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Abstract

The human brain undergoes structural changes in size and in morphology between the second
and the third trimester of pregnancy, according to accelerated growth and the progress of cortical
folding. The most accurate non-invasive method for observing these events is the fast Magnetic
Resonance (MR) imaging technique. It allows to image a fetus within 20 seconds and conse-
quently reduce artefacts, caused by the fetal movement. A problem of MR imaging is the lack of
comparability and constancy of gray-values. To make fetal brains comparable, atlases are used
as a standard space for studying brain development, fetal pathology locations, fetal abnormali-
ties or anatomy. The fetal atlas building process takes into account both inter-patient variability
of brain shapes and the gestational age dependent structural changes. Thus, a time-varying atlas
is required. The aim of the work is to provide a continuous model of brain development and to
use it as base for an automatic tissue labeling framework. This master’s thesis provides a novel
longitudinal fetal brain atlas construction concept for geodesic image regression using three dif-
ferent age-ranges which are parametrized according to the developmental stage of the fetus. The
dataset used for evaluation contains 45 T2−weighted 1.5 Tesla MR images between Gestational
Week (GW) 18.0 and GW 30 day 2. The proposed tissue labeling framework uses the learned
spatio-temporal atlas as cost term in a graph cut based annotation procedure to automatically
segment cortical and ventricle brain tissue. The automatic tissue labeling framework estimates
cortical segmentations with a Dice Coefficient (DC) up to 0.85 and ventricle segmentations with
a DC up to 0.60.
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Kurzfassung

Das Gehirn eines Fötus weist während des zweiten und dritten Schwangerschaftstrimesters Ver-
änderungen sowohl in der Größe als auch Morphologie auf, welche auf Wachstumsprozesse des
Hirnes und Faltungsprozesse der Hirnoberfläche zurück zu führen sind. Eine geeignete Auf-
nahmemodalität für das Hirn des Fötus ist die beschleunigte Magnetresonanztomographie. Sie
ermöglicht es auf nicht invasivem Weg Bilder innerhalb von 20 Sekunden aufzunehmen, um
Bewegungsartefakten, erzeugt durch die fetale Bewegung, entgegen zu wirken. Diese Technik
weist jedoch ein Problem der Konstanz von Grauwerten für gleiche Strukturen auf. Um fetale
Hirne vergleichen zu können wird ein Atlas als ein Referenzmodell verwendet, welcher dar-
aufhin die Untersuchung der Gehirnentwicklung, fetaler Pathologielokalisationen, von Abnor-
malitäten des Fötus oder dessen Hirnanatomie ermöglicht. Bei der Erstellung eines Atlas für
das Hirn eines Fötus müssen sowohl die strukturellen Veränderungen in Form und Größe als
auch patientenbezogene Unterschiede des Hirnes einbezogen werden. Daher ist es Ziel dieser
Masterarbeit ein kontinuierliches Modell der Hirnentwicklung zu erstellen, um dieses als Aus-
gang für die automatisierte Markierung von Hirnstrukturen zu verwenden, welches in einem
selbsterstellten Framework integriert ist. Diese Arbeit stellt ein neues Konzept zur Berechnung
eines spatio-temporalen fötalen Hirnatlas’ unter der Verwendung von geodätischer Bildregres-
sion vor. Anhand der Analyseergebnisse des Atlasbildungsprozesses werden drei Altersgruppen
definiert, um gezielt drei unterschiedliche Atlanten angepasst auf den Entwicklungsstatus des
fetalen Hirns zu modellieren. Der für die Evaluierung verwendete Datensatz besteht aus 45 T2
gewichteten 1.5 Tesla Magnetresonanz-Bildern von Föten im Alter zwischen 18 und 30 Schwan-
gerschaftswochen. Das vorgestellte Framework verwendet den berechneten Atlas als Kostenterm
in einem Graph Cut Ansatz um automatisiert kortikale Hirnstrukturen und Ventrikel zu segmen-
tieren. Vom Framework automatisiert bestimmte Segmentierungen für Kortexstrukturen weisen
einen Dice Koeffizienten bis zu 0.85 und für Ventrikelstrukturen bis zu 0.60 auf.
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CHAPTER 1
Introduction

This chapter starts with an introduction to the medical background of the fetal brain develop-
ment studied in this master’s thesis. The occurring problems and motivation to tackle these are
summarised and a brief overview of the work and methodical approach to build a tissue labeling
framework for fetal brains are given. The chapter continues with an enumeration of state-of-the-
art approaches and related work and concludes with a report on the results achieved.

1.1 The Development of the Brain

The development of the human brain starts in the embryonic phase (GW one to eight). In the first
GW, the fertilised egg divides several times and forms a blastocyst (cell ball) [55]. In the second
week of gestation these cells begin to differentiate and form a three tissue (ectoderm, mesoderm,
endoderm) layered elongated disk, also called embryonic disc [7]. The thickening of the dorsal
ectoderm on the human embryonic disc in the third GW (∼16 Gestational Days (GD)) leads to
the forming of a neural plate, from which the nervous system develops [55]. At the beginning
of the fourth GW the neural plate starts to fold and evolves from the neural groove to the neural
tube [55]. The caudal part of the neural tube becomes the spinal chord and the rostral portion
differentiates into the three primary brainvesicles: prosencephalon (forebrain), mesencephalon
(midbrain), rhombencephalon (hindbrain) [55] [49] (cf. Figure 1.1). In the fifth and sixth GW
the brain vesicles distinguish and become the secondary brain vesicles [7]: Telencephalon and
diencephalon emerge from the proencephalon, mesencephalon remains one structure and me-
tencephalon and myelencephalon are the separated parts of the rhombencephalon. Starting in
GW 6, the outline of the nervous system becomes apparent. In the second and third gestational
month, the brain grows rapidly and attains its rough adult shape [49]. The myelencephalon de-
velops into the medulla, the metencephalon into the pons and the cerebellum. The pons connects
the telencephalon with the cerebellum and the medulla oblungata [49]. The diencephalon dif-
ferentiates into the thalamus and hypothalamus. The telencephalon consists of two hemispheres
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Figure 1.1: Illustration of the primary brain vesicles of an embryo at GW 4 1.

and contains the motor centres (basal nuclei), hippocampus, amygdala and the cerebral cortex.
It shows a rapid growth in the fetal stadium and covers the diencephalon in the third, the mes-
encephalon in the sixth and the metencephalon in the eigth gestational month [49]. The cortex
cerebri consists of the White Matter (WM) on the in- and the Gray Matter (GM) on the outside.
The WM is made up of nerve fibers, the GM consists of the neuronal cellbodies, glia cells and
capillary vessels [7] [49]. The structural changes of the fetal cortex during the second and third
trimester of pregnancy are illustrated in Figure 1.2. The cortical surface area increases during
the cortical folding processes [73]. The smooth surface of the cerebral cortex at GW 11 first
starts to fold and expands [20] between GW 25 and 30 [80]. This process continues with a
moderate organised formation of gyri and sulci (gyrification) [20] which concludes within the
first two years of life [47]. The Central Sulcus (CeS), sulcus lateralis also called Sylvian Fis-
sure (SF), ParietoOccipital Sulcus (POS) and preoccipital notch divide the brain into four lobes,
which are illustrated in Figure 1.3a. Figure 1.3b illustrates the gyri and lobes of the brain:
Frontal Lobe (FL) (yellow), Parietal Lobe (PL) (red), Occipital Lobe (OL) (purple) and tempo-
ral lobe (green). The ventricle system of the human brain evolves from the neural canal and is
illustrated in Figure 1.4. It lies in the neural tube and is divided into segments, which remain
connected. The rhombencephalon segment of the neural canal becomes the fourth ventricle
with a rhombus shaped ground.The canalis centralis is in the medulla segment. A tight canal
named aqueductus mesencephali lies in the midbrain. The diencephalon hosts the third ventricle
and the lateral ventricles sit in the cerebrum hemispheres. Ventricles produce CerebroSpinal
Fluid (CSF), which protects the brain from hitting against the cranial bone, has temperature reg-
ulatory functions and serves as nutrition for the neural tissue. Ventricles are also interesting for
the image acquisition with MR, as they are easy to distinguish and indicators for diseases and
brain development [7] [49].

Quantification of fetal brain development

For measuring the fetal brain growth and for quantifying the folding progress, shape descriptors
and curvature-based folding measures are used in state-of-the-art approaches [80], [20], [19],

1Image taken from https://upload.wikimedia.org/wikipedia/commons/4/4c/4_week_
embryo_brain.jpg [assessed 21-September-2015]
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GW 30 day 2GW 23 day 3GW 20

Cerebrum Cerebrum

Cerebellum
Spinal cord

Cerebellum

Cerebral
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Figure 1.2: MRI and schematic illustration of the fetal brain development at GW 20, 23 day 3
and 30 day 2. MR images courtesy of Medical University of Vienna (MUW).

(a) Sulci and lobes of the brain 2 (b) Gyri of the brain 3

Figure 1.3: Illustration of the organisation of the cortical surface and brain.

[47]: Total and regional brain volume, cortical surface measures (surface area, gyrification index,
surface curvature, surface thickness) and growth rate. In state-of-the art approaches the
following quantities for describing the healthy fetal brain development are reported: According

2Image taken from https://upload.wikimedia.org/wikipedia/commons/3/3d/
LobesCapts.png; [accessed 13-September-2015]

3Image taken from https://commons.wikimedia.org/wiki/File:Gehirn,_lateral_-_
Hauptgyri_beschriftet.svg; [accessed 13-September-2015]

3

https://upload.wikimedia.org/wikipedia/commons/3/3d/LobesCapts.png
https://upload.wikimedia.org/wikipedia/commons/3/3d/LobesCapts.png
https://commons.wikimedia.org/wiki/File:Gehirn,_lateral_-_Hauptgyri_beschriftet.svg
https://commons.wikimedia.org/wiki/File:Gehirn,_lateral_-_Hauptgyri_beschriftet.svg


Third ventricle

Septum Pelucidum

Fourth ventricle

Lateral ventricle

Aqueductus mesencephali

Central Canal

Interventricular
Foramen

Posterior horn

Lateral ventricle

Lateral aperture

Inferior horn

Anterior horn

Figure 1.4: Illustration of the ventricle system. 4

to Roelfsema et al. [59]: the "Median brain volume increases from 34 cm3 at 18 weeks to 316 cm3

at 34 weeks". Clouchoux et al. oberserves in [20] an average cortical plate area between 125
cm2 and 420 cm2 from GW 25 to GW 35. In [19] they examine the cortical folding progress by
estimating cortical plate volume (25 cm3 - 100 cm3), the WM volume (50 cm3 - 170 cm3), the
sub-cortical GM volume (4 cm3 - 16 cm3) and surface area (70 cm2 - 200 cm2) between GW 25
and GW 36. Gholipour et al. [30] investigate the ventricular development from GW 19 to GW
28 which shows a volume expansion from 3.5 cm3 to 6 cm3.

1.2 Motivation and Problem Statement

The human brain undergoes structural changes in size and in morphology between the second
and the third trimester of pregnancy, according to accelerated growth and the progress of cortical
folding [64]. The most accurate non-invasive method for observing these events is the fast MR
imaging technique, a method first proposed in 1983 [70]. Imaging of a fetus in utero is challeng-
ing because of its constantly changing position, which causes image unsharpness and artefacts.
Thus, standard MRI was extended to fast MRI for fetal imaging by shortening the image ac-
quisition time to 20 seconds and developing motion correction techniques [9]. A problem of
MR imaging is the lack of comparability and constancy of gray-values. In contrast to computer
tomography images, where gray-values are mapped to a tissue type based on X-ray absorption
characteristics of a specific tissue [11], the gray-values of MR images are mapped according to
the proton (hydrogen) concentration. This concentration varies among patients and results in
varying gray-values for varying proton density [13, 37]. Thus, for the comparison of brains of
adult patients, an atlas as a standard space is required, which avoids the gray-value discrepancies.
The brains are mapped to a standardized coordinate system according to marked anatomical lo-

4Image modified from https://commons.wikimedia.org/wiki/Category:Fourth_
ventricle#/media/File:Fourth_ventricle.png; [accessed 13-September-2015]
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cations. However, the fetal brain is a developing structure. In comparison to building an atlas
of an adult brain, the fast change of a fetal brain in shape and size has to be taken into account
like the cortical folding process and rapid growth of the brain [42]. Also, fetal brains at a certain
GW show differences in shape and size. Possible reasons are the inaccuracy in determination
of the gestational age, inter-patient variability or pathological growth processes [53, 63]. The
motivation for building a fetal atlas is the possibility to compare fetal brains for studying brain
development, fetal pathology locations, fetal abnormalities or anatomy.

1.3 Aim of the Work

The aims of this master’s thesis are the building of a longitudinal model of fetal brain develop-
ment on the one hand and an automated labeling procedure for fetal brains on the other. Together,
they form an atlas of the developing fetal brain.

Continuous, Quantifiable Model of Brain Development

Within the scope of this master’s thesis, an atlas is built to encode all stages of brain development
during the fetal stadium in pregnancy. Therefore, both inter-patient variability of brain shapes at
a certain GW and the variability in the course of the brain’s development in a certain time period
are taken into account.

Automated Labeling Procedure

The longitudinal atlas is built based on gray-value information of the fast MR images as well as
deduced segmentation of brain structures. The annotation of medical images is time consuming
and requires expert knowledge, which leads to high costs [5]. The motivation to consider manual
segmentations for building the atlas is the possibility to predict a segmentation model for a new
unsegmented MR image. Such a segmentation is derived automatically by registering the model
predicted by the atlas to the data.

1.4 Methodical Approach

The methodical procedure for this master’s thesis is divided into four main steps: The first step
comprises a literature research (cf. Chapter 2, 3 and 4), to identify the methodologies and the
results of existing approaches. As second step the behaviour of a state-of-the-art diffeomorphic
registration algorithm and a geodesic image regression algorithm (cf. Chapter 5 and 6) is anal-
ysed, to understand how these algorithms have to be parametrised for learning a fetal brain atlas.
In a third step a tissue labeling framework is created: Geodesic image regression is used to build
a longitudinal atlas for fetal brains and geodesic shooting to register new data to the reference
space learned. The atlas-based brain annotations serve as cost terms in a graph-cut based seg-
mentation procedure. The last step of this thesis focuses on the evaluation of the framework
developed (cf. Chapter 7). For this a dataset of fetal brains containing gray-value MR images
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and corresponding annotations is used. Leave-one-out cross validation is applied to create train-
ing and test datasets. The accuracy of the estimated and refined annotations for a new patient is
computed using a DC [22] similarity measure between the atlas based segmentations and the test
dataset as well as the graph cut based segmentations and the test dataset. For assessing the fetal
brain development over the gestational age the following parameters are computed: volume of
the cortical brain structure, volume of the ventricles and the area of the brain surface. This work
concludes with a comparison of the results of this master’s thesis to data of medical statistics for
verification.

1.5 Related Works

In this master’s thesis geodesic image regression (cf. Chapter 3) is used to learn a longitudinal
atlas of the fetal brain. Current approaches concerning geodesic regression are found in [1], [54]
and [38]. The latest approaches on geodesic shooting are shown by Ashburner et al. [2] and
Vialard et al. [78]. Related works have not considered yet to use geodesic image regression
for building a spatio-temporal model of fetal brain growth. State-of-the-art approaches com-
bine registration methods and interpolation techniques to obtain continuity in time (cf. Chapter
2): Kuklisova-Murgasova et al. [42] propose a spatio-temporal probabilistic fetal brain atlas.
They use a pairwise affine registration approach in image space and a kernel-regression based
approach in time to construct the atlas for an age range between 28.6 and 47.7 GWs. The calcu-
lation of age-dependent probability maps is proposed for intensity and atlas-based segmentation
of brain structures. Serag et al. [65] extend the approach proposed in [42], by using non-rigid
pairwise registration in space and an adaptive kernel-regression approach in time to build a fetal
brain atlas for the age range of 26.7 to 44.3 GWs. Habas et al. [33] construct a time-varying
fetal brain atlas with application on segmentation. The gestational age ranges from 20.57 to
24.71 GWs. In image space they use groupwise elastic registration of manual segmentations to
build tissue probability maps. Voxelwise non-linear modelling is applied to create age-specific
MRI templates. To model continuity in time, polynomial fitting is applied. Risser et al. [58] use
Kärcher means and Large Deformation Diffeomorphic Metric Mapping (LDDMM) for the cre-
ation of a diffeomorphic spatio-temporal fetal brain model. Instead of calculating the weighted
average of the longitudinal dataset in the image space, the image averaging is computed on the
tangent space of the evolution with respect to the chosen Riemannian metric. Zhan et al. [84]
use the groupwise diffeomorphic registration approach of the Advanced Normalization Tools
(ANTS) to construct a fetal brain atlas. 7.0 Tesla MRI images of postmortem fetuses in the
early second trimester (15.0 to 22.0 GW) are acquired. The consequently higher tissue contrast
enables the development study of additional identifiable brain structures. However, atlases are
not only used as a reference space, but also as an improvement of atlas-based automatic seg-
mentation, which is demonstrated in the approaches of Serag et al. [67] and Habas et al. [34]
(cf. Chapter 4). Another main part of this master’s thesis covers the refinement of automated
segmentation estimations of the atlas using a graph cut based approach for multi label segmen-
tation proposed by Yuan et al. [83]. The analysis of state-of-the-art (cf. Chapter 2) approaches
shows that both diffeomorphic atlases and atlases for automated segmentations have been pro-
posed, however, the combination of graph cut segmentation and geodesic regression methods
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for building an atlas for fetal brains has not been considered yet.

1.6 Results

In the course of this thesis a tissue labeling framework is created for the automatic annotation
of cortical and ventricle structures in the fetal brain from GW 18 to GW 30. Geodesic image
regression is used in a novel formulation for fetal brains. The results of the analysis of the fetal
brain atlas learning procedure lead to the identification of three different age ranges (GW20 -
GW 22 day 6, GW22 day 6 - GW 25 day 5, GW 25 day 5 - GW 30 day 2), to compute three
separate atlases parametrised according to the fetal brain developemental stage. The proposed
tissue labeling framework uses the learned spatio-temporal atlas as cost term in a graph cut based
annotation procedure to automatically segment cortical and ventricle brain tissue. The automatic
tissue labeling framework estimates cortical segmentations with a DC up to 0.85 and ventricle
segmentations with a DC up to 0.60.

1.7 Structure of the Thesis

This master’s thesis starts with an introduction, where an overview of this work is given. Chap-
ter 2 describes how atlases are created and applied in the medical field. Examples for fetal as
well as adult atlases are given and state-of-the-art methods are summarized. The approaches
that are used in this master’s thesis for building an atlas are discussed in Chapter 3. Chapter 4
gives an overview of multi-label graph cuts, describes how segmentations of a fetal brain are es-
timated and contains a description how the automated labeling procedure is designed. Chapter 5
summarizes the preliminary experiments and documents the analysis of a pairwise diffeomor-
phic algorithm and its registration behaviour regarding the modelling of fetal brain development.
In Chapter 6 the created automatic tissue labeling framework is introduced and the analysis of
the state-of-the-art algorithms used is documented. Chapter 7 illustrates the evaluation of this
work and its experimental setup and concludes with the evaluation results as well as their critical
discussion and possible directions for future research.
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CHAPTER 2
State-of-the-art

In this Chapter an overview of state-of-the-art approaches of fetal brain atlases is given. Sec-
tion 2.1 describes the rationale behind brain mapping and explains why atlases are important
in that field. Additionally an introduction to fetal brain imaging, the challenges and methods
used in that field is given. Section 2.2 analyses differences between adult and fetal brain atlases
and state-of-the-art approaches for fetal brain atlas construction are introduced. The presented
works are discussed and compared in Section 2.3 with respect to the following criteria: the way
how fetal brain atlases are constructed, the datasets used (number of images, image acquisition,
preprocessing), advantages, disadvantages and limitations and which brain structures are con-
sidered for segmentation and development studies. In Section 2.4 an overview of state-of-the-art
approaches for longitudinal atlas construction concerning pathology progression and growing
procedures is given. A discussion of the relation of the introduced approaches to this master’s
thesis concludes the chapter in Section 2.5.

2.1 Concept of Atlases

The aim of brain mapping is to create maps (models), based on investigations, to understand
structural and functional brain organization. To this aim, neuroimaging methods as well as
knowledge of neuroanatomy and physiology are combined. Due to the fundamental changes
occurring in the human brain during pregnancy, a single map is not sufficient to model brain de-
velopment [75]. Changes in size, according to accelerated growth, changes in morphology, due
to the progress of cortical folding and deceleration of the proliferation of ventricular progenitor
cells [64] occur. Thus, a collection of brain maps is needed to describe these alterations as a
function of time. For studying the brain organisation during its development, abnormalities and
locations of pathologies, brain maps are used as a reference model [73]. Newly acquired brain
images are labelled to identify structures and possible abnormal changes or to find indicators
for diseases. This labeling can be performed manually by annotating the images. This needs
an expert and time, which consequently leads to increasing costs compared to an automatic la-
beling procedure [5]. In this case, labels for non annotated images are estimated automatically
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by software using a brain model for the mapping. Such an automated labeling procedure on
the one hand and a reference model on the other form an atlas. To cover the time-dependent
development of the fetal brain, primarily collections of individual images of different fetuses at
different gestational age were used as an atlas [15]. Subsequently, time-varying reference mod-
els, which combine interpolation and template building techniques, are considered for building
spatio-temporal atlases.

Image acquisition of the fetal brain

Atlases are built based on different properties of medical brain images. The image acquir-
ing modality chosen depends on its ability to illustrate the investigated structure, the efforts
of capturing the data and on the patient (fetus, child, adult). The most accurate non-invasive
neuroimaging method for observing the second and the third trimester of pregnancy is fetal
MRI [16]. This method was first proposed in 1983 [70]. MRI images are taken from preg-
nant women as an alternative to ultrasonography images for prenatal diagnosis. Inadequate
ultrasound assessment or upcoming intrinsic ultrasound disadvantages are indications to acquire
fetuses with the MRI imaging technique. This technique uses magnetic fields to acquire an im-
age in a non-invasive way. The image acquisition with MRI has no effect on the fetal heart rate,
movement or growth and there is no evidence on mutagenic influence [32]. Imaging a fetus is
challenging, due to its constantly changing position causing unsharpness and artefacts in im-
ages [18]. In Figure 2.1 an example of fetal motion during scan acquisition is illustrated. To

Figure 2.1: Example for image artefacts (yellow arrows) caused by fetal motion during scan
acquisition. MR images courtesy of Medical University of Vienna (MUW)

counteract the effects that are caused by fetal movement, fetal MRI was improved through the
development of the fast MRI technique. Compared to standard MRI, fast MRI has a shorter
image acquisition time, that allows to image a fetus in 20 seconds with less motion artefacts [9].
Figure 2.2 shows an example of fast MRI images with an aquisition time about 20 seconds per
volume. A disadvantage of MRI is the lack of comparability and constancy of gray-values [37].
In contrast to computer tomography images, where gray-values are mapped to a tissue type
based on X-ray absorption characteristics of a specific tissue [11], the gray-values of MR im-
ages are mapped according to the proton (hydrogen) concentration. This concentration varies
among patients and results in varying gray-values for varying proton density [13] [37]. Thus,
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Figure 2.2: Single-shot, FSE T2-weighted MRI slices of fetuses at GW 18 (left) and GW 30 and
2 days (right) (scan time≤ 20s). MR images courtesy of Medical University of Vienna (MUW).

for comparison of images an atlas as a standard space is required in which discrepancies in the
gray-value distribution are alleviated.

Preprocessing

Depending on the chosen approach to construct a fetal brain atlas, different preprocessing steps
are considered to improve the results. To obtain an image acquisition time with 20 seconds image
slices have a thinkness of about 4 mm. In order to compute a high resolution volume volumetric
fetal brain MRI reconstruction is used. The series of sagital, axial and coronal planes of
a subject are merged in a preprocessing step to achieve an isotropic three-dimensional image.
State-of-the-art approaches are found in [41], [43] and [60]. Due to the fetus’ varying position, a
main preprocessing issue lies in the correction of motion artefacts. Since image acquisition of
a fetus also implies the acquisition of the surrounding mother-tissue, all introduced approaches
consider masking to exclude regions of less interest. Approaches considering inhomogeneity
correction as a preprocessing step focus on eliminating disturbing influences, which depend
on constancy variation of gray-values caused by the MRI technique. The annotation of brain
tissue or surfaces are also included in preprocessing procedures for building segmentation based
models for labelling and developing study purposes.

Atlas Construction

To cover the time-dependent development of a fetal brain, a continuous time-varying template
is required to model the structural and shape changes over the gestational age [73]. The corre-
sponding state-of-the-art construction methods combine registration approaches for atlas build-
ing and interpolation approaches to obtain continuity over time. Atlas template building ap-
proaches are grouped into all-to-one, pairwise and groupwise registration methods [42].

1. Atlas Template Building: As found in the literature atlas templates are constructed in
different ways and are grouped into the following approaches [42]:
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(a) All-to-one (b) Pairwise (c) Groupwise

Figure 2.3: Template building procedures

• All-to-one registration: a subject out of the whole population is chosen as reference
and all other subjects are registered on to it. This causes bias towards the chosen
reference, which does not represent the average geometry of the dataset. An example
of such a reference coordinate system was proposed by Talairach and Tournoux [74]
for the adult brain. The procedure is illustrated in Figure 2.3a on the left.

• Pairwise registration: All images in the dataset are pairwise registered to a selected
reference image (cf. Figure 2.3b in the middle). Subsequently, the resulting (inverse
of the) affine or non-rigid transformations, represented by arrows, are averaged, to
build an average reference image. An example of pairwise affine registration is
proposed in [42] and of pairwise non-rigid registration in [65].

• Groupwise registration: This approach avoids the need for an initial reference space
and constructs an unbiased average atlas. For estimating the unknown average tem-
plate space all images in the dataset are used. During the registration the unknown
template is updated to obtain an optimized unbiased reference model (cf. Figure 2.3c
on the right). Risser et al. [58] propose an unbiased MRI atlas using a diffeomorphic
approach. Habas et al. [33] use elastic groupwise registration to build a probabilistic
spatio-temporal atlas of the fetal brain [33]. Zhan et al. [84] also use a groupwise dif-
feomorphic approach to construct a fetal brain atlas, based on images of post mortem
fetuses.

2. Time Continuity and Interpolation: To obtain a continuous spatio-temporal model, the
retrieved anatomical templates have to be set into relation dependent on a parameter, that
characterizes the gestational age. The following corresponding approaches can be found
in the literature: kernel-regression based [42], adaptive kernel-regression based [67], poly-
nomial fitting [33], B-Spline fitting [3], Kärcher means [58].
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2.2 Atlases of the Developing Brain

Compared to the adult brain a fetal brain is a developing structure, that changes in shape and
size during pregnancy [64]. Also the cortical folding process and rapid growth have to be taken
into account in the atlas building process. The longitudinal variability is addressed by building
a time-varying (spatio-temporal) atlas, i.e. a brain model is represented as a function of time
(gestational age) [42]. Due to inaccuracy in the determination of the gestational age, inter-
patient variability or pathological cell proliferation, fetal brains also differ at a certain gestational
week [53, 63]. Furthermore, atlases are differentiated between probabilistic (probability maps
encode the variability of the population) and deformable atlases (deformation fields encode the
variations) [42]. The following fetal brain atlas approaches are found in the literature:

Pairwise Registration Approaches

Kuklisova-Murgasova et al. [42] use a kernel regression based approach in time and a pairwise
affine registration method in the image space to build a spatio-temporal probabilistic atlas. The
database used contains 142 T2 weighted FSE MRI images of fetuses between GW 28.6 and
47.7. The images are bias corrected and a brain mask is applied. Afterwards the images are
aligned to a reference image by using affine registration. The resulting affine transformations
are mapped to a time-dependent average space using a Gaussian kernel to create a continuous
spatio-temporal model. The computation of the average age-dependent template anatomy con-
tains a transformation of all images to an average age dependent reference space and a voxelwise
weighted intensity averaging. The probability maps are created by transforming all segmentation
to an average age dependent reference space and a voxelwise weighted averaging. Kuklisova-
Murgasova et al. handle the segmentation of source images using a segmentation methodology
that combines intensity-based and atlas-based segmentations.

Serag et al. [65] illustrate a spatio-temporal fetal brain atlas using pairwise registration com-
bined with adaptive (time-varying) kernel regression: 204 T1 and T2 weighted FSE MR images
of premature neonates between the post-menstrual age 26.7 to 44.3 weeks are acquired. In a
preprocessing step a brain mask is applied to the data to exclude non brain structures and field
inhomogeneity is corrected. Adaptive kernel regression is used to generate a spatio-temporal
atlas represented as a sequence of volumes at a set of regularly sampled time-points. The kernel
width is adapted according to the amount of subjects at a certain time-interval and the change
in brain volume over time. In order to estimate an atlas at specific time-points the dataset is
divided into time-interval groups. First, a global affine registration derives transformation pa-
rameters for global size and shape differences (rotation, scale, shear). The next step is a local
non-rigid registration step using free-form deformation. Figure 2.4 illustrates the procedure
how the age-dependent average space atlas is built by pairwise registration and transformation
averaging. Every image within a time-interval is chosen as target image and registered to the
remaining images in the group. For every target the resulting transformations, denoted with T.,.,
are averaged by adaptive kernel regression. Subsequently, the resulting average transformations
T. are used to map the reference images to average images I.. The mean images of all targets
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build a mean atlas. To create a final average atlas for a time-interval group, the images of the
mean atlas are also averaged by adaptive kernel regression.

Figure 2.4: Pairwise Fetal Brain Atlas Construction of [65]. Only three images are illustrated
here to achieve clearer visualisation of the registration process. Modified from [65].

Groupwise Registration Approaches

Habas et al. [33] create a probabilistic spatio-temporal atlas based on MR intensity, tissue prob-
ability and shape changes of the fetal brain, for tissue segmentation. 20 T2 weighted Single
Shot Fast Spin-Echo (SSFSE) MR images between GW 20 and 25 are acquired and motion cor-
rected. Five different anatomical structures (marked with a corresponding label) are manually
annotated in the images by setting the voxels of a label type to one and the rest to zero to create
tissue label maps. Subsequently, the binary images are smoothed to reduce aliasing and error
artefacts and to obtain smooth maps. Tissue maps are firstly aligned in the average space of the
dataset used by estimating global transformation parameters (rotation, scaling, translation). Sub-
sequently, subject specific displacement fields are estimated to eliminate fine scale differences,
like changes in cortical folding. To this aim, a local deformable template-free groupwise reg-
istration approach, based on an elastic deformation model, is used. In a gradient descent based
procedure, a set of subject-specific displacement fields between subject and the groups’ aver-
age shape are determined by the minimisation of a linear elastic energy function. The temporal
modelling of anatomical deformations, scaling components and MR intensities is performed by
using polynomial fitting. Habas et al. [33] use the estimated models for atlas-based tissue seg-
mentation of anatomies of new fetal brain data. The atlas-based segmentations at a gestational
age are estimated by discretising the continuous temporal models. The new MR intensity image
is first globally registered to the intensity model of the same gestational age and subsequently
transformed by multiple elastic deformations. For tissue labelling the age matching tissue prob-
ability map is registered onto the subject’s space, using the inverse of the previous estimated
transformations. The resulting labels define a prior source for spatial variation and are used for
atlas-based tissue segmentation of a new subject’s anatomy.
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Risser et al. [58] use Kärcher means and LDDMM for the creation of a diffeomorphic spatio-
temporal fetal brain model. The Kärcher means are intrinsic means on Riemannian manifolds.
Instead of calculating the weighted average of the longitudinal dataset in the image space, the
average image is computed in the tangent space of the evolution with respect to the chosen Rie-
mannian metric. The dataset used consists of T2 weighted MR images of different neonates
acquired between the 29th and 42nd GW. In a preprocessing step corresponding probabilistic
segmentations with the same topology are estimated using the approach of [42]. Additionally,
the images are masked in order to exclude non-brain tissues, bias field corrected and rigidly
aligned. There is no data for every time point available and a subject is represented nearly once
in the dataset. For computation, regular sampled time points t : t1, . . . , tN are considered,
for which weighted averages At of the image shapes in the databases are calculated using the
Principal Geodesic Analysis (PGA) method. This method obtains efficient description of the
anatomical variability of data on the manifold of brain images for every regular sampled time
point. For constructing the fetal brain atlas initial guesses of the average shapes are defined and
the diffeomorphism φt, which encodes the entire deformation of the average shapes in time, is
calculated. For this, pairwise LDDMM registration of subsequent average shapes (Ati ,Ati+1)
is performed and the resulting transformations are integrated over time. Subsequently, the av-
erage shapes are optimized in the following way using a gradient descent based procedure: An
initial momentum P0(IS , AtS ) is computed for every image IS in the dataset by registering the
time corresponding average shape AtS onto the image, using LDDMM. An illustration of this
approach is shown in Figure 2.5. In a second step the Kärcher mean of the obtained momenta

Figure 2.5: Building of a diffeomorphic fetal brain atlas using Kärcher means K. Modified
from [58]

is calculated for every regularly sampled time point t. For handling temporal sparsity in the
Kärcher mean computation, Gaussian kernels are used as an additional parameter for defining a
temporal window. The deformed template images A′t are computed by transforming the average
templates At by the estimated average momenta using the shooting equation. The last step of
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this procedure contains the update of the template with At = A′t and recomputing of φt. The
procedure is executed until the norm of the gradient of a Kärcher mean representing energy
function is below a defined threshold.

Zhan et al. [84] build a spatio-temporal reference model of the early second trimester by using
the diffeomorphic approach based Advanced Normalization Tools (ANTS). 34 post-mortem hu-
man fetal brain images between the GW 15 and 22 are acquired with a 7.0 Tesla MRI technique.
In a preprocessing step inhomogeneity and bias field correction are applied and non-brain tissue
is manually removed. The templates are created by first estimating diffeomorphic paths from
an initial template guess to the brain images. Subsequently the obtained diffeomorphisms are
updated by changing the initial condition of each diffeomorphic path to optimize the template
shape. Therefore, symmetric diffeomorphic pairwise registration is used in an optimisation pro-
cedure for the new mappings between the template and the images in the dataset. All resulting
optimised deformation fields are combined and made into one total deformation field.

2.3 Discussion

The introduced pairwise and groupwise approaches in Section 2.2 are compared and summa-
rized in Table 2.1: The methods are discussed with respect to the imaging technique used where
FSE denotes Fast Spin Echo, SSFSE Single Shoot Fast Spin Echo and T the considered re-
laxation time. Furthermore, the type of template building (Space) and continuity establishing
(Time) approaches are identified as well as the number (No.) of considered subjects, their state
and the age range of the dataset in gestational weeks (GW). The limits of the approach of

Table 2.1: Comparison of fetal brain atlas construction approaches

Approach MRI Space Time Age range
(GW)

No. State

Kuklisova-
Murgasova
2010

T2, FSE, 3.0
Tesla

pairwise
affine

kernel-
regression

(29,44) 142 invivo

Serag 2012 T1,T2, FSE,
3.0 Tesla

pairwise
non-rigid

adaptive
kernel-
regression

(26,44) 204 invivo

Habas 2010 T2, SSFSE,
1.5 Tesla

groupwise
elastic

polynomial
fitting

(20,25) 20 invivo

Risser 2011 T2, FSE, 3.0
Tesla

groupwise
diffeomor-
phic

Kärcher
means

(29,37) 50 invivo

Zhan 2013 T2, Micro-
MRI, 7.0
Tesla

groupwise
diffeomor-
phic

Deformation
field compo-
sition

(15,22) 34 post-
mortem
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Kuklisova-Murgasova et al. [42] lie in the registration of extremes of the gestational age-range
(29 GW, 44 GW) with errors between 1.3 and 1.8 gestational weeks. Another limit lies in the
sensitivity of the kernel-based regression to the distribution of the data [42]. In comparison
to [42], Serag et al. [65] use a non-rigid registration approach in image space, since the affine
alignment of images cannot compensate for local inter-subject shape variability, and to over-
come the effect of blurred regions in intensity-averaged templates. Because of the folding of
the brain surface, cortical regions have a larger local inter-subject variability compared to other
brain structures and thus are susceptible to blurring. In the time domain they use an adaptive
kernel approach and show clearer level of detail at all ages compared to [42], which results in an
improved registration of atlas-based segmentation to new subjects [65]. Compared to groupwise
approaches, Kuklisova-Murgasova et al. as well Serag et al. use a more comprehensive dataset:
A wider gestational age range of 15 to 18 GWs compared to 5 to 8 GWs, and in average a three
time higher amount of images. For more detail cf. Table 2.1. Habas et al. [33] use a smaller
dataset of 20 healthy fetuses and a lower gestational age range (20.57 to 24.71 GW) as well. The
limitations of atlases constructed by groupwise registration lie in the coverage of relatively nar-
row age ranges compared to pairwise approaches [65]. Another disadvantage is the lower ability
to be comparable in anatomic definition [65]. Risser et al. use a topology preserving approach
based on diffeomorphic mapping to build a fetal brain atlas. Instead of averaging in the image
space, a Kärcher mean is applied in the tangent space. A further advantage of this approach is
the temporal consistency, which is achieved by estimating missing data in a growth-trajectory.
Zhan et al. [84] present the only approach that uses 7.0 Tesla MRI, because only post-mortem
fetuses in the early second trimester of pregnancy are observed in the dataset. The imaging
technique used proposes higher tissue contrast compared to the other approaches and so Zhan et
al. are able to model additional structures like the main subcortex structures and also the laminar
organization of the cerebral wall. In comparison to the other approaches, a spatio-temporal atlas
of fetal brain surfaces was generated instead of volumes. The aim of this approach is to study
global growth trajectories and temporal changes of lateral ventricels, nuclear structures and the
Sylvian fissure [84].

Discussion Preprocessing

Habas et al. [33] only documented the use of a motion correction technique using Slice In-
tersection Motion Correction (SIMC) [41]. Since Zhan et al. [84] only acquired post-mortem
images of fetuses no motion correction is needed. Kuklisova-Murgasova et al. [42] use non-
rigid registration to propagate the brainmask from a reference subject to the other images in
the dataset for brain masking. Additional brainmasks are created to enable consistent regis-
trations of the brain boundary. For this, morphological operations are applied onto intensity
based annotations of brain tissue and show higher accuracy than the first created masks. Serag
et al. [65] used the Brain Extraction Tool (BET) [71] to mask non-brain tissues in the images
of fetuses. Zhan et al. first tried to automatically mask the fetal brain volumes using a Skull
Stripping Meta-Algorithm (SSMA) [45]. Since they were not successful they manually strip
the skull using the Brain Suite software and a protocol for extra cerebral tissue exclusion [84].
Kuklisova-Murgasova et al. [42], Zhan et al. [84] as well as Risser et al. [58] perform bias cor-
rection with the N3 method [69]. Serag et al. [65] use the updated version of the N3 approach
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- the N4 algorithm to correct inhomogeneity [77]. Alignment and rescaling approaches are
considered as preprocessing step to reduce registration error in the atlas building procedure:
Kuklisova-Murgasova et al. manually align the acquired images with the MNI atlas [28] by us-
ing affine transformations. Serag et al. [65] use global transformations (shape differences, size),
obtained from affine registration, to align the data. Risser et al. [58] align the data in a rigid
way. Zhan et al. [84] prefer to align the data using a volume preserving rigid transformation
to perform normalisation in space. Atlases are constructed based on MR images, but also on
annotations of brain-structures or surfaces. The latter models are used for labelling and de-
veloping study purposes. Kuklisova-Murgasova et al. [42] use a fully automatic segmentation
procedure, combining an intensity-based as well as an atlas-based segmentation approach, to
segment different brain structures. Risser et al. use the atlas-based segmentation approach of
Kuklisova-Murgasova et al. [42] to obtain annotations of the fetal brains. Zhan et al. identify
surfaces by using the surface extraction tool of the BrainSuite Software.

Discussion Brain Structures

The standard MR imaging technique for invivo fetuses is to use 1.5 to 3.0 Tesla scanners to
acquire T1 and T2 weighted data. Distinguishable structures in this case are illustrated in Figure
2.6: Grey Matter (GM), White Matter (WM), the VENTricles (VENT) and the Germinal MATrix
(GMAT) [84]. Also extraventricular Cerebro Spinal Fluid (CSF), Deep Grey Matter (DGM) and
Non-Brain structures (NB), like skull or amniotic fluid are identifiable. Using a MR scanner

Figure 2.6: Illustration of identifiable brain structures in a T2 weighted fast MRI acquired with a
1.5 Tesla scanner (Germinal MATrix (GMAT), VENTricles (VENT), White Matter (WM), Grey
Matter (GM) and Cerebro Spinal Fluid (CSF)). MR image courtesy of Medical University of
Vienna (MUW).

with 7.0 Tesla, additional brain structures are recognized due to higher tissue contrast: Main
subcortex structures as well as the laminar organization of the cerebral wall (Ventricular Zone
(VZ), Intermediate Zone (IZ), SubPlate zone (SP), Cortical Plate (CP)) [84]. In Table 2.2 a
summary of the modelled brain structures of every approach is given.
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Table 2.2: Comparison of modelled fetal brain structures

Approach brain annotations
Kuklisova-Murgasova 2011 [42] Cortex (cortical GM), WM, DGM, CSF, Back-

ground, brainstemm, cerebellum
Serag 2011 [65] No annotation based templates are created
Habas 2010 [33] Cortex, WM+GMAT, VENT+CSF+NB
Risser 2011 [58] Cortex
Zhan 2013 [84] VZ, IZ, SP, CP, lateral VENT

2.4 Spatio-temporal Atlas Construction

Spatio-temporal atlas construction differs between subject-specific and time-specific approaches.
Subject-specific modelling aims to average individual trajectories for obtaining a typical growth
scenario. In this case the inter-subject variability is assumed to be constant over time [25]
(cf. Figure 2.7a) and provides a template at each age [25]. Time-specific modelling makes
it possible to describe the inter-subject variability over time by a mean scenario of evolution
(cf. Figure 2.7b) and provides a template at each age [25]. In the field of longitudinal registra-

(a) Subject-specific (b) Time-specific

Figure 2.7: On the left side the subject-specific modelling is visualised: The individual trajecto-
ries are denoted by S.(t) and their averages are used to obtain a typical growth scenario M(t).
Time-specific modelling is illustrated on the right side. It shows the estimation of a mean sce-
nario M(t) of evolution to describe the inter-subject variability over time. Image courtesy of
Stanley Durrleman [25].

tion, data types are divided into three main groups [25]: Cross-sectional data consists of a set
of comparable or homologous samples with no effect of time or age on the data. Time-series
data is labeled by an age dependent temporal marker, which indicates a developmental stage,
progression of pathology or growing. It is not necessarily assumed that the data represents the
same subject at different time-points. Longitudinal data contains more than one observation of
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a subject by acquiring data over a time period at different time-points.

Image Regression

Image regression works with time-series data and builds a continuous model of development.
With this approach it is possible to measure shape changes between discrete observations in
time [25].
An example of an approach which uses geodesic regression as base for atlas construction is
found in Niethammer et al. [54]. They use five MR images of adults with dementia at dif-
ferent ages to model dementia depending ventricle changes over time. Hong et al. [38] use
metamorphic geodesic regression to compute a mean scenario from a time-series brain dataset
of nine macaque monkeys of age 3, 6 and 12 months (27 images). It is based on a LDDMM
formulation and estimates a regression function of geodesics using geodesic equations for meta-
morphosis. Fishbaugh et al. [29] use a geodesic image regression formulation with reduced
model parametrisation. Three T1 weighted brain images of one child at age 6, 12 and 24 months
are used to assess pediatric brain development. Singh et al. [68] use geodesic image regression
to construct an atlas of MRI brain images from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database at age 70.75, 71.38, 71.78 and 72.79 and show the expantion of the lateral
ventricles over time. Additionally, the calculated atlas is used to predict future brain changes
and atrophic behaviour of patients with Alzheimer’s disease using EPDiff equations.

Longitudinal Analysis

Longitudinal analysis only uses longitudinal data, where images of a subject are acquired more
than once. This method first determines individual trajectories of a subject and subsequently
measures the differences and similarities between them [25].
Serag et al. [66] perform longitudinal registration via atlas propagation. They use freely avail-
able spatio-temporal atlases to cover the missing anatomical information between two observa-
tions of a fetus over a time-interval of 10.33 GW. Images of 50 fetuses are acquired and used
for evaluation. The calculation of the subject-specific trajectory involves only two images of a
subject (template and target), acquired at different time points. Instead of estimating the direct
transformation from template to target, the images are registered to the corresponding atlas tem-
plates to obtain a mean deformation field. Subsequently this field is used as initialisation for
the direct registration of template and target. Durrleman et al. [25] propose a framework for
statistical analysis of longitudinal shape data. In a first step continuous subject-specific growth
trajectories are modelled. Subsequently the resulting temporal shape changes across subjects are
compared, by estimating a mean growth scenario (atlas) using intrinsic statistics in the space of
spatio-temporal deformations. The framework evaluation includes the measurement of the de-
velopmental delay of deep brain structures using a longitudinal brain dataset of children between
age three and five years with autism. Liao et al. [48] propose a longitudinal atlas construction
framework, that considers as well subject-specific as global population information. The ADNI
and Baltimore Longitudinal Study of Aging (BLSA) databases are used in this approach, con-
taining brain images of elderly subjects. A feature based 4D HAMMER image registration
method is used to estimate the subject specific growth models. Subsequently, the obtained lon-
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gitudinal information of each subject is used to propagate it to each time point in the subject
space. Information of global population is captured by constructing an unbiased template using
groupwise registration among all the subject sequences. To map from the subjects space to the
atlas space only one transformation is needed. A kernel regression process is applied on the
whole set of warped images from different subjects to achieve temporal consistency in the atlas
space.

Discussion

As found in literature ( [3, 25, 29, 38, 54]), image regression for time-series data has been eval-
uated only using adult- and child-brain datasets, which record changes of brain structure over
time. The fetal brain shows a variability in time as well and thus is qualified to be used for image
regression to build a spatio-temporal atlas. Time-specific approaches concentrate on statistical
correlations of the observed dataset over time and are used to encode the inter-subject variabil-
ities of fetuses in a single deformation for every subject. The building of this mean scenario
forms a base for constructing a continuous fetal brain atlas by modelling the brain development
of every fetus in the time-series dataset with a single diffeomorphic deformation. Using a lon-
gitudinal dataset of fetal brains, subject-specific methods are applicable for studying fetal brain
development. Subject-specific approaches are used to compare the brain growth patterns of two
different subjects. The main focus lies here in estimating the variation of individual growth
trajectories to identify development delays at any time-point. Subject-specific approaches use
temporal re-aligning to bring different subjects into correspondence. Serag et al. [66] use only
two images per subject and freely available fetal brain atlases for estimating a subject-specific
trajectory. They perform atlas-based initialisation for local non-rigid longitudinal registration,
because without this initialisation, poor registration results are achieved [66]. The challenges
of longitudinal registration lie in capturing the fine local anatomical variations between scans,
which have been acquired over a large period of time (in average 10.33 GWs) [66]. In contrast
to this, the question arises if it is possible to represent a growing pattern of a subject only using
two images and atlas based initialisation, since the atlases used encode mean shape information
and do not represent the subject specific characteristics. Replacing the initialisation procedure
by using more than two images per subject is difficult to perform, since obtaining more than one
image of the same subject without medical indication, is not performable due to the stressful and
costly image acquisition procedure for pregnant women [44].

2.5 Relation to this Thesis

This thesis unites advantages of the discussed registration approaches. The fast MRI technique
is identified as a suitable imaging technique for in-vivo fetuses, since it is a non-invasive tech-
nology, which has no mutagenic influence on the fetus and its brain development. Additionally,
motion artefacts are reduced by faster image acquisition time up to 20 seconds compared to stan-
dard MRI scanning [9]. Since the lack of comparability and constancy of gray-values in MRI,
an atlas is used as reference model to make fetal brains comparable in development studies. De-
pending on the approach chosen to construct a fetal brain atlas, different preprocessing steps
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like alignment, masking and inhomogeneity correction are performed to improve the results. The
human fetus has a varying orientation and motion according to its Gestational Age (GA) [12].
Thus, there is a need of an rigid-aligning preprocessing step, to avoid and reduce orientation
related registration errors. Also masking of the fetal brain is considered, since the acquired
data contains the surrounding mother tissue, which causes distorted registration results for fetal
tissues. The examination of atlas building methods show that every approach introduced uses
global alignment and non-brain tissue masking of the fetal brain images as preprocessing step
to improve the registration result. Thus, brain masking and alignment by rigid registration (rota-
tion, translation) are considered as necessary preprocessing steps in this thesis to normalize the
fetal brain images in space. In this thesis an image dataset of 46 healthy fetal brains is used. It
contains 1.5 Tesla MR images of different subjects. One subject is represented only once. The
age is measured in gestational days. There does not exist a dataset for every gestational day. For
more than one gestational time point, more than two images of different subjects are available.
The observed age range reaches from 129 to 212 gestational days. All the brains are annotated
manually by an expert. According to these facts, the following assumptions are made:
The use of an "all-to-one" approach for constructing the fetal brain atlas is discarded for this the-
sis, because choosing a single subject as reference introduces substantial bias. The brain struc-
tures of fetuses cannot be described by one image, since it does not reflect occurring changes
over time [65] [42]. Exclusive pairwise affine registration for image alignment results in blurred
regions in the templates obtained by intensity averaging. Affine registration is not capable of
compensating local inter-subject variability. This leads to worse registration results between
atlas-based segmentations and individual objects compared to non-rigid approaches, which show
a higher level of detail [65]. An advantage of pairwise approaches lies in the registration of
wider age-ranges between 15 to 18 GWs, compared to groupwise approaches, which are able
to cover only small age ranges between 5 to 8 GWs. An advantage of groupwise registration
approaches is the template-free estimation of the initial reference space. The template is esti-
mated and updated during the registration procedure [42]. Compared to other approaches, the
main limitations of groupwise registration lie in the lower level of anatomic definition [65]. For
the fetal brain tissue labelling framework constructed in this thesis a non-rigid longitudinal
registration approach is considered, because as found in the literature [3, 25, 29, 38, 54], image
regression for time-series data have been evaluated only using adult- and child-brain datasets,
that record changes of brain structure over time. The fetal brain shows a variability in time as
well and thus, is qualified to be used for image regression to build a spatio-temporal atlas. In
this thesis a time-series dataset of fetuses is used. In this case subject-specific approaches are
not taken into account, since there is only a single image per subject available in the dataset. In-
stead, a time-specific approach is considered, which concentrates on statistical correlations of
the observed dataset over time and is used to encode the inter-subject variabilities of fetuses in a
single deformation for every subject. Image regression is used to model a mean scenario as base
for constructing a continuous fetal brain atlas. A single diffeomorphic deformation models the
brain development of every fetus in the time-series dataset. Thus, instead of calculating discrete
age-dependent templates combined with interpolation, in this thesis the local inter-subject vari-
ability is considered to be modelled continuously in time and non-rigidly in space, by geodesic
regression (cf. Section 3.5). For modelling the time dependence of structural changes, inter-
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polation or averaging approaches were examined. The application of Kärcher mean in the tan-
gent space achieved a higher temporal consistency compared to image averaging in the image
space, because of the capability to estimate missing data in a growth trajectory. The comparison
of non-rigid registration approaches show that diffeomorphic registration preserves topology.
This approach constrains deformation fields to be diffeomorphic, in other words to be smooth
and invertible. Therefore, it is guaranteed that every image entity (pixel or voxel) in the tem-
plate corresponds to another one in the target. Thus, it is considered to use diffeomorphic based
registration in this thesis, because it ensures anatomically valid templates, which is important in
the medical field. The quality of alignment of the atlas with a new subject is proportional to
the quality of segmentation. Affine registration is used to register the atlas to a new subject’s
anatomy, which is not significantly different from the average of the population. Therefore, it
shows higher robustness towards alignment error than non-rigid approaches. In case of chang-
ing structures non-rigid registration shows increasing segmentation accuracy compared to affine
registration [42]. In this master’s thesis a non-rigid approach (geodesic shooting, cf. Section 3.4)
is used to register the resulting segmentations to a new fetal brain image. For achieving a higher
level of detail of the atlas-based segmentations, a graph cut based approach (cf. Chapter 4) is
used to refine them. Since the dataset used is illustrating invivo fetuses acquired with a 1.5 Tesla
MRI scanner the additional brain structures (main subcortex structures, laminar organization
of cerebral wall) modelled by the approach of Zhan et al. [84] cannot be considered, since they
are not distinguishable in the images, due to lower imaging contrast of 1.5 Tesla scanner com-
pared to 7.0 Tesla scanner. Since only images acquired with a 1.5 Tesla scanner are used in this
thesis, the main focus lies on modelling differentiable structures of vivo fetuses, e.g. ventricles
and developing cortical matter.

2.6 Summary

In this chapter the concept of atlas construction and its motivation are explained. Differences
between adult and fetal brain atlases are presented and challenges regarding the image acquisi-
tion, preprocessing and construction are enumerated. The introduced state-of-the-art approaches
( [65], [42], [33], [84], [58] ) for fetal brain atlas construction combine template building tech-
niques (all-to-one, pairwise, groupwise) and interpolation techniques (kernel-regression, poly-
nomial fitting, B-Spline fitting, Kärcher means). These approaches are discussed with respect
to the preprocessing and acquisition setup used, brain structures modelled, age range, number
of subject and state (invivo, post-mortem). Additionally, an overview of spatio-temporal atlas
construction techniques (image regression, longitudinal analysis) is given and corresponding
state-of-the-art approaches are introduced and discussed. This chapter concludes with the rela-
tion to this thesis and discusses the approaches chosen to build.
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CHAPTER 3
Image Registration and

Diffeomorphisms

This chapter gives an overview of basic registration concepts and explains how registration of
two images or a collection of images works. Subsequently, it is addressed how atlases are
learned by using geodesic regression and an explanation of the underlying methods is given. In
Section 3.2 an overview of image registration methods is given and the functionality of general
optimization frameworks is illustrated. Section 3.3 gives an overview of LDDMM, illustrates
the optimisation problem and introduces the tuning parameters. In Section 3.4 the differences
between geodesic shooting and LDDMM are shown and Section 3.5 explains how geodesic
regression works. The 2D analysis of a state-of-the-art LDDMM algorithm is documented in
Chapter 5. The 2D analysis of a state-of-the-art geodesic regression algorithm is demonstrated
in Chapter 6.

3.1 Denotation

In this thesis images are denoted with I , a source image with I0, a target image with I1, and
image features or intensities with x, y. Images are defined on a image domain Ω. Transformation
functions from a source to a target are expressed using φ. A diffeomorphic transformation ϕ is
also denoted as φ if it is expressed as a curve. The denotation vt() represents the flow of a time
t dependent vector field which lies in the space of smooth velocity vector fields denoted with V .
L expresses a differential operator and L2 the standard L2 norm for square integrable functions.
u0 names the initial momentum, v0 the initial vector field and Id the identity. The capital K is
used to describe the pseudo inverse Green’s function, D acts as representative of the Jacobian
operator and∇ denotes the gradient.
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3.2 Overview of Image Registration Methods

Subjects differ in anatomical definition, change over time due to diseases, growing or surgery
and move during image acquisition (breathing, body movement). This is the motivation for using
so-called registration methods which establish spatial correspondence between images in order
to be able to perform the following tasks in the medical field [72]:

• Performing longitudinal studies using images before and after a treatment

• Atlas-based automatic labelling

• Positioning of a patient in an image and alignment to temporal series

• Alignment and comparison of images of different modalities (multi-modal registration)

Image registration is used to find an optimal spatial transformation or a correspondence among
two images (a source (template) image I0 and a target image I1) of the same (mono-modal)
or different (multi-modal) imaging modality. In the mono-modal case we can differentiate be-
tween feature-based and intensity-based methods. Feature-based registration approaches first
calculate image features based on local information of the images, and then establish correspon-
dence between these image attributes [51] [62]. Intensity-based methods consider the whole
gray-value information of the source and target image to match them [72]. The construction of
a mapping function for transforming a template image as close as possible to the target image
requires analysis of the geometric deformation of the observed objects. The mapped structures
are analysed according to the possible positions in image space, expecting rotation angle, trans-
lation distance, ability to be illustrated in a sheared or warped way, to be displayed entirely or
partially, scaled or not scaled. The choice of a suitable mapping function incorporates the needed
accuracy of the mapping and the image acquisition setup, due to possible occurring distortions
and errors. Parametric and non parametric mapping approaches exist. Parametric methods
estimate the geometric deformation by searching the optimal parameters of a function [85].
Additionally, registration approaches differentiate between linear registration, which globally
affects the image, or deformable registration, which locally deforms image patches.

Linear Registration

Linear registration are categorised using the following transformation types:

• Rigid transformation: This registration approach contains only translation and rotation
transformations of images [51] and preserves angles and distances.

• Affine transformation: Preserves parallel lines by mapping them on their identity [51].
It allows only to correct global differences in size and shape of an object (e.g. mapping
a parallelogram onto a square). In case of an atlas, local and spatial variability of its
underlying population is obtained [42] [85].

• Perspective-projective transformation preserves straight lines (e. g. mapping a general
quadrangle onto a square) [85].
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Global transformations
Local 

transformation

Source image Target imageRotation Scale Non-rigid

Figure 3.1: Illustration of affine and non-rigid registration. Template and target image show
differences in size, orientation and also internal structures. The use of affine registration as
global image transformation achieves correspondences according to the scaling and alignment
of the source- and target picture. Correspondence of internal structures is achieved by local
non-rigid registration.

Deformable Registration

In contrast to linear registration, deformable (non-rigid) registration additionally allows local
stretching operations in order to achieve correspondence between two images [21] and is based
on a deformation model. Figure 3.1 illustrates schematically the mechanics of rigid and non-
rigid transformations and their global and local effect on a source image. Deformation models
are divided into three groups [72]:

1. Physical models

• Elastic model: This approach uses the concept of external (stretching) and internal
(stiffness, smoothness) forces instead of parametric mapping functions to formulate
a model of complex distortions. The aim is to find the optimal matching by a minimal
amount of bending and stretching of the template image. In contrast to parametric
mapping, correspondence detection and definition of a transformation function is
carried out simultaneously [85].

• Fluid model: This approach represents the deformation based on the Navier-Stoeks
equation, which models the behaviour of the flow of viscous fluids [72].

• Diffeomorphic model: This transformation type restricts registration of one image
onto another to be diffeomorphic: the priority of this model lies on physical validity
in the first place and a good matching in the second. No tearing transformations are
allowed to preserve the diffeomorphism constraint (cf. Section 3.3) [21].

• Demons - Diffusion model: This approach constrains the properties of the transfor-
mation function based on a diffusion process. First all image elements are selected
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as demons. Subsequently, optical flow constraints are used to compute demon forces
for displacement fields in an image matching procedure. Regularisation is performed
using convolutions with Gaussian filters [72].

• Curvature model: This registration approach is formulated based on the curva-
ture equilibrium equation. The regularisation is performed by allowing affine linear
transformations to avoid preregistration of a linear and affine type [72].

2. Interpolation models

• Radial Basis Function (RBF) based model - splines: This approach defines con-
trol points (samples) in the template and target image. Correspondences further
away from these samples are established using spline-based interpolation with re-
spect to their distance to a control point [21] [72]. Examples are Thin-Plate Splines
(TPS), Clamped-Plate Splines (CPS), Geodesic Interpolating Splines (GIS), multi-
quadratics, Wenland functions, Wu functions or Elastic Body Splines (EBS) [72].

• Basis-function based model: In comparison to RBF, basis-function transformations
are modelled based on analysis regarding wavelet and Fourier. Instead of estimat-
ing the distance to defined control points for interpolation, the correspondences are
established by finding a linear combination of basis functions (cosine, Fourier or
Wavelet basis functions). A further advantage using basis functions is the possibility
to decompose displacement fields for multi-resolution computations [72].

• Free-Form Deformation (FFD) model - B-splines: the observed images are sam-
pled using a regular grid. The deformation is computed by "a summation of tensor
products of univariate splines" [72]. Extensions of FFD are cubic B-splines, multi
level B-splines or Non Uniform Rational B-Splines (NURBS) [72].

• Locally affine model: This approach parametrises transformation functions by de-
formations which are locally linear. Piecewise affine or poly-affine models exist.
Piecewise affine divides an image into a set of tetrahedras or triangles, and uses
the resulting nodes as parametrisation of the transformation. Affine interpolation is
used inside a region to obtain invertible deformations. A disadvantage is the reduced
smoothness of region boundaries. In contrast to this, poly-affine models focus on
estimating smooth transformations by dividing the image into fuzzy regions [72].

3. Models based on knowledge-based geometry

• Statistical Deformation Model (SDM): This approach aims at extracting statisti-
cal properties of transformations by analysing the population of observed subjects.
Additionally, SDMs are able to reduce the problem’s dimension to improve compu-
tational performance [72]. Examples for statisical tools used are Principal Compo-
nent Analysis (PCA), the Gaussian Mixture Model (GMM) or Probability Density
Function (PDF) estimation.

• Biomechanical - Finite element (FE) model: The images are divided into cells. A
physical description (elastic, rigid, fluid, ...) of the anatomical structure is assigned
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to each cell. Also external forces are applied to this model. The transformation
deforms the template image according to the material behaviour defined for each
cell [21]. Examples are tumor growth models, biomechanical models of the breast
or prostate [72].

General Optimisation Framework for Deformable Registration

A general optimization framework for deformable registration is divided into three phases: load-
ing, optimisation and update. In the loading phase the object for registration is loaded and if
necessary preprocessed to obtain a whole image, image parts or object corresponding features.
The next phase optimises the transformation function φ from a source I0 to a target image I1

based on a deformation model and by minimising an energy model E (cf. Equation 3.1 [72]).

E = argmin
φ

[
ES(I1, I0 ◦ φ, ) + λER(φ)

]
(3.1)

An energy model consists of two terms: a similarity measure ES between target I1 and trans-
formed source image IT = I0 ◦ φ and a regularisation term ER. The latter term models the
properties and constraints of the underlying deformation model (internal energy) [72]. In the
last phase the current transformation function is updated according to the estimated result of the
optimisation, it is used to transform the template object and to interpolate non-integer coordi-
nates [85]. This procedure continues with the optimisation phase and is iterated for a predefined
number of iterations or until a pre-defined threshold for E is reached [62]. Figure 3.2 schemat-
ically illustrates this optimisation process for the registration of a template to a target image.

Similarity Measure

In the optimisation phase of a deformable registration procedure correspondences between the
template and target object are specified to optimise a transformation function. Similarity mea-
sures, feature descriptors or relationships among features in space are used for measuring dif-
ferences between two images (global) or image sections (local) [31] [21]. Similarity measures
must have an extremum in case the images are correctly aligned, they have to be smooth, differ-
entiable and efficient to compute [72]. The underlying image modality influences the choice of
the measuring procedure [31] [21]. In case of mono-modal registration the following similarity
measures are used:

• Sum of Absolute Difference (SAD): Measures the sum of absolute distances between
features x,y of two images or volumes I0 and I1 (cf. Equation 3.2).

SAD =
∑
i

‖I0(xi)− I1(yi)‖ (3.2)

• Sum of Squared Differences (SSD): is used as similarity measurement for least-squares
fitting (cf. Equation 3.3).

SSD =
∑
i

(I0(xi)− I1(yi))
2 (3.3)
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Figure 3.2: Optimisation procedure for estimating a mapping function for image registration.
Figure modified from [62]. MR images courtesy of Medical University of Vienna (MUW).

• Correlation Ratio (CR): According to [21]:" The correlation ratio assumes a functional
relationship between intensities. It can be defined in terms of sums and sums of squares
of source voxels that correspond to a number Ni of iso-intense voxels in the target image"
I1 (cf. Equation 3.4 3.5 3.6 [21]).

CR [I0, I1] = 1− 1

Nσ2

∑
i

Niσ
2
i (3.4)

σ2 =
1

N

∑
overlap(x)

I0(x)2 −m2,m =
1

N

∑
overlap(x)

I0(x) (3.5)

σ2
i =

1

Ni

∑
x:I1(x)=i

I0(x)2 −m2
i ,mi =

1

Ni

∑
x:I1(x)=i

I0(x) (3.6)

Multi-modal registration has the aim to find correspondences between two images or volumes
of different modality, i.e. images with a more complex intensity relationship compared to im-
ages used for a mono-modal registration. The aim of multi-modal registration is to simulate a
modality from the other. An example for a similarity measure used for multi-modal registration
approaches is Mutual Information (MI): Computing of the MI assumes that a probabilistic
relation between the intensity distribution of two images I0 and I1 is established (cf. Equation
3.7 and 3.8). H are terms representing the entropies of the intensity distribution. The entropy
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reaches its maximum if the intensity distribution becomes uniform, i.e. if I0 and I1 are perfectly
aligned. The joint entropy is minimal when the maximum of MI is reached. P denotes proba-
bility of intensity x occurring in I0 and Q encodes the probability of the intensity y occurring in
I1. pxy denotes the joint probability of the intensities at the same place [21].

MI [I1, I2] = HI2 +HI1 −HI1I2 (3.7)

MI [I1, I2] =
∑
i

∑
j

pxy(i, j)log
pxy(i, j)

px(i)py(j)
(3.8)

A further similarity measure used for multi-modal image registration is Normalized Cross Cor-
relation (NCC). Computing the NCC assumes that two images I0 and I1 both illustrate the fea-
ture of interest (x,y) (cf. Equation 3.9). I0 and I1 denote the mean values of the images I0 and I1.
The normalisation makes the NCC independent to brightness or contrast changes of the images,
but is expensive to compute. In contrast to this NCC has a higher robustness in determining the
position of the feature than SAD or covariance similarity measures [10].

NCC [I0, I1] =

∑
i ((I0(xi)− I0) ∗ (I1(yi)− I1))√∑
i (I0(xi)− I0)2 ∗

∑
i (I1(yi)− I1)2

(3.9)

Regularisation Term

The deformable registration problem is under determined, since infinite solutions for deforming
an image in a non-rigid way exist. For solving this problem regularisation is needed to alle-
viate ill-conditioned or unstable solutions and to constrain the optimised transformations to be
topology-, volume- or rigidity-preserving [61]. Dependent on the deformation model chosen,
one or more properties are satisfied. Additionally, regularisation enables the introduction of
prior knowledge of the underlying tissue behaviour to overcome getting caught in local minima
during optimisation. Regularisation is divided into explicit regularisation and implicit regulari-
sation. Explicit regularisation uses two possible types of constraints: hard ones that have to be
necessarily satisfied and soft constraints, which do not have to be. In contrast to this implicit
regularisation uses smooth functions for parametrisation [72].

Spatial vs. Longitudinal Registration

In the field of spatial registration the focus lies on mapping two 3D images of the same or differ-
ent modality. There are also approaches which register 2D data to 3D volumes. For modelling
growing processes or for monitoring issues, time series of images are acquired (monitoring of
bone or tumor growth, fetal brain development, postoperative healing).To compare monitoring
events of different patients registration of time series of images have also been proposed [51].
Another type of longitudinal registration originates from the field of real time registration dur-
ing surgical interventions. Here, pre-operative optimised high resolution image time series or
synthetically modelled dynamic data are registered onto real time-data of different or identical
modalities, captured during the intervention [46] [27].
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All-to-one vs. Pairwise vs. Groupwise

For building reference images or volumes three types of procedures exist: All-to-one, pairwise
and groupwise approaches. All to one registration is used in case of registering source images
(all) to a reference template image (one). Pairwise registration creates biased templates, which
have to be computed in advance. For this, correspondences between two images (a source and
a target image) have to be determined. Groupwise registration approaches use an optimisation
procedure to compute an unbiased reference model. No pre-computation of the template is
necessary. For more details cf. Section 2.1Atlas Construction.

3.3 Large Deformations Diffeomorphic Metric Mapping

The basic idea of Large Deformation Diffeomorphic Metric Mapping (LDDMM) is to register
a template image I0 and a target image I1 using a diffeomorphic deformation model which
constrains the transformation function obtained to be a diffeomorphism ϕ : Ω → Ω. Ω denotes
the image domain Ω ⊆ Rd of dimension d. According to the Encyclopaedia of Mathematics1, a
diffeomorphism is defined as follows [36]: "A one-to-one continuously-differentiable mapping
of a differentiable manifold (e.g. of a domain in a Euclidean space) into a differentiable manifold
for which the inverse mapping is also continuously differentiable. If f(M) = N , one says that
M and N are diffeomorphic.". The LDDMM problem is first studied by Trouvé (1995) [76]
and Dupuis et al. [24]. Beg et al. [6] examine the Euler-Lagrange equations to solve this issue.
The diffeomorphism ϕ is in this approach expressed as the end point φ1 of a curve φt, t ∈ [0, 1]
where φ0 is the identity. Beg et al. [6] estimate the optimal transformation in the space of
smooth velocity vector fields V on the domain Ω. This is possible, because Trouvé (1995) and
Dupuis et al. (1998) showed that a sufficient smoothing on allowable velocity vector fields in the
space V makes sure that the solution to the differential equation (representing the flow of a time-
dependent vector field) φ̇t = υt(φt), t ∈ [0, 1],υt ∈ V is in the space of diffeomorphisms. Beg
et al. [6] formulate this issue by the cost function expressed in Equation 3.10, and is illustrated
in Figure 3.3.

υ̂ = arg min
υ:φ̇t=υt(φt)

 1∫
0

‖υt‖2V dt+
1

σ2

∥∥I0 ◦ φ−1
t − I1

∥∥2

L2

 (3.10)

The cost function consists, as introduced in Section 3.2, of two terms representing a similarity
measure (image cost term) and a regularisation (deformation cost term):

• Image cost term:
∥∥I0 ◦ φ−1

t − I1

∥∥2

L2 is a similarity measure and illustrates the squared
of the L2 difference of square integrable functions between the target image and the de-
formed template image. It characterises the "goodness" of the transformation.

1Diffeomorphism. http://www.encyclopediaofmath.org/index.php; [accessed 13-September-
2015]
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P1:

P2:

Velocity vector field V:

Vector field v(t1) Vector field v(t4)

Figure 3.3: Schematic illustration of the concept of LDDMM. For clear representation only
diffeomorphisms of two pixels P1 and P2 are shown. φVt1,t2(x) is interpreted as the position at
time t2 of a pixel P that is at position x at time t1, in dependence on the associated velocity field
V.

• Deformation cost term:
1∫
0

‖υt‖2V dt. It measures the smoothness of the estimated vector

field via the norm on the space of vector fields V . The introduction of a differential oper-
ator L makes it possible to connect the different spaces of the deformation cost term and
image cost term. Beg et al. prove the relation between these (‖f‖)V = ‖Lf‖)L2) in [6].

The deformation cost term is consequently reformulated as:
1∫
0

‖Lυt‖2L2 dt and minimises

according to increasing smoothness of the vector field. The optimal transformation is
interpreted as the shortest diffeomorphism between two images, expressed by the vector
field with the highest smoothness [6].

Beg et al. [6] realise the minimization of these cost terms by a gradient descent approach on
the whole set of curves in the diffeomorphism group. The resulting time-depending vector field
provides an optimized diffeomorphic transformation from template to target image.
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3.4 Geodesic Shooting

The LDDMM approach needs the calculation of a series of velocity fields to find the optimal
diffeomorphic mapping function from a template to a target image. In case of geodesic shooting,
Ashburner et al. [2] estimate an initial velocity (v0) and use it to derive an initial momentum u0

expressed in Equation 3.11, where A = L†L represents a model of the "inertia" of the system,
i.e. a linear operator which operates on a time-dependent velocity that mediates the deformation
over unit time.

u0 = A ∗ v0 (3.11)

The Ordinary Differential Equation (ODE) associated to the flow of the time-dependent velocity
vector field φ̇t = υt(φt), t ∈ [0, 1] is formulated in Equation 3.12 and shows that the velocity is
given at any time by the initial velocity or momentum.

φ̇t = K
(∣∣Dφ−1

t

∣∣ (Dφ−1
t )T (u0 ◦ φ−1

t )
)

(3.12)

D denotes the Jacobian tensor, φt−1 the inverse of the diffeomorphic mapping and the operator
K the (pseudo-) inverse (Green’s function) of L†L. It is applied to smooth the result. The
conservation of momentum is the formulation of each iteration of the registration as an initial
value problem. Geodesic shooting requires the following steps: The deformation at time point
zero φ0 is set to the identity transform (Id). Afterwards the initial momentum from the initial
velocity is computed (u0 = L†L ∗ v0) and the dynamical system φ̇t is integrated over unit time.
A possible cost term for geodesic shooting is expressed in Equation 3.13.

E =
1

2

∥∥∥L†Lυ0

∥∥∥2

L2
dt+

1

2σ2

∥∥I0 ◦ φ−1
t − I1

∥∥2

L2 (3.13)

In comparison to LDDMM it is observed that the deformation cost term has changed. Instead
of calculating a series of velocity fields, only the initial velocity has to be estimated. This cost
term may differ in other geodesic shooting approaches [52] [2].

3.5 Geodesic Regression

In this master’s thesis a longitudinal image regression approach is used for estimating a fetal
brain atlas. Instead of using a combination of a template-building and interpolation technique as
described in Section 2.1, geodesic shooting regression is used to compute a continuous time-
dependent vector field encoding the longitudinal as well as time-specific variability of fetal
brains. Figure 3.4 illustrates the basic concept of this approach: The aim is to find a time-
dependent transformation (dark red line) from a source image to a target image representing
the extremes of the gestational age range. For a given gestational age, the transformation func-
tion warps the source data (annotations, gray value images), to the corresponding time point in
the age range, and thus is able to estimate time-dependent templates as well segmentations. In
contrast to pairwise registration, the whole dataset is involved in the longitudinal registration
procedure. The challenges of geodesic regression lie in defining the optimal velocity field reg-
ularisation parameters to model the detailed shape changes in time, induced by cortical folding
processes. A detailed description of a geodesic regression algorithm, of Ashburner et al. [2] [1],
is given in Section 6.3.
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Figure 3.4: Schematic illustration of the concept of geodesic regression.

3.6 Summary

This chapter gives an overview of registration techniques for the construction of an atlas and
for the propagation of atlas-based tissue maps to an image. For pairwise registering the volume
changes of fetal brains and the different fetal orientation over gestational age [64] linear regis-
tration procedures ( [51], [42], [85] ) are introduced, constisting of translation, rotation, scaling
or shearing transformations. For modelling the morphological changes of fetal brains (cortical
folding) deformable (non-rigid) approaches ( [72], [21] ) are summarised in this chapter. The
corresponding transformations are estimated using an optimisation framework [62] for minimiz-
ing a costfunction consisting of a similarity measure and a regularisation term. The non-rigid
behaviour is influenced by the underlying deformation model. Physical, knowledge-based ge-
ometry or interpolation based models are presented ( [72], [21], [85] ). According to the analysis
of state-of-the-art approaches (cf. Chapter 2) a pairwise and a longitudinal diffeomorphic regis-
tration approach are considered to learn an atlas of fetal brain development instead of combining
a template building and an interpolation technique. This chapter concludes with an introduction
to pairwise diffeomorphic registration (LDDMM [6] and geodesic shooting [78], [2]) and an
introduction to longitudinal diffeomorphic registration (geodesic regression [1], [2]).
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CHAPTER 4
Image Segmentation and Graphcuts

In this chapter an overview of image segmentation techniques is presented (cf. Chapter 4.2) and
the basics of graph cuts are introduced. In Section 4.3 first binary graph cuts and then the Min-
Cut/Max flow problem are explained. Section 4.4 gives an introduction to multi-label graph
cuts. The Potts and Continuous Max-Flow (CMF) model formulation is discussed in Section 4.5
and Section 4.6. The analsis regarding the graph cut approach used are summarised in Chapter
6 in Section 6.4.

4.1 Denotation

Beside the denotations introduced in Section 3.1 the following additional terms are introduced
to describe image segmentation procedures and graph cuts. G denotes a graph with the corre-
sponding set E of edges and V of vertices denoted by the letters v, s, t, where s denotes the
source and t the target (sink) vertex. t − links are also named unary (cost) term and expressed
using the denotation source flows ps(.) and target flows p(.). n − links are also denoted as
binary or penalty term and have the additional notation as spatial flows q(.). The letter w is used
to describe weights or labeling probabilities and ul(.) to express a labeling function for a label
l. The cost for assigning a label l to a image feature x is expressed by Dx(.) or ρ(., .).

4.2 Overview of Image Segmentation Methods

Medical image segmentation techniques give the possibility to determine the position and vol-
ume of anatomical structures. In the medical field this is needed to make diagnosis, medical
simulations or different types of treatment planning (preoperative, postoperative, radiation treat-
ment) [39] [50]. A segmentation is defined as an assignment of a label to a voxel that represents
the underlying structure. Depending on the image acquisition technology (Computer Tomog-
raphy (CT), Positron Emission Tomography (PET), MRI), occurring image artefacts make this
task challenging and thus, have to be taken into account in the labeling procedure [39]. Table
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2.2 gives an overview of medical image segmentation techniques divided into four main classes.
Additionally, corresponding methods and examples are listed [39] [5].

• Region-based: These approaches focus on similarities within a region and differences
between regions [39].

• Boundary-based: These methods are categorised into parametric and non parametric
deformable models and are represented as curves or surfaces. Their form is influenceable
by internal or external forces [5].

• Hybrid techniques: These techniques exploit region and boundary-image features [39].

• Atlas based: These approaches estimate image segmentations based on atlases [39].

Supervised vs. Unsupervised

Image segmentation approaches differentiate between manual, annotation-based (supervised) or
automatic methods (unsupervised) [5]. Supervised image segmentation approaches require an
initialisation for defining and placing an initial segmentation model in the image. Manual ap-
proaches require interaction of a user to identify the placement of an initial model. An extended
version of manual initialisation are annotation-based approaches where users mark defined im-
age locations. Thus, it is possible to involve prior knowledge to fit an initialisation model on
to the marked points. Automatic approaches do not need interaction of users. The required
initialisation model is encoded in templates and automatically obtained for example by a Gen-
eral Hough transformation or an atlas (reference model) computation [5]. Subsequently, the
initialisation is performed by automatically registering the estimated template to the image.

Fetal Brain Segmentation Approaches

Fetal brain segmentation approaches are divided into supervised classification and automatic
segmentation based methods [14].
Following approaches use supervised classification for labeling fetal brain tissue: Weisenfeld
et al. [79] use probabilistic atlases for training a classifier for fetal MR tissue segmentation. In
contrast to this, Prastawa et al. [56] use probabilistic atlases as features for classification. Xue
et al. [81] perform non-supervised statistical tissue masking. They use label propagation as a
prior in a Baysian framework.
The following approaches segment images or volumes automatically: Habas et al. [35] pro-
pose an Expectation-Maximization (EM) Framework for building a probabilistic atlas for auto-
matic fetal brain segmentation. Claude et al. [17] focus on automatic atlas-based labeling of
the posterior fossa. Cuadra et al. [4] present a tissue labeling approach using an Expectation
Maximization Markov Random Field (EM - MRF) procedure. Keraudren et al. [40] propose
an approach for automatic segmentation of 2D MR slices for motion correction using Scale-
Invariant Feature Transform (SIFT) and a combination of Maximally Stable Extremal Regions
(MSER) and a Conditional Random Field (CRF). Wright et al. [80] adapt the automatic brain
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Table 4.1: Overview of Medical Image Segmentation Techniques

Method Group Methods Examples
Region-based Thresholding

Region growing
Region splitting
Merging
Clustering k-means

Fuzzy c-mean
Bayesian Maximum Likelihood (ML)

Expectation Maximization (EM)
Maximum a posteriori (MAP)
Markov Random Field (MRF)

Boundary-based Active contour (snakes) Parametric
Geometric active contour Non-Parametric
Level set Edge Stopping Level sets

Energy Minimizing Level Sets
Level Sets Extensions

Discrete Meshes
Particle Systems

Knowledge-Based Active Shape Models (ASM)
Active Appearance Models (AAM)

Deformable Fourier Models
Modal Analysis based
Superquadrics
Graph-Cut Based
External Forces Model Basic Forces (Pressure, Laplacian

Smoothing, Simple Image)
Advanced Forces (Image Intensity Pro-
files, Multiscale Gaussian Potential,
Distance Potential, Dynamic Distance,
Gradient Vector Flow, Omnidirectional
Displacements)
Interactive Forces

Hybrid Levelset with regional forces
Graph cut with regional and
boundary terms
Condition Random Fields

Atlas-based Atlas as average shape Active Shape Models (ASM)
Active Appearance Models (AAM)

Atlas as individual image Registration Methods
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extraction algorithm of Eskildsen et al. [26] for fetal brains. This approach is based on nonlo-
cal segmentation techniques and the resulting segmentations are used to investigate the cortical
folding patterns of fetuses’ brains. Gholipour et al. [30] propose an automatic segmentation
procedure for studying ventriculomegaly using a multi-atlas multi-shape approach.

Relation to this Thesis

This master’s thesis aims to create an automatic tissue labeling framework for fetal brains, since
manual segmentation approaches are time-consuming, need experts and consequently lead to
higher costs [5] compared to automatic approaches. For creating an automatic segmentation
framework, state-of-the-art approaches as introduced in Section 4.2, are atlas-based. For ob-
taining automatisation, the framework introduced uses a diffeomorphic longitudinal atlas as
initialisation of a graph cut based segmentation approach. Apart from the advantage of auto-
matic segmentation, a further benefit of graph cuts is the possibility to perform multiple label
estimation, since a segmentation of two brain structure types (cortex, ventricles) is examined in
this work. For this master’s thesis the CMF formulation is used to define tissue priors between
values 0 and 1, to be able to use the value range of the atlas based prior maps. Thus, the min
cut/max flow formulation which only accepts a labeling value of 0 or 1 is not considered in this
thesis.

4.3 Binary Graph Cuts

An introduction to binary graph cuts is given for a better understanding of the multi label ap-
proach. The aim of binary graph cuts is to segment an image or volume I of size a × b × d in
two regions: foreground and background. Therefore, every pixel x ∈ I , I = {z1, . . . , zm} is
interpreted as a node x in a graph G = 〈V,E〉. V represents the set of vertices in the graph;
V = {X, s, t}: X = {x1, . . . xm} the set of pixel corresponding nodes, a source node s (rep-
resenting the background) and a target node t (representing the foreground). E is the set of
directed edges. Two types of connections exist [8]:

1. t-links: Connections between every pixel node with the source and sink node with a weight
w(x, q), x ∈ X , q ∈ {s, t}. w represents the probability of a node x being background
(q = s) or foreground (q = t). These weights are derived from atlas based segmentations.
T is the set of all t-links.

2. n-links: Interconnections between pixels with a weight w(x, y), (x, y) ∈ X , x 6= y.
w(x, y) represents the probability of the nodes x and y being from different regions. For
these weights a local gradient of the image is used. N is the set of all n-links.

Figure 4.1 illustrates the principle organisation of the graph used. On the left an input image is
presented. In the middle a rough division of the image (representing the pixels) is shown by using
labeled circles. These are used as nodes in the graph and are illustrated in yellow (foreground)
and in blue (background). On the right, for achieving a clearer level of visualisation only the
nodes of one row of the input image are shown. The t-links are marked in black the n-links are
marked in red.
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Figure 4.1: Illustration of the principle of a binary graph cut approach. MR image courtesy of
Medical University of Vienna (MUW).

Min-Cut Problem

For the segmentation of an image into fore- and background, an optimal cut C through the graph
has to be determined such that the nodes are partitioned into two disjoint subsets T (foreground)
and S (background). The cost of a cut is measured by summing up the weights of the cut edges
(t-links and n-links). In Equation 4.1 the mathematical formulation of the cut cost function is
illustrated.

|C| =
∑

x∈X,q∈{s,t}

w(x, q) +
∑

(x,y)∈X,x∈T,y∈S

w(x, y) (4.1)

A cut is interpreted as a binary labeling of pixels in an image, expressed by a mapping function
ul(.): ul(x) = l, l ∈ {0, 1}. Nodes that correspond to the subset S after the cut receive the
label 0 and nodes in the subset T the label 1. Thus, the cost function is rewritten in terms of the
energy of the corresponding labeling function ul(.) as expressed in Equation 4.2 where L con-
sists only of two label types (foreground and background) in the binary case. In a combinatorial
optimisation procedure the min-cut problem is solved by finding the minimum cost term among
all cuts. The maximum flow problem is defined as the determination of a maximum flow from
S to T , that saturates a set of edges in the graph by dividing the nodes into two disjoint subsets
{S, T}. Based on the formulation of these two problems the minimum cut cost is equal to the
maximum flow value from the source to the target [8].

4.4 Multi Label Graph Cuts

In this section the binary graph cut approach, observing two labels, is extended to multi labels.
The task of the multi label approach is to segment an image or a volume I = {pix1, . . . , pixm}
of size m = a× b× d into n regions. In contrast to the binary graph, we have additional target
nodes representing the labels and consequently additional t-link edges connecting the pixels with
each of them. A mapping function ul(.) is used to assign a label l ∈ L = {l1, . . . , ln} to a node
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x ∈ X in the graph. The energy of the multi label mapping function is expressed in Equation
4.2 [8].

E(ul) = |C| =
∑
x∈X

Dx(ul(x)) +
∑

(x,y)∈X

Pxy(ul(x), ul(y)) (4.2)

Dx(ul(x)) stands for the cost for assigning a label l to a pixel node x.
Pxy represents the pairwise interaction potential between neighboured pixels where x, y ∈ X
and x 6= y. The task of multi label graph cuts as well as of the binary graph cut is to find
the minimum cut. There exist different optimization approaches, e.g. the exact multi label
optimization where labels are assumed to be integers in the range L = {1, . . . , n} such that
Equation 4.3 is valid.

Pxy = λ |ul(x)− ul(y)| (4.3)

In comparison to this, the approximate optimization approach uses the Potts model (cf. Section
4.5) where Equation 4.3 is reformulated into Equation 4.4.

Pxy = λxy ∗ Id(u(x) 6= u(y)) (4.4)

Id(.) is the identity function and equals one if its argument is true and zero otherwise [8].

4.5 Potts Models

The Potts model partitions a continuous image domain Ω into n disjoint subdomains {Ωl}where
l ∈ L = {l1, . . . , ln} represents the set of labels for each region and minimizes Equation 4.5
[83]. L denotes the set of labels, x ∈ Ω, |σΩl| is the weighted length of each region Ωl, ρ(l, x)
computes the costs for assigning the label l to the pixel x and λ represents a weighting term.

min
{Ωl}

∑
l∈L

∫
Ωl

ρ(l, x) dx+ λ
∑
l∈L
|σΩl| (4.5)

s.t.
⋃
l∈L

Ωl = Ω, Ωlr ∩ Ωls = {}, lr and ls ∈ L, ∀r 6= s

Convex Relaxation and Partially-Ordered Potts Model

The difference between the Potts model and the convex relaxed Potts model lies in the definition
of the labeling boundaries. Since the Potts model specifies tight labeling boundaries represented
by the labeling function ul(.) in Equation 4.6, the convex relaxed Potts model relaxes the binary
constraints to an interval between zero and one (cf. Equation 4.7)

ul(x) =

{
1, x ∈ Ωl

0, x /∈ Ωl

, l ∈ L = {l1, . . . , ln} (4.6)

∀x ∈ Ω :
∑
l∈L

ul(x) = 1;ul(x) ∈ [0, 1] (4.7)
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If the results of the relaxed convex optimization problem are computed in the continuous im-
age domain Ω, a continuous min-cut model (cf. Equation 4.8) for graph cuts is obtained by
reformulating Equation 4.5 in terms of the labeling function ul(.) used [83].

min
ul∈U

∑
l∈L

∫
Ω
ul(x)ρ(l, x) dx+ α

∑
l∈L

∫
Ω
|∇ul| dx (4.8)

ul(x) . . . labeling function for label l of the corresponding region ΩL

U . . . represents the convex constrained set of labeling functions ul(x),U = {(ul1(x), . . . , uln(x))}∫
Ω |∇ul| dx . . . the perimeter of each disjoint subdomain - determines the pairwise interaction

potential between neighbouring pixels [83].

4.6 Continuous Max-Flow Model

The continuous max-flow model is also dual to the minimum cut through a graph from source to
target, as discussed in Section 4.3 for the max-flow model. It is formulated in a binary as well as
in a multi-label way and the corresponding setup is illustrated in Figure 4.2 for the multi label
case. This formulation assumes n labels. The continuous image domain Ω is copied n times,

Figure 4.2: Example for a setup of a continuous maximum flow formulation with multiple labels:
The unique source flows ps(xj), target flows pi(x) and spatial flows {qi(x)} are marked on the
corresponding edges in the graph. For a clearer visualisation only the nodes (blue and yellow
circles) of one row in an image are illustrated.

where Ω = {Ωi,i = 1 . . . n}. Three flow types (pl(xj), ql(xj) and ps(xj)) are definied for every
position xj in every image copy (xj ∈ Ωi) [83].

• The source flow ps(xj) leads from source to every position xj in every image copy where
ps(xj) is unique, since the same source flow field is assumed for every image copy.
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• The sink flow pi(xj) flows from every position x in every image copy to the target. There
are n different target flow fields p(x) = {pi(x)}, i = 1 . . . n.

• The spatial flow fields q(xj) = {qi(xj)}, i = 1 . . . n are defined within each copy of Ωi

and are different for every image copy.

The flow constraints in Equation 4.9 and 4.10 have to be observed for every position xj in every
copy Ωi of the image domain [83].

|qi(x)| ≤ Ci(x), pi(x) ≤ ρ(li, x), i = 1 . . . n (4.9)

(div qi − ps + pi)(x) = 0, i = 1 . . . n (4.10)

Then the continuous max-flow model is defined as expressed in Equation 4.11.

max
{ps,p,q}

{
∫

Ω
ps dx} (4.11)

4.7 Summary

The aim of this thesis is to provide a labeling framework for fetal brain tissue. Thus, first an
overview of state-of-the-art segmentation techniques is presented in this chapter. The approaches
introduced are divided into region-based, boundary-based, hybrid and atlas based techniques.
Subsequently the difference between supervised and unsupervised labeling is explained and fe-
tal brain segmentation approaches in these fields are summarised. Since manual segmentation
approaches are time-consuming, need experts and consequently lead to higher costs [5], an auto-
matic segmentation approach based on a graph cut formulation is used, which can be initialised
by a diffeomorphic longitudinal atlas. This chapter concludes with an introduction to binary and
multi label graph cuts and presents the Potts Model and CMF based formulation.
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CHAPTER 5
Preliminary Experiments

This chapter documents the preliminary experiments for this thesis. They are performed to test
the behaviour of a state-of-the-art diffeomorphic pairwise registration algorithm, if it is possible
to model the changes of the fetal brain during pregnancy and to investigate which preprocessing
pipeline is required. The same denotation introduced in Section 3.1 and 4.1 is used to document
the preliminary experiments.

The behaviour of diffeomorphic registration of two dimensional fetal brain images is analysed
using the LDDMM algorithm of Davis 1, which is based on the LDDMM formulation proposed
by Beg et. al [6]. They formulate the optimal transformation vector field υ̂ as denoted in Equa-
tion 5.1.

υ̂ = arg inf
υ∈L2([0,1],V )

E(υ) =

 1∫
0

‖υt‖2V dt+
1

σ2

∥∥I0 ◦ φυ1,0 − I1

∥∥2

L2

 (5.1)

‖υt‖V is the expression of the Sobolev norm on the velocity field υt(.) and ‖.‖L2 represents the
squared-error norm. I0 denotes the template and I1 the target image in the range t ∈ [0, 1]. The

geodesic shortest paths are determined by computing
1∫
0

‖υt‖V dt and φυ1,0 stands for the velocity

field dependent diffeomorphic transformation from template at t = 0 to target at t = 1. Beg
et. al [6] use the gradient of the costfunction E(υ) in a gradient descent approach to find the
optimal transformation vector field. The gradient of Equation 5.1 leads to the Fréchet derivative
∇υ, Et in the vector field space V and is expressed in Equation 5.2.

(∇υ, Et)V = 2υt −K
(

2

σ2

∣∣∣Dφυ̂t,1∣∣∣∇I0
t

(
I0
t − I1

t

))
(5.2)

1https://code.google.com/p/iawerksmatlab/source/browse/trunk/Algorithms/
LDDMM/?r=3; [accessed 13-September-2015]
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Instead of calculating a transformation vector field from template to target, two mappings v1 =
φ0,t and v2 = φ1,t are computed:
The first vector field (v1) transforms the template image at t = 0 to a time point t and the
second (v2) transforms the target image at t = 1 to the same time point t. Subsequently, the
resulting transformed images I0

t = I0 ◦ φt,0 and I1
t = I1 ◦ φt,1 are compared and the difference

is determined. K denotes a compact self-adjoint operator. Since the Sobolev norm has to be
obtained in space V and the squared error norm in space L2, K enables V to be defined through
a differential operator L. Assuming that a and b are smooth vector fields in vector space V , and
L† is the adjoint of L, we receive the following constraints concerning K [6]:

• K(L†L)a = a

• 〈a, b〉L2 = 〈Ka, b〉V

This formulation enables to achieve an optimisation solution in the space of vector fields V [6]
and is necessary to include results of one optimisation step in the update of the transformation
vector field vn+1 = vn− ε∇vnE after each iteration. ∇I0

t is the gradient of I0
t and φt,1.

∣∣Dφυ̂t,1∣∣
denotes the determinant of the Jacobian D. The analysed algorithm of Bradley C. Davis uses
the formulation of the costfunction by Beg et al. [6]. The algorithm first loads the template and
the target image and initialises the following parameters:

• σ: Weights the smoothed velocity field in the gradient energy computation

• ε: Weights the gradient energy in the velocity update equation

• α, β and γ: Determine the smoothing of the velocity fields.
The values are by default: α = 0.5, β = 0, γ = 1.

• maxIter: Defines the maximum number of iterations

• N: Defines the smoothness steps of the vector field at one iteration step from time point
zero to time point one.

• I0 and I1: Template- and target image for pairwise registration.

• v (optional): Requires an initial vector field or zero value as input. In case of zero, the
vector field is initialised by zero values.

In every iteration step the template image and target image are transformed by the current vector
field. After this step the similarity between these two transformed images is measured and the
Fréchet derivative of the cost function is calculated. According to the computational results, the
vector field is updated and a new iteration step is entered till the predefined maximum number
of iterations is reached. After termination the algorithm has the optimised transformation vector
field as an output.

The following four experimental groups are executed to analyse the behaviour of the algorithm:

1. Experiments regarding the composition of vector fields (cf. Section 5.1)
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2. Experiments regarding alignment (rotation, translation, scaling) (cf. Section 5.2)

3. Analysis regarding the dependence between registration result and the GW differences of
source and template image used (cf. Section 5.3)

4. Experiments regarding the initialisation of registration procedures (cf. Section 5.4)

Every experiment is based on a research question which is answered in its documentation. To
determine the quality of the registration, the similarity between the transformed template and the
target image is measured by computing the DC [22] as expressed in Equation 5.3, where P (.)
denotes the set of segmentation corresponding pixels, IT0 the transformed template image and I1

the target image. It is assumed that IT0 and I1 have the same image size.

DC(IT0 , I1) =
2 ∗ (P (IT0 ) ∩ P (I1))

P (IT0 ) ∗ P (I1)
(5.3)

5.1 Experiment 1: Analysis Regarding the Composition of Vector
Fields

The following research questions are answered in this experiment:
"Is it possible to use a composition of a forward and an inverted backward transformation, which
is estimated by registering source and target to an average image? Is it possible to use this com-
posed deformation to map a source image to a target image directly?"

The following parameter setting is used:
N=15, σ=0.09, ε=0.001, [α,β,γ]=[0.5, 0, 1], v0=[ ].

In experiment 1, two composition methods for calculating the DC of the registration results
are compared. The algorithm outputs a forward v1 and a backward v2 transformation from
source and target to an average image. For computing the DC two methods are considered in
this experiment and illustrated in Figure 5.1:

• Method 1: This method is illustrated at the top of Figure 5.1 and transforms the source
image at time point 0 by the deformation v obtained by the composition of v1 and −v2

(I0
1 = (I0 ◦ v1) ◦ −v2)). The DC is computed using the target I1 and transformed source

I0
1 image as input.

• Method 2: This method is illustrated at the bottom of Figure 5.1. Two estimated transfor-
mations v1, v2 are used to compute average images at a time point t. For calculating the
DC a transformed source image (I0

t = I0 ◦ v1) and a transformed target (I1
t = I1 ◦ v2)

image at time point t are compared.

For this experiment images with a GW difference of less than five GWs (image No. 19 (GW 19
day 2) and image No. 22 (GW 23 day 4)) and with a GW difference of twelve weeks (image
No. 31 (GW 18) and image No. 39 (GW 30)) are used.
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Figure 5.1: Schematic illustration of the two methods how DC computation is performed for
experiment 1.

Results: In Figure 5.2 the results of experiment 1 are shown. Method 2 scores a higher DC
than method 1, independent from the GA difference of the registered images. This fact is ex-
plained by the structure of the algorithm of Bradley C. Davis which optimizes the vector field
based on the comparison using Method 2.

Figure 5.2: Results of experiment 1 using images with GW difference of less than five weeks
and a GW difference of 11 weeks.
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5.2 Experiment 2: Analysis Regarding the Preprocessing of
Template and Target Images

The second group of experiments investigates the behaviour of the LDDMM registration ap-
proach in case of existing alignment relations between template and target image. Binary 2D
images are created by using the software introduced in Section 6.2. Instead of comparing two
transformed pictures at a time point t, as described in Section 5.1, only the template image I0

is transformed from time point t=0 to t=1. Therefore the resulting vector fields v1 and v2 are
used: I0

1 = (I0 ◦v1)◦−v2). For calculating the DC, the transformed image I0
1 is compared with

the target picture I1. The results of this comparison are visualised using labeled images which
illustrate True Negative (TN) pixels in dark blue, True Positive (TP) pixels in light blue, False
Negative (FN) pixels in yellow and False Positive (FP) in dark red.

Rigid Alignment

The following research questions are answered in this experiment:
"Does alignment as preprocessing step improve the DC if two 2D binary brain images are reg-
istered using LDDMM? Is it possible to model rotational and translational mapping behaviour
of vector fields using LDDMM?"

The following parameter setting for the alignment experiment is used:
N=10, σ=0.09, ε=0.001, [α,β,γ]=[0.5, 0, 1], v0=[ ].

Results: In Figure 5.3 in the first row the LDDMM registration result of two non rotated, non
centred or aligned pictures is shown. Image No. 1 (GW 26 days 2) and image No. 3 (GW 26
days 2) are used to create binary brain images. No alignment leads to gradual disappearance
of the template image (i.e. rising number of background pixels), caused by the behaviour of the
algorithm. The parametrisation of external and internal forces are able to execute local transfor-
mations. Instead of moving the template image in the direction of the target image, the external
forces compress the picture. The algorithm is not able to provide a vector field that contains
translational information. Since no alignment is achieved, consequently a DC of 0.0 is scored.
In the second row of Figure 5.3 the registration result using two rotated and horizontally but
not vertically aligned pictures is shown. As template and target image No. 1 (GW 26 day 2)
and image No. 2 (GW 26) are used. The missing vertical alignment leads to a widening of the
InterHemispheric Fissure (IHF). According to the illustrated TP pixels in the brainstem region,
it is concluded that it is possible to register the brainstem of the template to the brainstem form
of the target. In total a DC of 0.8 is reached after 60 iteration steps. In the third row of Figure
5.2 the result of two rigidly aligned images is presented. Rotated, centred and aligned images
are used: image No. 1 (GW 26 day 2) and image No. 2 (GW 26). After 60 iterations a DC of
0.97 is reached. According to these results, all images in the dataset are preprocessed to be in
rigid alignment.
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Figure 5.3: Illustration of experimental results regarding the rigid alignment of template and
target images. The first row illustrates the registration result of two non rotated aligned cen-
tred pictures. The second row shows the registration result of two rotated horizontally but not
vertically aligned pictures. The third row represents the registration results of two rigid aligned
pictures. TN pixels are marked in dark blue, TP pixels in light blue, FN pixels in yellow and FP
pixels in dark red.

Image Scaling

The following research questions are answered in this experiment:
"Does the scaling of two binary 2D brain images influence the quality of the registration? Which
image properties are influenced by the parameter σ?"

The following parameter settings are used:

1. Setting: N=30, σ=0.090, ε=0.001, [α,β,γ]=[0.5, 0, 1].

2. Setting: N=30, σ=0.05, ε=0.0002, [α,β,γ]=[0.5, 0, 1].

The following analysis shows the quality of registration of scaled and non-scaled images. Trans-
formation method 1 (I0

1 = (I0 ◦v1)◦−v2) is used for calculating the DC. The algorithm models
differences in scaling or local detail between source and target image, dependent on the param-
eter σ. It is responsible for the weighting of the smoothed velocity field in the gradient energy
computation. Thus, two runs of LDDMM with a different σ (weight of the smooth vector field)
and ε parameters (weight of the gradient of the cost function) are considered when registering
non-scaled images. Therefore, the first run uses the parameter setting 1: 0.09 for σ is used for
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compensating the differences between shape size. The resulting optimized velocity field is used
as initialisation of the second run with parameter setting 2: a different value of 0.05 for σ is used
to register details in brain structure like the cortical foldings. For registering scaled images only
one run of the algorithm with parameter setting 2 is performed.

Results: The results are visualised in Figure 5.4. On the right the DC as function of the it-
eration step is illustrated. The first (green) and second (red) run for non-scaled images as well
as the single run (blue) for scaled images are illustrated. In the first column the template images
I0 and in the second column the target images I1 are presented. In the third column the similar-
ity between transformed template and template image is illustrated using a labelled image. TN
pixels are marked in dark blue, TP pixels in light blue, FN pixels in yellow and FP in dark red.
The first case shown at the top of Figure 5.4 uses images with a GW difference ≥ five weeks:

Figure 5.4: Illustration of experimental result regarding the analysis of the differences between
using scaling and non-scaling as preprocessing step. TN pixels are marked in dark blue, TP
pixels in light blue, FN pixels in yellow and FP pixels in dark red.

Image 26 (GW 22 day 5) and image 46 (GW 29 day 5). The DC is 0.88 in the scaled case and
0.86 in the non-scaled case converging to value 0.87 for scaled and non-scaled images. The cor-
responding labeled image shows that the deep cortical foldIHF is registered in a more detailed
way using non-scaled images than scaled ones.
The second case is shown below in Figure 5.4 and uses images with a GW difference ≤ five
weeks: Image No. 34 (GW 21 day 5) and image No. 25 (GW 20 day 6). At iteration step 200
the DC of scaled and non-scaled pictures converges to 0.94. The corresponding labelled image
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shows a more detailed registration using non-scaled images compared to scaled pictures.

5.3 Experiment 3: Analysis Regarding the Dependence Between
GW Difference and Registration Result

The following research question is answered in this experiment:
"Is there a relation between the DC and the GW-difference of pairwise-registered binary brain
images?"

The following parameter settings are used:

1. Setting: N=15, maxIter=100, σ=0.09, ε=0.003, [α,β,γ]=[0.5, 0, 1].

2. Setting: N=15, maxIter=50, σ=0.05, ε=0.0002, [α,β,γ]=[0.5, 0, 1].

All images in the dataset used are rigidly aligned and scaled to a fixed cortical radius size of 60
pixels. In Table 5.1 the image number in the dataset and the corresponding gestational age in
GWs and in GDs are summarised. Transformation method one (cf. experiment 1 in Section 5.1)

Table 5.1: Illustration of image numbers (No.) used in the dataset and corresponding gestational
age expressed in gestational weeks.days (GW.D) and in gestational days GD.

Image No. 31 44 43 35 25 30 20
GW+D 18 19.3 19.6 20 20.6 20.6 21.3
GD 126 136 139 140 146 146 150

Image No. 21 19 34 29 23 32 17
GW+D 21.4 21.5 21.5 22 22.2 22.4 22.5
GD 151 152 152 154 156 158 159

Image No. 26 18 22 16 33 24 6
GW+D 22.5 23.3 23.4 24 24.2 24.3 24.4
GD 159 164 165 168 170 171 172

Image No. 12 8 2 1 3 9 10
GW+D 25.4 25.5 26 26.2 26.2 26.4 27
GD 179 180 182 184 184 186 189

Image No. 4 14 5 27 36 11 28
GW+D 27.2 27.2 28 28 28.1 28.3 28.4
GD 191 191 196 196 197 199 200

Image No. 38 45 37 46 39 7 40
GW+D 29 29 29.3 29.5 30 30.2 30.2
GD 203 203 206 208 210 212 212

is used to calculate the composition of the vector fields. For images with a GW difference greater
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Figure 5.5: Dice coefficient matrix. The dataset used is rigidly aligned and scaled. For im-
ages with a GW difference greater than five weeks the following parameters are used: N: 15,
iterations: 100, ε: 0.003 and σ: 0.09. For a GW difference smaller than five weeks, the same
parameters are used for N, ε and σ. The iterations are set to 50 to reduce computation time.

than five weeks parameter setting 1 is used. The difference between the sets lie in the number
of iterations. For registering images with a GW difference smaller than five weeks parameter
setting 2 with 50 instead of 100 iterations is used to reduce computation time.

Results: Figure 5.5 illustrates the DCs of the pairwise registration of the images in the dataset.
The computation and visualisation of a DC matrix makes it possible to investigate relations be-
tween registration quality and GW difference. Due to the age dependent increase of the local
variability of the cortex, a rising DC is expected with increasing GW difference between the
two registered images. In this experiment no rising of DC at the extremes of the gestational age
range is observed. Due to the GW-difference dependent parametrisation of the iteration steps
clear boundaries between GW 22 and 22.2 are visible as well as between GW 24.4 and 25.4.
Pairwise registration involving images with No. 44 (GW 19 day 3), 35 (GW 20), 32 (GW 22
day 4), 26 (GW 22 day 5) and 27 (GW 28) shows a more than three times lower DC than 0.9,
compared to the remaining images in the dataset. Figure 5.6 illustrates the affected images. The
difference between the images shown and the remaining ones in the dataset is the appearance of
the brain-stem (tail) structure on the lower part of the image. Registering an image with visu-
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Figure 5.6: Illustration of images that achieve a more than three times lower DC than 0.9 in
pairwise registration procedures.

alised brain-stem to a non visualised brain-stem structure, requires a different parametrisation of
the smoothing of the velocity field, i.e. α, β and γ have to be adjusted for being able to model
the brain-stem ’tail’.

5.4 Experiment 4: Analysis Regarding the Initialisation of
Combination of Registration Procedures

The following research questions are answered in this experiment:

"Is it possible to pairwise register unmasked gray value fetal brain images and is there a differ-
ence if a brain or box mask is used? Is it possible to use the vector field that has been learned
by registering gray value images to transform the corresponding binary source image or to ini-
tialize the registration procedure of binary images?"

The following parameter settings are used:

1. N=30, maxIter=50, σ=0.09, ε=0.0009, [α,β,γ]=[0.5, 0, 1]

2. N=15, maxIter=50, σ 0.09, ε=0.001, [α,β,γ]=[0.5, 0, 1]

In this experiment gray value images as well as the corresponding binary images are used. The
images are rigidly aligned and scaled to a fixed cortical radius size of 60 pixels. In Figure 5.7 the
result of the experiment is shown. Image No. 44 (GW 19 day 3) and image No. 9 (GW 26 day
4) with a GW difference of more than 5 weeks are used. First, the two gray value pictures I0g
and I1g are loaded and a corresponding vector field is learned, using the parameter setting 1.
The blue curve in Figure 5.7 illustrates the corresponding DC results over the iteration and the
labelled image at iteration step 50. The vector field obtained acts as initialisation vector field for
registering the corresponding binary images I0s and I1s. This procedure is made to analyse the
possibility to obtain a vector field for binary images computed from gray values. This approach
is compared to a registration approach with binary images without computing an initialisation
vector field using parameter setting 2. The red curve in Figure 5.7 shows the corresponding DC
results over the iteration and the labeled image at iteration step 50. The DC of the gray value
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Figure 5.7: Vector field optimisation based on non masked gray value images (I0g,I1g), as
initialisation for the registration of the corresponding binary scaled images (I0s,I1s). Picture
44 (GW 19 day 3) and 9 (GW 26 day 4) are used.

approach (blue curve) shows no significant DC differences over the iteration steps in comparison
to the binary case (red curve). A reason for this result is the influence of the surrounding mother
tissue on the registration. In a next step the mother tissue is excluded using a box and a brain
mask to investigate its influence on the quality of registration. The results show that the opti-
mised vector field based on masked gray value images is not able to transform the corresponding
binary image to the binary target. The DC shows no value over 0.9 as well as the blue curve in
Figure 5.7, also after excluding the surrounding tissue.

In the next part of the experiment, images containing all annotation labels instead of gray value
images are used to learn an initialisation vector field to register the binary images. The images
are rigidly aligned and scaled to a fixed cortical radius size of 60 pixels. In Figure 5.8 the reg-
istration results using annotations are shown. Top left image No. 31 (GW 18 day 0) and image
No. 40 (GW 30 day 2) are illustrated. The corresponding DC results over the iteration are shown
top right. On the bottom left image No. 39 (GW 30 day 0) and image No. 43 (GW 19 day 6)
are presented. The corresponding DC results over the iteration are shown on the bottom right.
The registration of a brain at GW higher than 30 on a brain at GW lower than 19 weeks and
vice versa show in both cases that a DC between 0.85 and 0.9 is achievable, when initialising
the registration of binary images with a vector field, learned on annotations. This is less than
registering the binary images directly, which achieves a DC of 0.93.
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Figure 5.8: Vector field optimisation based on scaled image annotations as initialisation for the
registration of the corresponding binary scaled images.

5.5 Summary

This chapter summarizes the preliminary experiments, which are performed to test the regis-
tration possibilities of fetal brains using a state-of-the-art diffeomorphic pairwise registration
algorithm. Experiments regarding the composition of vector fields, the alignment, the depen-
dence between registration results and GW differences of source and template image used and
the initialisation of registration procedures are documented. The observed result leads to the
conclusion that a composition of a forward and a backward transformation, which are estimated
by registering source and target to an average image, can be used to map a source image to
a template image directly. The experiments regarding the preprocessing show that for the dif-
feomorphic registration of fetal brain images rigid alignment (translation, rotation) and image
masking is necessary, but the algorithm is able to model scaling transformations using a two
step parametrisation procedure. The experimental results show that no relation between the DC
and GW-difference of pairwise registered binary brain images is observable. The last group of
experiments documented in this chapter shows that it is possible to use a vector field learned on
gray-value images to initialise the registration procedure of binary images.
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CHAPTER 6
Automatic Tissue Labeling Framework

This chapter gives an overview of the structure and functionality of the developed automatic
tissue labeling framework which represents the solution to the following problem:

Is it possible to automatically compute cortex and ventricle segmentations of MR images of
fetal brains between GW 18 and GW 30 using geodesic regression and graph cuts?

Figure 6.1 illustrates the proposed framework, which automatically segments ventricle and cor-
tical tissue (OUTPUT) of a fetal brain MR volume (INPUT). First the input gray value image
Inew at time point tnew is preprocessed. Subsequently, the longitudinal diffeomorphic fetal brain
atlas (red) is used to estimate a time point corresponding diffeomorphic transformation for com-
puting an time-dependent intensity image IA and a time-dependent segmentation for ventricular
and cortical tissue StissueA in atlas space (red). In a pairwise registration procedure a transforma-
tion T from the new image Inew to the atlas-based intensity image IA is estimated. The inverse
of the computed transformation T−1 is used to transform the atlas based segmentations StissueA

to the subject’s space (StissueA ◦ T−1 = StissueGC ). As next step the transformed segmentations
StissueGC (blue) and Inew are used as input parameters for the multi label graph cut segmentation
refinement. The output of the framework are segmentations for ventricular and cortical brain
tissues Stissuenew of the input image Inew.

The MRI acquisition setup of the dataset used to learn the atlas is documented in Section 6.1.
Based on the analysis of state-of-the-art approaches (cf. Chapter 2) and the results obtained of
the preliminary experiments (cf. Chapter 5) a preprocessing pipeline for fetal brains is created
and introduced in Section 6.2. The Atlas learning routine and corresponding analysis introduc-
ing three different registration schemes are explained in Section 6.3. The parametrisation of
the graph cut approach and corresponding analysis are documented in Section 6.4. The same
denotation introduced in Section 3.1 and 4.1 is used in this chapter.
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Figure 6.1: Fetal brain tissue labeling framework.
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6.1 MRI Acquisition Setup

The proposed tissue labeling framework is evaluated using an image time series MRI dataset
consisting of 46 healthy fetal brains. The gestational age lies between the 18th and 30th GW.
The MR image acquisition is performed using an 1.5 Philips Gyroscan superconducting unit
scanner performing a single-shot, fast spin-echo T2-weighted MR sequence. The corresponding
setup is summarized in Table 6.1.

Table 6.1: Setup of the single-shot, fast spin-echo T2-weighted MRI sequence

Scanner Philips Gyroscan superconducting unit, 1.5 Tesla
In-plane resolution 0.78-0.9 pixels per mm
Slice thickness 3-4.4mm
Acquisition matrix 256×256
Field of view 200-230mm
Specific Absorption Rate (SAR) < 100%/4.0W/kg
Image acquisition time ≤ 20s, TE (Echo Time) 100-140ms, TR (Repetition

Time) 9000-19000ms

Figure 6.2 shows examples of extracted 2D slices at different GWs of the dataset used (the
abbreviation D stands for gestational days). The fetal brains in the slices are neither aligned
according to a certain position nor rotated for obtaining the same orientation. Also the mother
tissue is not excluded.

Figure 6.2: MRI slices of healthy fetuses between GW 18 and GW 30 GD 2 of the dataset for
2D analysis. MR images courtesy of Medical University of Vienna (MUW).
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6.2 Preprocessing

For this master’s thesis the atlas learning as well as the graph cut segmentation are analysed in
2D as well as in 3D.

The 2D image dataset used for analysing the behaviour of the diffeomorphic registration frame-
work and geodesic regression algorithm is created by extracting slices at the same position of
the MR 3D volumes of different healthy fetuses as well as at the corresponding annotations. For
producing the required images (binary, gray value) for performing analysis in 2D, a Graphical
User Interface (GUI) is programmed using MATLAB. With this application it is possible to load
2D annotation images as well as gray value images. In the annotation case also a binary image
can be created. To this aim, the user choses which structure (cortex, ventricle, both) should
appear as foreground. With both image types it is possible to center, rotate and scale the fetal
brains. By clicking on the button "New Selection" six points are selected. For rotating an image
a rotation vector is needed, which is described by the first two selected points. They have to
lie on an axis and are marked at the end of the brain stem and the deepest point of the IHF.
Figure 6.3 illustrates the GUI of the preprocessing software. The last four points are marked in

Figure 6.3: GUI of the preprocessing software. This screenshot shows a loaded annotated picture
and two circles around the fetal brain (red...current size, blue...scaled size) which visualize the
resize factor if the image is scaled.

a circular way around the brain. According to the selected positions, a circle around the fetal
brain, its radius and its middle are estimated. In the centering procedure (started by the button
"Move to Center") the image is shifted by moving the computed central point towards the mid-
dle pixel of the image. After pushing "Rotate" the picture is rotated through an angle which is
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determined by the previously defined rotation axis around the middle of the image. For scaling
an image, the estimated radius of the circle is used to resize all brains to a fixed radius size
of 60 pixels. The button "Cut" cuts the preprocessed images to the fixed size 181 × 181, by
preserving the middle point position. The Gaussian smoothing operation is started by pressing
"Smooth" and choosing a value for the σ parameter. An unsmoothed version of the picture is
always kept in the background. The smoothed as well as the unsmoothed picture are stored by
pushing "Save Image". For documentation issues and traceability of the preprocessing changes
all preprocessing parameters are stored in a textfile. The user interface is able to load these files
(Button "Load Parameters") and to transform and store images (Button "Transform Image") by
the same protocol.

The acquired 3D MR images are preprocessed using the pipeline illustrated in Figure 6.4. First

1. Motion 
Correction

2. Image 
Annotation

3. Rigid 
Alignment

4. Masking 5. Cropping

Figure 6.4: Preprocessing pipeline for fetal brain MR volumes

the images are motion corrected using the toolkit for fetal brain MR images published by
Rousseau et al. [60]. Subsequently the annotation of the following brain structures is manually
performed by an expert in the dataset used: Cortex, left and right eye, ventricle and occipital
foramen magnum. According to the analysis of the longitudinal registration algorithm used,
rigid alignment of the volumes is required. Therefore, a triangle is assumed between the point
where the skull ends (occipital foramen magnum (O)), the midpoint of the left (L) and the right
eye sphere (R) (cf. Figure 6.5). Figure 6.6 illustrates the position of the triangle before and after

Figure 6.5: Three point estimation for rigid registration. Left image modified from [23].

the alignment procedure. For rigid alignment the barycenter (B) of the computed triangle and the
corresponding normalvector (N) are calculated. Subsequently, the segmentations are translated,
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so that the barycenter of the estimated triangle lies in the origin. For rigid alignment following

Figure 6.6: Rigid alignment using barycenter and corresponding normalvector, for estimating
translation and rotation parameters.

constraints have to be satisfied after rotating the MR volumes: the normalvector coincides with
the y-axis of the coordinate system and the point O has to lie on the x-axis (cf. Figure 6.6). The
estimated alignment parameters of the segmentations are applied subsequently in the alignment
procedure of the gray value volumes. After alignment, the surrounding mother tissue is excluded
in a masking preprocessing step. For reducing computational costs in the longitudinal registra-
tion procedure volume cropping is performed, by transforming the aligned data to a uniform
size of 90 × 140 × 140 voxels. Therefore, a bounding box is computed, integrating all images
in the dataset.

6.3 Learning a Continuous Model of Fetal Brain Development

For learning a continuous model of fetal brain development a longitudinal geodesic regression
algorithm is analysed. This section starts with an introduction to the algorithm used and sub-
sequently three different longitudinal registration schemes are presented and analysed in 2D.
Corresponding analysis and evaluation results in 3D are presented in Chapter 7.

The Geodesic Image Regression Algorithm

The algorithm used for (DARTEL) Diffeomorphic Anatomical RegistraTion using Exponential
Lie algebra of Ashburner et al. [2] [1] for geodesic regression is integrated in the Statistical Para-
Metric (SPM) tool box - release SPM8 1. In the course of this master’s thesis it is modified with
respect to the usage of brain images of fetuses. The longitudinal registration algorithm needs
three input parameters to compute an optimised time-dependent velocity field: A normalised im-
age dataset of N images sorted in ascending order by GA in days, an integer array t containing

1http://www.fil.ion.ucl.ac.uk/spm/; [accessed 13-September-2015]
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the GA in days of the corresponding images in ascending order and a set of parameters options
(cf. Table 6.2). The algorithm initialises with a consistency check of input parameters and sub-
sequently performs image regression using different voxel resolutions. The resolution levels are
increased iteratively. The results of every resolution level are added as last computation part of
this algorithm. For every resolution the following procedure is executed:

• Loading of current resolution information and resampling data to current resolution

• Calculation of the age range for the dataset, time span between images and greatest com-
mon divisor to obtain regular sampled time points, taking into account that all the data in
the dataset are included. Estimation of amount of observed time points through the dataset
(multiple represented time points are counted as one).

• Precomputation ofK by Fast Fourier Transformation (FFT) of the kernel of deconvolution
using function spm-shoot-greens. K acts at the derivation of velocity from momentum
as smoothing operator.

• Computation of internal representation with functions bsplinc, bsplins that estimate an
initial velocity field using B-splines.

• Gauss-Newton optimisation of v0

Gauss-Newton Optimisation

The Gauss-Newton optimisation procedure requires as input parameter the dataset, the options
and the parameters representing the internal representation. For every iteration step iter =
1, . . . , numIter, the cost function expressed in Equation 6.1 is minimized in the following
procedure:

• Computation of the current forward deformation ϕtN from source It0 to target ItN , its Ja-
cobian determinant |JtN | and tensor, gradient giter and HessianH iter, and the transformed
image of the iteration step Iest(tN ).

• Computation of the cost function E (cf. Equation 6.1) [2].

Eiter =
1

2

∥∥∥L†Lv0

∥∥∥2
+

1

2

N∑
i=1

( ∫
x∈Ω

‖It0 − Iti(ϕti)‖
2 dx

)
(6.1)

• If Eiter is worse than Eiter−1, then decrease ε, where ε represents a scaling parameter to
prevent overshooting updates.

• Update of v0 using Equation 6.2.

viter+1
0 = viter0 − ε(K−1 +H iter)−1

(K−1viter0 + giter) (6.2)
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Computation of the time dependent deformation field ϕtN
The time dependent deformation field ϕtN is computed between the images representing the ex-
tremes of the gestational age range of the dataset (source It0 and target ItN ) as illustrated in Fig-
ure 6.7. First the initial momentum m0 is derived from the initial velocity field (m0 = K−1v0)

Figure 6.7: Schematic illustration of estimating the deformation ϕtN , which maps the target ItN
to the source I0, considering N images Itn at time points tn in the dataset, where n=1,. . . ,N.
ϕtn and δtn denote the forward and backward deformations of the image Itn at time point tn.
The forward transformed image Itn is denoted as Iest(tn).

and ϕt0 is set to the identity transformation. In a second step the forward transformation ϕtN ,
which deforms the target image to Iest(tN ), is computed: For every image n in the dataset a
backward transformation δtn−1 is estimated. For computing the forward transformation ϕtn
from the current observed image Itn to the source I0, the following composition is made:
ϕtn = ϕtn−1 ◦ δtn−1 . Subsequently, its Jacobian tensor and determinant are estimated to check
if the diffeomorphic constraint is preserved. For calculating Iest(tn), the observed image Itn
is deformed by the estimated forward deformation ϕtn [2]. After the computation of the time-
dependent vector field ϕtN , the approximations of its gradient g and Hessian H are estimated.

Definition of Registration Options

For understanding the behaviour of longitudinal registration using geodesic regression, first the
optimal parametrisation of the algorithm has to be estimated. Therefore, a short overview of the
influence of the used parameters is given and illustrated in Table 6.2. The left column expresses
the name of the parameter, the middle column the data type and in the right column a short
description is given.
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Table 6.2: Option parameters for the regression algorithm

Parameter Data type Explanation
M Logical Matrix Image mask
visu Boolean Visualization flag
numIter Integer Maximum number of iterations to perform
epsilon (ε) Double Gradient descent step size
voxSize Integer array of size 1× 3 Voxel size
ker _ type Integer between 0 and 2 0: linear elastic, 1: membrane (Laplacian), 2: bend-

ing (biharmonic/thin plate)
ker _ args Double array of size 1× 5 Vector field regularisation parameters
fmg _ args Integer array of size 1× 3 Full Multi Grid (FMG) arguments: # integration

steps, # cycles, # iterations
spl _ deg Integer Spline degrees
wrapDim Boolean array of size 1×3 Wrapping on/off in x/y/z direction
maxStepLen Integer Minimal temporal resolution
mc Integer Multichannel flag to discriminate between 3D and

2D multichannel
v0 Double matrix Previously computed vector field for initialising a

warm-starting registration
Tolit Double Return if change in energy is smaller than ’min-

Change’*100
mineps
(εmin)

Double Minimum optimization step

maxeps
(εmax)

Double Maximum optimization step

pltSl Boolean Which slice to plot, necessary if 3D images are used,
in 2D pltSl=1

nRes Integer Number of resolution levels
solver Boolean Which solver to use. 0: DARTEL, 1: MATLAB
optimizer Integer between 0 and 2 Which optimizer to use. 0: Gauss-Newton, 1:

Hamiltonian Markov Chain, 2: Stochastic Newton
(Markov Chain Monte Carlo (MCMC))

Parameters epsilon (ε), epsmin (εmin) and epsmax (εmax)
The parameter ε influences the speed of convergence and the stability of the algorithm. The min-
imizing of the ε parameter (gradient descent step size) leads to a faster convergence, but the
stability of the algorithm decreases [1]. Additionally, the minimum and maximum optimiza-
tion step (εmin,εmax) are defined for being able to weight the optimisation result of an iteration.
The weighting parameters change depending on the result of the computed cost function and lie
in the defined range between εmin and εmax.
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Parameter wrapDim
The parameter wrapDim handles the boundary condition and influences the wrapping of func-
tions around the boundary, i.e. a disappearing point on the left side appears again on the right
side of the image [1].

Parameters ker_ type, ker_ args and voxSize
The velocity field u(x) at position x is parametrised using a linear combination of i basis func-
tions. Such basis functions consist of a vector of coefficients ci and a ith first degree B-spline
basis function ρi(x) (cf. Equation 6.3) [1].

u(x) =
∑
i

ciρi(x) (6.3)

Aim of the DARTEL implementation is to estimate an optimized parameterisation of c. The
energy cost term E in Equation 6.1 is reformulated in terms of finding the coefficients of c for a
given datasetD with maximum probability (cf. Equation 6.4). A maximization of the probability
leads to the minimization of its negative logarithm and thus, is used to interpret registration of
dataD as a minimization procedure of the objective functionE. It consists of a prior termE1(c)
and a likelihood term E2(c) and is expressed in Equation 6.5 [1].

E(v) = E1(c) + E2(c) (6.4)

− log p(c,D) = − log p(c)− log p(D|c) (6.5)

• Prior term (− log p(c))
The prior term denotes the prior probability p(c). In this approach an inverse of a covari-
ance matrix K is used to encode the variability in all spatial locations. Three different
models for K are implemented. The models differ in influencing the deformations and
how they interpolate between features in the images. With the parameter ker _ type a lin-
ear elastic model, a membrane energy model (Laplacian model) or a bending energy model
(biharmonic, thin plate) are chooseable. The chosen model is regularized by the parame-
ter ker _ args [λ1, λ2, λ0, µ, λ] and influences the bending energy, stretching, sharing (not
rotation) as well the divergence and amount of volumetric expansion or contraction [1].

– λ0 encodes the penalisation of absolute displacements.

– λ1 penalises the difference between two neighboured vectors by observing the first
derivatives (linear term) of the displacements.

– λ2 penalises the difference between the first derivatives of two neighboured vectors
by observing the second derivatives of the displacements.

– λ denotes the variability of the spatial locations (divergence of each point in the
flow field) with a constant value. Increasing λ leads to increasing smoothing of the
flow vector field and preserves volumes during the transformation.

– µ encodes the variance according to symmetric components, rotations and the pe-
nalisation of scaling and shearing.
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The parameter voxSize [δ1δ2δ3] represents the height, width and depth of a voxel and has
to be defined as well.

• Likelihood term (− log p(D|c))
The likelihood term encodes the probability of c given the dataD [1]. It represents the im-
plementation of a mean-squared difference measure between a warped template deformed
by the calculated transformation and the target image (cf. Equation 6.6).

E2 =
1

2

N∑
i=1

( ∫
x∈Ω

‖It0 − Iti(ϕti)‖
2 dx

)
(6.6)

Parametrisation of the Full Multi Grid (fmg_args)

A Full Multi Grid (FMG) approach is used to solve the equation (cf. Equation 6.2) which is
needed to update the vector field during its optimising procedure. Therefore, the images are
observed in different scales. For every resolution level multigrid methods recursively estimate
the field, starting at the coarsest scale and computing the residual to solve the update equations
on the current grid. Subsequently, the solution is prolongated to the next finer grid [1].

Longitudinal Registration Experiments using Geodesic Regression

The challenge of longitudinal registration of fetal brains lies in finding a suitable regularisation of
the time dependent vector field to model the increasing cortical folding between GW 25 and 30
[80] and the changes in brain size. In the scope of this master’s thesis, an initialisation procedure
for computing time-dependent vector fields and three different longitudinal registration schemes
are created and analysed. The DC is calculated using the manual brain structure segmentation of
the gray value input image and the corresponding estimated atlas-based segmentation at the same
gestational age. Table 6.3 shows the eight different regularisation kernels used for analysing the
regularisation of longitudinal registration.

Table 6.3: Parametrisation of the kernels No.1-8 used for analysing the regularisation of longi-
tudinal registration.

Kernel No. λ1 λ2 λ0 λ µ

1 0.01 0.01 9e−6 1e−5 1e−5

2 9e−6 9e−6 9e−6 0.01 1e−5

3 1e−3 9e−6 9e−6 1e−3 1e−5

4 0.01 9e−6 9e−6 0.01 1e−5

5 9e−6 1e−5 9e−6 1e−5 1e−5

6 9e−6 0.01 9e−6 0.01 1e−5

7 0.01 0.01 9e−6 0.01 1e−5

8 1e−4 1e−4 9e−6 1e−5 1e−5
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Longitudinal Registration Scheme 1

The first longitudinal registration scheme observes the longitudinal registration behaviour us-
ing a cascade procedure to estimate an initial vector field. The precomputed velocity field is
parametrised by the amount of initialisation levels used. Figure 6.8 illustrates the analysed
initialisation cascade. Every level l = 1 . . . N uses gray value data at the extremes of the
age range (t0: GW 18 and t1: GW 30 day 2) and at x

2N
regular sampled time points, where

x = 1, . . . , (2N − 1). The resulting time dependent vector field of a level is used to initialise

Figure 6.8: Illustration of the initialisation cascade to estimate an initial time-dependent velocity
vector field for longitudinal registration of the whole dataset.

the next higher level or at the nth level, the whole registration of the dataset. The initialisation
cascade procedure uses an unique option parameter set for all N levels and the longitudinal reg-
istration of the whole dataset:

Parameter setting: solver=0 (Gauss-Newton), numIter=50, TolIt = 0.001, nRes=6, epsilon=4e−5,
minEps=8e−3, maxEps=0.4, maxStepLen = 1, ker_ type=0 (linear elastic model), spl_ deg=[6 6
6], wrapDim=[0 0 0], voxSize=[1 1 1], fmg_ arg=[15 5 5], multichannel=0.

Number of cascade levels analysed: 2 and 5

Results: In Figure 6.9, 6.10, 6.11 and 6.12 on the right side the DC distribution over the ges-
tational age of five cascade levels and of the whole dataset (with and without initialisation) is
illustrated for all eight kernels. The aim of this experiment is to identify if there is an im-
provement of DC using an initialisation cascade for longitudinally registering the whole dataset
compared to using no precomputed vector field. The analysis of the influence of kernels 3, 5
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and 8 show an increase of DC about 0.01 to 0.03 for gestational ages higher than GD 190 (GW
28 day 3) using initialisation procedure (cyan line) instead of no initialisation (black line). The
remaining kernels show no significant difference regardless of using an initialisation scheme or
not. Subsequently, according to an increased DC in the lower cascade initialisation level 2 (green
dotted line), the longitudinal registration procedure was analysed using only 2 cascade levels.
The corresponding results are shown in Figure 6.9, 6.10, 6.11 and 6.12 on the left side and illus-
trate the DC distribution over the gestational age of the two cascade levels and the whole dataset
(with and without initialisation) for all eight kernels. Only kernel 8 shows a higher rising of DC
about 0.03, compared to the usage of 5 levels at ages older than GD 190 (GW 28 day 3). In
contrast to this, kernel 5 shows a decrease of the DC for ages older than GD 190 (GW 28 day 3)
using cascade initialisation. According to the results of the registration scheme 1, it is concluded
that longitudinal registration using only 3-5 images at regular sampled time points instead of the
whole dataset lead to a higher DC compared to the registration of the whole dataset (with or
without initialisation). Therefore, the registration kernel has to be chosen carefully to achieve a
stable registration with a DC over 0.6 (e.g. results kernel 5, Figure 6.11).
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Figure 6.9: Scheme 1 DC distribution over gestational ages of the initialisation procedure using regularisation kernel 1 and kernel 2.
Cascade level 1 is marked in green, level 2 in purple, level 3 in magenta, level 4 in orange, level 5 in dark red, the registration of the
whole dataset with cascade initialisation in cyan and without initialisation in black.
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Figure 6.10: Scheme 1 DC distribution over gestational ages of the initialisation procedure using regularisation kernel 3 and kernel 4.
Cascade level 1 is marked in green, level 2 in purple, level 3 in magenta, level 4 in orange, level 5 in dark red, the registration of the
whole dataset with cascade initialisation in cyan and without initialisation in black.
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Figure 6.11: Scheme 1 DC distribution over gestational ages of the initialisation procedure using regularisation kernel 5 and kernel 6.
Cascade level 1 is marked in green, level 2 in purple, level 3 in magenta, level 4 in orange, level 5 in dark red, the registration of the
whole dataset with cascade initialisation in cyan and without initialisation in black.
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Figure 6.12: Scheme 1 DC distribution over gestational ages of the initialisation procedure using regularisation kernel 7 and kernel 8.
Cascade level 1 is marked in green, level 2 in purple, level 3 in magenta, level 4 in orange,level 5 in dark red, the registration of the
whole dataset with cascade initialisation in cyan and without initialisation in black.
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Longitudinal Registration Scheme 2

In the second longitudinal registration scheme the whole dataset is longitudinally registered three
times, using a different parametrisation of the regularisation kernel for every run. For the second
and the third run the resulting velocity field of the previous run is used as initialisation. This
procedure is illustrated in Figure 6.13.

Parameter setting run 1: M= [ ], solver=0 (Gauss-Newton), numIter=40, TolIt = 1e−3, nRes=6,
epsilon=4e−5, minEps=8e−3, maxEps=0.4, maxStepLen = 1, ker_ type=0 (linear elastic model),
spl_ deg=[6 6 6], wrapDim=[0 0 0], voxSize=[1 1 1], fmg_ arg=[15 5 5], multichannel=0.

Parameter setting run 2: M= [ ], solver=0 (Gauss-Newton), numIter=35, TolIt = 1e−3, nRes=6,
epsilon=4e−5, minEps=8e−3, maxEps=0.4, maxStepLen = 1, ker_ type=0 (linear elastic model),
spl_ deg=[6 6 6], wrapDim=[0 0 0], voxSize=[1 1 1], fmg_ arg=[15 5 5], multichannel=0.

Parameter setting run 3: M= [ ], solver=0 (Gauss-Newton), numIter=60, TolIt = 1e−3, nRes=7,
epsilon=4e−5, minEps=8e−3, maxEps=0.4, maxStepLen = 1, ker_ type=0 (linear elastic model),
spl_ deg=[6 6 6], wrapDim=[0 0 0], voxSize=[1 1 1], fmg_ arg=[15 5 5], multichannel=0.

Results: At the top of Figure 6.14, the result of the registration scheme 2 is illustrated, us-

Figure 6.13: Scheme 2 longitudinal registration procedure

ing kernel 3 in the first run, kernel 7 in the second run and kernel 2 in the third run. In the middle
of Figure 6.14 the result of the registration scheme 2 is shown, using kernel 8 in the first run,
kernel 1 in the second and kernel 3 in the third run. The bottom part of Figure 6.14 presents the
results of the registration scheme 2, applying kernel 1 in the first run, kernel 8 in the second and
kernel 7 in the third run. Using registration scheme 2 and kernels 3, 7, 2 an increase of the DC
between the first and third run of 0.02 from GD 146 to 164 and 0.04 from GD 168 to 197 (GW
24 - 28 day 1) is achievable. Also the usage of kernels 8, 2, 3 and 1, 8, 7 leads to an increase
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Figure 6.14: DC distribution of longitudinal registration using scheme 2.

of the DC of 0.03 between GD 151 to 168 (GW 21 day 1 to 24) and of 0.06 from GD 168 to
212 (GW24 to 30 day 2) between run 1 and 3. In all cases no increase of the DC is observed
between the GD range from 126 to 146 (GW 18 to 20 day 6). This leads to the conclusion that
an increase of the DC is achievable by using scheme 2, but depends on the parametrisation of
the kernels and order of usage in the registration procedure. Additionally, it is observed that the
increasing amount of the DC is dependent on the age range in all three analysed cases.

Longitudinal Registration Scheme 3

For the third longitudinal registration scheme three different age ranges are defined:

• age range 1: GD 126 (GW 18 day 0) - GD 160 (GW 22 day 6)
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• age range 2: GD 160 (GW 22 day 6) - GD 180 (GW 25 day 5)

• age range 3: GD 180 (GW 25 day 5) - GD 212 (GW 30 day 2)

For every age range a dataset is used which contains images of gestational ages in the covered
time period. Eight different regularisation kernels (Kernel 1 - Kernel 8 cf. Section 6.3) and the
following parameter setting for every age range is used:

epsilon=4e−5, maxEps=4e−3, minEps=0.4, maxStepLen=1, voxSize=[1 1 1],
fmg_arg=[15 5 5], spl_ deg=[6 6 6], ker_ type=0 (linear elastic model), solver=0 (Gauss-Newton),
TolIt=1e−3, nRes=6, multichannel=0, wrapDim=[0 0 0].

Results: Figure 6.15 illustrates the DC distribution over the gestation ages for age range 1
to 3. The results of age range 2 show a higher kernel depending DC deviation compared to the
other age ranges, due to accelerated cortical folding and brain growth starting at GD 172 (GW
24 day 3). It illustrates the dependence of the brain growth modelling on the used regularisation
kernel, where kernel 7 leads to the highest DC of 0.85 from GD 165 to 180 (GW 23 day 4 to 25
day 5) and kernel 3 to the lowest DC of 0.15. Regularisation kernels (6, 7, 2) with low λ1 values
between 9e−6 and 1e−5 and high λ values of 0.01, lead to higher DC compared to other kernels.
According to this fact, it is concluded that higher penalisation of the difference between two
neighboured vectors (λ1) and a higher smoothness of the vector field (λ) lead to the improved
modelling of the brain growth at every observed age range.

Conclusion Longitudinal Registration Schemes

The analysis of the three registration schemes shows that registration scheme 3 has the highest
deviation between DCs using different regularisation kernels, since developmental dependent
age ranges are defined. It makes it possible to parametrise the vector field regularisation ac-
cording to the developmental stage of the fetus and thus is chosen as longitudinal registration
procedure to learn a fetal brain atlas.

6.4 Automatic Tissue Labeling using Graph Cuts

For the 2D analysis of the CMF based graph cut the algorithm proposed by Yuan et al. [82]
is taken. They use a CMF and convex formulation of the Potts model and a CUDA2 based
implementation for segmenting volumes. Table 6.4 shows the input parameters for running
this algorithm. For analysing the preprocessing of atlas based segmentations three longitudinal
atlases of three different age ranges are learned using the geodesic regression algorithm [1].
For computing the atlases the parameter setup of registration scheme 3 (cf. Section 6.3) and
regularisation kernel 7 is used. For tissue labeling using a graph cut three input parameters are
necessary. A data term, a cost (unary) term, and a penalty (binary) term.

2CUDA: NVIDIA architecture for parallel computing http://www.nvidia.co.uk/object/
cuda-parallel-computing-uk.html; [accessed 13-September-2015]
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Figure 6.15: DC distribution over the gestational ages of the analysis of the longitudinal regis-
tration scheme 3
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Table 6.4: Option parameters of the graph cut algorithm of Yuan et al. [82]

Option Data type Explanation
rows Integer Rows of the input image
cols Integer Columns of the image
maxIter Integer Maximum number of iterations
nlab Integer Total number of labels
errorBound Double Error bound for convergence
cc Double Step-size of augmented Lagrangian

method
stepSize Double Step-size for the gradient-projection of

the spatial flow fields
ulab Double Label corresponding values

• Data (D): Gray value volume at age t

• Cost term (C): For computing an unary term for the graph cut approach, atlas based
segmentations for cortex and ventricle tissue Stissue = {Scortex, Sventricle} at age t are
estimated and smoothed with a Gaussian filter KG. The parameter δ is defined to weight
the smoothed result with a constant factor. The unary term is illustrated in Equation 6.7,
where ? denotes the convolution operator.

C = δ ∗ (Stissue ? KG) (6.7)

• Penalty term: In the course of the graph cut analysis three different binary terms are
evaluated:

– Penalty term 1 (P1) is a weighted norm of the data term’s D gradient (cf. Equation
6.8), where δ denotes the same weighting term as used for the cost term and a, b are
constant weighting parameters.

P1 = δ ∗ b

1 + (a ∗ ‖∇D‖)
(6.8)

– Penalty term 2 (P2) denotes a gray value based term and is calculated separately
for cortex and ventricle segmentation (cf. Equation 6.9). Tissue type corresponding
gray values are modelled as Gaussian distributions, which parameters µtissue and
σtissue are estimated using the a-priori atlas segmentation. These parameters are
used to calculate the probability of every pixel belonging to cortex or ventricle. Sub-
sequently, the gradient of the resulting probability map P and its norm are computed
and weighted by the parameters δ, a, b as shown in Equation 6.8.

P2 = δ ∗ b

1 + (a ∗ ‖∇P (µtissue, σtissue)‖)
(6.9)
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– Penalty term 3 (P3) represents an exponential formulation and is expressed in Equa-
tion 6.10. u is a constant and v a linear weighting parameter. w weights the norm of
the image’s D gradient non-linearly in the exponential term.

P3 = u+ v ∗ exp
(
−‖∇D‖

w

)
(6.10)

Graph Cut Parameter Setting: ε=1.25, a=50, b=1, u=0.9, v=0.1, w=0.05, maxIter=200,
nlab=3, errorBound=1e−3, cc=1.0, stepSize=9e−3, ulab(background)=0, ulab(brain)=1,
ulab(vent)= 2.

Pairwise Registration Setting: For pairwise registration two different parameter sets are used
for cortex and ventricles. For cortex regularisation kernel 1 and for ventricles regularisation
kernel 2 is used.

Results Graph Cut Analysis

Figure 6.16 illustrates the DC distribution of segmentations of the cortex and ventricles at age
range 1. The red line represents the DC of atlas based segmentations, the blue line the DC of
transformed segmentations using pairwise registration, the dotted light green, dark green and
purple line the DC of graph cut based segmentations computed using penalty terms 1, 2 and
3. For both ventricle and cortex labeling a DC improvement between atlas based and graph cut
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Figure 6.16: DC distribution of cortical (left) and ventricular (right) tissue of the graph cut
analysis in 2D for age range 1.

based segmentations is observable at age range 1. Penalty term 3 performs best, with the highest
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DC at GD 139 of about 0.81 for cortical and 0.65 for ventricular tissue. The worst results are
achieved at GD 154 with a DC of about 0.55 for the cortex and 0.1 for ventricle. In Figure 6.17
an example of a labeling result of cortex and ventricle at age range 1 - GD 146 (GW 20 day 6) is
presented. In the first row the graph cut input terms are shown: in the first column the data term,
from column 2 to 4 the evaluated penalty term and in columns 5 and 6 the cost terms for cortex
and ventricle. In the second and third row atlas-based, transformed atlas based, the graph cut out-
puts using penalty terms 1, 2 and 3 and the manual segmentations are illustrated. The estimated
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Segmentations

Penalty 1 Penalty 3
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Segmentations

Data
GD 146 

Cortex

Ventricle

Cost term
cortex

Cost term
ventricle

Graph Cut (P1) 
Segmentations 

Graph Cut (P2) 
Segmentations

Graph Cut (P3) 
Segmentations

Penalty 2

DC: 0.7120 DC: 0.72196 DC: 0.77947 DC: 0.73204 DC: 0.79001

DC: 0.2164 DC: 0.2433 DC: 0.3368 DC: 0.3036 DC: 0.3368

Figure 6.17: Graph cut analysis 2D using the input image at GD 146 (GW 20 day 6)

atlas based segmentations reach a DC of 0.7120 for cortical and 0.2164 for ventricular structure.
The pairwise registration from atlas space to the subject’s space leads to an DC increase of about
0.01 for cortex and 0.03 for ventricle. The graph cut segmentations using penalty 3 show the
highest increase of the DC compared to pairwise (PW) registered segmentations for both tissue
types, from 0.72196 to 0.79001 (cortex) and from 0.2433 to 0.3368 (ventricle). The lowest DC
increase shows the segmentation result for ventricle as well as for cortex using penalty 2 with a
DC of about 0.73204 (cortex) and 0.3036 (ventricle).
Figure 6.18 illustrates the DC distribution of segmentations of the cortex and ventricles at age
range 2. The red line represents the DC of atlas based segmentations, the blue line the DC of
transformed segmentations using pairwise registration, the dotted light green, dark green and
purple line the DC of graph cut based segmentations computed using penalty terms 1, 2 and 3.
For the cortex labeling a DC improvement between atlas based and graph cut based segmen-
tations is observable at age range 2. Ventricle segmentations show an increase of DC between
atlas and graph cut based segmentations from GD 164 to GD 172, where penalty term 3 per-
forms best, with the highest DC at GD 168 of about 0.86 (cortex) and 0.58 (ventricle). The
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Figure 6.18: DC distribution of cortical (left) and ventricular (right) tissue of the graph cut
analysis in 2D for age range 2.

lowest DC is achieved at GD 180 with a DC of about 0.81 for the cortex and 0.1 for ventricle
structure. In Figure 6.19 an example of a labeling result of cortex and ventricle at age range 2 is
presented. The brain structure and ventricle structure at GD 171 (GW 24 day 3) are labeled. In
the first row the graph cut input terms are shown: in the first column the data term, from column
2 to 4 the evaluated penalty term and in columns 5 and 6 the cost terms for cortex and ventricle.
In the second and third row atlas-based, transformed atlas based, the graph cut outputs using
penalty terms 1, 2 and 3 and the manual segmentations are illustrated. The estimated atlas based
segmentations reach a DC of 0.841 for brain and 0.3143 for ventricle structures. No significant
DC increase is reached using pairwise registration from atlas space to the subject’s space. The
graph cut segmentations using penalty 3 show the highest increase of the DC compared to pair-
wise (PW) registered segmentations for cortical tissue, from 0.8417 to 0.8621. For ventricular
tissue penalty term 1 performs best with a DC increase from 0.3143 to 0.4571. The lowest DC
increase shows the segmentation result for ventricle as well as for cortex using penalty 2 with a
DC of about 0.8448 (cortex) and 0.3444 (ventricle).
Figure 6.20 illustrates the DC distribution of segmentations of the cortex and ventricles at age
range 3. The red line represents the DC of atlas based segmentations, the blue line the DC of
transformed segmentations using pairwise registration, the dotted light green, dark green and
purple line the DC of graph cut based segmentations computed using penalty terms 1, 2 and 3.
For the cortex labeling a DC increase between atlas based and graph cut based segmentations
(penalty 3) of about 0.05 is observable at age range 3. In contrast to this, ventricle segmentations
show a decrease of DC between atlas and graph cut based segmentations. An improvement of
atlas based segmentations using pairwise registration is only observable at GD 203. The low-
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Figure 6.19: Graph cut analysis 2D using the input image at GD 171 (GW 24 day 3).
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Figure 6.20: DC distribution of cortical (left) and ventricular (right) tissue of the graph cut
analysis in 2D for age range 3.
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est DC of cortical segmentations is achieved at GD 196 of about 0.72 and of ventricular tissue
at GD 199 of about 0.05. The highest DC for cortex labeling of about 0.88 is reached at GD
199. In Figure 6.21 an example of a labeling result of cortex and ventricle at age range 3 is
presented. The brain structure and ventricle structure at GD 203 (GW 29 day 0) are labeled. In
the first row the graph cut input terms are shown: in the first column the data term, from column
2 to 4 the evaluated penalty term and in column 5 and 6 the cost terms for cortex and ventricle.
In the second and third row atlas-based, transformed atlas based, the graph cut outputs using
penalty terms 1, 2 and 3 and the manual segmentations are illustrated. The estimated atlas based
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Cortex

Figure 6.21: Graph cut analysis 2D using the input image at GD 203 (GW 29).

segmentations reach a DC of 0.8094 for brain and 0.3896 for ventricle structures. The pairwise
registration from atlas space to the subject’s space leads to a DC increase of about 0.01 for cortex
and 0.07 for ventricle. The graph cut segmentations using penalty 3 show the highest increase
of the DC compared to pairwise (PW) registered segmentations for cortical tissue, from 0.8188
to 0.8354. In contrast to this, graph cut refinement of ventricular tissue at age range 3 leads to a
decrease of the DC from 0.4549 to 0.2919.

The 2D analysis of the graph cut shows that independent from the age an increase of the DC
between atlas-based and graph cut based segmentations is achievable. It is observed that penalty
terms 1 and 3 achieve better results than penalty term 2. A possible reason is the gray value
discrepancy caused by the MR imaging technique (cf. Chapter 2.1), since penalty term 2 incor-
porates the gray value information of the input image. Thus, the labeling result is dependent on
the quality of atlas-based segmentations and also on the gray value variances for a tissue type
caused by the MR imaging technique.
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6.5 Summary

In this chapter the proposed tissue framework, its functionality and structure are introduced. The
acquisition setup of the dataset used as well as the created preprocessing pipeline for 2D and 3D
images are explained. Subsequently, the state-of-the-art algorithms applied for longitudinal reg-
istration and graph cut labeling are presented and their analysis in 2D are documented.
In the course of this thesis three different longitudinal registration schemes are developed and
analysed, regarding the ability to model the fetal brain development. Scheme one focuses on
using a unique parametrisation for a cascade of initialisation levels using a different number of
images. In contrast to this, scheme two aims to register the whole dataset. Three runs with dif-
ferent parametrisation of the vector field regularisation are performed using the learned vector
field of the previous run as initialisation. For scheme three development stage dependent age
ranges are defined and corresponding datasets are created. For every age range different option
parameters for longitudinal registration are used. The results indicate that the scheme that uses
three age ranges with different parametrisation of the velocity vector field regularisation shows
the best longitudinal registration behaviour, compared to the remaining schemes. It makes it
possible to parametrise the vector field regularisation according to the stage of brain develop-
ment. The analysis of the graph cut approach used tests the automatic tissue labeling procedure
for gray value images using atlas based segmentations as initialisation term. Three different
parameter sets for this labeling technique are analysed and the corresponding documentation
concludes this chapter.
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CHAPTER 7
Evaluation of the Tissue Labeling

Framework

This chapter summarizes the evaluation results of the tissue labeling framework. Evaluation
is performed using leave-one-out-cross validation (LOOCV). A dataset (cf. Section 6.1) of m
volumes is divided into a test dataset consisting of a volume at age t and into a training dataset
consisting of m − 1 volumes at ages not equal to t. The evaluation procedure is performed for
each age range separately:

Age range 1: 20 GW day 6 (146 GD) - 23 GW day 3 (164 GD)
Age range 2: 23 GW day 3 (164 GD) - 26 GW day 2 (184 GD)
Age range 3: 26 GW day 2 (184 GD) - 30 GW day 2 (212 GD)

The following sequence is performed for every time-point:

• Assemble test and training datasets for corresponding age range

• Learn atlas using training set.

• Estimate atlas based template at testing time-point.

• Obtain a transformation T using pairwise registration from the test MR volume to the
atlas-based template.

• Transform the atlas based segmentation to the test-subject’s space using transformation
T−1.

• Compute the segmentation of the test volume using the transformed atlas.

Three performance measurements are used within the evaluation process: First the Dice overlap
is computed between the test dataset and the atlas based, the transformed atlas based and the
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graph cut based segmentations of the cortex and ventricles. As second and third features the
volume of the cortex and ventricles and the area of the cortical surface of the atlas based
segmentations are calculated.

7.1 Evaluation of the Continuous Model of Fetal Brain
Development

The first part of this chapter documents the evaluation of the accuracy of estimated atlas-based
segmentations. According to the experimental results of the image regression algorithm of Ash-
burner et al. [1] documented in Section 6.3 the same parameter setting of scheme 3 is used for
longitudinal registration. The regularisation kernels (ker_ args) evaluated are listed in Table 7.1.

Table 7.1: Parametrisation of the kernels used for analysing the regularisation of longitudinal
registration.

Kernel No. λ1 λ2 λ0 λ µ

1 0.01 0.01 9e−6 1e−5 1e−5

2 9e−6 9e−6 9e−6 0.01 1e−5

3 1e−3 9e−6 9e−6 1e−3 1e−5

4 0.01 9e−6 9e−6 0.01 1e−5

5 9e−6 1e−5 9e−6 1e−5 1e−5

6 9e−6 0.01 9e−6 0.01 1e−5

7 0.01 0.01 9e−6 0.01 1e−5

8 1e−4 1e−4 9e−6 1e−4 1e−5

9 0.9 0.9 9e−6 0.01 1e−5

10 9e−6 9e−6 9e−6 1e−5 1e−5

11 9e−6 9e−6 9e−6 1e−4 1e−5

12 9e−6 9e−6 9e−6 1e−3 1e−5

13 0.5 0.5 9e−6 0.01 1e−5

14 1e−5 9e−6 9e−6 1e−5 1e−5

15 1e−4 9e−6 9e−6 1e−4 1e−5

16 0.1 0.1 9e−6 0.01 1e−5

17 0.01 0.01 9e−6 0.1 1e−5

18 1e−3 1e−3 9e−6 1e−3 1e−5

19 9e−6 1e−4 9e−6 1e−4 1e−5

20 9e−6 1e−3 9e−6 1e−3 1e−5

21 1e−5 1e−5 9e−6 1e−5 1e−5

A 5e−3 5e−3 3e−5 1e−5 9e−6

Three different measures are observed for choosing a suitable regularisation kernel for an age
range. The Dice Coefficient (DC) gives information about the similarity between an estimated
atlas-based segmentation and test dataset and consequently the quality of segmentation. Beside
the DC also the behaviour of the regularisation of the volume expansion and changes of the area
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of cortical surface have to be taken into account when choosing a suitable kernel. The cortical
volume of the fetal brain is measured in cm3 by counting the corresponding voxels (voxel size 1
mm × 1 mm × 1 mm). The area of the cortical surface of the fetal brain is measured in cm2 and
is computed by summing up the area of the triangles, which are estimated in a triangulation pro-
cess for extracting the brain surface. Heron’s forumla is used for the computation of the triangle
area. The behaviour of image regression using 21 different regularisation kernels is evaluated
for every age range in the following sections. Atlas-based cortical and ventricle segmentations
are studied.

Atlas Evaluation Results Age Range 1

Figure 7.1 illustrates the DC of cortex segmentations and Figure 7.4 of ventricle segmentations
over gestational days. The results show that the deviation of the DC is higher for ventricle
segmentations, approximately with a deviation about 0.10 compared to cortical segmentations
about 0.07. For both brain structures kernel 1, 4 and 7 yield the best DCs between 0.55 and
0.85 for cortical and between 0.1 and 0.60 for ventricle segmentations. These kernels share the
penalisation of the first derivative (kernel argument λ1) of the vector fields of about 0.01. The
worst DC results are achieved by kernel 5, 10 and 11 with values between 0.45 and 0.82 for
the cortex and between 0.05 and 0.55 for the ventricles. The kernels have a low penalisation of
the first derivative of about 9e−6 in common. Figure 7.2 illustrates the volume of the estimated
atlas-based cortical segmentations and Figure 7.5 the volume of the ventricle segmentations over
the gestational days. GT denotes the ground truth obtained by the manual annotations of the test
dataset. It is also observed that kernel 1, 7 and 4 represent best the development of cortical
volume over time with the lowest deviation from the manual segmentations. The volume lies
between 62 cm3 at GD 150 to 75 cm3 at GD 164 in average. The volume of atlas-based ventricle
segmentations is modelled best using kernels 1, 7 and 4 and shows an average volume expansion
from 4 cm3 to 5 cm3. Figure 7.3 shows the area of the cortical surface of estimated atlas-
based segmentations over gestational days. The influence of the regularisation kernels used is
shown and a deviation about 7 cm2 between the areas of cortical surface is observable. Kernel 1
performs best with the lowest average deviation from the test dataset compared to the remaining
kernels. The area takes values between 17 cm 2 at GD 150 to 23 cm 2 at GD 164.

Atlas Evaluation Results Age Range 2

Figure 7.6 illustrates the DC of cortex segmentations and Figure 7.9 of ventricle segmentations
over gestational days. The results indicate that the deviation of the DC is higher for ventricle
segmentations, with a deviation of 0.40 compared to 0.15 for cortical segmentations. Kernels 1,
2 and 4 show the best DCs between 0.60 and 0.83 for the cortex and between 0.22 and 0.46 for
the ventricles. For cortical and ventricle tissue the worst but non zero DC results are achieved by
kernel 12, 14 and 21 with values between 0.35 and 0.75 for the atlas-based cortex segmentations
and between 0.03 and 0.14 for ventricle segmentations. Kernel 21 is characterised by a low
smoothness of the velocity vector field (λ) of about 1e−5. For both brain structures an unstable
behaviour (i.e. DC with zero values) is only observed at GD 180 using kernel 8, 15, 6 and at
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Figure 7.1: DC of cortical segmentations for age range 1.
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Figure 7.2: Volume of cortical segmentations for age range 1.
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Figure 7.3: Area of the surface of cortical segmentations for age range 1.
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Figure 7.4: DC of ventricle segmentations for age range 1.
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Figure 7.5: Volume of ventricle segmentations for age range 1.

GD 184 using kernels 10, 5, 19, 20, 7 and 16. The kernels leading to unstable results at GD 184
have a smoothness λ lower than 2e−3 and also a low penalisation of second derivatives λ2 in
common. Kernel 8, 15 and 6 have in common a low penalisation of first derivates λ1 less than
4e−4. Figure 7.7 illustrates the volume of the estimated atlas-based cortical segmentations and
Figure 7.10 the volume of the ventricle segmentations over the gestational days. GT denotes the
ground truth obtained by the manual annotations of the test dataset. The orange line illustrates
the exponential trend line of the ground truth volumes. Kernel 1, 2, 4 and 14 represent best
the cortical volume expansion rate over time (first derivative) compared to the average trend,
but the volume error lies between 10 cm3 to 60 cm3. At this point of evaluation the volume
of atlas based templates (in atlas’ space) are compared to the test dataset (in subject’s space).
No pairwise registration is used to transform atlas based templates to the subject space. This
results in scaling differences and consequently in higher volume errors. The scaling of the
fetal brains is adapted in a next step which is not part of the atlas learning evaluation. It is
modelled in the labeling procedure of the tissue labeling framework using pairwise registration
and its evaluation is documented in Section 7.2. The average trend of the ventricle volumes of
manual annotations show a shrinkage over the gestational days. Kernel 1, 2, and 4 show the
best regularisation behaviour with a deviation from the groundtruth volume of in average 1.5
cm3 over the gestational ages, but do not model a thinning of ventricles over time. Figure 7.8
shows the area of the cortical surface of estimated atlas-based segmentations over gestational
days. Kernel 1 shows a good approximation to the groundtruth area between GD 171 and 180.
In contrast to this, kernel 21 shows the lowest average deviation from the groundtruth of about 8
cm2 and as well as kernel 14 the best modelling results of the brain surface between GD 180 and
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184. During this age range cortical folding processes and growing processes take place. This
explains the different sensitivity of kernels used for different ages. λ is set to 1e−5 for kernels 1,
14, 21 in common which indicates that the varying results for a certain age range is dependent
on the parametrisation of λ1 and λ2. A low penalisation of first and second derivatives of the
flow vector field lead to better results at gestational ages greater than 175 GDs. According to
Wright et al. [80] and Pugash et al. [57] cortical folding increases rapidly between GW 25 (GD
175) and GW 30 (GD 210). Here, the positions corresponding to neighboring voxels show a
higher change in terms of velocity and acceleration compared to ages smaller than 175 GD with
no rapid cortical folding. A low penalisation of second and first derivative allows to accurately
model these changes in the flow vector field, which results in a more accurate modelling of brain
surface area.
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Figure 7.6: DC of atlas-based cortical segmentations for age range 2.

Atlas Evaluation Results Age Range 3

Figure 7.11 illustrates the DC of cortex segmentations over gestational days. The results show
that the DC deviation of the different kernels is higher for ventricle segmentations with an av-
erage value of 0.20 compared to cortical segmentations of about 0.15. Also age range 3 is
dominated by rapid cortical folding and volume changes of the brain [80] [57]. This facts ex-
plains the observation that no kernel performs best at every time point of the age range 3. From
GD 184 to 196 there is only a DC deviation of 0.01. Differences of regularisation are visible at
time point GD 197, where kernel 1, 20, 4 and 19 show the best DCs of about 0.65 for cortical
segmentations. In contrast to this at time points between GD 199 and 207, kernel 16, 17, 9
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Figure 7.7: Volume of atlas-based cortical segmentations for age range 2.
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Figure 7.8: Area of the surface of atlas-based cortical segmentations for age range 2.
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Figure 7.9: DC of ventricle segmentations for age range 2.
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Figure 7.10: Volume of ventricle segmentations for age range 2.
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and 13 outperform with the highest DCs between 0.73 and 0.83, but show the worst results at
ages older GD 207 with a DC between 0.68 and 0.73. Figure 7.12 presents the DC of ventricle
segmentations over the gestational days. From GD 186 to 203 kernel 16, 13, 17 and 9 show the
best DC results with 0.45 at GD 203.
Figure 7.13 illustrates the volume of the estimated atlas-based cortical segmentations and Fig-
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Figure 7.11: DC for cortical segmentations for age range 3.

ure 7.14 the volume of the ventricle segmentations over the gestational days. GT denotes the
ground truth obtained by the manual annotations of the test dataset. The orange line illustrates
the exponential trend line of the ground truth volumes. The ground truth shows a high variability
of occurring volumes in the dataset at neighboured time points, which makes it more challeng-
ing to identify a suitable regularisation kernel. Kernels with the best DC results for cortical or
ventricle segmentations show a worse ability to model volume changes over time, e.g. 20 cm3

of volume change using kernel 16 for cortical or 1 cm3 volume change for ventricle segmenta-
tions. In contrast to this, kernels achieving the lowest DCs show a higher volume change over
time, e.g. 40 cm3 of expansion using kernel 18 for cortical and 6 cm3 of expansion for ventricle
segmentations.
Figure 7.15 shows the area of the cortical surface of estimated atlas-based segmentations over
gestational days. The modelling of the area of cortical surface shows the same regularisation
behaviour as in modelling the volume. Kernels with the best DC results for cortical surface
show a worse ability to model area changes over time, e.g. 3 cm2 using kernel 16. In contrast
to this, kernels achieving the lowest DCs show a higher surface change over time, e.g. 23 cm2

using kernel 18.
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Figure 7.12: DC for ventricle segmentations for age range 3.
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Figure 7.13: Volume for cortical segmentations for age range 3.
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Figure 7.14: Volume of ventricle segmentations for age range 3.
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Figure 7.15: Area for segmentation of the cortical surface for age range 3.
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Results Atlas-based Templates

Figure 7.16 illustrates the atlas-based templates for age range 1, 2 and 3. For every age range
coronal, axial and sagital slices are illustrated in the first, second and third rows respectively.
According to the evaluation results, kernel 1 is chosen as suitable regularisation for fetal brain

GD 148 GD 150 GD 153 GD 156 GD 159

ATLAS BASED TEMPLATES AGE RANGE 1 
KERNEL 1

GD 164 GD 168 GD 172 GD 177 GD 181

ATLAS BASED TEMPLATES AGE RANGE 2
KERNEL 4

GD 184 GD 190 GD 194 GD 208

ATLAS BASED TEMPLATES AGE RANGE 3 
KERNEL 7

GD 205GD 200 GD 212

GD 163

Figure 7.16: Atlas based templates of age range 1, 2 and 3 between GW 21 day 1 (GD 148) and
GW 30 day 2 (GD 212).

atlas learning at age range 1, because it shows the highest average DC of about 0.70 for cortical
and 0.40 for ventricle structure. Kernel 4 is used for age range 2, since it shows an average DC
of 0.70 for cortical and 0.35 for ventricle tissue. Also the volume change rate is similar to the
trend of the ground truth data and is able to model the occurring changes of cortical surfaces over
the gestational age with an average deviation from ground truth of approximately 7 cm2. For
the atlas of age range 3 a setting using kernel 7 is considered, since it shows an average DC of
about 0.70 for cortical and 0.30 for ventricle segmentations. Figure 7.17 illustrates anatomical
details of the estimated atlas based templates at age GW 21 day 4 (GD 151), GW 24 day 3 (GD
171) and GW 29 (GD 203). Coronal slices are shown in the first row, axial in the second row
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Figure 7.17: Anatomical details of atlas based templates at age GW 21 day 4 (GD 151), GW 24
day 3 (GD 171) and GW 29 (GD 203). Coronal (first row), axial (second row) and sagital (third
row) slices are illustrated. Observable structures at every age range are Sylvian Fissure (SF),
Lateral VENTricle (L-VENT), InterHemispheric Fissure (IHF), Cavum of Septum Pellucidum
(CSP), Occipital Lobe (OL) and Frontal Lobe (FL). The Germinal MATrix (GMAT) is existent
until age range 2 and disappears later in the third trimester of pregnancy. The Central Sulcus
(CeS) formation starts at age range 2 and gets more apparent at age range 3 as well as the
PreCentral Gyrus (PreCG) and PostCentral Gyrus (PostCG). The ColLateral Sulcus (CLS) is
visible at age range 3 as well as Cingulate Sulcus (CiS) and Calcarine Sulcus (CaS).
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and sagital in the third row. Observable structures at every age range are Sylvian Fissure (SF),
Lateral VENTricle (L-VENT), InterHemispheric Fissure (IHF), Cavum of Septum Pellucidum
(CSP), Occipital Lobe (OL) and Frontal Lobe (FL). The Sylvian Fissure (SF) show in the
coronal and axial slices a smooth bending at age range 1 and develop to a deep fold at the
lateral side of the brain at age range 3. Also the InterHemispheric Fissure (IHF) shows a deeper
folding at age range 3 with Cingulate Sulcus (CiS) as additional forming compared to age range
1. The Germinal MATrix (GMAT) is existent until age range 2 and disappears later in the
third trimester of pregnancy. The Central Sulcus (CeS) formation starts at age range 2 and gets
more apparent at age range 3 as well as the developing of the PreCentral Gyrus (PreCG) and
PostCentral Gyrus (PostCG). Also the ColLateral Sulcus (CLS) develops at age range 3 and is
observable in the atlas based templates. Figure 7.18 shows a 3D visualisation of the computed
atlas-based fetal brain model at age GW 21 day 6 (GD 151), GW 24 day 3 (GD 171) and GW
29 (GD 203). Figure 7.19 shows a 3D visualisation of the computed atlas-based fetal ventricle
model at age GW 21 day 6 (GD 151), GW 24 day 3 (GD 171) and GW 29 (GD 203). In both
figures the growth of the brain structures is observable. The 3D brain model at age range one
is characterised by a smoother cortex surface in comparison to a brain at a higher age range. It
also visualises the increase of the cortical folding grade. According to Pugash et al. [57], the
ventricle achieve their thickest size in early gestation and regress in the third trimester, which
is not visible in Figure 7.19. The regularisation term for geodesic regression is not able to
model location specific volume expansion and shrinkage at the same time. This leads to worse
modelling results, compared to cortical structure, since a kernel is used which models expansion.
Additionally, the subject specific variability of age-dependent ventricle size in the dataset and
the complex form of ventricles complicate the registration procedure.

7.2 Evaluation of the Tissue Labeling Procedure

According to the evaluation results for the continuous fetal brain model reported in Section 7.1,
the following regularisation parameters are used for the longitudinal registration of the three
atlases at age range 1, 2 and 3:

• Atlas regularisation age range 1 (GD 126 - GD 165): kernel 1

• Atlas regularisation age range 2 (GD 165 - GD 180): kernel 4

• Atlas regularisation age range 3 (GD 180 - GD 212): kernel 7

For transforming the atlas based templates into the subject’s space, pairwise registration is used.

Pairwise parameter setting: M = [ ], numIter=100, epsilon=0.0004, maxEps=0.4, minEps=0.008,
maxStepLen=1, voxSize=[1 1 1], fmg_ arg=[15 5 5], spl_ deg=[6 6 6], ker_ type=1 (membrane
energy model (Laplacian model)), solver=0 (Gauss-Newton), TolIt=0.001, nRes=5, multichannel=0,
wrapDim=[0 0 0] and regularisation kernel A (cf. Table 7.1).

To perform the graph cut refinement of the atlas based segmentation, penalty terms P1, P2 and
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Figure 7.18: 3D visualisation of the computed fetal brain model of the cortex at age GW 21 day
3 (GD 150), GW 24 day 3 (GD 171) and GW 29 (GD 203).
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Figure 7.19: 3D visualisation of the computed fetal brain model of the ventricle at age GW 21
day 3 (GD 150), GW 24 day 3 (GD 171) and GW 29 (GD 203).
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P3 (cf. Section 6.4) are evaluated. The graph cut is parametrised using a different setting for
cortex and ventricle labeling.

Graph cut parameter setting cortex: δ=1.25, a=50, b=1, u=0.9, v=0.1, w=0.01, σ=0.9,
maxIter=200, nlab=3, errorBound=0.0001, cc=1.5, stepSize=0.009, ulab(background)=0, ulab(cortex)=1,
ulab(ventricle)=2.

Graph cut parameter setting ventricle: δ=1.25, a=290, b=2, u=0.9, v=0.1, w=0.05, σ=0.9,
maxIter=200, nlab=3, errorBound=0.0001, cc=1.5, stepSize=0.009, ulab(background)=0, ulab(cortex)=1,
ulab(ventricle)=2.

Discussion Results Cortex Segmentations

The DC distribution of segmentations of the cortex for age range 1 are illustrated in Figure
7.20, for age range 2 in Figure 7.21 and for age range 3 in Figure 7.22. The red line represents
the DC of atlas based segmentations, the blue line the DC of transformed segmentations using
pairwise registration, the dotted light green, dark green and purple line the DC of graph cut
based segmentations computed using penalty terms 1, 2 and 3. For age range 1 the highest
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Figure 7.20: Dice Coefficient of atlas based (red), transformed atlas based (blue) and graph cut
based segmentations of the cortex at age range 1 using penalty 1 (light green), penalty 2 (dark
green) and penalty 3 (purple).

DC improvement from 0.727 to 0.771 at GD 158 is achieved by pairwise registration and graph
cut refinement compared to atlas based segmentations. In contrast to this no improvement is
reached at GD 151, but shows the highest DC of about 0.851. At GDs older than 154 the graph
cut refining using penalty 1 and penalty 2 achieve a higher DC increase of about 0.02 compared
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Figure 7.21: Dice Coefficient of atlas based (red), transformed atlas based (blue) and graph cut
based segmentations of the cortex at age range 2 using penalty 1 (light green), penalty 2 (dark
green) and penalty 3 (purple).
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Figure 7.22: Dice Coefficient of atlas based (red), transformed atlas based (blue) and graph cut
based segmentations of the cortex at age range 3 using penalty 1 (light green), penalty 2 (dark
green) and penalty 3 (purple).
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to using penalty 3. At age range 2 no improvement of transformed atlas based segmentations is
observed after pairwise registration, which leads to a decrease of the DC. It is observed that the
labeling result of the pairwise registration has influence on the graph cut labeling since it acts
as initialization of this procedure. This is best visible at GD 184. The graph cut refinement is
able to compensate the results of the pairwise registration between GD 164 and 184 and shows
an increase of the DC between atlas-based and graph-cut based segmentations in average of
about 0.02. At age range 3 an increase of DC at every age range is achievable using graph cut
refinement. The highest improvement between atlas-based segmentations and graph cut based
segmentations is reached at GD 206 with an DC increase from 0.71 to 0.795. The highest DC at
age range 3 of about 0.819 is achieved at GD 203 and the lowest of about 0.575 at GD 184.

Figure 7.23 illustrates the test data and corresponding estimated segmentations of cortical tissue
at GD 158 (7.23a), 171 (7.23b) and 203 (7.23c). The graph cut segmentations are computed
using the penalty term 3, since it shows the best improvement between atlas-based and graph
cut based segmentations for ventricle and cortex. Atlas based segmentations (red), pairwise
registration computed segmentations (blue), graph cut based segmentations (green) and manual
segmentations (purple) are visualised. Coronal slices are illustrated in the first column, axial
slices in the second and sagital slices in the third. The volume of the estimated atlas-based
segmentation at GD 158 is bigger than the manual segmentation’s volume. Additionally a dis-
placement to the right is observable. Pairwise registration which uses kernel A for regularisation
is not capable to compensate these differences. According to the atlas’ bigger volume the atlas-
based segmentation of the temporal lobe is estimated at the skull border. The graph cut approach
avoids the cutting through regions of a high gradient, since this would lead to increasing costs in
the energy minimisation procedure. Thus, the graph cut is not capable to refine the segmentation
to the border of the temporal lobe. The segmentations at GD 171 show a better initial alignment
of atlas based labeling with the manual segmentation than at GD 158 but a misplacement of the
IHF to the border of the left temporal lobe. The SFs are modelled accurately by the atlas, but
the pairwise registration hinders the segmentations of the left one, which is best observable in
the axial view. At the sagital view it is observable that pairwise segmentations lead to an out-
grow of the superior border of the cortex which influences the graph cut labeling. In contrast
to this, the graph cut refinement is capable to refine the alignment between brain and ventricle
tissue. Also the inferior temporal lobe shows a low deviation from the manual segmentations.
The labeling for the cortex at GD 203 shows a stepwise refinement from atlas-based to graph-cut
based segmentations. Also the inferior temporal lobe covers the manual segmentations. The left
SF is deeper estimated by the atlas compared to the manual segmentation, but the graph cut is
able to refine this change. At the sagital view it is observed that the atlas estimates a cortex
segmentation with an interception between the occipital and the parietal lobe. The hypointense
border caused by the POS impaires the reunion of the two cortex segmentation parts in the graph
cut refinement step.
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Figure 7.23: Segmentations of the cortex at GD 150, 171 and 203 estimated by the atlas (red),
after the pairwise registration procedure (blue), estimated by the graph cut approach (green) and
manual segmentations (purple). Coronal slices are illustrated in the first column, axial slices in
the second and sagital slices in the third.

Discussion Results Ventricle Segmentations

The DC distribution of segmentations of the ventricles for age range 1 are illustrated in Figure
7.24, for age range 2 in Figure 7.25 and for age range 3 in Figure 7.26. The red line repre-
sents the DC of atlas based segmentations, the blue line the transformed segmentations using
pairwise registration and the dotted light green, dark green and purple line the DC of the graph
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Figure 7.24: Dice Coefficient of atlas based (red), transformed atlas based (blue) and graph cut
based segmentations of the ventricles at age range 1 using penalty 1 (light green), penalty 2 (dark
green) and penalty 3 (purple).
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Figure 7.25: Dice Coefficient of atlas based (red), transformed atlas based (blue) and graph cut
based segmentations of the ventricles at age range 2 using penalty 1 (light green), penalty 2 (dark
green) and penalty 3 (purple)..
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184 186 191 196 197 199 203 206 208 210

ATLAS 0,201 0,382 0,358 0,33 0,134 0,333 0,346 0,215 0,204 0,465
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Figure 7.26: Dice Coefficient of atlas based (red), transformed atlas based (blue) and graph cut
based segmentations of the ventricles at age range 3 using penalty 1 (light green), penalty 2 (dark
green) and penalty 3 (purple).

cut based segmentations computed using penalty terms 1, 2 and 3. At age range 1 only at GD
158 the graph cut refinement using penalty 1 and 3 shows an increased DC of about 0.04. A
maximal DC decrease of about 0.02 at GD 151 and 164 is observed. The highest DC is achieved
at GD 151 with a value of about 0.592. At age range 2 no improvement of the DC of ventricle
segmentations is achievable. One reason is the decrease of the DC after pairwise registration.
The regularisation kernel for cortical segmentations is not suitable for the pairwise registration
of ventricle segmentations at age range 2. A maximal DC decrease of about 0.08 is achieved at
GD 184 between atlas based and graph cut based segmentations. The highest DC is achieved at
GD 171 with a value of 0.464. At age range 3 an improvement between atlas-based and graph
cut based segmentations using penalisation 1 is observable from GD 184 to 191 and from GD
203 to 210 with an DC increase between 0.02 and 0.07. At GD 197 the lowest DC of about
0.068 is reached. The highest DC at age range 3 is observed at GD 210 with a value of 0.503
using penalty 1.
Figure 7.27 illustrates the test data at gestational age GD 158, 171 and 203 and correspond-
ing estimated segmentations of ventricle tissue. The graph cut estimations are computed using
the penalty 3 term. Atlas-based (red), transformed atlas based by pairwise registration (blue),
graph cut based (green) and manual segmentations (purple) are visualised. Coronal slices are
illustrated in the first column, axial slices in the second and sagital slices in the third. The atlas
based segmentations of ventricle structure at GD 158 show a bigger volume compared to the
manual annotations and a displacement to the right. The graph cut based segmentation is able
to improve the segmentation of the superior and inferior part of the CSP and lateral ventricles,
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Figure 7.27: Segmentations of the ventricle at GD 158, 171 and 208 estimated by the atlas (red),
after the pairwise registration procedure (blue), estimated by the graph cut approach (green) and
manual annotations (purple).

visible as thinning at coronal slices. On the sagital slices a more accurate graph cut based la-
beling of the inferior part of the ventricle’s frontal horn is visible, compared to the temporal
lobe adjacent part. At age range 2 the ventricle segmentation shows a refinement from atlas to
graph cut similar to the manual annotations and is best visible in the axial and sagital slices. At
the coronal slices a displacement of atlas based segmentations to the left is visible, this leads
to a thinning of the segmentations in the graph cut approach, since pairwise registration is not
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capable of compensating these differences. At GD 203 the atlas based ventricle segmentations
show a bigger volume compared to the manual segmentations. Pairwise registration leads to a
wider segmentation border instead of compensating the volume differences. At the axial slices
it is observed that the atlas estimates an entire ventricle segmentation from left to right, in con-
trast to the manual segmentations which show two regions. The graph cut refinement is capable
to obtain two seperate structures, which show an alignment of the left segmentation borders to
the ventricle structure (axial slice). The occipital part of the graph cut based segmentation in
the sagital slice shows a low deviation from the manual segmentations, but illustrates a false
segmentation towards the frontal lobe.

7.3 Summary and Contributions

The contribution of this work lies in the proposing of an automatic tissue labeling framework
by integrating a continuous, quantifiable model of brain development and an automated labeling
procedure. For that a suitable registration technique to learn a spatio-temporal fetal brain atlas
has to be identified and its incorporation in an automatic tissue labeling framework has to be
evaluated.

Continuous, Quantifiable Model of Brain Development

Research Questions:
Is geodesic image regression a suitable technique to learn a longitudinal atlas for fetal brains?
Is a preprocessing pipeline necessary? Is it possible to model the changes of the fetal brain in
size and morphology over time?

The analysis of state-of-the-art approaches show that geodesic image regression is a suitable
longitudinal registration technique (cf. Chapter 2). This is capable to model fetal brain develop-
ment continuously in time without combining a template and an interpolation technique. Instead
a time dependent vector field is estimated, which computation requires a preprocessing pipeline
(corresponding analysis cf. Chapter 5 and structure cf. Chapter 6). As contribution to this thesis a
novel longitudinal registration scheme using three age ranges is developed and evaluated, which
enables the parametrisation of the vector field regularisation dependent on the developmental
stage of the fetal brains. In this chapter the evaluation of 21 different vector field regularisations
per age range for atlas learning is documented. It is observed that age range dependent regulari-
sation is necessary to obtain improved registration results. The computed time-dependent vector
field is able to transform segmentations of the cortex or the ventricles continuously in time to
compute age dependent atlas based segmentations. The learned time dependent vector field is
able to model the changes in shape and size of the cortex and its folding (cf. Section 7.1). Com-
pared to the cortical structure, the ventricular structure shrinks from age range 1 to age range
3. Since the proposed method uses one regularisation type per age range, it is identified that
geodesic regression is not able to regularise location specific volume expansion and shrinkage at
the same time. Thus, according to these results tissue and age range specific regularisation are
required to model fetal brain development using geodesic regression.
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Automatic Tissue Labeling Procedure

Research Questions:
How to create an automatic tissue labeling framework for fetal brains? How can atlas-based
segmentations be used as an initialisation term of a graph cut approach? Are segmentation re-
finements achievable using a graph cut?

The integration of the atlas learned in a segmentation framework is designed in the follow-
ing way: In the course of this thesis geodesic shooting is identified as suitable technique to map
estimated time-dependent atlas based segmentations and templates of the cortex and ventricle to
the space of a subject. Also for pairwise geodesic shooting registration different regularisation
parameters are evaluated (cf. Section 7.2). The results show that also tissue dependent regulari-
sation is necessary to obtain an improved segmentation result. It is observed that a segmentation
refinement of atlas-based segmentations is achievable using a graph cut approach, but is depen-
dent on the result of the pairwise registration procedure. It has influence on the graph cut based
labeling, since the transformed atlas based segmentations are used as tissue specific prior maps.

7.4 Conclusion

In this master’s thesis an automatic fetal brain tissue labeling framework is presented. Accord-
ing to the analysis of the state-of-the-art approaches, geodesic image regression for time-series
has been evaluated only using adult- and child-brain datasets, which record changes of brain
structure over time. In the course of this work this technique is identified to also be suitable as
registration approach to longitudinally model the changes in size and shape of the brain during
the 18th and 30th GW. One advantage of this approach is the diffeomorphic formulation of the
deformation model, which preserves smooth structures and obtains physically valid templates -
an important fact in the medical field. A further advantage is the provision of a time-dependent
transformation from a source to a target brain, instead of combining a template building tech-
nique and interpolation technique to obtain continuity in time. The analysis of diffeomorphic
registration shows that rigid alignment, masking and motion correction are needed as preprocess-
ing steps to perform longitudinal registration and to reduce registration errors. For analysing the
atlas learning procedure, three registration schemes are created, where the scheme that uses three
separate age ranges performs best. Instead of registering the whole dataset at once, separate age
ranges show more flexibility in parametrising the regularisation of the deformation model due to
the age range dependent changes, like cortical folding and rapid brain growth and consequently
achieve improved results. The atlas learned is evaluated using a leave-one-out cross validation
approach for every age range and 21 different regularisation kernels are analysed according to
their behaviour regarding volume expansion, modelling of cortical surface and Dice similarity
to manual annotations. The fetal brain atlas proposed is not capable of modelling the shrink-
age or thinning of ventricles from age range 1 to age range 3. Since the proposed method uses
one regularisation kernel per age range, geodesic regression is not able to regularise location
specific volume expansion and shrinkage at the same time. To overcome this issue, the usage
of tissue specific regularisation and consequently the computation of separate ventricle atlases
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are a possible solution. In contrast to this, the increase of the cortical folding grade and of the
volume over time are integrated in the proposed longitudinal model. The labeling of cortex and
ventricles is included in the presented automatic tissue labeling framework, by propagating the
atlas based segmentation to the space of a new subject using pairwise geodesic registration. The
transformed annotations are used as a probability map for a graph cut approach with a CMF for-
mulation to refine the annotations. For pairwise registration the same 21 regularisation kernels,
which are used in the longitudinal registration procedure are evaluate but show no improvement
of the DC of atlas-based segmentations over time. Thus, an additional kernel is defined and used
for every age range. The quality of transformed atlas based segmentations to subject’s space
using pairwise registration leads to the conclusion that the kernel for pairwise registration has to
be defined differently according to the age range and also tissue type, for being able to improve
the graph cut initialisation term. Additionally it is shown that the quality of graph cut labeling
is dependent on the initialisation cost term (atlas segmentation) and the penalty term. A false or
displaced atlas segmentation hinders as cost term the refinement of graph cut based labeling. Fi-
nally the proposed automatic tissue labeling framework is able to estimate cortex segmentations
with a DC up to 0.85 and ventricle segmentations up to 0.60. This master’s thesis shows that
image regression is also capable to model the variability of fetal brains in time and is qualified
to be used for building a spatio-temporal atlas as basis for fetal brain tissue segmentation.

7.5 Future Work

For this master’s thesis the possible future work lies in the following fields:

• Different datasets

• Classification of fetal developmental stadium

• Model of the developing cortical surface

• Improvement of preprocessing

• Model additional brain structures

• Atlas based initialisation and labeling

The focus of this thesis lies on building a spatio-temporal model of the healthy fetal brain using
MRI volumes. Regarding the healthy cases, additional data of a wider age range can be added to
study early brain development at GW smaller 18 or for example the cortical folding appearing
after GW 30. An adaptation of the model for studying brain affecting diseases during pregnancy
is possible using a dataset containing also pathological cases. Also the combination of MRI and
functional MRI datasets of the fetal brain can be considered in future works for studying signal
perception and localisation or to identify multi-variate patterns of brain activity. For future work
the learned continuous model of brain development can be used for training a classifier (Random
Forest, Markov Random Field, Support Vector Machine) to identify the developmental stage of
a fetal brain and additionally to estimate the deviation from a brain at a certain gestational age.
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Also including additional shape descriptors, like gyrification index and measures for surface
curvature can be used to predict fetal age and to study cortical folding patterns. The evaluation
of the cortical labeling results for age range 1, 2 and 3 show that a single kernel for pairwise
registration for every age range is not suitable. The estimation of age range dependent regu-
larisation will be a main issue for the improvement of the labeling procedure and consequently
the quality of graph cut based segmentation. Additionally a combination of global rigid and
local deformable pairwise registration could be analysed for transforming atlas based segmen-
tations to the subject’s space as extension to this thesis. A further field for future work lies in
the combination of atlas based initialisation with other segmentation approaches or in the usage
of atlas based segmentations for the definition of relations between tissue structures to refine the
probabilities of tissue labeling. An automatic localisation of fetal brain and eyes can be included
in the preprocessing pipeline for improving the automatic alignment. An additional refinement
of the masking procedure can be achieved by analysis of the surrounding mother tissue to iden-
tify fetal tissue. Since the dataset used in this thesis was annotated by one expert, the resulting
annotation bias can be reduced by incooperating more experts in the labeling procedure. Also
additional brain structures can be studied for future work, by labeling e.g. CSF, GMAT GM and
WM, cerebellum or medulla oblungata.
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APPENDIX A
Acronyms

ADNI Alzheimer’s Disease Neuroimaging Initiative

CaS Calcarine Sulcus

CeS Central Sulcus

CiS Cingulate Sulcus

CLS ColLateral Sulcus

CMF Continuous Max-Flow

CSF CerebroSpinal Fluid

CSP Cavum of Septum Pellucidum

CT Computer Tomography

DARTEL Diffeomorphic Anatomical RegistraTion using Exponential Lie algebra

DC Dice Coefficient

FFT Fast Fourier Transformation

FL Frontal Lobe

FN False Negative

FP False Positive

FSE Fast Spin-Echo

GA Gestational Age
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GD Gestational Days

GM Gray Matter

GMAT Germinal MATrix

GUI Graphical User Interface

GW Gestational Week

IHF InterHemispheric Fissure

LDDMM Large Deformation Diffeomorphic Metric Mapping

L-VENT Lateral VENTricle

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

ODE Ordinary Differential Equation

OL Occipital Lobe

PET Positron Emission Tomography

PL Parietal Lobe

POS ParietoOccipital Sulcus

PostCG PostCentral Gyrus

PreCG PreCentral Gyrus

SF Sylvian Fissure

SSFSE Single Shot Fast Spin-Echo

TP True Positive

TN True Negative

WM White Matter
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