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Abstract

The understanding of the magnetization dynamics plays an essential role in the design of many
technological applications, e.g., magnetic sensors, actuators, storage devices, electric motors, and
generators. The availability of reliable numerical tools to perform large-scale micromagnetic simula-
tions of magnetic systems is therefore of fundamental importance. Time-dependent micromagnetic
phenomena are usually described by the Landau–Lifshitz–Gilbert (LLG) equation. The numerical
integration of the LLG equation poses several challenges: strong nonlinearities, a nonconvex point-
wise constraint, an intrinsic energy law, which combines conservative and dissipative effects, as well
as the presence of nonlocal field contributions, which prescribes the coupling with other partial dif-
ferential equations (PDEs). This dissertation is concerned with the numerical analysis of a tangent
plane integrator for the LLG equation. The method is based on an equivalent reformulation of the
equation in the tangent space, which is discretized by first-order finite elements and requires only
the solution of one linear system per time-step. The pointwise constraint is enforced at the discrete
level by applying the nodal projection mapping to the computed solution at each time-step. In
this work, we provide a unified abstract analysis of the tangent plane scheme, which includes the
effective discretization of the field contributions. We prove that the sequence of discrete approx-
imations converges towards a weak solution of the problem. Under appropriate assumptions, the
convergence is unconditional, i.e., the numerical analysis does not require to impose any CFL-type
condition on the time-step size and the spatial mesh size. Moreover, we show that a fully linear
projection-free variant of the method preserves the (unconditional) convergence result. One par-
ticular focus of this work is on the efficient treatment of coupled systems, for which we show that
an approach based on the decoupling of the time integration of the LLG equation and the coupled
PDE is very attractive in terms of computational cost and still leads to time-marching algorithms
that are unconditionally convergent. As an application of the abstract theory, we analyze several
extensions of the micromagnetic model for the simulation of spintronic devices. These range from
extended forms of the LLG equation to more involved coupled systems, in which, e.g., the nonlinear
coupling with a diffusion equation, which describes the evolution of the spin accumulation in the
presence of spin-polarized currents, is considered. Numerical experiments support our theoretical
findings and demonstrate the applicability of the method for the simulation of practically relevant
problem sizes.
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Kurzfassung

Das Verständnis des dynamischen Verhaltens der Magnetisierung spielt beim Design vieler tech-
nologischer Anwendungen – z.B. magnetischer Sensoren, Aktoren, Datenspeicher, Elektromoto-
ren und elektrischer Generatoren – eine essentielle Rolle. Die Verfügbarkeit zuverlässiger nume-
rischer Methoden für die umfassende Simulation von magnetischen Systemen ist dazu sehr wich-
tig, um die kosten- und zeitintensive Produktion von Prototypen zu vermeiden. Zeitabhängige
mikromagnetische Phänomene werden üblicherweise durch die Landau-Lifshitz-Gilbert-Gleichung
(LLG-Gleichung) beschrieben. Die numerische Integration der LLG-Gleichung führt auf einige ma-
thematische Herausforderungen: Nichtlinearitäten, eine nichtkonvexe punktweise Nebenbedingung,
ein Energieerhaltungsgesetz und nichtlokale Effekte, die die Kopplung mit anderen partiellen Dif-
ferentialgleichungen notwendig machen. Diese Arbeit befasst sich mit der numerischen Analyse des
sogenannten Tangent-Plane-Verfahrens für die LLG-Gleichung. Diese Methode basiert auf der äqui-
valenten Formulierung der Gleichung im Tangentialraum, die durch ein Finite-Elemente-Verfahren
erster Ordnung diskretisiert wird. Pro Zeitschritt muss bei diesem Verfahren ein lineares Glei-
chungssystem gelöst werden. Die punktweise Nebenbedingung der diskreten Lösung wird durch
die knotenweise Projektion auf die Einheitssphäre sichergestellt. In dieser Arbeit erweitern wir die
Analysis des Tangent-Plane-Verfahrens. Wir beweisen, dass die Folge der Näherungslösungen gegen
eine schwache Lösung der LLG-Gleichung konvergiert. Unter gewissen Voraussetzungen konvergiert
das Verfahren unbedingt, d.h. in der numerischen Analysis muss keine CFL-Bedingung zwischen
der Zeitschrittweite und Ortsgitterweite gefordert werden. Außerdem zeigen wir, dass das Verfahren
ohne nodale Projektion ebenfalls unbedingt konvergiert. Ein zentrales Thema dieser Arbeit ist die
Behandlung einiger gekoppelter Systeme. Wir erweitern die Diskretisierung der LLG-Gleichung auf
diese Kopplungen. Das resultierende, unbedingt konvergente Verfahren entkoppelt die Zeitintegra-
tion der LLG-Gleichung und der gekoppelten Gleichung, was zu einem günstigeren Rechenaufwand
führt. Als Anwendung analysieren wir einige Erweiterungen des mikromagnetischen Modells in der
Spintronik. Wir betrachten erweiterte Formen der LLG-Gleichung sowie (nichtlineare) Kopplungen
der LLG-Gleichung mit einer Diffusionsgleichung für die Spin-Akkumulation. Numerische Expe-
rimente bestätigen die theoretischen Resultate und damit die Anwendbarkeit der entwickelten
Algorithmen auf die Simulation praktisch relevanter Problemgrößen.
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Riassunto

La comprensione dei fenomeni di evoluzione nei corpi ferromagnetici riveste un ruolo fondamentale
per la progettazione di numerose applicazioni tecnologiche: sensori magnetici, attuatori, supporti
di memoria, motori elettrici e generatori. La disponibilità di metodi affidabili per eseguire simu-
lazioni numeriche di sistemi magnetici su larga scala è pertanto di vitale importanza. I fenomeni
micromagnetici di tipo evolutivo sono normalmente descritti dall’equazione di Landau–Lifshitz–
Gilbert, la cui approssimazione numerica pone diverse difficoltà: non-linearità, un vincolo puntuale
e non-convesso, una legge di conservazione dell’energia (che combina effetti conservativi e dissipa-
tivi) e la presenza di contributi non-locali, che richiedono lo studio di sistemi in cui l’equazione
di Landau–Lifshitz–Gilbert è accoppiata ad altre equazioni alle derivate parziali. Questa tesi si
occupa dell’analisi numerica di un metodo di tipo ‘tangent plane’ per l’equazione di Landau–
Lifshitz–Gilbert. Il metodo si fonda su una formulazione variazionale del problema basata sullo
spazio tangente, che viene discretizzata mediante elementi finiti di primo ordine, in modo da ri-
chiedere soltanto la soluzione di un sistema lineare sparso per ogni time-step. La validità del
vincolo puntuale a livello discreto viene assicurata attraverso la proiezione nodale della soluzione
calcolata. In questa tesi, si propone un’analisi astratta del metodo ‘tangent plane’. In particolare,
si dimostra che la successione delle approssimazioni discrete converge verso una soluzione debole
del problema. Assumendo la validità di ipotesi appropriate, la convergenza è incondizionata, ossia
risulta valida senza che sia necessario imporre alcuna condizione CFL tra i parametri associati alla
discretizzazione temporale e a quella spaziale. Inoltre, si mostra che l’omissione della proiezione,
pur determinando la violazione del vincolo, non intacca il risultato di convergenza (incondizionata).
Nel lavoro, si evidenzia come il disaccoppiamento della discretizzazione temporale dell’equazione di
Landau–Lifshitz–Gilbert da quella dell’equazione a essa accoppiata costituisca una valida strategia
per lo studio di sistemi. Tale approccio non solo risulta essere molto interessante dal punto di
vista del costo computazionale, ma conduce anche ad algoritmi incondizionatamente convergen-
ti. Come applicazione della teoria presentata, si analizzano alcune tra le più comuni estensioni
del modello micromagnetico utilizzate per la simulazione di dispositivi spintronici. Esse spaziano
da forme generalizzate dell’equazione di Landau–Lifshitz–Gilbert a sistemi complessi di equazioni
non-lineari, in cui, per esempio, l’equazione di evoluzione per la magnetizzazione viene accoppiata
a un’equazione di diffusione per lo spin, che incorpora nel modello la presenza di correnti elettriche
polarizzate. Alcuni esperimenti numerici supportano i risultati teorici e dimostrano l’efficacia dei
metodi proposti anche per la risoluzione di problemi derivanti da applicazioni concrete.
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Chapter 1

Introduction

1.1 Motivation
The understanding of the magnetization dynamics plays an important role in the design of many
technological applications, e.g., magnetic sensors, actuators, storage devices, electric motors, and
generators. In magnetic recording devices, e.g., in hard disk drives (HDDs), the magnetization of
ferromagnetic materials is used for the storage of data. The information is stored as tiny areas of
either positive or negative magnetization on the surfaces of the disks. Each tiny area corresponds
to a bit of information and the total storage capacity depends directly on how small the area needed
to represent one bit of information can be made: The smaller the bits are, the greater becomes the
capacity.

(a) Longitudinal magnetic recording

(b) Perpendicular magnetic recording

Figure 1.1: Different technologies for data recording in HDDs [1]: Longitudinal magnetic
recording (a) vs. perpendicular magnetic recording (b).

Figure 1.1(a) shows the operating principle of an HDD based on the so-called longitudinal
magnetic recording (LMR). This technique has been used for nearly 50 years in the industry and has
nowadays been replaced by a more effective method, the perpendicular magnetic recording (PMR);
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see Figure 1.1(b). In LMR-based HDDs, the magnetization of each bit is aligned horizontally with
respect to the spinning platter of the drive. The areas which correspond to two adjacent bits with
opposing magnetizations must be separated by a sufficiently wide transition region, in order to
prevent the random magnetization flipping due to the superparamagnetic effect. In PMR-based
HDDs, the perpendicular geometry allows the recording head field to penetrate the medium more
efficiently, which substantially increases the number of magnetic elements that can be stored in a
given area of the platter [172, 209].

(a) Low resistance state (b) High resistance state

Figure 1.2: Giant magnetoresistance effect. The electrical resistance of a magnetic multi-
layer depends on whether the magnetization configurations of consecutive ferromagnetic
sublayers are in parallel alignment (a) or in antiparallel alignment (b).

The discovery of the giant magnetoresistance effect (GMR) in 1988 [19, 49], for which A. Fert
and P. Grünberg were awarded the Nobel Prize in physics in 2007, determined a breakthrough
in magnetic HDD storage capacity. This effect occurs in magnetic multilayers (systems constituted
by alternating ferromagnetic and nonmagnetic sublayers) and consists in the dependence of the
electrical resistance on the relative orientation of the magnetization in the ferromagnetic layers.
The electrical resistance changes from low for a parallel alignment to high for an antiparallel
alignment; see Figure 1.2.

substrate

lower contact

ferromagnet

insulator

ferromagnet

upper contact

Figure 1.3: Schematic of a magnetic tunnel junction.
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The GMR effect is the fundamental ingredient to understand the operating principle of a
magnetic (or magnetoresistive) random access memory (MRAM) [80]. Unlike conventional solid-
state RAMs, in MRAMs the information is stored neither as electric charge in a capacitor nor as
electric current in an electronic circuit, but rather by magnetic storage elements. Every cell of a
MRAM contains a magnetic tunnel junction (MTJ), such as the one depicted in Figure 1.3, which
consists of a magnetic trilayer with two ferromagnetic sublayers separated by a thin nonmagnetic
sublayer. One of the ferromagnetic layers (the so-called pinned or fixed layer) is a permanent
magnet set with a fixed orientation of the magnetization. The information is stored in the relative
orientation of the two ferromagnetic sublayers. Both the writing and the reading processes are
performed by applying an electric current which flows perpendicularly with respect to the plane
of the layers. On the one hand, in the writing process, the orientation of the magnetization of the
free layer is switched by the resulting Oersted field. On the other hand, the reading process is
based on the GMR effect and consists in measuring the electrical resistance of the structure.

Figure 1.4: Unit cell of a domain wall racetrack memory [162, 201].

The storage density of MRAMs is limited by the use of the Oersted field in the writing process,
which causes difficulties in terms of power consumption and scaling [65]. The input to overcome
these problems came from the concept of spin transfer torque (STT), proposed independently
by J. C. Slonczewski and L. Berger in 1996, which predicts that the magnetization of a
ferromagnetic layer can be switched by a spin-polarized current, even in the absence of a magnetic
field [191, 44]. This theoretical progress allowed for the design of new recording devices. The
STT random access memory (STTRAM) is another type of nonvolatile RAM which differs from
the MRAM for the writing process only [115]: the magnetization reversal mechanism exploits the
interactions with spin-polarized currents and is not based on the generated Oersted field. The same
principle lies behind the operating principle of the domain wall racetrack memory [162], proposed
by S. S. P. Parkin in 2008, a new type of nonvolatile memory device which promises to provide
the performance and reliability of solid-state memories, but at the low cost of standard HDDs.
The unit cell of a racetrack memory is a ferromagnetic nanowire (see Figure 1.4), in which the
information is stored as a pattern of magnetic domains and domain walls. Pulses of spin-polarized
current move the entire pattern along the length of the wire close to the reading/writing units.

For the design and the realization of the described recording devices, the influence of a variety
of different physical effects needs to be taken into account. Numerical simulations represent an
invaluable tool to explore and gain new insights into these new technologies. This dissertation
investigates the mathematical models which describe the physics behind the presented recording
devices. Our aim is the development and the rigorous analysis of numerical algorithms to perform
fast and reliable micromagnetic simulations. One particular focus is on the study of the convergence
of the numerical solutions towards the solutions of the underlying (systems of) partial differential
equations (PDEs).
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1.2 State of the art
Micromagnetism, or micromagnetics1, is the study of magnetic processes on a submicrometer
length scale. Started with pioneering works by P.-E. Weiss, F. Bloch, L. D. Landau, and
E. M. Lifshitz, the theory was developed in the 1940s by W. F. Brown, Jr, who gave the
first extended treatment of the topic in his 1963 book [54]. For several years, the micromagnetic
theory essentially consisted of applications of, on the one hand, standard variational techniques
to the so-called static micromagnetic problem, i.e., a constrained minimization problem for the
micromagnetic energy [139], and, on the other hand, classical nucleation theory to model different
magnetization reversal mechanisms [134, 135]. In the 1980s, with the simultaneous development of
new magnetic materials (used, e.g., for permanent magnets, media and heads in recording devices,
or magnetic sensors) and the widespread availability of large scale computational resources, one of
the main focuses of the micromagnetic theory became the development of fast and reliable tools
to perform large-scale simulations of magnetic systems.

Applications to magnetic recording, in which the external field can change fast so that the
hysteresis properties are not accurately described by a static approach, encouraged the study
of numerical methods to deal with the the so-called dynamic micromagnetic problem, i.e., the
solution of the Landau–Lifshitz–Gilbert (LLG) equation which governs the time evolution of the
magnetization [139, 107, 108]. In this framework, one of the main issues concerns the computation
of the nonlocal magnetostatic interactions, which turns out to be, in many situations, the most
time-consuming part of micromagnetic simulations [188, 177, 159].

Most of the micromagnetic codes (both commercial and open-source) are based on either the
finite difference method (FDM) or the finite element method (FEM); see, e.g., [152, 185]. In
finite-difference-based codes, the computation of the magnetostatic interactions is usually based
on the fast Fourier transform (FFT). As an example, we mention the widely used Object-Oriented
MicroMagnetic Framework (OOMMF) software [4, 82], a FDM-FFT micromagnetic code devel-
oped at the National Institute of Standards and Technologies (NIST) of Gaithersburg (USA). The
application of the FEM in micromagnetics, more suitable to capture possible irregular shapes and
grain structures of the magnets, was proposed by D. R. Fredkin and T. R. Koehler [98, 125].
The efficiency of finite-element-based micromagnetic simulations was improved by the work of the
groups of J. Fidler, T. Schrefl, and D. Suess at TU Wien [181, 182, 97, 194, 180]. The
magnetostatic interaction is formulated in terms of a scalar potential and discretized by combining
the FEM with the boundary element method (BEM).

Nowadays, important lines of research in micromagnetics, from both the modeling and the
computational point of view, concern the spintronic extensions of micromagnetics, e.g., with the
concepts of spin transfer torque [202, 191, 212] or spin-orbit coupling [85, 197, 91], the study of
enucleation processes, stability, and dynamics of magnetic skyrmions [157, 173, 175, 200, 127], and
the incorporation of thermal effects [55, 100, 105, 90].

For a long time, the investigation of micromagnetic phenomena has been a prerogative of
physicists and engineers. However, in the last three decades, the growing need of fast and reliable
numerical simulations encouraged several mathematical studies, from both the analytical and the
numerical point of view.

The first existence result for weak solutions to the LLG equation can be traced back to [203],
where the coupling of the LLG equation with the Maxwell equations and with a balance law for the
linear momentum to model the magnetoelastic interaction was considered. Since then, existence
and regularity questions for the LLG equation have been the subject of intense research. The
so-called small particle limit of the LLG equation, in which the effective field comprises only the
exchange contribution, was studied, almost simultaneously, in [17, 114]. In particular, [17] adapted
the proof of the analogous result for the harmonic maps heat flow [78, 48] and established global
existence and nonuniqueness of weak solutions of the LLG equation. If the initial condition is
sufficiently regular, strong solutions of the LLG equation exist locally in time and are unique [63].

1Throughout the literature, these terms are usually used as synonyms of each other. To specify the precise
acceptation of each of these words, we might say that micromagnetism refers to the underlying science, while
micromagnetics is more concerned with the application of that science.
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These two notions of solutions are connected by a weak-strong uniqueness principle, in the sense
that if a strong solution exists up to some time T > 0, then any global weak solution coincides with
it up to time T [84]. Extended versions and coupled problems have also been considered; see, e.g.,
an extended LLG equation with an additional spin transfer torque term [151], the coupling of the
LLG equation with the full Maxwell equations [62], with a conservation law for the linear momen-
tum [61], with a spin diffusion equation [103], with a system of drift-diffusion equations [210, 211]
to model the magnetization dynamics in semiconductors. Further analytical results for (coupled
problems for) the LLG equation can be found, e.g., in the papers [148, 154, 73, 74, 77, 149], in the
monograph [113], in the recent preprint [94], as well as in the references therein. Recently, to include
thermal effects, also the stochastic LLG equation has been investigated; see, e.g., [126, 59, 160, 60].

In parallel, the numerical integration of the LLG equation has also been the subject of many
mathematical studies. The main challenges concern the strong nonlinearity of the equation, the
nonconvex pointwise constraint satisfied by the solutions, an intrinsic energy law, which combines
conservative and dissipative effects and has to be preserved by the numerical scheme, as well as
the presence of nonlocal field contributions, which prescribes the (possibly nonlinear) coupling
with other PDEs; see the review articles [21, 137, 101, 75], the papers [20, 71, 22, 72], and the
monographs [169, 26]. One important aspect of the research is related to the development of
unconditionally convergent (stable) methods, for which the numerical analysis does not require
to impose any CFL-type condition on the spatial and temporal discretization parameters. For a
numerical integrator of the LLG equation, such a property is highly desirable, since the application
of standard ‘off-the-shelf’ explicit schemes usually enforces severe constraints on the time-step size
which are sometimes unfeasible in practice or lead to unnecessary long computational time. As
an example for numerical schemes based on the finite difference method, we mention the uncondi-
tionally stable Gauss–Seidel projection method [87, 207] and the scheme introduced in [79] based
on the midpoint rule in time.

The works [40, 12] proposed numerical integrators, based on lowest-order finite elements in
space, that are proven to be (unconditionally) convergent towards a weak solution of the small
particle limit of the LLG equation. Both approaches were successfully applied to similar geometri-
cally constrained evolution equations, such as the harmonic maps heat flow or the wave maps heat
flow [41, 38, 35, 37], and extended to the case of the stochastic LLG equation [27, 25, 26, 13, 112].

On the one hand, the implicit midpoint scheme [40], proposed by S. Bartels and A. Prohl in
2006, is formally of 2nd order in time and inherently preserves some of the fundamental properties
of the LLG equation, such as the pointwise constraint (at the nodes of the mesh) and the energy
law, but requires the solution of a nonlinear system of equations per time-step. To deal with
it, the authors proposed a linear fixed-point iteration, which is still constraint-preserving, but
requires the condition k = O(h2) for the time-step size k and the mesh size h in order to be
stable. The analysis of the algorithm was extended allowing the inexact solution of the nonlinear
system in [34, 76]. In the recent preprint [167], we extended the analysis of the algorithm to the full
effective field and proposed an implicit-explicit treatment of the field contributions, attractive from
the computational point of view, which formally preserves the convergence of 2nd order in time.
Extensions of the scheme for the coupling of the LLG equation with the Maxwell equations [24]
and for an extended LLG equation which models the dynamics of the magnetization when the
temperature is not constant were also considered [30, 31].

On the other hand, the θ-method [12], proposed by F. Alouges, is based on an equivalent
reformulation of the LLG equation in the tangent space and requires only the solution of one linear
system per time-step. Moreover, it is (unconditionally) convergent and formally of 1st order in
time. The pointwise constraint, which characterizes the solutions of the LLG equation, is enforced
at a discrete level by applying the nodal projection mapping to the computed solution at each
time step. The stability of the scheme requires restrictive conditions either on the discretization
parameters or on the underlying mesh. The method improves the explicit scheme introduced
in [14] and analyzed in [39], where also the finite time blow-up of the solutions, motivated by
the analogous result for the harmonic maps heat flow, was numerically investigated. An implicit-
explicit approach for the full effective field was introduced and analyzed in [109, 16] and [56],

5



where the discretization of the field contributions and the coupling with a nonlinear material law
were also considered. Strategies to improve the convergence order in time of the method were
proposed in [16, 15]. Extensions of the tangent plane scheme for the discretization of the coupling
of the LLG equation with the full Maxwell equations, the eddy current equation, a balance law for
the linear momentum (magnetostriction), and a spin diffusion equation for the spin accumulation
were considered in [142, 161, 29, 141, 28, 6]. In [161, 29, 141, 28, 6] one particular focus is on
the decoupling of the time integration of the LLG equation and the coupled PDE, which is very
attractive in terms of computational cost and leads to algorithms that are still unconditionally
convergent. Inspired by [37], the projection-free version of the tangent plane scheme, which avoids
the use of the nodal projection mapping, was introduced and analyzed in [6]. The violation of the
constraint at the nodes of the triangulation occurring in this case is controlled by the time-step
size, independently of the number of iterations. The projection-free tangent plane scheme was
combined with a FEM-BEM coupling method for the discretization of the coupling of the LLG
equation with the magnetoquasistatic Maxwell equations in full space in [92, 93]. There, assuming
the existence of a unique sufficiently regular solution, the authors proved also convergence rates of
the method.

1.3 Contributions and general outline of the dissertation
In the present dissertation, we contribute to the study of reliable and effective numerical methods
for the LLG equation. Our algorithm is an extension of the tangent plane scheme [12]. We transfer
ideas from [37] and propose a projection-free variant of the scheme. Moreover, we investigate its
applicability for the efficient discretization of coupled systems of PDEs, in which the LLG equation
is coupled with another equation that describes a particular nonlocal effective field contribution.
One of the main focuses is on the development of unconditionally convergent finite element methods
for the numerical approximation of LLG-based models for metal spintronic devices.

The thesis is the continuation of a successful cooperation between the Institute of Solid State
Physics (group of D. Suess) and the Institute for Analysis and Scientific Computing (group of
D. Praetorius) of TU Wien [111, 110, 58, 57, 56, 6, 7, 174, 205, 204, 8].

The remainder of this work is organized as follows:

• In Chapter 2, we describe the physical background which is behind the mathematical models
considered in the dissertation. We start with a concise and micromagnetics-oriented pre-
sentation of the Maxwell equations (Section 2.1), the fundamental system of PDEs for the
modeling of electromagnetic phenomena. In Section 2.2, we give a brief introduction on the
classical theory of micromagnetics, with a careful description of the involved energy and field
contributions as well as a formal derivation of the LLG equation. We conclude the chapter
with an organic presentation of the, in our opinion, most relevant spintronic extensions of
the LLG equation (Section 2.3).

• In Chapter 3, as a preparation for the following analysis, we collect some auxiliary results.
To start with, we analyze the rigorous nondimensionalization of the problems introduced in
Chapter 2 (Section 3.1). Then, we briefly describe the notation used for Lebesgue, Sobolev,
and Bochner spaces (Section 3.2). Finally, we discuss some preliminary results about the
time discretization (Section 3.3) and the spatial discretization (Section 3.4), which is based
on 1st order finite elements.

• In Chapter 4, we propose a unified analysis of the tangent plane scheme for a generalized
form of the LLG equation, which improves and extends those of [12, 16, 56, 6]. The pro-
posed framework considers both the standard tangent plane scheme and its projection-free
variant (Algorithm 4.2.1). We introduce a set of general assumptions (on the discretization
parameters, on the field contributions as well as on their numerical approximations) which
guarantee the (unconditional) convergence of the sequence of discrete solutions towards a
weak solution of the problem (Theorem 4.3.2). The abstract framework covers most of the
classical contributions that are usually included into the effective field.
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• Chapter 5 is devoted to the numerical approximation of the extensions of the LLG equation,
which are currently used for the micromagnetic modeling of spintronic devices. These models,
which take the effects of the interaction between the magnetization and spin-polarized electric
currents into account, can be classified into two main categories. On the one hand, there
are extended forms of the LLG equation, in which the classical energy-based effective field is
augmented by (local or nonlocal) additional terms which include the effect of the spin transfer
torque [191, 213, 174, 8]. In this case, we show that the resulting extended forms of the LLG
equation are covered by the abstract framework of Chapter 4, which ensures the convergence
of the numerical scheme. On the other hand, the LLG equation is nonlinearly coupled
with a diffusion equation for the spin accumulation [212, 103]. We show that the approach
of [29, 141, 28], introduced to deal with the coupling of the LLG equation with the Maxwell
equations (both the full system and the eddy current approximation) and the conservation
of momentum (magnetostriction) and based on the decoupling of the time integration of the
LLG equation and the coupled PDE, can be successfully applied. Here, differently from those
cases, the magnetization affects not only the right-hand side of the coupled equation, but also
the main part of the involved differential operator, which leads to a slightly more involved
analysis.

• In Chapter 6, we propose some effective strategies for the solution of the constrained linear
system which arises when the LLG equation is discretized by the tangent plane scheme
(Section 6.1). In Section 6.2, to support our theoretical findings, we present some numerical
results, which investigate both the general performance of our methods as well as their
applicability for the simulation of practically relevant problem sizes.

• For most of the results and the methods of the present dissertation, there are a number
of possible extensions and related open questions, which are, in our opinion, worth to be
investigated. In Chapter 7, we give a short outlook on some of them.

• For the convenience of the reader, we conclude this work with two appendices. In Appendix A,
we summarize the physical quantities and the physical constants considered throughout the
thesis. In Appendix B, we collect some useful linear algebra definitions, vector identities, and
well-known product rules of classical vector calculus.

Some of the presented results have been partially published in our papers [56, 6, 7, 174, 8]. How-
ever, in the present work, we propose an extended treatment of the topic with several additional
comments. In particular, some results are more general or slightly sharper and some proofs have
even been improved.
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Chapter 2

Mathematical modeling

In this chapter, we introduce the partial differential equations that are considered throughout the
thesis. When we refer to physical quantities, we use physical units in the International System of
Units (SI). For an overview of the considered physical quantities/constants and the corresponding
units, we refer the reader to Appendix A.

2.1 Maxwell’s equations
The Maxwell system is a set of four fundamental equations in the theory of electromagnetism [145].
A classical reference for the physics of electromagnetism is, e.g., the book [119]. Here, we consider
the macroscopic Maxwell equations, namely

∇ ·D = ρ, (2.1a)
∇ ·B = 0, (2.1b)
∇×E = −∂tB, (2.1c)
∇×H = Je + ∂tD. (2.1d)

The physical quantities which appear in (2.1) are the magnetic flux density B (in T), the electric
displacement field D (in C/m2), the electric field E (in V/m), the magnetic field H (in A/m),
and the electric current density Je (in A/m2), which are three-dimensional vector fields, and the
scalar-valued electric charge density ρ (in C/m3). For the orientation of the electric field and the
electric current density, we adopt the standard convention: The direction of the electric field is
chosen to be the direction of the force exerted on a positive test charge; consistently, the direction
of electric current is arbitrarily defined as the direction of a flow of positive charges. The Maxwell
system comprises the Gauss law (2.1a), the Gauss law for magnetism (2.1b), the Faraday law of
induction (2.1c), and the Maxwell–Ampère circuital law (2.1d). The above equations are posed on
the full space R3. However, the charge density ρ and the electric current density Je are supported
on a limited region of space, which we assume to be a bounded domain Ω ⊂ R3, which represents
the volume occupied by a conducting body. We assume R3 \ Ω to be vacuum.

Formally, the summation of the time derivative of (2.1a) with the divergence of (2.1d) yields a
conservation law for the electric charge on the conducting domain Ω, i.e., the continuity equation

∂tρ+∇ · Je = 0.

Moreover, if the initial condition for B satisfies (2.1b), the equation will be satisfied for all time.
This follows by taking the divergence of (2.1c) and noting that the divergence of the curl is zero.

In the case of linear materials, one usually assumes the constitutive laws

D = εE, (2.2a)
B = µH, (2.2b)
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where the electric permittivity ε (in F/m) and the magnetic permeability µ (in N/A2) are sym-
metric and uniformly positive definite matrices in R3×3. In particular, in vacuum, e.g., in R3 \ Ω,
it holds that ε = ε0I3×3 as well as µ = µ0I3×3, where the positive constants ε0 and µ0 are the
vacuum permittivity (in F/m) and the vacuum permeability (in N/A2), respectively. Under this
assumption, the Maxwell system (2.1) can be rewritten as

∇ · (εE) = χΩρ, (2.3a)
∇ · (µH) = 0, (2.3b)
∇×E = −µ∂tH, (2.3c)
∇×H = χΩJe + ε∂tE. (2.3d)

The characteristic function χΩ is a reminder that the charge density and the electric current
density vanish in R3 \ Ω. The electromagnetic energy (in J) is the sum of the electric energy and
the magnetic energy

E(E,H) =
1

2

∫
R3

εE ·E dx+
1

2

∫
R3

µH ·H dx. (2.4)

Using the product rule

∇ · (E ×H) = (∇×E) ·H − (∇×H) ·E, (2.5)

together with the equations (2.3c)–(2.3d), we obtain

d

dt
E(E,H) =

∫
R3

δE
δE
· ∂tE dx+

∫
R3

δE
δH
· ∂tH dx

(2.4)
=

∫
R3

ε∂tE ·E dx+

∫
R3

µ∂tH ·H dx

(2.3)
=

∫
R3

(∇×H) ·E dx−
∫

Ω

Je ·E dx−
∫
R3

(∇×E) ·H dx

(2.5)
= −

∫
R3

∇ · (E ×H) dx−
∫

Ω

Je ·E dx.

We conclude the energy law

d

dt
E(E,H) +

∫
R3

∇ · (E ×H) dx = −
∫

Ω

Je ·E dx.

The vector S = E×H, usually referred to as Poynting vector (in W/m2), plays the role of energy
flux density, while the term on the right-hand side refers to the so-called Joule heating, i.e., the
energy which is converted into heat when an electric current flows through a resistance.

Associated with the Maxwell equations, one usually considers a constitutive law for conduction
that relates the fields to the sources. The usual choice for a conducting material is the Ohm law,
i.e.,

Je = σE, (2.6)

where σ ∈ R3×3, a symmetric and uniformly positive definite matrix, is the conductivity (in
A/(m V)). Under this assumption, the Faraday law of induction (2.3c) and the Maxwell–Ampère
circuital law (2.3d), namely

µ∂tH +∇×E = 0,

ε∂tE −∇×H + χΩσE = 0,

are sufficient to determine the electromagnetic fields, and the charge density ρ becomes a ‘leftover
quantity’, which can be obtained from (2.3a) once the electric field is known. Moreover, in this
case the energy law becomes

d

dt
E(E,H) +

∫
R3

∇ · (E ×H) dx = −
∫

Ω

σE ·E dx < 0.
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The negative right-hand side reveals the dissipative nature of the Joule heating.
In many practical situations, since wave phenomena usually occur on a very short time scale,

for an appropriate description of the electromagnetic fields it is sufficient to consider truncated
versions of the Maxwell equations, where the time derivative of either the magnetic field or the
electric field (quasistatic approximation) or both of them (static approximation) are omitted. In
these cases, the electromagnetic waves, which result from the coupling of the magnetic field and
the displacement current, are neglected.

The magnetoquasistatic Maxwell equations can be considered whenever |ε∂tE| � |∇ ×H| +
|σE|, e.g., when µmaxεmaxL

2T−2 � 1 and εmaxσ
−1
minT

−1 � 1, where εmax and µmax (resp. σmin)
denote the maximal (resp. minimal) eigenvalues of ε and µ (resp. σ), while L > 0 and T > 0
denote some typical length (in m) and typical time (in s) of the problem; see [10, Section 1.2]. For
a material which satisfies the Ohm law (2.6), the resulting system is given by

∇ · (εE) = χΩρ, (2.7a)
∇ · (µH) = 0, (2.7b)
∇×E = −µ∂tH, (2.7c)
∇×H = χΩσE. (2.7d)

Replacing the electric field E in (2.7c) by the expression that can be derived from (2.7d), which is
admissible in the conducting region Ω, we obtain the so-called eddy current equation

µ∂tH = −∇× (σ−1∇×H).

In the static case, the equations for the electric field and the magnetic field can be decoupled.
The resulting systems are the electrostatic Maxwell equations

∇ · (εE) = χΩρ,

∇×E = 0,

and the magnetostatic Maxwell equations

∇ · (µH) = 0,

∇×H = χΩJe.

2.2 Classical micromagnetic theory
In this section, we briefly introduce the classical theory of micromagnetism. For further details,
we refer the interested reader to the monographs [9, 118, 47, 136] and the review articles [97, 96,
183, 184].

Micromagnetics can be defined as the study of magnetic processes at submicrometer length
scales. The considered length scale, which ranges from few nanometers to micrometers, is large
enough to average the atomic structure of the material, which allows to replace the individual
atomistic magnetic moments by a continuous function in space (the so-called continuous medium
approximation). At the same time, the length scale is small enough to resolve magnetic structures
such as domain walls or vortices. The magnetic condition of a ferromagnetic body is described by
a physical quantity called magnetization. It is defined as the quantity of magnetic moment per
unit volume and it is measured in A/m. Mathematically, the magnetization is represented by a
three-dimensional vector field M , defined on a bounded domain Ω ⊂ R3, which represents the
volume occupied by the ferromagnetic body, with boundary denoted by Γ := ∂Ω.

If the temperature is constant and far below the so-called Curie temperature of the ferromag-
netic material (in K), the modulus of the magnetization is assumed to be constant, i.e.,

|M | = Ms. (2.8)
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The constant Ms > 0 is called saturation magnetization and is a measure of the maximal amount
of field that can be generated by a material (in A/m). We define the normalized magnetization
by m := M/Ms, for which the modulus constraint (2.8) becomes |m| = 1, i.e., the normalized
magnetization assumes values on the unit sphere

S2 =
{
x ∈ R3 : |x| = 1

}
.

In the case of linear ferromagnetic materials, the constitutive law (2.2b) takes the form

B = µ0(H +MsχΩm). (2.9a)

Moreover, for the sake of simplicity, we restrict ourselves to the case of scalar-valued electric
permittivity ε > 0 and conductivity σ > 0, i.e., we consider the constitutive laws

D = εE, (2.9b)
Je = σE, (2.9c)

instead of (2.2a) and (2.6).

2.2.1 Total magnetic Gibbs’ free energy
In micromagnetism, the study of magnetic processes is characterized by an energy-based approach.
The key quantity is the total magnetic Gibbs free energy of the ferromagnetic body (in J), which
depends on the magnetization and on possible applied external fields. The total magnetic Gibbs
free energy comprises several energy contributions.

2.2.1.1 Exchange energy

The exchange energy contribution stems from the exchange interactions between the spins theorized
by W. K. Heisenberg. According to this quantum mechanical effect, neighboring magnetic
moments tend to be parallel to each other. This is reflected by an energy contribution which
penalizes disuniformities of the magnetization, i.e.,

Eex(m) = A

∫
Ω

|∇m|2 dx,

where A > 0 is the so-called exchange stiffness constant. Its value for standard ferromagnetic
materials is usually of the order of 10−11 J/m.

2.2.1.2 Magnetocrystalline anisotropy energy

The crystalline structure of the material implies the existence of preferred directions for the mag-
netization, usually referred to as easy axes. This is mathematically modelled by a smooth function
Φ : S2 → R with values in J/m3, which takes the anisotropy of the ferromagnetic material into
account. It is usually a nonnegative function which takes the value 0 if and only if the direction
belongs to the set of preferred directions. As an example, we mention three important cases:

• Uniaxial anisotropy: There is one preferred direction a ∈ S2. The function Φ : S2 → R is
given by

Φ(u) = Ku

[
1− (a · u)2

]
, (2.10)

with Ku > 0; see Figure 2.1(a).

• Planar anisotropy: The magnetization tends to remain in a plane. The anisotropy function
Φ : S2 → R is given by

Φ(u) = Kp(a · u)2,

where Kp > 0 is constant and a ∈ S2 denotes the normal vector to the plane; see Fig-
ure 2.1(b).
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• Cubic anisotropy: There are three mutually orthogonal easy directions ai ∈ S2, 1 ≤ i ≤ 3.
A possible expression for the function Φ : S2 → R is given by

Φ(u) = Kc1

[
(a1 · u)2(a2 · u)2 + (a1 · u)2(a3 · u)2 + (a2 · u)2(a3 · u)2

]
+Kc2(a1 · u)2(a2 · u)2(a3 · u)2,

with Kc1,Kc2 ∈ R; see Figure 2.1(c).
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Figure 2.1: Anisotropy functions. (a) Plot of the uniaxial anisotropy function with
Ku = 1 and a = e3. (b) Plot of the planar anisotropy function with Kp = 1 and a = e3.
(c) Plot of the cubic anisotropy function with Kc1 = 2, Kc2 = 0 and ai = ei for all
1 ≤ i ≤ 3.

The above constants Ku,Kp,Kc1,Kc2 are material parameters and are measured in J/m3.
Throughout this work, we consider a general anisotropy function of the form Φ = Kφ, where

K > 0 is a general anisotropy constant in J/m3, while φ : S2 → R is a (nondimensional) smooth
function. Clearly, the three aforementioned examples can be recasted into this framework. The
magnetocrystalline anisotropy energy is given by

Eani(m) = K

∫
Ω

φ(m) dx

and can be defined as the work required to rotate the magnetization out of the easy axes.

2.2.1.3 Zeeman’s energy

In the presence of an external field, the magnetization tends to align itself to it. The Zeeman
energy, named after P. Zeeman, is an energy contribution which penalizes any deviation of the
magnetization from this field inside the body. The corresponding term is

Eext(m,Hext) = −µ0Ms

∫
Ω

Hext ·m dx,

where Hext denotes the applied external field (in A/m).

2.2.1.4 Antisymmetric exchange energy

Chiral magnets are characterized by an atomic structure which lacks inversion symmetry. The asso-
ciated interaction is called antisymmetric exchange interaction, also referred to as Dzyaloshinskii–
Moriya (DM) interaction. It is a short-range effect which tries to twist the magnetization (neighbor-
ing magnetic moments tend to be perpendicular to each other) and it is thus in direct competition
with the exchange interaction which favors uniform magnetization configurations. It was found
that the mechanism behind this effect is based on spin-orbit coupling [86, 156]. The corresponding
energy contribution takes the form

EDM(m) = D

∫
Ω

(∇×m) ·m dx,
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where D ∈ R is the DM constant (in J/m2). The Dzyaloshinskii–Moriya interaction turns out to
be one of the main ingredient for the formation of magnetic skyrmions [95, 157, 175, 127].

2.2.1.5 Magnetostatic energy

Taking the constitutive law (2.9a) for ferromagnetic materials into account, it turns out that
the magnetization ‘generates’ a magnetic field, which is described by the Maxwell equations; see
Section 2.1. Since the electromagnetic wavelength is much larger than the standard dimensions of
a ferromagnet, an appropriate description of this magnetic field usually employs the magnetostatic
Maxwell equations, which for a ferromagnet are given by

∇ ·H = −Ms∇ · (χΩm), (2.11a)
∇×H = χΩJe. (2.11b)

We decompose the magnetic field into two components, i.e., H = Hs + Hc. Here, Hs is the
so-called stray field (or demagnetizing field, since it acts on the magnetization so as to reduce the
total magnetic moment), ‘generated’ by the magnetization m, while Hc is usually referred to as
Oersted field, ‘generated’ by the electric current density Je. From the superposition principle, it
follows that Hs and Hc satisfy

∇ ·Hs = −Ms∇ · (χΩm), (2.12a)
∇×Hs = 0, (2.12b)

and

∇ ·Hc = 0, (2.13a)
∇×Hc = χΩJe, (2.13b)

respectively. Note that the stray field and the Oersted field are nothing but the gradient part and
the curl part of the Helmholtz decomposition of H, respectively. From (2.12b), it turns out that
the stray fieldHs is an irrotational field in a simply connected domain (the full space), from which
it follows that it can be understood as the gradient of a scalar potential. It holds that Hs = −∇u,
where u denote the magnetostatic potential (in A). With the usual transmission conditions (the
normal component of the magnetic flux density must be continuous at the interface) and a suitable
radiation condition at infinity, from (2.12) it follows that the magnetostatic potential solves the
scalar full-space transmission problem

−∆uint = −Ms∇ ·m in Ω, (2.14a)

−∆uext = 0 in R3 \ Ω, (2.14b)

uext − uint = 0 on Γ, (2.14c)

(∇uext −∇uint) · n = −Msm · n on Γ, (2.14d)
u(x) = O(1/ |x|) as |x| → ∞. (2.14e)

Here, the superscripts ‘int’ and ‘ext’ denote the restriction of the magnetostatic potential to Ω
and its complement. This interpretation explains why, in analogy with the electrostatic case, the
quantities −Ms∇·m and −Msm·n are usually referred to as magnetic volume charge and magnetic
surface charge, respectively. As for the Oersted field, using the vector identity

∇× (∇×Hc) = ∇(∇ ·Hc)−∆Hc, (2.15)

we obtain that

∇× (χΩJe)
(2.13b)

= ∇× (∇×Hc)
(2.15)

= ∇(∇ ·Hc)−∆Hc
(2.13a)

= −∆Hc.
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With the usual transmission conditions (the tangential component of the magnetic field must be
continuous at the interface) and a suitable radiation condition at infinity, we deduce that the
Oersted field solves the vector full-space transmission problem

−∆H int
c = ∇× Je in Ω, (2.16a)

−∆Hext
c = 0 in R3 \ Ω, (2.16b)

Hext
c −H int

c = 0 on Γ, (2.16c)

(∇Hext
c −∇H int

c )n = n× Je on Γ, (2.16d)
Hc(x) = O(1/ |x|) as |x| → ∞. (2.16e)

The decomposition of the magnetic field into stray field and Oersted field is reflected by a decom-
position of the magnetic energy

E(H) =
µ0

2

∫
R3

|H|2 dx =
µ0

2

∫
R3

|Hs|2 dx+
µ0

2

∫
R3

|Hc|2 dx.

In micromagnetics, the (magnetization-dependent) magnetic energy of the stray field is usually
referred to as magnetostatic energy. It can be understood as the energy of the magnetization
associated with the interactions with its own demagnetizing field

Estray(m) =
µ0

2

∫
R3

|Hs|2 dx = −µ0Ms

2

∫
Ω

Hs ·m dx.

The classical theory of micromagnetism usually models the behavior of ferromagnetic materials in
the absence of electric currents, i.e., without Oersted field. However, for conducting materials and
certain geometries, e.g., in the case of ferromagnetic nanowires, the effect of the electric current
and the associated Oersted field cannot be ignored.

2.2.1.6 Magnetoelastic energy

Ferromagnetic bodies are also sensible to mechanical stresses and deformations: Changes in the
magnetization cause strains in the crystal lattice. Conversely, if an applied force produces a strain
in a ferromagnetic material, this stress affects the magnetization. This bidirectional coupling
between magnetic and elastic properties is usually referred to as magnetostriction.

According to the second Newton law, the displacement u ∈ R3, i.e., the distance of the deformed
configuration from the reference configuration (in m), satisfies

κ∂ttu = ∇ · σ + f , (2.17)

where κ > 0 is the density of the medium (in kg/m3), σ ∈ R3×3 is the stress tensor (in Pa), and
f ∈ R3 represents an applied body force (in N/m3). Let ε(u) ∈ R3×3 denote the (nondimensional)
strain tensor. In linear elasticity, the displacement-strain relation is given by the symmetrized
Jacobian

ε(u) =
1

2

(
∇u+ ∇u>

)
;

see, e.g., [69, Section 6.3]. We assume that the strain tensor can be decomposed into two com-
ponents, i.e., ε = εel + εm, where εel denotes the elastic strain tensor, whereas εm denotes the
magnetostrain tensor. In a linear elastic material, the elastic strain tensor εel is related to the
stress tensor by the Hooke law

σ = Cεel,

where C is a symmetric and positive definite 4th order tensor, usually referred to as stiffness tensor
(in Pa)1. As for the magnetostrain tensor, several expressions can be found in the literature; see,

1In the case of homogeneous and isotropic materials, e.g., it holds that σ = λ tr(εel)I + 2µεel, with λ ∈ R and
µ > 0 being the so-called Lamé constants (both in Pa); see, e.g., [69, Section 3.8]. The corresponding stiffness tensor
is given by Cijkl = λδijδkl + µ(δikδjl + δilδjk).
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e.g., [118, Section 3.2.6] or [136, Section 2.2.4]. Here, we restrict ourselves to the form

εm(m) = λ(m⊗m− I3×3/3),

with λ also being a symmetric and positive definite 4th order tensor (nondimensional). Within
this framework, the conservation of momentum (2.17) can be rewritten as

κ∂ttu = ∇ · [Cεel(u,m)] + f , (2.18)

where εel(u,m) = ε(u)−εm(m). This equation is usually supplemented with the mixed boundary
conditions

u = 0 on ΓD,

σn = t on ΓN ,

for a given partition of the boundary Γ = ΓD ∪ ΓN into relatively open parts ΓD,ΓN ⊂ Γ such
that ΓD ∩ ΓN = ∅ and |ΓD| > 0. The homogeneous Dirichlet condition imposes that the body is
clamped on ΓD, whereas the Neumann condition allows the possible effect of a contact force t ∈ R3

(traction, in N/m2). The expression of the elastic energy is given by

Eel(m,u) =
1

2

∫
Ω

κ |∂tu|2 dx+
1

2

∫
Ω

εel(u,m) : [Cεel(u,m)] dx−
∫

Ω

f ·udx−
∫

ΓN

t ·udS. (2.19)

It comprises four terms: the kinetic energy, the elastic energy, and the work done by the body
force and the contact force, respectively. In many practical situations, the deformation of the
ferromagnetic body can be considered at equilibrium, see, e.g., [190]. It is thus sufficient to
consider the stationary case of (2.18)

∇ · [Cεel(u,m)] + f = 0.

In this case, the kinetic energy is not taken into account.

2.2.2 The Landau–Lifshitz–Gilbert equation
According to the theory of micromagnetism, the admissible configurations of the magnetization
are those which minimize the total Gibbs free energy of the ferromagnetic body, i.e., we are led to
consider the minimization problem

min
|m|=1

E(m). (2.20)

The qualitative structure of the stable configurations are the result of the balance between the
different energy contributions [118, Section 3.3]. Minimizing the exchange energy is achieved by a
uniform magnetization configuration, which is however characterized by a significant magnetostatic
energy. As a compromise, the magnetization in ferromagnetic materials exhibits intricate domain
structures, which consist of areas where the magnetization is almost uniform or varies slowly (mag-
netic domains), separated by sharp transition layers, where the orientation of the magnetization
rotates coherently from the direction in one domain to that in the next domain on a much shorter
lengthscale (domain walls). The presence of an applied external field has an influence on the size of
the domains, while the anisotropy of the material tends to favor the easy directions. The domain
wall width is a compromise between the tendency of the exchange energy to enlarge the layers,
since minimizing the exchange energy implies that the magnetization changes slowly as function
of position, and that of the anisotropy energy to reduce their thickness, in order to reduce the
region in which the magnetization deviates from a preferred direction. The interplay between the
exchange interaction and the Dzyaloshinskii–Moriya interaction is the fundamental ingredient for
the stabilization of magnetic skyrmions [175].

Important quantitative parameters in micromagnetics, which are usually considered for the
comparison of ferromagnetic materials, are
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• the magnetostatic energy density (in J/m3)

Ks =
µ0M

2
s

2
, (2.21)

• the exchange length (in m)

λex =

√
A

Ks
, (2.22)

that is the length below which the exchange interaction dominates typical magnetostatic
fields,

• the Bloch parameter (in m)

δ0 =

√
A

K
,

that is the length below which the exchange interaction dominates anisotropy effects and is
proportional to the Bloch wall width δ = πδ0 (in m),

• the magnetic hardness parameter (nondimensional)

q =
λex

δ0
=

√
K

Ks
, (2.23)

whose value is used to classify the ferromagnetic materials into hard magnetic materials
(q � 1) and soft magnetic materials (q � 1).

A key quantity of the micromagnetic theory is the effective field. It is defined, up to constants,
as the negative functional derivative of the Gibbs free energy with respect to m, i.e.,

µ0MsHeff = − δE
δm

. (2.24)

It has the physical dimensions of a magnetic field (A/m) and can be understood as the local
field affected by the magnetization. The effective field appears in the Euler–Lagrange equations
associated with the minimization problem (2.20). Indeed, any solution of (2.20) is a weak solution
of the boundary value problem

m×Heff = 0 in Ω, (2.25a)
δE

δ(∇mi)
· n = 0 on Γ, for all 1 ≤ i ≤ 3. (2.25b)

The equation (2.25a) states that the magnetization is parallel to the effective field at a minimizer or,
equivalently, that the local torque exerted on a minimizing magnetization is zero. If the only term
of the energy involving derivatives of m is the exchange energy, the boundary conditions (2.25b)
turn out to be homogeneous Neumann boundary conditions

∂nm = 0. (2.26)

In this case, the Euler–Lagrange equations (2.25) are usually referred to as Brown’s equations.
If the energy comprises both the exchange and the Dzyaloshinskii–Moriya interaction, then the
resulting boundary condition is

2A∂nm+Dm× n = 0.

Under these assumptions, for each energy contribution considered in Section 2.2.1, a direct com-
putation of the functional derivative in (2.24) yields an explicit expression of the corresponding
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effective field:

Eex(m) = A

∫
Ω

|∇m|2 dx =⇒ Heff,ex =
2A

µ0Ms
∆m,

Eani(m) = K

∫
Ω

φ(m) dx =⇒ Heff,ani = − K

µ0Ms
∇φ(m),

Eext(m,Hext) = −µ0Ms

∫
Ω

Hext ·mdx =⇒ Heff,ext = Hext,

EDM(m) = D

∫
Ω

(∇×m) ·m dx =⇒ Heff,DM = − 2D

µ0Ms
∇×m,

Estray(m) =
µ0

2

∫
R3

|Hs|2 dx =⇒ Heff,stray = Hs,

Eel(m,u) =
1

2

∫
Ω

εel(u,m) : [Cεel(u,m)] dx+ . . . =⇒ Heff,el =
2

µ0Ms
(λσ)m.

In concrete applications of the micromagnetic model, the energy comprises the terms that are
relevant for the process which is considered. The choice usually depends on the material and
the geometry of the sample. The most common contributions are exchange energy, anisotropy
energy, Zeeman energy, and magnetostatic energy, which already allow to describe a large variety
of phenomena. In this case, the effective field takes the form

Heff =
2A

µ0Ms
∆m+

2K

µ0Ms
(a ·m)a+Hext +Hs.

So far, we have discussed the equilibrium configurations for a magnetized body, but we have not
described how the magnetization, starting from an unstable configuration, reaches the equilibrium.
Following [108], we formally derive the equation of motion for the magnetization dynamics. The
magnetic moment of a particle, e.g., of an electron, is defined as the vector which relates the torque
on the particle when it is subjected to a magnetic field to the magnetic field itself. The relation is

τ = µ×B

where τ is the torque (in J) and µ is the magnetic moment (in J/T). The equation for the
rotational motion of a rigid body is

τ = ∂tL,

where L is the angular momentum of the particle (in J s). The magnetic moment of an electron is
related to the angular momentum by

µ = γL,

where γ < 0 is the gyromagnetic ratio of the electron (in rad/(s T)). Altogether, we thus obtain

∂tµ = γµ×B.

This equation of motion is satisfied by each discrete magnetic moment in the ferromagnetic sample.
In micromagnetism, we replace this set of differential equations (one for each magnetic moment)
with a single differential equation for the continuous magnetization. The role of the magnetic
induction (the origin of the torque) is played by the effective field Heff . Moreover, we define the
rescaled gyromagnetic ratio by γ0 = −γµ0 (in m/(A s)). We obtain the equation

∂tm = −γ0m×Heff . (2.27)

Equation (2.27) describes the precession of the magnetization around the effective field; see Fig-
ure 2.2(a).

It is clear from experiments that the magnetization dynamics is a dissipative process. The
microscopic nature of the dissipation is still not clear, and it is probably too complex to be explicitly
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(a) Precession (b) Damping (c) Damped precession

Figure 2.2: Dynamics of the magnetization with respect to the effective field. The red
and the blue arrows visualize the magnetization at two different times tred < tblue. The
green arrow refers to the effective field.

included into the equation of motion. A possible approach for this problem is to introduce the effect
of the (unspecified) energy loss mechanisms into the equation in a phenomenological way. This can
be done by adding to (2.27) a damping term which can be tuned by means of a damping parameter
to be experimentally determined, without knowing the details of the transfer mechanisms.

In 1935, the Russian phycisists L. D. Landau and E. M. Lifshitz introduced dissipation by
way of a torque term proportional to the component of Heff orthogonal to m, which pushes the
magnetization towards the effective field; see Figure 2.2(b). The resulting equation is the so-called
Landau–Lifshitz equation

∂tm = −γ0m×Heff − γ0λm× (m×Heff), (2.28)

where λ > 0 is a nondimensional phenomenological damping parameter; see [139, equation (21)].
Taking both precession and damping into account, equation (2.28) describes a magnetization that
rotates around the effective field while being damped towards it; see Figure 2.2(c). In 1955, the
American physicist T. L. Gilbert proposed to add a different damping term to the precession
equation (2.27); see [107]. He considered a viscous-type ‘damping field’, which is directly propor-
tional to the rate of change of the magnetization and can modify the effective field and thus change
the torque exerted on the magnetization. The resulting equation is

∂tm = −γ0m× (Heff − η∂tm),

where η is a viscosity parameter (in A s/m). The latter can be rewritten as

∂tm = −γ0m×Heff + αm× ∂tm, (2.29)

which is usually referred to as Gilbert equation. The constant α = γ0η is the so-called (nondimen-
sional) Gilbert damping parameter. Actually, it turns out that (2.28) and (2.29) are equivalent
(up to rescaling the constants); see Proposition 3.1.1. Indeed, equation (2.28) can be equivalently
rewritten as

∂tm = −γ0(1 + λ2)m×Heff + λm× ∂tm,

whereas (2.29) can be restated as

∂tm = − γ0

1 + α2
m×Heff −

γ0α

1 + α2
m× (m×Heff). (2.30)

The latter is commonly referred to as the Landau–Lifshitz–Gilbert (LLG) equation. Throughout
the thesis, without loss of generality, we will always consider the Gilbert form of the damping.

Concerning the boundary conditions to be imposed on Γ, in many situations they are chosen
to be consistent with the stationary case2, i.e., with (2.25b). A justification that the choice of a

2Note that a stationary solution of the LLG equation (2.30) or, equivalently, of (2.29) is a solution of the
Euler–Lagrange equations (2.25a).
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homogeneous Neumann boundary condition (2.26), in the pure exchange case and in the absence
of surface effects, is physically meaningful also in the dynamic case can be found in [171].

Taking the scalar product of (2.29) with m, we deduce the orthogonality condition

m · ∂tm = 0. (2.31)

In particular, since
∂t |m|2 = 2m · ∂tm = 0,

it follows that the modulus constraint |m| = 1 is always satisfied, provided it is satisfied by the
initial condition.

We now aim at studying the evolution of the energy during the dynamics. Taking the vector
product of (2.29) with m, we obtain

m× ∂tm = −γ0m× (m×Heff) + αm× (m× ∂tm).

Taking (2.31) and the constraint |m| = 1 into account, the vector triple product expansion formula

a× (b× c) = (a · c)b− (a · b)c for all a,b, c ∈ R3,

yields the equality
m× ∂tm = −γ0(m ·Heff)m+ γ0Heff − α∂tm.

Taking the scalar product of the latter with ∂tm and exploiting the orthogonality (2.31), we obtain
the relation

γ0Heff · ∂tm = α |∂tm|2 . (2.32)

A formal application of the chain rule yields the energy law

d

dt
E(m) =

∫
Ω

δE
δm
· ∂tm dx+

∫
Ω

δE
δHext

· ∂tHext dx

(2.24)
= −µ0Ms

∫
Ω

Heff · ∂tmdx− µ0Ms

∫
Ω

∂tHext ·m dx

(2.32)
= −µ0Msα

γ0

∫
Ω

|∂tm|2 dx− µ0Ms

∫
Ω

∂tHext ·m dx.

If the applied field Hext is constant in time, the energy law reduces to

d

dt
E(m) = −µ0Msα

γ0

∫
Ω

|∂tm|2 dx ≤ 0,

which reveals the dissipative behavior of the model and the Lyapunov structure of the LLG equa-
tion [164].

In several practical situations, the effect of eddy currents must be taken into account [46, 117,
196]. Taking the constitutive laws (2.9) for ferromagnetic materials into account, the magnetoqua-
sistatic Maxwell equations (2.7) take the form

∇ · (εE) = χΩρ, (2.33a)
∇ ·H = −Ms∇ · (χΩm), (2.33b)
∇×E = −µ0∂tH − µ0MsχΩ∂tm, (2.33c)
∇×H = χΩσE. (2.33d)

In the mathematical literature, see, e.g., [203, 62, 155, 24, 28], also the coupling of the LLG equation
with the full Maxwell system

µ0∂tH +∇×E = −µ0MsχΩ∂tm, (2.34a)
ε∂tE −∇×H + χΩσE = 0, (2.34b)
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is studied, but, due to the short time scales of wave phenomena, this is essentially of no practical
concern. In both cases, the magnetic field H then interacts with the magnetization during the
dynamics as an additional field contribution to be added to the energy-based effective field, i.e.,

∂tm = −γ0m× (Heff +H) + αm× ∂tm.

The identity (2.32) in this case turns out to be

γ0(Heff +H) · ∂tm = α |∂tm|2 . (2.35)

In the case of the full Maxwell system (2.34), the evolution of the energy, defined as the sum of
the electromagnetic energy (2.4) and the micromagnetic Gibbs free energy, follows the law

d

dt
E(E,H,m)

=

∫
R3

δE
δE
· ∂tE dx+

∫
R3

δE
δH
· ∂tH dx+

∫
Ω

δE
δm
· ∂tm dx

=

∫
R3

εE · ∂tE dx+ µ0

∫
R3

H · ∂tH dx− µ0Ms

∫
Ω

Heff · ∂tm dx

(2.35)
=

∫
R3

εE · ∂tE dx+ µ0

∫
R3

H · ∂tH dx+ µ0Ms

∫
Ω

H · ∂tmdx− µ0Msα

γ0

∫
Ω

|∂tm|2 dx

(2.34)
=

∫
R3

(∇×H) ·E dx−
∫

Ω

σ |E|2 dx−
∫
R3

(∇×E) ·H dx− µ0Msα

γ0

∫
Ω

|∂tm|2 dx

(2.5)
= −

∫
R3

∇ · (E ×H) dx−
∫

Ω

σ |E|2 dx− µ0Msα

γ0

∫
Ω

|∂tm|2 dx.

We conclude the section by formally computing the energy law for the Gibbs free energy, assumed
to include the elastic energy (2.19), when its evolution is driven by the coupling of the LLG equation
and the conservation of momentum law (2.18). It holds that

d

dt
E(m,u)

=

∫
Ω

δE
δm
· ∂tm dx+

∫
Ω

δE
δu
· ∂tudx+

∫
Ω

δE
δ(∂tu)

· ∂ttudx−
∫

Ω

∂tf · udx−
∫

ΓN

∂tt · udS

= −µ0Ms

∫
Ω

Heff · ∂tm dx+

∫
Ω

[Cεel(u,m)] : ε(∂tu) dx−
∫

Ω

f · ∂tudx−
∫

ΓN

t · ∂tudS

+

∫
Ω

κ∂ttu · ∂tudx−
∫

Ω

∂tf · udx−
∫

ΓN

∂tt · udS

= −αµ0Ms

γ0

∫
Ω

|∂tm|2 dx+

∫
Ω

σ : ε(∂tu) dx−
∫

Ω

f · ∂tudx−
∫

ΓN

t · ∂tudS

+

∫
Ω

κ∂ttu · ∂tudx−
∫

Ω

∂tf · udx−
∫

ΓN

∂tt · udS

(2.18)
= −αµ0Ms

γ0

∫
Ω

|∂tm|2 dx−
∫

Ω

∂tf · udx−
∫

ΓN

∂tt · udS.

2.3 Metal spintronics
Spintronics, a portmanteau for spin electronics, is a recent field of research, which can be defined
as the study of active control and manipulation of the spin degree of freedom in solid-state sys-
tems [206]. Its roots can be traced back to the discoveries on the influence of the spin on the
electrical conduction in ferromagnetic metals obtained during the 1980s, e.g., the observation of
spin-polarized electron injection from a ferromagnetic metal to a normal metal [120] or the discov-
ery of the giant magnetoresistance (GMR) effect, independently carried out by the groups of A.
Fert [19] and P. Grünberg [49] in 1988.
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The GMR effect consists in a relevant change in the electrical resistance observed in magnetic
multilayers composed of alternating ferromagnetic and nonmagnetic sublayers. The resistance
turns out to depend on whether the magnetization configurations of consecutive ferromagnetic
sublayers are in a parallel alignment (lower resistance) or in an antiparallel alignment (higher
resistance), which shows that the magnetic state of a material has an influence on its conduction
properties.

Conversely, the magnetization can be manipulated by spin-polarized currents, even without
applying any external magnetic field. The fundamental physics underlying this phenomenon is
understood as a mutual transfer of spin angular momentum between the conduction electrons and
the magnetization. The concept of spin transfer was proposed independently by J. C. Slon-
czewski and L. Berger in 1996 [191, 44]. The key mechanism was named spin transfer torque
(STT) and involves the so-called s-d exchange interaction between the nonequilibrium itinerant
4s conduction electrons and the localized 3d magnetic electrons. The original ballistic model for
multilayer structures proposed in [191] was then extended in [212, 189] by including the effects of
the spin diffusion and the electric conduction in the bulk of the layer. The derivation of the model
does not follow the typical energy-based approach of micromagnetics.

In this section, we present some of the most used extensions of the classical micromagnetic
model in metal spintronics.

N1

F1

N2

F2

N3

Je

Figure 2.3: Schematic of a magnetic nanopillar structure. The multilayer consists of two
ferromagnetic sublayers (F1 and F2) separated by a nonmagnetic spacer (N2). The top
and the bottom layers (N1 and N3) are made of nonmagnetic material and play the role
of electrodes. The electric current is assumed to flow perpendicularly from N1 to N3.

2.3.1 Slonczewski models
We consider a metallic multilayer structure consisting of two ferromagnetic sublayers (F1 and F2)
separated by three nonmagnetic sublayers (N1, N2, and N3) such as the one depicted in Figure 2.3.
All the sublayers have the same cross section area A > 0 (in m2). An applied electric current
flows perpendicularly to the plane of the layers. This experimental setup is usually referred to as
current-perpendicular-to-plane (CPP) injection geometry. For i = 1, 2, the magnetic state of the
ferromagnetic sublayer Fi is assumed to be described by the vector Si, which is the macroscopic
total spin momentum per unit area (in 1/m2), i.e., the corresponding total angular momentum of
the sublayer is given by Li = ~ASi, where ~ > 0 denotes the reduced Planck constant (in J s).
Moreover, let si = Si/ |Si| be the unit vector pointing in the Si direction.

If no additional interaction or damping is considered, the mutual influence of the ferromagnetic
layers can be modelled by the system

∂tS1,2 =
JeG(s1 · s2)

e
s1,2 × (s1 × s2); (2.36)

22



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5
P = 0.3
P = 0.5
P = 0.7

Figure 2.4: Plot of the ballistic function G from (2.37) for different values of the spin
polarization parameter 0 < P < 1.

see [191, equation (13)], where the function G : [−1, 1]× (0, 1)→ R>0 is given by

G(x, P ) =

[
(1 + P )3(3 + x)

4P 3/2
− 4

]−1

; (2.37)

see [191, equation (14)] and Figure 2.4. Here, 0 < P < 1 is a nondimensional spin polarization
parameter (roughly speaking, the percentage of flowing electrons that are polarized in the s1

direction), Je denotes the intensity of the perpendicular electric current density (in A/m2), with
the convention that Je > 0 if the electron flows from F1 to F2, whereas e is the (positive) charge
of the electron (in A s).

We assume that the magnetic sublayer F1 (the so-called fixed layer) is characterized by a
constant value of the magnetization. Starting from (2.36), we aim at deriving an expression for
the spin transfer torque exerted by the polarized conduction electrons on the magnetization of the
sublayer F2 (the so-called free layer), under the assumption that they conserve the polarization
gained in F1, which is reasonable if the nonmagnetic sublayer N2 is sufficiently thin. The total
magnetic moment of the sublayer F2 (in J/T) is given by µ2 = γL2 = γ~AS2, so that the
magnetization of the layer reads

M2 =
µ2

V
=
µ2

Ad
=
γ~
d
S2 = −geµB

d
S2,

where V > 0 and d > 0 denote the volume (in m3) and the thickness (in m) of the free layer F2,
ge ≈ 2 is the g-factor of the electron (nondimensional), µB > 0 is the Bohr magneton (in A m2).
From the latter, it follows that the normalized magnetization of the free layer, which is denoted
by m, satisfies m = M2/Ms = −s2. Let p ∈ S2 be the constant magnetization of the fixed
layer, which satisfies p = −s1 for the same reason. Multiplying (2.36) by −geµB/d, we derive the
following expression for the spin transfer torque term

∂tm = −geµBJeG(m · p, P )

eMsd
m× (m× p).

Taking the identity γ = −geµB/~ and the definition of the rescaled gyromagnetic ratio γ0 = −γµ0

into account, we obtain the relation γ0~ = µ0geµB . We conclude that the normalized magnetization
m of the free layer satisfies the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation

∂tm = −γ0m×Heff + αm× ∂tm−
γ0~JeG(m · p, P )

eµ0Msd
m× (m× p). (2.38)
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The Gilbert form (2.29) of the LLG equation is supplemented with a term which is parallel to the
orthogonal projection of p onto the plane perpendicular to m. Besides some physical constants,
the coefficient in front of it depends on the angle betweenm and p, on the electric current density,
and on the free layer thickness. Arguing as in Section 2.2.2, from (2.38) one easily derives the
equality

γ0Heff · ∂tm = α |∂tm|2 −
γ0~JeG(m · p, P )

eµ0Msd
(m× p) · ∂tm,

the counterpart of (2.32). We obtain that the Gibbs free energy, which is related to the effective
field via (2.24), satisfies the energy law

d

dt
E(m) = −αµ0Ms

γ0

∫
Ω

|∂tm|2 dx+
~Je

ed

∫
Ω

G(m · p, P )(m× p) · ∂tm dx.

The LLGS equation has been phenomenologically extended with the inclusion of an additional
torque term. Currently, most of the micromagnetic simulations of spintronic devices with CPP
injection geometry are usually based on the equation

∂tm = −γ0m×Heff + αm× ∂tm−
γ0~JeP

2eµ0Msd
m× (m× p)− γ0~JePξ

2eµ0Msd
m× p. (2.39)

see, e.g., [124, 175, 176]. Up to physical constants, the two additional terms which supplement the
LLG equation take the form

m× (m× p) and m× p.
The first term, which is already present in the LLGS equation (2.38), is the so-called adiabatic
(or Slonczewski-type) term. Note that the adiabatic term of (2.39) exactly coincides with the one
of (2.38) if we choose a constant (independent of m) ballistic function according to G(m · p, P ) =
P/2 instead of (2.37). The second term is usually referred to as nonadiabatic (or field-like) term and
models the precession of the magnetization of the free layer around the ‘field’ p associated with the
magnetization of the fixed layer. In (2.39), ξ > 0 is the ratio of nonadiabaticity (nondimensional).
In this case, the Gibbs free energy evolves according to the law

d

dt
E(m) = −αµ0Ms

γ0

∫
Ω

|∂tm|2 dx+
~JeP

2ed

∫
Ω

(m× p+ ξp) · ∂tm dx.

2.3.2 Spin diffusion model
We consider a three-dimensional extension of the one-dimensional model proposed in [212]; see also
[189, 102]. Let Ω ⊂ Ω′ be two bounded domains in R3 with corresponding boundaries Γ := ∂Ω and
Γ′ := ∂Ω′. The larger domain Ω′ refers to the volume occupied by a conducting material, while
Ω denotes its ferromagnetic part. This setting covers, e.g., the case of the multilayer structure of
Figure 2.3, where Ω′ is the volume of the entire multilayer, while Ω corresponds to the volume
occupied by the two magnetic sublayers (F1 ∪ F2).

In Ω the magnetization is governed by the equation of motion

∂tm = −γ0m×Heff + αm× ∂tm−
1

τJMs
m× s; (2.40)

see [212, equation (11)]. This is the Gilbert form (2.29) of the LLG equation supplemented by an
additional term which models the spin transfer torque exerted on the magnetization by the flowing
conduction electrons. In the last term on the right-hand side, s denotes the spin accumulation
(in A/m), or nonequilibrium spin density, while τJ := ~/J denotes the characteristic time of the
spin transfer torque (in s), defined as the quotient of the reduced Planck constant (in J s) and the
exchange integral J > 0 (in J). From (2.40), it is clear that only the transverse (i.e., perpendicular
to m) component of the spin accumulation contributes to the torque. The dynamics of the spin
accumulation in Ω′ is governed by the continuity equation

∂ts+ ∇ · Js = − 1

τsf
s− 1

τJ
s×m, (2.41)
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where Js is the matrix-valued spin current density (in A/s), such that, for all 1 ≤ i, j ≤ 3, the
coefficient (Js)ij is the flow of the i component of the spin accumulation in the j direction, while
τsf > 0 is the spin-flip relaxation time (in s). From the nonvanishing right-hand side of (2.41),
we observe that the spin accumulation is not conserved: this is due to the spin relaxation (first
term) and the interaction with the local magnetic moments (second term). According to [212],
phenomenological expressions for the spin current density Js and the electric current density Je

are given by
Je = σE − β′ e

µB
D0∇s>m (2.42)

and
Js = β

µB
e
σm⊗E −D0∇s, (2.43)

respectively. Here, 0 < β, β′ < 1 are nondimensional spin polarization parameters, while D0 and
σ denote the diffusion coefficient (in m2/s) and the conductivity (in A/(m V)) of the material,
respectively, which are related to each other via the Einstein relation

σ = e2N0D0, (2.44)

with the constant N0 > 0 being the density of states at Fermi level (in 1/(J m3)). Note that (2.42)
reduces to the classical Ohm law for conducting materials in the nonmagnetic part of the domain;
see (2.6) or (2.9c). Extracting the expression of the electric field from (2.42) and substituting it
into (2.43), we obtain

Js =
βµB
e
m⊗ Je −D0(I3×3 − ββ′m⊗m)∇s.

Using this expression into (2.41) we obtain the quasilinear diffusion equation

∂ts−∇ · [D0(I3×3 − ββ′m⊗m)∇s] +
1

τsf
s+

1

τJ
s×m = −βµB

e
∇ · (m⊗ Je). (2.45)

As for the energy law, we have the equality

γ0Heff · ∂tm = α |∂tm|2 −
1

τJMs
s · ∂tm,

from which we deduce that the Gibbs free energy satisfies
d

dt
E(m) = −αµ0Ms

γ0

∫
Ω

|∂tm|2 dx+
µ0

γ0τJ

∫
Ω

s · ∂tm dx.

The dynamics of the spin accumulation is much faster than the one of the magnetization, e.g., the
relaxation time of the spin accumulation is two orders of magnitude below the typical reaction time
of the magnetization [212, 7, 174]. As long as one is interested in the magnetization dynamics,
it is therefore reasonable to treat the spin accumulation as in equilibrium, i.e., to consider the
stationary case of (2.45), namely

−∇ · [D0(I3×3 − ββ′m⊗m)∇s] +
1

τsf
s+

1

τJ
s×m = −βµB

e
∇ · (m⊗ Je).

As for the boundary conditions for the spin accumulation, a possible choice is given by homogeneous
Neumann boundary conditions

∂ns = 0 on Γ′,

as done, e.g., in [6, 7, 102, 174]. As an alternative, given a partition of the boundary Γ′ = Γ′D ∪Γ′N
into relatively open disjoint parts Γ′D,Γ

′
N ⊂ Γ′, also the mixed boundary conditions

s = 0 on Γ′D and Js n = 0 on Γ′N

can be considered. In the case of the multilayer structure of Figure 2.3, a physically meaningful
choice for the Dirichlet boundary Γ′D is represented by the top and the bottom surfaces (electric
contacts), while the insulating boundary Γ′N includes the lateral surfaces. The homogeneous Dirich-
let condition for the spin accumulation is physically meaningful if the electrodes are sufficiently
large when compared to the spin diffusion length λsd =

√
2(1− ββ′)D0τsf (in m); see [212].
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2.3.3 Zhang–Li model
Starting from a simplified version of the spin diffusion equation (2.45), in [213] the authors model
the effect of the electric current density on the magnetization dynamics by the equation

∂tm = −γ0m×Heff + αm× ∂tm+ bJm× [m× (Je · ∇)m] + bJξm× (Je · ∇)m, (2.46)

where bJ = µBP/[eMs(1 + ξ2)] (in m3/C). Here, the nondimensional parameters 0 < P < 1 and
ξ > 0 are the spin polarization parameter of the ferromagnet and the ratio of nonadiabaticity;
see [213, equation (11)]. A similar equation was obtained in a phenomenological way in [198]
for the description of the current-driven domain wall motion in patterned nanowires. There, the
authors proposed the equation

∂tm = −γ0m×Heff + αm× ∂tm+ (u · ∇)m− ξm× (u · ∇)m, (2.47)

where u = −[µBgeP/(2eMs)]Je = −[γ0~P/(2eµ0Ms)]Je and ξ is the ratio of nonadiabaticity (in
the original publication denoted by β); see [198, equation (3)]. From the identity

(Je · ∇)m = −m× [m× (Je · ∇)m],

which follows from the orthogonality (∇m)>m = 0 (which in turn is a consequence of the con-
straint |m| = 1), it turns out that, up to the different constants, the two additional terms coincide
and are proportional to

m× [m× (Je · ∇)m] and m× (Je · ∇)m.

The first term is the adiabatic (Slonczewski-like) one and was already proposed in [42, 18, 143].
The contribution can be understood as the continuous limit of the Slonczewski spin-transfer term
from Section 2.3.1 for a multilayer with infinite sublayers of infinitesimal thickness; see, e.g., [151].
The second term is the nonadiabatic (field-like) one, which models the precession around the ‘field’
(Je · ∇)m generated whenever an electric current flows in a nonuniformly magnetized material.

Arguing along [213], we show that a similar equation can be obtained from a formal simplifi-
cation of the spin diffusion model considered in Section 2.3.2. The model is based on two main
assumptions:

1. The spin accumulation is treated as in equilibrium, i.e., ∂ts = 0;

2. The spin accumulation is assumed to vary slowly in space, i.e., |∇s| � 1, so that the terms
of (2.45) which contain ∇s can be neglected.

Due to the second assumption, the model is not suitable for the simulation of multilayer structures,
while it is adequate, e.g., for the study of the current-driven motion of domain walls in single-phase
samples characterized by a current-in-plane (CIP) injection geometry.

Under these assumptions, the governing equation for the spin accumulation (2.45) reduces to

1

τsf
s+

1

τJ
s×m+

βµB
e

∇ · (m⊗ Je) = 0.

Using the product rule ∇ · (m ⊗ Je) = (Je · ∇)m + (∇ · Je)m for the last term of the left-hand
side, we obtain

1

τsf
s+

1

τJ
s×m+

βµB
e

[(Je · ∇)m+ (∇ · Je)m] = 0,

which is equivalent to

s =
τsf
τJ
m× s− τsfβµB

e
[(Je · ∇)m+ (∇ · Je)m]. (2.48)
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Taking the vector product of (2.48) with m and using the constraint |m| = 1, an application of
the triple product expansion formula m× (m× s) = (m · s)m− s yields

m× s =
τsf
τJ
m× (m× s)− τsfβµB

e
m× (Je · ∇)m

=
τsf
τJ

(m · s)m− τsf
τJ
s− τsfβµB

e
m× (Je · ∇)m.

In the first two terms on the right-hand side of the latter, we replace s by its expression from (2.48).
Since (Je · ∇)m ·m = 0, we obtain

m× s =
τsf
τJ

(
−τsfβµB

e
∇ · Je

)
m− τsf

τJ

(
τsf
τJ
m× s− τsfβµB

e
[(Je · ∇)m+ (∇ · Je)m]

)
− τsfβµB

e
m× (Je · ∇)m

= −τ
2
sfβµB
τJe

(∇ · Je)m− τ2
sf

τ2
J

m× s+
τ2
sfβµB
τJe

(Je · ∇)m+
τ2
sfβµB
τJe

(∇ · Je)m

− τsfβµB
e

m× (Je · ∇)m

= −τ
2
sf

τ2
J

m× s+
τ2
sfβµB
τJe

(Je · ∇)m− τsfβµB
e

m× (Je · ∇)m

Rearranging the terms, we get

m× s =
τJβµB

e(1 + τ2
J /τ

2
sf)

[
(Je · ∇)m− τJ

τsf
m× (Je · ∇)m

]
.

We define the nondimensional ratio of nonadiabacity by ξ = τJ/τsf = ~/(τsfJ). Moreover, to sim-
plify the notation, we define the quantity bξ = βµB/[eMs(1+ξ2)] (in m3/C). Note the analogy with
the constant bJ, which appears in the original Zhang–Li model; see (2.46). The above expression
then becomes

m× s = bξτJMs [(Je · ∇)m− ξm× (Je · ∇)m] . (2.49)

With this computation, we have obtained an expression of the spin transfer torque m × s that
is actually independent of s. Hence, in the LLG equation (2.40) we can replace m × s by its
expression from (2.49). The resulting equation is the extended LLG equation

∂tm = −γ0m×Heff + αm× ∂tm− bξ(Je · ∇)m+ bξξm× (Je · ∇)m. (2.50)

It is clear that all three equations (2.46), (2.47), and (2.50) can be rewritten in the form

∂tm = −γ0m×Heff + αm× ∂tm−m× [m× (v · ∇)m]− ξm× (v · ∇)m, (2.51)

with v = −bJJe for (2.46), v = u for (2.47), and v = −bξJe for (2.50). The vector v can be
understood as a given spin velocity vector (in m/s). Finally, the usual calculations lead to the
following energy law for the Gibbs free energy

d

dt
E(m) = −αµ0Ms

γ0

∫
Ω

|∂tm|2 dx+
µ0Ms

γ0

∫
Ω

[m× (v · ∇)m+ ξ(v · ∇)m] · ∂tm dx.

2.3.4 Self-consistent model
The Slonczewski model presented in Section 2.3.1 provides an adequate description of the spin
transfer torque exerted on the free layer by the fixed layer of a multilayer structure characterized
by a CPP injection geometry. The Zhang–Li model considered in Section 2.3.3 describes the spin
transfer torque induced by the presence of magnetization gradients and is appropriate, e.g., for
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the description of current-driven domain wall motion in structures with a CIP injection geometry.
Both the situations can be described by the spin diffusion model considered in Section 2.3.2,
which provides a generalization based on the interaction of the local magnetization with the spin
accumulation. However, in all three approaches, the effects of the magnetic state of the system on
the electronic transport are neglected. Indeed, the electric current density is always assumed to
be known and the models can be used only to investigate how the electronic transport affects the
magnetization dynamics, but not vice versa.

In this section, we introduce a model, which includes a bidirectional coupling of the magneti-
zation to the electric current, for the self-consistent computation of magnetization dynamics and
spin-polarized currents. The model has been applied to a magnetic nanowire geometry for the
prediction of current-driven motion of domain walls [193] and for investigating the magnetization-
dependent resistivity related to the GMR effect in composite multilayer structures [8].

The three basic ingredients of the model are the LLG equation (2.40) with spin transfer torque
for the magnetization dynamics, the continuity equation (2.41) for the spin accumulation, and the
Maxwell equations for the electromagnetic fields discussed in Section 2.1. As in Section 2.3.2, we
consider two bounded domains Ω ⊂ Ω′ in R3 which represent the volume occupied by a conducting
body and its ferromagnetic part, respectively. We assume that Ω′ is a simply connected domain
and denote by Γ := ∂Ω and Γ′ := ∂Ω′ the respective boundaries.

To obtain a self-consistent and well-defined system of equations, we introduce some appropriate
assumptions. Since the dynamics of both the spin accumulation and the electromagnetic fields is
indeed much faster than the one of the magnetization, we treat the spin accumulation and the
electromagnetic fields as in equilibrium and thus consider the stationary cases of the corresponding
governing equations.

The magnetostatic Maxwell equations, namely

∇ ·H = −Ms∇ · (χΩm), (2.52a)
∇×H = χΩ′Je, (2.52b)

can be treated as in Section 2.2.1 and give rise to the stray field Hs and the Oersted field Hc;
see page 14. Moreover, from the static Maxwell–Ampére law (2.52b), we deduce that the electric
current density is divergence-free. Together with the stationary case of (2.41), we thus obtain the
following conservation laws for the electric current and the spin accumulation

∇ · Je = 0,

∇ · Js = − 1

τsf
s− 1

τJ
s×m.

The electrostatic Maxwell equations are given by

∇ · (εE) = χΩ′ρ, (2.53a)
∇×E = 0. (2.53b)

The static Faraday law (2.53b) shows that the electric field E is irrotational. Since Ω′ is simply
connected, it is also conservative, i.e., E = −∇V , with V being the electric potential (in V). Let
c := eN0µB , so that the Einstein relation (2.44) can be rewritten as σ = c(e/µB)D0. Under these
assumptions, the phenomenological expressions (2.42)–(2.43) for the electric current density and
the spin current density take the form

Je = −c e
µB

D0∇V − β′
e

µB
D0∇s>m,

Js = −βcD0m⊗∇V −D0∇s.

We conclude that the magnetization, the spin accumulation and the electric potential solve the
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system

∂tm = −γ0m× (Heff +Hc) + αm× ∂tm−
1

τJMs
m× s (2.54a)

− c∇ · (D0∇V )− β′∇ · (D0∇s>m) = 0, (2.54b)

− βc∇ · (D0m⊗∇V )−∇ · (D0∇s) = − 1

τsf
s− 1

τJ
s×m. (2.54c)

In (2.54a) the energy-based effective field, besides the stray field, comprises the contributions that
are relevant for the specific model under consideration.

To complete the setting, we need to impose appropriate boundary conditions. To this end, we
consider a partition of the boundary Γ′ = Γ′D ∪ Γ′N into relatively open parts Γ′D,Γ

′
N ⊂ Γ′ such

that Γ′D ∩Γ′N = ∅. On Γ′D, we impose Dirichlet boundary conditions for both the electric potential
and the spin accumulation, i.e.,

V = VD and s = 0 on Γ′D

for some given electric potential VD. On Γ′N , we prescribe no flux conditions, i.e.,

Je · n = 0 and Js n = 0 on Γ′N .

The appropriate boundary condition for the magnetization on Γ depends on the contributions that
are included in the effective field.
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Chapter 3

Preliminaries

In this chapter, in view of the forthcoming analysis, we collect some auxiliary results. We start with
the rigorous nondimensionalization of the problems considered in Chapter 2. Then, we introduce
the notation and discuss some preliminary results about the discretization methods considered in
the following chapters.

3.1 Nondimensionalization
Let Ω ⊂ R3 be a bounded domain representing the volume occupied by a ferromagnetic body and
let T > 0 be some finite time. The magnetization is mathematically represented by a vector field
m : Ω× (0, T )→ S2, where

S2 =
{
x ∈ R3 : |x| = 1

}
denotes the unit sphere.

We start by rescaling the time variable: We perform the substitution t∗ = γ0Mst with t∗ being
the so-called reduced time. Recall that the physical units of the rescaled gyromagnetic ratio γ0

and the saturation magnetization Ms are m/(A s) and A/m, respectively, from which it follows
that the reduced time is nondimensional. Consistently, we define T ∗ := γ0MsT .

We rescale the effective field and the Gibbs free energy by heff = Heff/Ms and E∗ = E/(2Ks),
where Ks = µ0M

2
s /2 is the magnetostatic energy density introduced in (2.21). Moreover, we

rescale the quantities which appear in the expression of the elastic energy (2.19) as κ∗ = κγ2
0/Ms,

C∗ = C/Ks, f∗ = f/Ks, and t∗ = t/Ks, and define σ∗ := C∗εel, so that the expression of the
energy with the rescaled constants remains the same. Indeed, it holds that

E∗el(m,u) =
Eel(m,u)

2Ks

=
γ2

0

2µ0

∫
Ω

κ |∂tu|2 dx+
1

2µ0M2
s

∫
Ω

εel(u,m) : [Cεel(u,m)] dx

− 1

µ0M2
s

∫
Ω

f · u dx− 1

µ0M2
s

∫
ΓN

t · u dS

=
1

2

∫
Ω

κ∗ |∂tu|2 dx+
1

2

∫
Ω

εel(u,m) : [C∗εel(u,m)] dx−
∫

Ω

f∗ · udx−
∫

ΓN

t∗ · udS.

As a consequence, the rescaled effective field is related to the rescaled energy via the relation

heff = −δE
∗

δm
.
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In particular, for each of the energy contributions introduced in Section 2.2.1, it holds that

E∗ex(m) =
λ2

ex

2

∫
Ω

|∇m|2 dx =⇒ heff,ex = λ2
ex∆m,

E∗ani(m) =
q2

2

∫
Ω

φ(m) dx =⇒ heff,ani = −q
2

2
∇φ(m),

E∗ext(m,hext) = −
∫

Ω

hext ·m dx =⇒ heff,ext = hext,

E∗DM(m) =
λDM

2

∫
Ω

(∇×m) ·m dx =⇒ heff,DM = −λDM∇×m,

E∗stray(m) =
1

2

∫
R3

|hs|2 dx =⇒ heff,stray = hs,

E∗el(m,u) =
1

2

∫
Ω

εel(u,m) : [C∗εel(u,m)] dx+ . . . =⇒ heff,el = 2(λσ∗)m.

Here, λex is the exchange length from (2.22), q is the magnetic hardness parameter from (2.23),
hext = Hext/Ms is the rescaled applied field, λDM = D/Ks is a length scale associated with the
Dzyaloshinskii–Moriya interaction (in m), hs solves a rescaled version of the magnetostatic Maxwell
equations (2.12), namely

∇ · hs = −∇ · (χΩm) in R3,

∇× hs = 0 in R3.

Similarly, the nondimensional Oersted field hc solves a rescaled version of (2.13), namely

∇ · hc = 0 in R3,

∇× hc = χΩje in R3,

where je = Je/Ms. Correspondingly, we obtain the transmission problem

−∆uint = −∇ ·m in Ω, (3.1a)

−∆uext = 0 in R3 \ Ω, (3.1b)

uext − uint = 0 on Γ, (3.1c)

(∇uext −∇uint) · n = −m · n on Γ, (3.1d)
u(x) = O(1/ |x|) as |x| → ∞ (3.1e)

for the rescaled magnetostatic potential and the transmission problem

−∆hint
c = ∇× je in Ω, (3.2a)

−∆hext
c = 0 in R3 \ Ω, (3.2b)

hext
c − hint

c = 0 on Γ, (3.2c)

(∇hext
c −∇hint

c )n = n× je on Γ, (3.2d)
hc(x) = O(1/ |x|) as |x| → ∞ (3.2e)

for the rescaled Oersted field; see (2.14) and (2.16). However, to simplify the notation, we will
always omit the ∗-superscripts from the equations, e.g., we denote the reduced time also by t.

With these substitutions, the nondimensional form of the LLG equation (2.30) becomes

∂tm = − 1

1 + α2
m× heff −

α

1 + α2
m× (m× heff) in Ω.

The homogeneous Neumann boundary conditions

∂nm = 0 on Γ := ∂Ω
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associated with the exchange interaction becomes

2λ2
ex∂nm+ λDMm× n = 0 on Γ

in the presence of the Dzyaloshinskii–Moriya interaction. The same formal computation performed
in Section 2.2.2 yields the energy law

d

dt
E(m,hext) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·m dx, (3.3)

which reveals the dissipative behavior of the model, when hext is constant in time.
In the following proposition, we establish the equivalence of three different reformulations of

the LLG equation.

Proposition 3.1.1. Under the constraint |m| = 1, the following three reformulations of the LLG
equation are equivalent:

• the Landau–Lifshitz form

∂tm = − 1

1 + α2
m× heff −

α

1 + α2
m× (m× heff)

• the Gilbert form
∂tm = −m× heff + αm× ∂tm (3.4)

• the so-called ‘alternative form’

α∂tm+m× ∂tm = heff − (heff ·m)m. (3.5)

Proof. The proof follows from straightforward algebraic manipulations. It exploits the triple prod-
uct expansion formula

a× (b× c) = (a · c)b− (a · b)c for all a,b, c ∈ R3

from Proposition B.2.1(vi), in combination with the modulus constraint |m| = 1 and the resulting
orthogonality property ∂tm ·m = 0. For the complete argument, we refer the reader to [109,
Lemma 1.2.1].

3.1.1 Coupling with the Maxwell equations and magnetostriction
In this section, we denote the micromagnetic Gibbs free energy by EGibbs in order to distinguish it
from the energy of the system, which can also depend on quantities associated with the equation(s)
coupled to the LLG equation.

For the nondimensionalization of the coupling of the LLG equation with the full Maxwell
system (2.34), we consider the substitutions µ∗0 = γ0Msµ0, ε∗ = γ0Msε, e = E/Ms, and h =
H/Ms. We obtain the system

∂tm = −m× (heff + h) + αm× ∂tm in Ω, (3.6a)

µ0∂th = −∇× e− µ0χΩ∂tm in R3, (3.6b)

ε∂te = ∇× h− χΩσe in R3. (3.6c)

For the sake of simplicity, we assume the Maxwell equations (3.6b)–(3.6c) to be posed on a bounded
cavity Ω′ ⊂ R3 with perfectly conducting boundary in which the ferromagnet is embedded, i.e.,
Ω b Ω′; see [24, 28]. Moreover, we assume Ω′ \ Ω to be vacuum. The resulting system, i.e.,

∂tm = −m× (heff + h) + αm× ∂tm in Ω,

µ0∂th = −∇× e− µ0χΩ∂tm in Ω′,

ε∂te = ∇× h− χΩσe in Ω′,
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is supplemented with the appropriate boundary conditions on Γ for the LLG equation (which
depend on the contributions included into heff) as well as the following boundary conditions for
the electric field

e× n = 0 on Γ′ = ∂Ω′.

The energy of the system, defined as the sum of the micromagnetic Gibbs free energy and the
electromagnetic energy, i.e.,

E(e,h,m) = EGibbs(m) +
1

2µ0

∫
Ω′
ε |e|2 dx+

1

2

∫
Ω′
|h|2 dx,

satisfies the energy law

d

dt
E(e,h,m) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·m dx− µ−1
0

∫
Ω

σ |e|2 dx.

For the nondimensionalization of the coupling of the LLG equation with the magnetoquasistatic
Maxwell equations (2.33), we perform the same substitutions used for the full Maxwell equations.
We obtain the system

∂tm = −m× (heff + h) + αm× ∂tm in Ω,

∇ · (εe) = γ0χΩρ in R3,

∇ · h = −∇ · (χΩm) in R3,

∇× e = −µ0∂th− µ0χΩ∂tm in R3,

∇× h = χΩσe in R3.

Moreover, for the sake of simplicity, we consider the system only on the ferromagnetic domain Ω,
which we assume to be a perfectly conducting body; see [142, 141]. Eliminating the electric field
yields the system

∂tm = −m× (heff + h) + αm× ∂tm in Ω,

µ0∂th = −∇× (σ−1∇× h)− µ0∂tm in Ω,

where the LLG equation is coupled with the eddy current equation. The adequate boundary
conditions for the magnetization are supplemented with the following boundary conditions for the
magnetic field

(∇× h)× n = 0 on Γ.

The energy, defined in this case as the sum of the micromagnetic Gibbs free energy and the magnetic
energy, i.e.,

E(h,m) = EGibbs(m) +
1

2

∫
Ω

|h|2 dx,

is driven by the energy law

d

dt
E(h,m) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·m dx− µ−1
0

∫
Ω

σ−1 |∇ × h|2 dx.

With the substitutions previously introduced to rescale the elastic energy, the coupling of the LLG
equation with the conservation of momentum law takes the form

∂tm = −m× heff + αm× ∂tm in Ω,

κ∂ttu = ∇ · σ + f in Ω,

where σ = C[ε(u) − εm(m)] and the effective field, among others, comprises the magnetoelastic
contribution heff,el = 2(λσ)m. The appropriate boundary conditions for the magnetization are
supplemented with the following mixed boundary conditions for the displacement

u = 0 on ΓD,

σn = t on ΓN ,
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for a partition of the boundary Γ = ΓD ∪ ΓN into relatively open parts ΓD,ΓN ⊂ Γ such that
ΓD ∩ ΓN = ∅ and |ΓD| > 0. The energy of the system, given by the micromagnetic Gibbs free
energy (which includes the elastic energy), satisfies the law

d

dt
E(m,u) =

d

dt
EGibbs(m,u) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·m dx−
∫

Ω

∂tf ·udx−
∫

ΓN

∂tt ·udS.

3.1.2 Spintronic extensions of micromagnetics
Finally, we discuss the spintronic extensions of the LLG equation presented in Section 2.3. We
recall that they are not characterized by an energy approach. The energy considered throughout
this section therefore coincides with the micromagnetic Gibbs free energy.

We start with the LLGS equation (2.38). Rescaling the intensity of the electric current density
and the ballistic function (2.37) according to je = Je/Ms and G∗(·, ·) = ~/(eµ0Ms)G(·, ·), we obtain
the equation

∂tm = −m× heff + αm× ∂tm−
jeG(m · p, P )

d
m× (m× p) in Ω (3.7)

and the corresponding energy law

d

dt
E(m) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·m dx+ d−1

∫
Ω

jeG(m · p, P )(m× p) · ∂tm dx.

Similarly, for the extended LLGS equation (2.39) for general current-perpendicular-to-plane (CPP)
injection geometries, we define the quantity aP := ~P/(2eµ0Ms). We obtain the equation

∂tm = −m× heff + αm× ∂tm−
aP je
d
m× (m× p+ ξp) in Ω (3.8)

as well as the associated energy law

d

dt
E(m) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·m dx+
aP
d

∫
Ω

je(m× p+ ξp) · ∂tm dx.

For the LLG equation (2.51) with Zhang–Li spin transfer torque, we rescale the spin velocity vector
according to v∗ = v/(γ0Ms). We obtain the equation

∂tm = −m× heff + αm× ∂tm−m× [m× (v · ∇)m+ ξ(v · ∇)m] in Ω. (3.9)

In this case, the evolution of the Gibbs free energy follows the law

d

dt
E(m) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·mdx+

∫
Ω

[m× (v · ∇)m+ ξ(v · ∇)m] · ∂tm dx.

We conclude this section by considering the spin diffusion model from Section 2.3.2 and the
self-consistent model from Section 2.3.4. Let Ω′ ⊂ R3 be a bounded domain such that Ω ⊆ Ω′.
We rescale the spin accumulation by s∗ = s/Ms, the spin current density by js = Js/(γ0M

2
s ), the

diffusion coefficient byD∗0 = (e/µB)D0, the characteristic times by τ∗sf = γ0Msτsf and τ∗J = γ0MsτJ,
respectively. Moreover, we recall the scaling of the electric field and the electric current density
already introduced for the Maxwell equations, namely e = E/Ms and je = Je/Ms, and define
z := µB/(eγ0Ms). As a result, we obtain the expressions

je = σe− β′D0∇s>m,

js/z = βσm⊗ e−D0∇s.

The spin diffusion model is given by the system

∂tm = −m× heff + αm× ∂tm− τ−1
J m× s in Ω, (3.10a)

∂ts = z∇ · [D0(I3×3 − ββ′m⊗m)∇s]− τ−1
sf s− τ

−1
J s×m− zβ∇ · (m⊗ je) in Ω′. (3.10b)
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On Γ′ := ∂Ω′, either the homogeneous Neumann boundary conditions

∂ns = 0 on Γ′

or the mixed boundary conditions

s = 0 on Γ′D and js n = 0 on Γ′N (3.11)

can be considered. In the second case, we consider a partition of the boundary Γ′ = Γ′D ∪ Γ′N into
relatively open disjoint parts Γ′D,Γ

′
N ⊂ Γ′. The Gibbs free energy evolves according to the law

d

dt
E(m) = −α

∫
Ω

|∂tm|2 dx−
∫

Ω

∂thext ·mdx+ τ−1
J

∫
Ω

s · ∂tm dx. (3.12)

For the self-consistent model, we rescale the electric potential by V ∗ = V/Ms so that e = −∇V ∗.
We obtain the system

∂tm = −m× (heff + hc) + αm× ∂tm− τ−1
J m× s in Ω,

− c∇ · (D0∇V )− β′∇ · (D0∇s>m) = 0 in Ω′,

− βcz∇ · (D0m⊗∇V )− z∇ · (D0∇s) = −τ−1
sf s− τ

−1
J s×m in Ω′.

The mixed boundary conditions (3.11) for the spin accumulation are supplemented by analogous
conditions for the electric potential, namely

V = VD on Γ′D and je · n = 0 on Γ′N .

3.2 Notation for Lebesgue/Sobolev/Bochner spaces
We use the standard notation for Lebesgue, Sobolev, and Bochner spaces and norms; see, e.g., [88,
Chapter 5]. For d ≥ 1 integer, let D ⊂ Rd be a domain. For 1 ≤ p ≤ ∞, we consider the Banach
space

Lp(D) =
{
v : D → R measurable : ‖v‖Lp(D) <∞

}
,

endowed with the norm

‖v‖Lp(D) =


(∫

D

|v(x)|p dx

)1/p

, if 1 ≤ p <∞,

ess sup
x∈D
|v(x)| , if p =∞.

For p = 2, L2(D) is a Hilbert space with respect to the scalar product

〈u, v〉D =

∫
D

u(x)v(x) dx.

For k ≥ 0 integer and 1 ≤ p ≤ ∞, we consider the Banach space

W k,p(D) = {v ∈ Lp(D) : Dαv ∈ Lp(D) for all |α| ≤ k}

endowed with the norm

‖v‖Wk,p(D) =


 ∑

0≤|α|≤k

‖Dαv‖pLp(D)

1/p

, if 1 ≤ p <∞,

max
0≤|α|≤k

‖Dαv‖L∞(D) , if p =∞.
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For k = 0, we recover the Lp-spaces, i.e., W 0,p(D) = Lp(D) for all 1 ≤ p ≤ ∞. For p = 2, W k,2(D)
is a Hilbert space with respect to the scalar product

〈u, v〉Wk,2(D) =
∑

0≤|α|≤k

〈Dαu,Dαv〉D.

In this case, we write Hk(D) = W k,2(D) and consider also the seminorm defined by

|v|2Hk(D) =
∑
|α|=k

‖Dαv‖2L2(D) .

To deal with time-dependent evolution equations, we also consider spaces of functions with values
in a Banach space. Given 1 ≤ p ≤ ∞ and a Banach space B, we consider the Banach space

Lp(0, T ;B) =
{
v : (0, T )→ B measurable : ‖v‖Lp(0,T ;B) <∞

}
endowed with the norm

‖v‖Lp(0,T ;B) =


(∫ T

0

‖v(t)‖pB dt

)1/p

, if 1 ≤ p <∞,

ess sup
t∈(0,T )

‖v(t)‖B , if p =∞.

Similarly, for 1 ≤ p ≤ ∞, we consider the space

W 1,p(0, T ;B) = {v ∈ Lp(0, T ;B) : ∂tv ∈ Lp(0, T ;B)}

endowed with the norm

‖v‖W 1,p(0,T ;B) =


(
‖v‖pLp(0,T ;B) + ‖∂tv‖pLp(0,T ;B)

)1/p

, if 1 ≤ p <∞,
ess sup

t∈(0,T )

(‖v(t)‖B + ‖∂tv(t)‖B) , if p =∞.

As before, we write H1(0, T ;B) = W 1,2(0, T ;B). For k ≥ 0 integer, we consider the space

Ck([0, T ];B) =
{
v : [0, T ]→ B of class Ck

}
endowed with the norm

‖v‖Ck([0,T ];B) =

k∑
i=0

(
max
t∈[0,T ]

∥∥v(i)(t)
∥∥
B

)
.

The inclusion W 1,p(0, T ;B) ⊂ C0([0, T ];B) is continuous for all 1 ≤ p ≤ ∞; see, e.g., [88, Sec-
tion 5.9.2, Theorem 2].

Let H be a separable Hilbert space. Let V be a reflexive and separable Banach space such
that the inclusion V ↪→ H is continuous and dense. Under these assumptions, it follows that the
inclusion H∗ ↪→ V ∗ is continuous, dense, and injective. With the identification H ' H∗ given by
the Riesz theorem, we obtain the chain of continuous and dense inclusions V ⊂ H ⊂ V ∗. The
triple (V,H, V ∗) is usually referred to as Gelfand triple. The most famous example, in the frame
of the analysis of PDEs, is the Gelfand triple H1

0 (D) ⊂ L2(D) ⊂ H1
0 (D)∗ =: H−1(D).

Given 1 < p <∞, let 1 < q <∞ such that 1/p+ 1/q = 1. For a Gelfand triple (V,H, V ∗), we
consider the Banach space

W 1,p(0, T ;V,H) = {v ∈ Lp(0, T ;V ) : ∂tv ∈ Lq(0, T ;V ∗)}

endowed with the norm

‖v‖W 1,p(0,T ;V,H) = ‖v‖Lp(0,T ;V ) + ‖∂tv‖Lq(0,T ;V ∗) .
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Then, the inclusion W 1,p(0, T ;V,H) ⊂ C0([0, T ];H) is continuous (see, e.g., [88, Section 5.9.2,
Theorem 3] for the case p = 2), and C1([0, T ];V ) is dense in W 1,p(0, T ;V,H).

The above definitions can be naturally extended to measurable vector-valued functions v :
D → Rd and matrix-valued functions V : D → Rd×d. In the case of (spaces of) vector-valued or
matrix-valued functions, we use bold letters, e.g., we denote both L2(D,Rd) and L2(D,Rd×d) by
L2(D) and the corresponding scalar product by

〈u,v〉D =

∫
D

u(x) · v(x) dx for all u,v ∈ L2(D) = L2(D,Rd),

〈U ,V 〉D =

∫
D

U(x) : V (x) dx for all U ,V ∈ L2(D) = L2(D,Rd×d).

The abuse of notation is resolved by the arguments of the scalar product.

3.3 Time discretization
Let T > 0. For the time discretization of a time interval [0, T ], we restrict ourselves to the case
of a uniform partition into M ≥ 1 subintervals with time-step size k = T/M , i.e., ti = ik for all
0 ≤ i ≤M .

Let B be a Banach space. Given a sequence
{
φi
}

0≤i≤M in B, such that any φi ∈ B is associated
with the time-step ti, for all 0 ≤ i ≤M−1 we define the difference quotient dtφi+1 := (φi+1−ϕi)/k.
We consider the continuous piecewise linear approximation and two piecewise constant (backward
and forward) approximations: For 0 ≤ i ≤M − 1 and t ∈ [ti, ti+1), we define

φk(t) :=
t− ti
k

φi+1 +
ti+1 − t

k
φi, (3.13a)

φ−k (t) := φi, (3.13b)

φ+
k (t) := φi+1. (3.13c)

It is straightforward to show that φk ∈ H1(0, T ;B) and φ±k ∈ L2(0, T ;B) as well as ∂tφk(t) =
dtφ

i+1 for all t ∈ [ti, ti+1) and 0 ≤ i ≤M − 1. Moreover, it holds that∥∥φk(t)− φ±k (t)
∥∥
B
≤
∥∥φ+

k (t)− φ−k (t)
∥∥
B

= k ‖∂tφk(t)‖B for all t ∈ (0, T ), (3.14)

from which it follows that∥∥φk − φ±k ∥∥L2(0,T ;B)
≤
∥∥φ+

k − φ
−
k

∥∥
L2(0,T ;B)

= k ‖∂tφk‖L2(0,T ;B) . (3.15)

3.4 Finite element discretization
In this section, we present some definitions and results related to the Finite Element Method
(FEM). Classical references for the method are, e.g., the books [68, 170, 51, 53]. Throughout
this section, C > 0 denotes a generic constant, which is always independent of the discretization
parameters, but is not necessarily the same at each occurrence. We also use the notation . and
& to denote smaller or equal and larger or equal, respectively, up to a multiplicative constant,
e.g., given two expressions A and B, we write A . B if there exists a constant c > 0, which is
independent of the discretization parameters, such that A ≤ cB. Finally, we abbreviate A . B . A
by A ' B.

Let Ω be a bounded Lipschitz domain in R3 with polyhedral boundary Γ = ∂Ω. We recall the
standard definition of a regular triangulation of Ω.

Definition 3.4.1 (regular triangulation). A finite decomposition T of Ω is called a regular trian-
gulation provided the following properties are satified:

38



• Ω =
⋃
K∈T K,

• each K ∈ T is a polyhedron with int(K) 6= ∅,

• if F = K1 ∩K2 6= ∅ for some distinct elements K1,K2 ∈ T , then F is either a common face,
or a common edge, or a common vertex of K1 and K2.

The adjective ‘regular’, sometimes replaced by ‘conforming’, refers to the last property, which
excludes the presence of hanging nodes. For a regular triangulation T , we denote by N = N (T )
the set of all of its vertices and by E = E(T ) the set of all of its faces. The same notation is also
used for subsets, e.g., we denote by N (K) the set of the vertices of an element K ∈ T .

We restrict ourselves to the case in which any element K ∈ T can be obtained as the image of
a fixed reference element K̂ under an invertible affine mapping TK , i.e., for all K ∈ T , there exists
TK : K̂ → K such that K = TK(K̂). In particular, it holds that TK(x̂) = BK x̂+bK for all x̂ ∈ K̂,
for some nonsingular matrix BK ∈ R3×3 and a vector bK ∈ R3. We assume that the reference
element is the unit 3-simplex, i.e., K̂ = conv {ei}0≤i≤3, where e0 = 0 ∈ R3 and {ei}1≤i≤3 denotes
the standard basis of R3. As a consequence, any element K = TK(K̂) of T is a tetrahedron.

Given a tetrahedron K ∈ T , we consider the quantities

hK = diam(K) and ρK = sup {diam(B) : B is a ball contained in K} ,

which satisfy
πρ3

K

6
≤ |K| ≤ h3

K .

We define the shape-regularity parameter by

σ(T ) = max
K∈T

hK
ρK
≥ 1.

Let γ > 0. A triangulation T is called γ-shape-regular if σ(T ) ≤ γ. For γ-shape-regular triangula-
tions, the cardinality of the set of neighboring nodes of a given node z ∈ N is uniformly bounded,
i.e., there exists a positive constant C > 0, which depends only on γ, such that

# {y ∈ N : ∃ K ∈ T such that z,y ∈ N (K)} ≤ C.

Moreover, for every element K ∈ T of a γ-shape-regular triangulation T , it holds that |K| ' h3
K .

We define as dihedral angle each of the six angles between any pair of the four faces of a
tetrahedron. Let F1 and F2 be two faces of a tetrahedron with outward unit normal vectors n1

and n2, respectively. The dihedral angle ∠(F1, F2) between F1 and F2 is given by ∠(F1, F2) = π−
∠(n1,n2), where ∠(n1,n2) denotes the angle between the normals n1 and n2. It is straightforward
to show that ∠(F1, F2) ≤ π/2 if and only if n1 · n2 ≤ 0. A tetrahedron is called weakly acute (or
of acute type or nonobtuse) if the measure of any of its dihedral angles is less than or equal to
π/2. A triangulation is called weakly acute if all its tetrahedra are weakly acute. The construction
of a weakly acute tetrahedral triangulation and the generation of weakly acute (global or local)
refinements of a given weakly acute triangulation are not trivial tasks. For a deeper discussion of
these issues, we refer the interested reader to [128, 129, 130, 131, 132].

Let T be a regular triangulation. For all K ∈ T , we denote by P1(K) the space of linear
polynomials on K. We consider the space of piecewise linear and globally continuous functions
from Ω to R

S1(T ) =
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ T

}
.

A classical basis for this finite-dimensional linear space is given by the set of the nodal shape
functions {ϕz}z∈N , usually referred to as hat functions, which satisfy ϕz(y) = δzy for all z,y ∈ N .
With our assumptions, for all K ∈ T and z ∈ N (K), it holds that ϕz|K ◦ TK = ϕ̂i for some
0 ≤ i ≤ 3, where {ϕ̂i}0≤i≤3 is the set of the hat functions on the reference element, i.e,

ϕ̂0(x̂) = 1−
3∑
i=1

x̂i, ϕ̂i(x̂) = x̂i (1 ≤ i ≤ 3) for all x̂ = (x̂1, x̂2, x̂3) ∈ K̂.
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The weak acuteness of a triangulation can be characterized in terms of the hat functions. In order
to show this, let K ∈ T and z ∈ N (K). The key observation is that the gradient of the hat
function ϕz is antiparallel to the normal of the face opposite to z. In particular, a tetrahedron K
is weakly acute if and only if ∇ϕz|K ·∇ϕy|K ≤ 0 for all z 6= y ∈ N (K). It follows that, for weakly
acute triangulations, it holds that

〈∇ϕz,∇ϕy〉Ω ≤ 0 for all distinct nodes z,y ∈ N , (3.16)

i.e., if and only if the off-diagonal entries of the so-called stiffness matrix are nonpositive.
For a family of triangulations {Th}h>0 parametrized by the mesh size h = maxK∈Th hK , we

use the shorthand notation Nh = N (Th) and Nh = #Nh. In the following definition, we state two
useful properties that are usually required for families of triangulations in the analysis of finite
element methods.

Definition 3.4.2 (shape-regularity & quasi-uniformity). Let {Th}h>0 be a family of regular tri-
angulations.

• {Th}h>0 is called shape-regular if there exists γ > 0, independent of h, such that Th is
γ-shape-regular for all h > 0.

• {Th}h>0 is called quasi-uniform if there exists γ > 0, independent of h, such that h ≤
γminK∈Th ρK for all h > 0.

We will refer to the above properties as γ-shape-regularity and γ-quasi-uniformity when we
want to specify the constants which realize the definitions. Note that a γ-quasi-uniform family of
regular triangulations is also γ-shape-regular.

We consider the nodal interpolant Ih : C0(Ω) → S1(Th) such that Ih[v](z) = v(z) for all
z ∈ Nh and v ∈ C0(Ω), i.e.,

Ih[v] =
∑
z∈Nh

v(z)ϕz.

It is well known that the nodal interpolant satisfies the following approximation estimate; see, e.g.,
[53, Theorem 4.4.4 and Theorem 4.4.20].

Proposition 3.4.3 (approximation estimate). Let {Th}h>0 be a γ-shape-regular family of regular
triangulations of Ω. Let 3/2 < p ≤ ∞ so that W 2,p(Ω) ⊂ C0(Ω) with continuous inclusion. For
all integers 0 ≤ m ≤ 2, it holds that

|v − Ih[v]|Wm,p(Ω) ≤ Ch
2−m |v|W 2,p(Ω) for all v ∈W 2,p(Ω).

The constant C > 0 depends only on γ and p.

Inverse estimates are typically needed for the analysis of finite element methods when it is
required to have estimates for a stronger norm of a discrete function in terms of a weaker norm.
The following classical inverse estimate requires the quasi-uniformity of the underlying family of
triangulations; see, e.g., [68, Theorem 3.2.6].

Proposition 3.4.4 (inverse estimate). Let {Th}h>0 be a γ-quasi-uniform family of regular trian-
gulations of Ω and let 1 ≤ p ≤ ∞. Then, it holds that

‖∇vh‖Lp(Ω) ≤ Ch
−1 ‖vh‖Lp(Ω) for all vh ∈ S1(Th). (3.17)

The constant C > 0 depends only on γ and p.

The following result follows from standard scaling arguments. It states that for discrete func-
tions the Lp-norm is equivalent to a weighted `p-norm of the vector of the nodal values.
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Proposition 3.4.5. Let {Th}h>0 be a γ-quasi-uniform family of regular triangulations of Ω. Given
p ∈ [1,∞), it holds that

C−1 ‖vh‖pLp(Ω) ≤ h
3
∑
z∈Nh

|vh(z)|p ≤ C ‖vh‖pLp(Ω) for all vh ∈ S1(Th). (3.18)

The constant C > 0 depends only on γ and p.

We denote by Ph : L2(Ω)→ S1(Th) the L2-orthogonal projection, defined by

〈Phv, vh〉Ω = 〈v, vh〉Ω for all vh ∈ S1(Th).

Clearly, considered as a mapping of L2(Ω) onto S1(Th) endowed with the L2-norm, Ph is a bounded
operator with norm 1, i.e.,

‖Phv‖L2(Ω) ≤ ‖v‖L2(Ω) for all v ∈ L2(Ω).

Moreover, in the case of a γ-quasi-uniform family of triangulations, it is well known that Ph is
H1-stable, i.e., it holds that

‖Phv‖H1(Ω) ≤ C ‖v‖H1(Ω) for all v ∈ H1(Ω), (3.19)

where C > 0 depends only on γ. We refer to [52, 123, 32] for more results on the H1-stability of
the L2-projection on locally refined meshes.

For the approximation of vector-valued functions, such as the unknown of the LLG equation, we
approximate each component by piecewise linear and globally continuous functions, i.e., we consider
the space S1(Th)3. We consider the corresponding nodal interpolant Ih : C0(Ω) → S1(Th)3 such
that Ih[φ](z) = φ(z) for all z ∈ Nh and φ ∈ C0(Ω). It is clear that any function φh ∈ S1(Th)3

takes the form
φh =

∑
z∈Nh

ϕzφh(z).

Similarly, we denote by Ph : L2(Ω) → S1(Th)3 the L2-projection for vector-valued functions.
Moreover, the inequalities from Proposition 3.4.3, Proposition 3.4.4 and Proposition 3.4.5 clearly
transfer to the vector-valued case (up to some generic multiplicative factor in the involved con-
stants).

The solution of the LLG equation is characterized by the nonconvex pointwise constraint |m| =
1. Since any discrete function of S1(Th)3 which satisfies the pointwise constraint everywhere in Ω is
constant, it appears necessary to weaken the constraint. A fair compromise is obtained by requiring
the discrete solution to realize the pointwise constraint only at the nodes of the triangulation. To
this end, we therefore introduce the set

Mh :=
{
φh ∈ S1(Th)3 : |φh(z)| = 1 for all z ∈ Nh

}
. (3.20)

The following lemma follows from the fact that piecewise linear functions attain their L∞-norm in
one of the vertices.

Lemma 3.4.6. For all φh ∈Mh, it holds that ‖φh‖L∞(Ω) = 1.

Proof. Let x ∈ Ω. There exists {zi}0≤i≤3 ⊂ Nh such that x ∈ K = conv {zi}0≤i≤3 ∈ Th. On the
simplex K, we can consider the barycentric coordinate system and write x =

∑3
i=0 λizi for some

coefficients λi ≥ 0 such that
∑3
i=0 λi = 1. Since φh|K is an affine function, for all y ∈ K we have

φh(y) = Ay + b for some matrix A ∈ R3×3 and some vector b ∈ R3. It holds that

φh(x) = Ax+ b = A

(
3∑
i=0

λizi

)
+ b =

3∑
i=0

λi (Azi + b) =

3∑
i=0

λiφh(zi).
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Since |φh(zi)| = 1 for all 0 ≤ i ≤ 3, it follows that

|φh(x)| =

∣∣∣∣∣
3∑
i=0

λiφh(zi)

∣∣∣∣∣ ≤
3∑
i=0

λi |φh(zi)| =
3∑
i=0

λi = 1,

which concludes the proof.

The following proposition shows that satisfying the constraint at the nodes of the triangulation
is sufficient to guarantee that the limit of a convergent sequence of elements of Mh satisfies the
constraint almost everywhere; see [36, Proposition 7.1].

Proposition 3.4.7. Let {Th}h>0 be a γ-quasi-uniform family of regular triangulations of Ω. Let
{φh}h>0 be a sequence in Mh such that

• {φh}h>0 is uniformly bounded in H1(Ω),

• there exists φ ∈ L2(Ω) such that φh → φ in L2(Ω) as h→ 0.

Then, it holds that |φ| = 1 a.e. in Ω.

Proof. Since φh ∈ Mh it follows that Ih
[
|φh|2

]
= 1. Let K ∈ Th. Due to the approximation

properties of the nodal interpolant (Proposition 3.4.3), it holds that∥∥|φh|2 − 1
∥∥
L2(K)

=
∥∥|φh|2 − Ih[ |φh|2 ]∥∥L2(K)

. h2
K

∣∣|φh|2∣∣H2(K)
.

Since ∇φh|K is constant, we obtain that∣∣|φh|2∣∣2H2(K)
=

∑
1≤i≤j≤3

∥∥∂i∂j |φh|2∥∥2

L2(K)
= 4

∑
1≤i≤j≤3

‖∂iφh · ∂jφh‖2L2(K) ≤ 4 ‖∇φh‖4L4(K)

= 4 |K| |∇φh|K |4 = 4 ‖∇φh‖2L∞(K) ‖∇φh‖
2
L2(K) .

Using an inverse estimate and ‖φh‖L∞(Ω) = 1 (see Lemma 3.4.6), we deduce that∥∥|φh|2 − 1
∥∥
L2(K)

. h2
K ‖∇φh‖L∞(K) ‖∇φh‖L2(K)

(3.17)
. hK ‖φh‖L∞(K) ‖∇φh‖L2(K)

= hK ‖∇φh‖L2(K) .

Summing over all elements K ∈ Th, we thus obtain∥∥|φh|2 − 1
∥∥
L2(Ω)

. h ‖∇φh‖L2(Ω) .

Since the sequence is uniformly bounded in H1(Ω), we deduce that |φh|2 → 1 in L2(Ω) as h→ 0.
In particular, upon extraction of a subsequence (not relabeled), it holds that |φh| → 1 a.e. in Ω.
Moreover, since φh → φ in L2(Ω) by assumption, it follows that |φh| → |φ| in L2(Ω) and thus,
upon extraction of a further subsequence (also not relabeled), it holds that |φh| → |φ| a.e. in Ω.
We conclude that |φ| = 1 a.e. in Ω.

In the following proposition, which generalizes the previous one, we show that the result remains
valid even if the nodewise constraint is satisfied by the sequence of discrete functions only in an
approximate way; see [36, Lemma 7.2].

Proposition 3.4.8. Let {Th}h>0 be a γ-shape-regular family of regular triangulations of Ω. Let
{φh}h>0 be a sequence in S1(Th)3 such that

•
∥∥Ih[ |φh|2 ]− 1

∥∥
L1(Ω)

→ 0 as h→ 0,
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• {φh}h>0 is uniformly bounded in H1(Ω),

• there exists φ ∈ L2(Ω) such that φh → φ in L2(Ω) as h→ 0.

Then, it holds that |φ| = 1 a.e. in Ω.

Proof. From the triangle inequality, it holds that∥∥|φ|2 − 1
∥∥
L1(Ω)

≤
∥∥|φ|2 − |φh|2∥∥L1(Ω)

+
∥∥|φh|2 − Ih[ |φh|2 ]∥∥L1(Ω)

+
∥∥Ih[ |φh|2 ]− 1

∥∥
L1(Ω)

. (3.21)

The first term on the right-hand side can be estimated as∥∥|φ|2 − |φh|2∥∥L1(Ω)
≤ ‖φ+ φh‖L2(Ω) ‖φ− φh‖L2(Ω) . ‖φ− φh‖L2(Ω) .

Since φh → φ in L2(Ω) by assumption, we deduce that
∥∥|φ|2 − |φh|2∥∥L1(Ω)

→ 0. For the second
term on the right-hand side of (3.21), we proceed as in the proof of Proposition 3.4.7. For each
K ∈ Th, it holds that∥∥|φh|2 − Ih[ |φh|2 ]∥∥L1(K)

≤ ‖1‖L2(K)

∥∥|φh|2 − Ih[ |φh|2 ]∥∥L2(K)

≤ |K|1/2 h2
K

∣∣|φh|2∣∣H2(K)

≤ 2 |K|1/2 h2
K ‖∇φh‖

2
L4(K)

= 2 |K|h2
K |∇φh|K |

2

= 2h2
K ‖∇φh‖

2
L2(K) .

Summing over all the elements yields∥∥|φh|2 − Ih[ |φh|2 ]∥∥L1(Ω)
. h2 ‖∇φh‖2L2(Ω) .

Since the sequence is bounded in H1(Ω), it follows that
∥∥|φh|2 − Ih[ |φh|2 ]∥∥L1(Ω)

→ 0. The third
term on the right-hand side of (3.21) converges to 0 by assumption. Passing (3.21) to the limit as
h→ 0, we conclude that |φ| = 1 a.e. in Ω.

The following proposition shows that, at the continuous level, the global normalization of H1-
functions reduces their Dirichlet energy, defined as the square of the L2-norm of the Jacobian;
see [11, Proposition 1].

Proposition 3.4.9. Let φ ∈H1(Ω) such that |φ| ≥ 1 a.e. in Ω. Then, φ/ |φ| belongs to H1(Ω).
Moreover, it holds that

‖∇ (φ/ |φ|)‖L2(Ω) ≤ ‖∇φ‖L2(Ω) .

Proof. Let φ = (φ1, φ2, φ3) ∈ C∞(Ω) such that |φ| ≥ 1 in Ω. For 1 ≤ i, j ≤ 3, we compute the
(i, j)-coefficient of the Jacobian of φ/ |φ|

[∇(φ/ |φ|)]ij = ∂j

(
φi
|φ|

)
=
∂jφi |φ| − φi ∂j |φ|

|φ|2
=

1

|φ|
∂jφi −

1

|φ|3
φi(φ · ∂jφ).

In particular, we get the compact formula

∇ (φ/ |φ|) =
1

|φ|

(
I3×3 −

φ⊗ φ
|φ|2

)
∇φ
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from Proposition B.3.1(xii). An explicit computation of the Frobenius norm then yields

|∇ (φ/ |φ|)|2 =
∑

1≤i,j≤3

[
∂j

(
φi
|φ|

)]2

=
∑

1≤i,j≤3

[
1

|φ|
∂jφi −

1

|φ|3
φi(φ · ∂jφ)

]2

=
∑

1≤i,j≤3

[
1

|φ|2
(∂jφi)

2 − 2

|φ|4
φi ∂jφi(φ · ∂jφ) +

1

|φ|6
φ2
i (φ · ∂jφ)2

]

=
1

|φ|2
∑

1≤i,j≤3

(∂jφi)
2 − 2

|φ|4
∑

1≤i,j≤3

φi ∂jφi(φ · ∂jφ) +
1

|φ|6
∑

1≤i,j≤3

φ2
i (φ · ∂jφ)2

=
1

|φ|2
|∇φ|2 − 2

|φ|4
3∑
j=1

(φ · ∂jφ)2 +
1

|φ|4
3∑
j=1

(φ · ∂jφ)2

=
1

|φ|2
|∇φ|2 − 1

|φ|4
3∑
j=1

(φ · ∂jφ)2 =
1

|φ|2
|∇φ|2 − 1

|φ|4
∣∣∇φ>φ∣∣2 .

Since |φ| ≥ 1, we deduce

|∇ (φ/ |φ|)|2 =
1

|φ|2

(
|∇φ|2 − 1

|φ|2
∣∣∇φ>φ∣∣2) ≤ |∇φ|2

|φ|2
≤ |∇φ|2 .

Starting from this pointwise estimate, integration over Ω leads to the result for smooth functions.
The assertion then follows by density.

The easiest way to transform a discrete function into an element of Mh is by projecting each
nodal value (assumed to be nonzero) onto the sphere. Consider the set

Uh :=
{
φh ∈ S1(Th)3 : |φh(z)| ≥ 1 for all z ∈ Nh

}
.

Clearly, it holds that Mh ⊂ Uh. For φh ∈ Uh, we consider the nodal projection mapping
φh 7→ Ih

[
φh/ |φh|

]
.

We now look for a discrete counterpart of Proposition 3.4.9 for the nodal projection mapping. To
start with, we recall that, since the projection onto a nonempty closed convex set is nonexpansive,
the mapping R3\B1(0)→ S2 defined by x 7→ x/ |x| is Lipschitz continuous with Lipschitz constant
1, i.e., ∣∣∣∣ x1

|x1|
− x2

|x2|

∣∣∣∣ ≤ |x1 − x2| for all x1,x2 ∈ R3 \B1(0). (3.22)

In general, the nodal projection of a discrete function does not reduce its Dirichlet energy. However,
the Dirichlet energy of the nodal projection of a discrete function is uniformly bounded by the
Dirichlet energy of the original discrete function as stated by the following proposition.

Proposition 3.4.10. Let {Th}h>0 be a γ-shape-regular family of regular triangulations of Ω. It
holds that ∥∥∇Ih

[
φh/ |φh|

]∥∥
L2(Ω)

≤ C ‖∇φh‖L2(Ω) for all φh ∈ Uh, (3.23)

where the constant C > 0 depends only on γ.

Proof. Let K ∈ Th be an arbitrary tetrahedron. We assume that K = conv{zi}0≤i≤3 for some
{zi}0≤i≤3 ⊂ Nh. We consider the reference element K̂ as well as the affine mapping TK : K̂ → K

such that TK(ei) = zi for all 0 ≤ i ≤ 3. Given an arbitrary φh ∈ Uh, set φ̂h = φh ◦ TK and
Îh
[
φh/ |φh|

]
= Ih

[
φh/ |φh|

]
◦ TK . For all x̂ ∈ K̂ and 1 ≤ i ≤ 3, it holds that∣∣∣∣∣∂Îh

[
φh/ |φh|

]
(x̂)

∂x̂i

∣∣∣∣∣ =
∣∣∣Îh[φh/ |φh| ](ei)− Îh

[
φh/ |φh|

]
(0)
∣∣∣ =

∣∣∣∣ φh(zi)

|φh(zi)|
− φh(z0)

|φh(z0)|

∣∣∣∣
(3.22)
≤ |φh(zi)− φh(z0)| =

∣∣∣φ̂h(ei)− φ̂h(0)
∣∣∣ =

∣∣∣∣∣∂φ̂h(x̂)

∂x̂i

∣∣∣∣∣ ,
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from which it follows that ∥∥∇Îh
[
φh/ |φh|

]∥∥
L2(K̂)

≤
∥∥∇φ̂h∥∥L2(K̂)

. (3.24)

With this estimate, a standard scaling argument (see, e.g., [170, Propositions 3.4.1 and 3.4.2])
yields

‖∇Ih[φh/ |φh|]‖L2(K) .
∣∣B−1

K

∣∣ |det BK |1/2
∥∥∇Îh

[
φh/ |φh|

]∥∥
L2(K̂)

(3.24)
≤
∣∣B−1

K

∣∣ |det BK |1/2
∥∥∇φ̂h∥∥L2(K̂)

.
∣∣B−1

K

∣∣ |BK | ‖∇φh‖L2(K)

.
hK
ρK
‖∇φh‖L2(K) .

To get (3.23), we sum over all elements and take the γ-shape-regularity of the family of triangula-
tions into account.

It has been shown by S. Bartels in 2005 that (3.23) holds with unit constant C = 1, provided
the triangulation satisfies the angle condition (3.16); see [33, Lemma 3.2].

Proposition 3.4.11. Let {Th}h>0 be a family of regular triangulations of Ω satisfying the angle
condition (3.16). Then, it holds that∥∥∇Ih

[
φh/ |φh|

]∥∥
L2(Ω)

≤ ‖∇φh‖L2(Ω) for all φh ∈ Uh, (3.25)

i.e., (3.23) holds with unit constant C = 1.

Proof. For z,y ∈ Nh, let Kzy = 〈∇ϕz,∇ϕy〉Ω. From the partition of unity property of the hat
functions, i.e., the equality

∑
z∈Nh

ϕz = 1 in Ω, we deduce that∑
y∈Nh

Kzy = 0 for all z ∈ Nh. (3.26)

For arbitrary ηh ∈ S1(Th)3, it holds that

‖∇ηh‖2L2(Ω) = 〈∇ηh,∇ηh〉Ω =
∑

z,y∈Nh

Kzyηh(z) · ηh(y)
(3.26)

=
∑

z,y∈Nh

Kzyηh(z) · (ηh(y)− ηh(z))

=
1

2

∑
z,y∈Nh

Kzyηh(z) · (ηh(y)− ηh(z)) +
1

2

∑
z,y∈Nh

Kzyηh(y) · (ηh(z)− ηh(y))

= −1

2

∑
z,y∈Nh

Kzy |ηh(z)− ηh(y)|2 .

For any φh ∈ Uh, from the angle condition (3.16) and (3.22), it follows that

∥∥∇Ih
[
φh/ |φh|

]∥∥2

L2(Ω)
= −1

2

∑
z,y∈Nh

Kzy

∣∣∣∣ φh(z)

|φh(z)|
− φh(y)

|φh(y)|

∣∣∣∣2
≤ −1

2

∑
z,y∈Nh

Kzy |φh(z)− φh(y)|2 = ‖∇φh‖2L2(Ω) ,

which yields the desired result.

The result is sharp, in the sense that if the triangulation is not weakly acute, then there exists
a discrete function for which the nodewise normalization increases the Dirichlet energy; see [33,
Example 3.4] or [36, Proposition 7.3] for a two-dimensional counterexample.
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The acute type condition is also a key ingredient for establishing the validity of a discrete
maximum principle for finite element discretizations of second order elliptic PDEs. The first result
in this direction for a scalar-valued linear equation in the two-dimensional case was proved in [70].
The result was extended to the three-dimensional case in [138] and then improved in [133]. Discrete
maximum principles for nonlinear problems and generalizations for vector-valued problems were
considered in [122] and [81], respectively.

A differentiable function φ : Ω→ R3 such that |φ| = 1 in Ω satisfies the orthogonality property

∂iφ · φ = 0 for all 1 ≤ i ≤ 3.

This easily follows by taking the derivative of the pointwise constraint |φ|2 = 1

∂i |φ|2 = 2∂iφ · φ = 0 for all 1 ≤ i ≤ 3.

To mimic this property at a discrete level, as we did for the pointwise constraint, we require this
orthogonality to be satisfied only at the nodes of the triangulation. For φh ∈ S1(Th)3, we therefore
introduce the linear space

Kφh
:=
{
ψh ∈ S1(Th)3 : φh(z) ·ψh(z) = 0 for all z ∈ Nh

}
, (3.27)

which we call the discrete tangent space of φh.
We conclude this section with an auxiliary result which provides a bound for the H2-seminorm

of the vector product of a discrete function and a smooth function.

Lemma 3.4.12. Let {Th}h>0 be a family of regular triangulations of Ω. For all φh ∈ S1(Th)3 and
ϕ ∈ C∞(Ω), it holds that∑

K∈Th

|φh ×ϕ|2H2(K) ≤ C ‖φh‖
2
H1(Ω) ‖ϕ‖

2
W 2,∞(Ω) , (3.28)

where the constant C > 0 is generic and, in particular, independent of h.

Proof. Let φh ∈ S1(Th)3 and ϕ ∈ C∞(Ω). We prove the estimate for every element K ∈ Th, which
implies (3.28) by summation. Since φh|K is a linear polynomial, it holds that ∂αφh = 0 for all
|α| > 1. It follows that

|φh ×ϕ|2H2(K) =
∑
|α|=2

‖∂α(φh ×ϕ)‖2L2(K) =
∑

1≤i≤j≤3

‖∂i∂j(φh ×ϕ)‖2L2(K)

=
∑

1≤i≤j≤3

‖∂jφh × ∂iϕ+ ∂iφh × ∂jϕ+ φh × ∂i∂jϕ‖2L2(K)

. ‖φh‖2H1(K) ‖∇ϕ‖
2
W 1,∞(K) .

This establishes (3.28).
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Chapter 4

Tangent plane integrators

In this chapter, we introduce and analyze two variants of the tangent plane scheme for the numerical
approximation of the LLG equation. We show that the methods are (unconditionally) convergent
towards a weak solution of the problem. Throughout this chapter, we use the standard notation
for Lebesgue/Sobolev/Bochner spaces and norms; see Section 3.2.

4.1 Model problem
Let Ω ⊂ R3 be a bounded Lipschitz domain with polyhedral boundary Γ := ∂Ω. Let T > 0 be some
finite time. We denote the space-time cylinder by ΩT := Ω × (0, T ) and define ΓT := Γ × (0, T ).
Moreover, we use the notation 〈·, ·〉 := 〈·, ·〉Ω to denote the scalar product in L2(Ω) (resp. L2(Ω)).
This does not lead to ambiguities, since Ω is the unique domain considered throughout the chapter.

We consider the initial boundary value problem

∂tm = −m× [heff(m,f) + Π(m)] + αm× ∂tm in ΩT , (4.1a)
∂nm = 0 on ΓT , (4.1b)

m(0) = m0 in Ω. (4.1c)

In (4.1a), which is the Gilbert form (3.4) of the nondimensional LLG equation, α > 0 is constant
and the effective field takes the form

heff(m,f) = λ2
ex∆m+ π(m) + f , (4.2)

where λex > 0 is constant, while π(m) and f denote the generalm-dependent andm-independent
effective field contributions, respectively. We assume that π : L2(Ω) → L2(Ω) is a bounded,
linear, and self-adjoint operator, while f belongs to H1(0, T ;L2(Ω)). Under these assumptions,
the effective field satisfies

heff(m,f) = −δE(m,f)

δm

for the energy functional

E(m,f) =
λ2

ex

2
‖∇m‖2L2(Ω) −

1

2
〈π(m),m〉 − 〈f ,m〉. (4.3)

We assume Π :
{
m ∈H1(Ω) : |m| = 1 a.e. in Ω

}
→ L2(Ω) to be a bounded operator. For the

initial condition in (4.1c), we assume that m0 ∈ H1(Ω) satisfies
∣∣m0

∣∣ = 1 a.e. in Ω. In the
following definition, we introduce the notion of a weak solution of (4.1).

Definition 4.1.1 (weak solution). A function m : ΩT → R3 is called a weak solution of (4.1) if
the following properties (i)–(iv) are satisfied:
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(i) m ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) and |m| = 1 a.e. in ΩT ,

(ii) m(0) = m0 in the sense of traces,

(iii) for all ϕ ∈H1(ΩT ), it holds that∫ T

0

〈∂tm(t),ϕ(t)〉 dt− α
∫ T

0

〈m(t)× ∂tm(t),ϕ(t)〉 dt

= λ2
ex

∫ T

0

〈m(t)×∇m(t),∇ϕ(t)〉 dt−
∫ T

0

〈m(t)× π(m(t)),ϕ(t)〉 dt

−
∫ T

0

〈m(t)× f(t),ϕ(t)〉 dt−
∫ T

0

〈m(t)×Π(m(t)),ϕ(t)〉 dt,

(4.4)

(iv) m satisfies the energy inequality

E(m(τ),f(τ)) + α

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt+

∫ τ

0

〈∂tf(t),m(t)〉 dt

≤ E(m0,f(0)) +

∫ τ

0

〈Π(m(t)), ∂tm(t)〉 dt

(4.5)

for a.e. τ ∈ (0, T ).

Definition 4.1.1 extends [17, Definition 1.2], introduced by F. Alouges and A. Soyeur to
define the notion of a weak solution for the case in which the effective field comprises only the
exchange contribution. After possibly being redefined on a set of measure zero, any solution m
in the sense of Definition 4.1.1 belongs to C0([0, T ];L2(Ω)); see [88, Section 5.9.2, Theorem 2].
For functions in H1(ΩT ), the time evaluation can be defined by density as the limit of the time
evaluation for smooth functions. In this sense, for all t ∈ [0, T ], it holds that m(t) ∈ H1/2(Ω).
This concept is implied behind the expression ‘in the sense of traces’ in part (ii) of Definition 4.1.1.
The variational formulation (4.4) comes from a weak formulation of (4.1a) in the space-time do-
main. The boundary conditions (4.1b) are enforced in the variational formulation (4.4) as natural
boundary conditions. In particular, using (4.1b), the boundary term, which arises from integrating
by parts the exchange contribution, vanishes. The energy inequality (4.5) is a weak counterpart of
the energy law (3.3) for (4.1). In (4.4)–(4.5), by π(m) and Π(m) we mean the functions defined
by t 7→ π(m(t)) and t 7→ Π(m(t)) for all t ∈ (0, T ). From the regularity of m required by the
definition and the stability of π and Π, it follows that both π(m) and Π(m) belong to L2(ΩT ),
so that all the integrals involving these functions in (4.4)–(4.5) are well defined.

This abstract framework covers most of the physics introduced in Chapter 2. The first term
of the effective field (4.2), which corresponds to the first term of the energy (4.3), clearly refers to
the exchange contribution. If the general m-dependent field contribution comprises, e.g., uniaxial
anisotropy and stray field, the corresponding operator takes the form

π(m) = q2(a ·m)a+ hs(m),

where q > 0 is constant, a ∈ S2 denotes the easy axis, and hs is the stray field. In this case, π
is a linear, bounded and self-adjoint operator L2(Ω)→ L2(Ω). The m-independent effective field
contribution f includes the applied external field hext and the Oersted field hc generated by a
given electric current density. Only the Dzyaloshinskii–Moriya interaction and the magnetoelastic
contribution cannot be included into this setting; see Remark 4.1.2. The operator Π takes the
possible presence of nonenergetic (i.e., not belonging to the effective field) torque terms into ac-
count. This is the case, for instance, for the spintronic extensions of the LLG equation presented
in Section 2.3, for which the application of the present framework will be discussed in details in
Chapter 5.
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Remark 4.1.2. The magnetoelastic contribution of the effective field takes the form

heff,el = 2(λσ)m,

where λ ∈ L∞(Ω) is a 4th order tensor, while σ ∈ L2(Ω) is the weak solution of the boundary
value problem

∇ · σ + f = 0 in Ω,

C[ε(u)− εm(m)] = σ in Ω,

u = 0 on ΓD,

σn = t on ΓN ;

see page 16 for the definition of all involved quantities. Clearly, the mapping π : m 7→ 2(λσ)m is
not a linear, bounded, and self-adjoint operator L2(Ω) → L2(Ω). In particular, π(m) belongs to
L2(Ω) only if m ∈ L∞(Ω).

In the presence of the Dzyaloshinskii–Moriya interaction, i.e., when the effective field also
comprises the term

heff,DM = −λDM∇×m,

the homogeneous Neumann boundary conditions (4.1b), which are appropriate whenever the unique
component of the effective field involving magnetization derivatives is the exchange contribution,
must be replaced by

2λ2
ex∂nm+ λDMm× n = 0.

This clearly affects the variational formulation (4.4). The analysis of the algorithm introduced in
the next section for this situation is currently being investigated, and we refer the interested reader
to a forthcoming publication [116].

4.2 Numerical algorithm
In this section, we introduce a numerical method for the approximation of the abstract problem
discussed in Section 4.1. The starting point is the alternative form of the LLG equation (3.5),
which in this case takes the form

α∂tm+m× ∂tm = heff(m,f) + Π(m)− [heff(m,f) ·m+ Π(m) ·m]m. (4.6)

We recall that, under the constraint |m| = 1, this formulation is equivalent to the Landau–Lifshitz
form and to the Gilbert form; see Proposition 3.1.1.

Since (4.6) is linear with respect to the time derivative ∂tm, we introduce the free variable
v = ∂tm

αv +m× v = heff(m,f) + Π(m)− [heff(m,f) ·m+ Π(m) ·m]m. (4.7)

From the equality |m|2 = 1, we deduce the orthogonality m · v = 0. Hence, for each t ∈ (0, T ),
v(t) ∈ R3 belongs to the tangent space of the sphere at m(t). Taking this orthogonality as
well as the expression (4.2) of the effective field into account, we obtain the following variational
formulation of (4.7): Find v(t) ∈ L2(Ω) with m(t) · v(t) = 0 a.e. in Ω such that

α〈v(t),φ〉 + 〈m(t)× v(t),φ〉 = −λ2
ex〈∇m(t),∇φ〉 + 〈π(m(t)),φ〉 + 〈f ,φ〉 + 〈Π(m(t)),φ〉

(4.8)

for all φ ∈ H1(Ω) satisfying m(t) · φ = 0 a.e. in Ω. Note that in (4.8) the boundary integral
which arises from integrating by parts the exchange contribution vanishes thanks to the boundary
conditions (4.1b). Moreover, since the test function φ belongs to the tangent space of the sphere at
m(t), in (4.8) the term corresponding to the last (strongly nonlinear inm) term on the right-hand
side of (4.7) also vanishes.
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For the time discretization, given an integer M > 0, we consider a uniform partition of the
time interval (0, T ) with time-step size k = T/M , i.e., ti = ik for all 0 ≤ i ≤ M ; see Section 3.3.
For the spatial discretization, we consider a γ-quasi-uniform family {Th}h>0 of regular tetrahedral
triangulations of Ω; see Section 3.4.

For each time-step 0 ≤ i ≤ M − 1, the structure of the numerical scheme is the following:
First of all, given an approximation mi

h ∈ S1(Th)3 of m(ti), we compute vih ≈ v(ti) from a finite
element discretization of (4.8) based on the discrete tangent space introduced in (3.27), i.e.,

Kmi
h

:=
{
ψh ∈ S1(Th)3 : mi

h(z) ·ψh(z) = 0 for all z ∈ Nh
}
.

We obtain the following variational problem: Find vih ∈ Kmi
h
such that

α〈vih,φh〉 + 〈mi
h × vih,φh〉 + λ2

exθk〈∇vih,∇φh〉
= −λ2

ex〈∇mi
h,∇φh〉 + 〈πh(mi

h),φh〉 + 〈f ih,φh〉 + 〈Πh(mi
h),φh〉

for all φh ∈ Kmi
h
. Here, the operators πh : S1(Th)3 → L2(Ω) and Πh : S1(Th)3 → L2(Ω) denote

discretized versions of π and Π, respectively, while, for all 0 ≤ i ≤ M − 1, f ih ∈ L2(Ω) denotes
an approximation of f(ti). The parameter 0 ≤ θ ≤ 1 modulates the ‘degree of implicitness’ of the
method in the treatment of the leading-order term of the effective field (which is the second-order
exchange contribution).

The computed vih ∈ Kmi
h
is then used to update the current magnetizationmi

h ≈m(ti) to the
new value mi+1

h ≈m(ti+1) via a 1st order time-stepping. A simple choice is given by the classical
linear time-stepping

mi+1
h = mi

h + kvih.

In this case, the pointwise constraint |m| = 1 which characterizes the solution of the LLG equation
is ignored by the numerical scheme. To have a numerical realization of it, the nodal projection
mapping φh 7→ Ih(φh/ |φh|) can be applied. The resulting time-stepping is then given by

mi+1
h = Ih

[
mi
h + kvih∣∣mi
h + kvih

∣∣
]
.

With this choice, for every 0 ≤ i ≤ M − 1, mi+1
h belongs to the set Mh of the discrete functions

which satisfy the pointwise constraint at the nodes of the triangulation introduced in (3.20), i.e.,

Mh :=
{
φh ∈ S1(Th)3 : |φh(z)| = 1 for all z ∈ Nh

}
.

We refer to the method which includes the nodal projection as standard tangent plane scheme
(TPS). We refer to the method in which the nodal projection is omitted as projection-free tangent
plane scheme (PFTPS).

We recall the definition of the set

Uh :=
{
φh ∈ S1(Th)3 : |φh(z)| ≥ 1 for all z ∈ Nh

}
⊃Mh,

which is the domain of the nodal projection mapping, and summarize the proposed numerical
schemes in the following algorithm.

Algorithm 4.2.1 (tangent plane scheme). Input: Eitherm0
h ∈Mh (TPS) orm0

h ∈ Uh (PFTPS).
Loop: For all 0 ≤ i ≤M − 1, iterate:

(i) Compute πh(mi
h) ∈ L2(Ω) and Πh(mi

h) ∈ L2(Ω),

(ii) Compute vih ∈ Kmi
h
such that

α〈vih,φh〉 + 〈mi
h × vih,φh〉 + λ2

exθk〈∇vih,∇φh〉
= −λ2

ex〈∇mi
h,∇φh〉 + 〈πh(mi

h),φh〉 + 〈f ih,φh〉 + 〈Πh(mi
h),φh〉

(4.9)

for all φh ∈ Kmi
h
,
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(iii) Either define mi+1
h ∈ Uh by

mi+1
h = mi

h + kvih (PFTPS) (4.10a)

or define mi+1
h ∈Mh by

mi+1
h = Ih

[
mi
h + kvih∣∣mi
h + kvih

∣∣
]

(TPS). (4.10b)

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}
0≤i≤M−1

.

In Algorithm 4.2.1, in the same spirit as [56] and unlike [16], the numerical approximation of
the lower-order effective field contributions and the additional torque term is considered. Indeed,
step (i) can include the solution of a nonlocal problem, e.g., the computation of the stray field
for a given configuration of the magnetization. In the case of the standard tangent plane scheme,
omitting both the lower-order effective field terms and the additional nonenergetic torque term,
and choosing θ = 0, we recover the explicit method of [14]. The idea of removing the nodal
projection from the tangent plane scheme goes back to [6] for the LLG equation and has been
inspired by [37], where the same principle is applied to a certain class of geometrically constrained
partial differential equations, e.g., the harmonic map heat flow.

In Algorithm 4.2.1, the approach for the treatment of the leading-order effective field contri-
bution, introduced in [12], is similar to the classical θ-method for the heat equation: The choice
θ = 0 produces an explicit version of the scheme, the choice θ = 1/2 yields a Crank-Nicolson-type
scheme, while for θ = 1 we obtain a kind of fully implicit version of the scheme. In analogy
with the corresponding result for the heat equation, one may conjecture that the method is un-
conditionally stable for θ > 1/2, but requires a stability condition, usually referred to as CFL
condition (Courant–Friedrichs–Lewy condition, named after the mathematicians R. Courant,
K. Friedrichs, and H. Lewy), for θ < 1/2. We will indeed prove a result of that kind in the
next section; see Theorem 4.3.2. Note that this approach concerns only the exchange contribution
of the effective field, but does not affect the other terms, which are treated explicitly.

Both versions of the scheme are formally 1st order methods in time. In order to show this, for
a sufficiently smooth solution and 0 ≤ i ≤ M − 1, let mi = m(ti) and vi = v(ti) = ∂tm(ti). In
the case of the projection-free version of the method, the Taylor theorem directly shows∣∣mi+1 −mi − kvi

∣∣ = O(k2) as k → 0. (4.11)

In the case of the standard version of the method, it holds that

mi+1 − mi + kvi

|mi + kvi|
= mi + kvi +O(k2)− mi + kvi

|mi + kvi|
= (mi + kvi)

(
1− 1

|mi + kvi|

)
+O(k2).

Since
∣∣mi

∣∣ = 1 and mi · vi = 0, we deduce that∣∣mi + kvi
∣∣2 =

∣∣mi
∣∣2 + 2mi · vi + k2

∣∣vi∣∣2 = 1 + k2
∣∣vi∣∣2 .

The Taylor expansion
1√

1 + x
= 1− x

2
+O(x2) as x→ 0

then reveals
1

|mi + kvi|
= 1− 1

2
k2
∣∣vi∣∣2 +O(k4) as k → 0.

Altogether, we thus obtain∣∣∣∣mi+1 − mi + kvi

|mi + kvi|

∣∣∣∣ =

∣∣∣∣(mi + kvi)

(
k2

2

∣∣vi∣∣2 +O(k4)

)
+O(k2)

∣∣∣∣ = O(k2) as k → 0. (4.12)

Strategies to improve the convergence order in time of the standard tangent plane scheme are based
on similar Taylor expansions and have been proposed in [16, 15].

The following proposition states that Algorithm 4.2.1 is well posed.
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Proposition 4.2.2. For all 0 ≤ i ≤ M − 1, there exists a unique solution vih ∈ Kmi
h
of (4.9).

Moreover, the time-stepping (4.10) is well defined.

Proof. Let 0 ≤ i ≤ N − 1. Consider the bilinear form a(mi
h; ·, ·) : S1(Th)3 × S1(Th)3 → R defined

by
a(mi

h;ηh,φh) := α〈ηh,φh〉 + 〈mi
h × ηh,φh〉 + λ2

exθk〈∇ηh,∇φh〉
for all ηh,φh ∈ S1(Th)3, and the linear functional F (mi

h; ·) : S1(Th)3 → R defined by

F (mi
h;φh) := −λ2

ex〈∇mi
h,∇φh〉 + 〈πh(mi

h),φh〉 + 〈f ih,φh〉 + 〈Πh(mi
h),φh〉

for all φh ∈ S1(Th)3. Then, we can rewrite step (ii) of the algorithm as: Find vih ∈ Kmi
h
such that

a(mi
h;vih,φh) = F (mi

h;φh) for all φh ∈ Kmi
h
.

Since it holds that

a(mi
h;φh,φh) = α ‖φh‖2L2(Ω) + λ2

exθk ‖∇φh‖
2
L2(Ω) for all φh ∈ S1(Th)3,

the bilinear form is elliptic (even in the full space S1(Th)3). Existence and uniqueness of the
solution vih ∈ Kmi

h
to (4.9) thus follows from the Lax–Milgram theorem. It remains to show that

the time-stepping (4.10) is always well defined. This is straightforward for the projection-free time
stepping (4.10a). If the algorithm includes the nodal projection, it holds that mi

h ∈Mh. Since
vh ∈ Kmi

h
, it follows that∣∣mi

h(z) + kvih(z)
∣∣2 =

∣∣mi
h(z)

∣∣2 + k2
∣∣vih(z)

∣∣2 = 1 + k2
∣∣vih(z)

∣∣2 ≥ 1,

i.e., mi
h + kvih ∈ Uh. The projection step (4.10b) is therefore also well defined.

4.3 Convergence analysis
From Algorithm 4.2.1 we obtain two sequences of discrete functions {mi

h}0≤i≤M and {vih}0≤i≤M−1,
which can be used to define the piecewise linear and piecewise constant time reconstructions
from (3.13). In particular, we consider the functions defined, for all t ∈ [ti, ti+1) and 0 ≤ i ≤M−1,
by

mhk(t) :=
t− ti
k

mi+1
h +

ti+1 − t
k

mi
h, m−hk(t) := mi

h, m+
hk(t) := mi+1

h , and v−hk(t) := vih.

(4.13)
Similarly, we define the functions π−hk,Π

−
hk : [0, T )→ L2(Ω) by

π−hk(t) := πh(mi
h), and Π−hk(t) := Πh(mi

h), (4.14)

for all t ∈ [ti, ti+1) and 0 ≤ i ≤M − 1.
In the following assumption, we collect some of the requirements on the approximation of the

initial condition m0
h, on the discrete operators πh and Πh, and on the sequence {f ih}0≤i≤M−1.

Assumption 4.3.1. The discrete initial condition m0
h belongs to Uh and satisfies the convergence

property
m0
h ⇀m0 in H1(Ω) as h→ 0. (4.15)

For the standard tangent plane scheme, we additionally assume that m0
h ∈ Mh. The discrete

operators πh : Uh → L2(Ω) and Πh : Uh → L2(Ω) are stable, in the sense that there exist two
positive constants, Cπ and CΠ, independent of h, such that

‖πh(φh)‖L2(Ω) ≤ Cπ
(

1 + ‖φh‖H1(Ω)

)
for all φh ∈ Uh, (4.16a)

‖Πh(φh)‖L2(Ω) ≤ CΠ

(
1 + ‖φh‖H1(Ω)

)
for all φh ∈ Uh. (4.16b)
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For the sequence {f ih}0≤i≤M−1 in L2(Ω), we define the piecewise constant time reconstruction f−hk
by f−hk(t) := f ih for all t ∈ [ti, ti+1) and 0 ≤ i ≤M −1, and assume that it satisfies the convergence
property

f−hk ⇀ f in L2(ΩT ) as k, h→ 0. (4.17)

Moreover, for the sake of simplicity, we assume that f ∈ C1([0, T ],L2(Ω)). In particular, the
expressions f(t) and ∂tf(t) are meaningful for all t ∈ [0, T ].

The following theorem, which is the main result of this chapter, states that the time reconstruc-
tions from (4.13) converge in an appropriate sense towards a weak solution of (4.1) as k, h→ 0.

Theorem 4.3.2. Let {Th}h>0 be a γ-quasi-uniform family of regular tetrahedral triangulations of
Ω.
(a) Suppose that Assumption 4.3.1 is satisfied. For the standard tangent plane scheme, assume
that

• either 1/2 < θ ≤ 1 and any triangulation Th satisfies the angle condition (3.16),

• or θ = 1/2, any triangulation Th satisfies the angle condition (3.16), and k = o(h) as
k, h→ 0,

• or k = o(h2) as k, h→ 0.

For the projection-free tangent plane scheme, assume that

• either 1/2 < θ ≤ 1,

• or θ = 1/2 and k = o(h) as k, h→ 0,

• or k = o(h2) as k, h→ 0.

Then, the sequences of discrete functions {mhk} and {m±hk}, constructed from the output of Al-
gorithm 4.2.1 according to (4.13), admit subsequences (not relabeled) which converge towards a
function m satisfying the requirements (i)–(ii) of Definition 4.1.1. More precisely, it holds that
mhk ⇀m in H1(ΩT ) and mhk,m

±
hk
∗
⇀m in L∞(0, T ;H1(Ω)) as k, h→ 0.

(b) Under the assumptions of part (a), suppose that the discrete operators πh and Πh are consistent,
in the sense that, given the convergent subsequences of part (a), the corresponding subsequences of
discrete functions (4.14) satisfy

π−hk ⇀ π(m) in L2(ΩT ) as k, h→ 0, (4.18a)

Π−hk ⇀ Π(m) in L2(ΩT ) as k, h→ 0. (4.18b)

Then, the limit function m of part (a) satisfies also the requirement (iii) of Definition 4.1.1.
(c) Under the assumption of part (b), assume that (4.15), (4.17) and (4.18) hold with strong
convergence. In the case of the standard tangent plane scheme, assume the following additional
L4-regularity on f and π

f ∈ C0([0, T ],L4(Ω)) and ‖π(φ)‖L4(Ω) ≤ C ‖φ‖L4(Ω) for all φ ∈ L4(Ω), (4.19)

where C > 0 is constant. Then, the limit functionm from part (b) satisfies also the requirement (iv)
of Definition 4.1.1. In particular, m is a weak solution of (4.1) .

For both versions of the method, for 1/2 < θ ≤ 1, the convergence is unconditional. The
proof of Theorem 4.3.2 is constructive, in the sense that it also establishes the existence of a weak
solution of (4.1). The proof will follow the usual energy method for proving existence of solutions
of linear second-order parabolic problems; see, e.g., [88, Section 7.1.2]. The main difference is
that the construction of approximate solutions is not obtained by applying the Galerkin method
based on a set of appropriately normalized eigenfunctions of the Laplacian, but rather by using
the discrete solutions of Algorithm 4.2.1.
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Remark 4.3.3. For the applicability of Theorem 4.3.2 to effective discretizations of the lower-
order effective field terms, we refer the reader to [56, Section 4]. There, it is shown that if
the discrete operator πh is a continuous function of the magnetization (which is the case, e.g.,
for anisotropy contributions) or the approximate stray field computed with the hybrid FEM-BEM
method of D. R. Fredkin and T. R. Koehler [99], then the stability (4.16a) and the consistency
assumption (4.18a) are satisfied. In Chapter 5, we will discuss the applicability of Theorem 4.3.2
to the analysis of the tangent plane scheme for the spintronic extensions of the LLG equation
presented in Section 2.3, which will provide concrete examples for the discrete operator Πh.

For the sake of clarity, we divide the proof of Theorem 4.3.2 into several lemmata and proposi-
tions. We start with the observation that, for the standard tangent plane scheme, from Lemma 3.4.6
it follows that

∥∥mi
h

∥∥
L∞(Ω)

= 1 for all 0 ≤ i ≤ M . The following lemma concerns two geometric
estimates satisfied by the iterates of Algorithm 4.2.1 in this case.

Lemma 4.3.4. For all 0 ≤ i ≤ M − 1 and z ∈ Nh, the iterates of the standard tangent plane
scheme satisfy ∣∣mi+1

h (z)−mi
h(z)− kvih(z)

∣∣ ≤ 1

2
k2
∣∣vih(z)

∣∣2 (4.20)

and ∣∣mi+1
h (z)−mi

h(z)
∣∣ ≤ k ∣∣vih(z)

∣∣ . (4.21)

Proof. Let 0 ≤ i ≤ M − 1. For z ∈ Nh, using the expression (4.10b) of the time-stepping, we
obtain that∣∣mi+1

h (z)−mi
h(z)− kvih(z)

∣∣
=

∣∣∣∣∣ mi
h(z) + kvih(z)∣∣mi
h(z) + kvih(z)

∣∣ −mi
h(z)− kvih(z)

∣∣∣∣∣ =
∣∣mi

h(z) + kvih(z)
∣∣ ∣∣∣∣∣ 1∣∣mi

h(z) + kvih(z)
∣∣ − 1

∣∣∣∣∣
=
∣∣mi

h(z) + kvih(z)
∣∣(1− 1∣∣mi

h(z) + kvih(z)
∣∣
)

=
∣∣mi

h(z) + kvih(z)
∣∣− 1.

To estimate the right-hand side, we compute

0 ≤
(∣∣mi

h(z) + kvih(z)
∣∣− 1

)2
=
∣∣mi

h(z) + kvih(z)
∣∣2 − 2

∣∣mi
h(z) + kvih(z)

∣∣+ 1

=
∣∣mi

h(z)
∣∣2 + k2

∣∣vih(z)
∣∣2 − 2

∣∣mi
h(z) + kvih(z)

∣∣+ 1 = 2 + k2
∣∣vih(z)

∣∣2 − 2
∣∣mi

h(z) + kvih(z)
∣∣ .

Rearranging the terms, we deduce that∣∣mi
h(z) + kvih(z)

∣∣− 1 ≤ 1

2
k2
∣∣vih(z)

∣∣2 .
As a result, we obtain (4.20).

For z ∈ Nh, a simple computation reveals∣∣mi+1
h (z)−mi

h(z)
∣∣2 =

∣∣mi+1
h (z)

∣∣2 − 2mi+1
h (z) ·mi

h(z) +
∣∣mi

h(z)
∣∣2 = 2

(
1−mi+1

h (z) ·mi
h(z)

)
= 2

(
1− mi

h(z) + kvih(z)∣∣mi
h(z) + kvih(z)

∣∣ ·mi
h(z)

)
= 2

(
1− 1∣∣mi

h(z) + kvih(z)
∣∣
)

= 2

∣∣mi
h(z) + kvih(z)

∣∣− 1∣∣mi
h(z) + kvih(z)

∣∣ = 2

∣∣mi
h(z) + kvih(z)

∣∣− ∣∣mi+1
h (z)

∣∣∣∣mi
h(z) + kvih(z)

∣∣ .

Due to the Lipschitz continuity (with unit constant) of the Euclidean norm, we can estimate the
numerator by

∣∣mi
h(z) + kvih(z)

∣∣− ∣∣mi+1
h (z)

∣∣ ≤ ∣∣mi
h(z) + kvih(z)−mi+1

h (z)
∣∣ (4.20)
≤ 1

2
k2
∣∣vih(z)

∣∣2 .
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For the denominator, it holds that
∣∣mi

h(z) + kvih(z)
∣∣ ≥ 1. We deduce

∣∣mi+1
h (z)−mi

h(z)
∣∣2 ≤ 2

∣∣mi
h(z) + kvih(z)

∣∣− ∣∣mi+1
h (z)

∣∣∣∣mi
h(z) + kvih(z)

∣∣ ≤ k2
∣∣vih(z)

∣∣2 .
This yields (4.21).

We recall the norm equivalence

‖φh‖pLp(Ω) ' h
3
∑
z∈Nh

|φh(z)|p for all φh ∈ S1(Th)3 and p ∈ [1,∞) (4.22)

from Proposition 3.4.5, which holds with an equivalence constant that depends only on the mesh
regularity parameter γ. The combination of (4.22) with the geometric estimates from Lemma 4.3.4
leads to the following result.

Corollary 4.3.5. For all 0 ≤ i ≤M − 1, the iterates of the standard tangent plane scheme satisfy

∥∥mi+1
h −mi

h

∥∥
L2(Ω)

≤ Ck
∥∥vih∥∥L2(Ω)

, (4.23a)∥∥mi+1
h −mi

h − kvih
∥∥
L1(Ω)

≤ Ck2
∥∥vih∥∥2

L2(Ω)
, (4.23b)∥∥mi+1

h −mi
h − kvih

∥∥
L4/3(Ω)

≤ Ck2
∥∥vih∥∥2

L8/3(Ω)
, (4.23c)

where the constant C > 0 depends only on γ.

Proof. The estimate (4.23a) follows from (4.21) and a double application of (4.22) (p = 2). The
estimate (4.23b) follows from (4.20) and a double application of (4.22) (first p = 1, then p = 2).
The estimate (4.23c) follows from (4.20) and a double application of (4.22) (first p = 4/3, then
p = 8/3).

If the nodal projection mapping is omitted in Algorithm 4.2.1, thanks to (4.10a), the esti-
mates from Lemma 4.3.4 and Corollary 4.3.5 become trivial. However, in this case, the equality
‖mi

h‖L∞(Ω) = 1 for all 0 ≤ i ≤ M is not satisfied. In the following lemma, we prove an easy
recursive relation.

Lemma 4.3.6. For all 1 ≤ j ≤M , the iterates of the projection-free tangent plane scheme satisfy

|mj
h(z)|2 =

∣∣m0
h(z)

∣∣2 + k2

j−1∑
i=0

∣∣vih(z)
∣∣2 for all z ∈ Nh. (4.24)

Proof. Let 1 ≤ j ≤M . For all 0 ≤ i ≤ j − 1 and z ∈ Nh, since vih belongs to Kmi
h
, it holds that∣∣mi+1

h (z)
∣∣2 (4.10a)

=
∣∣mi

h(z) + kvih(z)
∣∣2 =

∣∣mi
h(z)

∣∣2 + k2
∣∣vih(z)

∣∣2 .
Summation over 0 ≤ i ≤ j − 1 yields (4.24).

In the following lemma, we start with the study of the evolution of the discrete energy.

Lemma 4.3.7. Let 0 ≤ i ≤M − 1. For the standard tangent plane scheme, it holds that

λ2
ex

2
kdt

∥∥∇mi+1
h

∥∥2

L2(Ω)
+ [α− c(k, h)]k

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)

≤ k〈πh(mi
h),vih〉 + k〈f ih,vih〉 + k〈Πh(mi

h),vih〉,
(4.25)

with

c(k, h) =

{
0 if the triangulation Th satisfies the angle condition (3.16),
Ckh−2 else.
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The constant C > 0 depends only on γ and λex. In particular, it is independent of k and h. For
the projection-free tangent plane scheme, it holds that

λ2
ex

2
kdt

∥∥∇mi+1
h

∥∥2

L2(Ω)
+ αk

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)

= k〈πh(mi
h),vih〉 + k〈f ih,vih〉 + k〈Πh(mi

h),vih〉.
(4.26)

Proof. Let 0 ≤ i ≤M − 1. We test (4.9) with φh = vih ∈ Kmi
h
and multiply the resulting equation

by k:

αk
∥∥vih∥∥2

L2(Ω)
+ k

= 0︷ ︸︸ ︷
〈mi

h × vih,vih〉+λ2
exθk

2
∥∥∇vih∥∥2

L2(Ω)

= −λ2
exk〈∇mi

h,∇vih〉 + k〈πh(mi
h),vih〉 + k〈f ih,vih〉 + k〈Πh(mi

h),vih〉.
(4.27)

We apply the vector identity

|a|2 − |b|2 = |a− b|2 + 2(a− b) · b for all a,b ∈ R9

with the choices a = ∇mi+1
h and b = ∇mi

h, and multiply the resulting equation by λ2
ex/2. We

obtain

λ2
ex

2

∥∥∇mi+1
h

∥∥2

L2(Ω)
− λ2

ex

2

∥∥∇mi
h

∥∥2

L2(Ω)

=
λ2

ex

2

∥∥∇mi+1
h −∇mi

h

∥∥2

L2(Ω)
+ λ2

ex〈∇mi+1
h −∇mi

h,∇mi
h〉.

Summation of the latter with (4.27) yields

λ2
ex

2

∥∥∇mi+1
h

∥∥2

L2(Ω)
− λ2

ex

2

∥∥∇mi
h

∥∥2

L2(Ω)
+ αk

∥∥vih∥∥2

L2(Ω)
+ λ2

exθk
2
∥∥∇vih∥∥2

L2(Ω)

=
λ2

ex

2

∥∥∇mi+1
h −∇mi

h

∥∥2

L2(Ω)
+ λ2

ex〈∇mi+1
h −∇mi

h − k∇vih,∇mi
h〉

+ k〈πh(mi
h),vih〉 + k〈f ih,vih〉 + k〈Πh(mi

h),vih〉.

(4.28)

We first discuss the case of the standard tangent plane scheme. If the triangulation satisfies the
angle condition (3.16), we subtract the quantity λ2

exk
2
∥∥∇vih∥∥2

L2(Ω)
/2 from both sides of (4.28).

We obtain

λ2
ex

2

∥∥∇mi+1
h

∥∥2

L2(Ω)
− λ2

ex

2

∥∥∇mi
h

∥∥2

L2(Ω)
+ αk

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)

=
λ2

ex

2

∥∥∇mi+1
h −∇mi

h

∥∥2

L2(Ω)
+ λ2

ex〈∇mi+1
h −∇mi

h − k∇vih,∇mi
h〉 −

λ2
ex

2
k2
∥∥∇vih∥∥2

L2(Ω)

+ k〈πh(mi
h),vih〉 + k〈f ih,vih〉 + k〈Πh(mi

h),vih〉.

An explicit computation of the first three terms on the right-hand side, together with Proposi-
tion 3.4.11, then reveals

λ2
ex

2

∥∥∇mi+1
h −∇mi

h
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2
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(3.25)
≤ 0.

We conclude that
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which is (4.25) with c(k, h) = 0.
If the triangulation does not satisfy the angle condition (3.16), we proceed with the direct

estimate of the first two terms on the right-hand side of (4.28). Using an inverse estimate and
Corollary 4.3.5, we can estimate the first term as∥∥∇mi+1

h −∇mi
h

∥∥2

L2(Ω)

(3.17)
. h−2
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h −mi

h
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. k2h−2
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.

Using the Hölder inequality, an inverse estimate, the equality
∥∥mi

h

∥∥
L∞(Ω)

= 1 and Corollary 4.3.5,
we can similarly obtain an estimate for the second term on the right-hand side∣∣〈∇mi+1
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h − k∇vih,∇mi

h〉
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We thus obtain
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where C > 0 depends only on γ and λex. This establishes (4.25) and concludes the proof for the
standard tangent plane scheme.

In the case of the projection-free method, thanks to the linear time-stepping (4.10a), (4.28)
simplifies to
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which is (4.26).

In the following lemma, we establish an energy estimate for the iterates of Algorithm 4.2.1.

Lemma 4.3.8. Let Assumption 4.3.1 be satisfied.
(a) Let 1/2 < θ ≤ 1. For the standard tangent plane scheme, suppose additionally that either any
triangulation Th satisfies the angle condition (3.16) or k = o(h2) as k, h → 0. If k is sufficiently
small, then, for all 1 ≤ j ≤M , it holds that

∥∥mj
h

∥∥2

H1(Ω)
+ k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
+ k2

j−1∑
i=0

∥∥∇vih∥∥2

L2(Ω)
≤ C. (4.29)

(b) Let 0 ≤ θ < 1/2. Suppose that

• either θ = 1/2 and, additionally for the standard tangent plane scheme, that any triangulation
Th satisfies the angle condition (3.16),

• or k = o(h2) as k, h→ 0.

If k is sufficiently small, then, for all 1 ≤ j ≤M , it holds that

∥∥mj
h

∥∥2

H1(Ω)
+ k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
≤ C. (4.30)

In both cases, the constant C > 0 depends only on the problem data (α, Cπ, CΠ, f , λex, m0, |Ω|,
T ) and on the discretization parameters γ and θ. In particular, it is independent of k and h.
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Proof. To start with, we recall that, since m0
h ⇀m0 in H1(Ω) by assumption (4.15), there exists

a positive constant C = C(m0) > 0 such that
∥∥m0

h

∥∥
H1(Ω)

≤ C.
Let 1 ≤ j ≤M . For the standard tangent plane scheme, since ‖mj

h‖2L∞(Ω) = 1, it holds that

‖mj
h‖

2
L2(Ω) ≤ |Ω| .

For the projection-free tangent plane scheme, from the combination of Lemma 4.3.6 and the norm
equivalence (4.22), we deduce that
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2
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L2(Ω)
+ k2
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L2(Ω)

)
,

for a positive constant C = C(γ) > 0. We can summarize the preceding estimates by means of the
inequality

‖mj
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2
L2(Ω) ≤ C1 + C2k

2
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∥∥vih∥∥2

L2(Ω)
, (4.31)

with C1 = C1(γ,m0, |Ω|) > 0 and C2 = C2(γ) > 0 being constants.
We now apply Lemma 4.3.7. For all 0 ≤ i ≤ M − 1 and both versions of the tangent plane

scheme, it holds that
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Note that, for the projection-free tangent plane scheme and for the standard tangent plane scheme
if any triangulation of the family satisfies the angle condition (3.16), the estimate holds with
C3 = 0. Otherwise, it holds that C3 = C3(γ, λex) > 0; see (4.25)–(4.26). Summation over all
0 ≤ i ≤ j − 1 then yields
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(4.32)

The first term on the right-hand side is uniformly bounded by assumption (4.15). For the second
term, we use the Cauchy–Schwarz inequality as well as the weighted Young inequality. Let δ > 0
be arbitrary (we will choose it later in a convenient way). It holds that
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The first term on the right-hand side can be absorbed into the corresponding term on the left-hand
side of (4.32). For the term associated with the m-dependent effective field contribution, it holds
that
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The same holds true for the term associated with the nonenergetic torque term. We obtain
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Moreover, since f−hk ⇀ f in L2(ΩT ) by assumption (4.17), it follows that
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with C = C(f) > 0 being constant. Altogether, we thus obtain that
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(4.33)

where C4 = C4(Cπ, CΠ, δ,f , λex,m
0, T ) > 0 and C5 = C5(Cπ, CΠ, δ, λex) > 0 are constants. The

summation of (4.31) and (4.33) then yields
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(4.34)

Under the assumptions of part (a), since 1/2 < θ ≤ 1, the third term on the left-hand side
is nonnegative. We choose δ = α/3. For the projection-free tangent plane scheme, or for the
standard tangent plane scheme if any triangulation satisfies the angle condition (3.16), it holds
that C3 = 0. Otherwise, for a sufficiently small k it holds that kh−2 < α/(4C3). In both cases, if
k < α/(2C2λ

2
ex), also the second term on the left-hand side of (4.34) is nonnegative. In particular,

for a sufficiently small time-step size k, we thus obtain the estimate
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where the constants C ′1, C ′2 > 0 depend only on the problem data (α, Cπ, Cπ, f , λex, m0, |Ω|, T )
and on the discretization parameters γ and θ, but are independent of time-step size k and mesh
size h. An application of the discrete Gronwall lemma (see Lemma B.2.4) then yields (4.29) and
concludes the proof of part (a).

Under the assumptions of part (b), if θ = 1/2 the third term on the left-hand side of (4.34)
vanishes. If 0 ≤ θ < 1/2, it can be estimated by means of an inverse estimate as
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where C = C(γ) > 0. In both cases, we obtain the estimate
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where C6 = C6(γ, λex, θ) > 0 is constant.
We choose δ = α/3. If kh−2 < α/[4(C3 +C6)] (which is true, by assumption, if k is sufficiently

small) and k < α/(2C2λ
2
ex), all the terms on the left-hand side are nonnegative. Under our

assumptions, for a sufficiently small time-step size k, it thus holds that
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∥∥2
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,

where the constants C ′′1 , C ′′2 > 0 depend only on the problem data (α, Cπ, CΠ, f , λex, m0, |Ω|,
T ) and on the discretization parameters γ and θ, but are independent of the time-step size k and
the mesh size h. As before, an application of the discrete Gronwall lemma then yields (4.30). This
establishes part (b) of the lemma and concludes the proof.

Exploiting Lemma 4.3.8, we are now able to prove that the discrete functions in (4.13) are
uniformly bounded.

Proposition 4.3.9. Suppose that the assumptions of Lemma 4.3.8 are satisfied. Then, if k is
sufficiently small, the sequences {mhk}, {m±hk} and {v

−
hk} are uniformly bounded in the sense that

‖m∗hk‖L∞(0,T ;H1(Ω)) + ‖∂tmhk‖L2(ΩT ) +
∥∥v−hk∥∥L2(ΩT )

≤ C, (4.35)

for m∗hk ∈ {mhk,m
±
hk}. The constant C > 0 depends only on the problem data (α, Cπ, CΠ, f ,

λex, m0, |Ω|, T ) and on the discretization parameters γ and θ. In particular, it is independent of
k and h.

Proof. We apply Lemma 4.3.8. Since (4.29) is stronger than (4.30), the latter is always satisfied
provided the time-step size k is sufficiently small.

For any t ∈ (0, T ), let 0 ≤ i ≤M − 1 such that t ∈ [ti, ti+1). It holds that
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(4.30)
≤ C.

This shows that ‖mhk‖L∞(0,T ;H1(Ω)) ≤ C. The same proof holds also for m±hk.
For the time derivative, it holds that
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For the standard tangent plane scheme, it follows from Corollary 4.3.5 that
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For the projection-free tangent plane scheme, it holds that∥∥dtmi+1
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In both cases, we thus obtain the estimate

‖∂tmhk‖2L2(ΩT ) . k

M−1∑
i=0

∥∥vih∥∥2

L2(Ω)

(4.30)
≤ C.

60



Finally, it holds that
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which establishes (4.35) and concludes the proof.

In general, the sequence
{
v−hk
}
is not uniformly bounded in L2(0, T ;H1(Ω)). Nevertheless, in

the following lemma, we show that, under assumptions that are similar to those of Proposition 4.3.9
(slightly stronger only for the case θ = 1/2), the norm

∥∥∇v−hk∥∥L2(ΩT )
can be somehow controlled.

Lemma 4.3.10. Suppose that Assumption 4.3.1 is satisfied. For the standard tangent plane
scheme, assume that

• either 1/2 < θ ≤ 1 and any triangulation Th satisfies the angle condition (3.16),

• or θ = 1/2, any triangulation Th satisfies the angle condition (3.16), and k = o(h) as
k, h→ 0,

• or k = o(h2) as k, h→ 0.

For the projection-free tangent plane scheme, assume that

• either 1/2 < θ ≤ 1,

• or θ = 1/2 and k = o(h) as k, h→ 0,

• or k = o(h2) as k, h→ 0.

Then, it holds that
lim
k,h→0

k
∥∥∇v−hk∥∥L2(ΩT )

= 0. (4.36)

Proof. For 1/2 < θ ≤ 1, we can apply Lemma 4.3.8(a). It follows that, if k is sufficiently small, it
holds that
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≤ Ck,

where C > 0 is independent of k and h. This concludes the proof of (4.36) for 1/2 < θ ≤ 1.
For 0 ≤ θ ≤ 1/2, using an inverse estimate, we obtain that
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We now apply Proposition 4.3.9, which ensures that the sequence {v−hk} is uniformly bounded in
L2(Ω) if k is sufficiently small. Since at least k = o(h), it follows that
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L2(ΩT )

(4.35)
. k2h−2 → 0.

This concludes (4.36).

Thanks to the boundedness established in Proposition 4.3.9, we are able to derive the existence
of convergent subsequences.
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Proposition 4.3.11. Suppose that the assumptions of part (a) of Theorem 4.3.2 are satisfied.
Then, there existsm ∈ L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)), which satisfies |m| = 1 andm ·∂tm =
0 a.e. in ΩT , such that, upon extraction of a subsequence, it holds that

mhk ⇀m in H1(ΩT ), (4.37a)
mhk →m in Hs(ΩT ) for all 0 < s < 1, (4.37b)

mhk →m in L2(0, T ;Hs(Ω)) for all 0 < s < 1, (4.37c)

mhk,m
±
hk ⇀m in L2(0, T ;H1(Ω)), (4.37d)

mhk,m
±
hk →m in L2(ΩT ), (4.37e)

mhk,m
±
hk →m pointwise a.e. in ΩT , (4.37f)

mhk,m
±
hk
∗
⇀m in L∞(0, T ;H1(Ω)), (4.37g)

v−hk ⇀ ∂tm in L2(ΩT ), (4.37h)

as k, h → 0. In particular, all the limits are attained simultaneously for at least one particular
subsequence.

Proof. For the sake of clarity, we divide the proof into three steps.

• Step 1: Proof of the convergence results (4.37a)–(4.37g).

The uniform boundedness (4.35) from Proposition 4.3.9 allows us to apply the Eberlein–Šmulian
theorem to extract weakly convergent subsequences (not relabeled) of {mhk},

{
m±hk

}
, with possible

different limits, and
{
v−hk
}
in H1(ΩT ), L2(0, T ;H1(Ω)), and L2(ΩT ), respectively.

Let m ∈H1(ΩT ) be such that mhk ⇀m in H1(ΩT ). The continuous inclusions

H1(ΩT ) ⊂ L2(0, T ;H1(Ω)) ⊂ L2(ΩT ) (4.38)

and the compact embedding H1(ΩT ) b L2(ΩT ) from the Rellich–Kondrashov theorem show that
mhk ⇀ m in L2(0, T ;H1(Ω)) and mhk → m in L2(ΩT ). Moreover, the strong convergence in
L2(ΩT ) guarantees that, upon extraction of a further subsequence, mhk → m pointwise a.e. in
ΩT .

Let 0 < s < 1. From the compact embedding H1(ΩT ) b L2(ΩT ) and the well-known in-
terpolation result [L2(ΩT ),H1(ΩT )]s = Hs(ΩT ) (see, e.g., [45, Theorem 6.4.5]), we obtain the
compact embedding H1(ΩT ) b Hs(ΩT ); see, e.g., [45, Theorem 3.8.1]. From the continuous
inclusions (4.38) and the interpolation result [L2(ΩT ), L2(0, T ;H1(Ω))]s = L2(0, T ;Hs(Ω)) (see,
e.g., [45, Theorem 5.1.2]), we deduce that the inclusion Hs(ΩT ) ⊂ L2(0, T ;Hs(Ω)) is continuous.
To sum up, it holds that

H1(ΩT ) bHs(ΩT ) ⊂ L2(0, T ;Hs(Ω)),

from which it follows thatmhk →m inHs(ΩT ) and in L2(0, T ;Hs(Ω)). This concludes the proof
of the convergence results (4.37a)–(4.37f) for the sequence {mhk}.

From (3.15), it follows that

∥∥mhk −m±hk
∥∥
L2(ΩT )

≤ k ‖∂tmhk‖L2(ΩT )

(4.35)
. k.

In particular, it follows that m±hk ⇀ m in L2(0, T ;H1(Ω)) as well as m±hk → m in L2(ΩT ) and
pointwise a.e. in ΩT .

Since the sequences {mhk} and
{
m±hk

}
are uniformly bounded in L∞(0, T ;H1(Ω)), from the

Banach–Alaoglu theorem, we can extract further weakly-star convergent subsequences (also not
relabeled). From the continuous inclusion L∞(0, T ;H1(Ω)) ⊂ L2(0, T ;H1(Ω)), it follows that
the limits coincide with the weak limits in L2(0, T ;H1(Ω)), i.e., it holds that mhk,m

±
hk
∗
⇀ m in

L∞(0, T ;H1(Ω)).
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• Step 2: Proof of (4.37h)

Let v ∈ L2(ΩT ) such that v−hk ⇀ v in L2(ΩT ). We show that v = ∂tm a.e. in ΩT . For the
standard tangent plane scheme, for all t ∈ (0, T ), let 0 ≤ i ≤ M − 1 such that t ∈ [ti, ti+1). From
Corollary 4.3.5, it follows that

∥∥∂tmhk(t)− v−hk(t)
∥∥
L1(Ω)

=
∥∥dtmi+1

h − vih
∥∥
L1(Ω)

(4.23b)
. k

∥∥vih∥∥2

L2(Ω)
= k

∥∥v−hk(t)
∥∥2

L2(Ω)
.

Integrating over time, we obtain that

∥∥∂tmhk − v−hk
∥∥
L1(ΩT )

. k
∥∥v−hk∥∥2

L2(ΩT )

(4.35)
. k.

Exploiting the sequential weak lower semicontinuity of the L1-norm, we deduce that

‖∂tm− v‖L1(ΩT ) ≤ lim inf
k,h→0

∥∥∂tmhk − v−hk
∥∥
L1(ΩT )

= 0,

which leads to the desired result. For the projection-free tangent plane scheme, the result directly
follows from (4.10a), which leads to the equality dtmi+1

h = vih for all 0 ≤ i ≤M − 1.

• Step 3: The limit function m satisfies |m| = 1 and m · ∂tm = 0 a.e. in ΩT .

Since m−hk → m in L2(ΩT ) by (4.37e) and v−hk ⇀ ∂tm in L2(ΩT ) by (4.37h), we obtain the
convergence m−hk · v

−
hk ⇀ m · ∂tm in L1(ΩT ). From the sequential weak lower semicontinuity of

the L1-norm and the fact that vih ∈ Kmi
h
for all 0 ≤ i ≤M − 1, it follows that

‖m · ∂tm‖L1(ΩT )

≤ lim inf
k,h→0

∥∥m−hk · v−hk∥∥L1(ΩT )
= lim inf

k,h→0

∫ T

0

∥∥m−hk(t) · v−hk(t)
∥∥
L1(Ω)

dt

= lim inf
k,h→0

M−1∑
i=0

∫ ti+1

ti

∥∥m−hk(t) · v−hk(t)
∥∥
L1(Ω)

dt = lim inf
k,h→0

(
k

M−1∑
i=0

∥∥mi
h · vih

∥∥
L1(Ω)

)
= 0.

This shows that m · ∂tm = 0 a.e. in ΩT .
It remains to show that |m| = 1 a.e. in ΩT . For the standard tangent plane scheme, we argue

as in the proof of Proposition 3.4.7. With the same argument, one can prove that∥∥∣∣m−hk(t)
∣∣2 − 1

∥∥
L2(Ω)

. h
∥∥∇m−hk(t)

∥∥
L2(Ω)

for all t ∈ (0, T ).

Integrating over time, it follows that

∥∥∣∣m−hk∣∣2 − 1
∥∥
L2(ΩT )

. h
∥∥∇m−hk∥∥L2(ΩT )

(4.35)
. h,

which yields the convergence
∣∣m−hk∣∣2 → 1 in L2(ΩT ). Since m−hk → m pointwise a.e. in ΩT

by (4.37f), we deduce that |m| = 1 a.e. in ΩT .
For the projection-free tangent plane scheme, we argue as in the proof of Proposition 3.4.8.

From the triangle inequality, it follows that∥∥|m|2 − 1
∥∥
L1(ΩT )

≤
∥∥|m|2 − ∣∣m+

hk

∣∣2∥∥
L1(ΩT )

+
∥∥∣∣m+

hk

∣∣2 − Ih[ ∣∣m+
hk

∣∣2 ]∥∥
L1(ΩT )

+
∥∥Ih[ ∣∣m+

hk

∣∣2 ]− 1
∥∥
L1(ΩT )

Since ∥∥|m|2 − ∣∣m+
hk

∣∣2∥∥
L1(ΩT )

≤
∥∥m+m+

hk

∥∥
L2(ΩT )

∥∥m−m+
hk

∥∥
L2(ΩT )

.
∥∥m−m+

hk

∥∥
L2(ΩT )
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and m+
hk → m in L2(ΩT ) by (4.37e), the first term on the right-hand side converges to 0. An

argument similar to the one used in the proof of Proposition 3.4.8 shows that∥∥∣∣m+
hk

∣∣2 − Ih[ ∣∣m+
hk

∣∣2 ]∥∥
L1(ΩT )

. h2
∥∥∇m+

hk

∥∥2

L2(ΩT )

(4.35)
. h2.

The second term on the right-hand side thus also converges to 0. It remains to show that∥∥Ih[ ∣∣m+
hk

∣∣2 ]− 1
∥∥
L1(ΩT )

→ 0. (4.39)

For all t ∈ (0, T ), let 0 ≤ i ≤M − 1 such that t ∈ [ti, ti+1). From the triangle inequality, it follows
that∥∥Ih[ ∣∣m+

hk(t)
∣∣2 ]− 1

∥∥
L1(Ω)

=
∥∥Ih[ ∣∣mi+1

h

∣∣2 ]− 1
∥∥
L1(Ω)

≤
∥∥Ih[ ∣∣mi+1

h

∣∣2 ]− Ih[ ∣∣m0
h

∣∣2 ]∥∥
L1(Ω)

+
∥∥Ih[ ∣∣m0

h

∣∣2 ]− ∣∣m0
h

∣∣2∥∥
L1(Ω)

+
∥∥∣∣m0

h

∣∣2 − 1
∥∥
L1(Ω)

.

Using the norm equivalence (4.22) and applying Lemma 4.3.6, it follows that∥∥Ih[ ∣∣mi+1
h

∣∣2 ]− Ih[ ∣∣m0
h

∣∣2 ]∥∥
L1(Ω)

' h3
∑
z∈Nh

∣∣∣∣∣mi+1
h (z)

∣∣2 − ∣∣m0
h(z)

∣∣2∣∣∣
(4.24)

= h3
∑
z∈Nh

k2
i∑

`=0

∣∣v`h(z)
∣∣2

' k2
i∑

`=0

∥∥v`h∥∥2

L2(Ω)
. k

∥∥v−hk∥∥2

L2(ΩT )

(4.35)
. k.

For all K ∈ Th, using the approximation properties of the nodal interpolant (see Proposition 3.4.3),
we deduce that∥∥Ih[ ∣∣m0

h

∣∣2 ]− ∣∣m0
h

∣∣2∥∥
L1(K)

≤ |K|1/2
∥∥Ih[ ∣∣m0

h

∣∣2 ]− ∣∣m0
h

∣∣2∥∥
L2(K)

. |K|1/2 h2
K

∣∣∣∣m0
h

∣∣2∣∣
H2(K)

≤ 2 |K|1/2 h2
K

∥∥∇m0
h

∥∥2

L4(K)
= 2 |K|h2

K

∣∣∇m0
h|K
∣∣2

= 2h2
K

∥∥∇m0
h

∥∥2

L2(K)
.

It follows that ∥∥Ih[ ∣∣m0
h

∣∣2 ]− ∣∣m0
h

∣∣2∥∥
L1(Ω)

. h2
∥∥∇m0

h

∥∥2

L2(Ω)
. h2.

Finally, since
∣∣m0

∣∣ = 1 a.e. in Ω, it holds that∥∥∣∣m0
h

∣∣2 − 1
∥∥
L1(Ω)

=
∥∥∣∣m0

h

∣∣2 − ∣∣m0
∣∣2∥∥

L1(Ω)
≤
∥∥m0

h +m0
∥∥
L2(Ω)

∥∥m0
h −m0

∥∥
L2(Ω)

.
∥∥m0

h −m0
∥∥
L2(Ω)

,

which, thanks to (4.15), yields the convergence
∣∣m0

h

∣∣2 → 1 in L1(Ω). This shows (4.39). We
conclude that, also for the limit of the output obtained from the projection-free tangent plane
scheme, it holds that |m| = 1 a.e. in ΩT .

We aim to discuss the convergence of the sequences in L∞(ΩT ). To that end, we define the
‘normalized iterate’ by

m̂i
h := Ih

[
mi
h/
∣∣mi

h

∣∣ ] for all 0 ≤ i ≤M, (4.40)

and consider the corresponding time reconstructions from (3.13), i.e., the functions defined, for all
0 ≤ i ≤M − 1 and t ∈ [ti, ti+1), by

m̂hk(t) :=
t− ti
k

m̂i+1
h +

ti+1 − t
k

m̂i
h, m̂−hk(t) := m̂i

h, and m̂+
hk(t) := m̂i+1

h . (4.41)
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Note that, in the case of the standard tangent plane scheme, which already includes the nodal
projection mapping in the time-stepping, we have the equality m̂i

h = mi
h for all 0 ≤ i ≤ M ,

from which it follows that m̂hk = mhk and m̂±hk = m±hk. In the following proposition, we discuss
the convergence properties, also in L∞(ΩT ), of the functions (4.41). This result will be useful in
Chapter 5.

Proposition 4.3.12. Suppose that the assumptions of part (a) of Theorem 4.3.2 are satisfied.
For the subsequences which satisfy the convergence properties (4.37) of Proposition 4.3.11, upon
extraction of a further subsequence, it holds that

m̂hk, m̂
±
hk ⇀m in L2(0, T ;H1(Ω)), (4.42a)

m̂hk, m̂
±
hk →m in L2(ΩT ), (4.42b)

m̂hk, m̂
±
hk →m pointwise a.e. in ΩT , (4.42c)

m̂hk, m̂
±
hk
∗
⇀m in L∞(0, T ;H1(Ω)), (4.42d)

m̂hk, m̂
±
hk
∗
⇀m in L∞(ΩT ) (4.42e)

as k, h → 0. In particular, there exists a subsequence for which the convergence properties (4.37)
and (4.42) are simultaneously valid.

Proof. For the standard tangent plane scheme, since m̂hk = mhk and m̂±hk = m±hk, the con-
vergence results (4.42a)–(4.42d) already follow from Proposition 4.3.11. To show (4.42e), since
‖m̂hk‖L∞(ΩT ) = 1, thanks to the Banach–Alaoglu theorem, we can extract a weakly-star con-
vergent subsequence (not relabeled) which converges towards some m̃ in L∞(ΩT ). In particular,
m̂hk ⇀ m̃ in Lp(ΩT ) for all 1 ≤ p < ∞. Since we already know that m̂hk → m in L2(ΩT )
by (4.42b), it follows that m̃ = m. The same result holds for the sequences

{
m̂±hk

}
, which leads

to (4.42e) and concludes the proof of (4.42).
For the projection-free tangent plane scheme, we start with the observation that, for all x ∈ R3

such that |x| ≥ 1, it holds that∣∣∣∣x− x

|x|

∣∣∣∣ = |x| − 1 =
|x|2 − 1

|x|+ 1
≤ 1

2

(
|x|2 − 1

)
. (4.43)

It follows that ∣∣m0
h(z)− m̂0

h(z)
∣∣ (4.43)
≤ 1

2

(∣∣m0
h(z)

∣∣2 − 1
)

as well as, for 1 ≤ j ≤M ,

∣∣mj
h(z)− m̂j

h(z)
∣∣(4.43)≤ 1

2

(∣∣mj
h(z)

∣∣2 − 1
)

=
1

2

(∣∣mj
h(z)

∣∣2 − ∣∣m0
h(z)

∣∣2)+
1

2

(∣∣m0
h(z)

∣∣2 − 1
)

(4.24)
≤ 1

2
k2

j−1∑
i=0

∣∣vih(z)
∣∣2 +

1

2

(∣∣m0
h(z)

∣∣2 − 1
)
,

where in the second inequality we have used Lemma 4.3.6. Exploiting the norm equivalence (4.22),
we deduce that

∥∥mj
h − m̂

j
h

∥∥
L1(Ω)

. k2

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
+
∥∥Ih[ ∣∣m0

h

∣∣2 ]− 1
∥∥
L1(Ω)

for all 0 ≤ j ≤M,

where the sum on the right-hand side vanishes if j = 0. Since∥∥Ih[ ∣∣m0
h

∣∣2 ]− 1
∥∥
L1(Ω)

. h2 +
∥∥m0

h −m0
∥∥
L2(Ω)
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(see the last part of Step 3 of the proof of Proposition 4.3.11 on page 64), it follows that∥∥mhk − m̂hk

∥∥
L1(ΩT )

+
∥∥m±hk − m̂±hk∥∥L1(ΩT )

. k
∥∥v−hk∥∥2

L2(ΩT )
+ h2 +

∥∥m0
h −m0

∥∥
L2(Ω)

.

Sincemhk,m
±
hk →m in L2(ΩT ) by (4.37e), and thus also in L1(ΩT ), we infer that m̂hk, m̂

±
hk →m

in L1(ΩT ).
Since ‖m̂hk‖L∞(ΩT ) =

∥∥m̂±hk∥∥L∞(ΩT )
= 1, we can extract weakly-star convergent subsequences

in L∞(ΩT ) and identify their limits withm. This yields (4.42e). The convergence results (4.42a)–
(4.42d) can be proved with the same argument based on the Eberlein–Šmulian theorem and the
Banach–Alaoglu theorem of Proposition 4.3.11. The uniform boundedness of the norms, necessary
to extract weakly(-star) convergent subsequences, follows from the identity

∥∥m̂i
h

∥∥
L∞(Ω)

= 1 and
the estimate ∥∥∇m̂i

h

∥∥
L2(Ω)

(3.23)
.

∥∥∇mi
h

∥∥
L2(Ω)

(4.30)
≤ C,

which hold for all 0 ≤ i ≤M .

Remark 4.3.13. In Assumption 4.3.1, for the projection-free tangent plane scheme, we assumed
the approximate initial condition m0

h to belong to Uh only to guarantee that the ‘normalized iter-
ate’ (4.40) is always well defined.

In the following lemma, we establish two convergence results that will be exploited in the proof
of Theorem 4.3.2.

Lemma 4.3.14. Suppose that the assumptions of Proposition 4.3.11 are satisfied. For the standard
tangent plane scheme, it holds that

m−hk × v
−
hk ⇀m× ∂tm in L2(ΩT ) (4.44)

as k, h→ 0. For the projection-free tangent plane scheme, it holds that

m±hk →m in L2(0, T ;Hs(Ω)) for all 0 < s < 1 (4.45)

as k, h→ 0.

Proof. We start with the proof of (4.44). Since m−hk →m in L2(ΩT ) by (4.37e) and v−hk ⇀ ∂tm
in L2(ΩT ) by (4.37h), it follows that

m−hk × v
−
hk ⇀m× ∂tm in L1(ΩT ).

For the standard tangent plane scheme, since
∥∥m−hk∥∥L∞(ΩT )

= 1, the sequence
{
m−hk × v

−
hk

}
is

uniformly bounded in L2(ΩT ) and we can extract a weakly convergent subsequence. From the
continuous inclusion L2(ΩT ) ⊂ L1(ΩT ), it follows that the limit in L2(ΩT ) coincides with the
limit in L1(ΩT ).

In order to prove (4.45) for the projection-free tangent plane scheme, we show that, for all
0 < s < 1, it holds that ∥∥mhk −m±hk

∥∥
L2(0,T ;Hs(Ω))

→ 0 as k, h→ 0.

Since mhk →m in L2(0, T ;Hs(Ω)) by (4.37c), this leads to the desired result. Let 0 < s < 1. It
holds that∥∥mhk −m±hk

∥∥2

L2(0,T ;Hs(Ω))
=

∫ T

0

∥∥mhk(t)−m±hk(t)
∥∥2

Hs(Ω)
dt

(3.14)
≤ k2

∫ T

0

‖∂tmhk(t)‖2Hs(Ω) dt

= k2
M−1∑
i=0

∫ ti+1

ti

‖∂tmhk(t)‖2Hs(Ω) dt = k3
M−1∑
i=0

∥∥dtmi+1
h

∥∥2

Hs(Ω)

(4.10a)
= k3

M−1∑
i=0

∥∥vih∥∥2

Hs(Ω)
. k3

M−1∑
i=0

∥∥vih∥∥2

H1(Ω)

= k2
∥∥v−hk∥∥2

L2(ΩT )
+ k2

∥∥∇v−hk∥∥2

L2(ΩT )
.
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The result follows from Proposition 4.3.11 and Lemma 4.3.10.

We are ready for the proof of Theorem 4.3.2.

Proof of Theorem 4.3.2. For the sake of clarity, we divide the proof into five steps.

• Step 1: Proof of part (a) of the theorem.

Proposition 4.3.11 yields the desired convergences towards a function m ∈ L∞(0, T ;H1(Ω)) ∩
H1(0, T ;L2(Ω)) such that |m| = 1 a.e. in ΩT . Sincemhk ⇀m in H1(ΩT ), we also have the weak
convergence of the traces, i.e., mhk(0) ⇀ m(0) in H1/2(Ω). By assumption (4.15), it holds that
mhk(0) = m0

h ⇀ m0 in H1(Ω). It follows that m(0) = m0 in the sense of traces, which verifies
Definition 4.1.1(ii) and thus concludes the proof.

• Step 2: Set up and auxiliary results for the verification of Definition 4.1.1(iii).

Let ϕ ∈ C∞(ΩT ) be an arbitrary test function. Let ζh : [0, T ]→ S1(Th)3 be defined by

ζh(t) = Ih[m−hk(t)×ϕ(t)] for all t ∈ [0, T ].

Let 0 ≤ i ≤M − 1. For all t ∈ [ti, ti+1) and z ∈ Nh, it holds that

ζh(t)(z) ·mi
h(z) = Ih[m−hk(t)×ϕ(t)](z) ·mi

h(z)

= Ih[mi
h ×ϕ(t)](z) ·mi

h(z)

= [mi
h(z)×ϕ(z, t)] ·mi

h(z) = 0.

This shows that, for all 0 ≤ i ≤M −1 and t ∈ [ti, ti+1), ζh(t) belongs to Kmi
h
. Therefore, for each

0 ≤ i ≤ M − 1, in (4.9) we can choose the test function φh = ζh(t) ∈ Kmi
h
for all t ∈ (ti, ti+1).

Then, integrating over time, we obtain the identity

α

∫ T

0

〈v−hk(t), ζh(t)〉 dt+

∫ T

0

〈m−hk(t)× v−hk(t), ζh(t)〉 dt+ λ2
exθk

∫ T

0

〈∇v−hk(t),∇ζh(t)〉 dt

= −λ2
ex

∫ T

0

〈∇m−hk(t),∇ζh(t)〉 dt+

∫ T

0

〈π−hk(t) + f−hk(t) + Π−hk(t), ζh(t)〉 dt.

(4.46)

Since m−hk →m in L2(ΩT ) by (4.37e), it is straightforward to show that

m−hk ×ϕ→m×ϕ in L2(ΩT ), (4.47a)

m−hk ×∇ϕ→m×∇ϕ in L2(ΩT ). (4.47b)

From the approximation properties of the nodal interpolant (Proposition 3.4.3) and Lemma 3.4.12,
we deduce that, for all t ∈ (0, T ), it holds that∥∥(Id− Ih)[m−hk(t)×ϕ(t)]

∥∥2

H1(Ω)
=

∑
K∈Th

∥∥(Id− Ih)[m−hk(t)×ϕ(t)]
∥∥2

H1(K)

. h2
∑
K∈Th

∣∣m−hk(t)×ϕ(t)
∣∣2
H2(K)

(3.28)
. h2

∥∥m−hk(t)
∥∥2

H1(Ω)
‖ϕ(t)‖2W 2,∞(Ω) .

In particular, it follows that∥∥(Id− Ih)[m−hk ×ϕ]
∥∥
L∞(0,T ;H1(Ω))

. h
∥∥m−hk∥∥L∞(0,T ;H1(Ω))

‖ϕ‖W 2,∞(ΩT ) . h. (4.48)

Finally, we recall the convergence results

π−hk ⇀ π(m) in L2(ΩT ),

f−hk ⇀ f in L2(ΩT ),

Π−hk ⇀ Π(m) in L2(ΩT ),

which hold thanks to assumptions (4.17)–(4.18).
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• Step 3: We show that

α

∫ T

0

〈v−hk(t),m−hk(t)×ϕ(t)〉 dt+

∫ T

0

〈m−hk(t)× v−hk(t),m−hk(t)×ϕ(t)〉 dt

+ λ2
ex

∫ T

0

〈∇m−hk(t),∇(m−hk(t)×ϕ(t))〉 dt+ λ2
exθk

∫ T

0

〈∇v−hk(t),∇(m−hk(t)×ϕ(t))〉 dt

−
∫ T

0

〈π−hk(t) + f−hk(t) + Π−hk(t),m−hk(t)×ϕ(t)〉 dt = O(h) as k, h→ 0.

(4.49)

First, comparing (4.46) to (4.49), we note that (4.49) is equivalent to the identity

α

∫ T

0

〈v−hk(t), (Ih − Id)[m−hk(t)×ϕ(t)]〉 dt+

∫ T

0

〈m−hk(t)× v−hk(t), (Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

+ λ2
ex

∫ T

0

〈∇m−hk(t),∇(Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

+ λ2
exθk

∫ T

0

〈∇v−hk(t),∇(Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

−
∫ T

0

〈π−hk(t) + f−hk(t) + Π−hk(t), (Ih − Id)[m−hk(t)×ϕ(t)]〉 dt = O(h) as k, h→ 0.

(4.50)

To show (4.50), we prove that each term which appears on the left-hand side is essentially bounded
by the mesh size h. For the first term and the third term, we deduce from Proposition 4.3.9 that∣∣∣∣∣

∫ T

0

〈v−hk(t), (Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

∣∣∣∣∣ ≤ ∥∥v−hk∥∥L2(ΩT )

∥∥(Ih − Id)[m−hk ×ϕ]
∥∥
L2(ΩT )

(4.35)
.
∥∥(Ih − Id)[m−hk ×ϕ]

∥∥
L2(ΩT )

(4.48)
. h

and ∣∣∣∣∣
∫ T

0

〈∇m−hk(t),∇(Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

∣∣∣∣∣
≤
∥∥∇m−hk∥∥L2(ΩT )

∥∥∇(Ih − Id)[m−hk ×ϕ]
∥∥
L2(ΩT )

(4.35)
.
∥∥∇(Ih − Id)[m−hk ×ϕ]

∥∥
L2(ΩT )

(4.48)
. h,

respectively. For the second term, we apply the generalized Hölder inequality and Proposition 4.3.9,
and we exploit the Sobolev embedding H1(Ω) ⊂ L4(Ω); see, e.g., [106, Theorem 7.26]. It follows
that ∣∣∣∣∣

∫ T

0

〈m−hk(t)× v−hk(t), (Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

∣∣∣∣∣
≤
∫ T

0

∥∥m−hk(t)
∥∥
L4(Ω)

∥∥v−hk(t)
∥∥
L2(Ω)

∥∥(Ih − Id)[m−hk(t)×ϕ(t)]
∥∥
L4(Ω)

dt

.
∫ T

0

∥∥m−hk(t)
∥∥
H1(Ω)

∥∥v−hk(t)
∥∥
L2(Ω)

∥∥(Ih − Id)[m−hk(t)×ϕ(t)]
∥∥
H1(Ω)

dt

≤
∥∥m−hk∥∥L∞(0,T ;H1(Ω))

∥∥v−hk∥∥L2(ΩT )

∥∥(Ih − Id)[m−hk ×ϕ]
∥∥
L2(0,T ;H1(Ω))

(4.35)
.
∥∥(Ih − Id)[m−hk ×ϕ]

∥∥
L2(0,T ;H1(Ω))

(4.48)
. h.
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For the fourth term, since k
∥∥∇v−hk∥∥L2(ΩT )

→ 0 by Lemma 4.3.10, we obtain

k

∣∣∣∣∣
∫ T

0

〈∇v−hk(t),∇(Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

∣∣∣∣∣
≤ k

∥∥∇v−hk∥∥L2(ΩT )

∥∥∇(Ih − Id)[m−hk ×ϕ]
∥∥
L2(ΩT )

(4.36)
.
∥∥∇(Ih − Id)[m−hk ×ϕ]

∥∥
L2(ΩT )

(4.48)
. h.

For the last term on the left-hand side of (4.50), we proceed in a similar way and obtain the
estimate∣∣∣∣∣

∫ T

0

〈π−hk(t) + f−hk(t) + Π−hk(t), (Ih − Id)[m−hk(t)×ϕ(t)]〉 dt

∣∣∣∣∣
≤
(∥∥π−hk∥∥L2(ΩT )

+
∥∥f−hk∥∥L2(ΩT )

+
∥∥Π−hk∥∥L2(ΩT )

)∥∥(Ih − Id)[m−hk ×ϕ]
∥∥
L2(ΩT )

.
∥∥(Ih − Id)[m−hk ×ϕ]

∥∥
L2(ΩT )

(4.48)
. h.

This concludes the proof of (4.50) and thus yields (4.49).

• Step 4: We consider each of the five terms on the left-hand side of (4.49) and show that, as
k, h → 0, the fourth integral vanishes, while the remaining four terms converge towards the
corresponding terms in the variational formulation (4.4).

We will repeatedly use the fact that, in a Hilbert space, the sequence of scalar products of a weakly
and a strongly convergent sequence converges towards the scalar product of the limits of both the
sequences.

For the first term on the left-hand side of (4.49), thanks to (4.47a) and the weak convergence
vhk ⇀ ∂tm in L2(ΩT ) by (4.37h), we obtain that∫ T

0

〈v−hk(t),m−hk(t)×ϕ(t)〉 dt→
∫ T

0

〈∂tm(t),m(t)×ϕ(t)〉 dt = −
∫ T

0

〈m(t)× ∂tm(t),ϕ(t)〉 dt.

To treat the second term on the left-hand side of (4.49), we first recall the so-called Lagrange
identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) for all a,b, c,d ∈ R3; (4.51)

see Proposition B.2.1(vii). On the one hand, in the case of the standard tangent plane scheme,
from Lemma 4.3.14, we obtain the weak convergence

m−hk × v
−
hk ⇀m× ∂tm in L2(ΩT ).

Using (4.47a), it follows that∫ T

0

〈m−hk(t)× v−hk(t),m−hk(t)×ϕ(t)〉 dt→
∫ T

0

〈m(t)× ∂tm(t),m(t)×ϕ(t)〉 dt

=

∫ T

0

〈∂tm(t),ϕ(t)〉 dt.

The latter equality follows from (4.51), together with |m| = 1 andm · ∂tm = 0, which hold a.e. in
ΩT . On the other hand, to show the convergence of the integral in the case of the projection-free
tangent plane scheme, we first recall the continuous embedding Hs(Ω) ⊂ L4(Ω), which holds for
all s ≥ 3/4, and note that, thanks to Lemma 4.3.14, we have the strong convergence

m−hk →m in L2(0, T ;Hs(Ω)) for all 0 < s < 1.

69



Choosing an arbitrary 3/4 ≤ s < 1, we obtain the estimate∥∥∣∣m−hk∣∣2 − 1
∥∥2

L2(ΩT )
=
∥∥∣∣m−hk∣∣2 − |m|2∥∥2

L2(ΩT )

=

∫ T

0

∥∥∣∣m−hk(t)
∣∣2 − |m(t)|2

∥∥2

L2(Ω)
dt

=

∫ T

0

∥∥[m−hk(t) +m(t)] · [m−hk(t)−m(t)]
∥∥2

L2(Ω)
dt

≤
∫ T

0

∥∥m−hk(t) +m(t)
∥∥2

L4(Ω)

∥∥m−hk(t)−m(t)
∥∥2

L4(Ω)
dt

≤
∫ T

0

∥∥m−hk(t) +m(t)
∥∥2

H1(Ω)

∥∥m−hk(t)−m(t)
∥∥2

Hs(Ω)
dt

≤
∥∥m−hk +m

∥∥2

L∞(0,T ;H1(Ω))

∥∥m−hk −m∥∥2

L2(0,T ;Hs(Ω))

.
∥∥m−hk −m∥∥2

L2(0,T ;Hs(Ω))
→ 0,

i.e., it holds that
∣∣m−hk∣∣2 → 1 in L2(ΩT ). Together with the weak convergence v−hk · ϕ⇀ ∂tm · ϕ

in L2(ΩT ), it follows that∫ T

0

〈m−hk(t)× v−hk(t),m−hk(t)×ϕ(t)〉 dt

(4.51)
=

∫ T

0

〈
∣∣m−hk(t)

∣∣2 ,v−hk(t) ·ϕ(t)〉 dt→
∫ T

0

〈∂tm(t),ϕ(t)〉 dt,

which is the desired result.
For the third term on the left-hand side of (4.49), from the weak convergence ∇m−hk ⇀ ∇m

in L2(ΩT ) and (4.47b), we deduce that∫ T

0

〈∇m−hk(t),∇[m−hk(t)×ϕ(t)]〉 dt =

∫ T

0

〈∇m−hk(t),m−hk(t)×∇ϕ(t)〉 dt

→
∫ T

0

〈∇m(t),m(t)×∇ϕ(t)〉 dt = −
∫ T

0

〈m(t)×∇m(t),∇ϕ(t)〉 dt.

Similarly, for the last term on the left-hand side of (4.49), thanks to (4.17)–(4.18) and (4.47a), it
follows that∫ T

0

〈π−hk(t),m−hk(t)×ϕ(t)〉 dt→
∫ T

0

〈π(m(t)),m(t)×ϕ(t)〉 dt = −
∫ T

0

〈m(t)×π(m(t)),ϕ(t)〉 dt,

∫ T

0

〈f−hk(t),m−hk(t)×ϕ(t)〉 dt→
∫ T

0

〈f(t),m(t)×ϕ(t)〉 dt = −
∫ T

0

〈m(t)× f(t),ϕ(t)〉 dt,

and∫ T

0

〈Π−hk(t),m−hk(t)×ϕ(t)〉 dt→
∫ T

0

〈Π(m(t)),m(t)×ϕ(t)〉 dt = −
∫ T

0

〈m(t)×Π(m(t)),ϕ(t)〉 dt.

We conclude this step of the proof by considering the fourth term on the left-hand side of (4.49).
It holds that

k

∣∣∣∣∣
∫ T

0

〈∇v−hk(t),∇(m−hk(t)×ϕ(t))〉 dt

∣∣∣∣∣ ≤ k ∥∥∇v−hk∥∥L2(ΩT )

∥∥∇m−hk∥∥L2(ΩT )
‖ϕ‖W 1,∞(ΩT )

. k
∥∥∇v−hk∥∥L2(ΩT )

.
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From the convergence k
∥∥∇v−hk∥∥L2(ΩT )

→ 0 ensured by Lemma 4.3.10, it follows that

k

∫ T

0

〈∇v−hk(t),∇(m−hk(t)×ϕ(t))〉 dt→ 0.

This shows that m satisfies the variational formulation (4.4) for all ϕ ∈ C∞(ΩT ). By density, the
result also holds for all ϕ ∈H1(ΩT ), which verifies Definition 4.1.1(iii) and concludes the proof of
part (b) of the theorem.

• Step 5: Proof of part (c) of the theorem.

We aim to verify Definition 4.1.1(iv), i.e., to show that m satisfies the energy inequality (4.5).
For all 0 ≤ i ≤M , we use the notation f i := f(ti). We recall that, in the case of the standard

tangent plane scheme, by assumption (4.19) it holds that f i ∈ L4(Ω) for all 0 ≤ i ≤M . Moreover,
we consider the continuous piecewise linear time-approximation fk and the two piecewise constant
time-approximations f−k and f+

k from (3.13), defined by

fk(t) :=
t− ti
k

f i+1 +
ti+1 − t

k
f i, f−k (t) := f i, and f+

k (t) := f i+1

for all t ∈ [ti, ti+1) and 0 ≤ i ≤ M − 1. Note that, since f ∈ C1([0, T ],L2(Ω)), it holds that
fk,f

±
k → f in L2(ΩT ) and ∂tfk → ∂tf in L2(ΩT ) as k → 0.

Given an arbitrary time τ ∈ [0, T ), let 1 ≤ j ≤ M such that τ ∈ [tj−1, tj). Let 0 ≤ i ≤ j − 1.
From Lemma 4.3.7, we deduce that

E(mi+1
h ,f i+1)− E(mi

h,f
i)

=
λ2

ex

2
kdt

∥∥∇mi+1
h

∥∥2

L2(Ω)
− 1

2
〈π(mi+1

h ),mi+1
h 〉 +

1

2
〈π(mi

h),mi
h〉 − 〈f i+1,mi+1

h 〉 + 〈f i,mi
h〉

≤ −[α− c(k, h)]k
∥∥vih∥∥2

L2(Ω)
− λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)

−〈f i+1,mi+1
h 〉 + 〈f i,mi

h〉 + k〈f ih,vih〉︸ ︷︷ ︸
Tf :=

−1

2
〈π(mi+1

h ),mi+1
h 〉 +

1

2
〈π(mi

h),mi
h〉 + k〈πh(mi

h),vih〉︸ ︷︷ ︸
Tπ :=

+k〈Πh(mi
h),vih〉.

On the one hand, for the standard tangent plane scheme, it holds that c(k, h) = 0 if the triangu-
lation Th satisfies the angle condition (3.16) and c(k, h) = Ckh−2 otherwise, with C > 0 being a
constant which depends only on γ and λex; see (4.25). On the other hand, for the projection-free
tangent plane scheme, it holds that c(k, h) = 0 and the inequality actually turns out to be an
equality; see (4.26). In Tπ and Tf , we have collected the terms related to π and f , respectively.

We now perform some algebraic manipulations. We can rewrite Tπ as

Tπ = −1

2
〈π(mi+1

h ),mi+1
h 〉 +

1

2
〈π(mi

h),mi
h〉 + k〈πh(mi

h),vih〉

= −k〈π(mi
h)− πh(mi

h),vih〉 + k〈π(mi
h),vih〉 −

1

2
〈π(mi+1

h ),mi+1
h 〉 +

1

2
〈π(mi

h),mi
h〉

= −k〈π(mi
h)− πh(mi

h),vih〉 −
k

2
〈π(mi+1

h )− π(mi
h),vih〉 +

k

2
〈π(mi+1

h ) + π(mi
h),vih〉

− 1

2
〈π(mi+1

h ),mi+1
h 〉 +

1

2
〈π(mi

h),mi
h〉,

where in the second equality we have just added and subtracted the quantity k〈π(mi
h),vih〉, while

in the third equality we have just added and subtracted the quantity k
2 〈π(mi+1

h ),vih〉. Since π is
self-adjoint, it holds that

〈π(mi+1
h ),mi+1

h 〉 − 〈π(mi
h),mi

h〉 = 〈π(mi+1
h ) + π(mi

h),mi+1
h −mi

h〉.
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Finally, using the linearity of π, it follows that

Tπ = −k〈π(mi
h)−πh(mi

h),vih〉 −
k

2
〈π(mi+1

h −mi
h),vih〉 −

1

2
〈π(mi+1

h +mi
h),mi+1

h −mi
h − kvih〉.

For Tf , we proceed similarly. Rearranging the terms, we can rewrite Tf as

Tf = −〈f i+1,mi+1
h 〉 + 〈f i,mi

h〉 + k〈f ih,vih〉
= −〈f i+1 − f i,mi+1

h 〉 − 〈f
i,mi+1

h −mi
h〉 + k〈f ih,vih〉

= −k〈dtf i+1,mi+1
h 〉 − 〈f

i,mi+1
h −mi

h − kvih〉 − k〈f i − f ih,vih〉,

where in the second equality we have just added and subtracted the quantity 〈f i,mi+1
h 〉, while in

the third equality we have just added and subtracted the quantity k〈f i,vih〉.
Altogether, after these algebraic manipulations, we have thus obtained the inequality

E(mi+1
h ,f i+1)− E(mi

h,f
i) + [α− c(k, h)]k

∥∥vih∥∥2

L2(Ω)
+ k〈dtf i+1,mi+1

h 〉 − k〈Πh(mi
h),vih〉

+ λ2
ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)
+ k〈π(mi

h)− πh(mi
h),vih〉 + k〈f i − f ih,vih〉

≤ −k
2
〈π(mi+1

h −mi
h),vih〉 −

1

2
〈π(mi+1

h +mi
h),mi+1

h −mi
h − kvih〉

− 〈f i,mi+1
h −mi

h − kvih〉.
(4.52)

We now analyze the three terms which constitute the right-hand side. We start with the case
of the standard tangent plane scheme. First of all, using the well-known interpolation result
L8/3(Ω) = [L2(Ω),L4(Ω)]1/2 (see, e.g., [45, Theorem 5.1.1]) together with the Sobolev embedding
H1(Ω) ⊂ L4(Ω), we obtain the inequality∥∥vih∥∥2

L8/3(Ω)
≤
∥∥vih∥∥L2(Ω)

∥∥vih∥∥L4(Ω)
.
∥∥vih∥∥L2(Ω)

∥∥vih∥∥H1(Ω)
. (4.53)

For the first term on the right-hand side of (4.52), we apply the Cauchy–Schwarz inequality and
exploit the boundedness of π in L2(Ω) as well as Corollary 4.3.5. We obtain that

k

2

∣∣〈π(mi+1
h −mi

h),vih〉
∣∣ ≤ k

2

∥∥π(mi+1
h −mi

h)
∥∥
L2(Ω)

∥∥vih∥∥L2(Ω)

. k
∥∥mi+1

h −mi
h

∥∥
L2(Ω)

∥∥vih∥∥L2(Ω)

(4.23a)
. k2

∥∥vih∥∥2

L2(Ω)
.

Using the Hölder inequality, the boundedness of π in L4(Ω) by assumption (4.19), the identity∥∥mi
h

∥∥
L∞(Ω)

= 1 for all 0 ≤ i ≤M , and Corollary 4.3.5, we can estimate the second term by

1

2

∣∣〈π(mi+1
h +mi

h),mi+1
h −mi

h − kvih〉
∣∣ ≤ 1

2

∥∥π(mi+1
h +mi

h)
∥∥
L4(Ω)

∥∥mi+1
h −mi

h − kvih
∥∥
L4/3(Ω)

.
∥∥mi+1

h +mi
h

∥∥
L4(Ω)

∥∥mi+1
h −mi

h − kvih
∥∥
L4/3(Ω)

(4.23c)
. k2

∥∥vih∥∥2

L8/3(Ω)

(4.53)
. k2

∥∥vih∥∥L2(Ω)

∥∥vih∥∥H1(Ω)
.

As for the third term, using the Hölder inequality, the uniform boundedness of
∥∥f i∥∥

L4(Ω)
by
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assumption (4.19), and Corollary 4.3.5, we obtain the estimate∣∣〈f i,mi+1
h −mi

h − kvih〉
∣∣ ≤ ∥∥f i∥∥

L4(Ω)

∥∥mi+1
h −mi

h − kvih
∥∥
L4/3(Ω)

(4.23c)
. k2

∥∥vih∥∥2

L8/3(Ω)

(4.53)
. k2

∥∥vih∥∥L2(Ω)

∥∥vih∥∥H1(Ω)
.

In the case of the projection-free tangent plane scheme, we estimate the first term on the right-hand
side of (4.52) in the same way and observe that, thanks to (4.10a), the second term and the third
term vanish. In both cases, we thus obtain the following inequality

E(mi+1
h ,f i+1)− E(mi

h,f
i) + [α− c(k, h)]k

∥∥vih∥∥2

L2(Ω)
+ k〈dtf i+1,mi+1

h 〉 − k〈Πh(mi
h),vih〉

+ λ2
ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)
+ k〈π(mi

h)− πh(mi
h),vih〉 + k〈f i − f ih,vih〉

. k2
(∥∥vih∥∥2

L2(Ω)
+
∥∥vih∥∥L2(Ω)

∥∥∇vih∥∥L2(Ω)

)
.

If 1/2 ≤ θ ≤ 1, the sixth term on the left-hand side is nonnegative. If 0 ≤ θ < 1/2, we can argue
as in the proof of Lemma 4.3.8 and use an inverse estimate to absorb it into the third term. In
both cases, summing over 0 ≤ i ≤ j − 1, we obtain that

E(mj
h,f

j)− E(m0
h,f

0) + [α− C(k, h, θ)]k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
+ k

j−1∑
i=0

〈dtf i+1,mi+1
h 〉

− k
j−1∑
i=0

〈Πh(mi
h),vih〉 + k

j−1∑
i=0

〈π(mi
h)− πh(mi

h),vih〉 + k

j−1∑
i=0

〈f i − f ih,vih〉

. k2

j−1∑
i=0

(∥∥vih∥∥2

L2(Ω)
+
∥∥vih∥∥L2(Ω)

∥∥∇vih∥∥L2(Ω)

)
,

which can be equivalently rewritten as

E(m+
hk(τ),f+

k (τ))− E(m−hk(0),f(0)) + [α− C(k, h, θ)]

∫ tj

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt

+

∫ tj

0

〈∂tfk(t),m+
hk(t)〉 dt−

∫ tj

0

〈Π−hk(t),v−hk(t)〉 dt+

∫ tj

0

〈π(m−hk(t))− π−hk(t),v−hk(t)〉 dt

+

∫ tj

0

〈f−k (t)− f−hk(t),v−hk(t)〉 dt

. k
(∥∥v−hk∥∥2

L2(Ω×(0,tj))
+
∥∥v−hk∥∥L2(Ω×(0,tj))

∥∥∇v−hk∥∥L2(Ω×(0,tj))

)
.

With our assumptions, for all 0 ≤ θ ≤ 1, it holds that C(k, h, θ)→ 0 as k, h→ 0. In particular, it
follows that

E(m+
hk(τ),f+

k (τ))− E(m−hk(0),f(0)) + [α− C(k, h, θ)]

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt

+

∫ τ

0

〈∂tfk(t),m+
hk(t)〉 dt−

∫ τ

0

〈Π−hk(t),v−hk(t)〉 dt

+

∫ tj

τ

〈∂tfk(t),m+
hk(t)〉 dt−

∫ tj

τ

〈Π−hk(t),v−hk(t)〉 dt

+

∫ tj

0

〈π(m−hk(t))− π−hk(t),v−hk(t)〉 dt+

∫ tj

0

〈f−k (t)− f−hk(t),v−hk(t)〉 dt

. k
(∥∥v−hk∥∥2

L2(Ω×(0,tj))
+
∥∥v−hk∥∥L2(Ω×(0,tj))

∥∥∇v−hk∥∥L2(Ω×(0,tj))

)
.

(4.54)
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We now consider the limit as k, h→ 0 for each term of (4.54). Sincem+
hk ⇀m in L2(0, T ;H1(Ω))

by (4.37d) and f+
k → f in L2(ΩT ), it holds that

E(m(τ),f(τ)) ≤ lim inf
k,h→0

E(m+
hk(τ),f+

k (τ)).

Since m0
h →m0 in H1(Ω) by assumption (4.15) (with strong convergence), it holds that

lim inf
k,h→0

E(m−hk(0),f(0)) = lim
k,h→0

E(m−hk(0),f(0)) = E(m0,f(0)).

From the convergence v−hk ⇀ ∂tm in L2(ΩT ) by (4.37h), it follows that∫ τ

0

‖∂tm(t)‖2L2(Ω) dt ≤ lim inf
k,h→0

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt.

Since ∂tfk → ∂tf in L2(ΩT ) and m+
hk →m in L2(ΩT ) by (4.37e), it holds that∫ τ

0

〈∂tfk(t),m+
hk(t)〉 dt→

∫ τ

0

〈∂tf(t),m(t)〉 dt.

Similarly, since Π−hk → Π(m) in L2(ΩT ) by (4.18b) (with strong convergence) and v−hk ⇀ ∂tm in
L2(ΩT ) by (4.37h), it holds that∫ τ

0

〈Π−hk(t),v−hk(t)〉 dt→
∫ τ

0

〈Π(m(t)), ∂tm(t)〉 dt.

By no-concentration of Lebesgue functions (note that τ ≤ tj ≤ τ + k), the sixth and the seventh
terms on the left-hand side of (4.54) vanish, i.e., it holds that∫ tj

τ

〈∂tfk(t),m+
hk(t)〉 dt→ 0

and ∫ tj

τ

〈Π−hk(t),v−hk(t)〉 dt→ 0.

From the fact that π : L2(Ω) → L2(Ω) is a linear and bounded operator, together with the
convergence m−hk → m in L2(ΩT ) given by (4.37e), we obtain the strong convergence in L2(ΩT )
of the function π(mhk), defined by t 7→ π(mhk(t)) for all t ∈ (0, T ), towards π(m) ∈ L2(ΩT ).
Since π−hk → π(m) in L2(ΩT ) by assumption (4.18a) (with strong convergence), it follows that∫ tj

0

〈π(m−hk(t))− π−hk(t),v−hk(t)〉 dt→ 0.

Similarly, since f−k ,f
−
hk → f in L2(ΩT ), we obtain∫ tj

0

〈f−k (t)− f−hk(t),v−hk(t)〉 dt→ 0.

From the uniform boundedness of the sequence
{
v−hk
}

in L2(ΩT ) by Proposition 4.3.9 and the
convergence of Lemma 4.3.10, it follows that the right-hand side of (4.54) vanishes as k, h → 0.
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Hence, for every measurable set I ⊆ [0, T ], it holds that∫
I

[
E(m(τ),f(τ)) +

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt

]
dτ

≤ lim inf
k,h→0

∫
I

[
E(m+

hk(τ),f+
k (τ)) +

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt

]
dτ

(4.54)
≤ lim inf

k,h→0

∫
I

[
E(m−hk(0),f(0)) + C(k, h, θ)

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt

−
∫ τ

0

〈∂tfk(t),m+
hk(t)〉 dt+

∫ τ

0

〈Π−hk(t),v−hk(t)〉 dt−
∫ tj

τ

〈∂tfk(t),m+
hk(t)〉 dt

+

∫ tj

τ

〈Π−hk(t),v−hk(t)〉 dt−
∫ tj

0

〈π(m−hk(t))− π−hk(t),v−hk(t)〉 dt

−
∫ tj

0

〈f−k (t)− f−hk(t),v−hk(t)〉 dt

+ Ck
(∥∥v−hk∥∥2

L2(Ω×(0,tj))
+
∥∥v−hk∥∥L2(Ω×(0,tj))

∥∥∇v−hk∥∥L2(Ω×(0,tj))

)]
dτ

=

∫
I

[
E(m0,f(0))−

∫ τ

0

〈∂tf(t),m(t)〉 dt+

∫ τ

0

〈Π(m(t)), ∂tm(t)〉 dt

]
dτ.

Since I ⊆ [0, T ] was an arbitrary measurable subset, we deduce that the integrand satisfies the
inequality a.e. in (0, T ), i.e., it holds that

E(m(τ),f(τ)) + α

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt+

∫ τ

0

〈∂tf(t),m(t)〉 dt

≤ E(m0,f(0)) +

∫ τ

0

〈Π(m(t)), ∂tm(t)〉 dt

for a.e. τ ∈ (0, T ), which is (4.5). This verifies the validity of the energy inequality of Defini-
tion 4.1.1(iv) and thus concludes the proof.

Remark 4.3.15. Retracing the proof of Theorem 4.3.2, it comes to light that many assumptions
can be weakened if one gives up the proof of the energy inequality (4.5). In Definition 4.1.1(iv), if
one settles for the inequality

‖∇m(τ)‖2L2(Ω) +

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt ≤ C for a.e. τ ∈ (0, T ),

where C > 0 is a constant which depends only on the problem data, the assumptions of part (b) of
Theorem 4.3.2 are sufficient; see, e.g., [56]. In particular, the strong convergence in (4.15), (4.17),
and (4.18) is not needed. Moreover, the linearity and self-adjointness of π as well as assuming
that f ∈ C1([0, T ],L2(Ω)) can be avoided.
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Chapter 5

Application to metal spintronics

In this chapter, we discuss the numerical approximation of the spintronic models introduced in
Section 2.3. The discretization of the LLG equation is based on the tangent plane scheme analyzed
in Chapter 4.

5.1 Spin diffusion model
In this section, we introduce an algorithm for the discretization of the spin diffusion model intro-
duced in Section 2.3.2 and rescaled in nondimensional form in (3.10). For ease of presentation,
we assume that the micromagnetic energy comprises only the exchange contribution. Lower-order
terms can be included into the analysis using the approach discussed in Chapter 4.

5.1.1 Setting
Let Ω and Ω′ be two bounded Lipschitz domains in R3 with polyhedral boundaries Γ := ∂Ω and
Γ′ := ∂Ω′, such that Ω ⊆ Ω′. Given T > 0, we denote the space-time cylinders by ΩT := Ω× (0, T )
and Ω′T := Ω′× (0, T ). We define ΓT := Γ× (0, T ) and Γ′T := Γ′× (0, T ). We consider the coupling
of the LLG equation for the normalized magnetization m with a diffusion equation for the spin
accumulation s, i.e.,

∂tm = −m× heff + αm× ∂tm− τ−1
J m× s in ΩT , (5.1a)

∂ts = z∇ · [D0(I3×3 − ββ′m⊗m)∇s]− τ−1
sf s− τ

−1
J s×m− βz∇ · (m⊗ j) in Ω′T . (5.1b)

In (5.1a), the effective field is given by heff = λ2
ex∆m, while α, λex, and τJ are positive constants.

In (5.1b) the quantities z > 0, τsf > 0, and 0 < β, β′ < 1 are constant, the function1 j belongs
to C0([0, T ];H1(Ω′)) ∩L∞(Ω′), while D0 ∈ L∞(Ω′) is positive and bounded away from zero, i.e.,
there exists a constant D∗ > 0 such that D0 ≥ D∗ a.e. in Ω′. The system is supplemented with
homogeneous Neumann boundary conditions

∂nm = 0 on ΓT and ∂ns = 0 on Γ′T (5.1c)

and initial conditions
m = m0 in Ω and s = s0 in Ω′, (5.1d)

where m0 ∈ H1(Ω) satisfies |m| = 1 a.e. in Ω, and s0 ∈ H1(Ω′). The energy of the system is
given by the functional

E(m) =
λ2

ex

2
‖∇m‖2L2(Ω) .

1Here, to simplify the notation, we denote the rescaled electric current density by j. In (3.10) it was denoted by
je.
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The system is a nonlinearly coupled system of the nonlinear LLG equation (5.1a) and a linear
diffusion equation (5.1b). As it happens for the Maxwell equations (both the full system and the
eddy current approximation) and the conservation of momentum (magnetostriction), the quantity
governed by the coupled equation (in this case, the spin accumulation) affects the LLG equation as
an additional source of torque added to the effective field. However, differently from those cases,
here the magnetization affects not only the right-hand side of the coupled equation, but also the
main part of the involved differential operator.

Form ∈ L∞(Ω) satisfying |m| = 1 a.e. in Ω, we consider the bilinear form a(m; ·, ·) : H1(Ω′)×
H1(Ω′)→ R defined, for all ζ1, ζ2 ∈H1(Ω′), by

a(m; ζ1, ζ2) = z〈D0∇ζ1,∇ζ2〉Ω′−zββ′〈D0(m⊗m)∇ζ1,∇ζ2〉Ω′+τ−1
sf 〈ζ1, ζ2〉Ω′+τ−1

J 〈ζ1×m, ζ2〉Ω.
(5.2)

In the following lemma we show that the bilinear form (5.2) is elliptic. This highlights the parabolic
nature of (5.1b).

Lemma 5.1.1. For any m ∈ L∞(Ω) satisfying |m| = 1 a.e. in Ω, the bilinear form a(m; ·, ·) is
continuous and elliptic.

Proof. For all ζ1, ζ2 ∈H1(Ω′), it holds that

a(m; ζ1, ζ2) ≤ z(1+ββ′) ‖D0‖L∞(Ω′) ‖∇ζ1‖L2(Ω′) ‖∇ζ2‖L2(Ω′)+(τ−1
sf +τ−1

J ) ‖ζ1‖L2(Ω′) ‖ζ2‖L2(Ω′) .

This shows that the bilinear form is continuous. As for the positive definiteness, it holds that

a(m; ζ, ζ) = z〈D0∇ζ,∇ζ〉Ω′ − zββ′〈D0(m⊗m)∇ζ,∇ζ〉Ω′ + τ−1
sf ‖ζ‖

2
L2(Ω′)

≥ z(1− ββ′)D∗ ‖∇ζ‖2L2(Ω′) + τ−1
sf ‖ζ‖

2
L2(Ω′)

for all ζ ∈H1(Ω′).

Let us denote by H̃−1(Ω′) = H1(Ω′)∗ the dual space of H1(Ω′). Let 〈·, ·〉H−1↔H1 be the
corresponding duality pairing, to be understood in the sense of the Gelfand triple H1(Ω′) ⊂
L2(Ω′) ⊂ H̃−1(Ω′). In the following definition, we introduce the notion of a weak solution of (5.1),
which is similar to those considered in [103, 6].

Definition 5.1.2. The pair (m, s), withm : ΩT → R3 and s : Ω′T → R3, is called a weak solution
of (5.1) if the following properties (i)–(v) are satisfied:

(i) m belongs to L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) and satisfies |m| = 1 a.e. in ΩT , s belongs
to L2(0, T ;H1(Ω′),L2(Ω′)) ∩ L∞(0, T ;L2(Ω′)),

(ii) m(0) = m0 in the sense of traces and s(0) = s0 in L2(Ω′),

(iii) For all ϕ ∈H1(ΩT ), it holds that∫ T

0

〈∂tm(t),ϕ(t)〉Ω dt− α
∫ T

0

〈m(t)× ∂tm(t),ϕ(t)〉Ω dt

= λ2
ex

∫ T

0

〈m(t)×∇m(t),∇ϕ(t)〉Ω dt− τ−1
J

∫ T

0

〈m(t)× s(t),ϕ(t)〉Ω dt,

(5.3)

(iv) For a.e. t ∈ (0, T ) and all ζ ∈H1(Ω′), it holds that

〈∂ts(t), ζ〉H−1↔H1 +a(m(t); s(t), ζ) = zβ〈m(t)⊗j(t),∇ζ〉Ω−zβ〈j(t)·n,m(t)·ζ〉Γ′∩Γ, (5.4)

(v) (m, s) satisfies the energy inequality

E(m(τ)) + α

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt ≤ E(m0) + τ−1
J

∫ τ

0

〈s(t), ∂tm(t)〉Ω dt (5.5)

for a.e. τ ∈ (0, T ).
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Definition 5.1.2 extends Definition 4.1.1 to the present situation. The variational formula-
tion (5.4) of (5.1b) considered in part (iv) follows the classical approach for linear second-order
parabolic problems; see, e.g., [88, Section 7.1.1]. In particular, since s ∈ C0([0, T ];L2(Ω′)) by [88,
Section 5.9.2, Theorem 3], the equality s(0) = s0 in L2(Ω′) of part (ii) is meaningful. The energy
inequality (5.5) is a weak counterpart of the energy law (3.12).

Remark 5.1.3. In [103], the boundary integral of (5.4), which arises from integrating by parts
the last term on the right-hand side of (5.1b) and using the homogeneous Neumann boundary
conditions for the spin accumulation, was wrongly omitted. This mistake was noticed and corrected
in [6] so that the overall existence result of [103] remains valid; see [104].

5.1.2 Decoupled algorithm
For the time discretization, we consider a uniform partition of the time interval (0, T ) into M > 0
subintervals, i.e., ti = ik for all 0 ≤ i ≤ M , where k = T/M denotes the time-step size; see
Section 3.3. For the spatial discretization, we consider a γ-quasi-uniform family {T ′h}h>0 of regular
tetrahedral triangulations of Ω′; see Section 3.4. We assume that Ω is resolved, i.e., the restriction
Th := T ′h|Ω provides a regular triangulation of Ω. We recall the definitions of the sets Mh and Uh,
i.e.,

Mh =
{
φh ∈ S1(Th)3 : |φh(z)| = 1 for all z ∈ Nh

}
and

Uh =
{
φh ∈ S1(Th)3 : |φh(z)| ≥ 1 for all z ∈ Nh

}
as well as the one of the discrete tangent space, i.e.,

Kφh
:=
{
ψh ∈ S1(Th)3 : φh(z) ·ψh(z) = 0 for all z ∈ Nh

}
for all φh ∈ S1(Th)3.

For all 0 ≤ i ≤ M , we consider the approximations mi
h ≈ m(ti), vih ≈ ∂tm(ti), sih ≈ s(ti),

and abbreviate ji = j(ti). For the discretization of (5.1), we propose the following decoupled
algorithm.

Algorithm 5.1.4. Input: Either m0
h ∈Mh (TPS) or m0

h ∈ Uh (PFTPS), s0
h ∈ S1(T ′h)3.

Loop: For all 0 ≤ i ≤M − 1, iterate:

(i) Compute vih ∈ Kmi
h
such that

α〈vih,φh〉Ω + 〈mi
h × vih,φh〉Ω + λ2

exθk〈∇vih,∇φh〉Ω = −λ2
ex〈∇mi

h,∇φh〉Ω + τ−1
J 〈s

i
h,φh〉Ω

(5.6)
for all φh ∈ Kmi

h
.

(ii) Either define mi+1
h ∈ Uh by

mi+1
h = mi

h + kvih (PFTPS) (5.7a)

or define mi+1
h ∈Mh by

mi+1
h = Ih

[
mi
h + kvih∣∣mi
h + kvih

∣∣
]

(TPS). (5.7b)

(iii) Compute si+1
h ∈ S1(T ′h)3 such that

〈dtsi+1
h , ζh〉Ω′+a(m̂i+1

h ; si+1
h , ζh) = zβ〈m̂i+1

h ⊗j
i+1,∇ζh〉Ω−zβ〈ji+1·n, m̂i+1

h ·ζh〉Γ′∩Γ (5.8)

for all ζh ∈ S1(T ′h)3.

Output: Sequence of discrete functions
{

(vih,m
i+1
h , si+1

h )
}

0≤i≤M−1
.
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Steps (i)–(ii) contain the tangent plane scheme for the discretization of the extended LLG equa-
tion (5.1a). The additional torque term given by the spin accumulation is treated explicitly, i.e., it
only contributes to the right-hand side of (5.6). Step (iii), in which we discretize (5.1b), consists
of a Galerkin approximation of the variational formulation (5.4). For the time discretization, we
employ the implicit Euler method. To approximate the magnetization m, which enters both the
bilinear form and the right-hand side of (5.4), we exploit the approximate magnetization mi+1

h

available from step (ii). More precisely, we use the ‘normalized iterate’ introduced in (4.40), namely

m̂i
h := Ih

[
mi
h/
∣∣mi

h

∣∣ ] for all 0 ≤ i ≤M.

Clearly, for the standard tangent plane scheme, it holds that m̂i
h = mi

h for all 0 ≤ i ≤ M .
Although (5.1) is a nonlinearly coupled system of the nonlinear LLG equation and a linear diffusion
equation, Algorithm 5.1.4 only requires the solution of two linear systems per time-step.

The following proposition establishes the well-posedness of Algorithm 5.1.4.

Proposition 5.1.5. For all 0 ≤ i ≤ M − 1, there exist unique solutions vih ∈ Kmi
h
of (5.6) and

si+1
h ∈ S1(T ′h)3 of (5.8). The time-stepping (5.7) is well defined.

Proof. The well-posedness of the tangent plane scheme of steps (i)–(ii) follows from Proposi-
tion 4.2.2, as the presence of the spin accumulation contributes only to the right-hand side of (5.6)
and, in particular, does not affect the ellipticity of the bilinear form. Since m̂i+1

h ∈ Mh for all
0 ≤ i ≤ M − 1, from Lemma 5.1.1 we deduce that a(m̂i+1

h ; ·, ·) is elliptic. It follows that the
bilinear form of the discrete variational problem (5.8), i.e., a(m̂i+1

h ; ·, ·) + 〈·, ·〉Ω′ , is also elliptic.
Unique solvability thus follows from linearity and finite space dimension.

5.1.3 Convergence result
The output of Algorithm 5.1.4 is used to define the piecewise linear and piecewise constant time
reconstructions (3.13). In particular, we consider the functions defined, for all 0 ≤ i ≤M − 1 and
t ∈ [ti, ti+1), by

mhk(t) :=
t− ti
k

mi+1
h +

ti+1 − t
k

mi
h, m−hk(t) := mi

h, m+
hk(t) := mi+1

h , v−hk(t) := vih,

(5.9a)

m̂hk(t) :=
t− ti
k

m̂i+1
h +

ti+1 − t
k

m̂i
h, m̂−hk(t) := m̂i

h, m̂+
hk(t) := m̂i+1

h , (5.9b)

shk(t) :=
t− ti
k

si+1
h +

ti+1 − t
k

sih, s−hk(t) := sih, s+
hk(t) := si+1

h , (5.9c)

Similarly, we define the piecewise constant time approximation j+
k defined by j+

k (t) := ji+1 for all
0 ≤ i ≤M − 1 and t ∈ [ti, ti+1). Since j belongs to C0([0, T ];H1(Ω′)), it holds that

j+
k → j in L2(0, T ;H1(Ω′)) as k → 0. (5.10)

The following theorem extends Theorem 4.3.2 to the present situation.

Theorem 5.1.6. Let {T ′h}h>0 be a γ-quasi-uniform family of regular tetrahedral triangulations
of Ω′ which resolve Ω. Let the discrete initial conditions m0

h ∈ Uh and s0
h ∈ S1(T ′h)3 satisfy the

convergence properties

m0
h →m0 in H1(Ω) as h→ 0, (5.11a)

s0
h ⇀ s0 in H1(Ω′) as h→ 0. (5.11b)

For the standard tangent plane scheme, assume that m0
h ∈Mh and that

• either 1/2 < θ ≤ 1 and any triangulation Th satisfies the angle condition (3.16),
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• or θ = 1/2, any triangulation Th satisfies the angle condition (3.16), and k = o(h) as
k, h→ 0,

• or k = o(h2) as k, h→ 0.

For the projection-free tangent plane scheme, assume that

• either 1/2 < θ ≤ 1,

• or θ = 1/2 and k = o(h) as k, h→ 0,

• or k = o(h2) as k, h→ 0.

Then, there exist m ∈ L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) and s ∈ L2(0, T ;H1(Ω′),L2(Ω′)) ∩
L∞(0, T ;L2(Ω′)) such that, for the discrete functions (5.9) constructed using the output of Algo-
rithm 5.1.4, up to extraction of a subsequence, it holds that mhk ⇀ m in H1(ΩT ) and shk ⇀ s
in L2(0, T ;H1(Ω′),L2(Ω′)) as k, h → 0. In particular, (m, s) is a weak solution of (5.1) in the
sense of Definition 5.1.2.

With the following lemma, we start with the proof of Theorem 5.1.6. The proof is identical to
the one of Lemma 4.3.7, therefore we omit it.

Lemma 5.1.7. Let 0 ≤ i ≤M − 1. For the standard tangent plane scheme, it holds that

λ2
ex

2
kdt

∥∥∇mi+1
h

∥∥2

L2(Ω)
+ [α− c(k, h)]k

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)
≤ τ−1

J k〈sih,vih〉Ω,

(5.12)
with

c(k, h) =

{
0 if the triangulation Th satisfies the angle condition (3.16),
Ckh−2 else.

The constant C > 0 depends only on γ and λex. In particular, it is independent of k and h. For
the projection-free tangent plane scheme, it holds that

λ2
ex

2
kdt

∥∥∇mi+1
h

∥∥2

L2(Ω)
+ αk

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)
= τ−1

J k〈sih,vih〉Ω. (5.13)

In the following two lemmata, we establish two energy estimates for the iterates of Algo-
rithm 5.1.4.

Lemma 5.1.8. For all 1 ≤ j ≤M , it holds that

∥∥sjh∥∥2

L2(Ω′)
+

j−1∑
i=0

∥∥si+1
h − sih

∥∥2

L2(Ω′)
+ k

j−1∑
i=0

∥∥si+1
h

∥∥2

H1(Ω′)
≤ C. (5.14)

The constant C > 0 depends only on the problem data (β, β′, D∗, j, Ω, s0, τsf , z). In particular,
it is independent of the discretization parameters k and h.

Proof. In (5.8), we choose the test function ζh = si+1
h to obtain

〈dtsi+1
h , si+1

h 〉Ω′ + a(mi+1
h ; si+1

h , si+1
h ) = zβ〈mi+1

h ⊗ ji+1,∇si+1
h 〉Ω − zβ〈j

i+1 ·n,mi+1
h · si+1

h 〉Γ′∩Γ.

Using the ellipticity of the bilinear form (see the proof of Lemma 5.1.1) and multiplying the
resulting equation by the time-step size k yields the inequality

〈si+1
h − sih, si+1

h 〉Ω′ + zD∗(1− ββ′)k
∥∥∇si+1

h

∥∥2

L2(Ω′)
+ τ−1

sf k
∥∥si+1

h

∥∥2

L2(Ω′)

≤ zβk〈mi+1
h ⊗ ji+1,∇si+1

h 〉Ω − zβk〈j
i+1 · n,mi+1

h · si+1
h 〉Γ′∩Γ.
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Summing over 0 ≤ i ≤ j − 1 and using the identity

j−1∑
i=0

〈si+1
h − sih, si+1

h 〉Ω′ =
1

2

∥∥sjh∥∥2

L2(Ω′)
− 1

2

∥∥s0
h

∥∥2

L2(Ω′)
+

1

2

j−1∑
i=0

∥∥si+1
h − sih

∥∥2

L2(Ω′)

(Abel’s summation by parts, see Lemma B.2.3), we obtain

1

2

∥∥sjh∥∥2

L2(Ω′)
+

1

2

j−1∑
i=0

∥∥si+1
h − sih

∥∥2

L2(Ω′)
+ zD∗(1− ββ′)k

j−1∑
i=0

∥∥∇si+1
h

∥∥2

L2(Ω′)

+ τ−1
sf k

j−1∑
i=0

∥∥si+1
h

∥∥2

L2(Ω′)

≤ 1

2

∥∥s0
h

∥∥2

L2(Ω′)
+ zβk

j−1∑
i=0

(
〈m̂i+1

h ⊗ ji+1,∇si+1
h 〉Ω − 〈j

i+1 · n, m̂i+1
h · si+1

h 〉Γ′∩Γ

)
.

Let δ > 0 be arbitrary. Since
∥∥m̂i+1

h

∥∥
L∞(Ω)

= 1, for the last term on the right-hand side, it holds
that

j−1∑
i=0

〈mi+1
h ⊗ ji+1,∇si+1

h 〉Ω −
j−1∑
i=0

〈ji+1 · n,mi+1
h · si+1

h 〉Γ′∩Γ

≤
j−1∑
i=0

(∥∥ji+1
∥∥
L2(Ω′)

∥∥∇si+1
h

∥∥
L2(Ω′)

+
∥∥ji+1

∥∥
L2(Γ′)

∥∥si+1
h

∥∥
L2(Γ′)

)
≤ (1 + C1)

j−1∑
i=0

∥∥ji+1
∥∥
H1(Ω′)

∥∥si+1
h

∥∥
H1(Ω′)

≤ 1 + C1

2δ

j−1∑
i=0

∥∥ji+1
∥∥2

H1(Ω′)
+
δ(1 + C1)

2

j−1∑
i=0

∥∥si+1
h

∥∥2

H1(Ω′)
,

where C1 = C1(Ω′) is the continuity constant of the trace operator. It follows that

∥∥sjh∥∥2

L2(Ω′)
+

j−1∑
i=0

∥∥si+1
h − sih

∥∥2

L2(Ω′)
+ [2C2 − δzβ(1 + C1)] k

j−1∑
i=0

∥∥si+1
h

∥∥2

H1(Ω′)

≤
∥∥s0

h

∥∥2

L2(Ω′)
+
zβ(1 + C1)

δ
k

j−1∑
i=0

∥∥ji+1
∥∥2

H1(Ω′)
,

where C2 = min
{
zD∗(1− ββ′), τ−1

sf

}
. We choose δ < 2C2/(zβ(1 + C1)) so that all the terms on

the left-hand side are nonnegative. Thanks to the convergences (5.10) and (5.11b) the right-hand
side is uniformly bounded. This leads to (5.14). The involved constant C > 0 depends on β, C1,
C2, j, s0, and z. In particular, it is independent of k and h.

Lemma 5.1.9. (a) Let 1/2 < θ ≤ 1. For the standard tangent plane scheme, suppose that either
any triangulation Th satisfies the angle condition (3.16) or k = o(h2) as k, h→ 0. If k is sufficiently
small, then, for all 1 ≤ j ≤M , it holds that

∥∥mj
h

∥∥2

H1(Ω)
+ k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
+ k2

j−1∑
i=0

∥∥∇vih∥∥2

L2(Ω)
≤ C. (5.15)

(b) Let 0 ≤ θ ≤ 1/2. Suppose that

• either θ = 1/2 and, only for the standard tangent plane scheme, that any triangulation Th
satisfies the angle condition (3.16),
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• or k = o(h2) as k, h→ 0.

If k is sufficiently small, then, for all 1 ≤ j ≤M , it holds that

∥∥mj
h

∥∥2

H1(Ω)
+ k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
≤ C. (5.16)

In both cases, the constant C > 0 depends only on the problem data (α, β, β′, D∗, j, λex, m0, Ω,
s0, τsf , τJ, z) and on the discretization parameters γ and θ. In particular, it is independent of k
and h.

Proof. The proof follows the lines of the one of Lemma 4.3.8, therefore we only sketch it. Let
1 ≤ j ≤M . First of all, note that (4.31), namely

∥∥mj
h

∥∥2

L2(Ω)
≤ C1 + C2k

2

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
,

with C1 = C1(γ,m0, |Ω|) > 0 and C2 = C2(γ) > 0 being constants, remains valid also for the
present situation.

We now apply Lemma 5.1.7. Owing to (5.12)–(5.13) and taking the sum over 0 ≤ i ≤ j − 1, it
follows that

λ2
ex

2

∥∥∇mj
h

∥∥2

L2(Ω)
+ [α− C3kh

−2]k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2

j−1∑
i=0

∥∥∇vih∥∥2

L2(Ω)

≤ λ2
ex

2

∥∥∇m0
h

∥∥2

L2(Ω)
+ τ−1

J k

j−1∑
i=0

〈sih,vih〉Ω,

(5.17)

where, for the projection-free tangent plane scheme and for the standard tangent plane scheme if
any triangulation of the family satisfies the angle condition (3.16), the estimate holds with C3 = 0.
Otherwise, it holds that C3 = C3(γ, λex, |Ω|) > 0. The first term on the right-hand side is uniformly
bounded by assumption (5.11a). For the second term, we use the Cauchy–Schwarz inequality as
well as the weighted Young inequality:

j−1∑
i=0

〈sih,vih〉Ω ≤
j−1∑
i=0

∥∥sih∥∥L2(Ω)

∥∥vih∥∥L2(Ω)
≤ δ

2

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)
+

1

2δ

j−1∑
i=0

∥∥sih∥∥2

L2(Ω)
,

where δ > 0 is arbitrary. The first term on the right-hand side can be absorbed into the correspond-
ing term on the left-hand side of (5.17). The second term is uniformly bounded by Lemma 5.1.8;
see (5.14). Altogether, we thus obtain that

∥∥mj
h

∥∥2

H1(Ω)
+

2

λ2
ex

(
α− δ

2τJ
− C2λ

2
ex

2
k − C3kh

−2

)
k

j−1∑
i=0

∥∥vih∥∥2

L2(Ω)

+ (2θ − 1)k2

j−1∑
i=0

∥∥∇vih∥∥2

L2(Ω)
≤ C4,

where C4 = C4(C, δ, γ, λex,m
0,Ω) > 0 with C > 0 being the constant in (5.14). With this estimate,

both the inequalities (5.15)–(5.16) easily follow by choosing a sufficiently small δ, e.g., δ = ατJ, and
a sufficiently small time-step size k (in the case of (5.16) also an inverse estimate is needed).

Using the energy estimates proved in Lemma 5.1.9, the result of Lemma 4.3.10, i.e., the con-
vergence

k
∥∥∇v−hk∥∥L2(ΩT )

→ 0 as k, h→ 0, (5.18)

remains valid under the same assumptions on the discretization parameters k, h, and θ. In the
following proposition, we establish the uniform boundedness of the discrete functions (5.9).
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Proposition 5.1.10. Suppose that the assumptions of Theorem 5.1.6 are satisfied. Then, if k is
sufficiently small, the sequences {mhk},

{
m±hk

}
, {m̂hk},

{
m̂±hk

}
,
{
v−hk
}
, {shk}, and

{
s±hk
}
are

uniformly bounded in the sense that

‖m∗hk‖L∞(0,T ;H1(Ω)) + ‖∂tmhk‖L2(ΩT ) +
∥∥v−hk∥∥L2(ΩT )

≤ C, (5.19a)

‖m̂∗hk‖L∞(0,T ;H1(Ω)) + ‖m̂∗hk‖L∞(ΩT ) ≤ C, (5.19b)

‖shk‖L2(0,T ;H1(Ω′),L2(Ω′)) + ‖s∗hk‖L∞(0,T ;L2(Ω′)) +
∥∥s±hk∥∥L2(0,T ;H1(Ω′))

≤ C, (5.19c)

for m∗hk = mhk,m
±
hk, m̂

∗
hk = m̂hk, m̂

±
hk, and s

∗
hk = shk, s

±
hk. The constant C > 0 depends only

on the problem data (α, β, β′, D∗, j λex, m0, Ω, s0, τJ, τsf , and z) and on the discretization
parameters γ and θ. In particular, it is independent of k and h.

Proof. The estimates (5.19a)–(5.19b) for the magnetization-related functions can be obtained with
the same argument of Proposition 4.3.9 and Proposition 4.3.12. For the sake of clarity, we divide
the proof of (5.19c) into two steps.

• Step 1 Proof of the boundedness ‖s∗hk‖L∞(0,T ;L2(Ω′)) + ‖s∗hk‖L2(0,T ;H1(Ω′)) ≤ C for s∗hk =

shk, s
±
hk.

We apply Lemma 5.1.8. For any t ∈ (0, T ), let 0 ≤ i ≤M − 1 such that t ∈ [ti, ti+1). It holds that

‖shk(t)‖L2(Ω′) =

∥∥∥∥ t− tik
si+1
h +

ti+1 − t
k

sih

∥∥∥∥
L2(Ω′)

≤ t− ti
k

∥∥si+1
h

∥∥
L2(Ω′)

+
ti+1 − t

k

∥∥sih∥∥L2(Ω′)

≤
∥∥si+1

h

∥∥
L2(Ω′)

+
∥∥sih∥∥L2(Ω′)

(5.14)
≤ C,

which shows that ‖shk‖L∞(0,T ;L2(Ω′)) ≤ C. Similarly, it holds that

‖shk‖2L2(0,T ;H1(Ω′)) =

∫ T

0

‖shk(t)‖2H1(Ω′) dt

=

M−1∑
i=0

∫ ti+1

ti

∥∥∥∥ t− tik
si+1
h +

ti+1 − t
k

sih

∥∥∥∥2

H1(Ω′)

dt

≤ 2

M−1∑
i=0

∫ ti+1

ti

(t− ti)2

k2

∥∥si+1
h

∥∥2

H1(Ω′)
+

(ti+1 − t)2

k2

∥∥sih∥∥2

H1(Ω′)
dt

=
2

3
k

M−1∑
i=0

(∥∥si+1
h

∥∥2

H1(Ω′)
+
∥∥sih∥∥2

H1(Ω′)

) (5.14)
≤ C,

which shows that ‖shk‖L2(0,T ;H1(Ω′)) ≤ C. The same proof holds also for s±hk.

• Step 2 Proof of the boundedness ‖shk‖L2(0,T ;H1(Ω′),L2(Ω′)) ≤ C.

It remains to show that ‖∂tshk‖L2(0,T ;H̃−1(Ω))
≤ C. To that end, let Ph : L2(Ω′) → S1(T ′h)3 be

the L2-orthogonal projection. Recall that, since we are dealing with a γ-quasi-uniform family of
regular triangulations, Ph is H1-stable; see (3.19). Let ζ ∈ H1(Ω′) \ {0} and 0 ≤ i ≤ M − 1 be
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arbitrary. For all t ∈ [ti, ti+1), it holds that

〈∂tshk(t), ζ〉H−1↔H1

= 〈∂tshk(t), ζ〉Ω′ = 〈dtsi+1
h , ζ〉Ω′ = 〈dtsi+1

h ,Phζ〉Ω′
= zβ〈m̂i+1

h ⊗ ji+1,∇Phζ〉Ω − zβ〈ji+1 · n, m̂i+1
h ·Phζ〉Γ′∩Γ − a(m̂i+1

h ; si+1
h ,Phζ)

≤ zβ
∥∥ji+1

∥∥
L2(Ω′)

‖∇Phζ‖L2(Ω′) + zβ
∥∥ji+1

∥∥
L2(Γ′)

‖Phζ‖L2(Γ′) + C
∥∥si+1

h

∥∥
H1(Ω′)

‖Phζ‖H1(Ω′)

.
(∥∥ji+1

∥∥
H1(Ω′)

+
∥∥si+1

h

∥∥
H1(Ω′)

)
‖Phζ‖H1(Ω′)

.
(∥∥ji+1

∥∥
H1(Ω′)

+
∥∥si+1

h

∥∥
H1(Ω′)

)
‖ζ‖H1(Ω′) .

Here, we have used the continuity of both the bilinear form a(m̂i+1
h ; ·, ·) and the trace operator

H1(Ω′) → L2(Γ′) as well as the H1-stability of the L2-projection. Dividing by ‖ζ‖H1(Ω′) and
taking the supremum with respect to ζ ∈H1(Ω′) \ {0}, it follows that

‖∂tshk(t)‖
H̃−1(Ω′)

.
∥∥ji+1

∥∥
H1(Ω′)

+
∥∥si+1

h

∥∥
H1(Ω′)

.

Integrating in time over (0, T ), we obtain

‖∂tshk‖L2(0,T ;H̃−1(Ω′))
.
∥∥j+
k

∥∥
L2(0,T ;H1(Ω′))

+
∥∥s+

hk

∥∥
L2(0,T ;H1(Ω′))

.

Thanks to step 1 and (5.10), the right-hand side is uniformly bounded, which concludes the proof.

In the following proposition, we proceed with the extraction of weakly convergent subsequences.

Proposition 5.1.11. Suppose that the assumptions of Theorem 5.1.6 are satisfied. Then, there
existm ∈ L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)), which satisfies |m| = 1 andm ·∂tm = 0 a.e. in ΩT ,
and s ∈ L2(0, T ;H1(Ω′),L2(Ω′)) ∩ L∞(0, T ;L2(Ω′)) such that, upon extraction of a subsequence,
it holds that

mhk ⇀m in H1(ΩT ), (5.20a)

mhk,m
±
hk, m̂hk, m̂

±
hk ⇀m in L2(0, T ;H1(Ω)), (5.20b)

mhk →m in Hs(ΩT ) for all 0 < s < 1, (5.20c)

mhk →m in L2(0, T ;Hs(Ω)) for all 0 < s < 1, (5.20d)

mhk,m
±
hk, m̂hk, m̂

±
hk →m in L2(ΩT ), (5.20e)

mhk,m
±
hk, m̂hk, m̂

±
hk →m pointwise a.e. in ΩT , (5.20f)

mhk,m
±
hk, m̂hk, m̂

±
hk
∗
⇀m in L∞(0, T ;H1(Ω)), (5.20g)

m̂hk, m̂
±
hk
∗
⇀m in L∞(ΩT ) (5.20h)

v−hk ⇀ ∂tm in L2(ΩT ), (5.20i)

shk ⇀ s in L2(0, T ;H1(Ω′),L2(Ω′)), (5.20j)

s±hk ⇀ s in L2(0, T ;H1(Ω′)), (5.20k)

shk, s
±
hk → s in L2(Ω′T ), (5.20l)

shk, s
±
hk → s pointwise a.e. in Ω′T , (5.20m)

shk, s
±
hk
∗
⇀ s in L∞(0, T ;L2(Ω′)) (5.20n)

as k, h → 0. In particular, all the limits are attained simultaneously for at least one particular
subsequence.
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Proof. We omit the proof of the results for the magnetization-related discrete functions, as it follows
the lines of those of Proposition 4.3.11 and Proposition 4.3.12. It remains to show the existence of
s ∈ L2(0, T ;H1(Ω′),L2(Ω′)) ∩ L∞(0, T ;L2(Ω′)) such that the convergence results (5.20j)–(5.20n)
hold. Thanks to the uniform boundedness (5.19c) established in Proposition 5.1.10, we can ap-
ply the Eberlein–Šmulian theorem and extract weakly convergent subsequences (not relabeled)
of {shk},

{
s±hk
}
, with possible different limits, in L2(0, T ;H1(Ω′),L2(Ω′)) and L2(0, T ;H1(Ω′)),

respectively. Let s ∈ L2(0, T ;H1(Ω′),L2(Ω′)) such that shk ⇀ s in L2(0, T ;H1(Ω′),L2(Ω′)).
From the compact embedding L2(0, T ;H1(Ω′),L2(Ω′)) b L2(Ω′T ) guaranteed by the Aubin–Lions
lemma, it follows that shk → s in L2(Ω′T ). Upon extraction of a further subsequence, it also holds
that shk → s pointwise a.e. in Ω′T . From Lemma 5.1.8, it follows that

∥∥shk − s±hk∥∥2

L2(Ω′T )

(3.15)
≤

∥∥s+
hk − s

−
hk

∥∥2

L2(Ω′T )
= k

M−1∑
i=0

∥∥si+1
h − sih

∥∥2

L2(Ω′)

(5.14)
. k.

In particular, it follows that s±hk ⇀ s in L2(0, T ;H1(Ω′)) as well as s±hk → s in L2(Ω′T ) and
pointwise a.e. in Ω′T .

Finally, since the sequences {shk} and
{
s±hk
}
are uniformly bounded in L∞(0, T ;L2(Ω′)), ap-

plying the Banach–Alaoglu theorem, we can extract further weakly-star convergent subsequences
(also not relabeled). From the continuous inclusion L∞(0, T ;L2(Ω′)) ⊂ L2(Ω′T ), it follows that
the weak-star limits coincide with the strong limits in L2(Ω′T ), i.e., it holds that shk, s±hk

∗
⇀ s in

L∞(0, T ;L2(Ω′)).

In the following lemma, we establish two convergence results that are preparatory for the proof
of Theorem 5.1.6.

Lemma 5.1.12. Suppose that the assumptions of Theorem 5.1.6 are satisfied. Then, it holds that

m̂+
hk ⊗ j

+
k →m⊗ j in L2(ΩT ), (5.21a)

m̂+
hk ⊗ m̂

+
hk →m⊗m in L2(ΩT ) (5.21b)

as k, h→ 0.

Proof. An application of the triangle inequality yields the estimate∥∥m̂+
hk ⊗ j

+
k −m⊗ j

∥∥
L2(ΩT )

≤
∥∥m̂+

hk ⊗ (j+
k − j)

∥∥
L2(ΩT )

+
∥∥(m̂+

hk −m)⊗ j
∥∥
L2(ΩT )

≤
∥∥j+
k − j

∥∥
L2(ΩT )

+ ‖j‖L∞(ΩT )

∥∥m̂+
hk −m

∥∥
L2(ΩT )

.

The convergence (5.21a) then follows from (5.10) and (5.20e). The same proof also leads to (5.21b).

We are ready for the proof of Theorem 5.1.6.

Proof of Theorem 5.1.6. From Proposition 5.1.11, we obtain the desired convergence properties
towards some functionsm ∈ L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)), satisfying |m| = 1 a.e. in Ω, and
s ∈ L2(0, T ;H1(Ω′),L2(Ω′))∩L∞(0, T ;L2(Ω′)). It remains to show that (m, s) is a weak solution
of (5.1) in the sense of Definition 5.1.2. For the sake of clarity, we divide the proof into four steps.

• Step 1: Verification of Definition 4.1.1(iii).

The proof of (5.3) coincides with the one of (4.4), therefore we only sketch it; see steps 2–4 of the
proof of Theorem 4.3.2.

Let ϕ ∈ C∞(ΩT ) be an arbitrary test function. For all 0 ≤ i ≤M −1 and t ∈ (ti, ti+1), we can
choose the test function φh = Ih[m−hk(t) × ϕ(t)] ∈ Kmi

h
in (5.6). Integrating in time over (0, T )
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yields the identity

α

∫ T

0

〈v−hk(t),Ih[m−hk(t)×ϕ(t)]〉Ω dt+

∫ T

0

〈m−hk(t)× v−hk(t),Ih[m−hk(t)×ϕ(t)]〉Ω dt

+ λ2
exθk

∫ T

0

〈∇v−hk(t),∇Ih[m−hk(t)×ϕ(t)]〉Ω dt

= −λ2
ex

∫ T

0

〈∇m−hk(t),∇Ih[m−hk(t)×ϕ(t)]〉Ω dt+

∫ T

0

〈s−hk(t),Ih[m−hk(t)×ϕ(t)]〉Ω dt.

With the same argument employed in step 3 of the proof of Theorem 4.3.2, we deduce that

α

∫ T

0

〈v−hk(t),m−hk(t)×ϕ(t)〉Ω dt+

∫ T

0

〈m−hk(t)× v−hk(t),m−hk(t)×ϕ(t)〉Ω dt

+ λ2
ex

∫ T

0

〈∇m−hk(t),∇(m−hk(t)×ϕ(t))〉Ω dt+ λ2
exθk

∫ T

0

〈∇v−hk(t),∇(m−hk(t)×ϕ(t))〉Ω dt

−
∫ T

0

〈s−hk(t),m−hk(t)×ϕ(t)〉Ω dt = O(h) as k, h→ 0.

Passing to the limit as k, h → 0, we obtain (5.3). The fact that each of the first three terms on
the left-hand side converge towards the corresponding one of (5.3) and that the fourth one, thanks
to (5.18), vanishes as k, h→ 0 was already shown in step 4 of the proof of Theorem 4.3.2. As for
the fifth one, since s−hk → s in L2(ΩT ) ⊆ L2(Ω′T ) by (5.20l) and m−hk × ϕ → m × ϕ in L2(ΩT )
by (4.47a), it holds that∫ T

0

〈s−hk(t),m−hk(t)×ϕ(t)〉Ω dt→
∫ T

0

〈s(t),m(t)×ϕ(t)〉Ω dt = −
∫ T

0

〈m(t)× s(t),ϕ(t)〉Ω dt,

which concludes the verification of Definition 4.1.1(iii).

• Step 2: Verification of Definition 4.1.1(iv).

Let η ∈ C1([0, T ];C∞(Ω′)). Let ηh : [0, T ] → S1(T ′h)3 be defined by ηh(t) = Ih[η(t)] for all
t ∈ [0, T ]. Owing to the approximation properties of the nodal interpolant (see Proposition 3.4.3),
we infer that

ηh → η in L∞(0, T ;W 1,p(Ω′)) for all 3/2 < p <∞. (5.22)

For all 0 ≤ i ≤ M − 1 and t ∈ (ti, ti+1), we can choose the test function ζh = ηh(t) ∈ S1(T ′h)3

in (5.8). Integrating in time over (0, T ), we obtain∫ T

0

〈∂tshk(t),ηh(t)〉Ω′ dt+

∫ T

0

a(m̂+
hk(t); s+

hk(t),ηh(t)) dt

= zβ

∫ T

0

〈m̂+
hk(t)⊗ j+

k (t),∇ηh(t)〉Ω dt− zβ
∫ T

0

〈j+
k (t) · n, m̂+

hk(t) · ηh(t)〉Γ′∩Γ dt.

(5.23)

We now study the limit of (5.23) as k, h → 0. For the first term on the left-hand side, since
∂tshk ⇀ ∂ts in L2(0, T ; H̃−1(Ω′)) by (5.20j) and ηh → η in L2(0, T ;H1(Ω′)) by (5.22), it holds
that∫ T

0

〈∂tshk(t),ηh(t)〉Ω′ dt =

∫ T

0

〈∂tshk(t),ηh(t)〉H−1↔H1 dt→
∫ T

0

〈∂ts(t),η(t)〉H−1↔H1 dt.

For the first term on the right-hand side of (5.23), thanks to the convergence (5.21a), which follows
from Lemma 5.1.12, and (5.22), we obtain that∫ T

0

〈m̂+
hk(t)⊗ j+

k (t),∇ηh(t)〉Ω dt→
∫ T

0

〈m(t)⊗ j(t),∇η(t)〉Ω dt.
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For the second term on the right-hand side of (5.23), since j+
k → j in L2(0, T ;H1(Ω′)) by (5.10),

m̂+
hk ⇀ m in L2(0, T ;H1(Ω)) by (5.20b), and ηh → η in L2(0, T ;H1(Ω′)) by (5.22) (together

with the resulting convergence of the corresponding traces), it holds that∫ T

0

〈j+
k (t) · n, m̂+

hk(t) · ηh(t)〉Γ′∩Γ dt→
∫ T

0

〈j(t) · n,m(t) · η(t)〉Γ′∩Γ dt.

We now analyze the second term on the left-hand side of (5.23). From the convergences s+
hk ⇀ s

in L2(0, T ;H1(Ω′)) by (5.20k) and (5.22), we deduce that∫ T

0

〈D0∇s+
hk(t),∇ηh(t)〉Ω′ dt→

∫ T

0

〈D0∇s(t),∇η(t)〉Ω′ dt.

Thanks to (5.20k) and the convergence (m̂+
hk ⊗ m̂

+
hk)∇η>h → (m⊗m)∇η> in L2(ΩT ), which in

turn follows from (5.21b) and (5.22), we obtain that∫ T

0

〈D0[m̂+
hk(t)⊗ m̂+

hk(t)]∇s+
hk(t),∇ηh(t)〉Ω′ dt

=

∫ T

0

〈D0∇s+
hk(t), [m̂+

hk(t)⊗ m̂+
hk(t)]∇η>h (t)〉Ω′ dt

→
∫ T

0

〈D0∇s(t), [m(t)⊗m(t)]∇η>(t)〉Ω′ dt =

∫ T

0

〈D0[m(t)⊗m(t)]∇s(t),∇η(t)〉Ω′ dt.

Since s+
hk → s in L2(Ω′T ) by (5.20l) and (5.22), it follows that∫ T

0

〈s+
hk(t),ηh(t)〉Ω′ dt→

∫ T

0

〈s(t),η(t)〉Ω′ dt.

Finally, thanks to (5.20l), (5.20e) and (5.22), we obtain that∫ T

0

〈s+
hk(t)× m̂+

hk(t),ηh(t)〉Ω dt→
∫ T

0

〈s(t)×m(t),η(t)〉Ω dt.

We conclude that ∫ T

0

a(m̂+
hk(t); s+

hk(t),ηh(t)) dt→
∫ T

0

a(m(t); s(t),η(t)) dt.

Altogether, passing (5.23) to the limit as k, h→ 0, we obtain∫ T

0

〈∂ts(t),η(t)〉H−1↔H1 dt+

∫ T

0

a(m(t); s(t),η(t)) dt

= zβ

∫ T

0

〈m(t)⊗ j(t),∇η(t)〉Ω dt− zβ
∫ T

0

〈j(t) · n,m(t) · η(t)〉Γ′∩Γ dt

(5.24)

for all η ∈ C1([0, T ];C∞(Ω′)). By density, the equality then holds for all η ∈ L2(0, T ;H1(Ω′)). In
particular, for a.e. t ∈ (0, T ) and ζ ∈H1(Ω′) it holds that

〈∂ts(t), ζ〉H−1↔H1 + a(m(t); s(t), ζ) = zβ〈m(t)⊗ j(t),∇ζ〉Ω − zβ〈j(t) · n,m(t) · ζ〉Γ′∩Γ,

which is (5.4).

• Step 3: Verification of Definition 5.1.2(ii).
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With the same argument used in Step 1 of the proof of Theorem 4.3.2, one can show that m(0) =
m0 in the sense of traces. In order to prove that s(0) = s0 in L2(Ω′), we start by integrating by
parts in time (5.24). We deduce that

−
∫ T

0

〈∂tη(t), s(t)〉H−1↔H1 dt+

∫ T

0

a(m(t); s(t),η(t)) dt

= 〈s(0),η(0)〉Ω′ + zβ

∫ T

0

〈m(t)⊗ j(t),∇η(t)〉Ω dt− zβ
∫ T

0

〈j(t) · n,m(t) · η(t)〉Γ′∩Γ dt

(5.25)

for all η ∈ C1([0, T ];H1(Ω′)) with η(T ) = 0. Similarly, from (5.23) we deduce that

−
∫ T

0

〈∂tηh(t), shk(t)〉H−1↔H1 dt+

∫ T

0

a(m̂+
hk(t); s+

hk(t),ηh(t)) dt

= 〈shk(0),ηh(0)〉Ω′ + zβ

∫ T

0

〈m̂+
hk(t)⊗ j+

k (t),∇ηh(t)〉Ω dt

− zβ
∫ T

0

〈j+
k (t) · n, m̂+

hk(t) · ηh(t)〉Γ′∩Γ dt

= 〈s0
h,ηh(0)〉Ω′ + zβ

∫ T

0

〈m̂+
hk(t)⊗ j+

k (t),∇ηh(t)〉Ω dt

− zβ
∫ T

0

〈j+
k (t) · n, m̂+

hk(t) · ηh(t)〉Γ′∩Γ dt.

With the same argument used in Step 2 of the proof, we can pass this equality to the limit as
k, h→ 0. As s0

h → s0 in L2(Ω′) by (5.11b), it follows that

−
∫ T

0

〈∂tη(t), s(t)〉H−1↔H1 dt+

∫ T

0

a(m(t); s(t),η(t)) dt

= 〈s0,η(0)〉Ω′ + zβ

∫ T

0

〈m(t)⊗ j(t),∇η(t)〉Ω dt− zβ
∫ T

0

〈j(t) · n,m(t) · η(t)〉Γ′∩Γ dt

(5.26)

for all η ∈ C1([0, T ];H1(Ω′)) with η(T ) = 0. Comparing (5.25) and (5.26), it follows that

〈s(0),η(0)〉Ω′ = 〈s0,η(0)〉Ω′ .

Since the function η ∈ C1([0, T ];H1(Ω′)) satisfying η(T ) = 0 is arbitrary, we deduce that s(0) = s0

in L2(Ω′), which concludes the verification of Definition 5.1.2(ii).

• Step 4: Verification of Definition 5.1.2(v).

For the proof of (5.5), we follows the lines of the one of (4.5) developed in step 5 of the proof of
Theorem 4.3.2. Given τ ∈ [0, T ), let 1 ≤ j ≤ M such that τ ∈ [tj−1, tj). Let 0 ≤ i ≤ j − 1. From
Lemma 5.1.7, we deduce that

E(mi+1
h ) + [α− c(k, h)]k

∥∥vih∥∥2

L2(Ω)
+ λ2

ex

(
θ − 1

2

)
k2
∥∥∇vih∥∥2

L2(Ω)
≤ E(mi

h) + τ−1
J k〈sih,vih〉Ω,

where, for the standard tangent plane scheme, it holds that c(k, h) = 0 if the triangulation Th
satisfies the angle condition (3.16) and c(k, h) = Ckh−2 otherwise (with C > 0 being a constant
which depends only on γ and λex), while, for the projection-free tangent plane scheme, it holds that
c(k, h) = 0; see (5.12)–(5.13). If 1/2 ≤ θ ≤ 1, the third term on the left-hand side is nonnegative
and the inequality remains valid even if we omit it. If 0 ≤ θ < 1/2, we can exploit an inverse
estimate to absorb it into the second term. In both cases, summing over 0 ≤ i ≤ j − 1, we obtain
that

E(m+
hk(τ)) + [α− C(k, h, θ)]

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt ≤ E(m−hk(0)) + τ−1

J

∫ tj

0

〈s−hk(t),v−hk(t)〉 dt,
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where, for all 0 ≤ θ ≤ 1, it holds that C(k, h, θ) → 0 as k, h → 0. The latter is equivalent to the
inequality

E(m+
hk(τ))− E(m−hk(0)) + [α− C(k, h, θ)]

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt− τ−1

J

∫ τ

0

〈s−hk(t),v−hk(t)〉 dt

≤ τ−1
J

∫ tj

τ

〈s−hk(t),v−hk(t)〉 dt,

for which we now consider the limit as k, h → 0. Since m+
hk ⇀m in L2(0, T ;H1(Ω)) by (5.20b),

it holds that
E(m(τ)) ≤ lim inf

k,h→0
E(m+

hk(τ)).

Since m0
h →m0 in H1(Ω) by assumption (5.11a), it holds that

lim
k,h→0

E(m−hk(0)) = E(m0).

From the convergence v−hk ⇀ ∂tm in L2(ΩT ) by (5.20i), it follows that∫ τ

0

‖∂tm(t)‖2L2(Ω) dt ≤ lim inf
k,h→0

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt.

Since s−hk → s in L2(Ω′T ) by (5.20l) and v−hk ⇀ ∂tm in L2(ΩT ) by (5.20i), it holds that∫ τ

0

〈s−hk(t),v−hk(t)〉 dt→
∫ τ

0

〈s(t), ∂tm(t)〉 dt.

Finally, since τ ≤ tj ≤ τ + k, it holds that∫ tj

τ

〈s−hk(t),v−hk(t)〉 dt→ 0.

Hence, for every measurable set I ⊆ [0, T ], it holds that∫
I

(
E(m(τ)) +

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt

)
dτ

≤ lim inf
k,h→0

∫
I

(
E(m+

hk(τ)) +

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt

)
dτ

≤ lim inf
k,h→0

∫
I

[
E(m−hk(0)) + C(k, h, θ)

∫ τ

0

∥∥v−hk(t)
∥∥2

L2(Ω)
dt

+ τ−1
J

∫ τ

0

〈s−hk(t),v−hk(t)〉 dt+ τ−1
J

∫ tj

τ

〈s−hk(t),v−hk(t)〉 dt

]
dτ

=

∫
I

(
E(m0) + τ−1

J

∫ τ

0

〈s(t), ∂tm(t)〉 dt

)
dτ.

As I ⊆ [0, T ] is arbitrary, the integrand satisfies the inequality a.e. in (0, T ), i.e., it holds that

E(m(τ)) + α

∫ τ

0

‖∂tm(t)‖2L2(Ω) dt ≤ E(m0) + τ−1
J

∫ τ

0

〈s(t), ∂tm(t)〉 dt

for a.e. τ ∈ (0, T ), which is (5.5). This establishes the energy inequality from Definition 5.1.2(v)
and thus concludes the proof of the theorem.
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5.2 Spintronic extensions of the LLG equation
In this section, we consider the models introduced in Section 2.3, in which the LLG equation is
supplemented with (possibly nonlocal) additional spin transfer torque terms. Throughout this
section, we denote by Ω ⊂ R3 a bounded Lipschitz domain with polyhedral boundary Γ := ∂Ω, in
which we aim at solving the extended LLG equation

∂tm = −m× [heff + Π(m)] + αm× ∂tm (5.27)

introduced in Section 4.1. For the analysis, we apply the framework of Theorem 4.3.2.

5.2.1 Slonczewski models
We discuss the extensions of the LLG equation for current-perpendicular-to-plane (CPP) injec-
tion geometries. We start with the LLGS equation, introduced in Section 2.3.1 and rescaled in
nondimensional form in (3.7), namely

∂tm = −m× heff + αm× ∂tm−
jeG(m · p, P )

d
m× (m× p),

where d > 0, 0 < P < 1, and p ∈ S2 are constant, while je ∈ L∞(Ω) and G(·, P ) ∈ C1[−1, 1] for
all 0 < P < 1. If we define the operator Π : L∞(Ω)→ L2(Ω) by

Π(m) =
jeG(m · p, P )

d
m× p for all m ∈ L∞(Ω),

we recover (5.27). To approximate Π, we consider the discrete operator defined by

Πh(mh) =
jeG

(
Ih
[
mh/ |mh|

]
· p, P

)
d

Ih
[
mh/ |mh|

]
× p for all mh ∈ Uh.

The inclusion of the nodal projection mapping mh 7→ Ih
[
mh/ |mh|

]
in the definition of the

discrete operator ensures that the product Ih
[
mh/ |mh|

]
· p belongs to [−1, 1], which is the

domain of the ballistic function G. For all mh ∈ Uh, it holds that

‖Πh(mh)‖L2(Ω) ≤
‖je‖L∞(Ω) ‖G(·, P )‖L∞[−1,1] |Ω|

1/2

d
,

which shows that the stability requirement (4.16b) is satisfied. It remains to verify that Πh fulfills
also the consistency assumption (4.18b). Let m̂−hk be the piecewise constant time reconstruc-
tion (4.41) obtained from the output of Algorithm 4.2.1 using the ‘normalized iterate’ (4.40). Let
Π−hk be defined by (4.14). It holds that∥∥Π−hk −Π(m)

∥∥
L2(ΩT )

=
∥∥[jeG(m̂−hk · p, P )/d](m̂−hk × p)−

[
jeG

(
m · p, P

)
/d
]
(m× p)

∥∥
L2(ΩT )

≤
‖je‖L∞(Ω)

d

∥∥G(m̂−hk · p, P )(m̂−hk × p)−G
(
m · p, P

)
(m× p)

∥∥
L2(ΩT )

≤
‖je‖L∞(Ω)

d

(∥∥[G(m̂−hk · p, P )−G(m · p, P )](m̂−hk × p)
∥∥
L2(ΩT )

+
∥∥G(m · p, P )(m̂−hk −m)× p

∥∥
L2(ΩT )

)
≤
‖je‖L∞(Ω)

d

(
L
∥∥m̂−hk −m∥∥L2(ΩT )

+ ‖G(·, P )‖L∞[−1,1]

∥∥m̂−hk −m∥∥L2(ΩT )

)
,

where L > 0 denotes the Lipschitz continuity constant of G. Since m̂−hk →m in L2(ΩT ) by (4.42b),
we obtain (4.18b) with strong convergence. The framework of part (c) of Theorem 4.3.2 is therefore
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satisfied, which guarantees the convergence of the approximate solutions towards a weak solution
of the LLGS equation.

Next, we consider the extended LLGS equation (3.8)

∂tm = −m× heff + αm× ∂tm−
aP je
d
m× (m× p+ ξp),

where aP > 0, d > 0, ξ > 0, and p ∈ S2 are constant, whereas the scalar function je belongs to
L∞(Ω). In order to see that also this model fits into the setting of the general LLG equation (5.27),
we define the operator Π : L2(Ω)→ L2(Ω) by

Π(m) =
aP je
d

(m× p+ ξp) for all m ∈ L2(Ω).

Correspondingly, we consider the discrete operator Πh defined by

Πh(mh) =
aP je
d

(mh × p+ ξp) for all mh ∈ S1(Th)3.

Since, for all mh ∈ S1(Th)3, it holds that

‖Πh(φh)‖L2(Ω) ≤
aP ‖je‖L∞(Ω)

d

(
ξ |Ω|1/2 + ‖mh‖L2(Ω)

)
,

the stability condition (4.16b) is satisfied. It is straightforward to verify that, since m−hk →m in
L2(ΩT ) by (4.37e), also the consistency condition (4.18b) with strong convergence is satisfied. It
follows that the framework of part (c) of Theorem 4.3.2 fully applies also in this case.

5.2.2 Zhang–Li model
In this section, we discuss the numerical approximation of the Zhang–Li model presented in Sec-
tion 2.3.3 and nondimensionalized in (3.9). We consider the extended LLG equation

∂tm = −m× heff + αm× ∂tm−m× [m× (v · ∇)m+ ξ(v · ∇)m],

where ξ > 0 is constant and v belongs to L∞(Ω). To recover (5.27), we consider the operator
Π : H1(Ω) ∩L∞(Ω)→ L2(Ω) defined by

Π(m) = m× (v · ∇)m+ ξ(v · ∇)m for all m ∈H1(Ω) ∩L∞(Ω).

To approximate Π we introduce the discrete operator Πh defined by

Πh(mh) = Ih
[
mh/ |mh|

]
× (v · ∇)mh + ξ(v · ∇)mh for all mh ∈ Uh.

For all mh ∈ Uh, it holds that

‖Πh(mh)‖L2(Ω) =
∥∥Ih[mh/ |mh|

]
× (v · ∇)mh + ξ(v · ∇)mh

∥∥
L2(Ω)

≤ (1 + ξ) ‖v‖L∞(Ω) ‖∇mh‖L2(Ω) .

In particular, the stability condition (4.16b) is satisfied. As for the consistency condition (4.18b),
let ϕ ∈ L2(ΩT ) be arbitrary. Let m−hk and m̂−hk be the piecewise constant time approximations
constructed from the output of Algorithm 4.2.1 and let Π−hk be defined by (4.14). Note that
m−hk ⇀ m in L2(0, T ;H1(Ω)) by (4.37d) and m̂−hk → m in L2(ΩT ) by (4.42b), from which it
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follows that (v · ∇)m−hk ⇀ (v · ∇)m and m̂−hk ×ϕ→m×ϕ in L2(ΩT ). It holds that∫ T

0

〈Π−hk(t),ϕ(t)〉Ω dt

=

∫ T

0

〈m̂−hk(t)× (v · ∇)m−hk(t) + ξ(v · ∇)m−hk(t),ϕ(t)〉Ω dt

= −
∫ T

0

〈(v · ∇)m−hk(t), m̂−hk(t)×ϕ(t)〉Ω dt+ ξ

∫ T

0

〈(v · ∇)m−hk(t),ϕ(t)〉Ω dt

→ −
∫ T

0

〈(v · ∇)m,m(t)×ϕ(t)〉Ω dt+ ξ

∫ T

0

〈(v · ∇)m,ϕ(t)〉Ω dt

=

∫ T

0

〈m(t)× (v · ∇)m(t) + ξ(v · ∇)m(t),ϕ(t)〉Ω dt =

∫ T

0

〈Π(m(t)),ϕ(t)〉Ω dt,

which shows that Π−hk ⇀ Π(m) in L2(ΩT ), i.e., the consistency requirement (4.18b) is fulfilled.
Therefore, we can apply part (b) of Theorem 4.3.2 and deduce the existence of a function m ∈
L∞(0, T ;H1(Ω)) ∩ H1(0, T ;L2(Ω)) which satisfies the requirements (i)–(iii) of Definition 4.1.1.
Because of the lack of strong convergence in (4.18b), the framework of part (c) of Theorem 4.3.2
does not apply and we are not able to establish the energy inequality (4.5) of Definition 4.1.1 (iv).

5.2.3 Stationary spin diffusion model
Let Ω′ ⊂ R3 be a bounded Lipschitz domain with polyhedral boundaries Γ′ := ∂Ω′ such that
Ω ⊆ Ω′. In Ω, we consider the extended LLG equation

∂tm = −m× heff + αm× ∂tm− τ−1
J m× s

where τJ > 0 is constant, while s : Ω′ → R3 solves the boundary value problem

z∇ · [D0(I3×3 − ββ′m⊗m)∇s]− τ−1
sf s− τ

−1
J s×m = βz∇ · (m⊗ j) in Ω′,

∂ns = 0 on Γ′.

Here, the quantities z > 0, τsf > 0, and 0 < β, β′ < 1 are constant, j belongs to H1(Ω′) ∩
L∞(Ω′), while D0 ∈ L∞(Ω′) is positive and bounded away from zero, i.e., there exists a con-
stant D∗ > 0 such that D0 ≥ D∗ a.e. in Ω′. To recover (5.27), we define the operator Π :
{m ∈ L∞(Ω) : |m| = 1 a.e. in Ω} → L2(Ω) as the mapping m 7→ τ−1

J s|Ω, where s ∈ H1(Ω′) is
the solution of the following variational problem: Find s ∈H1(Ω′) such that

a(m; s, ζ) = F (m; ζ) for all ζ ∈H1(Ω′).

Here, for m ∈ L∞(Ω) satisfying |m| = 1 a.e. in Ω, a(m; ·, ·) is the bilinear form (5.2), while
F (m; ·) ∈H1(Ω′)∗ is defined by

F (m; ζ) = zβ〈m⊗ j,∇ζ〉Ω − zβ〈j · n,m · ζ〉Γ′∩Γ for all H1(Ω′).

Since the bilinear form is continuous and elliptic by Lemma 5.1.1, the variational problem is well
posed. In particular, the operator Π is well defined.

Let {T ′h}h>0 be a γ-quasi-uniform family of regular tetrahedral triangulations of Ω′ which
resolve Ω, i.e., the restriction Th := T ′h|Ω provides a regular triangulation of Ω. To discretize
Π, we define the discrete operator Πh : Uh → S1(Th)3 as the mapping mh 7→ τ−1

J sh|Ω, where
sh ∈ S1(T ′h)3 is the solution of the following discrete variational problem: Find sh ∈ S1(T ′h)3 such
that

a
[
Ih[mh/ |mh|]

]
(sh, ζh) = F

[
Ih[mh/ |mh|]

]
(ζh) for all ζh ∈ S1(T ′h)3.
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The application of the nodal projectionmh 7→ Ih[mh/ |mh|] guarantees that a
[
Ih[mh/ |mh|]

]
(·, ·)

is elliptic; see Lemma 5.1.1. In particular, the Lax–Milgram theorem ensures that also the discrete
variational problem is well posed and that its unique solution sh ∈ S1(T ′h)3 satisfies

‖sh‖H1(Ω′) ≤
‖F‖H1(Ω′)∗

C
≤
zβ ‖j‖H1(Ω′)

C
, (5.28)

where C = min
{
z(1 − ββ′)D∗, τ−1

sf

}
. In particular, the discrete operator Πh is well defined and

fulfills

‖Πh(mh)‖L2(Ω) =
‖sh‖L2(Ω)

τJ
≤
‖sh‖H1(Ω′)

τJ
≤
zβ ‖j‖H1(Ω′)

CτJ
for all mh ∈ Uh,

which shows that the stability condition (4.16b) is satisfied. Differently from the previous cases,
here the operator Π is a nonlocal operator. Indeed, here the computation of Πh(mi

h) included in
step (i) of Algorithm 4.2.1 requires the approximate solution of a boundary value problem.

As for the consistency condition (4.18b), m̂−hk be the piecewise constant time reconstruction
defined by (4.41) and letm ∈ L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) with |m| = 1 a.e. in Ω such that
the convergence results (4.42) are satisfied. Moreover, let s ∈ L∞(0, T ;H1(Ω′)) be defined by

a(m(t); s(t), ζ) = F (m(t); ζ) for all ζ ∈H1(Ω′) and a.e. t ∈ (0, T ).

Similarly, let s−hk : [0, T ) → S1(T ′h)3 be defined by s−hk(t) := sih for all 0 ≤ i ≤ M − 1 such that
t ∈ [ti, ti+1), where sih ∈ S1(T ′h)3 satisfies

a(m̂i
h; sih, ζh) = F (m̂i

h; ζh) for all ζh ∈ S1(T ′h)3 and 0 ≤ i ≤M − 1. (5.29)

We aim to show that s−hk ⇀ s in L2(0, T ;H1(Ω′)). Since, with the notation of Theorem 4.3.2, it
holds that Π−hk = τ−1

J s−hk and Π(m) = τ−1
J s, this implies (4.18b).

From (5.28) it follows that {s−hk} is uniformly bounded in L2(0, T ;H1(Ω′)). We can apply
the Eberlein–Šmulian theorem and extract a weakly convergent subsequence (not relabeled) which
converges towards some function s̃ ∈ L2(0, T ;H1(Ω′)). Now we follow the argument of Step 2
of the proof of Theorem 5.1.6. Let η ∈ C1([0, T ];C∞(Ω′)) and define ηh : [0, T ] → S1(T ′h)3 by
ηh(t) = Ih[η(t)] for all t ∈ [0, T ]. From (5.29), we deduce that, for every measurable set I ⊆ [0, T ],
it holds that ∫

I

a(m̂−hk(t); s−hk(t),ηh(t)) dt =

∫
I

F (m̂−hk(t);ηh(t)) dt.

Passing this identity to the limit as k, h→ 0, thanks to the available convergence results, we obtain
that ∫

I

a(m(t); s̃(t),η(t)) dt =

∫
I

F (m(t);η(t)) dt

(for more details, see Step 2 of the proof of Theorem 5.1.6 on page 87). By density, since I ⊆ [0, T ]
is arbitrary, it follows that

a(m(t); s̃(t), ζ) = F (m(t); ζ) for all ζ ∈H1(Ω′) and a.e. t ∈ (0, T ).

This shows that s = s̃, so that the convergence s−hk ⇀ s in L2(0, T ;H1(Ω′)) is established.
We conclude that the consistency condition (4.18b) is satisfied and the framework of part (b) of
Theorem 4.3.2 therefore applies.

5.2.4 Self-consistent model
We conclude this chapter by discussing the numerical discretization of the self-consistent model
introduced in Section 2.3.4.
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5.2.4.1 Setting

Let Ω′ ⊂ R3 be a bounded Lipschitz domain with polyhedral boundaries Γ′ := ∂Ω′ such that
Ω ⊆ Ω′. Let Γ′ = Γ′D ∪ Γ′N be a partition of the boundary into relatively open parts Γ′D,Γ

′
N ⊂ Γ′

such that Γ′D ∩ Γ′N = ∅. In Ω, we consider the extended LLG equation

∂tm = −m× (heff + hc) + αm× ∂tm− τ−1
J m× s,

where τJ > 0 is constant, the Oersted field hc : R3 → R3 solves the transmission problem (3.2),
i.e.,

−∆hint
c = ∇× je in Ω′, (5.30a)

−∆hext
c = 0 in R3 \ Ω′, (5.30b)

hext
c − hint

c = 0 on Γ′, (5.30c)

(∇hext
c −∇hint

c )n = n× je on Γ′, (5.30d)
hc(x) = O(1/ |x|) as |x| → ∞, (5.30e)

while s : Ω′ → R3, together with V : Ω′ → R, is a solution of the system

∇ · je = 0 in Ω′, (5.31a)

∇ · js = −τ−1
sf s− τ

−1
J s×m in Ω′, (5.31b)

V = VD on Γ′D, (5.31c)
s = 0 on Γ′D, (5.31d)

je · n = 0 on Γ′N , (5.31e)
js n = 0 on Γ′N , (5.31f)

where

je = −cD0∇V − β′D0∇s>m, (5.31g)
js/z = −βcD0m⊗∇V −D0∇s. (5.31h)

Here, 0 < β, β′ < 1 and c, τsf , z > 0 are constant, VD ∈ H1/2(Γ′D), while D0 ∈ L∞(Ω′) is positive
and bounded away from zero, i.e., there exists a constant D∗ > 0 such that D0 ≥ D∗ a.e. in Ω′.

5.2.4.2 Analysis of the system

In view of the application of Theorem 4.3.2, we discuss the system (5.30)–(5.31) for the spin
accumulation s, the electric potential V , and the Oersted field hc, for a given time-independent
magnetization m.

Given m ∈ L∞(Ω) satisfying |m| = 1 a.e. in Ω, the variational formulation of (5.31) reads as
follows: Find s ∈H1

D(Ω′) and V ∈ H1(Ω′) with V = VD on Γ′D such that, for all ψ ∈ H1
D(Ω′) and

ζ ∈H1
D(Ω′), it holds that

c〈D0∇V,∇ψ〉Ω′ + β′〈D0∇s>m,∇ψ〉Ω′ = 0

βcz〈D0m⊗∇V,∇ζ〉Ω′ + z〈D0∇s,∇ζ〉Ω′ + τ−1
sf 〈s, ζ〉Ω′ + τ−1

J 〈s×m, ζ〉Ω′ = 0.

For all (ζ1, ψ1), (ζ2, ψ2) ∈H1(Ω′)×H1(Ω′), we define the bilinear form b(m; ·, ·) by

b(m; (ζ1, ψ1), (ζ2, ψ2)) = z〈D0∇s,∇ζ〉Ω′ + c2z〈D0∇V,∇ψ〉Ω′ + βcz〈D0m⊗∇V,∇ζ〉Ω′
+ β′cz〈D0∇s>m,∇ψ〉Ω′ + τ−1

sf 〈s, ζ〉Ω′ + τ−1
J 〈s×m, ζ〉Ω′ .

With this definition, the above variational problem can be rewritten in a more compact form: Find
s ∈H1

D(Ω′) and V ∈ H1(Ω′) with V = VD on Γ′D such that

b(m; (s, V ), (ζ, ψ)) = 0 for all (ζ, ψ) ∈H1
D(Ω′)×H1

D(Ω′) (5.32)

The well-posedness of (5.32) is established in the following proposition.
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Proposition 5.2.1. For any m ∈ L∞(Ω) satisfying |m| = 1 a.e. in Ω, there exist unique s ∈
H1
D(Ω′) and V ∈ H1(Ω′) with V = VD on Γ′D which satisfy the variational problem (5.32).

Moreover, there exists a constant C > 0 such that

‖s‖H1(Ω′) + ‖V ‖H1(Ω′) ≤ C. (5.33)

The constant C depends only on the problem data (β, β′, c, D0, τsf , VD, z).

Proof. Consider the Hilbert space X := H1
D(Ω′)×H1

D(Ω′) endowed with the norm

‖(ζ, ψ)‖2X = z
∥∥D1/2

0 ∇ζ
∥∥2

L2(Ω′)
+ c2z

∥∥D1/2
0 ∇ψ

∥∥2

L2(Ω′)
+ τ−1

sf ‖ζ‖
2
L2(Ω′) for all (ζ, ψ) ∈ X .

We show that the bilinear form b(m; ·, ·) : X × X → R is elliptic. To that end, we consider an
arbitrary (ζ, ψ) ∈ X and note the pointwise identity (m ⊗ ∇ψ) : ∇ζ = (∇ζ>m) · ∇ψ. Since
‖m‖L∞(Ω′) = 1 and 0 < β, β′ < 1, it holds that

b(m; (ζ, ψ), (ζ, ψ)) = z
∥∥D1/2

0 ∇ζ
∥∥2

L2(Ω′)
+ c2z

∥∥D1/2
0 ∇ψ

∥∥2

L2(Ω′)
+ τ−1

sf ‖ζ‖
2
L2(Ω)

+ cz(β + β′)〈D0m⊗∇ψ,∇ζ〉Ω′

≥ z
∥∥D1/2

0 ∇ζ
∥∥2

L2(Ω′)
+ c2z

∥∥D1/2
0 ∇ψ

∥∥2

L2(Ω′)
+ τ−1

sf ‖ζ‖
2
L2(Ω)

− cz(β + β′)
∥∥D1/2

0 ∇ζ
∥∥
L2(Ω′)

∥∥D1/2
0 ∇ψ

∥∥
L2(Ω′)

≥ z
(

1− β + β′

2

)∥∥D1/2
0 ∇ζ

∥∥2

L2(Ω′)
+ c2z

(
1− β + β′

2

)∥∥D1/2
0 ∇ψ

∥∥2

L2(Ω′)

+ τ−1
sf ‖ζ‖

2
L2(Ω)

≥ z
(

1− β + β′

2

)
‖(ζ, ψ)‖2X .

The result then follows from the Lax–Milgram theorem.

As for the Oersted field, we first introduce the Beppo Levi space

BL1(R3) =
{
φ ∈ H1

loc(R3) : ∇φ ∈ L2(R3)
}
/R,

endowed with the norm defined by ‖φ‖BL1(R3) = ‖∇φ‖L2(R3) for all φ ∈ BL1(R3). Given je ∈
L2(Ω′), the variational formulation of (5.30) reads as follows: Find hc ∈ BL1(R3)3 such that

〈∇hc,∇φ〉R3 = 〈je,∇× φ〉Ω′ for all φ ∈ BL1(R3)3. (5.34)

From the Riesz representation theorem, it follows that (5.34) admits a unique solution hc ∈
BL1(R3)3 such that ‖hc‖BL1(R3)3 ≤ ‖je‖L2(Ω′). Moreover, since the inclusion H1(R3) ↪→ BL1(R3)

is continuous and injective, the problem has at most one solution inH1(R3). Indeed, for the three-
dimensional case, it can be proved that the solution hc ∈ BL1(R3)3 belongs to H1(R3) and the
solution operator je 7→ hc is a bounded operator L2(Ω′)→H1(R3). For more details, we refer the
reader to [166], where the theory is developed for the analysis of the transmission problem (3.1) for
the magnetostatic potential. Note that (3.1) and (3.2) have the same structure so that the results
of [166] transfer to the present situation. We conclude that hc ∈ H1(R3) satisfies the stability
estimate

‖hc‖H1(R3) ≤ C ‖je‖L2(Ω′) , (5.35)

where C = C(|Ω′|) is constant. For m ∈ L∞(Ω′) satisfying ‖m‖L∞(Ω′) ≤ 1, applying Proposi-
tion 5.2.1 and taking the expression (5.31g) of the electric current into account, we obtain that

‖hc‖H1(R3)

(5.35)
. ‖je‖L2(Ω′)

(5.31g)
. ‖∇s‖L2(Ω′) + ‖∇V ‖L2(Ω′)

(5.33)
≤ C.
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To recover (5.27), we define the operator Π : {m ∈ L∞(Ω) : |m| = 1 a.e. in Ω} → L2(Ω) as the
mapping m 7→ hc|Ω + τ−1

J s|Ω. From the above discussion, it follows that

‖Π(m)‖L2(Ω) ≤ C for all m ∈ L∞(Ω) such that |m| = 1 a.e. in Ω,

where the constant C > 0 depends only on the data of the problem.

5.2.4.3 Numerical discretization

To define the discrete operator Πh which approximates Π and apply the framework of Theo-
rem 4.3.2, we need two effective numerical methods to discretize (5.30) and (5.31). To that end, let
T ′h be a γ-quasi-uniform regular tetrahedral triangulation of Ω′. Let E ′h := T ′h|Γ′ . We assume that Ω
and the partition of Γ′ into Γ′D and Γ′N are resolved, i.e., the restrictions Th := T ′h|Ω′ , E ′D,h := T ′h|Γ′D
and E ′N,h := T ′h|Γ′N provide regular triangulations of Ω, ΓD, and ΓN , respectively. Let H1

∗ (Ω
′) =

{φ ∈ H1(Ω′) :
∫

Ω′
φ(x) dx = 0}. We consider the discrete spaces S1

∗(T ′h) = S1(T ′h) ∩ H1
∗ (Ω

′),
S1
D(T ′h) = S1(T ′h) ∩H1

D(Ω′), S1
0 (T ′h) = S1(T ′h) ∩H1

0 (Ω′), and S1(E ′D,h) = {vh|ΓD
: vh ∈ S1

D(T ′h)}.
To approximate (5.31), we consider a finite element discretization of (5.32). Let mh ∈ Uh

be the approximate magnetization. Let VD,h = PhVD be a discretization of the Dirichlet data
obtained by applying the L2-orthogonal projection Ph : L2(Γ′D) → S1(E ′D,h). Since Ph is H1-
stable, it is also H1/2-stable by standard interpolation results. We consider the following discrete
variational formulation: Find sh ∈ S1

D(T ′h)3 and Vh ∈ S1(T ′h), with Vh = VD,h on Γ′D, such that

b(Ih[mh/ |mh|]; (sh, Vh), (ζh, ψh)) = 0 for all (ζh, ψh) ∈ S1
D(T ′h)3 × S1

D(T ′h). (5.36)

Since ‖Ih[mh/ |mh|]‖L∞(Ω) = 1, the bilinear form b(Ih[mh/ |mh|]; ·, ·) is uniformly elliptic on
S1
D(T ′h)3×S1

D(T ′h). Taking the H1/2-stability of Ph into account, it follows from Proposition 5.2.1
that (5.36) is well posed. Moreover, the unique solutions sh ∈ S1

D(T ′h)3 and Vh ∈ S1(T ′h) satisfy

‖sh‖H1(Ω′) + ‖Vh‖H1(Ω′) ≤ C, (5.37)

where the constant C > 0 depends on the problem data and on γ, but it is independent of the
mesh size h.

To approximate (5.30), we apply the hybrid FEM-BEM method for stray field computations
of [99]; see also [56, Section 4.4.1] and [109, Section 4.3]. The starting point is the decomposition
hc|Ω′ = h1 + h2, where h1 ∈ H1

∗ (Ω
′) and h2 ∈ H1(Ω′) are the unique weak solutions of the

boundary value problems

−∆h1 = ∇× je in Ω′, (5.38a)
∂nh1 = −n× je on Γ′, (5.38b)

and

−∆h2 = 0 in Ω′, (5.38c)
h2 = (K− 1/2)[h1|Γ′ ] on Γ′, (5.38d)

respectively. In (5.38d), we denote by K : H1/2(Γ′) → H1/2(Γ′) the (vector-valued) double layer
integral operator associated with the Laplace problem, which is formally defined by

K[φ](x) =
1

4π

∫
Γ′

(x− y) · n(y)

|x− y|3
φ(y)dS(y) for all φ ∈H1/2(Γ′);

see, e.g., [186, Section 3.1] or [147, Chapter 7]. Let je,h ∈ S1(T ′h)3 denote a given approximation of
je ∈ L2(Ω′). Taking the characterization (5.38) into account, an effective approximation of hc|Ω′
can be obtained by means of the following algorithm.

Algorithm 5.2.2 (Hybrid FEM-BEM method for Oersted field computations). Input: je,h ∈
S1(T ′h)3.
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(i) Compute h1,h ∈ S1
∗(T ′h)3 such that

〈∇h1,h,∇φh〉Ω′ = 〈je,h,∇× φh〉Ω′ for all φh ∈ S1
∗(T ′h)3.

(ii) Define gh := Ph(K− 1/2)[h1,h|Γ′ ] ∈ S1(E ′h)3, i.e, it holds that

〈gh,φh〉Γ′ = 〈(K− 1/2)[h1,h|Γ′ ],φh〉Γ′ for all φh ∈ S1(E ′h)3.

(iii) Compute h2,h ∈ S1(T ′h)3 such that h2,h|Γ′ = gh and

〈∇h1,h,∇φh〉Ω′ = 0 for all φh ∈ S1
0 (T ′h)3.

(iv) Define hc,h := h1,h + h2,h ∈ S1(T ′h)3.

Output: hc,h ∈ S1(T ′h)3.

We have collected all ingredients to define the discrete operator Πh : Uh → L2(Ω). For any
mh ∈ Uh, we first compute the unique solutions sh ∈ S1

D(T ′h)3 and Vh ∈ S1(T ′h) of (5.36). Then,
motivated by (5.31g), we define je,h = −cD0∇Vh − β′D0∇s>h Ih[mh/ |mh|] ∈ S1(T ′h)3. Finally,
this function is used as input for the computation of hc,h ∈ S1(T ′h)3 by Algorithm 5.2.2. The
discrete operator Πh is then defined as the mapping mh 7→ hc,h|Ω + τ−1

J sh|Ω.
In the remainder of this section, we prove that Πh satisfies the assumptions (4.16b) and (4.18b)

of Theorem 4.3.2. Owing to (5.37), it holds that ‖sh‖L2(Ω′) ≤ C. As for the Oersted field
part, stability and consistency follow from [56, Lemma 4.1 and Proposition 4.2]; see also [109,
Section 4.3]. It remains to show that the spin accumulation contribution to Πh satisfies the
consistency condition (4.18b). The proof follows the lines of the analogous result for the stationary
spin diffusion model considered in the previous section.

Let m̂−hk be the piecewise constant time reconstruction defined by (4.41) using the ‘normalized
iterate’ (4.40). We denote by m ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) the function such that the
convergence results (4.42) are satisfied. Let s ∈ L∞(0, T ;H1

D(Ω′)) and V ∈ L∞(0, T ;H1(Ω′)) with
V (t)|Γ′D = VD for a.e. t ∈ (0, T ) be defined by

b(m(t); (s(t), V (t)), (ζ, ψ)) = 0 for all (ζ, ψ) ∈H1
D(Ω′)×H1

D(Ω′) and a.e. t ∈ (0, T ).

Similarly, we define s−hk : [0, T ) → S1(T ′h)3 and V −hk : [0, T ) → S1(T ′h) by s−hk(t) := sih and
V −hk(t) := V ih for all 0 ≤ i ≤ M − 1 such that t ∈ [ti, ti+1), where sih ∈ S1

D(T ′h)3 and V ih ∈ S1(T ′h)
with V ih |Γ′D = VD,h satisfy

b(m̂i
h; (sih, V

i
h), (ζh, ψh)) = 0 for all ζh ∈ S1

D(T ′h)3, ψh ∈ S1
D(T ′h), and 0 ≤ i ≤M − 1. (5.39)

We aim to show that (s−hk, V
−
hk) ⇀ (s, V ) in L2(0, T ;H1

D(Ω′))× L2(0, T ;H1(Ω′)).
Thanks to (5.37), {(s−hk, V

−
hk)} is uniformly bounded in L2(0, T ;H1

D(Ω′)) × L2(0, T ;H1(Ω′)).
Hence, by the Eberlein–Šmulian theorem, we can extract a weakly convergent subsequence (not
relabeled) which converges towards some (s̃, Ṽ ) ∈ L2(0, T ;H1

D(Ω′)) × L2(0, T ;H1(Ω′)). Let η ∈
C1([0, T ];C∞(Ω′) ∩ H1

D(Ω′)) and φ ∈ C1([0, T ];C∞(Ω′) ∩ H1
D(Ω′)) be arbitrary. Define ηh :

[0, T ] → S1(T ′h)3 and φh : [0, T ] → S1(T ′h) by ηh(t) = Ih[η(t)] and φh(t) = Ih[φ(t)] for all
t ∈ [0, T ], respectively. From (5.39), we deduce that, for every measurable set I ⊆ [0, T ], it holds
that ∫

I

b(m̂−hk(t); (s−hk(t), V −hk(t)), (ηh(t), φh(t))) dt = 0.

Passing this identity to the limit as k, h→ 0, thanks to the available convergence results, we obtain
that ∫

I

b(m(t); (s̃(t), Ṽ (t)), (η(t), φ(t))) dt = 0.
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By density, since I ⊆ [0, T ] was arbitrary, we obtain that

b(m(t); (s̃(t), Ṽ (t)), (ζ, ψ)) = 0 for all (ζ, ψ) ∈H1
D(Ω′)×H1

D(Ω′) and a.e. t ∈ (0, T ).

Moreover, using the approximation properties of the L2-projection, we deduce that Ṽ (t)|Γ′D =

VD for a.e. t ∈ (0, T ). This shows that s = s̃ and V = Ṽ , so that the desired convergence
(s−hk, V

−
hk) ⇀ (s, V ) in L2(0, T ;H1

D(Ω′)) × L2(0, T ;H1(Ω′)). We conclude that Πh satisfies the
consistency requirement (4.18b) so that the framework of part (b) of Theorem 4.3.2 applies.

Remark 5.2.3. In step (ii) of Algorithm 5.2.2, the original reference [99] employs the nodal in-
terpolant (instead of the L2-orthogonal projection onto S1(E ′h)3) to obtain the discrete Dirichlet
data for step (iii). However, since the nodal interpolant is not well defined for H1/2-functions,
this choice is not suitable for the rigorous numerical analysis of the algorithm. Unlike [56, Section
4.4.1], where the Scott–Zhang projection from [187] is considered, we use the L2-orthogonal pro-
jection onto S1(E ′h)3. This choice is motivated by the fact that, in our numerical experiments, the
use of the L2-projection led to qualitative better results for coarse meshes. Since, on quasi-uniform
meshes, the L2-orthogonal projection is H1-stable and satisfies a first-order approximation prop-
erty, the result of [56, Lemma 4.1 and Proposition 4.2] remains valid; see also [109, Section 4.3].
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Chapter 6

Numerical results

To support our theoretical findings, this chapter presents some preliminary numerical results, which
investigate the performance of the tangent plane integrator discussed in Chapter 4. For deeper
numerical experiments, in particular concerning the spintronic extensions of the LLG equation
presented in Section 2.3 and analyzed in Chapter 5, we refer to our papers [7, 174, 8]. The
numerical results of those papers were obtained using the implementation of the tangent plane
scheme included in MAGNUM.fe, a C++/Python code mainly developed by C. Abert at the
Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials of TU Wien [5].

6.1 Solution of the system
In this section, we discuss effective strategies for the solution of the linear system which arises
discretizing the LLG equation with the tangent plane scheme (Algorithm 4.2.1). We start by
recalling the notation introduced in the proof of Proposition 4.2.2. Givenmh ∈ Uh, we denote the
discrete tangent space by

Kmh
:=
{
φh ∈ S1(Th)3 : mh(z) · φh(z) = 0 for all z ∈ Nh

}
.

We consider the bilinear form a(mh; ·, ·) : S1(Th)3 × S1(Th)3 → R defined by

a(mh;ηh,φh) := α〈ηh,φh〉 + 〈mh × ηh,φh〉 + λ2
exθk〈∇ηh,∇φh〉

for all ηh,φh ∈ S1(Th)3, and the linear functional F (mh; ·) : S1(Th)3 → R defined by

F (mh;φh) := −λ2
ex〈∇mh,∇φh〉 + 〈πh(mh),φh〉 + 〈fh,φh〉 + 〈Πh(mh),φh〉

for all φh ∈ S1(Th)3. The tangent plane scheme analyzed in Chapter 4 requires, for every time-step,
the solution of the following discrete variational problem (see (4.9) in step (ii) of Algorithm 4.2.1):

Find vh ∈ Kmh
such that a(mh;vh,φh) = F (mh;φh) for all φh ∈ Kmh

. (6.1)

Here, to simplify the notation, we have omitted the superscript i associated with the time-step.
Our approach is based on standard linear algebra arguments; see [50, Chapter 3]. Let {ep}1≤p≤3

be the standard basis of R3. Here and in the sequel, all vectors are understood as column vectors.
We start by enumerating the nodes of the triangulation, i.e., Nh = {zn}1≤n≤N , which induces an
ordering on the set of the hat functions, i.e., ϕn = ϕzn for all 1 ≤ n ≤ N . The set {ϕi}1≤i≤3N ,
where

ϕ3(n−1)+p := ϕnep for all 1 ≤ n ≤ N and 1 ≤ p ≤ 3,

then constitutes a basis of S1(Th)3. With respect to this basis, we define

• the symmetric and positive definite mass matrix M ∈ R3N×3N , defined by Mij = 〈ϕj ,ϕi〉
for all 1 ≤ i, j ≤ 3N ,

101



• the symmetric and positive semidefinite stiffness matrix L ∈ R3N×3N , defined by Lij =
〈∇ϕj ,∇ϕi〉 for all 1 ≤ i, j ≤ 3N ,

• the skew-symmetric matrix S ∈ R3N×3N , defined by Sij = 〈mh×ϕj ,ϕi〉 for all 1 ≤ i, j ≤ 3N ,

• the matrix A ∈ R3N×3N , defined by A = αM + λ2
exθkL + S,

• the matrix B ∈ RN×3N , whose transpose is defined by

B> =


mh(z1)
|mh(z1)| 0 · · · 0

0 mh(z2)
|mh(z2)|

. . . 0

0
. . . . . . 0

0 · · · 0 mh(zN )
|mh(zN )|

 ∈ R3N×N , (6.2)

• the right-hand side vector r ∈ R3N , defined by ri = F (mh;ϕi) for all 1 ≤ i ≤ 3N .

The matrix A, which represents the bilinear form a(mi
h; ·, ·), is positive definite (and hence regular)

and is made of a symmetric and positive definite part As = αM + λ2
exθkL and a skew-symmetric

part Ass = S.
The columns of the matrix B> are orthonormal, i.e., BB> = IN×N . In particular, it holds

that rk B = rk B> = N . The matrix B>B ∈ R3N×3N is the matrix associated with the orthogonal
projection onto Im B> = (ker B)⊥, from which it follows that the matrix P = I3N×3N −B>B ∈
R3N×3N is the matrix associated with the orthogonal projection onto ker B.

For wh =
∑3N
i=1 wiϕi ∈ S1(Th)3, let w ∈ R3N be the corresponding coordinate vector with

respect to the basis {ϕi}1≤i≤3N . By construction, for all 1 ≤ n ≤ N , it holds that

(Bw)n =

3N∑
j=1

Bnjwj =
mh(zn)

|mh(zn)|
·wh(zn).

We deduce that wh ∈ S1(Th)3 belongs to Kmh
if and only if w ∈ R3N satisfies Bw = 0. In

particular, ker B is isomorphic to Kmh
so that dim(Kmh

) = dim(ker B) = 3N − rk B = 2N .
Moreover, the matrix P ∈ R3N×3N is nothing but the transformation matrix associated with the
orthogonal projection S1(Th)3 → Kmh

.
In the remainder of this section, we describe three possible strategies to compute the unique

solution vh ∈ Kmh
of (6.1). For a numerical comparison of them as well as for the analysis of

solvers and preconditioning strategies for the resulting linear systems, we refer the interested reader
to a forthcoming publication [168].

6.1.1 Saddle point formulation
We introduce the Lagrange multiplier associated with the orthogonality constraint and consider
the saddle point problem (

A B>

B 0

)(
v
λ

)
=

(
r
0

)
. (6.3)

In the following proposition, we establish the equivalence of (6.1) with the linear system (6.3).

Proposition 6.1.1. There exists a unique solution (v,λ) ∈ R3N × RN of (6.3). The varia-
tional problem (6.1) and the linear system (6.3) are equivalent in the sense that vh =

∑3N
i=1 viϕi

solves (6.1) if and only if v ∈ R3N , together with some λ ∈ RN , constitutes a solution (v,λ)
of (6.3).
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Proof. Since A is positive definite and B is surjective, the matrix of the system (6.3) is regular; see,
e.g., [50, Corollary 3.2.2]. Therefore, a solution (v,λ) ∈ R3N × RN of (6.3) exists and is unique.

To prove the second part of the statement, let (v,λ) ∈ R3N × RN be the unique solution
of (6.3). It holds that Av + B>λ = r and Bv = 0. In particular, since v ∈ ker B, vh =

∑3N
i=1 viϕi

belongs to Kmh
. Let wh =

∑3N
i=1 wiϕi ∈ Kmh

be arbitrary. Then, the coordinate vector w ∈ R3N

satisfies Bw = 0. It holds that

a(mh;vh,wh) =

3N∑
i,j=1

a(mh;ϕj ,ϕi)vjwi = Av ·w = (Av + B>λ) ·w = r ·w = F (mh;wh).

Since wh ∈ Kmh
was arbitrary, this shows that vh ∈ Kmh

solves (6.1) and concludes the proof.

6.1.2 Reduced constrained problem
The numerical solution of saddle point problems is a well-understood mathematical problem; see,
e.g., [43]. However, we notice at least two disadvantages in using this approach for the computation
of the solution of (6.1): On the one hand, the resulting linear system is indefinite, despite the
positive definiteness of the original variational problem; on the other hand, although the number
of actual unknowns of (6.1) is 2N (as dim(Kmh

) = dim(ker B) = 2N), we end up with a system
of 4N unknowns. Using a geometric approach, we aim to construct a basis of the discrete tangent
space so that the computation of the solution vh ∈ Kmh

of (6.1) will require to solve a linear
system of 2N equations for 2N unknowns.

For the sake of illustration, we start by considering a single node z ∈ Nh of the triangulation,
for which we define mz = mh(z)/ |mh(z)| ∈ S2. Suppose that we are given an orthogonal
matrix Rz ∈ R3×3 which satisfies either R>z e3 = mz or R>z e3 = −mz. Since Rz is orthogonal,{
R>z ep

}
1≤p≤3

is an orthonormal basis of R3. Using standard linear algebra arguments, it is
easy to check that, for any w ∈ R3, the coordinate vector x ∈ R3 with respect to the basis
{ep}1≤p≤3, i.e., w =

∑3
p=1 xpep, and the coordinate vector y ∈ R3 with respect to the basis{

R>z ep
}

1≤p≤3
, i.e., w =

∑3
p=1 ypR

>
z ep, are related to each other via y = Rzx. Moreover,

since R>z e3 ∈ {±mz} by assumption,
{
R>z ep

}
1≤p≤2

is an orthonormal basis of the subspace
Kz = span(mz)⊥ =

{
u ∈ R3 : u ·mz = 0

}
of R3. In particular, w ∈ Kz if and only if the

coordinate vector x ∈ R3 with respect to the basis {ep}1≤p≤3 satisfies (Rzx)3 = 0.
In the following lemma, we state two possible geometric ways to construct a matrix satisfying

the desired properties.

Lemma 6.1.2. Let m ∈ S2. Let R ∈ R3×3 be the matrix constructed according to either of the
following two strategies:

(i) Define σ = sign(m · e3), with the convention that sign(0) = −1. If m = σe3, define

R =

1 0 0
0 1 0
0 0 −1

 ,

otherwise define the Householder matrix

R = I3×3 − 2w ⊗w, where w =
m+ σe3

|m+ σe3|
∈ S2.

(ii) Define

R = I3×3 − [e3 ×m]× +
1

1 +m · e3
[e3 ×m]2×

where [ · ]× denote the skew-symmetric cross product matrix defined by

[u]× =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 for all u ∈ R3,
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which satisfies [u]×w = u×w for all w ∈ R3.

Then, in both cases, R is orthogonal. The matrix R defined by (i) is symmetric and satisfies
m = −σRe3 = −σR>e3. For the matrix R defined by (ii), it holds that m = R>e3.

Proof. The matrix R of part (i) is the transformation matrix of a reflection. It is symmetric,
orthogonal, and therefore also involutory, i.e., R2 = I3×3. If m = σe3, the reflection is with
respect to the plane {x3 = 0}. In particular, it holds that m = σe3 = −σRe3. Otherwise, it
is a reflection with respect to the plane passing through the origin and orthogonal to the vector
w ∈ S2. Since

|m+ σe3|2 = 2(1 + σm · e3), (6.4)

it follows that

Rm = m− 2(w ⊗w)m = m− 2(w ·m)w = m− 2

(
m+ σe3

|m+ σe3|
·m
)
m+ σe3

|m+ σe3|
(6.4)
= −σe3.

Since R is involutory, we conclude that m = R2m = −σRe3 = −σR>e3.
The matrix R of part (ii) is the transformation matrix of the rotation around the axis m× e3

by an angle γ such that cos γ = m · e3 and sin γ = |m× e3|. In particular, it is orthogonal and
satisfies Rm = e3 by construction.

For all 1 ≤ n ≤ N , we denote by Rn = Rzn the orthogonal matrix associated with the vertex
zn, i.e., it holds that R>n e3 ∈ {±m(zn)/ |m(zn)|}. Let R ∈ R3N×3N be the orthogonal block
diagonal matrix defined by

R =


R1 0 · · · 0

0 R2
. . . 0

0
. . . . . . 0

0 · · · 0 RN

 ∈ R3N×3N .

By construction, the set {ψi}1≤i≤3N , where

ψ3(n−1)+p := ϕnR
>
n ep for all 1 ≤ n ≤ N and 1 ≤ p ≤ 3,

provides another basis of S1(Th)3. Given an arbitrary wh ∈ S1(Th)3, let x ∈ R3N and y ∈ R3N

be the coordinate vectors with respect to the bases {ϕi}1≤i≤3N and {ψi}1≤i≤3N , respectively. It
holds that

wh =

3N∑
i=1

yiψi =

N∑
n=1

3∑
p=1

y3(n−1)+pψ3(n−1)+p =

N∑
n=1

3∑
p=1

y3(n−1)+pϕnR
>
n ep

=

N∑
n=1

ϕn

3∑
p=1

y3(n−1)+p

(
3∑
q=1

(R>n )qpeq

)
=

N∑
n=1

3∑
q=1

(
3∑
p=1

(R>n )qpy3(n−1)+p

)
ϕneq

=

N∑
n=1

3∑
q=1

(
3∑
p=1

(R>n )qpy3(n−1)+p

)
ϕ3(n−1)+q,

from which it follows that

x3(n−1)+q =

3∑
p=1

(R>n )qpy3(n−1)+p for all 1 ≤ n ≤ N and 1 ≤ q ≤ 3.

Owing to the block diagonal structure of R, this shows that x = R>y, i.e., y = Rx by orthogo-
nality. Since R>n e3 ∈ {±mh(zn)/ |mh(zn)|}, by construction it holds that wh ∈ S1(Th)3 belongs
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to Kmh
if and only if its coordinate vector w ∈ R3N with respect to the basis {ϕi}1≤i≤3N satisfies

(Rw)3n = 0 for all 1 ≤ n ≤ N . In particular, the subset
{
ψ3(n−1)+p

}
1≤n≤N, 1≤p≤2

is a basis of
Kmh

.
Let Q ∈ R2N×3N be the matrix such that Q> is the matrix obtained from R> by crossing out

the columns whose index is a multiple of 3, i.e.,

Q =


Q1 0 · · · 0

0 Q2
. . . 0

0
. . . . . . 0

0 · · · 0 QN

 ∈ R2N×3N ,

with Q>n = (R>n e1,R
>
n e2) ∈ R3×2. By construction, the columns of Q> are orthonormal, i.e.,

QQT = I2N×2N . Moreover, it holds that

Im Q> =

{
x ∈ R3N :

3N∑
i=1

xiϕi ∈ Kmh

}
. (6.5)

Since the matrix Q>n are obtained from R>n by crossing out the third column R>n e3, for which
it holds that R>n e3 ∈ {±mh(zn)/ |mh(zn)|}, we deduce that the matrix Q and the matrix
B, introduced in (6.2) and used in the saddle point formulation, are related to each other by
(Im Q>)⊥ = Im B>. In particular, it follows that Im Q> = (Im B>)⊥ = ker B as well as the
matrix identities

B>B + Q>Q = I3N×3N and BQ> = 0.

We deduce the matrix identity P = I3N×3N −B>B = Q>Q.
With this geometric argument, we have constructed a basis of the discrete tangent plane, which

can be used to obtain an alternative matrix formulation of (6.1). To that end, we consider the
linear system

(QAQ>)u = Qr. (6.6)

In the following proposition, we establish the equivalence of (6.1) with (6.6).

Proposition 6.1.3. There exists a unique solution u ∈ R2N of (6.6). The variational prob-
lem (6.1) and the linear system (6.6) are equivalent in the sense that vh =

∑3N
i=1 viϕi solves (6.1)

if and only if it holds that v = Q>u, with u ∈ R2N being the unique solution of (6.6).

Proof. Since the matrix A is positive definite, it holds that

(QAQ>z) · z = (AQ>z) · (Q>z) > 0 for all z ∈ R2N .

We deduce that also the matrix QAQ> is positive definite and the linear system (6.6) thus admits
a unique solution u ∈ R2N .

To prove the second part of the statement, let u ∈ R2N be the unique solution of (6.6).
Define v = QTu ∈ R3N . By (6.5), we obtain that vh =

∑3N
i=1 viϕi belongs to Kmh

. Let wh =∑3N
i=1 wiϕi ∈ Kmh

be arbitrary. Using again (6.5), there exists z ∈ R2N such that w = Q>z. It
holds that

a(mh;vh,wh) = Av ·w = (AQTu) · (QT z) = (QAQTu) · z
(6.6)
= (Qr) · z = r · (Q>z) = r ·w = F (mh;wh).

We conclude that vh ∈ Kmh
solves (6.1). This concludes the proof.
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6.1.3 Projected unconstrained formulation
The solution of the variational problem (6.1) can also be obtained from the (iterative) solution of
a projected nonregular system. Consider the linear system

(PA)v = Pr. (6.7)

Here, P = Q>Q ∈ R3N×3N is the matrix associated with the orthogonal projection onto Im Q> and
we have already observed that it is also the transformation matrix associated with the orthogonal
projection S1(Th)3 → Kmh

. The following proposition clarifies the relation between (6.7) and the
saddle point formulation (6.3).

Proposition 6.1.4. Let (v,λ) ∈ R3N × RN be the unique solution of (6.3). Then, v ∈ R3N

solves (6.7) as well as
(PAP)v = Pr. (6.8)

Conversely, let v ∈ R3N be a solution of (6.8). Then, there exists λ ∈ RN such that (Pv,λ) ∈
R3N × RN is the unique solution of (6.3).

Proof. Let (v,λ) ∈ R3N ×RN be the unique solution of (6.3). Then, it holds that Av + B>λ = r
and Bv = 0. Since BB> = IN×N , it follows that λ = BB>λ = B(r − Av). We deduce that
Av + B>B(r − Av) = r. Rearranging the terms, we conclude that (I3N×3N − B>B)Av =
(I3N×3N − B>B)r. Since I3N×3N − B>B = Q>Q = P, we obtain (6.7). Moreover, as Bv = 0,
we obtain that Pv = (I3N×3N −B>B)v = v. In particular, v solves also (6.8).

Conversely, let v ∈ R3N be a solution of (6.8). Since BQ> = 0, it holds that BPv = BQ>Qv =
0. Moreover, as QQ> = I2N×2N , it holds that

Q(r−APv) = QQ>Q(r−APv) = QP(r−APv) = Q(Pr−PAPv)
(6.8)
= 0.

It follows that r−APv ∈ ker Q = (Im Q>)⊥ = (ker B)⊥ = Im B>, i.e., there exists λ ∈ RN such
that B>λ = r−APv. In particular, we conclude that (Pv,λ) is a solution of (6.3).

6.2 Numerical experiments
In this section, to support our theoretical findings, we present some preliminary numerical results.
Deeper investigations aimed at a better undestanding of the numerical performances of the tangent
plane integrators analyzed in Chapter 4 appear to be necessary and will be one of the subjects of
our future research.

The computations presented in this section were performed at the Institute for Analysis and
Scientific Computing of TU Wien with NGS-µMAG, a micromagnetic code mainly developed by
B. Stiftner. His invaluable assistance is thankfully acknowledged. The C++/Python code is a
micromagnetic extension of the open-source finite element library NETGEN/NGSolve [178, 179, 2].
The computation of the stray field is based on the hybrid FEM-BEM method of [99] which requires
the evaluation of boundary integral operators associated with the Laplace equation. This part of
the code exploits the open-source Galerkin boundary element library BEM++ [192].

6.2.1 Standard vs. projection-free tangent plane schemes
For the unit cube Ω = (0, 1)3, we consider the initial boundary value problem

∂tm = −m× heff + αm× ∂tm in ΩT ,

∂nm = 0 on ΓT ,

m(0) = m0 in Ω,
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with T = 5 and α = 1. The effective field includes the exchange contribution (with unit exchange
length), the stray field, and a constant applied external field

heff = ∆m+ hs(m) + f ,

with f = (−2,−1/2, 0)>. As for the initial condition, we consider the constant function defined
by m0(x) = (1, 0, 0)> for all x ∈ Ω. The resulting dynamics of the magnetization is very simple
and consists in a coherent rotation towards a perfect alignment with the applied external field;
see Figure 6.3. This example was considered in [167] to analyze the numerical performance of an
implicit-explicit extension of the midpoint scheme of [40].

For the spatial discretization, we consider a regular triangulation of Ω into 3072 tetrahedra,
which corresponds to a mesh size of about h ≈ 0.2. For the time discretization, we start with a
uniform partition of the time interval into M = 1250 subintervals, which corresponds to an initial
time-step size of k0 = 4 · 10−3, and consider the sequence of time-step sizes obtained by halving 4
times the initial one, i.e., k = 2−`k0 with 0 ≤ ` ≤ 4. Since an analytical expression of the exact
solution is not available, we use as reference solution the discrete solution obtained by two further
bisections of the time-step size, i.e., mref = mhkref with kref = 2−6k0 = 6.25 · 10−5.

10−410−310−2

10−3

10−2

k

(a) Standard tangent plane scheme

O(k)
TPS

10−410−310−2

10−3

10−2

k

(b) Projection-free tangent plane scheme

O(k)
PFTPS

Figure 6.1: Empirical convergence rates of the tangent plane scheme (θ = 1). Comparison
between the standard version (a) and the projection-free version (b).

In Figure 6.1, for both the standard tangent plane scheme and its projection-free variant, we plot
the computed empirical convergence rates of the error max1≤i≤M

∥∥mi
h −mref(ti)

∥∥
L2(Ω)

. In both
cases, we observe a 1st-order convergence, which is in total agreement with the formal convergence
rates predicted by the theory; see (4.11)–(4.12). As for the parameter θ, which modulates the
‘degree of implicitness’ of the method, the presented plots refer to the value θ = 1, but analogous
results were obtained for any other value 0 ≤ θ < 1 that we tried.

In Figure 6.2, we numerically investigate the violation of the pointwise constraint occuring in
the case of the projection-free tangent plane scheme. We compare the time evolution of the L∞-
norm of the discrete solution for different values of the time-step size. The particular qualitative
behavior of the functions depends on the model problem. We observe that, as the time-step size
gets smaller, the plot of the function t 7→

∥∥m−hk(t)
∥∥
L∞(Ω)

is gradually closer to that of the constant
function f(t) = 1.

6.2.2 µMAG standard problems
In order to test and compare the available micromagnetic codes, the Micromagnetic Modeling Ac-
tivity Group [3], part of the Center for Theoretical and Computational Materials Science (CTCMS)
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Figure 6.2: Projection-free tangent plane scheme (θ = 1). Plot of the function t 7→∥∥m−hk(t)
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L∞(Ω)

for different values of the time-step size k = 2−`k0, 1 ≤ ` ≤ 5.

of the National Institute of Standards and Technologies (NIST) of Gaithersburg (USA), has de-
veloped a set of 5 benchmark problems. In this section, we simulate two of the proposed problems
(Standard problem #4 and Standard problem #5) and compare our results with those obtained by
using OOMMF (Object-Oriented MicroMagnetic Framework), a FDM-FFT micromagnetic code
developed by M. Donahue and D. Porter at NIST [4, 82]. Because of the different nature of the
considered methods (e.g., FEM vs. FDM for the spatial discretization, FFT vs. hybrid FEM-BEM
method for the computation of the stray field, adaptive higher-order vs. uniform 1st order time-
stepping), we cannot expect a perfect quantitative agreement of the simulation results. However,
the comparison of the qualitative behavior of the solutions can give us some insights about the
performance of our methods for the simulation of practically relevant problem sizes.

6.2.2.1 Standard problem #4

Standard problem #4, raised by R. McMichael, R. Koch, and T. Schrefl, and developed by
J. Eicke and R. McMichael, is focused on dynamic aspects of micromagnetic computations.

The computational domain is a thin ferromagnetic film of length L = 500 nm, width ` = 125 nm,
and thickness d = 3 nm, aligned with the x, y, and z axes of a Cartesian coordinate system,
respectively. The effective field to be considered in the Landau–Lifshitz–Gilbert equation (2.30)
consists of the exchange contribution, the applied external field, and the stray field. The values
of the involved material parameters mimic those of permalloy1, i.e., A = 1.3 · 10−11 J/m for the
exchange stiffness constant, Ms = 8.0 · 105 A/m for the saturation magnetization, and α = 0.02 for
the Gilbert damping parameter. With these values, we obtain an exchange length of λex = 5.7 nm.
Since permalloy is a soft magnetic material, the magnetocrystalline anisotropy is negligible and
therefore omitted.

The initial configuration of the magnetization is an equilibrium s-state, which can be obtained,
e.g., after applying and slowly reducing a saturating field along the (1, 1, 1)> direction to zero; see
Figure 6.6(a). Then, for t = 0, a constant external field of magnitude µ0Hext = (−24.6, 4.3, 0)>

mT, sufficient to reverse the magnetization of the thin film, is instantaneously applied to the initial
configuration and the time evolution of the magnetization as the system moves towards the new
equilibrium is analyzed; see Figure 6.6(b).

1Permalloy is a nickel-iron magnetic alloy with about 20% iron and 80% nickel content, frequently used in
magnetic storage devices.
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To discretize the problem, we consider a regular partition of the computational domain into
17 478 tetrahedra generated by NETGEN, which corresponds to a mesh size of about 5 nm. As
for the time discretization, we consider a uniform partition of the time interval with time-step
size of 0.2 ps. We compare our results, for both the standard tangent plane scheme and the
projection-free version, with the simulation results obtained with OOMMF, available on the µMAG
homepage [3]. Their simulation results are based on a uniform partition of the computational
domain into 187 500 cubes with 1 nm edge. The time discretizazion exploys an adaptive Runge–
Kutta–Fehlberg method [83] with a maximal time-step size of 0.2 ps (thus comparable to ours).

In Figure 6.4, we show the time evolution of the three components of the spatially averaged
magnetization of the sample. On the one hand, the results for the standard tangent plane scheme
are in striking agreement with those of OOMMF. On the other hand, the curves obtained with
the projection-free tangent plane scheme exhibit an evident offset, which becomes broader as time
evolves. This can be ascribed to the omission of the nodal projection. The results for both the
tangent plane integrators depicted in Figure 6.4 were obtained for the choice θ = 1. Analogous
results were obtained with θ = 1/2. With these values for the discretization parameters, the choice
θ = 0 led to a completely different time evolution of the magnetization. This shows the stability
issues of the explicit version of the method and underlines the necessity of the CFL condition
revealed by the analysis.

6.2.2.2 Standard problem #5

Standard problem #5, a slight modification of the benchmark problem proposed in [158], aims at
testing those micromagnetic solvers that include the effects of spin transfer between the magneti-
zation and spin-polarized electric currents.

The computational domain is a rectangular magnetic film with dimensions 100 nm × 100 nm ×
10 nm, aligned with the x, y, and z axes of a Cartesian coordinate system, with origin at the center
of the film. The underlying model is the Zhang–Li extension of the LLG equation discussed in
Section 2.3.3. The contributions included into the effective field and the material parameters are
the same as in the previous section (A = 1.3 · 10−11 J/m, Ms = 8.0 · 105 A/m), except for the value
of the Gilbert damping parameter (α = 0.1). The magnetocrystalline anisotropy of the material
is ignored also in this case.

The initial state is obtained by solving the Landau–Lifshitz–Gilbert equation (2.30) for the
initial condition

m0(x, y, z) =
(−y, x,R)>√
x2 + y2 +R2

with R = 10 nm,

until the magnetization reaches the equilibrium configuration; see Figure 6.7(a). The resulting
state is a magnetization vortex pattern. Then, for t = 0, a constant polarized electric current with
associated spin velocity vector v = (−72.12, 0, 0)> A/m is applied. The governing equation is the
extended LLG equation (2.51), with ratio of adiabacity set to ξ = 0.05. The time evolution of the
magnetization as the system moves towards the new equilibrium is analyzed; see Figure 6.7(b).

To discretize the problem with the tangent plane scheme, we consider a tetrahedral triangulation
of the computational domain into 25666 tetrahedra, which corresponds to a mesh size of about
5 nm. For the time discretization, we employ a uniform partition of the time interval with time-step
size of 0.2 ps (40000 time-steps). Again, we compare our results with those obtained by OOMMF.
The simulation results downloadable from the µMAG homepage [3] refer to a uniform partition of
the computational domain into 12500 cubes with 2 nm edge and 42350 adaptive time-steps.

In Figure 6.5, we show the time evolution of the first two components of the spatially averaged
magnetization of the sample. The qualitative behavior of the time evolution of the magnetization
is in agreement with the one simulated with OOMMF. For this problem, the difference between
the standard tangent plane scheme and the projection-free version is not significant.

For the physical validation of our algorithms for the spin diffusion model (see Section 2.3.2 and
Section 5.1) and the self-consistent model (see Section 2.3.4 and Section 5.2.4), we refer to our
papers [7, 174, 8].
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

(e) t = 4 (f) t = 5

Figure 6.3: Snapshots of the magnetization dynamics for the model problem considered
in Section 6.2.1.
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Figure 6.4: µMAG standard problem #4. Time evolution of the three components of the
spatially averaged magnetization of the sample, i.e., 〈m(t) · ei〉 = 1

N

∑N
n=1m(zn, t) · ei

for 1 ≤ i ≤ 3. Comparison of the results obtained with the standard tangent plane
scheme (TPS), the projection-free tangent plane scheme (PFTPS), both implemented in
NETGEN/NGSolve, and with OOMMF.
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Figure 6.5: µMAG standard problem #5. Time evolution of the first two components of
the spatially averaged magnetization of the sample, i.e., 〈m(t)·ei〉 = 1

N

∑N
n=1m(zn, t)·ei

for 1 ≤ i ≤ 2. Comparison of the results obtained with the standard tangent plane
scheme (TPS), the projection-free tangent plane scheme (PFTPS), both implemented in
NETGEN/NGSolve, and with OOMMF.
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(a) Initial s-state at t = 0ns.

(b) Final equilibrium state at t = 3ns.

Figure 6.6: Snapshots of the magnetization dynamics for µMAG standard problem #4.
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(a) Initial vortex state at t = 0ns.

(b) Final equilibrium state at t = 8ns.

Figure 6.7: Snapshots of the magnetization dynamics for µMAG standard problem #5.
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Chapter 7

Perspectives and future work

With this dissertation, we have tried to contribute to the study of reliable and effective numerical
methods for the simulation of time-dependent micromagnetic phenomena. The main focus of our
work has been on the development of (unconditionally) convergent integrators which are suitable
for the efficient treatment of coupled systems of PDEs, in which the LLG equation is coupled with
another equation that models a particular nonlocal effective field contribution. However, there
are a number of possible extensions and improvements of the presented results, related interesting
questions, and open problems that, in our opinion, are worth to be investigated. In this chapter,
we aim to give a short outlook of some of them.

• Numerical analysis of tangent plane integrators

In Chapter 4, we have provided a unified analysis of the tangent plane scheme which combines
and extends the results of the original papers [14, 39, 12, 16, 56, 6]. Future work will address
some of the aspects not covered by the present dissertation, such as the derivation of a priori error
estimates (recently proved in [93] for the projection-free variant of the scheme of [6], but still open
for the standard version of the method) and a posteriori error estimates, which will be the starting
point for the development of adaptive algorithms for the LLG equation. Preliminary results in this
direction can be found, e.g., in [22, 23].

One difficult task concerns the development of higher-order methods in both time and space.
State-of-the-art numerical integrators for the LLG equation used in computational physics are
usually based on higher-order black-box adaptive time discretizations; see, e.g., [194]. An (almost)
2nd order version in time of the tangent plane scheme was introduced in [16, 15]. However,
the proposed strategy is based on an implicit treatment of the lower-order effective field terms
(including the nonlocal and expensive-to-compute stray field), which is not fully attractive from
the computational point of view, as, in particular, it breaks the linearity of the scheme in the
presence of nonlinear field contributions. Extensions to higher-order methods in space would also
be of great interest. In this context, the main difficulties stem from the nonconvex pointwise
constraint. For instance, to our knowledge, it is not clear if the result of Proposition 3.4.11, i.e.,
the fact that the nodal projection mapping does not increase the Dirichlet energy of piecewise
linear polynomials for weakly acute triangulations, can be transferred to higher-order polynomials.

Moreover, practically relevant problem sizes require efficient iterative solvers for the involved
linear systems. Together with D. Praetorius and B. Stiftner, we are currently analyzing the
preconditioning for the solution strategies presented in Section 6.1; see [168]. The goal is to avoid
the recomputation of the preconditioners in each time step of the time-marching scheme, which
should be possible as long as the time discretization is sufficiently fine so that the magnetization
does not change too rapidly.

• Numerical analysis of the midpoint scheme of [40]

Together with D. Praetorius, and B. Stiftner, we are investigating some open questions related
to the midpoint scheme of [40]. We have recently shown that an implicit-explicit approach for the
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effective field contributions can simultaneously mitigate the computational cost and preserve the
formal 2nd order time convergence of the method [167]. Future work will address the development
of efficient solution strategies for the nonlinear system of algebraic equations resulting from the
method as well as the analysis of numerically decoupled time-marching schemes for coupled LLG-
systems.

• Numerical simulation of magnetic skyrmions

The Dzyaloshinskii–Moriya (DM) interaction (page 13) is the most important ingredient for the
enucleation and the stabilization of the class of soliton vortex-like structures that are usually re-
ferred to as magnetic skyrmions [157, 173, 175, 200, 127]. In the mathematical literature, the
existence of isolated skyrmions emerging as energy minimizers of a simplified two-dimensional mi-
cromagnetic model was analyzed by C. Melcher in [150]. Together with G. Hrkac, D. Prae-
torius, and B. Stiftner, we are currently investigating the extension of the tangent plane
integrator, subject of this dissertation, and the midpoint scheme of [40] for the simulation of the
LLG-driven dynamics of magnetic skyrmions [116]. Considering the DM interaction entails the
modification of the boundary conditions for the LLG equation (see Remark 4.1.2), which in turn
requires to adapt both the variational formulation (4.4) included in the definition of a weak solution
(Definition 4.1.1) and the numerical algorithm by including a boundary term, for which a carefull
analysis is needed.

• Stochastic Landau–Lifshitz–Gilbert equation and Landau–Lifshitz–Bloch equa-
tion

In Section 1.1, as a motivation for our work, we have described how the spintronic extensions of
the micromagnetic theory can be applied to the development of more performing recording devices.
Another approach to simultaneously improve the competing requirements of high storage density,
writeability, and thermal stability (the so-called magnetic recording trilemma [172]) is based on a
technique usually referred to as heat-assisted magnetic recording (HAMR). In HAMR, during the
writing process, the recording device is locally heated by a small laser, which reduces the coercivity
of the medium and allows the recording head to write the data [146, 89, 195, 205].
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Figure 7.1: Spontaneous magnetization of nickel as a function of temperature. Experi-
mental values by P. Weiss and R. Forrer [208].

The mathematical modeling of such processes is beyond the possibilities of the classical theory
of micromagnetics, whose key hypothesis, the saturation assumption (2.8), is plausible only if the
temperature is constant and far below the so-called Curie temperature Tc of the ferromagnetic
material. Indeed, the spontaneous magnetization depends on many factors, e.g., the nature of the
atoms and the crystal structure of the material (which determine how ‘strong’ and how ‘dense’
the magnetic moments are, respectively), but it is mostly affected by the temperature, since ther-
mal fluctuations of the atoms represent an obstacle for the alignment of the magnetic moments.
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Figure 7.1 shows the typical behavior of the spontaneous magnetization as a function of temper-
ature in a ferromagnetic material. The spontaneous magnetization decreases if the temperature
increases. Moreover, when the temperature reaches the Curie temperature of the material, the
impact of the thermal fluctuations prevails over all the other effects, leading to total disorder, and
thus zero spontaneous magnetization.

In order to model these phenomena, two main strategies have been proposed. On the one
hand, the random fluctuation of the magnetization associated with the thermal agitation of the
magnetic moments can be included into the model by adding a (stochastic) noise term to the
effective field. This ‘thermal fluctuation field’, usually assumed to be uncorrelated in space and
time, is characterized by zero mean and variance proportional to the temperature [55]. In the
mathematical literature, different forms of the stochastic LLG equation have been considered from
both the analytical [126, 59, 160, 60] and the numerical point of view. In particular, both the
tangent plane scheme, subject of the present thesis, and the midpoint scheme [40] have been
extended to stochastic forms of the LLG equation; see [13, 112] and [27, 25], respectively.

On the other hand, an alternative approach for nonzero-temperature micromagnetics consists
in the study of extended macroscopic forms of the LLG equation which allow for longitudinal vari-
ations of the magnetization field. The papers [30, 31] extended the LLG equation by a term which
can be tuned in order to prescribe a given temperature law for the modulus of the magnetization
(which, in practical situations, will be chosen in order to fit the experimental data, e.g., those
depicted in Figure 7.1). The equation is discretized by an extended version of the midpoint scheme
of [40]. Another approach, very popular in the physical literature, is based on the derivation of the
Fokker–Planck equation satisfied by the probability density function associated with the stochastic
LLG equation [100]. The resulting equation, usually referred to as Landau–Lifshitz–Bloch (LLB)
equation, is similar to the one considered in [30, 31], except from the fact that the term associated
with the longitudinal variation of the magnetization is nonlinear. Preliminary analytical results
for a simplified version of the LLB equation can be found in the recent paper [140].

In the frame of the project Thermally controlled magnetization dynamics, supported by the
Vienna Science and Technology Fund (WWTF) under grant MA14-44, we are planning to address
the development of numerical methods for nonzero-temperature micromagnetics. In particular,
we aim to consider the coupling and the numerical integration of the LLB equation. As a first
attempt, we will try to extend the midpoint scheme of [40].

• Extension of the results to further models in metal spintronics

In this dissertation we have considered several spintronic extensions of the micromagnetic theory.
Together with C. Abert, D. Praetorius, and D. Suess, we are planning to continue the work
in this direction and to address the numerical integration of other LLG-based models in metal
spintronics. Among others, we mention the mean field model of [66, 67], the unified drift-diffusion
theory of [163], or models which extend LLG equation by torque terms originated by spin-orbit
coupling effects, such as the spin Hall effect [85, 197, 91] and the Rashba effect [153, 144].

• Numerical integration of LLG-based models in semiconductor spintronics

The spintronic extensions of the micromagnetic theory considered throughout this work (see Sec-
tion 2.3) can be classified into the field of metal spintronics. This is clear if one considers the
phenomenological expression of the electric current density provided in (2.42), i.e.,

Je = σE − β′ e
µB

D0∇s>m.

In the case of no-polarization, i.e., β′ = 0, this reduces to the Ohm law (2.9c), which is appropriate
for metallic conductors, in which the charge density is essentially constant, but not reasonable for
semiconductors.

Together with A. Jüngel and D. Praetorius, we are planning to investigate the extensions
of the micromagnetic model for semiconductor spintronics, which, to our knowledge, is an open
problem from both the modeling and the numerical point of view. A possible starting point is given
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by the spinorial matrix drift-diffusion model of [165], analyzed in [121], and discretized by a finite
volume method in the two-dimensional case in [64]. In the model, which consists of a nonlinear
system of drift-diffusion equations for the charge density and the spin density that is further coupled
to the electrostatic Maxwell equations for the electric potential, the magnetization is assumed to be
constant. We will remove this assumption and start by considering the finite element discretization
of the coupling of this system with the LLG equation, for which some preliminary analytical results
are already available [210, 211]. We believe that our approach, based on the numerical decoupling
of the time integration of the LLG equation and the coupled system, can be an effective tool for
the treatment of the strong nonlinearities which characterize the problem.
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Appendix A

Physical quantities, constants and
units

For the convenience of the reader, in this appendix we collect the physical quantities and the
physical constants considered throughout the thesis. We use physical units in the International
System of Units (SI).

A.1 Physical quantities

Quantity Symbol Unit
Angular momentum L J s
Anisotropy constant K J/m3

Bloch parameter δ0 m
Bloch wall width δ m
Conductivity σ, σ A/(m V)
Curie temperature Tc K
Diffusion coefficient D0 m2/s
Displacement u m
DM constant D J/m2

Electric charge density ρ C/m3

Electric current density Je, Je A/m2

Electric displacement field D C/m2

Electric field E V/m
Electric permittivity ε, ε F/m
Electric potential V V
Energy E J
Exchange integral J J
Exchange length λex m
Exchange stiffness constant A J/m
Gilbert damping parameter α –
Magnetic field H A/m
Magnetic flux density B T
Magnetic hardness parameter q –
Magnetic moment µ J/T
Magnetic permeability µ N/A2

Magnetization M A/m
Magnetization (normalized) m –
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Quantity Symbol Unit
Magnetostatic energy density Ks J/m3

Magnetostatic potential u A
Mass density κ kg/m3

Polarization parameters β, β′, P –
Poynting vector S W/m2

Ratio of nonadiabacity ξ –
Saturation magnetization Ms A/m
Spin accumulation s A/m
Spin current density Js A/s
Spin diffusion length λsd m
Spin-flip relaxation time τsf s
Spin velocity vector u, v m/s
Stiffness tensor C Pa
Strain tensor ε –
Stress tensor σ Pa
STT characteristic time τJ s
Temperature T K
Torque τ J
Zhang–Li parameters bJ, bξ m3/C

A.2 Physical constants

Physical constant Symbol Value & Unit Note
Bohr magneton µB 9.274 009 68 · 10−24 A m2 µB = e~/(2me)
Density of states at Fermi level N0 1/(J m3) σ = e2N0D0

Electric charge of the electron e 1.602 176 620 8 · 10−19 A s –
g-factor (of the electron) ge 2.0023193043617 –
Gyromagnetic ratio γ −1.760 859 708 · 1011 rad/(s T) γ = −geµB/~
Mass of the electron me 9.109 383 56 · 10−31 kg –
Reduced Planck constant ~ 1.054 571 800 · 10−34 J s –
Rescaled gyromagnetic ratio γ0 2.212 761 569 · 105 m/(A s) γ0 = −γµ0

Vacuum permeability µ0 4π · 10−7 N/A2 –
Vacuum permittivity ε0 8.854 187 817 620 · 10−12 F/m –
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Appendix B

Auxiliary results

The aim of this appendix is twofold: On the one hand, we define the notation used throughout
the thesis. On the other hand, we recall several definitions and auxiliary results (in most cases
omitting the proof).

B.1 Linear algebra
For the sake of simplicity, most of the forthcoming definitions and results are stated within the
three-dimensional case, e.g., for vectors in R3 and matrices in R3×3. Unless stated otherwise, all
the vectors are column vectors.

Let a,b ∈ R3 be two vectors.

• The scalar product (or inner product) a · b ∈ R is defined by

a · b =

3∑
i=1

aibi.

• The vector product (or cross product) a× b is defined by

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a1b2)>.

• The tensor product (or outer product) a⊗ b ∈ R3×3 is defined by

(a⊗ b)ij = aibj for all 1 ≤ i, j ≤ 3.

Let A,B ∈ R3×3 be two matrices.

• The Frobenius product A : B ∈ R is defined by

A : B =

3∑
i,j=1

aijbij .

Let A ∈ Rm×n and B ∈ Rn×p be two matrices, and let x ∈ Rn be a vector.

• The matrix-vector product Ax ∈ Rm is defined by

(Ax)i =

n∑
j=1

aijxj for all 1 ≤ i ≤ m.
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• The matrix-matrix product AB ∈ Rm×p is defined by

(AB)ij =

n∑
k=1

aikbkj for all 1 ≤ i ≤ m, 1 ≤ j ≤ p.

Let A ∈ Rm×n and B ∈ Rp×q be two matrices.

• The Kronecker product A⊗B ∈ Rmp×nq is the block matrix defined by

A⊗B =

a11B · · · a1nB
...

...
am1B · · · amnB

 .

Let λ = (λijk`)1≤i,j,k,`≤3 be a three-dimensional 4th order tensor.

• For a matrix B ∈ R3×3, the tensor-matrix product λB ∈ R3×3 is the matrix defined by

(λB)ij =

3∑
k,`=1

λijk`Bk` for all 1 ≤ i, j ≤ 3.

We denote by |·| both the Euclidean norm of a vector and Frobenius norm of a matrix, which
are defined by |a| =

√
a · a and |A| =

√
A : A for any vector a ∈ Rn and any matrix A ∈ Rn×n

(n ≥ 1), respectively. This does not lead to ambiguities, since the meaning is clear from the
argument. The above norms satisfy the following properties

|a · b| ≤ |a| |b| , |a× b| ≤ |a| |b| , |a⊗ b| = |a| |b| for all a,b ∈ R3,

|A : B| ≤ |A| |B| for all A,B ∈ R3×3,

|Ax| ≤ |A| |x| , |AB| ≤ |A| |B| , |A⊗B| = |A| |B| for all A,B ∈ R3×3 and x ∈ R3.

A three-dimensional 4th order tensor λ is called symmetric if λijk` = λjik` = λijlk = λk`ij for all
1 ≤ i, j, k, ` ≤ 3. We call λ positive definite if there exists λ∗ > 0 such that (λB) : B ≥ λ∗ |B|2 for
all B ∈ R3×3.

B.2 Useful (in)equalities
In the following proposition, we collect some useful vector identities involving the vector product.

Proposition B.2.1. For all a,b, c,d ∈ R3, we have the following identities:

(i) a× a = 0,

(ii) a× b = −b× a,

(iii) (a× b) · a = 0,

(iv) (a× b) · c = (c× a) · b = (b× c) · a,

(v) a× (b× c) + c× (a× b) + b× (c× a) = 0 (Jacobi identity),

(vi) a× (b× c) = (a · c)b− (a · b)c (triple product expansion formula),

(vii) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) (Lagrange identity).

The Lagrange identity (vii) is the three-dimensional case of the more general Binet-Cauchy
equality.

The following well-known inequality is sometimes called the Peter-Paul inequality. This name
refers to the fact that a sharper estimate of the first term is achieved at the cost of losing some
control of the second term. One must ‘rob Peter to pay Paul’.
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Lemma B.2.2 (weighted Young’s inequality). For all a, b ∈ R and δ > 0, it holds that

ab ≤ δ

2
a2 +

1

2δ
b2.

Proof. Since 2xy ≤ x2 + y2 for all x, y ∈ R, it follows that

ab ≤
(√

δa
)( 1√

δ
b

)
≤ δ

2
a2 +

1

2δ
b2,

which is the requested inequality.

The following lemma states a simple algebraic trick which often simplifies the computation and
the estimation of sums. It is named after N. H. Abel.

Lemma B.2.3 (Abel’s summation by parts). Given an integer j ≥ 1, let {ai}0≤i≤j ⊂ Rn. Then,
it holds that

j−1∑
i=0

(ai+1 − ai) · ai+1 =
1

2
|aj |2 −

1

2
|a0|2 +

1

2

j−1∑
i=0

|ai+1 − ai|2 .

Proof. Let 0 ≤ i ≤ j − 1. It holds that

2(ai+1 − ai) · ai+1 = |ai+1|2 − ai+1 · ai + (ai+1 − ai) · ai+1

= |ai+1|2 − ai+1 · ai + (ai+1 − ai) · ai+1 − |ai|2 + |ai|2

= |ai+1|2 − |ai|2 + (ai+1 − ai) · ai+1 − (ai+1 − ai) · ai
= |ai+1|2 − |ai|2 + |ai+1 − ai|2 .

Summation over 0 ≤ i ≤ j − 1 yields the assertion.

The following lemma is a discrete counterpart of Gronwall’s inequality (also called Gronwall’s
lemma or Gronwall-Bellman inequality), an important tool to derive estimates in the theory of
ordinary differential equations. The differential form of the result was proved by T. H. Gronwall
in 1919.

Lemma B.2.4 (discrete Gronwall lemma). Let {αj}j≥0, {βj}j≥0, and {wj}j≥0 be sequences of
real numbers such that

αj ≤ αj+1, βj ≥ 0, and wj ≤ αj +

j−1∑
i=0

βiwi for all j ≥ 0.

Then, it holds that

wj ≤ αj exp

j−1∑
i=0

βi for all j ≥ 0.

For the proof, we refer the interested reader to [199, Lemma 10.5].

B.3 Vector calculus
Let Ω ⊂ R3 be an open set. The gradient of a scalar-valued function f : Ω → R is denoted by
∇f = (∂1f, ∂2f, ∂3f)>. For a vector-valued function f = (f1, f2, f3)> : Ω → R3, we denote the
Jacobian by ∇f , i.e., (∇f)ij = ∂jfi for all 1 ≤ i, j ≤ 3, the divergence by ∇ · f , and the curl by
∇×f . The Laplace operator of f is denoted by ∆f = ∇· (∇f). We define the divergence ∇ ·F of
a matrix-valued function F : Ω→ R3×3 as the vector of the divergences of the rows of the matrix,
i.e., (∇ · F )i = ∇ · (Fi1, Fi2, Fi3)> for all 1 ≤ i ≤ 3. The Laplace operator of f is denoted by
∆f = ∇ · (∇f) and coincides with the vector of the Laplace operator of the components of f . It
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follows that ∇ × (∇f) = 0 and ∇ · (∇ × f) = 0. For the vector-valued functions f ,h : Ω → R3,
abusing our notation, we write

∇f × h = (∂1f × h, ∂2f × h, ∂3f × h).

We define (f · ∇)h by

[(f · ∇)h]i =

3∑
k=1

fk∂khi = f · ∇hi for all 1 ≤ i ≤ 3,

and note that (f · ∇)h coincides with the matrix-vector product of ∇h and f . From the well-
known product rule ∂i(fg) = ∂if g + f ∂ig, simple (but possibly lengthy) computations prove the
identities collected in the following proposition.

Proposition B.3.1. Let Ω ⊂ R3 be an open set. For all sufficiently smooth functions f, h : Ω→ R,
f ,h : Ω→ R3, we have the following product rules:

(i) ∇(fh) = f∇h+ h∇f ,

(ii) ∇(f · h) = ∇f>h+ ∇h>f = (f · ∇)h+ (h · ∇)f + f × (∇× h) + h× (∇× f),

(iii) ∇(f × h) = ∇f × h+ f ×∇h,

(iv) ∇(fh) = h⊗∇f + f∇h,

(v) ∇ · (fh) = ∇f · h+ f∇ · h,

(vi) ∇ · (f × h) = (∇× f) · h− (∇× h) · f ,

(vii) ∇ · (f ⊗ h) = (∇ · f)h+ (f · ∇)h,

(viii) ∇× (fh) = ∇f × h+ f∇× h,

(ix) ∇× (f × h) = (∇ · h)f − (∇ · f)h+ (h · ∇)f − (f · ∇)h,

(x) ∇× (∇× f) = ∇(∇ · f)−∆f ,

(xi) ∇(|f |) = |f |−1 ∇f>f ,

(xii) ∇(f/ |f |) = |f |−1
(I − |f |−2

f ⊗ f)∇f .
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