this, we
analyze specifications automatically, in order to enumerate possible shapes of lassos
depending on temporal operators F and G and evaluations of threshold guards.

• Property specific parameterized path reduction. We automatically do offline partial
order reduction using the algorithm’s description. To this end, we introduce a more
refined mover analysis for threshold guards and temporal properties. We extend the
PARA2 method for reachability, so that we maintain invariants, which allows us
to go beyond reachability and verify specifications with the temporal operators F
and G .

• A short counterexample property. By combining acceleration [KVW17] with the
previous two points, we obtain a short counterexample property, that is, that
infinite executions (which may potentially be counterexamples) have “equivalent”
representatives of bounded length. The bound depends on the process code and is
independent of the parameters. The equivalence is understood in terms of temporal
logic specifications that are satisfied by the original executions and the representa-
tives, respectively. We show that the length of the representatives increases only by
a constant factor, compared to reachability checking from Chapter 3. This implies
a so-called completeness threshold [KOS+11] for threshold-based algorithms and
our fragment of LTL.

• Complete bounded model checking. Consequently, we only have to check a
reasonable number of SMT queries that encode parameterized and bounded-length
representatives of executions. We show that if the parameterized system violates a
temporal property, then SMT reports a counterexample for one of the queries. We
prove that otherwise the specification holds for all system sizes.

• Efficient model checking of safety and liveness of FTDAs. Our theoretical results
and our implementation push the boundary of liveness verification for fault-tolerant
distributed algorithms. While prior results [JKS+13a] scale just to two out of
ten benchmarks from [KVW15], we verified safety and liveness of all ten. These
benchmarks originate from distributed algorithms [CT96, ST87b, BT85, MMPR03,
Ray97, Gue02, DS06, BGMR01, SvR08] that constitute the core of important
services such as replicated state machines.
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Based upon this we develop two new ideas: (i) synthesis of parameterized threshold
guards, and (ii) verification of randomized distributed algorithms.

Challenge C3 Knowing how to check whether a given FTDA satisfies a temporal
property, allows us to address synthesis of FTDAs. Chapter 5 considers automated
synthesis of parameterized threshold guards in FTDAs for a given sketch FTDA and a
specification, that yields an FTDA that is correct by construction, for any number of
processes and any number of faults. Our main contributions are the following:

• ByMC and the CEGIS loop. Counterexample-guided inductive synthesis [ABJ+13]
is a technique that requires two counterparts: (i) a generator of candidate solutions,
and (ii) a verification oracle that checks if candidates are correct. In our case we
use our technique from Chapter 4 as the verification oracle, implemented in the
ByMC tool.

• Learning from counterexamples. For sophisticated benchmarks that demand
computationally expensive verification procedure, it is important to have as few
as possible verification calls. For that we make the generator learn from coun-
terexamples. Existence of execution schemas comes to play here, as detecting a
counterexample gives us a concrete execution and its schema. Based on the SMT
schema analysis, one easily obtains all candidate thresholds that make this schema
violate specifications. This drastically reduces the search space for the coefficients
of threshold guards.

• Loop termination using sane guards. Still, reduced search space does not mean
that the search space is finite, and therefore, we have no guarantees that our CEGIS
loop terminates. In order to assure termination, we restrict the search to so-called
sane guards, that are, as the name suggests, those that are semantically plausible.
In other words, we do not allow negative number of sent messages, as well as more
messages than processes if each process is able to send up to one message. We
prove that the search space for sane guards is bounded.

• Synthesizing parameterized FTDAs. This loop allows us to synthesize threshold
guards that together with a given sketch form an FTDA that is correct for any system
size. In our experiments we have synthesized algorithms from [ST87b, WS07, SvR08]
for different fault models, and also we have shown that theoretical resilience
conditions are tight. That is, there is no solution if we have more faults than
theoretically predicted. Moreover, we have synthesized new versions of these
algorithms that satisfy slightly different specifications.

Challenge C4 Chapter 6 presents the first successful automated technique for parame-
terized verification of randomized FTDAs. We extend threshold automata to round-based
algorithms with coin toss transitions. For the new framework we achieve the following:
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1. Round-based reduction. For safety verification we introduce a method for com-
positional round-based reasoning. This allows us to invoke a reduction similar to
the one in [EF82], that extends the PARA2 technique for safety and liveness. We
highlight necessary fairness conditions on individual rounds. This provides us with
specifications to be checked on a one-round automaton.

2. Almost-sure termination under round-rigid adversaries. For probabilistic live-
ness verification, we explain how to reduce to proving termination with positive
probability within a fixed number of rounds. To do so, we justify the restriction
to round-rigid adversaries, that is, adversaries that respect the order of rounds.
In contrast to existing work that proves almost-sure termination for fixed num-
ber of participants, these are the first parameterized model checking results for
probabilistic properties.

3. Verification of randomized FTDAs. We checked the specifications that emerge
from the previous two points and thus verified challenging benchmarks in the
parameterized setting. We verify Ben-Or’s [Ben83] and Bracha’s [Bra87] classic
consensus algorithms, and the more recent algorithms 2-set agreement [MMR18],
and RS-Bosco [SvR08].

7.2 Future Work

Parameterized verification and synthesis of fault-tolerant distributed algorithms are
immensely difficult tasks. That there is a trade-off between degree of automation and
generality, confirms the fact that there is no fully automated technique for verification
nor synthesis for comprehensive classes of distributed algorithms. Moreover, we have
seen that these tasks are often undecidable, especially in the parameterized case [AK86,
BJK+15, JB14]. In our work we give priority to automated verification, at the expense
of the class of the algorithms we are able to address.

Parameterized verification of FTDAs Currently, we focus on algorithms with the
following characteristics:

• the timing model is asynchronous,

• processes communicate by message passing,

• all processes are identical, i.e., we have symmetric systems,

• process only broadcast messages,

• transitions are guarded by thresholds.

Any extension of the class of fault-tolerant distributed algorithms with these properties
would be a significant advance in the field. Similar to our approach in Chapter 6, where we
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introduced coin tosses to the threshold automata framework and almost-sure termination,
we believe that tackling one of these restrictions at a time will lead to more general
extensions of our technique. To this end, dealing with threshold guards is crucial, and in
this thesis we provide a solid base.

Synthesis of parameterized FTDAs Our synthesis approach from Chapter 5 is a
first step towards full synthesis of parameterized threshold-based FTDAs from specifica-
tions, and therefore there is much room for improvement. Considering the efficiency of
the method, we conjecture that thorough verification in every iteration of the CEGIS
loop is not necessary. Verification in our case means occasionally checking even hundreds
or thousand of schemas. We believe that there are only a few schemas that dramatically
reduce the search space, and therefore detecting and checking only them in the first place,
would significantly improve efficiency.

To ensure termination of the synthesis loop, we restrict the search space, and thus the
class of algorithms for which the impossibility result formally applies. First, while we
restrict the search to sane guards, the same synthesis loop can also be used to synthesize
other guards. However, in order to ensure termination, a suitable characterization of
sought-after guards should be provided by the user. Second, for reliable broadcast we
consider only threshold guards with integer coefficients that can express thresholds like
n− t or 2t+1. For BOSCO, we only allow division by 2, and can express thresholds like n

2
or n−t

2 . While from a theoretical viewpoint these restrictions limit the scope of our results,
we are not aware of a distributed algorithm where processes wait for messages from, say,
n
7 or n

1000 processes. To strengthen our completeness claim, we would need to formally
explain why only small denominators are used in fault-tolerant distributed algorithms.
We conjecture that for every FTDA that uses a rational with a large denominator, there
is an equivalent FTDA that uses a small denominator. Our current technique does not
allow us to compare executions of different algorithms.

Parameterized verification of randomized FTDAs Similarly, our technique from
Chapter 6 is our starting point in the parameterized verification of randomized FTDAs.
The technique fully verifies non-probabilistic properties, by reducing them to one-round
properties. This reduction requires manual efforts of the user. It is an open question
if the automated translation of multi-round properties to one-round properties is even
possible.

Furthermore, we are only able to verify probabilistic properties with probability 1, and
under round-rigid adversaries. Our approach is based on a path reduction that requires
swapping adjacent transitions in order to obtain an execution that satisfies the same
properties, and in which rounds are ordered naturally. Unfortunately, for reasoning
about probabilistic termination, we need to reason about computational trees instead of
paths. Thus, our PARA2 techniques currently cannot deal with arbitrary adversaries.
We conjecture that for an arbitrary adversary, there exists a round-rigid adversary that
preserves probabilistic properties. This would mean that our method is complete.
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