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Kurzfassung

Diese Diplomarbeit stellt einen Ansatz vor, mit welchem zusätzliche Sinnesreize in eine
Computergrafikanwendung mit Fokus auf Virtual Reality, genauer dem Virtual Jump Si-
mulator (kurz Jumpcube), integriert werden können. Da keine der existierenden Lösungen
unseren Ansprüchen genügte, haben wir uns dafür entschieden, eine offene, modulare und
skalierbare Plattform zu entwickeln, welche Geräte zur Sinnesreizerzeugung mit Fokus
auf Virtual Reality ermöglicht. Um die nötigen Kosten und die Entwicklungszeit niedrig
zu halten, haben wir, wo immer möglich, auf bestehende Hardwarestandartkomponenten
zurückgegriffen. Aus dem selben Grund haben wir für die Netzwerkkommunikation auf
bestehende Webtechnologie, namentlich JSON und das SockteIO Protokoll aufgebaut. Als
Programmiersprache für die Logik der einzelnen Geräten fiel unsere Wahl auf Python. Es
wurde gezeigt, dass solch ein System sowohl flexibel, als auch einfach zu implementieren
und zu warten ist. Es wurde weiters gezeigt, dass die erhöhte Latenz, welche durch den
Einsatz einer Hochsprache wie Python einerseits und nicht echtzeitfähiger Netzwerkkom-
munikation andererseits entsteht, im Rahmen von Computergrafik vernachlässigbar ist.
Um den Einfluss sensorischer Reize auf den/die BenutzerIn zu testen, wurde sowohl eine
quantitative, als auch eine qualitative Studie durchgeführt. Beide zeigen, dass zusätzliche
sensorische Reize in Virtual Reality von dem/der BenutzerIn wahrgenommen werden und
einen positiven Einfluss auf die User Experience haben, besonders auf den empfundenen
Grad von Präsenz.
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Abstract

This thesis presents an approach for integrating multi-sensory feedback with a computer
graphics environment designed for use with Virtual Reality, namely the Virtual Jump
Simulator, or Jumpcube for short. Since none of the existing solutions would meet our
requirements, we decided to build an open, modular, and scalable platform for creating
multi-sensory feedback devices to be used in Virtual Reality. To keep development
costs and time low we used mainly off-the-shelf hardware components. For the same
reason we also opted for a communication backbone based on Ethernet, modern Web
technologies, namely JSON and the SocketIO protocol, and Python as the programming
language for the logic running on the multi-sensory feedback devices. We demonstrated,
that such a communication backbone is flexible and both easy to implement and to
maintain. Further, we showed that the additional latency introduced by the use of
high-level programming languages and non-real time capable communication is negligible
in the scope of a computer graphics environment. To determine the impact the system
has on the user we conducted both a quantitative and a qualitative experiment. Both
showed that multi-sensory feedback in a Virtual Reality environment is noticed by the
vast majority of the users and has a positive influence on the overall user experience, in
particular on the degree of presence reached by the test subject.
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CHAPTER 1
Introduction

1.1 Goals

Virtual Reality, even though having been in existence for a long time, made significant
steps towards mainstream availability during the last five years. The author sees the
follwing main reasons for this progress:

• The smartphone boom made high resolution displays with low screen sizes available
at affordable prices as they became mass-produced goods

• Because of technical evolution consumer PC and gaming console hardware is today
able to cope with the additional performance requirements Virtual Reality demands

This paved the way for mass market Virtual Reality headsets, the first of which, the
"Oculus Rift DK1", was announced by Oculus VR in April 2012. Quite rapidly the idea
got momentum, leading to a massive media hype on the topic.

Fast forward to 2016: Following the media hype tech giants Valve and Sony Entertainment
announced and launched to market their own solutions for mainstream Virtual Reality,
being "SteamVR" and "Playstation VR" respectively. American research and advisory firm
Gartner declared in its 2016 "Hype Cycle for Emerging Technologies" that Virtual Reality
is past the "Trough of Disillusionment" and on its way up the "Slope of Enlightenment",
though still anticipating five to ten years to mainstream adoption (or in their terms the
"Plateau of Productivity") [Gar16], a timespan they reduced to two to five years only one
year after in their 2017 edition of "Hype Cycle for Emerging Technologies" [Gar17].

In the meantime at TU Wien the project "Virtual Jump Simulator", referred to as
Jumpcube in the context of this document, was introduced. The idea was to develop
a Virtual Reality system, which allows to simulate a parachute jump as accurately as
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1. Introduction

possible. Soon it went obvious that visual components would not be enough to achieve
the main goal of any Virtual Reality system: presence through immersion [BM07]. To
stick to the terminology proposed by Slater [Sla03] we consider immersion to be the
objectively quantifiable properties of a system, like e.g. number of pixels or computing
power, while the term presence points to the subjective experience of the user to not
perceive the world being presented to him/her through the Virtual Reality headset as
virtual or synthetic, but feel as if he/she is actually within that world. Please notice,
that this does not mean that the main goal is to make the world as realistic as possible,
as one can also feel present in e.g. a mystical world of elves and dragons. Still, in the
best case the user would completely forget about reality around him/her and replace it
with the virtual world (see Section 2.1.4 for further details).

To address more senses then just visual and aural, the Jumpcube needed some kind of
environment control system, allowing for haptic feedback, g-force simulation or even
olfactory elements to be included. Therefore the system needs to be very flexible and
easily extensible for the usage with different peripherals, for example but not limited
to fans, valves and motors. This should not only improve the user’s experience, but
also reduce the risk of experiencing simulator sickness. The latter is a phenomenon
assumed to be closely related to sea sickness or car sickness [LD05]. It arises from senses
contradicting each other, for example: Take a car passenger. The visual sense experiences
no acceleration because some objects (e.g. the car’s interior) are not moving at all or at
constant speed but the inner ear feels acceleration (e.g. the car takes a turn). The brain
cannot make sense of these obviously contradictory information and as a consequence
the person starts feeling nauseous (see Section 2.1.5 for further details).

As a consequence the environment control system does not necessarily need to simulate
every little detail of the virtual environment in a physically correct way. The goal is
to provide a "good enough" approximation to support and emphasize visual experience,
and before all the environment control system must not create sensory information
contradicting the visual experience.

The Jumpcube is meant to offer a variety of different experiences, some of them being
interactive, based on different technologies spanning from computer graphics to 360°
video. Hence the environment control system must offer an interface accessible by a
variety of different applications. As a best case scenario the environment control system
would offer an API based on one or more widely adopted communication protocols,
which allow it to seamlessly integrate with a wide range of software. If this is not
possible some communication bridges need to be implemented. Please notice, that this
interoperability constraint applies to the full communication stack, which apart from
software and protocols, also includes the hardware (e.g. cables).

Due to the previously mentioned interactivity of offered experiences, the impact on the
environment varies with the user’s decisions and hence the environment control system
has to be able to react to changes on demand. In addition the latency between an event
being sent from any software or hardware component of the Jumpcube and the reaction
by the environment control system shall not be noticeable by the user. In the best case
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scenario the environment control system’s latency is within one frame. Since the current
Virtual Reality headsets offer a display fresh rate of 90 Hz, this boils down to the latency
being lower then 11.1 ms.

Last but not least - wherever possible - free and open source hardware and software
shall be used for creating the environment control system. This is before all a moral
decision by the author but also offers many advantages in various aspects of the project.
For further information on this topic see Section 2.4.1. As a consequence of the deep
beliefs of the author in the free and open source mentality software and custom hardware
originating from this project shall be put under a copyleft license and made available for
the public.

1.2 Motivation
Similar to Virtual Reality, automation systems have existed for a long time, from
rudimentary ones such as timer switches to highly complex systems, like fully automated
production lines. And these systems too managed to spread to end customers during the
last years, for example in form of home automation kits.

Such systems come in a virtually endless number of forms, from wired to wireless, from
short range to long ranged, with or without hard realtime capabilities, message or status
based, open or proprietary, only to mention a few key characteristics. Discussing them
all is out of scope for this thesis, but some candidates which may be applicable for use in
the Jumpcube are analyzed and explained in more detail in Section 2.3.2.

Yet, browsing through the literature problems arise: Some systems are optimized for
video games, like servo bases for car seats targeting racing simulation enthusiasts. Hence,
they offer out of the box integration with game engines at least to some extend. Being
optimized for gaming experiences, they also claim to have acceptable latency. But
they turn out to be very expensive and hardly (if even) extensible and customizable.
Other systems like home automation kits are available at reasonable costs and are easily
extensible, but hardly customizable and mostly restricted to wireless communication,
which is a risk factor in unknown conditions like exhibitions with - taken into account
as good as every single visitor carries a smartphone with him/her - a huge number of
WiFi capable devices, heavily congesting both the 2.4GHz and the 5GHz band, which
turns out to be the bands where modern and reasonably flexible wireless automation
protocols operate in. Some systems like for example CAN have very good response time
and realtime capabilities, but tend to be rather costly 1.

Others, like cheap remote controlled power switches are available at more reasonable costs,
but are very slow to react. As a short example: a delay of half a second is completely

1The products referred to are IXXAT USB-to-CAN V2 listing at Conrad for 294,52 €
(https://www.conrad.de/de/can-umsetzer-usb-can-bus-ixxat-101028112001-betriebsspannung-5-
vdc-1386382.html), and B&B SmartWorx, Inc. PCIE-1680-AE listing at DigiKey for 345.00 $
(https://www.digikey.com/product-detail/en/b-b-smartworx-inc/PCIE-1680-AE/PCIE-1680-AE-
ND/7426509). Prices retrieved at 30th April, 2018, 14:21.
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1. Introduction

acceptable for a light switch, but for simulating multi-sensory experiences in a Virtual
Reality environment it is not.

In addition a homogeneous system is to be preferred as it eases the build up and tear
down of the Jumpcube’s bearing structure, which - taken it travels from time to time - is a
use case to be addressed. Having multiple systems acting side by side also introduces the
need of either a communication gateway between one and another or multiple different
APIs, which all need to be implemented by all supported game engines, as well as the
control panel.

So it soon became clear all of the existing systems bear at least some showstopper in
the Jumpcube’s context. Combining different systems with different strengths is not
an acceptable way to go too. Yet this analysis also revealed what these systems are at
heart: a processor and some sensors and/or actors, paired with some kind of connectivity.
The base concept being simple, and the individual parts being available off-the-shelf at
reasonable pricing led to the decision to design the whole system from scratch, relying
on as much off-the-shelf hardware and existing software as possible.

1.3 Overview

In the context of the Jumpcube a wide variety of components needs to be controlled, for
example but not limited to 220V AC fans, servo motors, and water valves for simulating
wind, g-forces and clouds respectively. Also it must be taken into account, that at any
time a new component needs to be integrated with the existing system.

All of these actors need to be integrated with the Virtual Reality experiences created by
students in other projects accompanying the one this thesis refers to. Due to the multitude
of different experiences the need for a clear and universal API arises. Additionally, in the
context of VR realtime capabilities are needed at least to some extend. Both visual and
otherwise experienced sensory input have to be synchronous for them to integrate with
each other.

In the next chapter some past work will be presented starting with an analysis on what
Virtual Reality is in Section 2.1.1. This also includes the principles on how it works from
both technical and anatomic perspective and what the state of the art currently has
to offer. Next a tour will be taken into the human cognitive aspects of this technology,
showing how shortcomings in the human cognitive apparatus can be exploited to create
an out of body experience in Section 2.1.4. Closing the section on Virtual Reality in
2.1.5 the topic will turn to what can go wrong if the human cognitive apparatus is not
addressed properly. The socalled simulator sickness will be explained and also some
techniques how to avoid or at least reduce its effect will be presented.

The next section will then lead over to the more technical part. The concepts of game
engines will be discussed and it will be shown why they became the backbone of the
video game industry. The interested reader can find this discussion in Section 2.2.
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1.3. Overview

Eventually the focus shifts to the basics needed to build a sensor/actor network as
described in the previous sections. This includes both the hardware part in Section 2.3
discussing the principles of microcontrollers, embedded systems, and communication.
But what’s the hardware without the software? Therefore in Section 2.4 Linux - and
connected to that the concepts of both operating systems and free and open source
software - will be introduced, followed by a short discussion on modern communication
protocols.

Following the theory, Chapter 3 shifts the focus towards the more practical aspects of
the problem to solve. This starts with a more detailed description of the problem itself in
Section 3.1. Next the system requirements are laid out in detail in Section 3.2. Basically
this is a translation of the human cognitive features into technical requirements, but will
not spare a rough overview of existing Jumpcube components on both hardware and
software side as they will need to be integrated with the system.

Chapter 4 is all about the results. Section 4.1 describes the implemented communication
backbone with all its features and some benchmarks aim to check if the system require-
ments are met. After that the single units, referred to as the environment controllers,
are presented in section 4.2. In this section one can also see how new controllers may
be derived from the existing ones by small adaptations to their hardware or software
components.

Closing this chapter is a brief overview on the control terminal in Section 4.3. This
section not only aims to show the control terminal characteristics and architecture, but
also tries to be a manual for both users of the system and engineers who want to further
extend it or adapt it to their own needs.

The second to last Chapter 5 contains user feedback gathered through questionnaires on
the Jumpcube’s public appearances and in respect to that a short discussion on how the
system influences the user experience by augmenting it with multi-sensory stimuli.

To wrap up the closing Chapter 6 shows what conclusions can be drawn and proposes
some further work for extending the multi-sensory experience even more.
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CHAPTER 2
Literature review

2.1 Virtual Reality

2.1.1 What is VR?

Virtual Reality, or VR for short, is not a single technology, but rather a whole family of
devices which all aim to simulate a real-life-like experience. Yet for this thesis we shall
put our focus on head mounted displays, or HMD for short, since it is the design adopted
by all major manufacturers targeting consumers today. Many [Bro] well-respected [RT]
technology [Sch] and psychology journals [SK] trace their origin back as far as the late
1950s and early 1960’s to the work of Morton Heilig and his "Stereoscopic-television
apparatus for individual use"[Heib]. As can be seen in Figure 2.1 his device design already
resembles modern VR headsets in their exterior appearance. And also the internal
workings of the device as can be seen in Figure 2.2 are the same as in modern VR HMDs
with the exception of Heilig’s design containing a "television tube", which at the time
was state of the art, as the Thin Film Transistor Liquid Crystal based displays have not
been invented until 1988 [Kaw02]. But the rest of the components, namely (with there
numbering in Figure 2.1 and Figure 2.2):

• optical lenses (21, 22) to workaround the fact that the image is very close to the
user’s eye

• handles for lateral (37) adjustments - the rest of the adjustments described by
Heilig are not available on most modern VR HMDs

• a strap (16) to allow hands-free operation
• a connection cable (53)
• a cavity to leave room for the user’s nose (13)
• an image producing unit (24)

remain unchanged up to date as can be seen in Figure 2.3. Therefore Heilig’s design -
if used correctly - would have been perfectly capable of creating a perception of depth

7
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Figure 2.1: Morton Heilig, Stereoscopic-television apparatus for individual use, 1960,
United States patent 2,955,156 - page 1.

[Heib]

within the displayed image. The reason for this is founded in the way how human visual
perception works and what enables a human to visually perceive depth. This aspect is
explained in more detail in Section 2.1.2.

For completeness the reader shall note, that Heilig’s patent lacks one very important
feature of today’s VR HMDs, namely the ability to determine and propagate the direction
the user is looking at. This comes as no surprise as computers, which are the things we
use as image source for today’s VR HMDs were something completely different then. The
notion of an integrated semiconductor circuit has only been filed for patent in 1959 [Inc].
So it is easy to assume that even throughout the 1960s an image source which would
create content based on the user’s view direction was hard to imagine. Nevertheless,
Heilig was able to build a complete multi-sensory experience around his 1957 invention a
few years later in 1960. The Sensorama depicted in Figure 2.4 combined "the effects of
the breeze, the odor, the visual images and binaural sound"[Heia]. The interested reader
can find more details on multi-sensory Virtual Reality in Section 2.1.4.

8
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Figure 2.2: Morton Heilig, Stereoscopic-television apparatus for individual use, 1960,
United States patent 2,955,156 -page 1.

[Heib]

2.1.2 Depth perception in the human visual apparatus

The human visual apparatus uses many features from the image perceived by the eye
to extract spatial information. These features can be classified into two classes [HR95],
namely:

• monocular cues rely on features of an image perceived by one eye
• binocular cues rely on differences between the images perceived by both eyes

Since monocular cues are intrinsic to the image, they are not enhanced by providing two
dedicated image sources, i.e. one per eye, as presented in Section 2.1.1. Therefore they
are out of scope for this thesis and we shall focus on the binocular cues and show their
relation to Virtual Reality.

The first binocular cue that will be discussed is the so-called stereopsis [HR95], or retinal
(binocular) disparity, or binocular parallax. The effect originates from the eyes being
at different positions in space, which means that the image of their three dimensional
surroundings is projected on each of them at a slightly different angle. Assuming we
have a solid object, e.g. a cube, in an otherwise empty room. By laws of geometry the
projection of the cube on the individual eye depends on the relative position of the eye
and the cube. Since the eyes are not at the same position in space we can conclude that
the images projected onto them will be slightly different. An illustration can be found in
Figure 2.5. We can also deduce that the amount of difference between the images for any
given object depends on the distance of the object from the eyes, or in other words: the

9
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Figure 2.3: The HTC Vive uses lenses (bottom row, center) to project the image creating
device further away from the user’s eye. The housings of these lenses are mounted onto a
mechanic which allows to move their position on the left-and-right axis. This enables
the device to adapt to different eye spacings. Both approaches were described in Heilig’s
patent in 1957.

[iFi]

farther the object is from the eyes, the less the two images perceived by the eyes will differ
from each other. An illustration of this effect can be found in 2.6. Charles Wheatstone
was able to show in 1838 that the human brain is able to notice these differences and
deduce the objects distance from them [Whe].

Proceeding to the next binocular cue we look at convergence [HR95]. For the ability
to use the images from both eyes the human visual apparatus has to make sure some
preconditions are met:

• the lens within each eye has to be adjusted in such a way that it produces a sharp
image of mentioned object on the retina. The adjustment depends on the distance
of the object to focus from the eye. This effect is known as accommodation.

• both eyeballs have to be rotated around their vertical axis to make sure the image
of the object to focus is projected on the area of the retina with sharpest vision.
This effect is known as convergence.

10
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Figure 2.4: The Sensorama
[Min]

Even though accommodation and convergence interact in a closely coupled feedback
loop to form the accommodation-convergence reflex [FW57], accommodation alone is
a monocular cue since it relies on the information of each eye, i.e. its lens adjustment,
individually. Convergence on the other hand relies on the angle between both eyes’
direction of view, i.e. the rotation around their vertical axis and is therefore categorized
as a binocular cue. The combined effect though leads to accommodation and convergence
not being controllable on their own, but only in conjunction. This leads to the effect
depicted in Figure 2.7: The closer an object is to the eyes, the further they have to be
rotated towards each other to have the object projected onto the right spot. The brain is
able to evaluate the angle between the eyes and from that deduct the distance of the
object from the eyes.

Now, while Stereopsis can be leveraged quite easily by Virtual Reality Headsets following
Heilig’s design, as they have one dedicated image source per eye, exploiting convergence
is more difficult. The reason for this is founded in how Head Mounted Displays are
built. The image producing device is at a fixed position relative to the viewer’s eyes.
In addition the image producing device is at a very short distance from the eye. Heilig
put lenses between the eye and the image producing device to virtually push the image
producing device further away from the eye - a technique employed up to date as can be
seen in Figure 2.3. Yet both the distance of the image producing device from the eye

11
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Figure 2.5: Due to the eyes (white) being at different positions in space the projections
of 3D objects onto them differ. This effect is known as Stereopsis.

and the optical characteristics of the lenses are fixed, which in logical consequence leads
to the whole image being on the same focal plane. This leads to a fixed accommodation
of the viewers eye, which due to their coupled nature leads to fixed convergence of the
eyes. The result is the so-called vergence–accommodation conflict, a well known effect in
human visual perception[Hua17].

2.1.3 Development of Virtual Reality solutions

As we have seen in Section 2.1.1 Virtual Reality is a long known technology. Modern
Virtual Reality Head Mounted Display do not differ much from the design in Heilig’s
patents in the way how they function and how they are built. Virtual Reality systems
have been evolving throughout this over 50 year timespan, but none of these stages
reached mainstream availability. As an example we may have a look at the Sega VR
project by console manufacturer Sega. In 1991 [Hor] Sega announced the Sega VR
project, a Virtual Reality Headset featuring dual LCD screens for 3D vision and stereo
headphones for 3D audio. The device also featured an inertial sensor which should give
the headset the ability to track its orientation and position. The system was scheduled to
hit market in 1994, yet the project was abandoned after its last appearance at Consumer
Electronics Show 1993. Sega stated the project was aborted due to it being too realistic
and Sega fearing users could get hurt by running into walls while wearing the Virtual
Reality headset. In 1995 Nintendo released its Virtual Reality solution, the Virtual Boy
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Left eye Right eye

Near

Far

Figure 2.6: The further away an object is from the eyes the less its projections onto the
individual eye will differ. From this the visual apparatus is able to deduce how far away
an object is

Figure 2.7: The closer an object is, the more the eyes need to rotate towards each other.
This effect is known as convergence.

13



2. Literature review

[Edw]. Different from the Sega VR the Virtual Boy was not a head mounted display, but
a table-top device. Hence the user was not able to look or move around in the virtual
world. With that the system shares many features with Heilig’s Sensorama and is very
different from today’s virtual reality head mounted displays. The system used two scan
line array monochrome displays, one per eye. Nintendo anticipated 3 million units sold in
Japan within the first year [Nin]. As it became clear that the Virtual Boy will not meet
the economical expectations Nintendo stopped all investments only six moths after the
release. By the projects end in late 1996 only 770,000 units were sold worldwide [Edw].

Yet the interest in the technology did not die together with these project and at least
scientists welcome the notion of it being "too realistic" for a variety of use cases. In 1995
Rothbaum et. al. showed how Virtual Reality can be effective in treating acrophobia, the
fear of heights [RHK+95]. Soon after in 1997 and 1999 scientists where able to show a
therapeutic benefit when using Virtual Reality on veterans of the Iraq war [ARS97] and
the Vietnam war [BORB99] as a treatment for Post Traumatic Stress Disorder. The idea
behind all of these projects was to analyze if and how it would benefit patients suffering
from phobias or traumas due to their war zone experiences to experience the cause of
their phobia or trauma in a controlled and safe, yet realistic environment. To achieve
these therapeutic benefits all projects included the development of dedicated software
able to simulate the desired scenario, i.e. a 50 story building and a war zone respectively.
This software was designed to run on consumer grade hardware. For the Vietnam related
project the scientists went as far as to build a custom piece of hardware they called
"Thunder Seat", a chair which features a woofer speaker simulating helicopter vibrations
to address the patient’s senses beyond visual and auditive. The reason for this decision is
highly relevant to the Jumpcube project and is discussed in more detail in Section 2.1.4.

To sum up, we saw that Virtual Reality hardware designs have been known since the
late 1950s and by the end of the 1990s solid scientific evidence existed which showed that
Virtual Reality felt "real" enough even to the extend of treating psychological disorders
on consumer computers available at the time. Yet it took another roughly 20 years
until a project to bring Virtual Reality to the mainstream gained interest comparable
to the Sega VR. Virtual Reality headsets have been developed in the 1990s and 2000s
as a list available on stereo3d.com shows [Bun], yet the cost for the devices which offer
field of view and resolution comparable to the devices used in above mentioned studies
shows their target is not the mainstream consumer. As an example it shall be noted,
that the Kaiser Electro-Optics Inc. ProViewXL 35/50 from 1998, which offers similar
specs as the Virtual Research Systems V6 used in the above mentioned Vietnam veterans
Post Traumatic Stress Disorder project, was selling for 15.000$, a price well beyond
the mainstream market. On the other hand the more affordable models on said list all
feature only half the field of view, so the findings from above mentioned studies about
the perceived reality might not be applicable.

In June 2012 at E3 John Carmack, founder of id Software, showed a prototype of a
Virtual Reality head mounted display he got from Palmer Luckey. The media echo was
massive and in June 2012 the latter founded Oculus VR [Kum]. Luckey’s prototype
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took advantage of Nokia’s, Apple’s and Google’s introduction of smartphones, i.e. the
N-Series, the iPhone and Android based devices respectively, to mass market in the early
to mid 2000s. These devices incorporate many features needed for a Virtual Reality head
mounted display and the parts, upfront the displays, were suddenly available in a variety
of sizes due to the differently sized smartphones and tablets, in large numbers and at
reasonable price. This factor which has been heavily exploited when building the Oculus
Rift Development Kit 2 in 2014, which contains the entire front panel of a Samsung
Galaxy Note 3 including the Samsung branding on the display frame and the gaps which
would hold speaker, front camera and distance sensor in the smartphone. By March 2013
Oculus VR had received the support of both Unreal Engine [Eng] and Unity [VRa], two
of the leading game engines currently on the market.

2.1.4 Immersion and presence

As already mentioned in Section 1.3 we stick to the terminology proposed by Mel Slater
[Sla03]. Slater tries to avoid confusion in discussions because of a too wide usage of either
of these terms. He claims that a clear terminology would benefit discussions by avoiding
that the participants talk about different things using the same term, hence ending up
in what seems to be disagreement over a topic, while in reality each participant of the
discussion referenced a different topic. So Slater proposes to use the terms immersion
and presence as well-defined terms having no overlap in their meaning. To achieve this
he proposes to let:

• immersion be the objectively measurable and quantifiable properties of a Virtual
Reality system or component, e.g. a Virtual Reality head mounted display. Hence,
immersion is intrinsic to the system itself and therefore does not change for different
users.

• presence be the subjective experience of the user. Presence might still be quantifiable
and measurable, e.g. physical reactions of a phobia patient when presented with a
virtual equivalent of his/her phobia’s trigger, but it is at all times subjective to the
user and hence varies from user to user.

Bowman and McMahan [BM07] divided immersion into 9 metrics. Former Valve employee
Micheal Abrash gave a talk on Steam Dev Days 2014 [Abr14], where he claims Valve’s
VR research team identified the values for some of these metrics necessary to establish
presence:
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Metric Description
[BM07] Value [Abr14] Note

Field of view

The size of the visual
field that can be
viewed
instantaneously

≥ 80° -

Field of regard
The total size of the
visual field
surrounding the user

-
Up to 360° with
head mounted
displays

Display size - - -
Display resolution - ≥ 1080p -

Stereoscopy

The display of
different images to
each eye to provide an
additional depth cue

-
Possible with
head mounted
displays

Head-based
rendering

The display of images
based on the physical
position and
orientation of the
user’s head

Millimeter and
1
4° accurate -

Realism of
lighting - - Software

dependent

Refresh rate - > 60Hz,
≥ 95Hz

-

Frame rate - - -

Abrash goes on to mention other metrics not present in the list of Bowman and McMahan
crucial for establishing presence:

Metric Description Value Note

Low pixel
persistence

Time a pixel needs to
become dark after
being lit

< 3ms -

Global display
All pixels are
illuminated
simultaneously

Present
Rolling display
may work with
eye tracking

Optical
calibration

A highly accurate
process for
characterizing the
lenses and correcting
the rendered image

Present -

Latency Time between motion
and last photon ∼ 20ms

25ms may be
enough
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We conclude from above table that immersion can be easily quantized by just looking at
the specification sheet of the Virtual Reality system and the software at hand. The only
exception here is frame rate, though even this aspect can easily be determined on the
running system. We have also seen that minimum requirements to immersion can be
established for allowing presence, but what about measuring presence itself? As becomes
clear from Slater’s terminology presence is subjective and therefore intrinsically hard to
measure and quantize objectively. Also Bowman and McMahan stated that they initially
"were not sure how to evaluate that claim", being: presence helps people solve some tasks
more efficiently [BM07].

Three different approaches have been presented to solve this problem with different
advantages and disadvantages:

• self-assessment questionnaires [WS98] are easy to do, but the result is still highly
subjective to the user.

• task performance based approaches [SLUK99] are more complicated to perform,
since such a task has to be defined, but the result is more objective then a simple
questionnaire. Yet this approach fails on Virtual Reality applications which are not
designed to solve tasks, like Virtual Reality games or other applications designed
purely for entertainment.

• physiology based approaches [MIWB02] like the measurement of heart rate or skin
conductance is easy to perform and offers objective values. This approach though
requires additional hardware able to measure the chosen physiological indicators.
In addition some indicators are specific to a certain type of presence, like heart rate
is to stress level.

Due to the Jumpcube’s focus on entertainment the task based evaluation approach is
not feasible. The self-assessment questionnaires and physiology based approaches can be
used.

All of the examples we have seen so far focus on defining the immersion of visual aspects,
yet the "Thunder Seat" from the Vietnam veterans Post Traumatic Stress Disorder project
shows, that there has been scientific work on targeting senses beyond visual and auditive
as well. In this context we shall have a look at the work of Swedish scientist Henrik
Ehrsson. Ehrsson and his group at Brain, Body and Self Laboratory in Stockholm work
on generating out of body experiences on users by building upon the rubber hand illusion.
The rubber hand illusion was discovered in 1998 by Botvinick and Cohen [BC98]. They
discovered a person can be tricked into believing that a rubber hand is part of his/her
own body with relative simple methods: They put a rubber hand next to the test subject
and hid his/her actual hand from his/her view. Then they applied contemporaneous
stimuli to both the rubber hand and the actual hand hidden from the person’s sight.
The subjects started experiencing a sensation as if they felt the viewed stimulus, which
is the one applied to the rubber hand, and not the one applied to their actual hand. Put
differently, the subjects started projecting a part of their body onto a piece of rubber.
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Ehrsson found he could apply the rubber hand illusion not only to limbs, but to the
whole body [Ehr07] and that empty space can be used as a projection target as well, as
illustrated in Figure 2.8. Ehrsson also found the synchronicity of both stimuli, i.e. the
one on the actual body and the one on the projection target, is crucial for the effect. Key
to all of these findings is, that the subject knows at any time how the experiment works
and that the projection target is not actually part of the subject’s body. Nonetheless, the
mind can be tricked as far as to trigger both physiological and self-defensory reactions if
the projection target is "hurt" [Ehr07].

Watanabe and Tachi [WT11] during their work on telepresence using robots also found
the perceived notion of presence varies depending on the type of tactile feedback delivered
to the subject. They used two robotic arms where one is able to mirror the other’s
movement. The subject sits between the two robot arms in such way that one points at
the subject’s back and the other is in front of the subject pointing away from him/her.
With this setup the subject is able to poke his/her own back. The setup is depicted in
Figure 2.9. This allowed them to vary the type of tactile feedback the subject experiences,
i.e. by enabling or disabling the robot’s motion mirroring feature and by placing or
removing a physical object in front of the robot arm operated by the subject to simulate
resistance when hitting the back. They showed that both the subject’s perceived location,
i.e between the robot arms or behind the rear robot arm, and the subject’s perceived
body count, i.e. the approval of the statement "I felt that I had two bodies", depends on
the types of tactile feedback present.

To sum up we have seen that visual sensory information is crucial to the amount of
presence delivered by a Virtual Reality system and goes as far as to be usable in therapy
of phobias or even psychological disorders. Yet the focus on visual sensory information
is too restricted when trying to generate a full out-of-body experience using a Virtual
Reality system and hence tactile feedback and maybe other sensory information as well
can contribute to the amount of presence experienced by the user when being put in a
virtual environment.

2.1.5 Simulator sickness

Simulator sickness is a special kind of motion sickness induced by the use of a simulator.
Different kinds of motions sicknesses, like seasickness which the ancient Greek Hippocrates
(460 - 377 BC) described as "Sailing on the sea proves that motion disorders the body"
[LD05]. Other well known types of motion sickness are car sickness, or airsickness. While
the term sickness usually refers to a condition of disease or malady, this is not the case
for motion sickness as it affects otherwise perfectly healthy humans [LD05]. The only
requirement known to date is an intact vestibular system, as many experiments failed to
induce subjects suffering from labyrinthine defects to experience it [KGMB68]. Motion
sickness is unpleasant to the subject as its symptoms range from nausea and cold sweat
up to headache and vomit, the latter being rare for simulator sickness [LD05]. While its
true origin still remains to be proven, the widely accepted hypothesis for the cause of
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Figure 2.8: By exploiting the rubber hand illusion a subject can be tricked into projecting
his/her body into empty space.

[BaKI]

motion sickness is a mismatch on different sensory information, like e.g. motion being
reported by the eye, but the vestibular system senses no motion [Ben02].

Treisman proposed an evolutionary explanation as the origin of motion sickness. He
hypothesizes the mechanism in the brain responsible of motion and orientation is the
same as the one dealing with dysfunction caused by the ingestion of toxic substances.
He goes on to define motion sickness and its associated symptoms as protective actions
against poisoning [Tre77]. An alternative theory has been proposed by Ebenholtz et.
al. in 1997 which postulates motion sickness as being a consequence of tight coupling
between vestibular system and involuntary ocular movement in place to gain visual
stability during movement [EMCL94]. Regardless of the cause, motion sickness can be
treated by adaption, a treatment used both voluntarily and involuntarily over centuries,
e.g. by sailors. The author can confirm from experience adaption also reliefs the motion
sickness symptoms evoked by Virtual Reality environments. In addition there are drugs
effectively relieving the subject from the symptoms of motion sickness, though it shall be
noted, that e.g. alcohol has a negative influence on subjects [LD05].
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Figure 2.9: Schematic of the setup used by Watanabe and Tachi. The subject is wearing
a Virtual Reality headset displaying the image recorded by a two lens camera system
located at the "robot head". The devices referred to as PHANToM are robot arms able
to mirror each other’s movements.

[WT11]

Motion sickness plays an important role in Virtual Reality environments, since it obviously
affects presence perceived by the user. It has been shown that inducing vection (i.e. the
feeling of self-movement caused by the entire surrounding moving) can cause motion
sickness [BBP+08], yet other causes are less clear, as research was done on the visual
complexity of animated actors inside the virtual environment, which contradicts previous
work it was trying to build upon [KKC09]. Similarly, scientific work exists which claims
to have found a correlation between the system’s latency and the motion sickness induced
by it [Ell09], while other studies were not able to reproduce those findings, postulating
no connection between latency and motion sickness [MRWB03]. Hence it is difficult to
tell what actually causes simulator sickness in Virtual Reality environments. Nonetheless,
head mounted display manufacturer Oculus VR attributed the reduction in motion
sickness from their DK1 to their DK2 model to the adoption of a "Low Persistence OLED
Display" [VRb].

This concludes our overview on Virtual Reality. We have seen how the hardware evolved
starting from the late 1950s to its current state and we defined immersion and presence
as metrics for the user experience in virtual environments. We have also discussed how
physiological effects like motion sickness need to be addressed and how psychological
effects like the rubber hand illusion can be exploited when developing a Virtual Reality
application. We shall now direct our focus to Game Engines, how they became to be the
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backbone of interactive 3D content development, and why they are relevant for Virtual
Reality in regard to the Jumpcube project.

2.2 Game Engines

2.2.1 Definition

In the early days of game development up to the 1980s games were often written from
scratch in assembler language without any aid from other software packages.[BEW+98].
This was due to the fact that games targeted very specific hardware platforms like e.g. the
Atari 2600 or even custom build hardware like arcade hardware. Computing resources,
especially memory, were a very expensive commodity and therefor scarce by definition.
Hence games had to be highly optimized to the specific platform they targeted [Gre14].
The distribution media for home computer games at the time were cartridges packed
with Read Only Memory, which meant games could not be updated or patched in the
field. These two factors meant that with the release of a game all of its software could be
put in an archive never to be touched again.

The situation began to change in the 1980s with the arrival of 2D game creation systems
like the War Game Construction Kit released by ASCII in 1983 [Mus]. These kits provided
a framework to build games. Even though they usually restricted the developer to a
very specific genre like the Pinball Construction Set [Unk82] they provided a reusable
framework which allowed hobbyists to create their own games.

The term "game engine" first appeared in the mid 1990s with the rise in popularity of
first-person shooters like Doom by id Software [Gre14]. The developers of Doom divided
the software into two parts, one being the core components like rendering, collision
detection and the audio system, and the other being more game specific parts, like 3D
models and sound assets, the game’s world and its rules. This allowed for the development
of games by just switching out the latter and make some small changes on the first if
needed instead of having to build the entire game from scratch. This separation also
allowed the company behind the game engine to license mentioned core components
to other companies, which became a significant economic factor for some game engine
developers [Gre14]. On the other hand game engines do provide a benefit to the licensee
as the game engine abstracts software and hardware capabilities of the target and can
adapt to the underlying hardware platform and software APIs provided by the respective
operating system. Hence a game can be developed in a platform independent process and
then be compiled for various platforms. In addition, a game engine might provide the
ability to adapt to the hardware capabilities of the host system by giving the opportunity
to reduce resource consumption by e.g. lowering the resolution the game is rendered in.
As of the 2017.4 release the Unity engine for example supports 18 different build targets
including all major desktop and mobile operating systems as well as all major gaming
consoles [Unib].
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A game engine is usually not a monolithic piece of software, but consist of a variety of
modules. The top level division is between the tools used by the game’s developers which
will be referred to as the integrated development environment (IDE) in the context of
this thesis and the so-called runtime, which is a set of software libraries providing the
before-mentioned abstraction of the underlying hard- and software [MSK15]. The IDE
usually consists of an editor for the so-called scene graph which allows to build worlds, to
create objects therein, and put them into a relation to each other [BEW+98]. The IDE
also provides a scripting API with which a developer can create dynamic interactions
or reactions to user input [MSK15]. This API offers data structures and algorithms
optimized for the use in computer graphics and interfaces to third party libraries e.g.
for physics simulation or special hardware support. The IDE also allows to change at
least some of the inner workings of the game engine’s runtime by providing e.g. custom
graphic shaders. From the IDE a game can then be compiled for a specific or more target
platforms. In this step the assets, the scripts, the scene graphs, and all other custom
created parts of the game are packed together and tied to the runtime. This combination
then yields a runnable binary to be distributed over the desired distribution channel.

The runtime of a modern game engine is a fairly complex piece of software providing a
variety of features. Following Gregory’s taxonomy [Gre14] we can distinguish low level
renderer, audio subsystem (in 3D enabled engines usually with spacial audio support),
visual effects like particle systems for smoke or fire, a front end for 2D user interfaces
such as menus or head up displays, collision and physics, animation, human interface
device handling, a network subsystem for online multiplayer support just to mention a
few. Each of these can be further split up into more atomic subparts.

2.2.2 Usage motivation

Having such powerful software systems as game engines at disposal is a huge advantage in
development. The game developer does not need to create a complete rendering pipeline
to get state of the art photo-realistic computer graphics with very little effort, assuming
both graphical and sound assets already exist or are sourced from a third party. This fully
removes the need for a dedicated software development department and leaves only the
need for an art department, which is needed anyway if custom assets are to be created.
As an example we shall look at an architectural office, which would like the customer to
be able to walk around a building in its final state which currently only exists as a CAD
plan. Assuming the CAD plans exist as a 3D model, which is fair to assume, the assets
already exists. All the rest, like rendering of different surfaces (think wooden floor and
stone walls), lighting conditions at different times of the day or even different seasons
of the year), the ability to move the observer through the scene by using some human
interface device, and putting different kinds of furniture in the building can be easily
achieved with the use of the right game engine. A result of such an endeavor can be
seen in Figure 2.10 representing a screenshot of the Unreal Paris 2018 project by Benoit
Dereau.
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As a further advantage the use of a game engine enables any project to easily be adapted
to different hardware and software platforms, even those not available at the time the
project started. Also, with the appearance of a new technology it can easily be integrated
with the project without the need to change the project itself. On the Unity engine for
example one can add Virtual Reality support for all major consumer products, being the
Oculus Rift series, the HTC Vive series, and the Playstation VR platform, to an existing
project by simply enabling Virtual Reality support in the build settings of the project
and recompile the project.

Finally, the project creator can also take advantage of the continuous evolution of the
game engine used. With the advancement of hardware capabilities new possibilities arise
which were previously not possible in real time computer graphics. Existing technologies
reserved for enterprise grade hardware slowly trickle down into the consumer sector,
allowing them to be adopted by a much wider range of users. As an example for this
evolution it shall be noticed that graphics processor manufacturer NVIDIA announced
a new technology package called NVIDIA RTX for GDC 2018 [Bur18]. NVIDIA RTX
aims to bring ray tracing in real time to consumer grade hardware with NVIDIA’s Volta
graphics processor architecture. Unity and Epic Games, manufacturer of the Unreal
Engine, already announced their support for NVIDIA RTX, meaning that the technology
will be available to all projects based on these engines [Bur18]. Of course the introduction
of such a new technology stack or new hardware like virtual reality headsets means that
at least parts of the rendering pipeline will have to be adapted for the feature to be
usable within the project. Yet, since the rendering pipeline is part of the game engine,
this adaption is made available to all clients by the engine’s manufacturer. So in the best
case scenario the project creator will only need to update the engine’s IDE and recompile
the project to take advantage of the new technology.

2.2.3 Description of examples

We introduce Unity, Unreal Engine 4 and CryEngine V, because they are typical modern
multi-purpose game engines featuring support for Virtual Reality. They were chosen
because they were subjectively brought to our attention the most in the recent past. The
reader shall note that this is by no means an extensive list, as Zarrad [Zar18] identified
20 different modern game engines available on the market, which meet all the posed
requirements, being feature complete, having been used for "high-quality games", and
being actively developed.

First in line is Unity by Unity Technologies. Unity focuses heavily on ease of use and
platform compatibility. Unity offers a rich tool set allowing to optimize the project
for each of the target platforms. As of version 2017.4 Unity offers scripting support in
C# and JavaScript. Sooner versions also supported Boo, a type-safe Python dialect as
reported by Gregory in [Gre14], but it has been deprecated in version 5.0. JavaScript
support has also been on the way of becoming deprecated since Unity 2017.1 was released
in August 2017. Unity over the time also dropped one of their unique points, namely
the Web Player, a browser plugin enabling to run Unity binaries from websites, similar
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Figure 2.10: The Unreal Paris 2018 demo by Benoit Dereau. This demo was built using
the Unreal Engine 4. The image is computer-generated in real time on consumer grade
hardware.

[Der]

to Flash or Java Applets, in version 5.4 [unia]. Even without the support for Boo and
JavaScript, Unity’s support for Mono, being an open source implementation of Microsoft’s
.NET Framework, enables the developer to use many libraries from the .NET ecosystem.
It shall be noted, that Unity has a dedicated mode for creating 2D applications, but due
to this thesis’ focus on Virtual Reality only 3D capabilities of the engine are relevant.

The Unreal Engine 4 by Epic Games is the latest evolution of an the Unreal Engine
family, dating back as far as 1998 to the release of the name giving first-person shooter
Unreal. Most developers modify the engine in various ways for running their game on a
particular platform [Gre14]. Nonetheless Unreal Engine 4 is a very powerful game engine,
and performs better then Unity in the domain of photo-realistic rendering [SBH+17].
Unreal Engine uses C++ as a scripting backend providing a custom API, but one can
also choose the graphical node-based programming environment called Blueprint Visual
Scripting. The C++ API also offers Blueprint specific markup, allowing both systems to
integrate with each other [Gamb]. The Blueprint Visual Scripting allows designers without
programming experience to create dynamic interactions using graphical programming,
though from the author’s experience the so-called Blueprints tend to explode in size and
hence become confusing for more complex interactions. Featuring its own API, not many
libraries from foreign ecosystems can be adopted in Unreal Engine 4. However, it offers
an API for creating plugins.

The last candidate in this roundup is CryEngine by Crytek. The development of
CryEngine started as a tech demo for graphics processing units manufacturer NVIDIA,
but Crytek realized the potential and turned it into a full game called Far Cry [Gre14].
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CryEngine V (spoken CryEngine five), the latest offspring of the CryEngine family, is
a feature complete and very powerful game engine. The latest version also introduced
native support for Virtual Reality following Unreal Engine and Unity, how as we saw
in previous chapters already had support for it. The lack of Virtual Reality support
caused CryEngine 3, which was the latest version back when the project started, to
not be considered at the time. CryEngine, similar to Unreal Engine, is said to have
advantages over Unity in the domain of photo-realistic rendering [SBH+17]. CryEngine
V supports C++, C# and Lua as scripting languages. As a second drawback CryEngine
V does offer a plugin system, yet at the time of writing it is still flagged as beta feature
and explicitly not recommended for production use [Cry]. This fact may render it very
difficult to integrate the engine with custom hardware.

After discussing what game engines are, their history, and why they became crucial for
modern interactive 3D content creation we shall now shift our focus towards the building
blocks of custom hardware enabling us to built custom devices for the Jumpcube. These
should allow us to address senses beyond visual and auditive. We shall first analyze
the hardware parts available on the market, understand their inner workings and their
respective advantages and disadvantages. We shall then move on to machine-to-machine
communication from a hardware perspective followed by communication protocols, which
represent the software perspective.

2.3 Controller hardware platforms

2.3.1 Microprocessor, microcontroller, and system-on-a-chip

Nearly 50 years ago, in 1971 Intel Cooperation took advantage of recent developments in
computer architecture and integrated circuit manufacturing and released the 4004, the
first commercially available "computer on a chip" or microprocessor for short [Aya04].
The Intel 4004 was a 4 bit digital general-purpose digital computer central processing
unit (or CPU for short) and today is widely recognized as the first fully integrated
microprocessor. Soon other semiconductor manufacturer followed Intel to release their
own microprocessors, so that by the end of the 1970s different models were available
[Aya04]. Ayala [Aya04] defines the minimum required set of components of such a
microprocessor as follows:

• arithmetic and logic unit
• program counter
• stack pointer
• working registers
• clock timing circuit
• interrupt circuits

From the list above we see that a microprocessor is by itself not a complete computer.
The Intel 4004 for example had to be paired with memory, storage and shift register
chips to form the MCS-4 microcomputer system [NH81].
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As an offspring of the proceeding integration in 1974 Texas Instruments launched the first
microcontroller, the TMS1000. The TMS1000 incorporated all of CPU, random access
memory, read only memory and I/O ports [Des05]. With the integration of memory and
I/O Microcontrollers form true computers-on-a-chip. Although microprocessors (paired
with memory, storage and I/O) and microcontrollers are equivalent from a theoretical
computer science standpoint, microprocessors only have very few instructions for bit
handling, but feature many instructions for moving data from and to memory [Aya04]
[God08]. Microprocessors are the opposite, namely they only have one or two instructions
to move data from/to memory, but a variety of bit handling instructions. Ayala [Aya04]
(page 6) summarized this as "the microprocessor is concerned with rapid movement of
code and data from external addresses to the chip; the microcontroller is concerned with
rapid movement of bits within the chip". In addition Godse et. al. [God08] found
microcontrollers to be less flexible from a design point of view, yet they require less
additional hardware and hence need less space on the circuit board and have increased
reliability. Hence, microprocessors became the choice for general purpose computers
like PCs, while microcontrollers are used as single purpose devices in home appliances,
computer peripherals such as printers or automobile engines [Uda09].

A slightly different approach came into life in the year 2000 as Cirrus Logic Inc. patented
the system-on-a-chip [Kla04] or SoC for short. The patent shows that SoCs share
some features with microcontrollers, namely the integration of a CPU with I/O and
memory on a single substrate. Yet differently from microcontrollers, SoCs may integrate a
microprocessor (though it may be microcontroller too) and additional processors, like e.g.
graphic processing units or networking. It is also not required that a SoC incorporates
all necessary components into one single chip, as the patent explicitly mentions a boot
ROM, but only requires an "external memory interface". This means the RAM itself may
be placed on a dedicated chip.

Today a wide variety of microcontrollers exist from different manufacturers like Atmel,
Texas Instruments, Microchip, and more. In addition british company Arm licenses their
Cortex-M series to a variety of manufacturers. Arm, which focuses on the development
and licensing of so-called IP cores, claims that their Cortex-M series "have already been
shipped in tens of billions of devices" [Arm]. Though having just the bare chip brings
the need for additional effort when trying to prototype any microcontroller based custom
piece of hardware, since the designer first of all has to build a circuit board and circuitry
for powering and communicating with the microcontroller. This problem was recognized
by Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis
who in 2005 launched the Arduino project [Bar12]. Their goal was to provide an easy
to use microcontroller platform for hardware prototype development, mainly focusing
on the academic environment. As the team had no intention of ramping up production
after their needs were fulfilled they released Arduino as open source [Sev14]. Today the
Arduino is widely used because of the following facts [JL13]:

• being open source
• the community which formed around the project
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• the libraries contributed by said community
• its low cost
• its out of the box features such as I/O pins, PWM, I2C and SPI

Microprocessors up to date are still available on their own. For most desktop and server
PCs this brings the need for a motherboard bearing a set of supporting circuitry and
chips to form a fully functional PC. Yet some microporcessors available today are not
bare CPUs anymore. Intel for example moved the memory controller into the CPU
in their 2010 Core-i lineup [Int10]. For their 2017 Zen architecture based processors
Intel’s competitor AMD went as far as to incorporate SATA and USB connectivity into
their products [AMDb]. Technically a modern product like the Zen based AMD Ryzen
2700U, additionally containing a memory controller and a GPU as well [AMDa], is closer
to being an SoCs rather then a classic microprocessor. A truly SoC based part highly
relevant in the scope of the Jumpcube project is the Raspberry Pi. The Raspberry Pi
is a credit card sized single board computer initially intended to be used in computer
science introduction courses [RW12]. In addition to SoC and RAM it incorporates USB,
wired Ethernet network, video and audio output and boots from an SD-Card [RW12].

Comparison

To compare these devices we shall have a look at their specifications and discuss their
respective advantages.

Product Raspberry Pi 3 Arduino Uno
Class SoC with microprocessor Microcontroller
Power 0.58A@5V (≈3W) ≈15mA@5V (≈0.075W)

I/O
Digital I/O, PWM, SPI, I2C,
UART, audio out, video out, USB
Host, Ethernet, WiFi, Bluetooth

Digital I/O, PWM, SPI, I2C,
UART, Analog in, USB Client

RAM 1GB 2kB
ROM None 32kB Flash + 1kB EEPROM
CPU 1.4 GHz quad-core 16MHz single core
Price ≈30€ ≈35€

We can see, that the Raspberry Pi has advantages on computing resources for both CPU
and RAM. Though one needs to keep in mind, that it needs an operating system to run.
The Arduino on the other hand consumes very little power and features analog inputs.
In addition the Arduino does not need an operating system. As Richardson [RW12]
points out, the Arduino is the better choice for simple automation, like a thermostat.
However, if the data shall be presented via a web interface the Raspberry Pi is the better
choice. Both parts are similarly priced, though it shall be noted that no-name copies of
the Arduino are available at lower cost.
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2.3.2 Communication

After having explored what building blocks are available for custom hardware components
we shall now turn our attention to the means allowing them to communicate with each
other. Since the simulations created for the Jumpcube will be based on modern game
engines we will have to consider not only the capabilities of the custom-built devices, but
also those of the game engines. Also, in order not to artificially restrict the game engines
to chose from the communication channel should be as widely supported as possible. The
Jumpcube, being designed as a movable structure, needs to be disassembled and moved.
This means the communication channel needs to be both easily dis- and reassembled, and
adapt to different and a priori unknown environments and their conditions. Discussed
below we see two technical approaches to implement such a communication network
based on international standards. In addition both approaches have been widely used for
some 30 years and even longer and have proved to be reliable.

Fieldbus

The term fieldbus was first coined at an IEC meeting in 1985 [Tho05]. At the time
the industry was seeking to replace the star-like point-to-point topology predominant
at the time for connecting process control computers to the sensors or actors. These
sensors and actors are referred to as field devices [DS00], which led to the name. One
of the main goals was to reduce the cabling necessary to connect all of these sensors
and actors by using a single shared medium which all nodes on the network plug into
[DS00]. Back then at the lowest level of communication many standards were established,
like for example the 4 - 20 mA standard for analog sensors or the 0 - 24 V for digital
inputs. Both of these needed two dedicated cables per connected device [Tho05]. This
led to high costs in both installation and maintenance. In a discussion draft published
in 1986 by the International Society of Automation (ISA) this challenge was identified
as the most important one when it comes to defining requirements for fieldbusses. In
total seven potential benefits of fieldbusses over existing topologies were established by
gathering feedback from all ISA members using a questionnaire. The full list, ordered by
importance from greatest to least was [Tho05]:

• lowering the installation costs
• ease of adding field devices
• providing two-way communication with field devices
• improving the accuracy of information delivered at control room
• enhancing the maintainability of field devices
• providing remote access to measurement data through handheld interface
• more advanced control strategies can be implemented because of improved field

data

In Europe at the same time the International Electrotechnical Commission (IEC) also
directed their attention towards fieldbusses. The IEC identified the need for two classes
of fieldbusses, being H1 and H2 respectively. The H1 provides low data rates for the
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connection of some sensors mainly for process control, while H2 is a high speed fieldbus
for manufacturing or the interconnection of H1 networks [Tho05]. Even though they
provide similar functionalities, H1 and H2 differ in the number of devices, distance
between devices, speed, and services available to the user.

By the end of the early standardization process both ISA and IEC came to similar
conclusions on what a fieldbus should be and what it should be able to do. And even
while the initial standardization only regarded process control and discrete manufacturing
as applications for fieldbusses, later applications such as building automation or in-vehicle
communication system showed to have very similar requirements. Yet, fieldbusses at the
time were not considered as real-time networks [Tho05].

A few years before the standardization of fieldbusses, in 1978 the International Organiza-
tion for Standardization (ISO) started to work on what would become the Open System
Interconnection model (OSI). The model aims to bring all concepts necessary to develop
communication protocols [Tho05]. The ISO/OSI model separates communication into 7
layers, where each layer services the one above and is serviced by the layer below [Zim80].
The layers are:

1. Application Layer: Top level layer, which serves the end user.
2. Presentation Layer: Give meaning to the data exchanged.
3. Session Layer: Assist in the support of interactions between presentation entities.
4. Transport Layer: Transport data transparently between session entities.
5. Network Layer: Provide independence from routing and switching considerations.
6. Data Link Layer: Establish, maintain, and release data links.
7. Physical Layer: Transmit symbols over the physical medium.

From a logical point of view the entities on a given layer communicate with each other
by means provided to them by the layer below. A device on the network may implement
all or only a subset of these layers depending on its purpose. A repeater in its simplest
form for example only needs to read incoming symbols from the physical medium on the
receiving end and write them to the physical medium on the sending end. For this it
does not need to understand any but the lowermost Physical layer. On the other hand,
a routing device which needs access to the routing information within the transmitted
data needs to have support for the lowermost three layers, being Pyhisical, Data Link
and Network. See Figure 2.11 for a sketch of such a communication.

The early offspring of fieldbus standardization focused on solving the problems of their
time. By the mid 1990s such fieldbusses usually interconnected only about 6 nodes on
average [DS00]. Due to the restricted capabilities of these nodes and the developers not
expecting a complex network structure, they usually only employed a subset of the layers
defined in the ISO/OSI model, mostly the bottom two or three plus the Application layer
[DS00]. Accordingly, Thomesse [Tho05] claims it is common to say that a fieldbus has
three layers, being:

• the Physical layer
• the Data Link layer, including implicitly the medium access control (MAC) layer

29



2. Literature review

Figure 2.11: The ISO/OSI model. The dashed lines show the logical communication
channels. The solid line shows the actual flow of data, where vertical lines show where
data is processed, and horizontal lines show where data is transmitted.

• the Application layer

Yet, it soon turned out that the development costs for the nodes were not the driving
factor, as maintenance of the node’s software and the software tools to integrate and
configure the network proved to become ever more expensive [DS00]. With this insight
the concept of "plug & play" comes into play. The idea behind it is, that any new device
can be attached to an existing network and the device would then integrate itself into
the network without further user interaction. Though, as Dietrich et. al. [DS00] pointed
out this is mere impossible to achieve, as any device will need at least some rudimentary
information about the behavior expected from it.

Another challenge for fieldbusses arises from their very nature of using a single shared
medium for communication, namely collisions. A collision happens if two or more devices
write onto the bus at the same time. In such a scenario the state on the medium is a
superposition of all written messages, in which case the individual messages cannot be
reconstructed by the devices trying to read from the medium [DIL81]. To solve this issue
three classes of approaches exist [Tho05]:

• Carrier-sense multiple access is an arbitration rule, where each node probes the
medium (e.g. the fieldbus) prior to initiate transmission and only starts writing
onto the bus as the medium is sensed idle.

• Time-division multiple access divides the access time into slots and assigns one
(or more) of these slots to each device. A device is only allowed to write to the
medium during its time slot.

• Controlled access means, that some deterministic mechanism other then time-
division is in place to assign write privilege to a device. This can be achieved by
passing around a single token and only the device holding the token is allowed
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to write to the medium, or by having a single device (usually referred to as
master) explicitly asking a device (in this scenario usually referred to as slave) for
information.

Carrier-sense multiple access can be regarded as decentralized. Time-division multiple
access can be regarded as centralized, as each node needs to adhere to one global slot
schedule. Though the time source may be decentralized by each node having its own
dedicated clock, or centralized by having a common clock source. Token-based Controlled
access protocols can be regarded as decentralized, as the token is passed on either
explicitly by the token holder after it finishes its activity on the medium, or implicitly
by e.g. moving it according to the numerical order of the addresses of the devices on
the bus. Polling-based Controlled access protocols on the other hand can be regarded as
centralized as a single node manages write access to the medium [Tho05]. It shall be
noted though, that different protocols can be combined. Profibus for example divides
all nodes on the bus into masters and slaves. It uses a token-based protocol to elect the
currently active master. That node then polls all nodes relevant to its operations [TV99].

Ethernet

In the 1970s the local area network (LAN) emerged as a solution for sharing expensive
devices like printers and to overcome the increasing problem of wiring caused by the rising
number of terminals in offices. Some ten years later three standards were established,
being [PK09]:

• IEEE 802.3 Ethernet
• IEEE 802.4 Token Bus
• IEEE 802.5 Token Ring

For the scope of this thesis we shall restrict our focus on the IEEE 802.3 standard as it
is today the dominant standard for LANs, even though in an evolved form compared
to the original IEEE 802.3 standard [PK09]. In the beginning thick coaxial cables were
chosen as a shared transmission media. On those the first Ethernet standard was able to
transmit 10 Mb/s over up to 500 meters. In the mid 80s with the increasing popularity
of LANs the manufacturers moved towards thinner and cheaper coaxial cables. The cost
of these cables also coined the name cheapernet. This reduced not only the costs, but
also the maximum length to 185 meters, while keeping the transmission rate at 10 Mb/s
[PK09]. In the 1990s the industry moved away from the coaxial cable and switched to
easier-to-use twisted-pair cables and a star-topology called hub-and-spoke LANs. Due
to the new cables the maximum length was now restricted to 100 meters, still keeping
the transmission rate at 10 Mb/s [PK09]. In the future years the physical layer was
continuously improved leading to 10 Gb/s over UTP cables in 2006 with IEEE 802.3an
[PK09].

On the data link layer Ethernet up to date still uses the same arbitration protocols for
collision handling as in the 1980s in environments where such an arbitration is needed.
This method is called carrier-sense multiple access/collision detection or CSMA/CD for
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short [LMT01]. This means each node who wants to send a message first has to listen to
the network. If it is busy the node waits until it becomes idle again. Then the message
is sent. If, for example, two nodes are waiting, because a third node keeps the network
busy, both start sending after the third one has finished. This will cause a collision.
Therefore each node needs to listen for collisions on the network while it writes to it. If
such a collision is detected the node aborts sending and then waits a random amount
of time before starting from scratch [LMT01]. Also if a collision is detected the node
sends out a long enough jam signal to assure all nodes on the network detect the collision.
The range from which the random wait time is chosen is increased on every collision by
a factor of two up to the tenth collision. Afterwards the range does not change. If a
packet could not be sent after 16 tries the transmission is reported to the upper layers as
failed [PK09]. When moving to the hub-and-spoke topology the collision detection was
offloaded from the nodes to the hubs [PK09]. IEEE P802.3x in 1997 fully removed the
need for collision management. This was accomplished both by implementing full-duplex
and by replacing the hubs by so-called switches. Differently from a hub, which relays all
incoming messages to all outgoing ports, a switch only relays the incoming message to
the port to which the destination for said message is connected. If a new package for
that destination arrives while the previous one is still being sent the second package is
held back until sending is complete. Cables in such a network are point-to-point from
device to switch or from switch to switch. This allows for full-duplex communication
without collisions [Dec05].

We have now seen what communication hardware types are at our disposal. Since
Ethernet only covers the bottom layers of the ISO/OSI model [PK09] we shall now look
at protocols and software allowing us to complete the ISO/OSI model stack.

2.4 Controller software components
We can see from Flammini’s work [FFS+02] that fieldbusses such as Profibus-DP and
CAN2.0B offer a reduced implementation of the ISO/OSI model with four layers. Ethernet
only covers the bottom two layers of the ISO/OSI model, which brings the need for
implementations of the remaining five layers [FFS+02]. We shall now see what protocols
are available. But first we will have a brief look at the operating system for the before-
mentioned Raspberry Pi.

2.4.1 Linux

The Raspberry Pi Foundation, manufacturer of the Raspberry Pi, offers Raspbian as
their official operating system. Raspbian is based on Debian, which in turn is a so-called
Linux distribution [Sch14]. Linux is a project started by Linus Torvalds in 1991 who
at the time was a student at the University of Helsinki. He wanted a free Unix system,
but was not able to find one. So he started to work on his own implementation of a
POSIX compatible Unix operating system [Lov10]. His work soon attracted like-minded
developers and due to its licensing everybody was and still is free to contribute to the
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Figure 2.12: The TCP/IP model combines the functionality of the three topmost ISO/OSI
layers into one single layer. The same applies to the lowermost two layers.

project. Today Linux is a complete operating system supporting many architectures
[Lov10] and as mentioned before is the very core of the Raspberry Pi’s official operating
system [Har15].

2.4.2 Cross platform communication protocols

We shall now direct our focus towards the protocols needed to allow us to communicate
between the game engine and the sensors and actors of the Jumpcube project. One
prominent protocol suite is the TCP/IP stack, sometimes also referred to as the Internet
protocols [DS11]. Differently from the ISO/OSI model, the TCP/IP stack only uses a
four layer model instead of a seven layer one by collapsing the top three layer into a single
Application layer and the bottom two into a single Link layer [IET89]. The Network
layer from the ISO/OSI model is called Internet layer in the TCP/IP model [DS11]. This
is depicted in Figure 2.12. Within this chapter the names of the layers shall be read in
the context of the TCP/IP model.

Link layer

Starting at the bottom, the TCP/IP stack does not specify a certain protocol for its
lowermost Link layer, but it does require from it that IP addresses are understood
and translated from/to whatever addressing is used by the Link layer [Hun02]. The
protocol employed in IPv4 is the Address Resolution Protocol (ARP), which allows to
map IPv4 addresses transparently to the corresponding hardware addresses used for data
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transmission [FS11]. It shall be noted, that the more recent IPv6 does not use ARP, but
the Neighbor Discovery Protocol, a part of ICMPv6 which we shall discuss later in this
section [FS11].

Internet layer

One layer above we find the Internet layer. Following RFC 1122 [IET89] the minimum
required implemented protocols for the Internet layer and their respective functionalities
are [FS11] [Hun02]:

• Internet protocol (IP) is the protocol used to transport data. IP is unreliable, which
means packets are delivered in a best-effort manner and no guarantees are made
that a packet is successfully delivered. In addition IP is connectionless, which
means that IP does not maintain any state information about the packets or their
ordering.

• Internet Control Message Protocol (ICMP) is used to transmit errors or other
conditions. It employs IP as a transport protocol. ICMP is usually not used by
programs directly, except for diagnosis tools like ping or traceroute. Yet, an error
transmitted over ICMP may trigger an error handling routine in a program. As
mentioned the IPv6 version of ICMP known as ICMPv6 also replaces ARP.

• Internet Group Management Protocol (IGMP) is employed to let other parties on
the network know which hosts currently belong to which multicast group.

Transport layer

In the Transport layer we find the User Datagram Protocol (UDP) and the Transmission
Control Protocol (TCP). While both are concerned to provide data transport to the top
layer, the kind of transport provided by them differs vastly. UDP provides no reliability,
which means it does not take any additional measures to assure a packet reaches its
destination. It only adds a header containing both source and destination port, the
size of the so called datagram and a checksum [Hun02]. TCP on the other hand is a
connection-oriented and reliable protocol. Connection-oriented means, that two parties
on the network (usually referred to as server and client) need to establish a connection
before they can start with the exchange of data [Ala14]. Reliable means that TCP takes
additional measures to assure each packet given to it is correctly received by the other
party. This is achieved by the following additional steps [FS11]:

• Data is broken up into segments. TCP decides how big a segment shall be.
• When TCP receives data from the other party it sends an acknowledgement.
• If a segment is not acknowledged in time the segment is resent.
• Each segment contains a checksum of its header and data. If a received segment

contains an invalid checksum it is silently discarded. Because of the above rules it
will eventually be resent.

• The ordering of the segments is preserved.
• Additional flow control is implemented to avoid buffer overflows.
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UDP has less overhead then TCP as it only adds four header fields to the the data
presented to it before handing everything over to IP when sending. When receiving
it strips the four headers and passes the data on to the Application layer [Hun02].
In addition, being connectionless, data can be immediately sent without the need for
explicitly establishing a connection [FS11]. However neither the server nor the client
has any possibility to notice whether a packet is received by the other party or if
it was lost without any additional measures. TCP on the other hand offers a more
reliable communication channel than UDP by implementing additional measures to
assure packets are correctly delivered. Yet, this adds overhead to both the amount of
gross data transmitted [Ala14] and the latency, as a connection needs to be established
before data can be exchanged. So in conclusion we may say that if reliability is required
and of importance by the application it is better to choose TCP. If the application is
not depending on every packet reaching its destination and it can handle a reasonable
package loss then UDP is the better choice. Though implementing reliability in the
Application layer on top of UPD is possible [FS11].

Application layer

RFC 1122 from 1989 [IET89] lists Telnet (remote login), FTP (file transfer) and SMTP
(electronic mail delivery) as the most common Internet protocols. A very important
protocol in the TCP/IP Application layer is the Hypertext Transfer Protocol (HTTP),
which has become the primary protocol of the web [FS11]. Because of this fact HTTP is
not only supported by Internet browsers, but also by many other applications including
the game engines Unity [Unic] and Unreal Engine 4 [Gama], as well as the Arduino [Ard].
HTTP was designed as a stateless protocol and was developed for distributed, collabo-
rative, hypertext information systems [IET14a]. HTTP is a stateless request/response
protocol. The base information entity in HTTP is an Octet, which is any combination
of eight bits. From these Octets messages are formed, which are exchanged by the two
parties. Such a message may either be a request or a response [IET14a]. HTTP also
requires a reliable transport protocol [IET14a] such as TCP. For identifying resources on
a host HTTP in is current version relies on Uniform Resource Identifier (URI) as defined
in RFC3986 with the following syntax [IET14a] [IET05]:

http-URI = "http:" "//" authority *( "/" segment ) [ "?" query ][ "#" fragment ]

authority = [ userinfo "@" ] host [ ":" port ]

Above, a segment is a sequence of allowed characters and character encodings as defined
in RFC3986 [IET05]. HTTP uses so-called methods to indicate the purpose of a request.
In total eight methods are defined in RFC7231, but only HEAD and GET are required
by the specification [IET14b]. A complete list of the methods and their purpose can be
found in Figure 2.13.

In 2011 the Internet Engineering Task Force (IETF) standardized the WebSocket protocol
in RFC 6455 [IET11]. The aim was to provide a bidirectional communication channel
between a server and a client, which is fully compatible with HTTP and its infrastructure.
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Figure 2.13: In total eight HTTP methods are specified, which allow to implement full
CRUD (create, read, update, delete) access to a resource.

[IET14b]

Being part of the HTML5 standard WebSockets work in most modern browsers [Lub11]
and thus are supported by a wide range of devices. Lubbers found, that HTML5 Web
Sockets can reduce unnecessary HTTP header traffic by 500:1 and reduce latency by 3:1
compared to HTTP [Lub11].

However, being a new standard WebSocket bares the problem of backward compatibility
with existing software [CHHR17]. For example, Internet Explorer up to including version
10 does not provide support for WebSockets [Rai13]. This problem is addressed by the
socket.io project. It provides a full-duplex communication channel between a server
and a client. WebSockets are used where available, but socket.io includes a variety of
fallbacks for scenarios where WebSockets are not available. These fallbacks include for
example Flash, XHR long polling, or JSONP polling [Rai13]. socket.io provides a more
feature-rich and event-based API than WebSockets with support for [Rai13]:

• namespacing of messages
• multiplexing of connections
• disconnection detection
• reconnection
• broadcast messages

Similar to HTTP, socket.io is widely supported and implementations exist for Unity
[Pan], Unreal Engine 4 [Kan], and Arduino [Roy].

In this chapter we have seen what hardware is available for building custom devices for
the Jumpcube. We have also analyzed both the hardware and the software which allows

36



2.4. Controller software components

us to let said devices communicate with the game engine. This should allow us to provide
an interactive multi-sensory virtual reality experience. In the next chapter we will first
try to describe the challenges we are facing and then analyze what concrete frameworks
and hardware components are at our disposal for solving these challenges.
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CHAPTER 3
Methodology and design

In this chapter we will discuss the steps taken to build a multi-sensory system for use in
Virtual Reality and other computer graphics applications. We will start by analyzing
the problem. Next, we will define both functional and non-functional requirements for
the system, which shall make sure it works as intended in a real time computer graphics
application. Finally, we will introduce the components used during the development, first
from the software perspective and then from the hardware perspective.

3.1 Problem description
The Jumpcube aims to bring a multi-sensory Virtual Reality experience to the user. As we
have seen before such systems have already been employed in the realm of psychotherapy.
With the development of the current generation of Virtual Reality headsets the visual
sense can be seen as successfully addressed, as the companies currently predominantly
seem to focus on further increasing the resolution of the displays. This in turn puts
a higher demand on the computing power, which will need to be satisfied by the chip
manufacturers. The auditive sense is also reasonably taken care of by game engines and
their capability to produce a 3D audio experience on stereo headphones.

But commercially available systems like the Oculus Rift, the Playstation VR and the
HTC Vive focus on visual and auditive sense only. Addressing senses beyond visual and
auditive might bring some benefits though. As we have seen in Section 2.1.5 the widely
accepted hypothesis attributes the so-called simulator sickness to contradicting sensory
information. If we want to alleviate the effects of simulator sickness on users of the
Jumpcube, we need to create devices which are able to generate stimuli beyond the visual
and auditive. Since the Jumpcube is designed to be a interactive Virtual Reality system
these devices cannot operate following a predefined schedule of events, but have to be
controllable in real time by the simulation. Apart from impacting simulator sickness, we
also expect the system to positively influence presence perceived by the user.
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While looking for components allowing us to create such a multi-sensory system for
computer graphics applications, we found that such systems have been developed in other
projects. However, most of them fit a very narrow range of usecases and target enthusiasts.
One example is the N1 M4A series from RSEAT Sim Racing Equipment, which aim to
bring up to +/- 1g of g-force to the user, yet mentioned systems start at 16,999 $-US,
compared to 1,099 $-US for the same product without the g-force simulating capabilities.
The author was able to try a similar seat in conjunction with the Assetto Corsa racing
simulator and the Oculus Rift DK2 and was truly impressed by the experience. Yet,
being a seat, this product is not suited for building different experiences like e.g. a
parachute jump simulation.

Worth mentioning is also Ubisoft’s Nosulus Rift, a device which lets the user smell the
virtual environment he/she is in. Yet due to its size and form factor the Nosulus Rift can
hardly be used as intended with current generation Virtual Reality headsets. Furthermore,
it never became a consumer product, hence cost remains purely speculative. In addition,
the Nosulus Rift seems to have been developed for the sole purpose of marketing Ubisoft’s
South Park: The Fractured But Whole video game as it is up to date the only program
known to support the device.

Based on these findings the author concluded, that it was inevitable to design and build
multi-sensory devices from scratch to meet the requirements of the Jumpcube. The
reason lies in existing devices being either not available on the market - including those
which seemed promising when presented to the public - or did not provide the features
required by the Jumpcube and - even if they would - showed to be too expensive.

Switching the focus towards how to integrate the devices with computer graphics applica-
tions, the author was able to determine standards for sensors and actors in conjunction
with game engines, which are widely adopted by the industry. As an example the USB
human interface device class shall be named, which aims to provide standardized support
for keyboards, mice, and game controllers on the USB interface. DirectInput and XInput,
both subsets of the DirectX API by Microsoft, do additionally provide support for haptic
feedback. Yet it remained unclear to the author if and how these could be expanded or
exploited to support feedback other than haptic as well. They also seem to be restricted to
be used via USB, at least it remained unclear to the author if other physical connections
could be used.

Another class of devices which looked promising for integrating multi-sensory deices into a
computer graphics environment was home automation equipment, or smart home devices
as the manufacturers like to advertise them. Nowadays, these come in a wide variety of
form and function from simple switches and light bulbs up to garage doors and window
blinds. But the devices based on the wired EIB bus tend to be relatively costly compared
to the provided functionality, while cheaper kits rely purely on wireless communication
protocols. Not only would this influence the resilience against environmental conditions
like a polluted electromagnetic spectrum, but additionally a wide variety of standards
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exist, like Z-Wave 1, Zigbee 2, Bluetooth low energy 3, Thread 4, and Wi-Fi 5, just to
mention what seem to be the most common ones. The lack of an industry-wide standard
inevitably either increases the effort necessary to implement the system as multiple
standards have to be implemented, or bears the risk of a vendor lock-in, which in turn
may affect future extensibility of the system as a whole. Finally, all of these devices
are intended for home automation. This does bring the need for reliability, but not
necessarily for the levels of latency required by a real-time computer graphics application.

Overall, the systems seem to have at least some restrictions. The lack of a standard for
integrating especially actor devices into a computer graphics environment pushed the
decision to try and implement one, which in the end should be able to accommodate
all needs of the Jumpcube, while still providing extensibility for other kind of actors
employed in projects similar to the Jumpcube. In the next section we will discuss what
requirements need to be fulfilled by such a system. We will look at the features required
from the hardware, and we will define the specifications to which the software shall
adhere to.

3.2 System requirements

As we have seen, bringing a multi-sensory experience to a Virtual Reality environment is
not a trivial task. Even though the system presented in the scope of this thesis mainly
focuses on the needs of the Jumpcube, it shall still be flexible and standardized to a
certain degree, so that it can potentially be used or extended for similar projects too.
This flexibility adds some non-functional requirements to the already present functional
requirements. We will first look at the latter, followed by the former.

3.2.1 Functional requirements

Since multiple senses need to be addressed, and the setup continues to evolve in the
course of the project, the system is required to support multiple actors. At project start
the first requirement was to add wind to the first of the Jumpcube’s simulations, i.e. a
parachute jump over the city of Vienna. The wind effect was chosen, as it was recognized
by the team to be the most obvious haptic stimulus during a parachute jump. To enhance
the feeling of acceleration during the jump, the wind should also adapt to the speed the
user moves through the virtual environment, so a simple on-off switch was not feasible.
Over the time more stimuli were added, including smell, heat, moisture, and g-forces.
Hence, the system does not only need to support multiple devices, but also multiple types
of devices. The latter bears the need for a flexible design, since some of these devices
have to communicate with or control existing hardware.

1
http://www.z-wave.com/, last visited 16th August 2018, 15:45 CEST

2
https://www.zigbee.org/, last visited 16th August 2018, 15:45 CEST

3
https://www.bluetooth.com/, last visited 16th August 2018, 15:48 CEST

4
https://www.threadgroup.org/, last visited 16th August 2018, 15:50 CEST

5
https://www.wi-fi.org/, last visited 16th August 2018, 15:51 CEST
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From a software perspective the system has to be able to communicate with different
game engines. The minimum requirement is support for Unity and Unreal Engine 4, as
they come with a free-to-use licensing model for non-commercial projects. Unity was the
engine of choice in the beginning of the project, as some members of the initial team
already had experience in working with it. Unreal Engine 4 on the other hand is currently
one of the best engines on the market and widely used in the game industry too. Even
though it took some time until the first simulation based on Unreal Engine 4 came to
the Jumpcube, the support for it was a requirement from the beginning.

Being part of an interactive simulation brings additional requirements to the system.
The most obvious one comes from the interactive nature of the Jumpcube. This means
by definition, that event timings are not known a priori. In other words: decisions by the
user may affect when - if at all - a user triggers an event, which in turn requires an actor
to react. Moreover, the latency between an event being triggered in the simulation and a
reaction from the corresponding actor has to be within a reasonable margin. Current
Virtual Reality headsets like the HTC Vive operate at a refresh rate of 90 Hz. This
means, that in a best-case scenario 90 frames can be presented to the user within one
second. This also means each frame spans over 11.1̇ milliseconds. Since we can neglect a
delay of one frame, we require from the system to react within 10 milliseconds. Further
hard real-time guarantees are not explicitly required from the system.

Additionally, the communication must not have any noticeable impact on the frames-per-
second delivered by the simulation. Since the logic needs to know the internal state of the
simulation (like e.g. the users velocity for the adaptive wind intensity mentioned above)
the system has to be part of the rendering process at least to some degree. Because of the
way how the scripting API in Unity works, long lasting computations directly affect the
frame rate. To avoid any impact, the API used in the game engine shall be asynchronous
and event based to interfere with the rendering procedure as little as possible.

Another desired functionality arises from the Jumpcube’s mobile nature. The Jumpcube
is intended as an attraction at public or semi-public events, like conferences, trade shows,
or science fairs. Hence, it is not a static structure to be built and never touched again;
on the contrary, it can be dismantled, moved, and reassembled if needed. This also
affects the multi-sensory feedback system, as it needs to move together with the bearing
structure and it too needs to be dismantled and reassembled. For this reason any needed
wiring shall be as uniform as possible. In addition, standardized cables shall be used
wherever possible. In the long term this should reduce the risk of a complete outage
of the system or parts thereof because of a defective cable, which cannot be replaced
due to the absence of matching replacement parts. Finally, the cables shall support easy
plugging and unplugging while still providing reasonable protection against accidental or
stress-based unplugging. Since some of them might need to be wired through tiny gaps
or narrow bends, they shall be flexible and durable.

To further prevent long lasting outages because of failed parts, the system shall be
engineered in a way which allows to easily troubleshoot any connected hardware and
any cabling. This means that if for example a cable breaks - a condition, which cannot
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be avoided - the overall status of the system needs to be analyzable without the need
to dismantle it. In such a scenario it shall be possible to locate the failed cable with
the help of the gathered overall system status and replace it within a reasonable short
maintenance interval. In addition it is desirable that the failure of a single hardware
component does not cause a complete system outage. A single point of failure cannot be
excluded in the Jumpcube because the PC running the simulation will always be one.
But the multi-sensory feedback system shall add as few additional single points of failure
and shall provide the capability to continue working in case of a reasonable amount of
hardware outages, possibly in a degraded mode. It shall also resume full functionality
once the broken parts have been replaced with little to no additional user interaction.

Finally, the system shall provide an API to devices not being part of the core system.
This may be a laptop, a tablet, or even a mobile phone. Via this API the operator shall
be able to examine the current state and to control all features of the system. It is
desirable to have a graphical user interface, which in addition to showing all available
features at a glance also enables the operator to trigger certain events or to change
the parameters of the system with as littles effort as possible. This user interface shall
be optional for the operation and further must not affect the availability of any given
part of the system in an undesired way under any circumstances. An exception may be
emergency shutdowns, which in this scope are regarded as desired.

3.2.2 Non-functional requirements

Apart from the functional requirements we identified a series of non-functional ones,
which are crucial either for the project to succeed in the first place, or for its later
development and potential commercialization. Even though the latter is not a primary
goal it shall be taken into consideration. The first of these requirements are the costs.
The system shall be built and maintained with reasonable spendings. To achieve this it is
desirable to use off-the-shelf hardware components wherever possible and to avoid custom
hardware. Said measures also affect the second non-functional requirement, namely the
possibility to reproduce the system either at a later time, or within a different project.
Though, additionally to off-the-shelf hardware we need a second factor for reproducibility,
which is long-term support of both the used software and hardware. For that, the system
shall either use software and hardware with guaranteed long-term support or alternatives,
which have existed for a long enough time to reasonably assume they will be available in
the near and mid-term future. It shall also be noted, that the restriction to a certain
software platform or programming language shall be avoided in order not to tie the
possibility to reproduce the system to the availability of said platform or language.

To further avoid any risk depending on the availability of a certain product - be it software
or hardware - the system shall be kept as modular as possible. By avoiding a so-called
vendor lock-in, in case of the unforeseen end-of-life of a component, the system should
be able to be adapted to a similar replacement of said product by only applying some
local changes, while keeping the overall system mostly untouched. Finally, by the use
of open standards for communication and open source components for the hardware
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and software this risk can further be diminished, as the probability of an open product
suddenly disappearing without any replacement seems smaller, than the same scenario
with a proprietary and possibly not publicly documented standard. Furthermore, if it
does reach its end-of-life, open source components and open standards can potentially
still be maintained or manufactured by any individual - a possibility which in general is
not available with proprietary components.

The focus on open standards and open source components not only helps with the
long-term reproducibility as discussed above, but may also positively affect a potential
launch to market. Open source components may bear some restrictions of use in their
licenses. As an example: the General Public License, one of the most common open
source licenses, demands that any change made to the subject of the license has to be
made accessible by the user thereof. But the components covered by open source licenses
are free to use and even though any changes made to them may have to made public,
they offer the possibility to change and adapt them to ones needs. These possibilities
too are not available with proprietary components in general. Further on, open source
components mostly come without any patent fees or royalties attached. This could
become a significant advantage during a potential launch to market.

3.3 Available frameworks

In addition to the features mentioned above, relying on open standards and open source
software also brings the advantage of a broad availability of existing frameworks for both
software and hardware. In this section we shall analyze the available software components
to ease the development and allow for rapid prototyping of our multi-sensory devices.

The decision for any given component of the software stack was made based on the
following requirements:

• Sustainability: It can be safely assumed the component will be available in the near
to midterm future, because it is being actively developed, an active community has
formed around it, and/or it is widely supported and/or used in the industry.

• Portability: Established programming languages and standards are used to reduce
the effort necessary to port the system onto a new platform. This should also
reduce the training needed for a new member to start working on the project.

• Efficiency: The component is well-documented and allows for rapid prototyping
to minimize the risks caused by the tight schedule and the hard deadline of the
project.

In addition, the decisions for the chosen technologies influenced each other, which renders
it difficult to rank them. Hence, the following order is essentially arbitrary.

44



3.3. Available frameworks

Listing 3.1 SocketIO communication front end using Flask

1 from flask import Flask

2 from flask_socketio import SocketIO

4 app = Flask(__name__)

5 socketio = SocketIO(app)

7 @socketio.on('some_event')

8 def do_something(message):

9 pass # Business logic may be called here

11 socketio.run(app, host='0.0.0.0')

3.3.1 Web application frameworks

Since time was a scarce resource at project begin and the deadline, being the 200 years
festivities of Technische Universität Wien, was sharp, the need for rapid prototyping
arose. This meant for the author, that the best possible implementation would be the
one which both works reliably and can be implemented in time. Hence, the decision was
made to rely on the Web technologies, since support for them exists within the game
engines as we have seen before and the author already had some experience in working
with them. This also meant the idea of basing the communication backbone on fieldbus
technology - even though it may be a more adequate solution - was dropped in favor of
a TCP/IP based one for lower development costs and time. For the same reasons the
C/C++ programming language, which - as far as the author is concerned - would have
been the best choice was dropped in favor of Python.

We chose the Flask 6 framework as the base for our implementation on the devices, as it
is lightweight, open source, can be based on top of the high performance gevent event
loop, and hence leverages the performance of the C language from within Python, and it
facilitates the separation of the communication front end from the business logic. Flask
also offers a library, namely Flask-SocketIO, which allows us to integrate it with SocketIO.
A minimal implementation of a Flask based SocketIO front end can be found in Listing
3.1. We can further exploit the fact that Flask allows to implement a SocketIO server so
that each device represents its own server. This does not limit the connectivity, as each
device can still communicate to each other by connecting to it via a SocketIO client. But
it does improve the system reliability, since the outage of a SocketIO server only affects
that very device, while all others remain operational.

6
http://flask.pocoo.org/, last visited 16th August 2018, 15:39 CEST
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Listing 3.2 SocketIO client using reference implementation

1 var socket = io.connect('http://' + document.domain + ':' + location.port + '/');

2 socket.emit('some_event', 'Hello World');

3.3.2 User interface

Basing the communication backbone on TCP/IP also allows us to use an HTML page as
a graphical user interface for the system. Since SocketIO is a technology designed for
the Web, adding support for it on an HTML page can be accomplished by the reference
JavaScript implementation. A minimal client for the front end defined in Listing 3.1
can be found in Listing 3.2. This approach enables us to access the graphical user
interface from any device able to run a fairly modern web browser. Since web browsers
have different base style sheets, relying on plain HTML for the graphical user interface
may lead to an inconsistent look and feel for different browsers. To avoid this we used
the Materialize 7 CSS framework. Apart from delivering a consistent look and feel,
Materialize also aids in the development of layouts, which are able to adapt to different
screen sizes. Finally, Materialize also features widgets like switches and sliders optimized
to be comfortably usable both with mouse and keyboard, as well as via a touchscreen.

3.3.3 Arduino

For time critical tasks we employ microcontroller based Arduinos. For programming
them we shall use the Arduino IDE provided by the Arduino project team. This is
not the only way available for programming an Arduino. For example Makefiles exist,
e.g. the Arduino-Makefile available on GitHub, which implement the full workflow from
compiling the sources to flashing the created binaries onto the Arduino board using the
popular Make build automation tool. Yet the Arduino IDE, apart from supporting a
wide range of boards, features a graphical IDE and some built-in debugging aids like a
serial console. For communicating over SocketIO using an Arduino with Ethernet shield
the socket.io-arduino-client available on GitHub is at our disposal. Though, we fear
an Arduino does not have the computing power to act as webserver for delivering the
graphical user interface to connected clients and mentioned library only implements a
SocketIO client. However, the system as a whole is more resilient if each device is a
SocketIO server. Therefore, communicating to the Arduino via SocketIO is sub-optimal
and may not be adequate for productive use. As a consequence we will use a Raspberry
Pi as SocketIO server, which also delivers the graphical user interface, and communicates
with the Arduino over a USB connection. Experiments with an Arduino, an Ethernet
shield and said library were conducted as proof of concept for such an implementation.

7
https://materializecss.com/, last visited 16th August 2018, 15:43 CEST
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3.3.4 Yocto Project

As a first topic we shall look at the Yocto Project 8, or Yocto for short. Yocto is at its
core a fully featured build environment for a Linux distribution. Yocto allows to create a
minimal, custom tailored Linux distribution for a device. It achieves this by not only
providing the source files, but also a complete compiler suite and toolchain, allowing the
user to build the distribution for a variety of devices, even if they are based on different
CPU architectures. In addition Yocto allows to compile for a hardware architecture
different then the one the compiling machine is based on, also known as cross compilation,
out of the box. The most bottom entity in a Yocto project is a so-called recipe. A recipe
is an abstraction of a build script written for the BitBake build system. In other words,
a recipe defines where the source code resides, how to fetch it, which patches shall be
applied to it, and what to do during the various steps from download to installation. A
recipe also allows to define dependencies to other software packages for both build-time
and runtime. However, the user does not need to implement the full recipe, as Yocto
already provides a variety of templates for the most common build systems and software
distribution system. As an example Listing 3.3 shows a recipe for a Python package
available at the Python Package Index (PyPi).

Multiple recipes can be bundled together in a so-called layer. A layer may have different
responsibilities, such as adding support for a specific hardware platform, provide build
instructions for specific software packages, provide templates for recipes, or any combina-
tion thereof. Hence a Yocto based build environment mostly will contain multiple layers.
In this project additionally to the base layers providing the toolchain and the compiler
we will use the meta-raspberrypi layer to add support for the Raspberry Pi single board
computer, and the meta-openembedded layer which provides recipes for software packages
such as Python and OpenSSH. Using Yocto allows us to build deployable images for a
variety of hardware platforms without the need to change the build instructions in case a
new hardware platform needs to be supported. In addition, since the used layers and
recipes are distributed via the Git version control system, the builds are fully reproducible
on every machine running a fairly recent version of a Linux distribution, even across
different devices with just the knowledge of the revisions of the individual layers. This
lowers the risk of loosing important data because of a broken storage device, as a build
can easily be reproduced. Finally, using Yocto we have a very fine grained control over
which software will run on the device, which ultimately lowers the risk of unwanted side
effect caused by an unneeded piece of software running on the device. BitBake also offers
the ability to extend or alter any aspect of an existing recipes via so-called bbappend files.

3.4 Available components

Having seen what software components are available to us we shall now have a look at the
hardware components at our disposal. Each of the following sections describes one type

8
https://www.yoctoproject.org/, last visited 16th August 2018, 15:42 CEST
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Listing 3.3 File python-flask-socketio_2.9.2.bb

1 SUMMARY = "Socket.IO integration for Flask applications"

2 LICENSE = "MIT"

4 LIC_FILES_CHKSUM = "file://LICENSE;md5=38cc21254909604298ce763a6e4440a0"

5 RDEPENDS_${PN} = "python-flask python-socketio python-gevent-websocket"

7 PYPI_PACKAGE = "Flask-SocketIO"

8 SRC_URI[md5sum] = "1f8521101d2c9b4155cf521fbce3740c"

9 SRC_URI[sha256sum] = "0fb686f9d85f4f34dc6609f62fa96fe15176a6ea7e6179149d319fabc54c543b"

11 PR = "r10"

13 inherit pypi setuptools

The various parts explained:
• the file’s name sets the default values for the package name PN and the package

version PV in that it consists of PN_PV.bb

• SUMMARY and LICENSE are mostly informational
• LIC_FILES_CHKSUM contains the file describing the license and its MD5 hash. This way,

shall the license ever change, the build will fail and the user can revisit the new
licensing conditions to assure they are still compatible with the project.

• RDEPENDS_${PN} defines the runtime dependencies. Build-time dependencies would be
given using DEPENDS_${PN}.

• SRC_URI[md5sum] and SRC_URI[sha256sum] contain the MD5 and the SHA256 hash re-
spectively of the downloaded package. This way download errors and manipulations
on the package can be detected.

• inherit pypi setuptools instructs BitBake to use the templates for PyPi packages to
be installed via setuptools. This combination is a very common way of installing
packages on the Python platform.

• PYPI_PACKAGE is specific to the pypi template and identifies the package to be fetched.
It defaults to ${PN} without the python- prefix. Since it is convention in BitBake to
have all lowercase package names we need to override it here.

• PR is the package revision. Since Yocto heavily caches build artifacts, increasing
this number is an easy way to force a rebuild in e.g. the case the recipe changes.
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of sensory feedback. Overall, they are ordered chronologically by their first appearance
within the project.

3.4.1 Communication backbone

Having chosen the TCP/IP stack and the respective protocols as our means of com-
munication, the choices for the communication backbone are fairly restricted. As a
main communication hub we chose an off-the-shelf 10/100 MBit/s Ethernet switch. A
switch makes sense in our scenario, as it allows full-duplex and hence collision free
communication. All of the PCs and the Raspberry Pis used in the setup come with a
built-in Ethernet adapter. We used random UTP Ethernet cables, since all we tested
seemed to work with 10/100 MBit/s just fine.

If the system shows any unexpected behavior which may be caused by an overloaded
network, we still have the option to move to a 1 GBit/s switch. The PC used for the
project is capable of running 1 GBit/s Ethernet, and since most of the communication is
expected to happen between PC and the switch, we might see an immediate increase
in performance. Yet, not even the most up to date Raspberry Pi 3+ is able to exploit
the full potential of a Gigabit Ethernet link, as its Gigabit network adapter is connected
to the SoC using a USB 2.0 connection, which allows a maximum of 480 MBit/s gross
data throughput. It shall be noted, that other single board computers exist, which are
able to exploit the full potential of a Gigabit Ethernet link, but these devices tend to
be higher priced then the Raspberry Pi. Because we use Yocto and some devices with
Gigabit connectivity are supported by it, we should be able to switch to one of them
with ease should it turn out the Raspberry Pi is not powerful enough. In such a scenario
we also need to check all cables to see if they support Gigabit Ethernet connections and
introduce CAT5e UTP or higher rated cables for those which are not.

3.4.2 Wind

Since the first application developed on the Jumpcube was a parachute jump towards
Vienna, it was the obvious choice to implement wind simulation at first. As already
mentioned, it was required that the wind speed shall be bound to the velocity of the user’s
avatar within the virtual world. This meant we needed to find some fan configuration
which is controllable via software. We identified two ways of achieving this:

• Direct current (DC) fan with pulse width modulation (PWM) control
• Alternating current (AC) with upstream AC dimmer

We chose the latter, because of the following reasons:

• availability and cost of fairly powerful 230 V AC fans
• no need for additional AC/DC converters
• reusability of the 230 V AC dimmer on later features

It shall be noted though, that the use of a high-power DC fan with PWM control input
constitutes a viable approach and offers other advantages. But since flexibility, reusability,
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Figure 3.1: Zero crossing based PWM control of an AC motor. AC voltage from power
plug (top), control signal (center), and output AC voltage (bottom) of the fan controller
running at level 6.

and simplicity is of high importance in the case of the Jumpcube we opted against it.
Finally, the system as a whole could be easily adapted to support PWM control for
a fan or other periphery, but because of the lack of such peripherals it has not been
implemented up to this date.

Power-controlling a 230 V AC fan turned out to be more of a challenge then expected.
Voltage controlling by a electronically controllable transformer turned out to be too
expensive and even after extensive research on the topic it remained unclear, if the chosen
fans would respond to it as expected. During said research the author found numerous
sources ruling out trailing-edge phase-fired control, since AC motors are inductive and
hence the power cut-off on the trailing edge may cause a voltage spike due to the instant
collapse of the magnetic field in the motor’s coils. These voltage spikes may cause serious
damage to the electronics and may be dangerous to humans as well. Circuits can be
prepared to handle such scenarios gracefully as we will see in Section 3.4.4, but due to
the black-box character of off-the-shelf 230 V AC fans we ruled out this approach as
too risky. During the research we found no mention of leading-edge phase-fired control
in combination with 230 V AC fans. When trying it though, the fan only produced a
crackling noise and its blades did not turn.

As final solution we chose power switching on zero crossing. To understand how this
works, one needs to know how current from a standard 230 V AC European power
socket works. The voltage oscillates in a sine wave at 50 Hz. Since a sine wave has two
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zero crossings per period this leads to the voltage having 100 zero crossings per second.
Switching the fan at exactly these zero crossings turned out to work fairly well. Yet, this
approach has the drawback of only being able to switch the fan on or off at most 100
times a second, being once in 10 ms. At least for fan control though, this did not turn
into a major disadvantage, as the inertia of the fan’s blades was much more relevant
overall than the switching rate. We decided to toggle the fan’s power state twice in 100
ms to reduce the latency at the cost of having less power levels. The fan is turned on at
the beginning of each 100 ms interval, which needs to be exactly at a zero crossing and
should in this context be counted as the zeroth of its kind. The fan is again switched off
at the nth zero crossing to drive the fan at level n (e.g. level 6 means 6 half waves on, 4
half waves off). Figure 3.1 depicts a diagram of the fan controller operating at level 6.
This lead to 10 potential switching points and hence an 11 step power control for the
fans (off, 9 intermediate steps, full on). Level 0 (off) and level 10 (full on) involve no
intermediate switching.

To be able to switch power fast and with a frequency of up to 100 Hz we decided to use
solid state relays. While being more expensive than mechanical relays, they offer higher
switching frequencies, less response time, and the can be directly driven by a low voltage
and low current output like in our case a digital output of an Arduino. For detecting the
zero crossings on the AC input we used a zero crossing detection IC connected to the
interrupt input of the Arduino. The first power controller circuit board was designed
and built by a co-worker in the project (Gordan Savičić) during a different project. It
offered 8 output channels and was controlled by an Arduino Mega board. It worked
and performed well, yet due to its round shape it was difficult to integrate in our setup.
Another co-worker (Florin Hillebrand) later built a smaller version designed to fit in
a 1U rack case. It offers 4 output channels, as we deemed that to be sufficient, and is
controlled by an Arduino Nano v3. All credit for both the circuit board and software
running on the Arduino Nano v3 goes to Florin Hillebrand. The schematics, as well
as the software are available on his GitHub profile 9. The Arduino is connected to a
Raspberry Pi 2 via USB, which integrates it with the rest of the system and also provides
a graphical user interface. The AC dimmer was later used to incorporate moisture, and
heat into the system as well.

3.4.3 Centrifugal force

Simulating forces is crucial to the experience in Virtual Reality, and contributes to
avoid simulator sickness as we have seen. For that reason, the second addition to the
Jumpcube’s multi-sensory system was a controller allowing to simulate centrifugal forces.
This was achieved by connecting a servo motor to the ropes connected to the user’s
hips. This way we are able to rotate the user around his/her roll axis. We chose a servo
motor from Swiss manufacturer Maxon Motors due to its high popularity. Maxon Motors
provides a controller for their servos, namely the EPOS series. We used the EPOS2 24/5
model. The EPOS2 24/5 can be controlled via USB using a C library provided by the

9
https://github.com/flozzone/ssr-dimmer-board, last visited 8th August 2018, 17:31 CEST
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manufacturer, which is available for Linux on the x86 and the ARMv7 platform. Due to
Python’s capabilities of loading and using C libraries via the ctypes module we were able
to integrate it with our Raspberry Pi 2 based controller setup.

For security reasons we put a clutch between our servo motor and the mechanics connected
to the ropes leading to the user’s hips. Though, this caused the servo’s integrated position
control to be unusable, as with the clutch open the servo would turn without moving
the user and hence an offset would be introduced. Therefore we control the position of
the mechanics using a linear 50 kΩ potentiometer. The potentiometer is connected to
the analog input of an Arduino, which in turn is connected to the Raspberry Pi 2 which
controls the EPOS2 24/5 device via USB. The Arduino also allows us to open or close
the clutch from software.

The overall setup is controlled by a bang–bang feedback control which lets the motor
either turn clockwise or counterclockwise. The current status of the system is evaluated
using the potentiometer, the desired state can be set using the SocketIO API, either from
within the game engine, or from the graphical user interface. Even though bang-bang
controllers are fairly limited compared to more complex feedback controllers, it worked
well in our setup and we settled with it. All credit for the additional mechanics and
electronics for this part of the system go to project members Bela Eckermann and Florin
Hillebrand.

For being able to further adapt the g-force simulation we integrated an inertial mea-
surement unit (IMU) with the application. We chose the Invensense MPU-6500 for its
feature set and its software support, while still being reasonably priced. The IMU would
be positioned on the user’s chest and is able to measure the roll angle. Attached to it we
have an Ardunio Nano v3, which queries the IMU over I2C and relays the data to the
PC over USB. The Arduino Nano v3 was chosen because of its small size, while having
approximately the same feature set as a much larger Arduino Uno. The input can be
used both to control the virtual avatar, and to instruct the servo motor to either support
or counteract the user’s motion around its roll axis.

3.4.4 Odors

Since simulating odors is a fairly exotic topic, we reached out to Scent Communication,
a company specialized in producing artificial smells. Apart from providing the different
scents used in our setup, they were also able to contribute a prototype able to control
up to six different smells. The ScentController 6, built by Dräger, is controlled by seven
electronic valves, one per scent and one so-called flush valve, which bypasses the scent
cartridges and allows to pump clean air through the system, i.e. flush it. Since these
electronic valves need 12 volt to operate we built a simple transistor circuit board, which
allows us to to control the valves via a lower voltage and low currents as provided by e.g.
the general-purpose input/output of a Raspberry Pi. Since electronic valves, similar to
230 V AC motors, are inductive, we needed to make sure the voltage spikes originating
from suddenly turning off the valve would not harm the electronics. For that, each of the

52



3.4. Available components

Figure 3.2: The control circuit for a single 12 V electronic valve. The control input
(GPIO) is overcurrent protected by a resistor (R1). The FET transistor (Q1) allows to
control a 12 V rail using a lower voltage and low current. The pull-down resistor (R2) is
responsible for a defined potential on the transistor’s gate in the off state. The flyback
diode (D1) prevents damage from voltage spikes on switch off.

seven valve control circuits contains a flyback diode able to drain off voltage spikes. A
schematic of the control circuit for a single valve can be found in Figure 3.2.

The seven valve control circuits are driven directly from the GPIO of a Raspberry Pi
2. Since we do not need strict realtime guarantees as e.g. when controlling the AC
fans via the zero crossing mechanism, and the tube connecting the device’s output
to Virtual Reality headset causes a delay of around 0.5 seconds, we do not need an
additional Arduino and any latency introduced by the Raspberry Pi’s operating system
is neglectable.

This concludes the chapter on methodology and design. The problem we are trying
to solve lies in integrating multi-sensory devices with computer graphics applications
suitable for use with Virtual Reality. We have analyzed the products currently available
on the market and found none to be suitable for the usecases of the Jumpcube. We
went on to define both the functional and non-functional requirements we impose onto
such a system. Finally, we analyzed what software and hardware components are at
our disposal for rapid prototyping of a system meeting those requirements from both a
software and a hardware point of view. For the latter, we have listed and described the
devices which will produce the multi-sensory feedback. For the sooner we concluded Web
based technologies, i.e. SocketIO, HTML, JavaScript, CSS, and TCP/IP, in combination
with Yocto and Python are to be preferred over a C/C++ and fieldbus based solution
because of time and cost advantages. The drawback of the chosen technology stack lies
in potentially inferior performance. We will now move on to show how the components
were implemented. We will also discuss our benchmarks to see if the performance meets
our specifications.
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CHAPTER 4
Implementation

This chapter contains the technical details for both the communication backbone, as well
as the individual controller devices. For the sooner we will also conduct some benchmarks
to see if it is able to meet the requirements imposed upon it. For the latter we will
document the provided APIs, their parameters and functions, and by which other parts
of the system they shall be used.

4.1 Communication backbone
Our first task is to see, if the combination of TCP/IP, WebSockets, SocketIO and Python
on the software side, and Ethernet, consumer grade networking equipment and Raspberry
Pi 2 on the hardware side meets the functional requirements imposed upon it. Meeting
these requirements is of utmost importance for the system, as a failure to do so will
inevitably cause contradicting sensory information, and in turn may cause simulator
sickness.

4.1.1 Testing methodology

The test setup involves two Raspberry Pi 2 Model B, referred to as Alice and Bob. Alice
acts as a SocketIO client, while Bob constitutes the SocketIO server. Both are connected
to each other via a TP-Link TL-WR841N, which features a 10/100 MBit Ethernet switch,
using UTP cables. The latency is defined as the time between an action of Alice and
the corresponding reaction of Bob. As actors the general-purpose input/output (GPIO)
pins of the respective Raspberry Pi are used. The latency is measured using an Arduino,
which measures the time between two interrupts, one being triggered by Alice, the other
one by Bob. The measurements are then sent via USB Serial to a connected PC, which
collects the data for further analysis. In addition, a two channel oscilloscope is connected
to the GPIO pins of Alice and Bob to provide a sanity check for the data collected using
the Arduino. The full hardware setup is depicted in Figure 4.1.
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Alice

Bob

Claire

Figure 4.1: The benchmark setup. Blue lines represent Ethernet cables, green lines are
electrical connections. Alice and Bob communicate via SocketIO. The Arduino measures
the latency between the two using interrupts. Claire produces noise on the network to
simulate network load.

The VR applications built for the Jumpcube feature a duration of approximately five
minutes each. Afterwards the program is closed and restarted for the next user. This
causes all communication channels between the simulation and the multi-sensory system
to be closed and reestablished. A benchmark run should simulate one such iteration. We
decided to add another two minutes, yielding a total benchmark length of seven minutes.

During a second benchmark run a loaded network is simulated by the addition of a
PC referred to as Claire sending events to Bob in an endless loop. This is meant to
simulate a worst case scenario, as during the operation of the system events will not occur
more often then once per rendered frame. In addition, each of the devices constitutes
a SocketIO server with the PC running the simulation being the only client. Half-way
through the benchmark Claire shall be forcefully shut down to see if and how the system
handles sudden connection aborts. Since for this benchmark we are not interested in
long-term stability, but rather how the system behaves under synthetic load and sudden
connection aborts, we decided to lower the benchmark runtime to four minutes.

Both benchmarks follow the same communication protocol. At the beginning of each
benchmark the GPIO pins of both Bob and Alice are configured low. The communication
adheres to the following protocol:

• Alice: set GPIO pin to high
• Alice: send event to Bob
• Bob: whenever an event is received:

– toggle GPIO pin
– wait for 10 milliseconds
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– send event to Alice
• Alice: whenever an event is received:

– toggle GPIO pin
– send event to Alice

It shall be noted that due to the event-driven nature of the described protocol every lost
event would bring the benchmark to a sudden end.

4.1.2 Latencies

We found the latency to be 4341 µs on average with a standard deviation of 78 µs for the
test on the otherwise idle network. The 0.99 percentile is 4564 µs. This is well below
the targeted 10 ms. We also see that performance is stable over time, at least for time
periods of approximately seven minutes. Figure 4.2 shows a plot of the collected values.
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Figure 4.2: Latency over time on an otherwise idle network. The samples were taken
over a period of seven minutes.

For the run on the loaded network we calculated the values for the whole run, as well as
for both parts (i.e. with synthetic load and after Claire’s shutdown) individually:

Period Average Std. deviation 0.99 percentile
Loaded 4788 µs 106 µs 5116 µs
Not loaded 4397 µs 120 µs 4735 µs
Overall 4589 µs 226 µs 5060 µs

Figure 4.3: Statistical evaluation of the measured latencies.

We see from the results that artificial load does have a negative impact on all metrics.
However, even in the worst case scenario with synthetic load the values are still well below
the required 10 ms. After shutting down the artificial load the average returns to be the
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same by margin of error as for the benchmark on the otherwise idle network. However,
the standard deviation is still higher than both during load and on the otherwise idle
benchmark. We assume this phenomenon to be caused by the best-case latency being the
same as on the otherwise idle network, though the worst case still being influenced by the
previous load. These two factors could together cause the higher variance we see. Figure
4.4 shows a plot of the collected values. It shall also be noted, that the standard deviation
in the Overall row, being the sum of the values for the two individual measurements,
does not carry any relevant information, and is just listed for completeness.
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Figure 4.4: Latency with artificial load and after forceful shutdown thereof.

4.1.3 Conclusion

We have seen that the latency of the system is well below the required 10 ms, even in a
scenario with synthetic load. We have also seen, that the system is reliable as no event
was lost during neither of the benchmark runs. We have thus shown, that the system is
adequate for computer graphics environments in the scope of Virtual Reality.

4.2 Environment controllers

In this section we will have a closer look at the individual controllers, their overall
architecture, their APIs, and their respective functionality. In total, three different types
of controllers were implemented to interact with three different kind of devices. At the
current stage, due to the low number of actual controllers, we did not find the necessity
to implement a discovery mechanism. Therefore, we rely on static IP addresses defined
at build time via the respective BitBake 1 recipes. Nevertheless, the system could be
extended to provide automatic discovery at runtime.

1
https://www.yoctoproject.org/software-item/bitbake/, last visited 24th October 2018, 15:42 CEST
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4.2. Environment controllers

The types are (with their respective IP address in parenthesis):

• Dimmer: (192.168.1.50) Controls up to five 220V AC devices.
• EPOS controller: (192.168.1.51) Its main purpose is to interface with the Maxon

Motor EPOS2 series servo motor controllers. This controller shows how to integrate
with devices using a third-party library.

• Vragrancer: (192.168.1.52) Mainly designed to support odors, this controller is
suitable for devices requiring a digital 3.3 Volt and low current control signal,
or by extension a 12 Volt high current control signal. Moreover, other voltages
and currents can be supported by the addition of different transistor circuits or
solid-state-relays.

4.2.1 Common Properties

All controllers have some aspects in common. First and foremost is a HTTP webserver
which runs on port 5000. This server is serving the WebUI, which can be accessed
using any modern web-browser by navigating to http://<IP>:5000. Being a web tech-
nology, the SocketIO server responsible for the actual API can share the port with
the HTTP server. It is recommended to connect to it using the WebSocket protocol
via ws://<IP>:5000/<namespace>. All clients, including the WebUI, shall connect to the
respective device using this method. The software itself is hardware agnostic. The only
requirements are IP connectivity for the HTTP and SocketIO parts of the API, and
the ability to run Python code. But, since SocketIO is an open and widely supported
protocol, reimplementations or extensions of the system may use different programming
languages. Some controllers do require additional features such as USB connectivity, or
GPIO pins. Finally, it shall be noted, that all API calls are idempotent.

4.2.2 Dimmer

The Dimmer device consists of three hardware parts. (a) A Raspberry Pi 2 provides
Ethernet connectivity, exposes the functionality on a SocketIO API, and serves the
WebUI. Since the zero-crossing power control presented in Section 3.4.2 requires real-time
capabilities beyond what the Raspberry Pi can achieve on its own, it connects to (b) an
Ardunio via a USB Serial connection. The Arduino, being microcontroller-based, allows
for a more responsive control of the digital outputs. It also exposes interrupt lanes on
its GPIO interface perfectly suitable to be used with a zero-crossing detector IC. The
Arduino’s GPIO interface is connected to (c) a custom made printed circuit board (PCB)
bearing the solid-state-relays to control the power outlets, as well as the zero-crossing
detection IC providing the input for the power control logic. It additionally includes
all the necessary circuitry to drive the solid-state-relays using the Arduino’s GPIO pins.
The schematics of the PCB are available in Figure 4.5.

The REST API, being mainly intended for UI initialization, provides two calls, being (a)
/config/ exposing the Dimmer’s persistent configuration and (b) /environment/ returning
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Figure 4.5: Schematic of the Dimmer’s custom PCB. By courtesy of Florin Hillebrand.
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Figure 4.6: The Dimmer device. The top bears the Arduino Nano and the power inlet
(left), and the solid-state relays. The circuit board is located at the center. The five
power outlets, as well as a mains switch are located at the bottom.

the outlet’s current state. Both APIs can be queried using HTTP-GET requests and
yield JSON objects of the form described below.

On its SocketIO API the Dimmer provides two SocketIO namespaces, namely (a) events

providing control over the various power outlets and (b) config providing control over
some configuration parameters. A state applied using the events namespace is ephemeral
and lost on reboot, while a state applied using the config namespace is persistent and
restored after reboot.

We shall first look at the API exposed via the REST API, followed by the one provided
by the SocketIO server. Finally, we will see how the Raspberry Pi and the Arduino
communicate with each other over the USB Serial connection.

JSON objects

The current state of the Dimmer’s outlets is represented by a JSON object containing four
properties, each containing the state for one of the outlets. The first outlet is represented
by (a) fan_level of type Integer [0, 16] containing the currently configured power level for
the first outlet. Being intended to be used by off-the-shelf 220V AC fans, the power level
is the input applied to the zero-crossing power control logic presented in Section 3.4.2. (b)
watersplasher_state is a Boolean containing the currently configured state of the second
outlet. It shall be noticed, that the second outlet is a PWM outlet, hence its actual
state is a superposition of this value and the configured PWM duty cycle. Whenever
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this value is set to false the outlet is switched off, though the same can be achieved by
setting watersplasher_intensity (see below) to 0 and watersplasher_state to any of true or
false. Finally, the third and fourth outlet, being configured as simple on/off controls, are
represented by the Booleans (c) heat and (d) cold respectively. A value of true means the
power outlet is on, while a value of false means the power outlet is off. An example of
such a JSON object can be found in Listing 4.1.

Listing 4.1 Dimmer’s current ephemeral state

1 {

2 "cold":false,

3 "fan_level":0,

4 "heat":false,

5 "watersplasher_state":false

6 }

The current configuration of the Dimmer is represented by a JSON object containing a
single property watersplasher_intensity of type Float [0.0, 1.0]. It contains the currently
configured PWM duty cycle for the second outlet. An example for such a JSON object
can be found in Listing 4.2.

Listing 4.2 Dimmer’s current persistent configuration

1 {

2 "watersplasher_intensity":0.25

3 }

REST API

The Dimmer provides a REST API exposing both its ephemeral state, and the persistent
configuration. This API may be used by all clients, though its main purpose is UI
initialization.

• /environment/

– Method: GET
– Parameters: None
– Returns: The current state of the outlets. See Listing 4.1 for an example.

• /config/

– Method: GET
– Parameters: None
– Returns: The persistent configuration. See Listing 4.2 for an example.

Namespace events

The events namespace provides control over the devices attached to the Dimmer’s 220V
AC outlets. The following events are supported:
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• update

– Source: Server
– Payload: JSON containing the current outlet state of the device. See Listing

4.1 for an example.
– Function: Notifies clients about outlet state changes.

• unityFanSpeedEvent

– Source: Client
– Payload: Integer [0, 16]
– Function: Sets the zero-crossing based PWM duty cycle (see Section 3.4.2

for further details) for the first outlet from off (0) to full-on (16) with 15
intermediate steps.

• unityWaterSplasherEvent

– Source: Client
– Payload: Integer [0, 1]
– Function: Sets the PWM value of the second outlet to either the value

configured using config/waterSplasherDutyCycle (1) or switches the outlet off (0).
The power state is toggled once a second, with the PWM value configured
using config/waterSplasherDutyCycle defining the duty cycle. Note, that this
method does not respect zero-crossings on the 220 V AC input.

• unityHeatEvent / unityColdEvent

– Source: Client
– Payload: Integer [0, 1]
– Function: Switches the third/fourth outlet either on (1) or off (0). Notice,

that this method does not respect zero-crossings on the 220 V AC input.

Namespace config

The config namespace provides means for setting up the Dimmer and its connected
devices. These calls are only meant to be used by interactive UIs, such as the WebUI.
The following events are supported:

• update

– Source: Server
– Payload: JSON containing the current configuration of the device. See Listing

4.2 for an example.
– Function: Notifies clients about configuration changes.

• initSequence

– Source: UI
– Payload: None
– Function: Starts the initialization sequence for the watersplasher aiming to

flush any residual air out of its tubing. This sequence may also be used for
emptying the system before dismantling it.
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• waterSplasherDutyCycle

– Source: UI
– Payload: Float, [0, 1.0]
– Function: Sets the duty cycle for the second outlet.

USB protocol

As mentioned before, the Raspberry Pi communicates with the Arduino via a USB Serial
connection. The protocol is byte-based. The messages are initiated by the Raspberry Pi
and no response is expected from the Arduino. Each message has to adhere the following
schema:

0xF6 0x6F 0x04 <channel> <value>

where channel identifies the outlet (0x00 through 0x03), and value defines the zero-crossing
based PWM duty cycle with 0x00 being off and 0x10 being full-on. A non zero-crossing
respecting on/off switching can be implemented by only using the values 0x00 and 0x10.

4.2.3 EPOS controller

Similar to the Dimmer, the EPOS controller device consists of three parts, too. While (a)
the Raspberry Pi is used for the same purpose as in the Dimmer device, namely providing
Ethernet connectivity, exposing the functionality on a SocketIO API, and serving the
WebUI, the (b) Arduino connected to it via a USB Serial connection is used mainly
because of its analog-to-digital converter (ADC) component. Would the Raspberry Pi, or
any device replacing it in an alternative implementation provide an ADC, the Arduino
could be removed from the setup without loosing functionality. The third component
is a (c) Maxon Motors EPOS2 24/5 servo motor controller, referred to as EPOS2. The
EPOS2 is connected to the Raspberry Pi via USB and allows a wide range of Maxon
Motors servo motors to be controlled using either USB or CAN via a binary C library
provided by the manufacturer for a wide variety of platforms, including the Raspberry
Pi.

For safety reasons, we put a clutch in between the servo and the mechanics tied to the
user. This clutch’s power connection is controlled by two limit switches which are opened
in case the servo moves out of its defined operation range. Due to the servo not being
directly connected to the mechanics, the position feedback from the servo cannot be
used. Therefore, we measure the servo’s position on the clutch using a linear 50 kΩ
potentiometer. The value of the potentiometer is read using the Arduino’s analog-to-
digital converter on analog pin 7 and then transmitted to the Raspberry Pi via USB
Serial.

In consequence, we cannot use the servo’s positional mode as the servo’s internal position
may become offset from the mechanics position due to the clutch being open while the
servo is moving. Hence, we drive the servo without regarding its positional feedback only
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EPOS2

Potentiometer

Clutch

Servo

Figure 4.7: Schematic of the servo setup. Inputs are transmitted to the Raspberry Pi via
Ethernet (light blue arrow). Dark blue lines represent USB connections. Solid green lines
represent electrical connections. Red line represent mechanical connections. The green
dotted line is a proprietary cable by Maxon Motors with unknown parameters. The ropes
connected to the user are attached to the clutch (red arrow on the right hand side).

relying on the value provided by the potentiometer via the Arduino. For an overview of
the full setup see Figure 4.7.

Differently from the Dimmer, the EPOS controller’s REST API exposing the controller’s
current state is not only intended for UI initialization, but it shall be periodically queried
by any connected UI. We recommend to query it twice a second as a compromise between
being able to show up-to-date data and keeping the load on the API low. The reason
for the necessity of exposing the current state via REST rather then emitting an event
on every state change (as done by the Dimmer device) lies in the fact, that the servo’s
current position reported by the potentiometer may change every single time it is queried.
This may by caused by electromagnetic interference on the electrical connection between
potentiometer and Arduino, tolerance of both the Arduino’s ADC and the potentiometer,
or simply because the servo is actually moving. For the internal logic we want to have
as up-to-date data as possible, which means the potentiometer’s value is queried and
transmitted to the Raspberry Pi as often as possible. Hence, emitting an event on every
single position change will inevitably flood the network. In addition, it will not provide
any benefit to the user as the values change faster then a user may react to them.

On its SocketIO API the EPOS controller provides two SocketIO namespaces, namely
(a) servo providing control over the servo’s target state, and (b) config providing the
ability to recalibrate the servo in case it becomes offset because of friction between the
clutch and the potentiometer, or during transport. Differently from the Dimmer, all state
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Figure 4.8: The EPOS controller device. The left-hand side image shows the controller,
with the Arduino Nano (top left), and the Maxon Motors EPOS2 24/5 Digital positioning
controller and the Raspberry Pi (bottom right). The blue cylinder at the top right is
a capacitor needed to smooth out voltage spikes coming from the power supply. The
right-hand side image depicts the controller including (from left to right) the clutch and
the servo motor.

applied via both the EPOS controller’s servo and config namespaces are ephemeral and
not persisted on reboots.

JSON objects

The exposed internal state of the EPOS controller is represented by a JSON object
containing information about both the current state and the target state of the servo. In
total we have five properties, each representing a different aspect of one of the states.
The most basic properties are (a) enabled, a Boolean telling whether (true) or not (false)
the servo motor is activated (i.e. allowed to move) and (b) move_state, an Integer [0, 2]
giving additional information about the current moving direction. The possible values
are 0 (servo is stopped), 1 (servo is moving towards positions with higher values), and 2

(servo is moving towards positions with lower values). The current and target positions
are represented by (c) current_poti_position and (d) target_position, both of type Integer
[0, 1023]. It shall be noted, that current_poti_position contains the potentiometer value as
returned by the Arduino without the calibration offset applied. Finally, (e) current_offset

is an Integer containing the current recalibration offset. It shall be noted, that the
EPOS controller aims to reach equilibrium by making current_poti_position the same
as target_position - current_offset. An example of such a JSON object can be found in
Listing 4.3.
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Figure 4.9: The EPOS controller state diagram.

Listing 4.3 EPOS controller’s current state

1 {

2 "current_offset":0,

3 "current_poti_position":600,

4 "enabled":false,

5 "move_state":0,

6 "target_position":512

7 }

REST API

The EPOS controller provides a REST API exposing the state of the servo motor setup.
This API may be used by all clients, though its main purpose is UI initialization.

• /status

– Method: GET
– Parameters: None
– Returns: The current internal state. See Listing 4.3 for an example.
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Namespace config

The config namespace provides means for re-calibrating the servo.

• resetCenter

– Source: UI
– Payload: None
– Function: Tells the server, that the servo’s current position is the new center

position.

Namespace servo

The servo namespace provides control over the servo’s state.

• enable

– Source: Client
– Payload: None
– Function: Enables the servo. The servo only moves if it is enabled. The

internal state of the controller (like the target position applied via moveTo) may
be updated in both enabled and disabled mode.

• moveTo

– Source: Client
– Payload: Integer [0, 1023]
– Function: Sets the target position for the servo. Position 512 is center.

• stop

– Source: Client
– Payload: None
– Function: Immediately stops the servo motor and puts it in disabled mode.

enable has to be invoked for the servo to start moving again. The internal
state (e.g. target position) is preserved. If a client emits the enable at any
point in time it shall stop the servo before disconnecting.

USB protocol

Similar to the Dimmer, for this aspect too the Arduino and the Raspberry Pi communicate
with each other via a USB Serial connection. The messages are initiated by the Arduino
and no response is expected from the Raspberry Pi. The protocol is ASCII-based. Each
message has to adhere the following schema:

#<position> <ok>\n

where position contains the clutch’s current position in the range [0, 1023]. The values
match range and orientation of those to be provided to the servo/moveTo event. ok contains
a single Integer in the range [0, 1] to tell whether (1) or not (0) all of the clutch’s
parameters are within the specification. This value has to be present, but is ignored
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by the current implementation as we opted to implement the safety features via limit
switches directly controlling the power supply of the clutch. The value is present in case
it will be used by later iterations of the system.

EPOS2 protocol

The Maxon Motors EPOS2 24/5 Digital positioning controller device is integrated with
the system using a C-library provided by Maxon Motors. The communication protocol is
USB based, proprietary, and all further details are unknown to the author.

4.2.4 Vragrancer

The Vragrancer device is the most basic of the three devices because it only consists
of two devices, being (a) a Raspberry Pi 2 providing Ethernet connectivity, exposing
the functionality on a SocketIO API and serving the WebUI, and (b) a custom circuit
board attached to the Raspberry Pi’s GPIO interface. We opted for this approach, as
the main purpose is to control seven pneumatic valves on the scent dispenser. This task
does neither bear the need for real-time capabilities beyond of what the Raspberry Pi is
able to deliver, nor to interface with a third-party device using a complex communication
protocol, such as Serial or USB. Controlling the power states of each of the seven valves
is sufficient.

The actual scents are contained in a single cartridge, containing six different scents. The
cartridge may be swapped for the individual simulations. Hence, it is not possible to
know a priori which of the six slots contains which scent. For this reason we decided to
use generic numeric IDs to refer to each of the six slots, rather then to name the slots by
the scent they respectively contain.

The Vragrancer provides a single namespace on its SocketIO API, being scent. It provides
control over the various scents and notifies the UIs about state changes. State applied
using the scent namespace is ephemeral and lost on reboot.

It shall be noted, that due to its simplicity, the Vragrancer does not provide a REST
API as the other devices do.

JSON objects

The exposed internal state of the EPOS controller is represented by a JSON object
containing a property for each of the six scents it is able to control. The property name
is a String representation of its index, starting with 0, referred to as the scent’s ID. The
value of each of the properties is a Boolean telling whether the scent is currently active
(true) or not (false). An example of such a JSON object can be found in Listing 4.4.
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Figure 4.10: The Vragrancer device. Right-hand side is the 12 V power supply. On the
bottom left is the Raspberry Pi, top left bears the transistor circuitry.

Listing 4.4 Vragrancer’s current state

1 {

2 "0": false,

3 "1": false,

4 "2": true,

5 "3": false,

6 "4": true,

7 "5": false

8 }

Namespace scent

The scent namespace provides control over the Raspberry Pi’s GPIO pins controlling
the scents. Any combination of scents can be active at any point in time. After being
activated, a scent stays active for one second and is then automatically deactivated. If the
scent shall be active for longer, multiple calls to activate have to be invoked. This extends
the activity period of a scent to one second after the last activate call was received,
assuming none of the deactivation calls were issued.
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• activate / deactivate

– Source: Client
– Payload: Integer [0, 5] or String representation thereof
– Function: Activate/deactivate the scent with the given ID.

• deactivateAll

– Source: Client
– Payload: None
– Function: Deactivate all scents.

• status_changed

– Source: Server
– Payload: JSON containing the new state. See Listing 4.4 for an example.
– Function: Notifies all connected clients about a change of the internal state.

In particular, status_changed is emitted whenever a client connects. This event
is mainly intended for visual consistency over multiple UIs.

4.3 Control terminal
The control terminal aims to provide the user with a fully integrated UI to control all parts
of the system. For this, the control terminal includes all the WebUIs of the individual
devices in a single webpage using HTML inline frames (<iframe>). The advantage of
this approach is, that the single WebUIs can be updated individually by updating the
respective device and the control terminal does not need to be updated every time a single
device is. Furthermore, this approach allows to bypass modern browser’s same-origin
policy. Same as the WebUIs, the control terminal can be used both with mouse and
keyboard, as well as with a touchscreen. Figures 4.11 through 4.13 illustrate the web
interfaces of the various system components.
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Figure 4.11: WebUI of the Dimmer. Init sequence allows to trigger the watersplasher’s
initialization sequence (event config/initSequence). Fan allows to control the first out-
let (event events/unityFanSpeedEvent). Water allows to control the second outlet (event
events/unityWaterSplasherEvent using the switch and event config/waterSplasherDutyCycle us-
ing the slider). Heat allows to control the third outlet (event events/unityHeatEvent). Cold
allows to control the fourth outlet (event events/unityColdEvent).
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Figure 4.12: WebUI of the EPOS controller. State allows to enable and disable the servo
(events servo/enable and servo/stop). Target position allows to set the target position
(event servo/moveTo). Current position gives visual feedback about the servo’s current
position. Reset center allows to recalibrate the servo (event config/resetCenter).

Figure 4.13: WebUI of the Vragrancer. The switches allow to control the individual
scents (events scent/activate and scent/deactivate). The Stop all scents button allows to
switch off all cents at once (event scent/deactivateAll).
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CHAPTER 5
Feedback and discussion

In this chapter we analyze how the system performs within the context of Virtual Reality.
For that, we evaluate data gathered from users of the system, which includes both a
quantitative approach using physiological data, and a qualitative one using questionnaires.

5.1 Presence

As we have seen, the multi-sensory system is able to meet all functional requirements
imposed upon it. Before we can analyze how additional sensory stimuli affect the user
experience, we need to show that even in its most rudimentary setup, the Jumpcube is
able to deliver a sense of presence.

5.1.1 Testing methodology

To determine if the Jumpcube delivers a sense of presence we conducted an experiment
involving both an experienced skydiver (Stefanie Liller) and a member of the project
(Jonas Röthlin), who has never experienced a skydive in real life. We opted for a
physiological measurement, which even though being more effort then a questionnaire-
based approach, was regarded by the project team to be feasible with such a low number
of participants and to yield more objective data.

We used an early version of the Vienna Parachute Jump simulation, only featuring the
wind simulation. It shall also be noted that this simulation does not offer any user
interaction. This in turn should cause the measured physiological responses to be mostly
caused by psychological effects, hence a measure of presence can be derived from it. The
data was collected using a heart rate measurement unit attached to the user’s chest.
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To better understand the gathered data, one needs to know that the simulation consists
of four phases with different characteristics. Due to these differences we assumed them
to cause different physical reactions on the test subjects. The four phases are:

1. Pre-jump: The user stands in the virtual air plane at high altitude and waits for
the signal to jump

2. Skydive: The user falls towards the city of Vienna in a simulation of a tandem
skydive

3. Parachute glide: After the parachute opens the user glides over the city of Vienna
4. Landing: After flying through its roof, the user lands in the Kuppelsaal of Technische

Universität Wien’s main building.

To easily distinguish these phases we also collected acceleration values using a regular
smartphone with built-in accelerometer. Each transition should cause a noticeable spike
in the measured acceleration which allows us to relate heart rate and phase.

5.1.2 Heart rates

As can be seen from Figure 5.1, we found the heart rate fluctuating on both test subjects,
spiking well over 100 beats-per-minute when leaving the plane. On the skilled skydiver we
see a second spike above 100 beats-per-minute from sample 160 to sample 180. This was
later attributed by the test subject to some virtual airships passing right below her. As
she pointed out, having something right below one while skydiving is highly dangerous,
and the measurement clearly shows a physical reaction. Another spike can be seen on
both subjects at the very end of the simulation, which is the moment the test subject
approaches Technische Universität Wien’s main building and flies through the roof of the
Kuppelsaal.

5.1.3 Conclusion

Overall, we can deduct, that the Jumpcube does provide a feeling of presence, both to
users being familiar with the simulated experience, as well as with those who are not.
The experienced skydiver showed a physiological reaction when the airships passed right
below her, a reaction not shown by the other user. We attribute this to her recognizing it
as a dangerous situation, while the other subject, due to his lack of experience, did not.

5.2 Impact of the multi-sensory system

As we have seen, we have reason to assume the Jumpcube in its original state was already
able to deliver a feeling of presence to the user. We will now see how the additional
multi-sensory stimuli did affect the user’s experience.
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Figure 5.1: Mesured heart rates of the unexperienced test subject (Jonas Röthlin) and
the experienced skydiver (Stefanie Liller) over time (in seconds). The red lines on either
plot show the duration of the simulation. The time before refers to jump preparation.

5.2.1 Testing methodology

We conducted an anonymous questionnaire-based survey of the user experience during the
Jumpcube’s various public and semi-public appearances in 2017 and during its appearance
at the European Congress of Radiology (ECR) in 2018. The full questionnaires can be
found in Appendix A of this thesis. The participants filled out the questionnaires on a
voluntary basis, and they were not given any additional instructions before participating.

The participants were free to choose from the following simulations:

• Skydive: A non-interactive skydive from high altitude above the city of Vienna.
• Mars: An interactive flight through the solar system.
• Airrace: An interactive race against a plane through a canyon.
• Diving: An underwater experience with very little interactivity (only ECR 2018).
• Vienna Airrace: An interactive race against a plane, partly at low altitude over

the city of Vienna, partly through the sewers thereof (only ECR 2018).
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The simulations feature the stimuli listed in below overview. An x denotes the presence
of a stimulus. The last column lists the interactivity level of the simulation, 0 being
non-interactive and 3 being highly interactive.

Simulation Wind Force Odors Moisture Interactive
Skydive x x x 0
Mars x x x 2
Airrace x x x x 3
Diving x x 1
Vienna Airrace x x x x 3

Finally, it shall be noted, that between the questionnaires the centrifugal force component
of the multi-sensory system has been reworked to deliver stronger stimuli.

5.2.2 Questionnaire analysis

Overall, we gathered 197 questionnaires during the various public and semi-public
appearances in 2017, and 103 questionnaires during the ECR 2018, the Jumpcube’s only
appearance in 2018.

From question Was the physical jump exciting for you?, having very similar results in
both 2017 (yes/mostly/no = 75.5%/20.9%/3.6%) and 2018 (76.2%/21.8%/2.0%) we can
already see, that augmenting Virtual Reality with real world components can improve
the user experience of Virtual Reality applications.

Moving to the multi-sensory feedback, we can see that a high number of participants
noticed the smells (Question A1 in 2017/2018 = 85.2%/76.5%). Of those, most found
them to be adequate (Question A3 in 2017/ Question A2 in 2018 = 70.7%/73.1%) and
attributed them to make the experience more interesting at least to some degree (Question
A4 in 2017/ Question A3 in 2018 = 90.3%/88.5%). The results are plotted in Figure 5.2.

We can also see a clear impact of our late-2017 rework on the centrifugal force component,
as the percentage of people perceiving them rose from 58.9% in 2017 to 80.6% in 2018
(Question B4 in 2017 / Question C2 in 2018). However, it does not seem that they were
perceived as more realistic by those noticing in 2018 (Question B5 in 2017 / Question
C3 in 2018; yes/mostly/no = 33.3%/57.4%/7.4%) compared to 2017 (yes/mostly/no =
32.6%/62.8%/4.7%). The results are plotted in Figure 5.3.

We found in 2017, that moisture (Question B2 in 2017) was perceived by 86.0% of the
participants, the highest value of all analyzed sensory stimuli. Since we did not change
the component significantly, we decided to drop the question in 2018 for a more relevant
one. The plot herefor can be found in Figure 5.3.

Overall we found high acceptance by the participants. Almost all participants found
the Jumpcube’s simulations to be at least "exciting" with the vast majority certifying
"very exciting" in both 2017 (Question C4, very/a little/no = 79.9%/18.1%/2.1%) and
2018 (Question D4, very/a little/no = 88.9%/11.1%/0.0%). Though, it shall be noted,
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E1: Did you perceive smells in the virtual reality experience?
E2: If 1. yes, how intense were the smells?
E3: If 1. yes, did the smells make the virtual reality experience more interesting?
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Figure 5.2: Users’ reactions to olfactory stimuli.
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E4: Did you notice the humidity of the clouds?
E5: Did you recognize the centrifugal forces in curves?
E6: If yes, were the centrifugal forces realistic?

Figure 5.3: Users’ reactions to haptic stimuli.
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E7: Was our VR experience exciting for you?
E8: Did you forget the outside world during the experience?
E9: Did our VR experience cause nausea?

Figure 5.4: Users’ overall impressions.

that when including only the simulations which offer support for centrifugal forces, we
see the 2018 values (very/a little/no = 81.3%/18.8%/0.0%) being similar to the 2017
ones. Hence, the increase in excitement cannot be attributed to the centrifugal force
component rework.

Additionally, we see that the Jumpcube users experienced very little to no simulator
sickness in both 2017 (Question C6, yes/a little/no = 0.0%/7.7%/92.3%) and 2018
(Question D6, yes/a little/no = 1.0%/12.9%/86.1%). For the Airrace the reported
nausea-per-jump ratio is highest (2017/2018 = 16.6%/21.7%). This was expected by the
team, as Airrace is both the most demanding simulation from a physical perspective, and
due to its high interactivity bears the highest risk of disorientation and the possibility
to perform actions in the virtual world, which would lead to serious injury and death if
performed equally in the real world.

Finally, we see a significant increase in perceived presence from 2017 (Question C5,
yes / sometimes / no = 65.3%/27.6%/7.1%) to 2018 (Question D5, yes / sometimes
/ no = 84.3%/10.8%/4.9%). We can also see a slight improvement when directly
comparing only the simulations which offer centrifugal forces 2017 (yes / sometimes
/ no = 63.4%/30.5%/6.1%) to the same simulations 2018 (yes / sometimes / no =
75.0%/15.6%/9.4%). This leads us to the assumption, that the centrifugal force component
rework did have a positive influence on perceived presence, but it alone does not explain
the increase. A plot of the results for these general questions can be found in Figure 5.4.

In summary, the questionnaires have shown, that multi-sensory feedback is both noticed
and appreciated by the majority of the users. From this we conclude that the system is
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stable and user-friendly in application. We have also seen, that the Jumpcube is able
to deliver a feeling of presence to the user, without causing simulator sickness. We can
thus conclude, that the addition of a multi-sensory feedback system benefits the Virtual
Reality user experience delivered by the Jumpcube.
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CHAPTER 6
Conclusion and outlook

In the final chapter, first we give a short summary over the contents of this thesis, followed
by a few suggestions for future work and improvements, both from a technical perspective
and on further user studies which may be conducted using the Jumpcube’s multi-sensory
system.

We have seen how Virtual Reality has evolved from the beginnings in the late 1960s with
the work of Virtual Reality pioneer Morton Heilig to its current state. We have analyzed
both the technical basis of the technology, as well as the features of human physiology
and psychology, which allow for the technology to create a sense of presence. We have
also seen how Virtual Reality used technological advancements to increase immersion,
while at the same time lowering costs. Our conclusion here is that while still facing
some challenges, Virtual Reality in its current form is able to simulate situations with a
degree of fidelity high enough to be used for both simple entertainment, and therapeutic
purposes.

From a technological point of view we have seen, how game engines are of significant
importance when developing for Virtual Reality. We have also seen, how open source
software and hardware help to deal with the challenges faced during the development
of an interactive hardware project. We determined that modern scripting languages
such as Python and web standards such as WebSockets are in the present case best
suited for rapid prototyping, as they are easily integrated with existing software and
hardware. The accompanying performance drawbacks proved to be insignificant for the
use in Virtual Reality because available components such as the Raspberry Pi 2, or
100MBit Ethernet provide enough resources to compensate them. In addition, these parts
are easily available on the free market at a reasonable price. Finally, we have seen how
we can automate the build process using the Yocto project to easily build ready-to-use
SD card images in a reproducible way.
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From our experiments, we can see, that the Jumpcube as a whole provides a high degree
of both presence and immersion. This has been shown by a physiological measurement,
which showed significant responses on both the experienced skydiver, as well as the test
candidate, who never experienced comparable situations in real life. Further on, our
questionnaire series shows, that the vast majority of the users both notice multi-sensory
stimuli, and attribute them to be an improvement in the overall user experience.

However, the project still offers room for further improvements, both from the technolog-
ical point of view, as well as from the scientific one. For the sooner, a first improvement
would be to implement an automated discovery mechanism for the single controller
devices. Currently, the connection establishment relies on static IP addresses defined at
build time. It shall be noted that we regard this is an appropriate solution for standalone
entities such as the Jumpcube, as it does not add to the complexity of the system at
runtime. But, we presume that this approach will scale badly with the addition of more
controllers. Additionally, it enforces the use of a 192.168.1.0/24 network. Similarly to
the discovery mechanism, this does not limit the Jumpcube in any way, though it may
affect how the system can be used in other environments. Finally, it shall be noted that
we did not address the issue of having to update the controllers’ operating system and
application. Currently, we need to swap SD cards to achieve this, which requires physical
access to the devices. This too is presumed to scale badly with the number of controllers.
However, we feel confident that the hardware and software stack we chose is able to cope
with all of this challenges with little to no changes required to the existing components.

From a scientific perspective we have to acknowledge that our results are not representative.
For our physiological test series this can be mostly attributed to the low number of
participants, which in turn is caused by the complexity of the method. To improve on this
we need a larger, representative test sample. For that we need to define a standardized
test procedure and means of automating the evaluation of the gathered data. Without
such a procedure we see no possibility of conducting such an experiment efficiently. For
our questionnaire based study we also identified some problems. As mentioned, the study
was conducted during public or semi-public appearances of the Jumpcube. This means,
that we were able to only partly control the environment. Additionally, we assume that on
such events a high percentage of the test subjects share similar demographics, and state of
mind. On the other hand, the events used to conduct the user study were highly different
between each other, ranging from renowned symposia such as the European Congress
of Radiology, to pure public relations appearances, such as one in the Wien Museum.
This leads us to the assumption, that in fact we did cover different user types, though we
believe that there are not enough of in order to proclaim the study as representative.

Finally, because on each of the Jumpcube shows we wanted to provide each user with
the best experience possible, we were not able to gather isolated data which would allow
us to analyze which impact a single feature has on the user experience. This could be
achieved in a future study by letting one user group test the simulation with said feature
enabled, while a control group would experience the same simulation with said feature
disabled.
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Appendix A: Questionnaires

TU Jumpcube Questionnaire #1/2017 English Version 

[A] Questions on the olfactory stimuli (if possible, tick the most adequate answer) 

1. Did you perceive smells in the virtual reality experience? o yes o no 

2. If 1. yes, were the smells pleasant? o yes, very o rather yes o no, negative 

3. If 1. yes, how intense were the smells? o too strong o adequate o too weak 

4. If 1. yes, did the smells make the virtual reality  

experience (VR experience) more interesting? o yes, very o yes, a bit o no, negative 

5. If 1. yes, were the smells at the same time as the 

linked events (e.g. airplane/motor smell)? o yes, mostly o sometimes o seldom, never 

6. If 1. yes, were the smells adequate for the  

linked audiovisual events?  o yes, mostly o sometimes o seldom, never 

7. If 1. yes, how did you perceive the smell of the 

airplane/space ship?  o positively o neutral, not o negatively 

8. Do you think that smells could generally be an 

interesting component of VR experiences? o yes, certainly o rather yes o no, not sure 

[B] Questions on the haptic stimuli (please judge only those stimuli that were actually present) 

1. Was the physical jump exciting for you? o yes, very o rather yes o no 

2. Did you notice the humidity of the clouds? o yes  o no 

3. Was the flight through the clouds exciting for you? o yes, very o rather yes o no 

4. Did you recognize the centrifugal forces in curves? o yes  o no 

5. If yes, were the centrifugal forces realistic? o yes, very o rather yes o no 

6. Did you recognize the turbulences during the landing?  o yes  o no 

7. Was the landing process exciting for you?  o yes, very o rather yes o no 

8. Was the flight through the building exciting for you? o yes, very o rather yes o no 

[C] General questions 

1. Age of the jumping subject:  o up to 18 yrs. o 19-49 years o 50+ years 

2. Sex/gender of the jumping subject: o female o male o other 

3. Did you have VR experience before your jump? o yes, much o yes, a bit o no 

4. Was our VR experience exciting for you? o yes, very o yes, a little o no 

5. Did you forget the outside world during the experience? o yes, mostly o yes, sometimes o no 

6. Did our VR experience cause nausea? o yes, strongly o yes, a little o no 

7. How good is your sense of smell?  o very good o good, normal o not good  

[D] To be filled out by the operating team 

1. Observed jump style: o extraordinary o brave o relaxed 

2. Employed VR content: o Skydive o Mars o Airrace 

[E] Comments of the jumping subject:  Comments of the operating team: 

 

 

 

Thank you very much for your help!    Horst Eidenberger, Version 2/26/2017 
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TU Jumpcube Questionnaire #1/2018 English Version 

[A] Questions on the olfactory stimuli (if possible, tick the most adequate answer) 

1. Did you perceive smells in the virtual reality experience? o yes o no

2. If 1. yes, how intense were the smells? o too strong o adequate o too weak

3. If 1. yes, did the smells make the virtual reality

experience (VR experience) more interesting? o yes, very o yes, a bit o no, negative

[B] Questions on the gustatory stimuli (if a taste stimulus was set) 

1. Did you perceive the taste during the VR experience? o yes o no

2. If 1. yes, did the taste make the virtual reality

experience (VR experience) more interesting? o yes, very o yes, a bit o no, negative

3. If 1. yes, how strong was the taste? o too strong o adequate o too weak

4. If 1. yes, did the gustatory stimulus fit to other

stimuli of the VR experience: o yes, well o rather yes o (rather) no

5. Do you think that taste stimuli could generally be an

interesting component of VR experiences? o yes, certainly o rather yes o no, not sure

 [C] Questions on the haptic stimuli (please judge only those stimuli that were actually present) 

1. Was the physical jump exciting for you? o yes, very o rather yes o no

2. Did you feel the centrifugal forces in curves? o yes o no

3. If yes, were the centrifugal forces realistic? o yes, very o rather yes o no

4. Did you feel vibrations caused by by-passing objects? o yes o no

5. If yes, did the vibrations make the VR experience

more realistic? o yes, very o rather yes o no

[D] General questions 

1. Age of the jumping subject: o up to 18 yrs. o 19-49 years o 50+ years

2. Sex/gender of the jumping subject: o female o male o other

3. Did you have VR experience before your jump? o yes, much o yes, a bit o no

4. Was our VR experience exciting for you? o yes, very o yes, a little o no

5. Did you forget the outside world during the experience? o yes, mostly o yes, sometimes o no

6. Did our VR experience cause nausea? o yes, strongly o yes, a little o no

7. How good is your sense of smell? o very good o good, normal o not good

8. How good is your sense of taste? o very good o good, normal o not good

[E] To be filled out by the operating team 

1. Observed jump style: o extraordinary o brave o relaxed

2. Employed VR content: o Skydive o Mars o Diving o Airrace o Vienna Race

3. Employed taste stimulus: o strong o weak o none

[F] Comments of the jumping subject: Comments of the operating team: 

Thank you very much for your help! Horst Eidenberger, Version 3/9/2018 
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