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Kurzfassung 

Diese Arbeit widmet sich der effizienten numerischen Lösung von gewöhnlichen Diffe- 

rentialgleichungen (GDG), welche hochoszillatorische Lösungen aufweisen. Das Modell, 
welches hier von Interesse ist, ist die eindimensionale stationäre (d.h. zeitunabhängige) 

Schrödingergleichung im hochoszillatorischen Bereich. Standard Verfahren für GDG zur 

Lösung dieser Gleichung sind sehr ineflizient, da sie sehr kleine Gittergrößen verwenden 

müssen, um die schnellen Oszillationen genau aufzulösen. Anstelle dessen entwickeln und 

analysieren wir hier numerische Verfahren, welche, aufbauend auf WKB-Theorie (benannt 

nach den Physikern Wentzel, Kramers und Brillouin), auf a priori Informationen über das 

asymptotische Verhalten der Lösung basieren. 

Die Arbeit ist in drei Teile gegliedert, wobei in jedem eine neue WKB-basierte numerische 

Methode zur Lösung der hochoszillatorischen Schrödingergleichung präsentiert wird. 

Im ersten Teil dieser Arbeit erweitern wir ein bereits existierendes WKB-basiertes Ein- 

schrittverfahren zweiter Ordnung um eine adaptive Schrittweitensteuerung und einen auto- 

matischen Mechanismus zum Wechseln numerischer Methoden. Diese Erweiterung erlaubt 

es dem Algorithmus, zwischen der WKB-basierten Methode für oszillatorische Bereiche 

und einem Runge-Kutta-Verfahren für glattere (d.h. weniger oszillatorische) Bereiche zu 
wechseln, was insgesamt zu einer Effizienzsteigerung führt. Durch den Vergleich mit einer 

ähnlichen Strategie aus der Literatur zeigen wir, dass unser neuer Ansatz bezüglich der 

Genauigkeit und Effizienz überlegen ist. 

Im zweiten Teil entwickeln wir eine Erweiterung (mit höherer Ordnung) des WKB- 

basierten Einschrittverfahrens, welches im ersten Teil dieser Arbeit verwendet wurde. Das 

Verfahren beruht auf einer WKB-basierten Transformation der Schrödingergleichung in 

eine weniger oszillatorische Gleichung, welche numerisch auf einem groben Gitter gelöst 

werden kann. Durch die Herleitung hinreichend genauer Quadraturformeln für mehrere 

oszillatorische Integrale, welche in der Picard-Iteration der Lösung des transformierten 

Problems auftreten, erhalten wir ein Einschrittverfahren dritter Ordnung in Bezug auf die 

Schrittweite. Die Genauigkeit und Efizienz des neuen Verfahrens werden anhand mehrerer 

numerischer Beispiele demonstriert. 

Im letzten Teil dieser Arbeit implementieren wir direkt eine WKB-Approximation be- 

liebiger Ordnung als Näherungslösung für die Schrödingergleichung. Unsere Fehleranalyse 

stützt sich hauptsächlich auf die Annahme, dass der Koeffizient in der Gleichung analytisch 

ist. Wir leiten Fehlerabschätzungen her, welche explizit bezüglich des kleinen Parameters 

in der GDG sowie der gewählten Trunkierungsordnung für die zugrunde liegende asympto- 

tische WKB-Reihe ist. Diese WKB-Reihe wird insbesondere im Hinblick auf die optimale 

Anzahl von Termen analysiert, um den resultierenden Approximationsfehler zu minimieren. 

Unsere Untersuchung zeigt, dass die optimale Anzahl an Termen umgekehrt proportional 

zum in der GDG auftretenden kleinen Parameter ist, was einen zugehörigen minimalen 

Fehler liefert, welcher exponentiell klein in Bezug auf diesen Parameter ist.





Abstract 

This thesis is dedicated to the efficient numerical treatment of ordinary differential equa- 

tions (ODEs) exhibiting highly oscillatory solutions. The model of interest here is the 
one-dimensional stationary (i.e. time-independent) Schrödinger equation in the highly os- 

cillatory regime. Standard ODE methods become highly inefficient when solving this equa- 

tion, as they have to use very small grid sizes in order to resolve the rapid oscillations 

accurately. Instead, we develop and analyze numerical methods which utilize a priori infor- 

mation on the asymptotic behavior of the solution, relying on WKB theory (named after 

the physicists Wentzel, Kramers and Brillouin). 

The thesis is divided into three parts, each corresponding to a novel WKB-based numer- 

ical approach for solving the highly oscillatory Schrödinger equation. 

In the first part of this thesis, we enhance an existing WKB-based second order one-step 

method with an adaptive step size controller and an automated methods switching. This 

extension allows the algorithm to switch between the WKB-based method for oscillatory 

regions and a standard Runge-Kutta method for smoother (i.e. less oscillatory) regions, 

leading to an overall increase in efliciency. By comparing with a similar strategy from 

existing literature, we find that our novel approach outperforms in terms of both accuracy 

and efficiency. 

In the second part, we develop a higher order extension to the WKB-based one-step 

method employed in the first part of this thesis. The method relies on a WKB-based 

transformation of the Schrödinger equation into a smoother equation, which can be solved 

numerically on a coarse grid. By establishing sufficiently accurate quadrature formulas 

for several oscillatory integrals encountered in the Picard approximation of the solution of 

this transformed problem, we obtain a one-step method that is third order with respect to 

the step size. The accuracy and efficiency of the novel method are demonstrated through 

several numerical examples. 

In the final part of this thesis, we implement directly an arbitrary order WKB approxi- 

mation as an approximate solution to the Schrödinger equation. Our error analysis relies 

mainly on the assumption that the coeflicient in the equation is analytic. We derive error 

estimates explicitly in terms of the small parameter present in the ODE, as well as of the 

chosen truncation order for the underlying asymptotic WKB series. This WKB series is 

then analyzed particularly with regard to the optimal number of terms required to minimize 

the resulting approximation error. Our investigation reveals that the optimal number of 

terms is inversely proportional to the small parameter in the ODE, yielding a corresponding 

minimal error which is exponentially small with respect to this parameter.
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1 Introduction 

This thesis is devoted to the efficient numerical treatment of a class of ordinary differential 

equations (ODEs) that have highly oscillatory solutions. Highly oscillatory phenomena ap- 

pear in a wide range of applications, including plasma physics, electromagnetic and acoustic 

scattering, Hamiltonian dynamics, inflationary cosmology, and quantum mechanics. 

We focus here on problems that can be described by the one-dimensional stationary (i.e. 
time-independent) Schrödinger equation: 

ey" (z) +alz)po(z)=0, zEeICR. (1.0.1) 

Here, 0<e< lisa very small parameter, / is a real interval, and the coeflicient function 

a:I—R is assumed to be sufficiently smooth. Furthermore, we assume that a is bounded 

away from zero, i.e. a(z) > ao > 0, which means that the solutions of equation (1.0.1) are 
highly oscillatory. 

To comprehend the oscillatory nature of the (possibly complex-valued) solution Y of 

(1.0.1), one may initially consider the case where a(z) = ao > 0 is just a positive constant. 

The general solution is then given by p(x) = asin (x) + B cos (ex), where o, 8 € C 

are arbitrary constants. Consequently, for a small parameter 0 < e < 1, the solution is 

highly oscillatory, with an amplitude of order g = O(1), and p' = O(e”!), as € — 0. These 
properties persist even with a non-constant function a(z) > ao > 0. In fact, it is known 

that the (local) wave length A of a solution 9 of (1.0.1) is given by A(z) = (2we)/+/a(x). As 
a consequence, the solution exhibits rapid oscillations for a small parameter e, especially 

in the semi-classical limit e — 0. 

The Schrödinger equation (1.0.1) is particularly important within the context of quan- 

tum mechanical problems, e.g., for the simulation of electron transport in semiconductor 

devices [MJK13, Neg05, SHMS98]. In these applications, X represents the Schrödinger 

wave function, and a(z) := E-V(r) is related to a prescribed electrostatic potential V, 
where E € R denotes the injection energy of an electron of mass m. The small parameter 

€ 1= Fo is then proportional to the (reduced) Planck constant A. We note that there are 

numerous additional applications of equation (1.0.1), e.g., in plasma physics [CS58, Lew68] 

and cosmology [MS03, Win05]. 
Given the highly oscillatory behavior of a solution 2 of (1.0.1), employing standard 

ODE methods (e.g. Runge-Kutta methods) can be very costly and inefficient. Indeed, this 

is because one has to use a very small grid size h in order to accurately resolve every 

oscillation of the solution. This efficiency issue, which we shall discuss in more detail in the 

next subsection, is a particular problem in applications, where the equation (1.0.1) has to 

be solved many times in parallel, e.g., in the modeling of semiconductor devices [AAN11]. 

This underlines the substantial demand for efficient numerical methods that are suitable 

for solving problems corresponding to equation (1.0.1).
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1.1 The main problem when using standard ODE methods 

In this subsection we will address the inefficiency problem encountered when using standard 

ODE methods (e.g. Runge-Kutta methods) for solving the highly oscillatory Schrödinger 

equation (1.0.1). For simplicity, we will consider here only explicit one-step methods. 

Consider for any initial value Yo € C”, m e N and a given interval I := [&,n] C R the 
initial value problem (IVP) 

Y()=Y, (1.1.1) 
vo -F(2,Y(z)), zelI, 

with F being sufficiently smooth and Lipschitz continuous w.r.t. its second argument. 

Further, we consider a discretization {zo,...,2m} of the interval I, denote with h„ := 
Intl - In; R=(0,...,M —1 the corresponding step sizes, and set Amaz := MaXo<n<M-ı Rn 

as the maximum step size. Let 

Yarı = Yan +kn®(an, Yon); n=0,...,.M—1, (1.1.2) 

be a general explicit one-step method with incremental function ®. It is well-known that 

such a method is convergent with order pEN, if it satisfies the consistency estimate 

Vzeel&,m)VYhe(0,n-x]: |Y(z+R)-[Y(z) +h®(z,Y(x),h)]|| < Cons hPt! 

as well as the stability estimate 

Vzel&,n)Yne (0,n-az]VY,YeC": |®(z,Y,h) - ®(x,Y,h)||< Cas|Y-Y]|, 

with some constants Ocons; Ostab > 0 (e.g., see [Gea71]). Here, ||-|| denotes an arbitrary 
norm on C™. More precisely, the global error can then be estimated as follows: 

Ocons 
max IYr Yizn)|| < = (eXp(Cstab(n &)) 1) has . (1.1.3) 

n=0,...,M Ügtab 

Estimate (1.1.3) with its explicit dependence on the consistency and stability constants 
Ceons and Cstav reveals the main problem that lies behind the use of a standard method 

for solving the highly oscillatory equation (1.0.1). Indeed, although the global error of a 
numerical method might asymptotically behave like O(hP), as h — 0, it is also of great 

importance that the values of the consistency and stability constants C.ons and Cytap are 

moderate, since for very large values of Ccons and Cstap one is forced to use very small step 

sizes hmaz in order to reduce the r.h.s. of (1.1.3). 

If we aim to solve the highly oscillatory Schrödinger equation (1.0.1) (augmented with 
some initial values) using a standard ODE method, the conventional approach of doing so 

is to first introduce the notation Y(x) := (y(x),g'(z))” and then rewrite the second order 
ODE (1.0.1) into the following first order system: 

Y'(z) = er je )) Y(z). (1.1.4)
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The problem with this approach is that the system matrix on the r.h.s. of (1.1.4) is of order 

O(e~?), which, depending on the chosen numerical method, typically results in very large 
values for the (e-dependent) constants Ccons and Ostab- To illustrate this, let us consider 

as an example the simplest method one can think of, namely, the explicit Euler method, 

specified by the incremental function ®#t!e (2, Y, Rh) := F(x,Y(x)). For this method, we 
shall now determine the (e-dependent) consistency and stability constants C.ons and Cstab- 

First, Taylor’s theorem with the remainder in Lagrange form yields that 

y' y’ oo 

1Y (z + h) — [Y(z) + hF(z, Y (2))]]| = al < Flıen,; (1.1.5) 

for some appropriate r € |x,x + h]. To illustrate the dependence of the r.h.s. of (1.1.5) on 
the parameter €, we use the ODE (1.1.4) and the fact that 0’ = O(e=!), to estimate 

Y| ooy < Ce™2, (1.1.6) 

where e < eo for some sufficiently small 9. Thus, we conclude that Ocons = Ole”). 

Moreover, the stability constant Ct.» is simply given by the Lipschitz constant of F. In 

fact, we see from (1.1.4) that Ogtapd = O(e?). According to (1.1.3), the global error for the 

explicit Euler method can thus be estimated by 

max, |Ya“ - Y(zn)|| < Cıe”' (exp(O2E”?) — 1) Amaz , (1.1.7) 
n=0,..., 

where ¢ < eo and C4,Ca > 0 are constants independent of e and hmaz. Hence, we observe 

that the total (e-dependent) constant factor on the r.h.s. of (1.1.7) blows up for small 
parameters e. While we have chosen a straightforward example here, it is worth noting 

that this problem arises similarly when employing other standard ODE methods. 

The downside of having an e-dependent large constant in the global error estimate (1.1.3) 

can also be demonstrated through a simple numerical experiment. To this end, we solve the 

first order system (1.1.4) on the interval [0,1] for the coefficient function a(x) = (x + 1)? 
and the initial value Y(0) = (1,0)T. For this, we use the well-known Dormand-Prince 
method [DP80], which is an explicit Runge-Kutta method with convergence order p = 5. 

In Figure 1.1.1 and Figure 1.1.2 we show results for the choices e = 2” and e = 2%, 

respectively. For both figures we use the same number of grid points. On the left of each 

figure we plot the real part of the exact solution as a solid line as well as the numerical 

approximations, indicated as dots. According to the left plot of Figure 1.1.1, the numerical 

solution matches well with the exact solution. This can also be observed from the right 

plot of Figure 1.1.1, which shows the corresponding global absolute error. Indeed, the 

error remains permanently less than 5 - 10°*. Thus, there are enough grid points for 

the numerical method to accurately resolve every oscillation. By contrast, as seen in the 

left plot of Figure 1.1.2 for € = 276, the numerical approximations become unacceptably 

inaccurate near the end of the interval. Indeed, the right plot of Figure 1.1.2 reveals that 

the corresponding global absolute errors accumulate up to 10° at the end of the interval. 
  

! Actually, the Dormand-Prince method [DP80] is an embedded method that provides both a fourth and 
a fifth order numerical solution. Here, we use only the fifth order one.
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Figure 1.1.1: Numerical results for the Dormand-Prince method (p = 5) when solving the system (1.1.4) on the 
interval [0,1] for the coefficient function a(x) = (x + 1)?, an initial value Y(0) = (1,0)7, and a 
parameter e = 2%. Left: Real part of the exact solution (solid lines) and numerical approximations 

(dots). Right: The corresponding global absolute error. 
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Figure 1.1.2: Numerical results for the Dormand-Prince method (p = 5) when solving the system (1.1.4) on the 
interval [0,1] for the coefficient function a(z) = (2 + 1)?, an initial value Y(0) = (1,0)7, and a 
parameter e = 26. Left: Real part of the exact solution (solid lines) and numerical approximations 

(dots). Right: The corresponding global absolute error. 

Hence, the number of grid points is too small for the numerical method to resolve every 

oscillation accurately. 

The above discussion makes clear why it is of great interest to develop numerical methods 

with consistency and stability constants that are independent of e. Indeed, such methods 

are referred to as uniformly correct w.r.t. e. Even more desirable are methods that are 

asymptotically correct w.r.t. e, i.e., the global error tends to zero for e — 0, even for a 

fixed grid size. In other words, the more oscillatory the solution op of (1.0.1) becomes, the 

more accurate is the numerical solution of an asymptotically correct method. This is a 

feature shared by the methods presented in this thesis, provided that certain additional 

assumptions are satisfied.



1.2 WKB theory: utilizing a priori information on the solution 
  

1.2 WKB theory: utilizing a priori information on the solution 

The methods presented in this thesis all rely on WKB theory, which is named after the 

physicists Gregor Wentzel, Hendrik Anthony Kramers, and Leon Brillouin (e.g., see [LL85]). 
This theory provides a method for approximating the solution of a linear differential equa- 

tion in which the highest derivative is scaled by a small parameter e. The basic idea is that 

the rapid oscillatory behavior of such a solution is typically characterized by an exponential 

function. More precisely, the technique relies on an asymptotic ansatz for the solution of 

a given differential equation. In this way one is able to derive asymptotic WKB approx- 

imations of the solution, which provide a priori insights into the asymptotic behavior of 

the solution, as e — 0. This a priori information can then be utilized to develop numerical 

methods that are uniformly or even asymptotically correct w.r.t. e. 

The first step in order to derive an asymptotic WKB approximation for the solution ¢ 

of the highly oscillatory Schrödinger equation (1.0.1) consists of making the WKB-ansatz 

() ~ exp (ES(J;)) 80. (1.2.1) 

Here, $ is a complex-valued function that contains information about the phase and the 

amplitude of the solution y. It is then convenient to express $ as an asymptotic expansion 

w.r.t. e: 

x)» Sens,(a) ‚ E20; SHla)eC. (1.2.2) 
n=0 

This asymptotic series is typically divergent (as usual for asymptotic series) and must 

therefore be truncated in order to obtain an approximate solution. 

By substituting (1.2.1)-(1.2.2) into the Schrödinger equation (1.0.1), one formally obtains 

& (0) +), Ee"ISHlz) +alz) = 0. (1.2.3) 
n=0 n=0 

A comparison of different e-powers then yields the following well-known recurrence relation 

for the functions S/, (e.g., see [BO99, §10]): 

  

  

(SF) = +iva, (1.2.4) 

(= ¢ Ly, (1.2.5) 1) = 79Ty T 4a 2. 

n—1 

(53) = SB Le). n>2 (1.2.6) 

Thus, there are two sequences (SF )neNo of functions which lead to approximate solutions 

of the Schrödinger equation (1.0.1), by analogy to the two fundamental solutions of the 

second order ODE (1.0.1). The functions of these sequences are all unique up to an additive
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integration constant. The general WKB approximation for (1.0.1) is then defined as the 

linear combination 

N N 

Pr vNKB = Q0N EXP (Z 6”_1S;> + BN e exp (Z 6”_15’;') , (1.2.7) 

n=0 n=0 

where an ¢, Bn e € C are complex constants, which can be determined by initial or bound- 

ary conditions, in general. The WKB approximation (1.2.7) is the basis for all methods 

presented in this thesis. 

In fact, the methods presented in Chapter 2 and Chapter 3 both rely on a second order 

WKB approximation, which is obtained by truncating the sums in (1.2.7) after N = 2: 

exp (-16°(z) exp (46° (2) 
p2 “PB (z) = Ba aD + en ’ (1.2.8) 

where &° denotes the phase of this WKB approximation and is given by 

£ — 1 ” / 2 / _ ” 02 | (EEE) A| (Vai w)av, (129 
with 

L 1 _1/4 " 
by) = Zora (a) ) ) . (1.2.10) 

More precisely, the basis for both methods is an analytical pre-processing of the highly 

oscillatory ODE (1.0.1), by using the phase (1.2.9) to transform (1.0.1) into a smoother (i.e. 
less oscillatory) problem. For more details about the specific form of this transformation, 

we refer to Chapter 2 or Chapter 3. The resulting problem is a first order ODE system for 

a new variable Z(x) = (zı(x),22(x))?” and has the form 

Z'(z) =eN®(z)Z(z), zeICR, (1.2.11) 

where N® is a 2x 2 matrix of order O(1), ase — 0. It is worth noting that a solution Z of 
(1.2.11) is still highly oscillatory. However, these oscillations have an amplitude only of the 
order O(e?), in contrast to the O(1) oscillations of a solution p of the original ODE (1.0.1). 
Hence, the dominant oscillations are eliminated and the resulting problem can be solved 

numerically on a coarse grid. This strategy was developed in [AANI11] and used there to 

construct eflicient and accurate one-step methods of first and second order w.r.t. the step 

size h. In fact, even for a fixed step size h, their methods both yield global errors of order 

O(e3), as € — 0, provided that the phase integral (1.2.9) can be computed exactly. This 
underlines again the benefit of employing an asymptotically correct method (w.r.t. e) for 

(1.0.1): as the solution of (1.0.1) becomes more and more oscillatory (for smaller values of 
&), the numerical solution becomes increasingly accurate. 

As stated in [BO99, 810.2], in order for the WKB-ansatz (1.2.1)-(1.2.2) to be valid on 
the entire interval I, it is necessary that for any n € No the asymptotic relation 

e"Spy1(x) = 0™ 1Sn(z)), €—0, (1.2.12)
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must hold uniformly in x € I. This validity condition for the WKB approximation is 

clearly violated if a(x) vanishes on I, as |S}"(z)| blows up in this case, according to (1.2.5). 
In fact, the zeros of a have a particular meaning within a quantum mechanical context. 

Then, equation (1.0.1) with a(x) = E-V(x) describes a quantum mechanical particle in a 
potential V (x), where E is the total energy of the particle. A zero of a(x) thus corresponds 
to a point where the potential energy equals the total energy. At such points the motion 

of the particle stops and changes to the opposite direction. For this reason, a zero of a(x) 

is referred to as a turning point. 'Turning points also often characterize the connection 

between oscillatory regions (a(x) > 0) and so-called evanescent regions (a(z) < 0). In 
evanescent regions, the solution y of (1.0.1) does not exhibit oscillatory behavior. Instead, 
one observes (essentially) an e-dependent exponential growth or decay. Given that one 

of our main assumptions is a(z) > ao > 0, we focus here only on the oscillatory region, 

excluding turning points and the associated validity problems of the WKB approximation. 

1.3 Adaptive step size control and automated methods switching 

Even when excluding turning points, and hence the technical problems they imply, WKB- 

based methods can still have efficiency and accuracy problems in regions where the coefli- 

cient function a(x), although non-zero, is very small. Indeed, as the solution becomes less 
oscillatory in the neighbourhood of a turning point, a WKB-based method loses its advan- 

tage and might even become increasingly inaccurate. Therefore, one possible remedy is to 

switch in such regions to a standard ODE method (e.g., a Runge-Kutta method). Such an 

approach is taken in Chapter 2, where we implement an automated switching mechanism 

for the O(h?) one-step method from [AAN11]. Inspired by the strategy in [HLH16], this 
switching mechanism is based on and combined with an adaptive step size control, which 

aims to compute the numerical solution more accurately and efliciently, when compared to 

using just a uniform grid. In the following, we shall briefly explain this approach as well 

as formulate our main goals and questions; for more details, see Chapter 2. 

The basis for the step size control in Chapter 2 is an estimator for the local truncation 

error: 

est, = |YP — y B+ (1.3.1) 

Here, y,® = (go%k), RT and yr+D = (rd, pkFDT represent two numerical solu- 

tions of order k and k+1 to approximate the exact solution Y (x,) = (£(&n), p'(£n))” ofan 
IVP corresponding to (1.0.1), &„ denoting a grid point. Suppose that these approximations 

were computed using the (trial) step size hn trial := In — &n-ı. The step size is then varied 

by Anew := On * Rn,trial, where the multiplicative factor 0, is given by 

  

1 

AT01+RT01-||Yn(k+1)||oo> o (1.3.2) 0, := max | 0.5, min | 2, 0.9 
est, 

Here, ATol and RTol are prescribed absolute and relative error tolerances, the values 0.5 

and 2 are design parameters that limit the ratio of two consecutive step sizes from below
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and above, and 0.9 is a common safety factor for increasing the probability of the next step 

to be accepted. Note that for ||Yn(k+1)||oo — 0 the ATol term in the numerator in (1.3.2) 

dominates, whereas for large values of IV“ the RTol term dominates. Hence, the 
factor (1.3.2) leads to a step size control that adequately incorporates a gradual switch- 

over between absolute and relative errors, depending on the behavior of the solution; for 

more details, see Chapter 2. The step size control is then based on an acceptance criterion 

that aims to maintain the local error in each step as close as possible to the given error 

tolerances: If the fraction in (1.3.2) containing est, is greater than or equal to 1, the nth 

step is accepted and the step size is defined as h„ := Rn,trial- The trial step size for the 

next step is then defined as hn-+1 trial := Imew- However, if this fraction is smaller than 1, 

the nth step is rejected and a reattempt is done with the smaller (trial) step size h, trial 

by updating its value as An trial > Hnew- 

The above explained adaptive step size control is also the basis for the dynamical switch- 

ing mechanism: Consider two pairs of numerical methods, one of order k() and kV +1, 

and the other of order k@) and k®9 +1. Based on the adaptive step size control above, one 

computes in each step the multiplicative factors 0) and (2 and checks the acceptance 

criterion for each (i) € {(1),(2)}. The switching mechanism then intervenes by selecting 
(i) 
n the acceptable pair of methods that yields the larger value of 6,”, i = 1,2, hence yielding 

the larger proposed new step size. More precisely, we define 

o : (1) accepted, (2) rejected 

On := 92 (1) rejected, (2) accepted (1.3.3) 

max (1,09) , otherwise. 

Thus, the switching mechanism favors the pair of methods with the smaller error estimator, 

discounted by its respective order k(®). Hence, the error estimator is not only used to 

determine the next step size, but also to decide between the two methods (or more precisely, 

the two pairs of methods). If at least one pair of methods was accepted, the algorithm sets 

hm := An,trial 8 the step size and h„+1, trial = On‘ Rn,trial a8 the trial step size for the next 

step. Otherwise, a reattempt is made with the smaller trial step size, updating its value as 

Antrial > On : hn,trial- 

In Chapter 2, this adaptive step size control with the automated switching mechanism is 

implemented for the WKB-based O(h) and O(h?) methods from [AAN11], combined with 
a Runge-Kutta pair of order O(h*) and O(h?) as the standard ODE methods. In [HLH16] 
the authors proposed a similar coupling of a WKB-based method with a Runge-Kutta 

method, called the Runge-Kutta-WKB (RKWKB) method. However, the WKB-based 
method they use in this coupling is only of order O(h). Further, the dynamic switching 

mechanism the authors use is different from the one sketched above. 'The main difference 

is that, in each step, they simply choose the method with the smaller error estimator, 

without incorporating the respective order of the method. We note, however, that the 

work [HLH16] was the main motivation for the investigations in Chapter 2. A similar 
approach can also be found in their more recent paper [AHLH20], where the authors again 

use a WKB-based method of order O(h), but the algorithm is also suitable for equations 

involving first derivative terms of the form y(z)y’(z).
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In particular, we focus here on the following goals and questions: 

e One main goal is the comparison of numerical results obtained with our approach, i.e., 

the WKB-based method from [AAN11] coupled to a Runge-Kutta method, with the 
RKWKB method proposed in [HLH16]. For both approaches we use the same Runge- 

Kutta scheme as the standard ODE method. Which approach is more efficient? 

e Is the error estimator (1.3.1) reliable? That is, is the error estimator in good agree- 
ment with the actual local truncation error? 

e Does our switching mechanism ensure well defined switching points between the 

WKB-based method (for oscillatory regions) and the standard ODE method (for 
smoother regions)? 

e The coupling of two methods (or more precisely, two pairs of methods) incurs addi- 

tional computational costs, as in each step both methods have to be applied. Hence 

we raise the question: Do the two selected methods complement each other well 

enough so that the overall efliciency of the algorithm is increased? 

For the two numerical examples presented in Chapter 2, we find that our approach out- 

performs the RKWKB method from [HLH16] significantly, as our algorithm yields smaller 

global errors (particularly for small e-values and small prescribed error tolerances) for the 

same CPU time. The numerical tests reveal that the efficiency difference is mostly due 

to the higher order (w.r.t. the step size h) WKB-based method used in our approach; the 

different step size controls and switching mechanisms (here vs. [HLH16, AHLH20]) play a 

less important role. This motivates the development of an even higher order WKB-based 

method, which will be our main goal in Chapter 3. 

1.4 Construction of third order WKB-based one-step schemes 

Motivated by the efficiency and accuracy of the second order one-step scheme (w.r.t. the 

step size h) from [AANI1], particularly when implemented with an adaptive step size 

control as in Chapter 2, we develop in Chapter 3 an extension of this method to a third 

order scheme. Indeed, especially when prescribing very low error tolerances for the step 

size controller, a higher numerical order of the method can be highly beneficial, as lower 

tolerances typically force the algorithm to choose smaller step sizes. Further, such a third 

order extension of JAAN11] should of course have at least the same asymptotic accuracy 
as the second order scheme, i.e. O(e?) as e — 0. In this subsection we will sketch the steps 

needed for this extension, and formulate our main goals and questions; for more details, 

we refer the reader to Chapter 3. 

The development of a third order scheme can be realized similarly to the second order 

scheme from [AAN11]. To this end, we consider the Schrödinger equation (1.0.1) on an 
real interval I = [E,n], augmented with the initial values 

ed) =, ed) = Pr; (1.4.1)
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where g, o1 € C are complex constants. Employing the WKB-based transformation from 

[AANT11], which exploits the phase (1.2.9) of the second order WKB approximation (1.2.8), 

one obtains for a new variable Z(x) = (zı(x),22(x))” the transformed problem (for more 
details, see Chapter 3) 

2 = eN’(2)Z(e), rel= [Sn], (1.4.2) 
Z(E) = Zu: 

Here, the (Hermitian) matrix N°(x) is bounded independently of e and has only off-diagonal 
non-zero entries: 

Nio(@) = b(z)e =¥ @ | N5 (z) = b(z)e =@, (1.4.3) 

with #° and b defined in (1.2.9)-(1.2.10). For the construction of a third order method we 
then consider a discretization {xo,...,zm} of the interval / and the third order Picard 
approximation of the solution to the IVP (1.4.2). This Picard approximation was already 

derived in [AANI11] and has the form 

Z(&n+ı) = [I+ eM5(Tnt1; Tn) + E2M5(Tni1; Tn) + M5 (Znt1; Tn)] Z(zn) +7n, (1.4.4) 

where I denotes the 2 X 2 identity matrix, the matrices M, p = 1,2, 3 are given by 

Tn+41 

Mi(aniiz) = [ N@M o (z)dy, M5=T. (1.4.5) 
In 

and the remainder r,, satisfies the estimate (see (3.3.2) in Chapter 3) 

IIrn||oo < Ce?h? minle, k), (1.4.6) 

where C > O is a constant independent of e and h. Given the highly oscillatory entries 

(1.4.3) of the matrix N, it is evident that the matrices M,, p = 1,2,3 involve (iterated) 

oscillatory integrals and can hence not be computed exactly in general. T'herefore, in order 

to derive one-step methods from the Picard approximation (1.4.4), which are asymptotically 

correct w.r.t. e, it is necessary to design suficiently accurate quadratures for these integrals. 

To this end, we will use techniques such as the asymptotic method from |INO06] and the 

shifted asymptotic method from [AAN11]. Then, after suitable quadratures for the integrals 

M, have been established, we are able to define a numerical scheme for solving the IVP 

(1.4.2), yielding approximations Z,, of Z(x,), n =0,..., M. Finally, we obtain numerical 
solutions m, n = 0,...,M to the original problem (1.0.1), (1.4.1) by using an inverse 
transformation, i.e., from the variable Z back to the variable 2; for more details, see 

Chapter 3. 

Given the above strategy for the development of a third order scheme, we will focus in 

Chapter 3 on the following main goals and questions: 

e Construction of the scheme: We aim to design sufficiently accurate approximations 

for the (iterated) oscillatory integrals M5 such that the resulting scheme is O(h?) and 
asymptotically correct w.r.t. e. The method should have at least the same asymptotic 

accuracy as the scheme from [AAN11], i.e. O(e3) as € — 0. 

10
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e The resulting third order scheme is much more involved than the second order scheme 

from [AAN11], as the established quadrature formulas for the matrices M, are more 
complex and involve more function evaluations. It is thus not clear a priori if the 

new derived method is more efficient. This shall be investigated through several 

numerical experiments with the help of work-precision diagrams. Can we find a 

significant efficiency gain for the novel third order method? 

The main result of Chapter 3 is Theorem 3.4.1, which implies the following global error 

estimate: 

le(zn) — @nlloe < Ceh®max(e,h), n=0,...,M, (1.4.7) 

where C > 0 is a constant independent of e and h. Given the max(e, h)-factor in the global 
error estimate (1.4.7), the novel scheme yields errors that locally even behave like O(e*) 
(for a fixed and sufficiently small h) or O(h*) (for a fixed and sufficiently small &), which 
may prove extra advantageous in applications. Indeed, although this max(e, h)-factor does 

not increase either the asymptotic (w.r.t. e) or numerical (w.r.t. h) order of the method, it 
could still contribute to the accuracy of the method, recalling that both e and h are small. 

We note that estimate (1.4.7) implicitly assumes that the phase (1.2.9), which appears 
in the WKB-based transformation to obtain the IVP (1.4.2) as well as in the scheme 

update formula, is exactly computable. A generalization of the above estimate that also 

incorporates possible phase errors can be found in T'heorem 3.4.3. We note that the strategy 

to obtain this more general result is the same as in [AKU22], where the authors proposed 

a refined error analysis for the second order method from [AAN11]. 
Several numerical experiments show that the new derived third order scheme is signifi- 

cantly more efficient than the second order scheme from [AAN11]. Indeed, when aiming for 
the same accuracy, the novel scheme is faster up to a factor of 40, according to the results 

obtained for the examples discussed in Chapter 3. 

1.5 Optimally truncated WKB approximation: exponentially 

small errors 

The WKB-based second order scheme from [AANI11] as well as the third order scheme we 

develop in Chapter 3 are eflicient methods for solving (1.0.1), but they are both limited 

to an asymptotic accuracy of O(e?), as e — 0, see also (1.4.7). This is simply due to 
the fact that both methods rely on the same analytic pre-processing, which utilizes the 

phase (1.2.9) of the second order WKB approximation (1.2.8). Indeed, when constructing 

numerical methods based on the Picard approximation of the solution of the smoother 

problem (1.4.2) (as done in Chapter 3), it is the O(e)-factor on the r.h.s. of (1.4.2) that 
ultimately imposes a constraint on the maximum achievable error order w.r.t. €. More 

precisely, using this approach, it is not feasible to achieve a higher asymptotic accuracy 

than O(e°). 
One possible approach to obtain a higher asymptotic order is to implement directly an 

arbitrary order WKB approximation (1.2.7) as an approximate solution to (1.0.1). This 
approach strongly differs from the two methods employed in Chapter 2 and Chapter 3. In 

11
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particular, it does not align with classical numerical methods, as it does not involve the 

introduction of a grid size h, and consequently, there is no convergence as h — 0. Instead, 

the resulting approximation error will be of order O(e) as e — 0, where N refers to chosen 
number of terms in the truncated asymptotic WKB series, see (1.2.1)-(1.2.2). As this WKB 
series is typically divergent, it is evident that there is some best attainable accuracy for the 

WKB approximation, achieved with the optimal choice N = Nopt- 

We will follow this approach in Chapter 4, where we implement (1.2.7) as an approximate 

solution of the IVP (1.0.1), (1.4.1) for a given interval I = [E,n]. To this end, the complex 
constants an, and An,: in (1.2.7) are determined such that (1.2.7) satisfies the initial 
conditions (1.4.1) exactly; for more details, see Chapter 4. 

In particular, we mainly focus on the following goals and questions: 

e Given a coeflicient function a(x), one objective is to analyze the growth behavior of 
the functions $# appearing in the WKB series (1.2.2) w.r.t.n € Ng. Under which 
assumptions on a(z) can we derive explicit (w.r.t. n) upper bounds for the norms 

1S5 | Loo (1) ? 

e By estimating the residual of the WKB approximation (1.2.7) w.r.t. the ODE (1.0.1), 
and by utilizing the established explieit upper bounds on the norms ||S7||x(r,, our 
goal is to derive an error estimate for (1.2.7) which is explicit w.r.t. eand N. Indeed, 

this explicitness is crucial for a further analysis of the approximation error w.r.t. the 

truncation order N. 

e The computation of the functions S= in (1.2.7) involves several integrals which in 

general have to be approximated, incurring additional errors. Consequently, the 

question arises: What impact do these approximation errors have on the overall 

accuracy of (1.2.7)? 

e The main goal is then to understand the e-dependence of different truncation strate- 

gies for the asymptotic WKB series (1.2.2). Which choice of N is appropriate or even 

optimal, in the sense of minimizing the resulting approximation error for the WKB 

approximation (1.2.7)? Given the optimally truncated WKB approximation, what is 

the order of corresponding optimal error? 

The key ingredient for our error analysis in Chapter 4 is the understanding of the growth 

of the functions S w.r.t.n € No. The crucial assumption we introduce for this analysis 
is that the coefficient function a is analytic on a complex, bounded and simply connected 

neighbourhood G C C of the interval I. Indeed, this enables us to employ Cauchy’s integral 

formula in order establish upper bounds for the norms ||S7||r(z,, utilizing the recurrence 
relation (1.2.4)-(1.2.6). We find that these norms can be estimated as 

IS Ivo <CKan”, neNo, (1.5.1) 

where C, Ka > 0 are positive constants independent of n; for more details, see Corol- 

lary 4.3.3. Further, we observe through several numerical experiments in Chapter 4 that 

the r.h.s. of (1.5.1) not only provides an upper bound, but also often represents the asymp- 

totic behavior of ||S}||z«(n), as n > ®. 

12
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Our first main result in Chapter 4 is stated in Theorem 4.3.7, which provides an explicit 

(w.r.t. eand N) estimate for the error |p— yN *#||r(r) of the WKB approximation. As a 

consequence, the approximation error is of order O(e), as e — 0. The explicitness of this 

estimate then allows to investigate the error w.r.t. the truncation order N. More precisely, 

the optimal truncation order N.„: can be predicted by minimizing the derived upper error 

bound w.r.t. N, and is found to be proportional to e!. 

The second main result in Chapter 4 is Corollary 4.4.1, which states that a truncation 

order N= N(e) we! leads to the following error estimate: 

C T WKB 
IP = pP isn SZ exp (-2) (1.5.2) 

where C,r > 0 are constants independent of e. Consequently, the error of the optimally 

truncated WKB approximation is of order O(e”? exp(-r/e)), ase —0. 
We confirm the theoretical results established in Chapter 4 with several numerical ex- 

periments. Furthermore, we discuss in Appendix 4.A a class of coeflicient functions a(x), 

which yield convergent WKB series. In particular, in this case the function n + ||$= || Lo (1) 
does not grow as the r.h.s. of (1.5.1) may suggest. 

1.6 State of the art 

We note that the development of numerical methods for the oscillatory equation (1.0.1) is 
an active field of research. Hence, let us mention here recent non-standard approaches that 

are suitable for tackling problems corresponding to (1.0.1). 

We start by citing approaches which also rely on the WKB approximation (1.2.7) or 

which are at least strongly related. In [JL03, Jah04, LJLO5] a variety of adiabatic integra- 
tors were developed, which all rely on first transforming the given ODE into a smoother 

problem before the latter is solved numerically. Notably, their analytic transformation for 

eliminating the dominant oscillations is closely related to a zeroth order WKB approxima- 

tion (i.e. N = 0 in (1.2.7)). A localized variant of this transformation also serves as the 
foundation of the modified Magnus method in |Ise02, 85]. 

A first order WKB approximation (i.e. N = 1 in (1.2.7)) was the basis in [Neg08, AMNO7] 
for the construction of a WKB-based finite element method (FEM) for (1.0.1) (see also 
[Neg05, §2]). To this end, the authors introduced an appropriate finite dimensional space 

that is based on so-called “WKB hat-functions”, which in the limit h — 0 reduce to stan- 

dard linear hat-functions. However, the construction of the WKB hat-functions requires a 

rather technical restriction on the mesh size h to ensure that the method is valid. 

Relying on a second order WKB approximation (i.e. N = 2 in (1.2.7)) we mention 
again the second order scheme (w.r.t. the step size h) from [AANI1], which is the basis 
for our methods in Chapter 2 and Chapter 3. A variety of extensions or modifications 

of this work have also been recently developed. First, in [AN18] the authors analyzed 

the numerical coupling of oscillatory and evanescent regimes. To this end, they rely on a 

domain decomposition approach, using the WKB-based marching method from [AAN11] 

in the oscillatory regime and a WKB-based FEM similar to [Neg05, 82] for the evanescent 

regime. Notably, the authors assumed the regimes to be separated by jump discontinuities 
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in the coefficient function a(z) to avoid turning points. An extension to this method was 
later proposed in [AD20], where the authors considered a turning point of first order in 

their domain. Assuming that the given coefficient function a(x) is linear or quadratic 
in a small neighbourhood of the turning point, they analytically solved the problem in 

this neighbourhood in terms of Airy and parabolic cylinder functions, respectively. This 

analytical solution was then coupled to a numerical solution away from the turning point. 

Let us also mention again the work [AKU22], where the authors refined the error analysis 
from [AAN11] by incorporating also possible phase errors. As the phase (1.2.9) cannot be 
computed exactly in general, the authors employed a spectral integration routine which 

reduced the impact of phase errors within the WKB-based scheme to relative machine 

precision (compared to other terms). As already mentioned in Section 1.4, the refined 
error analysis from [AKU22] is also the basis for Theorem 3.4.3 in Chapter 3. 

In [Geill], efficient one-step methods were proposed, which are suitable for solving linear 

systems of equations, which contain the Schrödinger equation (1.0.1) as a special case. 

Inspired by the strategy in [AAN11], the basis for these methods was a WKB-type analytic 
transformation, which transforms the given ODE into a smoother one, with a system matrix 

of order O(e”), ne N. This transformation ansatz should be compared to the super- 
adiabatic transformation from [HLWO06, §XIV]. 

We also cite again the article [HLH16], where the authors proposed the RKWKB method, 

a coupling of a WKB-based O(h) scheme with a Runge-Kutta method, combined with an 

adaptive step size control. This method was the motivation for our strategy in Chapter 2, 

where it is included in our numerical comparison. In their more recent paper [AHLH20], an 

extension of the RKWKB method was proposed in order to also be able to solve equations 

involving a first order term y(z)p’(x). There, the authors also used a slightly different 

switching mechanism in comparison to |[HLH16]. The method [AHLH20] was also imple- 
mented as an open-source numerical routine, called oscode, see [Ag020]. 

Similar to Chapter 4 in the present thesis, the question about the best attainable accu- 

racy of the WKB approximation (1.2.7) was also addressed in [|Win05], where the author 
compared the WKB series with the exact solution represented by a convergent Bremmer 

series. We note that the author also finds the optimal truncation order for the WKB series 

to be proportional to e! (as in Chapter 4). However, the strategy to derive this result 

relies on several additional asymptotic approximations, and is therefore less rigorous than 

our strategy in Chapter 4. 

Additionally, numerous numerical approaches for (1.0.1) exist that are not directly related 
to WKB theory. Instead of attempting to list all of them, we will mention only a few. 

In [AB22], the authors proposed a numerical algorithm that switches adaptively between 

a defect correction iteration, based on an asymptotic expansion, for oscillatory regions of 

the solution and a conventional Chebyshev collocation solver for smoother regions. The 

basis for the defect correction is the residual of a nonlinear Riccati equation that is satisfied 

by the derivative of the phase function z(z) in the substitution (x) = exp(z(x)), where 
y is the solution to the original ODE. While the method is demonstrated to be highly 

accurate and efficient, a comprehensive error analysis was deferred to future work. This 

numerical algorithm was also implemented as an open-source software, called ricatti, see 

[AB23]. 
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Further, in [HBR15, BR16, Brel8], an algorithm was proposed which relies on finding 

a non-oscillatory phase function «({z) such that the functions u(x) = cos(a(x))|a’(z)| "1/2 
and v(x) = sin(a(x))|@’(x)|""/? comprise a basis in the space of solutions of (1.0.1). While 
such a function a(x) may not always exist, they proved that if a(x) is non-oscillatory, 
there exists a non-oscillatory function &{x) such that the above functions u(z) and v(x) 
approximate solutions of (1.0.1) with O(u”!eexp(-u/e)) accuracy, where u is a constant 
depending on a. Similar to our approach in Chapter 4 (with O(e”?exp(-r/e)) accuracy), 
this method involves no introduction of a grid size h and hence there is no convergence as 

h — 0. 

1.7 Structure and Authorship 

In this section, we provide an overview of the main body of this thesis, which comprises 

three chapters. Additionally, we specify the authorship for each chapter. 

In Chapter 2 we build upon the WKB-based one-step method from [AAN11] for solving 

the one-dimensional stationary Schrödinger equation in the highly oscillatory regime. We 

extend this WKB method by implementing an adaptive step size control combined with an 

automated methods switching, allowing the algorithm to switch to a standard Runge-Kutta 

method in smoother (i.e. less oscillatory) regions. We compare our approach to the similar 

strategy [HLH16, AHLH20] on two numerical examples and illustrate the advantages of 
our new approach w.r.t. accuracy and efficiency. 

The content of this chapter is a joint work with Anton Arnold and Kirian Döpfner. The 

results were published in [KAD21]. The author of this thesis contributed by doing all 
numerical simulations and working out the draft of the paper. The coauthors contributed 

by providing the motivation for the paper and by reviewing the draft. 

Chapter 3 is devoted to the development of a higher order extension (w.r.t. the step size 

h) of [AANT11] for solving the one-dimensional stationary Schrödinger equation in the highly 
oscillatory regime. By developing sufliciently accurate quadratures for several (iterated) 

oscillatory integrals occurring in the Picard approximation of the solution, we obtain a 

one-step method that is third order w.r.t. the step size. The accuracy and efficiency of the 

new method are illustrated through several numerical examples. 

The content of this chapter is a joint work with Anton Arnold and was submitted for 

publication under [AK24]. The author of the present thesis contributed by working out 

the mathematical details, conducting all numerical simulations, and drafting of the paper. 

The coauthor contributed primarily by reviewing the draft of the paper. 

In Chapter 4 we implement and analyze an arbitrary order WKB approximation for the 

one-dimensional stationary Schrödinger equation in the highly oscillatory regime. Given 

that the coeflicient in the equation is analytic, we derive an explicit error estimate in terms 

of the small parameter e and the truncation order N. For any fixed e, we find the optimal 

truncation order Nopt to be proportional to e 1, yielding a corresponding optimal error of 

the order O(e”? exp(-r/e)), with some parameter r > 0. The theoretical results presented 
in this chapter are confirmed by several numerical examples. 
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The content of this chapter is a joint work with Anton Arnold, Christian Klein, and 

Jens Markus Melenk. The results were submitted for publication under [AKKM?24]. The 
author of this thesis contributed by working out the mathematical details, conducting all 

numerical simulations, and drafting of the paper. The coauthors were involved by working 

out mathematical details and reviewing the draft of the paper. 
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2 WKB-based scheme with adaptive step 

size control for the Schrödinger equation 

in the highly oscillatory regime 

The content of this chapter has been published in [KAD21]. 

2.1 Introduction 

This chapter deals with the numerical solution of the highly oscillatory 1D Schrödinger 

equation 

Erz) +alz)p(x)=0, zER. (2.1.1) 

Here, 0<e< 1 is the rescaled Planck constant (e := I) and % the (possibly complex 

valued) Schrödinger wave function. The real valued coefficient function a(x) is related to 

the potential. We shall assume here that it is bounded away from zero, i.e. a(z) > r for 
some r > 0. The (local) wave length of a solution o to (2.1.1) is given by A(x) = = 

Yale) 

Hence, for small values of e the solution is highly oscillatory, especially in the semi-classical 

limit e—0. 

Oscillatory problems like (2.1.1) appear in a wide range of applications, e.g., quantum 

mechanics, electron transport in semiconductor devices, and acoustic scattering. For in- 

stance, the state of an electron that is injected with the prescribed energy E from the right 

boundary into an electronic device (e.g., diode), modeled on the interval [0, 1], is described 
by the equation (see [AANI11]) 

edle) + Yayta) = Eyp(z), z€(0,1), 
b7,(0) +ik(0)E(0) = (2.1.2) 
dr(l) -ikll)drll) = ai ) 

where k(z) :=e !ı/E - V(x) is the wave vector and V denotes the electrostatic potential. 

Note that our assumption a(z) > r > 0 implies E > V(x), so the solution dg becomes 
oscillatory. Then, one is often interested in macroscopic quantities like the electron density 

n and the current density 7, which are given by 

= /0°° f(k)banle)?dk, j(z)=¢ / ik 3 (Baal dee) Ak (2.1.3) 

where f represents the injection statistics of the electrons. Here, $(-) denotes the imaginary 

part and E(k) = &®k?+V means the energy for a given wave vector k. In order to compute 
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the quantities (2.1.3), the Schrödinger equation (2.1.2) has to be solved many times, as 
a fine grid in E(k) is needed. Hence, eflicient methods for the solution of (2.1.2) are of 
great interest in such applications. Instead of solving the boundary value problem (2.1.2) 
directly, one can also solve the equivalent initial value problem, which results if equation 

(2.1.1) on the interval (0,1) is augmented with the initial values 2(0) = yo = 1 and 
ep'(0) = a = -iyal0) with a(x) = E — V(x). The solution ¢ of this initial value 
problem and that one of problem (2.1.2) are then related by 

2ik(1) 
YE(®) =~ S Sk ei), 

according to [AANI1]. Indeed, the method proposed in this chapter will deal only with 

initial value problems for the Schrödinger equation (2.1.1), but through this equivalence it 

is equally suitable for solving problem (2.1.2). 

In [AAN11, JLO3, LJLO5], efficient and accurate WKB-based (named after the physicists 

Wentzel, Kramers, Brillouin; cf. [LL85]) numerical schemes have been developed for (2.1.1) 
in the oscillatory regime. By transforming out the dominant oscillations, they allow to 

compute a solution using a coarse spatial grid with step size h > X. In fact, the grid 

limitation can there be reduced to at least h = O(/e). Now, in this chapter we add on 
top of the algorithm from [AANI11] an adaptive step size control as well as a switching 
mechanism. This allows the algorithm to switch to a standard ODE method (e.g., Runge- 

Kutta) during the computation in order to avoid technical or efliciency problems in regions 

where the coefficient function a(x) is very small or indeed equal to zero. We recall that the 

WKB-approximation is not valid close to turning points, i.e. where a(x) = 0. A switching 

mechanism was also used in [HLH16], where the authors presented another WKB-based 

numerical scheme for the initial value problem corresponding to (2.1.1). Therefore, one 
goal of this chapter is to compare numerical results from our method with the results given 

by the method from [HLH16], by considering two examples where the analytical solution 

is known. 

Since numerical methods for oscillatory problems is an active field of research, let us men- 

tion some references that are intended for more general oscillatory problems, and hence 

also include adequate methods for (2.1.1): first the two monographs [WW18, HLWOß6]. 
The adiabatic integrators of [HLWO06, §XIV] are in fact closely related to a zeroth order 
WKB-approximation, see (2.2.2)-(2.2.3), below. Concerning (highly oscillatory) Hamilto- 
nian boundary value methods we cite [BIMR19, ABI20]. 

This chapter is organized as follows: In Section 2.2 we give a short review of the second 

order (w.r.t. e) WKB-marching method from [AANI11]. Section 2.3 then describes the 
adaptive step size control algorithm as well as the switching mechanism. In Section 2.4 we 

recap the Runge-Kutta-WKB method from [HLH16] and point out the difference between 
their step size control and the one used in this chapter. In Section 2.5 we present numerical 

investigations on the error estimators of our algorithm as well as a comparison of the 

numerical results of our method and the method from [HLH16]. We then conclude in 
Section 2.6. 
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2.2 The WKB-marching method 

We aim at solving the Schrödinger equation (2.1.1), augmented with the initial conditions 

p(z0) = po, Ep'(zo) = Po (2.2.1) 

with some zo € R. First we shall review the basics of the second order (w.r.t. e) WKB- 
marching method from [AAN11] with focus on the algorithm. The motivation for this 
method was the construction of a numerical scheme that is uniformly correct in e and 

sometimes even asymptotically correct, i.e. the numerical error goes to zero with e — 0 

while the grid size h remains constant. For further details see [AAN11]. The method 
consists of two parts: 

1. Analytic pre-processing of (2.1.1) by transforming the equation into a smoother (i.e. 
less oscillatory) problem that can be solved accurately and efliciently on a coarse grid. 

2. Obtaining a numerical scheme by discretization of the smoother problem. 

Analytic pre-processing. The well-known WKB-approximation (cf. [L185]) for the os- 
cillatory regime where a(zx) > 7 for some r > 0, is based on inserting the ansatz 

oo 

Da) » exp | 2 I %r(a) (2.2.3) 
p=0 

into equation (2.1.1). After a comparison of e-powers one obtains the first three functions 
¢p(x) as 

do(x) = :|:i/x valy)dy, (2.2.3) 

  

$1(z) = In(a(z) %), (2.2.4) 
i z oo 1 ala-i " 

aa) = ri Bu)an, ba): a) (2.2.5) 

Here the symbols + and in (2.2.3) and (2.2.5) correspond to the fact that there is always 
a pair of approximate solutions to the Schrödinger equation (2.1.1), by analogy to the two 

fundamental solutions of (2.1.1). Hence the general solution is then a linear combination 

of the two. Therefore, a truncation of the sum (2.2.2) after p = 2 leads to the second order 
(w.r.t. e) asymptotic WKB-approximation of o(r): 

exp (:¢°(x)) , exp(—1¢°(x)) 
pl) = a ————— +0 ) 2.2.6 

a(x)? a(x)% ) 

with constants cı,ca € C to be determined from initial or boundary conditions, and the 

phase is 

#@) = | " (Valy) - 2b(y)) dy. (2.2.7) 
0 
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In the WKB-marching method of [AAN11] this second order WKB-approximation is used 
to transform (2.1.1) into a smoother problem. To clarify our terminology, we point out 

that this method (as well as the Runge-Kutta-WKB method of Section 2.4) has both a 
WKB-order (w.r.t. &; referring to the used cut-off in the asymptotic expansion (2.2.2)) and 
a numerical order (w.r.t. the step size h; referring to the convergence order). Firstly, using 

the notation 

le alz)i Pla) 
U(z) = u) = e(a(@)ty)) ; (2.2.8) 

Ya) 

the second order differential equation (2.1.1) with the initial conditions (2.2.1) can be 
reformulated as a system of first order differential equations: 

ve = [2Ao(2) +EeAı(a)] Ua), z> mo, (2.2.9) 
U(zo) =U7r. 

Here, the two matrices Ao and Aı are given by 

0 1 0 0 
Aolz) := valz) ° 0) ; Aıle) := (20 0) . 

Then, the first order system (2.2.9) for U(z) is transformed by the change of variables 

Z(z) = (zl(””)) = exp (-:8@) PU(z), (2.2.10) 

with the two matrices 

P G }) wa G% _)) | 
where #° is the phase function defined in (2.2.7). This leads to the system 

(2.2.11) 
7 =eN¢(2)Z(z), x>z, 

Z(zo) = Zı = PUI, 

where N¢(z) is a (Hermitian) matrix with only off-diagonal non-zero entries: 

Nfo(z) =b(z)e™ = 9@, N5, (z) = b(z) = 4 . 
Since the transformation (2.2.10) eliminated the dominant oscillations, the system (2.2.11) 
can be solved numerically on a coarse grid {x„,n € No}. Then the original solution can be 

recovered by the inverse transformation 

U(z) = PLexp (ee) Ze). 
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It should be noted that, throughout the whole transformation from U(z) to Z(z), the phase 
integral d°(x) is assumed to be known exactly. For a generalization using a spectral method 

to numerically compute the phase see [AKU22]. 

Numerical scheme. The derivation of the second order (in h) scheme for (2.2.11) is 
obtained via the second order Picard approximation 

In+1 ~ ~ Tn+1 ~ z ~ 
Zaıı i= Zip + s/ N’(z)deZ, + = | N“(a) | N°(y)dydız, . (2.2.12) 

En T In n 

Since the entries of N®(x) are highly oscillatory, (2.2.12) involves (iterated) oscillatory 
integrals. With $° assumed to be known exactly, they are then approximated using similar 

techniques as the asymptotic method in [INOO06]. The first order (in h) scheme for (2.2.11) 
is derived by only taking into account the first two terms from (2.2.12). For both of these 

schemes we introduce the following notations: 

b(y) | L L s o, 
2 ( a(y) — e2b(y)) Br (¢=(v)) dy 

hıly) :=e'?-1; haly):=e’-1-iy. 

bo(y) :=   

Further, let {zo,21,..., cn} be a grid we want to compute the solution on, and h := 

maxı<n<N |n — £n-ı| be the step size. Then both schemes read as follows: 

First order scheme: Let Zo := Z1 be the initial condition and let n = 0,.., N—1. Then 

the algorithm updates as 
  

Zu+ı = (I+ AN) Zu; (2.2.13) 

with the (Hermitian) matrix 

2i 

1.__3 ) 1 n 
An =£ bl(xn—l—l) (e%(ba(mn) hl (gsn) 0 € 

9 0 bo(zn) ee Han) dnlamzı) ee 9 Ent) 

“ 26° (en) 2iö*(en) bo (£n+1) ee ntl —bo(a’:n) es n 0 

and the phase increments 

Sn 1= ¢ (Tnt1) - Plan). 

Second order scheme: Let Zo := Zr be the initial condition and let n = 0,.., N — 1. Then 

the algorithm updates as 
  

Zn+ı = (I + Alyoan + AR) Zu (2.2.14) mod,n 
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with the (Hermitian) matrix 

  

A71’nod,n = 

—ig? N 0 5 bo(&n) e- 6° (an) -bo(£n+ı) eo 6° (entı) 

bo(£n+1) ee an+ı) —bo(zn) ed 
(an) 

0 

+ &® 2i 0 o b1($n+1) e_z?i¢5($n+1) _bl(xn) e_2?i¢€($n) 

b1($n+1) e?ld)s(ffln-i-l) _bl(.’En) e?l¢€(wn) 
0 

2i e 

0 _ 0: Plan) hı (—25 ) 

Hie'b T i ze 
een 

>( n+1) ( (zn) hı (23,) 0 

2i se 

0 ee lan) (-2s 
5 

5 i 

— e°bs(z ke 
2 | 

3( n+1) (2 (£n) ha (2s,) 0 

and the diagonal matrix 

b(£n+1)bo(lan+ı) + blxn)bo(z 10 

AR := — ie? (£ntı — In) (£n+1) ent) (2n)bo (zn) (0 _1) 

2 hı (-2s„ 0 —s4bo(xn)bo($n+1)( (05 ) hı 2) 

Hl) len) (Te) 

2.3 Step size control and switching mechanism 

The WKB scheme is eflicient in the highly oscillatory regime, but not applicable close to 

turning points, i.e. zeros of a(x), see [AD20]. This is evident already from the transfor- 
mation (2.2.8), which does not make sense when a(z) < 0. For mixed problems, e.g., the 
Airy equation on R} (see Section 2.5.1), which has a turning point at x = 0, it is therefore 

convenient to couple two different methods: a method for highly oscillatory ODEs (e.g., 

WKB-based) away from the turning point, and a standard ODE method (e.g., Runge- 

Kutta) close to the turning point, where the solution is smooth anyhow. Here, we choose 

the well-known Runge-Kutta-Fehlberg 4(5) (RKF45) scheme (cf. [INWO0]) as the stan- 
dard ODE method. The latter method will be applied directly on equation (2.1.1) and 

not on (2.2.11), since the WKB-transformation (2.2.8)-(2.2.11) is not permitted at turning 
points. The exact switching mechanism as well as the introduction of an adaptive step size 

control to the algorithm will be described in the two following subsections. 

2.3.1 The adaptive step size controller 

In order to compute the solution efficiently, an adaptive step size controller, based on an 

estimator for the local truncation error, will be added to the numerical methods. This 

control allows the step size to increase or decrease while aiming to keep the error estimator 

as close as possible within a given error tolerance. To illustrate the functionality of this 
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step size controller, we shall consider a numerical scheme of order k. We are then able to 

apply this step size control individually to the different methods mentioned above. 

Let y,® = (go,(f), @E’”) and erkH) = (rd, pH) be two numerical solutions of order 

k and k +1 to approximate the exact solution Y(x,) = (p(£n), P'(£n)) of the initial value 
problem (2.1.1), (2.2.1). E.g., one could choose the WKB schemes (2.2.13) and (2.2.14) of h- 
order 1 and 2, respectively. Next we want to decide whether to accept the numerical solution 

at x (typically the more accurate solution y*+D) or rather to retry the computation with 

a modified step size. To this end we define the estimator for the local truncation error as 

estn := |Y PR — y (1)) (2.3.1) 

Let hntrial = In — In-ı be the (trial) step size which was used to compute the solutions 

at the current step n. We then use the common approach of varying the step size via the 

multiplicative control 

hnew := Oy - Antrial . 

Here, we choose the factor 6, to be based on the so-called elementary controller (e.g., see 

[S602]). Additionally, we introduce limitations in such way that the step size controller 
responds “smoothly” to abrupt changes in the solution behavior, that is, the ratio between 

two consecutive step sizes should not be exorbitantly large or small. That said, we choose 

the factor similar to [But08, p. 310] as 

  

1 

ATol + RTol -||y,**?) le) o (2.3.2) 0, := max | 0.5, min | 2,0.9 
est, 

where ATol =n: Tol and RTol = Tol are absolute and relative error tolerances for a given 

master tolerance Tol, the values 0.5 and 2 are design parameters that limit the ratio of two 

consecutive step sizes from below and above, and 0.9 is a common safety factor for increasing 

the probability of the next step to be accepted. Here, n is a scaling factor representing the 

gradual switch-over between absolute and relative errors, depending on the behavior of the 

solution. This is because for Ivy I|oo — 0 the ATol term in the numerator in (2.3.2) is 

dominating, whereas for large values of A Io the RTol term is dominating. For our 

numerical simulations in Section 2.5 we choose n = 102. If ATol+ RTol IytV Io > estn, 

we accept the n-th step with the step size defined as hn := hn,triai and define the trial step 

size for the next step as 

An+1,trial = Anew - 

However, if ATol+ RTol jyrr® Io < estn, the n-th step gets rejected and a reattempt is 
done with the smaller (trial) step size hntriaı by updating its value as 

An ,trial — hnew . 

Since such an acceptance criterion is based on aiming to maintain the local error in each 

step as close as possible to the given error tolerances it is often referred to as error per step 

(EPS) control. In practice, using EPS control one can hope to achieve a global truncation 

error proportional to Tol*/(k+!) (e.g., see [But08, p. 311]). 
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2.3.2 The switching mechanism 

As already mentioned above, the algorithm shall automatically switch between two numer- 

ical methods, the WKB method in the oscillatory regime and another method, which is 

valid close to turning points. To realize this dynamical switching mechanism we follow a 

similar strategy as in [AHLH20]. To illustrate this procedure we now consider two numer- 
ical schemes of order kV and k®, where the superscripts (1) and (2) correspond to the 
two schemes. In each step, the adaptive step size algorithm from the previous section is 

applied to both schemes individually up to the definition of the quantities 9m and om 

i.e., we just evaluate (2.3.1) and (2.3.2). Then, after checking the acceptance criterion 

ATol + RTol. | FD], > est for each scheme (i) € {(1), (2)}, the switching mecha- 
nism intervenes and it selects the acceptable numerical method that yields the larger value 

of 9“ ) for i = 1,2, hence yielding the larger proposed new step size. We thus favor the 

method with the smaller error estimator, discounted by its respective order k®. More 

precisely, we define 

o : (1) accepted, (2) rejected 

0, = 0 (1) rejected, (2) accepted 

max (01,01) , otherwise 

and store the information on the method of choice in that n-th step. Through this procedure 

the algorithm does not only use the error estimator to find the next step size, but also to 

decide between the two methods. 

If at least one method was accepted, the algorithm sets 

An := An,trial 9 

hn+1,trial = On ° An,trial . 

Otherwise a reattempt is done with the smaller (trial) step size h„,triaı by updating its 

value as 

An trial > On : hn,trial . 

We remark that the coupling of two methods, as presented above, could incur additional 

computational costs, since in every step both methods have to be applied in order to 

compute ©,,. However, in our case the WKB method (for highly oscillatory regions) and 

the standard ODE solver (for smoother regions) complement each other very well, yielding 

better results concerning accuracy as well as overall efficiency (see also Figures 2.5.7-2.5.8, 

2.5.11 and 2.5.16). 

2.4 The Runge-Kutta-WKB method 

In this section we give a short review of the Runge-Kutta-WKB (RKWKB) method pre- 

sented in [HLH16] for the initial value problem (2.1.1), (2.2.1). The method is based on a 
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2.4 The Runge-Kutta-WKB method 
  

dynamic switching mechanism between a standard Runge-Kutta scheme and a new step- 

ping procedure that uses the WKB-ansatz (2.2.2) as an approximation of the true solution. 

This stepping procedure reads as follows: 

  

  

Pn+1 = Y4J+(En + An) +Y-S-(an + In); (2.4.1) 
on+ı >= 6+f (En + hm) +6-f (an + An) ; (2.4.2) 

Tn+l = Tp + hp (2.4.3) 

where 

_ Pnfz(En) - Zn 

= Ar, (En) Sean) fen) 244) 
f(&n) - al (Zn) 

en) ae) 2.45) 
and ¢ is computed from 9, and equation (2.1.1). Here, f+ are chosen as WKB-approxima- 

tions (2.2.2) of some finite order. For instance, one gets the second (WKB-)order method 
by setting 

exp (+16°(z) 
S+(z) := | 3 . 

a(z)4 

Note that this choice is equal to (2.2.6), but one can easily choose f+ with higher (WKB-) 
orders. However, the stepping procedure (2.4.1)-(2.4.5) is always a first order (in h) nu- 
merical method. This holds because the coefficients y+ and ö+ are chosen in such way that 

one finds 

Pntl = Pn + (P;%h + O(R?), 

Ph = ph +ylh+O(R?), 

from (2.4.1)-(2.4.3), as stated in [HLH16]. 
It is also worth noting that in [HLH16] the authors use a slightly different dynamic 

switching mechanism and a different step size control compared to the algorithm presented 

in Section 2.3. Firstly, their estimator of the relative error within the WKB-stepping 

procedure uses the difference between two numerical solutions o ) and „rl of different 

WKB-orders instead of different h-orders, simply since they do not have schemes of two 

different h-orders at their disposal. The algorithm then decides between a WKB step and 

a RK step by choosing the method with the smaller error estimator. In their more recent 

paper [AHLH20] the authors use a similar step size control and switching mechanism as 

presented in Section 2.3, but they do not limit the ratio of two consecutive step sizes and 

provide no option for controlling both absolute and relative errors as done in (2.3.2). 

The goal of the following section is t0 compare numerical results from the WKB-marching 

method to results one gets using the RKWKB method. To both methods we will apply 

(exactly) the step size control and switching mechanism from Section 2.3, for the sake 

of comparability. Since the WKB-stepping procedure of the RKWKB method is always 
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2 WKB-based adaptive scheme for the highly oscillatory stationary Schrodinger equation 
  

  
WKB-+RKF45 | WKB-marching method (see Section 2.2) + step size and switching 

algorithms to RKF45 (see Section 2.3) 
RKWKB original method from [HLH16]: Runge-Kutta-WKB (see Section 2.4) 

+ original step size and switching algorithms (see Section 2.4) 

RKWKBmod | modified method from [HLH16]: Runge-Kutta-WKB (see Section 2.4) 
+ modified step size and switching algorithms (see Section 2.3) 

RKF45 Runge-Kutta-Fehlberg 4(5) scheme + step size algorithm (see Sec- 
tion 2.3) 

  

  

  

        

Table 2.5.1: Terminology for the methods to be compared. 

of first order w.r.t. h, the definition of the error estimator (2.3.1) does not make sense. 
Therefore we shall use two different WKB orders (instead of h-orders) to be able to compute 
the error estimator in this case, as also done in [HLH16]. Further, since our algorithm 
consists of a different step size update formula and switching criterion, we will call this 

modified RKWKB method simply RKWKBmod. Since this modification may produce 

slightly different numerical results compared to [HLH16, AHLH20] we will also include the 

original RKWKB method from [HLH16] into our comparison. 

2.5 Numerical results: WKB-marching method vs. the 

Runge-Kutta-WKB method 

In this section we will compare numerical results of the WKB-marching method and of the 

RKWKB method by applying both algorithms to two examples, where exact analytical 

solutions are available. The first example corresponds to a linear coeflicient function a({x) 

and is taken from [HLH16, AHLH20], whereas the second example involves a quadratic 

function a(z) and appears in [AD20]. In both examples the phase integral (2.2.7) in the 
WKB basis functions (2.2.3)-(2.2.5) can easily be computed exactly, hence we do not need 
any numerical integration routine here. By contrast, in [AHLH20] they evaluate the WKB 
basis functions with a numerical integration routine and therefore get another source of 

error in their method. Moreover, we will always use the second order WKB-marching 

method, since no scheme of higher WKB-order has been developed yet, see [AAN11]. 

For clarity of the presentation we shall use in the sequel the terminology for the methods 

to be compared according to Table 2.5.1. 

All simulations in this chapter are done with MATLAB version 9.10.0.1669831 (R2021a). 

2.5.1 First example: Airy function 

The first example investigated in [HLH16] is the Airy equation 

e2¢"(z) + zp(x) =0, >0, 
—-2/34;3—1/6 

0(0) = =55, (2.5.1) 
3 

/ u 3-1/3_; 31/6 

Ep (0) - 5—1/3I‘(§I) ’ 
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2.5 Numerical results: WKB-marching method vs. the RKWKB method 
  

which results if one chooses the coeflicient function a(x) = z. Here, I' denotes the gamma, 

function. The exact solution to the problem (2.5.1) is given by 

Pezact(T) = Al(_%) + i Bil 573) ’ 

where Ai and Bi denote the Airy functions of first and second kind, respectively. This 

example demonstrates very well the advantages of a WKB method, since the solution 

becomes more and more oscillatory for large values of x. While standard adaptive ODE 

methods, e.g., Runge-Kutta methods, would need to decrease the step size more and more, 

a WKB-based method does not have to resolve the individual oscillations. Actually, it even 

allows to increase the step size for large x and is therefore highly efficient. This can be 

seen, e.g., in Figures 2.5.4-2.5.6. 

Before starting to discuss the numerical solution of (2.5.1) we first remark that the 
evaluation of an oscillatory function (even of trigonometric functions such as sin or cos) is 

numerically ill posed for very large values of x. This is a generic problem and not related 

to the numerical solution of (2.5.1), or to the choice of the numerical method: 

Remark 2.5.1. We consider to evaluate Yexacı(t) for an argument x that is only known 

with finite accuracy, specified by machine eps. Then, using the lowest order erpansions for 

Pexact and PLzacı Jrom 2.A, we have 

g1/6 Ir 2 23/2 

Pezacıl®) Tr iza ®P 1 Z_gT as T — 00, 

and the relative error of Pezact(x(1 + eps)) is asymptotically eps x°/?/e. 
Considering double precision, e.g., with MATLAB’s eps ~ 2.2 - 10716 and x = 50, this 

generic evaluation error is 7.8 - 10710 for e = 10°* and 7.8 - 107 for ¢ = 1073. These 

unavoidable errors limit the achievable accuracy, and it will play a role in Figures 2.5.10- 

2.5.11 below. 

As a first step we shall now test the reliability of our choice of error estimator (2.3.1) 

— but only for the WKB steps of WKB+RKF45 and RKWKBmod. Since we know the 

exact solution to this problem, we can compute the local truncation error in each step and 

are able to compare it to the error estimator. Moreover, we apply the adaptive step size 

control from Section 2.3 with the error tolerance Tol = 10° and set e=1. 

According to the results of Figures 2.5.1 and 2.5.2, the error estimator is in excellent 

agreement with the local truncation error (for this example). Hence, it seems to be an 

adequate choice. We also find a very good agreement by plotting the respective relative 

errors for one single step as functions of the step size h for a fixed starting point xo, See 

Figure 2.5.3. Again, the relative error is for both methods much smaller than one. Note that 

in the case of WKB+RKF45 the relative error goes to zero, if h tends to zero. T'herefore, 

the estimator seems to be asymptotically correct. 

Remark 2.5.2. The computation of the local truncation error involves the evaluation of 

the Airy function, which seems to have an accuracy problem for large values of x when 

using the standard routine airy() in MATLAB. Hence we used a modified implementation 
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Figure 2.5.1: Left: The error estimator (2.3.1) in comparison to the actual local truncation error computed using 
only WKB steps for WKB+RKF45 of first order in h, (2.2.13), and second order in h, (2.2.14). Right: 
The relative error between the estimator and the local truncation error for the O(h)-scheme. In both 
pictures we set Tol=10"° ande =1. 
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Figure 2.5.2: Left: The error estimator (2.3.1) in comparison to the actual local truncation error computed using 
only WKB steps in the RKWKBmod method. Since the method is of first order (in h), the estimator 
as well as the local errors were computed by using different WKB-orders instead (here order 2 and 3). 
Right: The relative error between the estimator and the local truncation error (2”? WKB-order). In 
both pictures we set Tol = 10~° and € = 1. 
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Figure 2.5.3: The relative error between the estimator (2.3.1) and the local truncation errors for WKB+RKF45 and 
RKWKBmod in one single WKB step as functions of the step size h for a fixed starting point zo = 10. 

Here, we set Tol = 10-3 and e = 1. For the computation of the estimator with the RKWKBmod 

method a 2” and 3” WKB-order was used. 

  

  

  

  

    

airy() asymptotics 

Ai | xe [0,500] | x € (500, oo) 

Ar’ | ze [0,400] | x € (400, 0) 

Bi | xe [0,500] | x & (500, oo) 
Bi’ | ze [0,400] | x e (400, ©)         

Table 2.5.2: Intervals for evaluating the Airy function of first and second kind as well as their derivatives. For small 

values of x the original function from MATLAB was used, and for large x the evaluation was performed 

using the asymptotic expressions (2.A.1)-(2.A.4) with truncation after K =3. 

ofthe Airy functions, which consists of the function airy() from MATLAB for small values 

ofx and asymptotic expressions for the Airy function for large values of x. More precisely, 

the evaluations were performed as given in Table 2.5.2. The asymptotic expressions are 

based on well-knoun ezpansions, which can be found in 2.A. The order for truncating the 

expansions was set to K = 3. 

Now, we will give numerical results for solving the initial value problem (2.5.1) for the 

Airy equation with WKB+RKF45 and RKWKBmod. We recall that the algorithm auto- 

matically chooses between RKF45 and the respective WKB steps. To illustrate this differ- 

ence in the Figures 2.5.4-2.5.9 as well as Figures 2.5.13-2.5.14, we will mark RKF45 steps 

with red dots, WKB steps using WKB-+RKF45 with blue squares, and WKB steps using 

the RKWKBmod method with green triangles. To exclude the turning point x = 0, we solve 

the Airy equation (2.5.1) in Figures 2.5.4 and 2.5.5 on [0.1,50]. According to Figures 2.5.4 
and 2.5.5, WKB+RKF45 seems to perform slightly better than the RKWKBmod method 

in this example, in matters of global error. But at the same time WKB+RKF45 needs sig- 

nificantly fewer steps than RKWKBmod. Also, within the algorithm using WKB+RKF45, 

the switch from RKF45 steps to WKB steps happens earlier as can be seen in Figure 2.5.4. 

In Figure 2.5.6, the relative global errors of both algorithms are compared on [0.1, 10°]. We 

find that the algorithm using WKB+RKF45 made fewer steps (58 vs. 91) while producing 
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Figure 2.5.4: Left: Real part ofthe numerical solution obtained by using WKB+RKF45 compared to the (exact) refer- 

ence solution (solid line) for Tol = 10. Right: The global error for the choices Tol = 10°, 106, 10? 
(read from top to bottom). The respective overall number of steps made are 12, 77, and 856. For both 

pictures the initial step size was set to hı trial = 0.5 and the parameter e was set to l. 
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Figure 2.5.5: Left: Real part of the numerical solution obtained by using the RKWKBmod method compared to 

Right: The global error for the choices 

Tol = 10-3, 106,10? (read from top to bottom). The respective overall number of steps made are 

16, 171, and 2352. For both pictures the initial step size was set to hı trial = 0.5, the parameter & was 

set to 1 and a third order WKB-ansatz was used. 
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Figure 2.5.6: Global error comparison of WKB+RKF45 and RKWKBmod on [0.1,108] for ¢ = 1 using an initial 

step size hı,trial = 0.5. The error tolerance was set to Tol = 10-3. A third order WKB-ansatz was 

used for the RKWKBmod method. Overall the algorithm using WKB-+RKF45 made 58 steps, whereas 

RKWKBmod made 91 steps. 

a slightly lower global error at the same time. The almost identical grid spacing of both 

methods from x *3 300 onwards is due to limiting the quotient of two consecutive step sizes, 

imposed in both methods. Furthermore, Figures 2.5.7 and 2.5.8 show the ratio between 

the WKB- and RK- error estimators as well as the ratio of the proposed step sizes (by the 

WKB and RKF schemes) for each step of the above simulations. For both WKB+RKF45 

and RKWKBmod, these plots demonstrate well the superiority of the RK scheme in the 

less oscillatory regime, i.e. for x small, as the ratio of the error estimators is very large 

there. The switching points to the WKB schemes are well defined (again for both WKB 

methods) — due to the monotonous behavior of both the ratio of error estimators and the 

ratio of proposed step sizes. Note also that the step size ratios are bounded from above 

and below because of the limitations in (2.3.2). We also want to give a perception of how 

WKB-+RKF45 can perform, if the phase integral (2.2.7) can not be evaluated exactly. For 

this purpose we use the Clenshaw-Curtis quadrature (cf. [CC60]) to approximate the phase 
(2.2.7). That spectral method was already used in combination with the WKB-marching 

method, see [AKU22, 85]. In [AKU22] they approximate the phase at first on Chebyshev 

collocation points throughout the whole interval and use barycentric interpolation for the 

ODE-grid points z„. This was possible since they worked only on the “small” interval 

[0, 1]. In contrast, we will instead approximate the phase (2.2.7) in each interval |xn, £n+1] 
individually, since we are dealing here with the “long” interval [0.1, 10°]. Figure 2.5.9 gives 

a comparison of the global error for the Airy equation (2.5.1), when using the exact phase 

vs. a numerically computed phase. According to these results the relative g-errors from 

computing the phase (2.2.7) numerically become visible only from z ~ 107 onwards. 

We will next compare the numerical results of four methods, namely, WKB+RKF%45, 

RKWKBmod, RKWKB, and RKF45 on the Airy equation for several values of the pa- 

rameter e. For RKF45, we do not use any smaller value of e than 101, as the CPU time 

gets exorbitantly large. In Figure 2.5.10 we compare the accuracy of each of the methods 

depending on Tol. We find that WKB+RKF45 outperforms the other methods, in matters 
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Figure 2.5.7: Numerical computation using WKB+RKF45: The magenta line indicates the ratio of the two error 

estimators (due to the WKB and RKF scheme). The green line gives the analogous ratio of the step 

sizes (locally) proposed by these two methods. For this computation we set Tol = 1075 and & = 1. 
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Figure 2.5.8: Numerical computation using the RKWKBmod method: The magenta line indicates the ratio of the 

two error estimators (due to the WKB and RKF scheme). The green line gives the analogous ratio of 
the step sizes (locally) proposed by these two methods. For this computation we set Tol = 1075, e =1 

and a third order WKB-ansatz was used. 
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Figure 2.5.9: Left: Global (relative) error using WKB+RKF45 with exact phase. Right: Global (relative) error 
using WKB-+RKF45 with numerically computed phase using the Clenshaw-Curtis quadrature with 15 

integration nodes per step. For both computations we set hı trial = 0.5, Tol = 10° ande=1. 

of global errors, particularly for small values of e and Tol. By Remark 2.5.1 the accuracy 

limit at x = 50 is 7.8: 10-10 for e = 10°*, which seems to explain the lower bound of 

the errors in Figure 2.5.10. Note also that for RKF45 the error increases like O(e!) for 
smaller e-values, while it decreases for the WKB methods. 

In Figure 2.5.11 we give a work-precision diagram; for a fair comparison between the 

methods, points showing the same error should be compared. There is a big difference be- 

tween WKB+RKF45 and RKWKB(mod), regarding the CPU time: For e = 10°, 10,10? 
this difference is particularly significant for small errors (stemming from small prescribed 

tolerances). For € = 10°? WKB+RKF45 already beats RKWKB(mod) for all data points. 
For e = 10”? the error intervals of WKB+RKF45 and RKWKB(mod) do not overlap. But 

for the same CPU time WKB-+RKF45 yields much more accurate results than RKWKB 

or RKWKBmod. Overall we conclude from Figure 2.5.11 that WKB+RKF45 outperforms 

RKWKBmod and RKWKEB significantly. Using RKF45, the CPU time increases drastically 

for smaller e-values. 

Figure 2.5.12 displays the respective number of steps needed in each method, as a function 

of the prescribed tolerance. Note that for WKB-+RKF45 and RKWKBmod the number of 

steps is bounded from below. This is because of limiting the quotient of two consecutive 

step sizes and it is clearly visible for € = 10°, 10%. 

2.5.2 Second example: Parabolic cylinder function 

The second example is taken from [AD20] and includes a quadratic coeflicient function 

a(z): 

eo") +(-328°+2)p(e)=0, ze (0,2), 

(0) = kU (v, (0) (2.5.2) 

¢'(0) = —k273e72U' (v, 2(0)) 
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Figure 2.5.10: Global (relative) errors (in the I?-norm) for the Airy equation (2.5.1) on [0.1,50] as a function of Tol, for 
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several e-values. Top-left: WKB+RKF45. Top-right: RKWKBmod. Bottom-left: RKWKB. Bottom- 

right: RKF45. For all methods we set hı,trial = 0.5. A third order WKB-ansatz for RKWKBmod 

and RKWKB was used.
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Figure 2.5.11: CPU times vs. global (relative) errors (in the I?-norm) for the Airy equation (2.5.1) on [0.1,50], 
computed for 10 logarithmically evenly spaced values of Tol in the range [10-°,10-?], for several 

e-values. Top-left: WKB+RKF45. Top-right: RKWKBmod. Bottom-left: RKWKB. Bottom-right: 

RKF45 (note the different scales). For all methods we set hı trial = 0.5. A third order WKB-ansatz 

for RKWKBmod and RKWKB was used. 
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RKF45. For all methods we set hı,trial = 0.5. A third order WKB-ansatz for RKWKBmod and 

RKWKB was used. 

40



2.5 Numerical results: WKB-marching method vs. the RKWKB method 
  

    
  

      

    

  

            

reference solution 

4} = WKB step 

RKF45 step 

2 S = ‘ 5 
3, 
= 3 

;i i : 
-2} - 10 relative error 

10 = WKB step 

4 10 12 | . RKF45 step 

0 0.5 1 1.5 2 0 0.5 1 1.5 2 

xr xr 

Figure 2.5.13: Left: Real part of the numerical solution obtained by using WKB-+RKF45 compared to the (ex- 

act) reference solution (solid line) for Tol = 10”6. Right: The global error for the choices 
Tol = 10-°,10-#,10-° (read from top to bottom). The respective overall number of steps made 

are 21, 166, and 1287. For both pictures the initial step size was set to hı trial — 0.05 and the param- 

eter e was set to 2. 

with 

ea) v:=—-——, 22): =—(l-8), 
V8¢ Ve 

and 

  K= 
U(v,0) — /22U (v,0) 

The exact solution reads 

SOea:a,ct(m) = KU(v, z(x)) 3 

where U(v,z) denotes the parabolic cylinder function (PCF) (cf. [OLBC10, 812]). As 
before, let us compare numerical results only for WKB+RKF45 and RKWKBmod at first. 

There are two turning points, namely at x = 0 and x = 2. Therefore, we expect the two 

methods to make RKF45 steps near the turning points and WKB steps between them. 

Numerical results for the specific choice e = 279 are presented in Figures 2.5.13-2.5.14. 

According to Figures 2.5.13 and 2.5.14 no significant difference between WKB-+RKF45 

and RKWKBmod can be observed for e = 2”®, in matters of global error. But again, 

WKB+RKF45 needs significantly fewer steps than RKWKBmod. Within the algorithm 

using WKB-+RKF45, the switch-over between RKF45 steps and WKB steps happens closer 

to the turning points. 

We shall now present numerical results for the four methods WKB+RKF45, RKWKB- 

mod, RKWKB, and RKF45 for several values of €. In Figure 2.5.15, we compare the global 

errors of each method depending on Tol. Here, we observe only a small difference between 

WKB+RKF45 and RKWKBmod. Using RKWKB, less smooth error curves can bee seen, 

with large peaks for lower errors (i.e. lower tolerances). In contrast to every other method, 
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Figure 2.5.14: Left: Real part of the numerical solution obtained by using RKWKBmod compared to the (exact) refer- 

ence solution (solid line) for Tol = 10. Right: The global error for the choices Tol = 10°, 10-6, 10? 
(read from top to bottom). The respective overall number of steps made are 26, 326, and 1543. For 

both pictures the initial step size was set to hı trial = 0.05, the parameter e was set to 2-6 and a 

third order WKB-ansatz was used. 

WKB-+RKF45 seems to produce quite e-independent global error curves. For RKF45 one 

sees that the error again increases like O(e”!) for smaller values of e. 

In the work-precision diagrams in Figure 2.5.16, we observe for WKB+RKF45 that 

the CPU times are quite independent of e, whereas for RKWKB(mod) they grow with 

decreasing e, particularly for small errors (stemming from small prescribed tolerances). 

Overall we conclude from Figure 2.5.16 that WKB-+RKF45 outperforms RKWKBmod 

and RKWKB (particularly for small e and small tolerances) while showing an e-uniform 

behavior at the same time. Note also that, for RKF45, the CPU time increases drastically 

for smaller values of e. 

Figure 2.5.17 shows the respective number of steps needed in each method, as a function 

of the prescribed tolerance. 

Remark 2.5.3. The computation of the reference solution involves the evaluation of the 

PCF, which is not readily available in MATLAB. But the PCF can be related to the Kummer 

confluent hypergeometric function ıFı (see [OLBC10, $18]), which is available in MATLAB 
as hypergeom(). However, for small parameters e this evaluation is very time consuming. 

For Figures 2.5.15-2.5.17 we thus computed the reference solutions by solving the initial 

value problem (2.5.2) with MATLAB’s routine ode45() (for alle) using a very small error 
tolerance. 

2.6 Conclusion 

We have introduced in this chapter an extension to the WKB-marching method from 

[AAN11] by including into the algorithm an adaptive step size controller as well as a 
switching mechanism. In numerical simulations based on two examples this method yielded 

smaller global errors (particularly for small tolerances and small e-values) in comparison 

to the Runge-Kutta-WKB method from [HLH16, AHLH20], an alternative WKB-based 
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Figure 2.5.15: Global (relative) errors (in the !?-norm) for equation (2.5.2) on [0.01,1.99] as a function of Tol, for 
several e-values. Top-left: WKB+RKF45. Top-right: RKWKBmod. Bottom-left: RKWKB. Bottom- 

right: RKF45. For all methods we set hı trial = 0.05. A third order WKB-ansatz for RKWKBmod 

and RKWKB was used. 

43



2 WKB-based adaptive scheme for the highly oscillatory stationary Schrodinger equation 
  

    

              

            

    

1 1 10 s _26 10 - c_26 

mer —k— 1-27 
ke =2° 

10° —%—e=29 100% 
N, N, 
& & 

g 4 & 
4-‘:10' + 

> > 
& [a W 
o o 

10% 

10° ' ' ' 10° ' ' ' 
10% 10% 10* 102 10° 10% 10% 10* 10? 10° 

relative error relative error 

1 1 . . 10 s _26 10 - c_26 

mer —k— 1-27 
-—y, = 258 

10° —%—e=29 100' —%—e=29         

  

C
P
U
 

ti
me
 

[g]
 

2 
3 

C
P
U
 

ti
me
 

[g]
 

2 
3 

/
 

| 

          

10° 8 6 4 2 0 10° 8 6 4 2 0 
10° 10° 10° 10° 10 10° 10° 10° 10° 10 

relative error relative error 

Figure 2.5.16: CPU times vs. global (relative) errors (in the !?-norm) for equation (2.5.2) on [0.01,1.99], computed 

44 

for 10 logarithmically evenly spaced values of Tol in the range [10=9, 10-3], for several e-values. Top- 

left: WKB+RKF45. Top-right: RKWKBmod. Bottom-left: RKWKB. Bottom-right: RKF45. For all 

methods we set hi trial = 0.05. A third order WKB-ansatz for RKWKBmod and RKWKB was used.
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For all methods we set hı,triai = 0.05. A third order WKB-ansatz for RKWKBmod and RKWKB 

was used. 
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scheme. Our tests revealed that the efficiency gain is mostly due to the different WKB 

method used here, while the different step size controls (here vs. [HLH16, AHLH20]) do 

not play a big role. Our switching mechanism ensures well defined switching points between 

WKB steps and Runge-Kutta-Fehlberg 4(5) steps for oscillatory and, respectively, smoother 

regions of the ODE-solution. Especially for the Airy equation on the large spatial interval 

[0.1, 10%] the efficiency of the method is demonstrated very well, as the scheme skips millions 
of oscillations within one step, while staying accurate at the same time. There is also a 

MATLAB program available in a GitHub repository', which also offers the possibility to 

compute the phase (2.2.7) numerically, as done for Figure 2.5.9. 

  

Ihttps://github.com/JannisKoerner/adaptive-WKB-marching-method 
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Appendix 

2.A Asymptotic formulas for Airy functions 

For real-valued z and x — oo, asymptotic expansions for the Airy functions and their first 

derivatives are given in [OLBC10, 89.7 (ii)]: 

    

  

  

  

  

  

  

. 1 T\ — & U2k . T\x % U2k+1 
Ail-x) » ge: (“ (< — Z) kzzo(—l) Ch + sin (< — ) 2 =) ‚ . (2.A.l) 

/ zi m k V2k — k V2k+1 Alla) = (sm (<-3) In gar — cos (5) 2 ) au) . (2A2) 

1 oo oo 

Bi(—z) ~ T sin (< — Z) Z(—l)kCTZZ + cos (C — %) Z(— a) , (2.A.3) 
T4 k=0 k=0 

Bi'(—z) ~ —; (cos (C Z) kz_o(—l)kc%: + sin (< — Z) kz_o(— van) (2.A.4) 

Here, ¢ := %x% and the coefficients u, and vy are given by (see [OLBC10, §9.7 (i)]): 

u = Yg = 1 ; 

_ (2k+1)-(2k+3)-(2k+5)-...-(6k—1) 
= 216! 
_ (6k 5): (6k - 3) (6k - 1) B 
- (2 — 1)216k un, Kb. 

u = te , k=1,2,... 
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3 WKB-based third order method for the 

highly oscillatory 1D stationary 

Schrödinger equation 

The content of this chapter has been submitted for publication under [AK24]. 

3.1 Introduction 

This chapter is concerned with the numerical treatment of the highly oscillatory 1D Schrö- 

dinger equation 

&yp”(z)+alz)p(z)=0, zER, (3.1.1) 

where the parameter 0 < e «< 1 is assumed to be very small. Further, we assume the 

real-valued coefhcient function a to be sufliciently smooth and bounded away from zero, 

i.e. a(z) > ao > 0. The Schrödinger equation (3.1.1) plays an important role within the 

context of quantum mechanical problems, e.g., for the simulation of electron transport in 

semiconductor devices |MJK13, Neg05, SHMS98]. In these applications, x represents the 

(possibly complex-valued) Schrödinger wave function, and a(x) := E- V(x) is associated 
with a prescribed electrostatic potential V, where E € R denotes the injection energy of an 

electron of mass m. The small parameter € := Tom is then proportional to the (reduced) 

Planck constant k. We note that there are numerous additional applications of equation 

(3.1.1), including plasma physics [CS58, Lew68] and cosmology [MS03, Win05]. 

Since the (local) wave length of a solution ¢ to (3.1.1) is given by A(z) = (?2re)/Yafz), 
the solution exhibits high oscillations for small values of ¢, particularly in the semi-classical 

limit e — 0. Therefore, standard methods for solving (3.1.1) are typically constrained by 

choosing very small grid sizes h = O(e) (e.g., see [[B95]) in order to obtain reasonably 
accurate numerical solutions. However, this leads to high inefliciencies for small values of 

e. Hence, there is a keen interest in numerical methods that allow this grid size limitation 

to be reduced or even eliminated entirely. 

In [JL03, LJL05] the authors proposed eflicient and uniformly accurate (w.r.t. €) schemes, 

which allow to reduce the grid size limitation to h = O(4/¢) while yielding global errors 
of order O(h?). The same grid limitation is achieved with the WKB-based (named after 
the physicists Wentzel, Kramers, Brillouin; cf. [L1L85]) second order (w.r.t. the step size 
h) one-step scheme from [AAN11]. This method relies on an analytical pre-processing 

of the ODE (3.1.1), utilizing a priori information of the solution by considering a second 
order (w.r.t. e) WKB approximation. As a consequence, the dominant oscillations are 
eliminated, allowing the computation of a numerical solution on a coarse grid. In fact, the 
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method from [AANI11] is sometimes even asymptotically correct, meaning the numerical 

error goes to zero as e approaches zero. This holds true under the condition that the 

integrals [” Ya(r)dr and [” a(r)-/%(a(r)-V/*)” dr for the phase of the solution can be 
computed exactly. The method then yields numerical errors which are O(e?) ase — 0. 

In [KAD21], an adaptive step size control and a switching mechanism were added on top 

of the second order scheme (w.r.t. the step size) from [AAN11]. The switching mechanism 
allowed the algorithm to switch to a standard ODE method (e.g., Runge-Kutta) during the 

computation and was implemented to avoid technical or efficiency issues in regions where 

the coeflicient function a(x) is very small or even equal to zero. 

The aim of this chapter is to improve the method from [AANI11] by extending it to a 
third order scheme (w.r.t. the step size). This extension maintains the same analytical 
pre-processing of the given ODE (3.1.1) as in [AAN11]. The derivation of the third order 
scheme can then be realized mainly by two steps: Firstly, by keeping an additional term 

of the Picard approximation of the solution; and secondly, by a special treatment of the 

(iterated) oscillatory integrals which occur in each term of this Picard approximation. 
While the first step is straightforward, the second step is highly technical and consists of 

rather extensive computations in order to obtain sufficiently accurate quadratures for the 

oscillatory integrals. Here, the main strategies employed to achieve the desired accuracy 

are the same as in [AANI11]. 

This chapter is organized as follows: In Section 3.2 we provide a short review of the WKB- 

based transformation from [AAN11], which allows transforming (3.1.1) into a less oscillatory 
problem. Section 3.3 details the construction of sufiiciently accurate approximations for 

the (iterated) oscillatory integrals that appear in the Picard approximation of the solution. 

Section 3.4 contains the definition as well as the error analysis of the numerical scheme, 

with the main result of this chapter stated in Theorem 3.4.1. In Section 3.5 we present 

numerical simulations and illustrate the theoretical results established in this chapter. We 

conclude in Section 3.6. 

3.2 Review of the WKB-based transformation from [AAN11] 

In this section we shall review the basics of the second order (w.r.t. 2) WKB-based transfor- 
mation from [AANI11], which was used there to transform the Schrödinger equation (3.1.1) 
into a smoother (i.e. less oscillatory) equation. Based on this analytical pre-processing of 

(3.1.1), the authors developed a second order (w.r.t. the step size h) numerical scheme that 
is uniformly correct in e and sometimes even asymptotically correct, i.e. the numerical error 

goes to zero with e — 0, while the grid size h remains constant. 

Our aim here is to solve the following initial value problem (IVP) for the Schrödinger 
equation (3.1.1) on the spatial interval I := [Xo, Lena]: 

*¢//(z) + a(@)p(z) =0, @ € I = [a0,end] lo) = oo, 
(3.2.1) 

ep (zo) = 1 - 

Before we explain the reformulation of this IVP, we introduce the following assumption. 
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Hypothesis A. Let a € C’(T) be a fixed (real-valued) function, which satisfies a(x) > 
ag > 0 forallzeE I. Further, let 0 <e< eo for some sufficiently small eo. 

The basis of the transformation from [AAN11] relies on the well-known WKB-ansatz (cf. 
[LL85]) for the ODE (3.1.1): 

(x) » exp : Ye do(e) ‚ E20; ¢p(z)eC. (3.2.2) 
p=0 

Here, the series in the exponential function is asymptotic w.r.t. e and typically divergent!. 

To derive approximate solutions, it is therefore necessary to truncate the series after some 

finite order. By substituting the WKB-ansatz into equation (3.1.1), a comparison of e- 

powers leads to the first three functions d,(z) as 

dolz) = fl va(y)dy, (3.2.3) 

  

$1(z) = In(a(z)”1) — In(a(zo) 1), (3.2.4) 
® 1 ı\ 

(2) = Fi bly)dy, bir) = —- - la(x)"2) . 3.2.5 aa) = =1 [ W)y, b a (3.2.5) 

Here, the two different signs + and 7 in (3.2.3) and (3.2.5) imply that there is always 
a pair of approximate solutions to the Schrödinger equation (3.1.1). This corresponds to 

the fact that the second order ODE (3.1.1) has two fundamental solutions. By truncating 
the series in (3.2.2) after p = 2, one obtains the second order (w.r.t. e) asymptotic WKB 
approximation of y(x) as 

  RE) | ee) (3.2.6) 

with constants a, ß € C. The phase is 

5@ = [ (Var) a. (3.2.7) 
To 

Note that Hypothesis A implies that &° is bounded on /. The WKB-based transformation 

now consists of two steps: First, using the notation 

— e(a(2)3(2)) , (3.2.8) _ fwıle) 
U(x) (u 7a) 

the second order IVP (3.2.1) can be reformulated as a system of first order differential 
equations: 

a(z)ty() 

a = [2Ao(2) +EAı(@)| U), zEI= [20,Zend], (3.2.9) 
U(zo) = Uo, 

  

1See [AKKM24] for a class of coefficient functions a, which lead to convergent WKB series. 
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where the two matrices Ay and Aı are given by 

0 1 0 O 
Ao(z) := v/ a(x) (_1 O) ; Aılz) := (250 0) 

Second, the first order system (3.2.9) is transformed by an additional change of variables 

21 (2) i 5 Z(z) = = exp —® (z) | PU(x), (3.2.10) 

with the two matrices 

el ) w0 (5 
Here, the function ¢° is the phase of the second order WKB approximation (3.2.6) as 

defined in (3.2.7). The resulting system for Z then reads 

Z’(z) =eN°(z)Z(x), =z €I =|x0,Tend], (32.1) 

Z(xo) = Zo = PU) y 

where N¢(z) is a (Hermitian) matrix with only off-diagonal non-zero entries: 

€ — -%,6°() € — 6° (2) N].(&) = b(x) e ¢ ; N3 1(®) = b(x) ee . (3.2.12) 

As stated in [AANI11], the IVP (3.2.11) admits a unique solution with the following esti- 
mates: 

Proposition 3.2.1. [AAN11, Theorem 3.1] Let Hypothesis A be satisfied. Then the prob- 

lem (3.2.11) has a unique solution Z € CP(T) with the explicit form 

oo 

Z(x) = Zu +)  E?M5(2;20)20 , (3.2.13) 
p=1 

where the matrices M, p > 1 are given by 

n n Yp-1 

wm] -/ N*(y1) - - - N*(yp) dyp - - dyı , 

1 

M (n; §) = | N*(y)M;_1(y; ) dy, Mj=1I. (3.2.14) 

Here, I denotes the 2 x 2 identity matriz. Moreover we have the estimates 

IZ-Zoliem <Ce, Zion < Ce, 12" | poo(ry < C, (3.2.15) 

with a constant C > 0 independent of €. 

54



3.3 Construction of the numerical method 
  

According to Proposition 3.2.1, the solution Z of IVP (3.2.11) oscillates around the initial 
value Zo with an amplitude of at most O(e?). In [AAN11], this fact was the motivation for 
the construction of a uniformly correct scheme in ¢, and it shall also be the motivation for 

the scheme we develop in Section 3.3. The idea is that, instead of solving IVP (3.2.1), we 

aim to solve the transformed problem (3.2.11). Indeed, since the transformation (3.2.10) 
eliminated the dominant oscillations, the IVP (3.2.11) can be solved numerically on a 
coarse grid {x„}. Then, the originally desired solution x can be obtained by the inverse 

transformation 

U(x) = P’!exp (ee) Z(x) (3.2.16) 

1 

and p(z) = alz) uı(z). 

3.3 Construction of the numerical method 

The aim of this section is to construct a third order (w.r.t. the step size) one-step scheme 
for solving the Schrödinger equation-IVP (3.2.1). To this end, we build upon the WKB- 

based transformation from Section 3.2, in the same way as it was done in [AANI1]. That 
is, instead of solving (3.2.1) directly, we will solve the transformed problem (3.2.11). 

We now consider a discretization {xo, 21, ...,.zn} of the interval I = [xo, zena] and set 
h := maxı<n<Nn |£n — tn-ı| as the maximum step size. Further, throughout this whole 

section we will use the abbreviations & := x, and 7 := In-+1- 

The development of the one-step method relies on deriving specific quadrature rules 

for the matrix-valued integrals (3.2.14), with error estimates depending on the two small 
parameters e and h. This leads us to introduce the following notation, which is analogous 

to the usual ‘big-O’ notation for a single parameter: 

Definition 3.3.1. Let V be a vector space (over C) with norm ||-|| and let 0 <eo,ho <1. 
Consider two functions f : (0,c0) X (0,ho) > V and g : (0,e0) X (O,ho) > R. We 
say that f(e,h) = O..n(g(e,h)), if and only if there exists a constant C > 0, such that 

IIf(e; h)| < Og(e; h), for any (e, h) € (0, eo) x (0, ho). 

Now, in order to derive a numerical scheme of order P (w.r.t. the step size h) for solving 
the IVP (3.2.11), we shall start with the P-th order Picard approximation 

P 

Zn) = Z(E) + I EP Mz(mE)Z(E) (3.3.1) 
p=1 

of (3.2.13), which corresponds to making a single step within the grid, namely, from £ to 

n. According to [AAN11, Eq. (2.17)], the remainder of this truncated series is of order 
O..n(eP +!h? min(e, h)), i.e., we have 

>, ME(m;6)| < Ce”t'R”minfe, h), (3.3.2) 
p=P+1 0 
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where the constant C' > 0 is independent of e and h. Here, ||-||o denotes the oo-matrix norm 
in C?*2, Since the entries (3.2.12) of the matrix N®(y) are highly oscillatory, the matrices 
M;(n;&) in (3.3.1) and (3.3.3) involve (iterated) oscillatory integrals and can therefore not 
be computed exactly in general. To design suitable quadrature rules for the oscillatory 

integrals M (n; £) we shall use techniques such as the asymptotic method from [INO06], 
which mainly relies on integration by parts. If we want to keep the error order (3.3.2) also 

when approximating the oscillatory integrals, the desired error order (w.r.t. e and h) for 

the approximation of the integral M5 is O.,n(e? *!"P?h” min(e, h)). 
To derive a third order (w.r.t. h) scheme for (3.2.11), we only take into account the first 

three terms of the sum in (3.3.1). Indeed, using estimate (3.3.2) we then have 

Zn) = [I+ eMi(n;£) +e?M5(n;£) +e?M3(n;£)] Z(E) 
+ O.,n(e*h? min(e, h)). (3.3.3) 

The goal of the following three subsections is to construct approximations for the matrices 

§, M5, and M3, respectively. Unfortunately, achieving the above mentioned desired 

approximation error order for each matrix is not always possible, as some terms involved 

in the computations constrain the maximum achievable order w.r.t. e (this was also the 

case in the construction of the second order scheme in [AAN11]). However, we will be able 
to construct approximations for My, p= 1,2,3, which lead to a third order scheme with a 

local discretization error of the order O,.„(e?h* max(e, h)). 

3.3.1 Approximation of the matrix M; 

We start with the approximation of the integral 

7 

Mi(n;§) = | N’(y)dy. 

As we already mentioned above, the desired error order is O,.n(e?h?min(e,k)) for this 
approximation. 

For the phase #° let us suppress the superscript e and just write & from now on. Further, 

we denote with 

Sn = ¢(n) — () =O(h), h—0, 

the phase increments and introduce the abbreviations 

b(x) b, () 
b = b = P @ =iy Y T ey 

Note that Hypothesis A implies that for 0 < e < eo, where eo is chosen sufficiently small, 

it holds ¢'(z) > Cy > 0 for some constant C, and for all x € I, see (3.2.7). Hence both 
the function b and the functions b, are uniformly bounded (w.r.t. e) on the interval I. 
Moreover, we define the auxiliary function 

    pEeN. 

  
X (ie)* 

hp(&) = el-’I: - Z k' ’ p € No 

k=0 \ 
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(for p = 0 the sum drops). In the following we will frequently use that 

hp-1(f(z)) = —i(f'(w))_lé p(f(2))), PEN, 

for any differentiable function f on I and any x € I with f(x) #0, and 

hp(z) = O(min(z?,zP~1)), >0, peN. (3.3.4) 

The following lemma provides an approximation to MS, with an error of the order 

O..n(e"hP min(e,h)), for any PENG, PEN. 

Lemma 3.3.2. Let Hypothesis A be satisfied. For any PENo and PeN define 

D P i 2i QT (&) === D (10 (de-un) et) p-1e)e*®) 
p=1 

_ ¢ > ()P Py p_1(n)hy (gsn) (3.3.5) 
p=1 

(for P=0 the first sum drops) and 

~ PP 

Q” (m) := 9 ame). (3.3.6) 
nd 0 

Then there exists C > 0 independent ofe € (0,eo], h, and n, such that 

IM5 (n,€) — QPP (1, €)oo < CePAP min(e, h) . (3.3.7) 

Proof. Recall from (3.2.12) that N°(y) is a Hermitian matrix with only off-diagonal non- 

zero entries, namely N5, (y) = b(y) ee du) — Nf.(y). Hence, it is sufficient to prove that 

Imi(m&)-Q1” (nö) < Ce”h” min(e, h), where mi (n,£) := (M5 (7;£)), ;- To this end, 
we start by expanding the integral m{(n,&) by making P steps of the so-called asymptotic 
method (AM) for oscillatory integrals (cf. [INO06]), which relies on repeated integration by 
parts: 

7 i 
ms (1, €) = | b(y) e 29W dy 

= =D [bp-1w) e W]+ TE(0, ) (3.3.8) 
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3 WKDB-based third order method for the highly oscillatory stationary Schrödinger equation 
  

Here, T&(n,&) is the remaining integral after the last integration by parts. It is evident from 

(3.3.8) that each step of integration by parts increases the e-order of the remaining integral 

by one, since the functions b, are uniformly bounded w.r.t. e. Next we approximate T’5(n, €) 

by making P steps of the so-called shifted asymptotic method (SAM) (see [AAN11]), which 
also relies on repeated integration by parts. However, in contrast to the AM, the idea of 

the SAM is to shift the oscillatory factor such that an additional zero within the integration 

interval is created (here we create it at y=£). This increases the h-order of the remainder 

by one in each step: 

. " 2i T5(n,) = Ge)? | by) a 

=690 [Tt [ (2000 - so) ar 
= -(ie)Pt2 0800) (beta (Ex) - [rom (Som -+0)) er) 

(0P 62O {bp(n)hl (2) + Ge)bpru(n)hs (Er) 

- (ie) [ bp+ı(y)ha (ot - ¢(£))) dy} 
E 

P 
. 2i . \p— 2 

p=1 

+ O (PR min(e, h)) (3.3.9) 

(for P =0 we set b’ ; := b). Here, we used for the remainder integral in the last equation 

hs (2($(y) _ d(E))) — (’)s’h(min(hfis_fi, hfi_ls_(fi_l))), which is a consequence of (3.3.4). 

This concludes the proof. [1 

Remark 3.3.3. A drawback of using quadrature (3.3.5) is that one has to provide explicit 

Jormulas for the functions b,. Indeed, since these functions are defined in a recursive 

manner by differentiating a quotient of two functions, the number of terms involved in the 

formulas grows fast with p. For an efficient implementation we recommend to express the 

Junctions b, only through the functions br), k=0,...,p, andd®, k=1,...,p+1, as 

this keeps the formulas much shorter compared to when expressing b, through a and its 

derivatives a®, k=1,...,p+2. 

In the following, almost all approximations of occurring integrals will be derived by using 

the AM or the SAM. Recall that each step of the AM in (3.3.8) increased the e-order of 
the remainder by one, whereas each step of the SAM in (3.3.9) increased the h-order by 
one. Thus, by combining both methods appropriately, one might hope to be able to achieve 

the desired mixed (w.r.t. e and h) error order also for the approximations of the matrices 
M5 and M3. Unfortunately, this will not be the case as we will see in the following two 
subsections. Finally, we note that this strategy of combining the AM with the SAM was 

already used in [AAN11] for the construction of their second order (w.r.t. h) scheme. 
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3.3.2 Approximation of the matrix M5 

Next, according to (3.3.3), we would like to approximate the integral 

n 

Mm) = | N’WMiL;E (3.3.10) 

with the error order ©. „(e?h?min(e, h)). But this will not be possible since the matrix 
product N¢(y)Mj(y; £) contains terms which involve non-oscillatory integrals. Indeed, the 
basis for the AM to increase the e-order in each step of (3.3.8) was the oscillatory factor 

ee dW) of the integrand. However, for non-oscillatory integrals, it is only feasible to derive 

approximations with arbitrary h-order, but not with arbitrary e-order. Nonetheless, in 

this subsection, we will derive an approximation for M35, which ultimately leads to a third 

order scheme (w.r.t. h) that is uniformly correct w.r.t. e - in fact with a local discretization 
error of the order OÖ, (eh? max(e, h)). This will be achieved by employing a sufficiently 

accurate quadrature formula for the non-oscillatory integrals. To this end, let us introduce 

the notation 

asien) +), 

which denotes Simpson’s rule applied to the integral Je f(y) dy, admitting an error of the 

order O(h?). 

Since N® and MS are ofi-diagonal Hermitian matrices, the matrix M3 is diagonal and 

the entries are conjugate of one another. Hence, we shall in the following only study one 

entry, namely, 

mz(n, €) := (M5(n; 11 = /E” (Ne(y))l,z (M (y; 5))2,1 dy . (3.3.11) 

Here, it seems reasonable to insert for (Mi(y;&)),,ı = mi(y,£) the approximation from 

Lemma 3.3.2 with P = P = 2, namely Q?’2(y,§), as the order of its approximation error 

increases exactly to O.,„(e?h? min(e, h)), when integrating over the subinterval [&,n]. From 
(3.3.11), (3.2.12), and (3.3.7) we have: 

m3(n,£) = | du) erw [032,6 + Oenle?h? mine, h))} dy 
_ [ b(y) e~ 200) { - (ie) (bot) ee HL) _py(¢) ee 90) 

£ 

— (i8)? (b1(y) 29 —by (£) € ¥40) — (i£)? ¥4 by(y)hy (§(¢(y) - ¢(£>)) 

- Ge)! 9 ala) (2106) - SO) + Onnte"H? mind, nu) au 
= h+J+J+J+JI+JIH+O.nleh’min(e, h)), (3.3.12) 
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3 WKDB-based third order method for the highly oscillatory stationary Schrödinger equation 
  

where 

1:= 62) [ Ho)iot)ay = -Ge)@str]l,E) + Ocnen‘), (3.3.18) 

= Got re? ay= Ge 

o= =2 [ b 0) dy = ~GeP Qb0 )+ Oenle) . (03.14) 

Ja = (1&)?bı(£) e = 90) l "bly) e wm ay = Geld), 
2i 7 2i 

Js := (ie)? e« 0) | b(y)ba(y)e” «9% hr (Zei - ¢(£))) dy, 

I := -fie)t es 0) l bly)ba(y) 7 by (§(¢(y) - ¢(£))) dy. 

Our next goal is to find suitable approximations for the integrals Ja, Ja, Js, and Je. Using 

Lemma 3.3.2 with P=1land P=3 we obtain by using hy(z) = hy(—2z): 
  

= Ge)?do(e) 220 [bo(y) e #90)]” Gi SO & 
3 

- 2 12 2 273 . — (ie)ba(n)ha = sn + (ie)"ba(m)ha = Zsn + ©,,n(e”h”min(e,h)). (3.3.15) 

Similarly, applying Lemma 3.3.2 with P=0 and P=3 we find that 

ni SO mi (-25.) - Ge)bıtn)ta (-20n) + Gt (-2, ) 
+ O.,„(e’h? min(e, h)). (3.3.16) 

For the approximation of the integral Js, we begin by using the simple identity 

_2i 2 _2i 2 20 (20) - 00) = e ¥ m (260 -00)) . (310 
Then, by making two SAM-steps, we derive 

"= Ge) nat (=250 ) - Ge) G1ln)batn) + Dntn)batı)) a (-2) 
+ O,.n(e?h? min(e, h)). (3.3.18) 

In order to approximate Jg we use the identity 

E00 (late) - 660) 
2 2i 2 = 1 (206) - sw) + 2600 - om (2O-W)), 6349 
E 
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which allows us to split the integral into Jg = Js + Je, with 

(se - sw) Ay, 
E 

~ 

Je := (ie) [ b(y)bs(y)ha ( 

ans 

I = 266)? | Hu)tstı) (WO) -W)) hi (Zoe - ¢><y>)) dy . 
€ E 

One SAM-step for Jg leads to 

Js = (1£)°bo(m)b3(n)hs (-2n) + O.,n(e’h” min(e, h)). (3.3.20) 

For the approximation of Js we start with one SAM-step to see that 

s =20 8)4{bo(77)53(77)(—8n)h2 (<2s) 

_ [ [Bo(y)bs(y) (BE) - Ey))] ha (Zoo — sw) dy . (33.21) 
7 

N 

=:/ 

-1 OO 266 - 66 ) ay 

— () (ambal) + bo(m)oa(n) ()t (252 
2 

€ 
- (ie) [ [(bı(y)bs(y) + boly)baly)) (HE) — Ey))] ha ( (BE) - 0) dy 

36 )oln)batn) ha (-20n) + Oane*mindhtet, ne), (3.3.22) 
where we used one SAM-step for each integral in the last equation. Note that, combined 

with the O(e*)-factor from (3.3.21), the first term in (3.3.22) is already of the desired order 
O,n(e?h?min(e, h)) and can thus be omitted. Using (3.3.4) we see that the second term 
in (3.3.22) has the same order, and hence can also be neglected. Thus, we have 

%= 2) oft (252) + 36t (25, ) 
+ O,.n(e*h? min(e, h)) , (3.3.23) 

and hence, by combining (3.3.20) and (3.3.23), 

I = Kio)!bn(n)batmdt-sn)ha (201) +22)" tobstn)ha (=) 
+ O.,„(e’h? min(e, h)). (3.3.24) 
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3 WKDB-based third order method for the highly oscillatory stationary Schrödinger equation 
  

Finally, we summarize the approximations (3.3.12)-(3.3.16), (3.3.18), and (3.3.24) in the 
following lemma. 

Lemma 3.3.4. Let Hypothesis A be satisfied and define 

Q2 (m, &) = -i e@s|bbo]| (n, 9) 

= 2? |in(&)otn) ho (-25n) = bo©)* = Qslbbrl. | 

ie Bob) = ulObotı)l s (2o ) 
+ (6) + Bo) baten) - () () — B(r)a(n)on] i (25 ) 

+65 [(bo(7) — bo(€)) ba(m) — (ba(m) — b1(£)) ba(n)] ha (—3) (3.3.25) 

and 

  e Q2(T]7§) 0 Q:(m 8) -( 0 om 5) (3.3.26) 

Then there exists a constant C > 0 independent ofe € (0,eol, h, and n such that 

IM3(n,&) - Qe(m &)||o < Ceh? max(e, Rh). (3.3.27) 

Proof. Since Qa is defined precisely through the approximations (3.3.12)-(3.3.16), (3.3.18), 
and (3.3.24) by neglecting the O p(-)-terms, estimate (3.3.27) follows by noticing that 
O.,n(e?h? min(e, h)) + O..n(eh?) + O;,n(e?h?) = O.,n (eh? max(e, h)). O 

3.3.3 Approximation of the matrix M3 

Finally, in this subsection, we construct an approximation for the integral 

g 7 g € im) = [N (Mo )y (3.3.28) 

While the desired error order for this approximation would be O.,„(eh? min(e, h)) (see the 
discussion after (3.3.2)), this will again not be possible here - like in Subsection 3.3.2. Since 
the matrix M3 is diagonal, M3 is off-diagonal. We will now study m3(n, &) := (M3(n, &))a. 1 
as the entry (M3(n,£)); , is just its complex conjugate. To approximate m3, we have to 
insert an approximation for M5 in the expression for m3 and could of course simply use 

(3.3.26). However, we will instead insert a weaker approximation as this will not result in 

a reduced error order for the resulting scheme and, at the same time, it leads to a shorter 

quadrature formula for m3. The weaker approximation for M3 can be derived by using Qar' 
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(see (3.3.6)) to approximate MS and this was already used in [AANI1, Eg. (2.29)-(2.30)]: 

(Mn; O)),1 = mild) = -Ge)7ZE [ölm)bolm) + bObo(E)] 
+ Geil (2618) - stm) 

+ Ge)®bn(ı) Bon) - Ola (*(000) - sn) ) 
+ O.,,n(eh?) (3.3.29) 

  

Inserting the approximation (3.3.29) of m5(y,&) for (M5(y;&)), , thus yields 

n 

ms(n,&) = J (NY). Mil), du 

      

      

    

    

= Kı+Kya+K3+Ky4+Ks5 + O,,n(eh) , (3.3.30) 

where 

Ky = _% /: b(y)2bo(y)(y — €) e=?W dy, 

Ko = uote) | b0y — ¥ gy, 
§ 

n 2i Ka = (2(e) | b)) (2(0(6) — oty ))) &y, 

Ku= Gele) [ Kuıw)et* m (2168) - sw) du. 

Ka = Ge)? |" Bodbota)bıto) #0 a (2 (008) - o) ) e 

For the approximation of the integrals K,, ¢ = 1,...,5 it is convenient to introduce the 

abbreviations 

2 c c 
co(y) := ee , caly) = an ‚ do(y) = en (3.3.31) 

A en = ik (3.3.32) 

AW ns =), (3.3.33) 

Ko) = MO) = EEE Take) = a (3.3.34) 

Note that all of these functions are uniformly bounded w.r.t. e (with 0 <e< co for some 
sufiiciently small eo) on the interval I. Indeed, this is again guaranteed by Hypothesis A. 
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Now, let us start with the approximation of Kı. By making three SAM-steps, we find 

  Kı= ie ee de) (act — &)hı (2) 

  
ie)? ai _( 2 se (act — &)y (Es) + Ge) (cılm)(n 8) +do(m)) ha (Es) 

io? | (22 (-0 +eol) + 1)) 57 [1a (2100 - 6600 dy} 
- 26 (y) 

N
   

  
ie) ai 

— ( 2) ee Pd) (act — E)hı (Es) + (ie) (cam) — €) + do(n)) he (2) 

+ (ie)? (eo(n) + dı(m)) ha (Es) + O.,n(eh” min(e, h)). (3.3.35) 

Next, the integral Ka can be treated in the same way as Ki, i.e., by making three SAM- 

steps: 

  l 2 2i 

Ky = ;) b(€)bo(€) = ¥ {bo(n)(n—fi)hl (gsn> + (ie) (bulm)m © + foln)) ho (a) 

+ (18)? (go(m) + film) ha (2) + O.,n(eh? min(e, h)). (3.3.36) 

For the approximation of K3 we first make use of (3.3.17). Then, we make two SAM-steps, 

yielding 

K =~ %0 [ s 2060 - 06 ) du 

= (16)°o(€) 4O {bo<n>2hz (2) + 26e)totmdbunta (an) 
+ O 1 (eh® min(g, b)) . (3.3.37) 

In order to construct an approximation of K4, we use a similar splitting as for Jg in 

Subsection 3.3.2. Indeed, applying the identity 

290 hy (2(6(0) - 90) ) =~ 1o (2(60) - 00) 
2 2i +0 2 () - 80) Mm (200) - 0060 ) ; 83:38) 
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we can write Kı = K4ı + Ka, where 

Ka := (ie)?bo(£) 3 [ni Ya (2160 dly) - so) ar 

-(ie)!bo(E) ee PO kolm)ha (Er) + Oc (eh?min(e, b)) , (3.3.39) 

and 

Ry :=2(ic)%bo(€) e = 4© | ' x(y) (öly) - BO) hı EX - X) dy 

-2i2)°bo(£) e = ¥ |rolmdant (2) + Geo)gr o(n)hs (2) 

+ O.,n (eh’min(e, h)) . (3.3.40) 

Here, we made one SAM-step for Ka and treated Ky in the same way as Js in the previous 

subsection. Thus, by combining (3.3.39) and (3.3.40), we obtain 

Ky = -2ie)?bo(£) e = ¥ {mo(n)snhz (§5n> + (ie)ko(m)ha (Es) 

+ O, (eh’min(e,h)) . (3.3.41) 

Finally, the approximation of K, can be derived in the same way as the one of Ky, by 

noticing that ! and !o now play the roles of x and xo, respectively. Therefore, it holds that 

Kz = 2ig)?e =? |ldent (Er) + (ie)lo(m)ha (Er) 

+ O, (eh® min(e, b)) . (3.3.42) 

We close this subsection with the following lemma, which summarizes the approximations 

(3.3.35)-(3.3.37), (3.3.41), and (3.3.42). 

Lemma 3.3.5. Let Hypothesis A be satisfied and define 

Qu(r, €)= TE (ent) + eI m(E)tn(n)) I (250 )   

_ ige Pe) 5 lex(m)(n — &) + do(m) + B()Bo(&) (bılm)(n — &) + Fotn))] 

  

+ Do(&)bo(n)? + 2er (lot) - 1020] ha (*) 

+ te?) F leo(n) + dı(n) + b(E)do(8) (golm) + Fılm))] 

2 [bo(&)bo(n)bı(n) + (lot) = bo(E)ro(m))] | ha (on) @349 
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and 

0 Q3(777 é-)) §) = : 3.3.44 Qs(n, ) (Q3(’I7, £) 0 ( ) 

Then there exists a constant C > O0 independent ofe € (0,eo|, h, and n such that 

IM5(m, ©) - Qs(m Io < Ceh?. (3.3.45) 

3.4 Numerical scheme and error analysis 

Based on the Picard approximation (3.3.3) as well as the quadratures (3.3.6), (3.3.26), and 
(3.3.44) we can now define the numerical scheme: Let 

Al = eQ" (any, 20), A2:= EQalanıı, in), AR := Ee’Qz(l&nıı, in): (8.4.1) 

Given the initial value Zg we define 

Zm+ı = (IH AR +AR + AZ) Zu, n=0,...,N-1. (3.4.2) 

The numerical solution of (3.2.9) can then be obtained through the inverse transform 
(3.2.16): 

Un =P Lexp G@E(xn)) Zu, n=0,...,N. (3.4.3) 

The method (3.4.2)-(3.4.3) satisfies the following global error estimates: 

Theorem 3.4.1. Let Hypothesis A be satisfied. Let Z and U be the exact solutions of the 

IVPs (3.2.11) and (3.2.9), respectively. Then, for Z„ and U„ being computed through the 
scheme (3.4.2)-(3.4.3), there exists a generic constant C > 0 independent ofe € (0,eo|, h, 
and n such that 

IZ(an) — Zullo < Ce?h’max(e,kh), n=0,...,N, (3.4.4) 

|U(zn) - Un|o < Ce?h?max(e,h), n=0,...,N. (3.4.5) 

Proof. From the definitions (3.3.5), (3.3.25), and (3.3.43) it is evident that 

Ar lIo = 16Q7° (@n+1, Tn)lloo = Ok, p(e min(e, 1)) , 

IAZlloo = l€2Q2(@nt1,Zn)lloo = Ocn(€’h) 

1A% loo = £°Qa(Zn+1, Zn) oo = Oc p(e*h min(e, h)) (3.4.6) 
which implies that the one-step method (3.4.2) is stable, with an e-independent stability 

constant. Further, due to (3.3.3), the consistency error for n =0,..., N — 1 reads 

en = Z(Tnt1) — (I+ AL + A2+ A3) Z(z,) 

= Z(zn) + [EMi (Tnt1;Tn) + 52M§($n+15 Tn) + 53M§(xn+15 xn)] Z(zn) 

—(I+ A}, +A2+ A2) Z(zp) + Oc p(e*h® min(e, b)) 

= [eMi(zn+1;2n) - Al + EMS (zn+1; £n) — Ay + M5 (Tny1; Tn) — Ad] Z(zn) 

+ O,,n(e*h? min(e, h)) , (3.4.7) 
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Now, Lemma 3.3.2, Lemma 3.3.4, and Lemma 3.3.5 imply 

eEM£ (2n41;&n) — Al = O.,„(e'h? min(e, h)) , 

e?M5 (Tpt1;Tn) — A? = (’)E,h(s3h4 max(e, h)), 

E’M3$ (an4ı; In) -— A} = Oe,h(a‘lh‘l) : (3.4.8) 

which, together with (3.4.7), yields 

en = O p(e*h* max(e, h)) . (3.4.9) 

Hence, the one-step method (3.4.2) is consistent and therefore convergent with the global 

error estimate (3.4.4). Estimate (3.4.5) now follows from (3.4.4) and the inverse transfor- 
mation (3.2.16), using the unitarity of the matrices P~ and exp (1®¢). This proves the 
claim. [ 

Remark 3.4.2. We emphasize that, in practical applications, when solving IVP (3.2.1) 

using a WKB-based method like the one presented above, one may want to use a grid size 

h>e. In such scenarios the global error of the third order scheme (3.4.2) is even propor- 

tional to h*, according to the estimates (3.4.4) and (3.4.5). This property is observable in 
Figure 3.5.3 of the next section. 

3.4.1 Refined error estimate incorporating phase errors 

In the framework of Theorem 3.4.1 we implicitly assumed that the phase (3.2.7) is exactly 
available. Indeed, this is the case in several relevant applications, e.g., for so-called RTD- 

models (e.g., see [MJK13, SHMS98]), where the coeflicient function a is typically piecewise 
linear. Thus, in such scenarios the method (3.4.2)-(3.4.3) is asymptotically correct w.r.t. e. 

In general, however, the integral within the definition of the phase (3.2.7) cannot be 
expected to be exactly computable. In [AKU22], the authors extended the error analysis 

of the numerical methods from [AANI11] to the case of a numerically computed phase. 

We emphasize that, with the exact same strategy, the estimates (3.4.4) and (3.4.5) can be 
generalized. To this end, let us first collect the basic assumptions from [AKU22]. 

Firstly, for an approximate phase ¢ ~ ¢ we write ¢(z) = ¢1(z) —e2pa(z), with dı(z) and 
¢2(x) being numerical approximations to Ja, vely)dy and f,, d(y) dy, respectively. Then 
we impose the following assumption: 

Hypothesis B. Let d1,d2 € CC (I) ndd\ >C >0. 

In particular, Hypothesis B implies that there are positive constants E, E’ and E” 
such that the approximate phase & satisfies the following LX(T)-error bounds uniformly in 

ee (0, Eo]: 

ld- lien <E, I -lıen<E, |’ -dlıen <E”, (3.4.10) 

where &o < eo is sufliciently small. Note that the functions a, b, and b,, pP = 0,...,5, as well 

as all functions defined in (3.3.31)-(3.3.34) can be computed exactly, since d is explicitly 

known. However, since we assume here an approximate phase d, it appears more consistent 
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to use instead the numerical approximations ä, b, b» (for p = 0,...,5), ©, &, do, dı, &o, 

fo, fi, 90, Ko, and Io, which can be obtained using exact derivatives of d (e.g., when using 

the spectral integration from [AKU22, 84] to obtain 6, the exact derivatives are readily 

available). Together with the approximate phase increments 3, := $lam+ı) — d(zn) this 
leads to the approximate matrices Al = Al, A2 x A2 and Ä3 = A3 which are defined in 
analogy to (3.4.1). The third order method involving the approximate phase then reads 

~ 

Zn+1:=(I—|—A},L—|-A,2,L—|—A2)Zn, n=0,...,N-1, (3.4.11) 

with Zo := Zo being the initial value. The corresponding (perturbed) inverse transform to 

the U-variable is then given by (see (3.2.16)) 

~ 

U, =P Lexp (é@s(xn)> Zu, n=0,....N, (3.4.12) 

with ®¢ := diag(¢, —¢) being the perturbed phase matrix. 

Now, given the above considerations, we stress that, by using the exact same arguments 

as in the proof of [AKU22, Theorem 3.2], we can extend the estimates (3.4.4)-(3.4.5) to 
incorporate also the phase errors: 

Theorem 3.4.3 (Adaption of Thm. 3.2 from [AKU22]). Let Hypothesis A be satisfied and 

let the approximate phase d satisfy Hypothesis B. Let Z and U be the exact solutions of the 

IVPs (3.2.11) and (3.2.9), respectively. Then, for Z„ and U, being computed through the 
scheme (3.4.11)-(3.4.12), there exists a generic constant C > 0 independent ofe € (0,£0], 
h, and n such that 

IZ(&n) - Zu|| < Ce?h? max(e, h) 

+ Ce [min(e, E) +e(E' + E")] , n=0,...,N, (3.4.13) 

U () — O] < cg + Ce3h3 max(s, h) 
+ Ce [min(e, E) +e(E'+ E")] , n=0,...,N. (3.4.14) 

Here, the constants E, E', and E” are from (3.4.10). 

Let us compare this result with the estimates (3.4.4) and (3.4.5): The new (additional) 
second term in (3.4.13) is caused by the impact of the approximate phase during the com- 

putation of the step update (3.4.11), whereas the new first term in (3.4.14) is due to the 

inverse transform (3.4.12) involving the perturbed phase matrix ®°(x„). Obviously, the 
O(E/e)-term is rather unfavorable. In order to reduce its impact as much as possible, 
one should hence aim for a highly accurate approximation 6, e.g., by employing a spec- 

tral method. Indeed, such an approach has already proven useful in [AKU22], where the 

O(E/e)-term in their estimate was numerically invisible, since it was reduced below relative 
machine precision (compared to the other terms). 
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3.4.2 Simplified third order scheme 

In this subsection, we present a simplified third order method for solving the IVP (3.2.11). 

The basis for this method is the observation, that the inability to achieve the originally 

desired error order for the approximations of M5 and M3 in Section 3.3, was due to the 

presence of non-oscillatory integrals in the computations. Indeed, it is evident from Sub- 

section 3.3.2 that the approximation of the non-oscillatory integral J; in (3.3.13) constrains 
the maximum achievable error order (w.r.t. e) for the approximation of M5 to O(e). Con- 
sequently, this implies that the maximum achievable error order (w.r.t. e) for any numerical 

scheme resulting from this approximation is O(e?). Given this unavoidable constraint, it 

seems unnecessary and superfluous to approximate the other terms with higher accuracy. 

Thus, we may want to weaken several approximations from Section 3.3 in order to derive a 

simplified scheme, which remains third order w.r.t. h, while still yielding the same asymp- 

totic accuracy as the third order scheme (3.4.2)-(3.4.3), i.e. O(e?) as e — 0. This can be 
achieved as follows: 

Step 1 (approximation of M7 in (3.3.3)): Instead of 0°, we shall use Qr° to approx- 
  

imate MS. This incurs an approximation error of order O.„(e?h?min(e, h)) (instead of 
O.,n(e*h? min(e, k))), see Lemma 3.3.2. 

Step 2 (approximation of M3 in (3.3.3)): To approximate M5, we shall use a simplified 
  

quadrature Qg simp (instead of Q>), which can be derived by inserting Q1” (instead of 

Q7”) as an approximation for M3 in (3.3.10). The non-oscillatory integrals that then 
occur are again approximated applying Simpson’s rule, and the oscillatory integrals are 

all approximated with an error order ©, „(eh?min(e, h)) (instead of O,.n(e?h? min(e, k))), 
using only SAM-steps. 

Step 3 (approximation of M3 in (3.3.3)): To approximate M3, we shall use a simplified 
quadrature Qa simp (instead of Q3), which can be derived as follows: First, by inserting 

%1 (instead of Q}’') as an approximation for M& in (3.3.10), we derive with only one 

  

SAM-step an approximation Qa,simp of M35, with an error order O,,„(h?min(e, h)). Then, 

by inserting Q> simp in (3.3.28) one obtains an oscillatory integral that can be approximated 

using only SAM-steps with an error order O,„(h?min(e, h)). This yields the quadrature 

Q3,simp- 

We stress that the implementation and analysis of Step 2 and Step 3 is fully straight- 

forward and very similar to the computations in Subsection 3.3.2 and Subsection 3.3.3, 

while Step 1 is trivial. The resulting quadratures Q2 simp and Q3 simp, along with their 

corresponding error estimates, are provided by the following lemma.? 

  

? The proof of Lemma 3.4.4 is deferred to Appendix 3.A. 
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Lemma 3.4.4. Let Hypothesis A be satisfied and define 

2 

=162 bo(n) (1) = 2olm)on) - oO) ha (= Zn) 
+ * [ba (ke) + Bot) = But] ha (=) (3.4.15) 

Q3,5imp(1, &) 1= —2e = 9©) ()3 (623nh2 (§Sn> +ie3h3 (%sn)> (3.4.16) 

and 

. .— Qa,simp(N; €) 0 ) 4 Q3,simp(M, 8) : ( 5 md) (3.4.17) 

. .— 0 Q3,simp(N: 9) 4 1 
Q3,simp(N, €) : (an 6 0 . (3.4.18) 

Then there exists a generic constant C' > 0 independent of € € (0,&¢], h, and n such that 

IM3(n,&) - Qa,simp(n, E)||oo < Ceh?, (3.4.19) 

IM§(n, €) — Q3,5imp(1, €)oo < Ch®min(e, h). (3.4.20) 

The resulting simplified third order scheme then reads: Let AL"? .— eQ7” (£n+1, En); 
2,81 3,simpl 

An? = &2Qa simp(En+1, En), and An pP = 

value Zo we define 

E’Qs3,simp(£n+1,%n). Given the initial 

Zpt1 = (I+ AD? + Auer 4 AP) Z,, n=0,...,N-1. (3.4.21) 

The simplified method (3.4.21), (3.4.3) satisfies the following global error estimate, which 
can be proven analogously to Theorem 3.4.1: 

Theorem 3.4.5. Let Hypothesis A be satisfied. Let Z and U be the exact solutions of the 

IVPs (3.2.11) and (3.2.9), respectively. Then, for Z„ and U„ being computed through the 
scheme (3.4.21), (3.4.3), there exists a generic constant C > 0 independent of € € (0, &g, 

h, and n such that 

IZ(zn) - Zullo <Ceh?, n=0,...,N, (3.4.22) 

|U(an) - Un|o <Ceh’, n=0,...,N. (3.4.23) 

When comparing estimates (3.4.22)-(3.4.23) with estimates (3.4.4)-(3.4.5) for the scheme 
(3.4.2)-(3.4.3), we observe that the downside of using the simplified scheme (3.4.21), (3.4.3) 
is the loss of the O(max(e, h))-factor. Indeed, while both methods have the same asymp- 
totical (w.r.t. e) as well as numerical (w.r.t. h) order, this factor might still be beneficial, 
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recalling that both parameters € and h are small. Further, we note that, in case of a numer- 

ically computed phase, Theorem 3.4.5 can be generalized analogously to Theorem 3.4.3. 

That is, by using the same strategy as in Subsection 3.4.1, we have the following error 

estimates for the simplified scheme including an approximated phase: 

IZ(an) - Zullo < CeRh? 

+ C¢e [min(e, E) +e(E' + E")] , n=0,...,N, (3.4.24) 

~ E 
|U(zn) — Unlloo < C— + Ce3h3 

£ 

+ Ce [min(e, E) +e(E'+ E")] , n=0,...,N. (3.4.25) 

3.5 Numerical results 

In this section we present and compare numerical results by applying the novel schemes from 

Section 3.4 to exemplary IVPs. Since a large part of the development of the two presented 

third order schemes (3.4.2)-(3.4.3) and (3.4.21), (3.4.3) was based on the strategies from 
[AANT11], we shall also include their second order method into our comparison. This will 
also illustrate the efficiency gain of the new third order methods over the second order 

method from [AANI11]. 

For clarity of the presentation we shall in the following denote with WKB3 the third 

order scheme (3.4.2)-(3.4.3), and with WKB3s the simplified third order scheme (3.4.21), 
(3.4.3). Further, we denote with WKB2 the second order method from [AANI1], which 
yields global errors (w.r.t. the U-variable) of order O.,„(e?h?), provided that the phase 
(3.2.7) is explicitly available. We note that a single step of each of these three methods 
involves a different number of computational operations as well as function evaluations. 

Hence it is not clear a priori which of the three methods is the most eflicient. We shall 

thus assess the overall efficiency of each method by comparing respective work-precision 

diagrams. 

All computations here are carried out using MATLAB version 23.2.0.2459199 (R2023b). 

Moreover, for the results of Figures 3.5.3-3.5.4, which involve very small approximation 

errors, we used the Advanpix Multiprecision Computing Toolbox for MATLAB [Adv23] with 

quadruple-precision to avoid rounding errors. We note that this increases the computational 

times when compared to using the standard double-precision arithmetic of MATLAB. 

3.5.1 First example: Airy equation 

For the Airy equation, i.e., with a(x) = x we consider the following IVP: 

e2¢"(z) +zp(z) =0, z€[L,2], 
p(1) = Ail-37%) +iBi(- 38) ; (3.5.1) 
e (1) = E38 (Ar Ar) + Bi’ be) . 
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Figure 3.5.1: Global errors max„<n ||U(£&r) — Un||oo for the Airy equation (3.5.1) as functions of the step size h, for 
several e-values. Left: WKB3 (solid lines with asterisks) and WKB3s (dashed lines with circles). Right: 
WKB2. 

Here, the exact solution is given by 

Pexact(X) = Al(_&iz%) + i Bil 7) ) 

where Ai and Bi denote the Airy functions of first and second kind, respectively (e.g., see 

[OLBC10, Chap. 9], [KAD21, Sec. 5.1]). Here the phase (3.2.7) is exactly computable. 
Let us first investigate the convergence results from Theorems 3.4.1 and 3.4.5. In Fig- 

ure 3.5.1 we plot the global error max„<n||U(&n) — Un||o as a function of the step size h, 
for several values of €. The left plot shows the error for WKB3 (solid lines with asterisks) 
and WKB3s (dashed lines with circles), and the right plot shows the error for WKB2. As 
indicated by the dashed black line in the left plot, the error for WKB3 and WKB3s clearly 

decays like O(h?), in accordance with the third order estimates (3.4.5) and (3.4.23). For 
small step sizes h and e = 2°°,2”© the error saturates at approximately 101%, due to 
rounding errors. Further, for a fixed step size h, the error for all three methods decreases 

with £, demonstrating the e-asymptotical correctness of each method. According to esti- 

mate (3.4.5), we expect the error for WKB3 to behave here like O(e?), since no shown error 
curve decays like O(h*), suggesting that the O,„(max(e, h))-factor in (3.4.5) is equal to 
Ö(e) for the shown e-values. Further, estimate (3.4.23) suggests that the error for WKB3s 
decreases like O(e?), which is also the expected error behavior of WKB2, according to 

[AAN11]. However, Figure 3.5.1 reveals that the error for each method shows an e-order 
that is 0.3-0.9 higher than expected theoretically. This is due to the oscillatory behavior 

of the consistency error of each method, which leads to cancellation effects in successive 

integration steps. Indeed, this phenomenon was already observed and analyzed in [AANI11, 

83.3], and appears in all figures of this chapter. 

Figure 3.5.2 contains work-precision diagrams, which correspond to the computations 

from Figure 3.5.1. That is, CPU times (measured in seconds) are plotted against the global 

errors, resulting from using the different step sizes h. Clearly, in the same amount of time, 

WKB3 and WKB3s both reach much smaller global errors, when compared to WKB2. For 

instance, with a CPU time of approximately 10”? seconds, the global errors using WKB3 
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Figure 3.5.2: CPU times vs. global errors max„<n||U(&n) — Un||oo for the Airy equation (3.5.1) on the spatial 
interval [1,2], for several e-values. Left: WKB3 (solid lines with asterisks) and WKB3s (dashed lines 
with circles). Right: WKB2. 

or WKB3s lie between 101-1013 and 10° for the different e-values, whereas the errors 

lie between 101! and 10°7-10-® when using WKB2. Vice versa, to reach a fixed accuracy, 

WKB3 and WKB3s need significantly less CPU time than WKB2. For example, to produce 

a global error of approximately 10"? for e= 2°, WKB3 and WKB3s need approximately 

10? seconds, whereas WKB2 needs around 5 - 10”? seconds. The time difference is even 

larger when considering smaller values of e: E.g., to reach an accuracy of approximately 

10-13 for e = 2°, WKB3 and WKB3s need around 6-10? and 10°? seconds, respectively. 

By contrast, the computational time to reach the same accuracy with WKB32 is around 

10”? seconds. Hence, we conclude from Figure 3.5.2 that WKB3 and WKB3s are both 

more efficient than WKB2 (for this example), with CPU times being smaller up to a factor 

of ten. The difference between WKB3 and WKB3s is not so obvious: Indeed, for e = 2”? 

and 2° we conclude from the left plot of Figure 3.5.2 that WKB3s needs less time to reach 

the same accuracy as WKB3. However, for the smaller values ¢ = 276 and e = 2°, WKB3 

becomes more eflcient. 

In Figures 3.5.3-3.5.4 analogous plots are shown for much smaller values of e. According 

to the convergence plot on the left of Figure 3.5.3, when e < h, the error for WKB3 even 

decreases like O(h?), e.g., for e = 10°*,10”°,10®, as indicated by the bottom dashed 

black line. This behavior agrees well with estimate (3.4.5), see also Remark 3.4.2. Indeed, 
the O, p(max(e, h))-factor from estimate (3.4.5) is equal to O(h) in these cases. Hence, 
for large step sizes h, we cannot expect an O(e*) error behavior for WKB3 anymore (as 
in Figure 3.5.1). Instead, we observe that (e.g., for h = 1), the error for WKB3, WKB3s, 
and WKB2 (see the right plot) roughly decreases like O(e?). This is in good agreement 
with estimates (3.4.5) and (3.4.23). In the work-precision diagrams of Figure 3.5.4 one 
can clearly observe that WKB3 and WKB3s are again more efficient than WKB2. E.g., 

with a CPU time of approximately 3 seconds, the global errors for the different e-values lie 

between 102° and 10-13-1012? when using WKB3 and WKB3s, whereas they lie between 

10-2° and 10-!! when using WKB2. Moreover, we observe also a big difference between 

WKB3 and WKB3s for e = 102, 10°, 10%, 10°: Indeed, for each of these e-values, and 
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Figure 3.5.5: Global errors max„<n||U(&n) — Un||o for the Airy equation (3.5.1) on the spatial interval [1,2] as a 
function of the step size h, for several e-values. The solid lines with asterisks correspond to WKB3, and 

the dashed lines with circles correspond to WKB3s. Here, we used an approximate phase & computed 

with two different methods: Left: Composite Simpson’s rule. Right: Clenshaw-Curtis algorithm based 

on Ncheb = 17 Chebyshev grid points, with barycentric interpolation. 

rather small global errors (incurred by small step sizes h), WKB3 needs significantly less 

CPU time than WKB3s. This is due to the O(h?) behavior of the error for WKB3 in these 
cases. Vice versa, for a fixed accuracy, the difference between the needed CPU times for 

WKB3, WKB3s, and WKB32 is very large. For instance, for & = 10°? and a global error of 

approximately 1021, the CPU times for WKB3, WKB3s, and WKB2 are approximately 

1.5 seconds, 8 seconds, and 60 seconds, respectively. Hence, for the same accuracy, WKB3 

is faster up to a factor of 40, when compared to WKB2. 

Next, let us investigate numerically the estimates (3.4.14), (3.4.25). To this end, we 
compute in the following the phase (3.2.7) numerically (even though it is exactly computable 
for this example) and investigate results obtained with WKB3 and WKB3s. In Figure 3.5.5 

we show on the left the global error of WKB3 and WKB3s when using the composite 

Simpson rule to compute the approximate phase d. Note that this implies ||¢ — || Le(f) = 
O(h*). Indeed, for &e = 2"%,2°,2”6 and h > 10°? the error curves for WKB3 and WKB3s 
behave like the first error term in (3.4.14) and (3.4.25), respectively, i.e. like O.,„(h*/e) due 
to Simpson’s rule, as indicated by the lower dashed black line. For h=1 and e< 2° we 

even observe an inversion of all error curves for WKB3 and WKB3s, i.e., the error increases 

with e. However, for small step sizes and large & (e.g., h < 10°! and e = 2”°) the second 

error term in the estimates (3.4.14), (3.4.25) becomes dominant. Indeed, as indicated by 
the upper dashed black line, the error curves for both methods are clearly third order. 

Further, in this case the inversion of the error curves w.r.t. e disappears. Moreover, for 

small values of e and h (e.g., ¢ < 2”* and h = 10°) the error curves reach a saturation 
level at approximately 101-1013, due to rounding errors. 

For the right plot of Figure 3.5.5 we computed the approximate phase ö with a spectral 

method, as already used in [AKU22]. That is, we use the well-known Clenshaw-Curtis 
algorithm [CC60] to approximate the phase (3.2.7) on a Chebyshev grid for the whole 
interval [1,2] with Nches = 17 points, and then use barycentric interpolation (e.g., see 

[BT04]) to obtain the approximate phase d at the uniform grid which is used for the WKB 
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schemes. We note that, using this method, the phase is approximated to machine precision. 

Indeed, we observe in the right plot of Figure 3.5.5 that the first error term in the estimates 

(3.4.14), (3.4.25) is numerically invisible, as the entire plot is almost indistinguishable from 
the left plot of Figure 3.5.1, where the exact phase was used. 

3.5.2 Second example 

As a second example let us consider the following IVP: 

e2¢"(z) +e*p(z) =0, z€l0,1], 

(0) =1, (3.5.2) 
e¢’(0) =0. 

Here, the exact solution is given by” 

To (e ) Vi (BE) —¥o (2e+%) 1 (BF) 
(ee) (2) - n () % (2) 

where J, and Y, denote the Bessel functions of first and second kind of order v, respectively 

(e.g., see [OLBC10, Chap. 10]). Again the phase (3.2.7) is exactly computable here. 
In Figure 3.5.6 we plot again the global error max„<n |U (£n) — Un||o as a function of 

the step size h, for several e-values. The left plot shows the results for WKB3 and WKB3s, 

and the right plot shows the results for WKB2. The dashed black line in the left plot 

confirms the third order estimates (3.4.5), (3.4.23), as the error for WKB3 and WKB3s 
clearly decays like O(h?). For small values of h and small values of e (e.g. h < 10”? 
and & = 2°) the error curves include rounding errors, due to the used double precision 

arithmetic. Moreover, when using the step size h = 1, the error for WKB3 is O(e*), whereas 

the error for WKB3s is O(e?). This is again due to the O, (max(e, h))-factor in estimate 
(3.4.5), which for the shown e-values yields an O(e)-factor. 

Figure 3.5.7 shows work-precision diagrams, which correspond to the computations from 

Figure 3.5.6. We observe that, in the same amount of time, WKB3 and WKB3s both yield 

much smaller global errors than WKB2. E.g., with a CPU time of approximately 1073 - 

1.510”? seconds, the global errors for WKB3 and WKB3s are between 101% and 5-10"! 

for the different e-values. In contrast, the errors for WKB2 lie between 101% and 5- 10°. 

Vice versa, in order to attain a fixed accuracy, WKB3 and WKB3s need significantly less 

CPU time, when compared to WKB2. This can be observed, e.g., for e = 2”? and an 

accuracy of approximately 10-10: Then, WKB3 and WKB3s both need less than 10”? 

seconds, whereas WKB2 needs approximately 5-10”? seconds. This time difference is even 

larger for smaller values of e. We conclude from Figure 3.5.7 that WKB3 and WKB3s are 

more efficient than WKB2 (in the present example). Similar to the previous example, the 

difference between WKB3 and WKB3s is not so obvious here. Indeed, we observe on the 

left of Figure 3.5.7 that the blue curves for e = 2”? are almost identical. But for ¢ = 274 

and a global error of approximately 3 - 10-1? the CPU time for WKB3 is 4 - 10%, whereas 

  Pezact() = (3.5.3) 

  

3We computed the exact solution by using the Symbolic Math Toolbox of MATLAB. 
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the CPU time for WKB3s is 6 - 10%. Overall, we conclude that the efficiency difference 

between WKB3 and WKB3s is small for this example. However, for a given accuracy and 

small e-values, WKB3 tends to be faster than WKB3s. 

Next, we compute for the schemes WKB3 and WKB3s the phase (3.2.7) numerically in 
two ways and investigate the estimates (3.4.14), (3.4.25). For this, we shall again apply the 

composite Simpson rule as well as the Clenshaw-Ourtis algorithm along with barycentric 

interpolation. In Figure 3.5.8 we show on the left the global error max„<v||U (£n) — Un| oo 
for WKB3 and WKB3s as a function of the step size when using Simpson’s rule. We observe 

that for both methods the first error term in (3.4.14), (3.4.25), i.e. the O,„(h?/e)-term, 
dominates for e < 2”° and all used step sizes h. Indeed, this is indicated by the dashed 

black line which decays like O(h*). For e = 2”*, however, this error term merely dominates 
for step sizes h > 10. Indeed, when using smaller step sizes, i.e.. h < 10°!, the error for 

e = 272 behaves like O(h?) for both methods. Note also that for h = 1 we can observe 
again an inversion of the shown error curves w.r.t. e, when compared to the left plot of 
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Figure 3.5.6. 

On the right of Figure 3.5.8 we show the errors for WKB3 and WKB3s when the phase 

is obtained with the spectral method. As indicated by the dashed black line, the first error 

term in (3.4.14), (3.4.25) is essentially eliminated. The error curves for both methods are 
clearly third order and the entire plot is very similar to the left plot of Figure 3.5.6. 

3.6 Conclusion 

In this chapter we developed a third order one-step method to efliciently compute solutions 

to the highly oscillatory 1D Schrödinger equation (3.1.1). The method is based on the 
WKB-transformation from [AAN11], which was already used there for the development of 

a first and second order scheme. Like those two methods, the presented method has the 

property of asymptotical correctness w.r.t. the small parameter e in case of an explicitly 

computable phase. Additionally, in scenarios where e < h (with h being the grid size), the 
error even decays with fourth order w.r.t. h. 
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Appendix 

3.A Proof of Lemma 3.4.4 

Proof. We will follow Step 2 and Step 3 from Subsection 3.4.2 in order to derive appropriate 

approximations for the matrices M5 and M3, respectively. Similar to Subsection 3.3.2 

and Subsection 3.3.3, we shall study here only the entries m5(n,&) = (M5(m;£)),,, and 
mz(n,&) = (M3(n;8))2,, in order to obtain the quadratures (3.4.15)-(3.4.16), respectively. 

Step 2 (approximation of M5 in (3.3.3)): To approximate M5(n;£), we insert Q1’”(y,£) 
(see Lemma 3.3.2) as an approximation of Mi(y,£&) in (3.3.10): 
  

n 

msn) = | N) Mid 

= [ )¢ (Q1°(,8) + Oteh* mine, n))} ay 
€ 

_ f by) e = dy) | — (ie) (bot) ee sy) —bo(E) u) 

& 

- Ge? ed (ad (2160) - 600) 

- 12 Beta) (2(60) - 9(0)) 

+ O,,n(eh? min(e, n)\ dy 

= D1+ Dy + D3 + Dy + Os,h(&‘h?’ min(e, h)) , (3.A.1) 

where 

D; = —(ig) | ' b(y)bo(y) dy = -(ie)Qslbbol(n,&) + O.,n(eh) , (3.A.2) 

Dy = Ge)? add) m (Ele) 90) ar. 

D-62380 [Kat #0 1a (2160) - so) av- 
Our next goal is to find approximations for the integrals Da, Da, and D4, which incur errors 

of the order O,n(eh?min(e, h)). Using Lemma 3.3.2 with P = 0 and P = 3 we obtain by 
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using hy(z) = hp(—x): 

Da = GL nl (250) - Gone (-25n) + Ge)?batn)ha (- Zen) 
+ O.,n(eh? min(e, h)). (3.A.3) 

For the approximation of the integral D3, we first use the identity (3.3.17) and make then 

two SAM-steps to obtain 

Do = 12)* { b (e (250 ) — Ge) (tm? + o) i (25 )} 
£ 

+ O 1 (eh® min(e, b)) . (3.A.4) 

Next, we use (3.3.19) to split the integral Dy into Dy = 134 + Da, with 

~ Du Ge)? [Haas (21608) - oa) dv 
= (ie)*bo(n)b2(n)hs (—gsn) + O.,n(eh? min(e, h)) , (3.A.5) 

and 

Du= 260)? |" Klatı) 8) - Hl) (20) -s)) ar 

= 2112)? oma) (-sn)ta (26) + Ge)abotdbatndta (26) | 
+ O.n(eh? min(e, h)). (3.A.6) 

Here, we made one SAM-step for Ds and treated Di similar to Kı in Subsection 3.3.3. 

Combining (3.A.5)-(3.A.6) thus yields 

2 2 Di = 2ie)totdban)(-sn)ha (-26n) +262) Bo(n)ta(n)hs (230 ) 
+ O, 1 (eh® min(e, h)) . (3.A.7) 

Since Qa,simp in (3.4.15) is defined precisely through the approximations (3.A.1)-(3.A.4), 
and (3.A.7) by neglecting the O,„(-)-terms, estimate (3.4.19) follows by noticing that 
O.,n(eh? min(e, h)) + O.,n(eh?) = O.,n(eh?). 

Step 3 (approximation of M3 in (3.3.3)): To approximate M3(n;£), we use an approx- 

imation Qa,simp for MS in (3.3.28), which can be derived by inserting Q'(y,&) (see 
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Lemma 3.3.2) as an approximation of Mi(y,£&) in (3.3.10): 

ms(n,e) = | NW) Mi) 

= ne? {0815, 8) + Oup(min(e, )} dy 
& 

=920 [ syint)e” 240 (low) - 80) du 
+ O.,„(h? min(e, h)) 

= (ie) | " Ha)boly)hı (Zoe - 0) dy + O.n(h? min(s, h)) 
2 

€ 
— (i£)%bo(n >2h2( (qb(s)—qb(n)))+05,h(h2min<s,h>>. (3.4.8) 

Here, we used the identity (3.3.17) in the fourth equality, and made one SAM-step in the 

last equality. Thus, by inserting 

Öa.nn(1.8) = Go omh2 (269 - sm) (349 
Q2,5imp(1, €) 0 - (3.A.10) 

0 Q2,simp ("77 &) 
Q2,simp (N, €) = ( 

as an approximation for M5 in (3.3.28), incurring an error of O p(h?min(e, h)) (see 
(3.A.8)), we obtain 

m§(n, £) = | N) Mi) 
n - - 

= [0 { @iy (9, + 0o (R mine, ) } dy 

- 2 [ o0 o (206060 00)) & 
+ O p(h® min(e, b)) . (3.A.11) 

Let us abbreviate the integral on the r.h.s. of (3.A.11) with Fi. By employing the identity 

(3.3.38), we split this integral into F} = Fı + Fı, with 

= Ge [tar (Ze) -98)) o 
= (jie)} ee MO palm)? hs (2) + O,.n(h? min(e, h)) , (3.A.12) 
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and 

A = 2019440 [Th)to(1)*(60) - (6D (o) - 066 ) ay 

— 2(ic)? €200 {boon%nhz (3) + (i) bo(n)hs (3)} 
+ O,,n(h? min(e, h)) . (3.A.13) 

Here, we made one SAM-step for FM and treated A similar to Kı in Subsection 3.3.3. 

Combining (3.A.11)-(3.A.13) thus yields 

m3(n, &) = 2(i 5)2 e%i¢(§) bo(’?)33nh2 (gSn) + 2(i 5)3 ez?i¢(5) bo(n)3h3 (gsn) 

+ O,.n(h? min(e, h)) 

= Q3,simp(N; &) + O.,n(h? min(e, h)) ; (3.A.14) 

with Q3,simp(n,&) defined in (3.4.16). This proves estimate (3.4.20) and concludes the 
proof. ] 
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4 Optimally truncated WKB approximation 

for the 1D stationary Schrodinger equation 

in the highly oscillatory regime 

The content of this chapter has been submitted for publication under [AKKM?24]. 

4.1 Introduction 

In this chapter we are concerned with the numerical solution of the highly oscillatory and 

stationary 1D Schrodinger equation 

e2¢"(z) +a()p(x) =0, zel=[&n, 
pl) = po, (4.1.1) 

ep'(§) = o1 

Here, 0 < € < 1 is a very small parameter and a is a real-valued function satisfying 

a(z) > ao > 0 and, for a quantum mechanical problem, it is related to the potential. The 

constants /o, pı € C may depend on e but are assumed to be e-uniformly bounded. It is 

known that the (local) wave length X of the solution % to (4.1.1) is proportional to e. More 
precisely, it can be expressed as A(x) = (2re)/,/a(x). Consequently, for a small parameter 
€ the solution becomes highly oscillatory, particularly in the semi-classical limit e — 0. 

Highly oscillatory problems such as (4.1.1) occur across a broad range of applications, 

e.g., plasma physics [CS58, Lew68], inflationary cosmology [MS03, Win05] and electron 

transport in semiconductor devices such as resonant tunneling diodes [MJK13, SHMS98, 

Neg05]. More specifically, the state of an electron of mass m that is injected with the 

prescribed energy E from the right boundary into an electronic device (e.g., diode), modeled 

on the interval [E, 7], can be described by the following boundary value problem (BVP) (e.g., 
see [AANI11] or [Neg05, Chap. 2]): 

ed) + Vle)brle) = EYg(z), zen), 

IE) +HIKHLN =0, (4.1.2) 

vun) -ikkm)bln) = —2ik(n) . 

Here, & := h/\/2m is proportional to the (reduced) Planck constant A, the quantity k(x) := 

e!/E — V(z) is the wave vector and the real-valued function V denotes the electrostatic 
potential. In the context of (4.1.2), our assumption a(z) > ao > 0 simply reads E > 
V (x), which means that we are in the oscillatory regime. One is then often interested in 
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macroscopic quantities such as the charge density n and the current density j, which are 

given by 

  

na) = | Wer war, da=e| me. (413) 
0 0 

Here, f is the distribution function which represents the injection statistics of the electron 

and Im(-) denotes the imaginary part. Thus, in order to compute the quantities (4.1.3), one 
has to use a very fine grid in E which means that the BVP (4.1.2) has to be solved many 
times. Consequently, there exists a substantial demand for efficient numerical methods 

that are suitable for solving problems like (4.1.2). Further, we note that the BVP (4.1.2) 
is strongly connected to IVP (4.1.1). Indeed, for suitable initial values, namely, po = 1 
and 1 = —iy/a(§), the solution p of IVP (A.1.1) and the solution dg of BVP (4.1.2) are 
related by 

2ik(n) 
belt) = -— — — —— —pl(8). 4.1.4 

(@) p'(n) -ik(n)p(n) (@) 414) 

Thus, any numerical method for solving IVP (4.1.1) is also suitable for the numerical 
treatment of BVP (4.1.2). 

4.1.1 Background and approach 

Since the solution % to (4.1.1) exhibits rapid oscillations when ¢ is small, standard nu- 

merical methods for ODEs become inefficient as they are typically constrained by grid 

limitations h = O(e) (h denoting the step size), in order to resolve the oscillations accu- 
rately. By contrast, in [LJL05, JL03] uniformly accurate (w.r.t. &) marching methods were 
proposed which yield global errors of order O(h?) and allow to reduce the grid limitation 
to at least h = O(,/e). The WKB-based (named after the physicists Wentzel, Kramers, 
Brillouin; cf. [L1L85]) one-step method from [AANI1] is even asymptotically correct, i.e. 
the numerical error goes to zero with e — 0, provided that the integrals [” Ya(r)dr and 
[” a(r)"Y/*(a(r)-V/*)"dr for the phase of the solution can be computed exactly. More 
precisely, the method then yields an error which is of order O(e?) as e — 0 and O(h?) 
ash — 0. If these integrals cannot be evaluated exactly, the asymptotically correct error 

behavior can be (almost) recovered by employing spectral methods for the integrals, as 

shown in [AKU22]. Further, in [AB22] the authors propose a numerical algorithm, which 
switches adaptively between a defect correction iteration (which builds on an asymptotic 

expansion) for oscillatory regions of the solution, and a conventional Chebyshev collocation 

solver for smoother regions. Although the method is demonstrated to be highly accurate 

and efhicient, a full error analysis was left for future work. 

Our approach here is to implement directly a WKB approximation for the solution of 

(4.1.1), which is asymptotically correct and of arbitrary order w.r.t. e. The essence of the 

method is rather an analytic approximation via an asymptotic WKB series with optimal 

truncation. As such, the main goal is to understand the asymptotic e-dependence of this 

truncation strategy and of the resulting error. Thus our strategy is not a classical numerical 

method with some chosen grid size h and convergence as h — 0. Instead, the resulting 

approximation error will be of order O(e) as e — 0, where N refers to the used truncation 
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order in the underlying asymptotic WKB series, see (4.2.1)-(4.2.2) below. As N can be 
chosen freely, this approach may prove very practical for applications, especially when the 

model parameter e is very small. Since the computation of the terms of the asymptotic 

series involves several integrals, we will employ highly accurate spectral methods, as already 

proven useful in [AKU22]. 
The key question when implementing this WKB approximation is which choice of N is 

adequate or even optimal, in the sense of minimizing the resulting approximation error. 

Indeed, since the asymptotic WKB series is typically divergent, the error cannot simply 

be reduced further by increasing the value of N. This question about the best attainable 

accuracy of the WKB approximation was already addressed in [Win05], where the author 

compared the WKB series with the exact solution represented by a convergent Bremmer 

series, or more precisely, by an asymptotic expansion of that Bremmer series. The author 

finds that in cases where the coefficient function a is analytic, the optimal truncation order is 

proportional to e 1, yielding a corresponding optimal accuracy which is exponentially small 

w.r.t. &. However, to derive these results, the author makes several additional asymptotic 

approximations. In this chapter, on the other hand, we shall follow a more rigorous strategy 

by providing error estimates for the WKB approximation which are explicit w.r.t. e and 

N. We note, however, that the key assumption from [Win05], i.e., « being analytic, will 

also be crucial for the strategy in this chapter. 

4.1.2 Main results 

Our first main result is Theorem 4.3.7, which provides an explicit (w.r.t. e and N) error 

estimate for the WKB approximation, and implies that the approximation error is of order 

O(e"). The explicitness of this estimate then allows the investigation of the error w.r.t. 
the truncation order N. Indeed, the optimal truncation order N,pt can be predicted by 

minimizing the established upper error bound w.r.t. N or by determining the smallest 

term of the asymptotic series, and is found to be proportional to e'!. This leads to our 

second main result, namely, Corollary 4.4.1. It states that, for an adequate choice of 

N = N(e) » er, the error of the WKB approximation is of order O(e”? exp(-r/e)),r >0 
being some constant. As a consequence, also the error of the optimally truncated WKB 

approximation is of order O(e”? exp(—r/e)), see also Remark 4.4.2. 
This chapter is organized as follows: In Section 4.2 we introduce the N-th order (w.r.t. e) 

WKB approximation as an approximate solution of IVP (4.1.1). Section 4.3 then contains 
a detailed error analysis for the WKB approximation and includes explicit (w.r.t. e and the 

truncation order N) error estimates. In Section 4.4 we specify the computation of the WKB 

approximation. This includes the description of the chosen methods for the computation 

of the terms of the underlying asymptotic series as well as a reasonable truncation strategy. 

In Section 4.5 we illustrate the theoretical results established in this chapter by several 

numerical examples. We conclude in Section 4.6. 

4.2 WKB approximation 

In this section we introduce the WKB approximation as an approximate solution of IVP 

(4.1.1). The basis for its construction is the well-known WKB-ansatz (cf. [BO99, LL85]), 

87



4 Optimally truncated WKB approximation for the highly oscillatory Schrödinger equation 
  

which for the ODE (4.1.1) reads! 

o(z) ~ exp GS(Q;)) E20, (4.2.1) 

where 5 is a complex-valued function containing information of the phase as well as the 

amplitude of the solution ¢. To derive WKB approximations it is then convenient to 

express $ as an asymptotic expansion? w.r.t. the small parameter e: 

S(x) ~ ie”Sn(w) ‚ E20; Sy(zx)eC. (4.2.2) 
n=0 

It should be noted that this asymptotic series is typically divergent (as usual for asymptotic 

series) and must therefore be truncated in order to obtain an approximate solution. 

By substituting the ansatz (4.2.1)-(4.2.2) into (4.1.1), one obtains (formally) 

(Z sns;(x)) + > ™18 (z) + a(z) = 0. (4.2.3) 
n=0 n=0 

A comparison of e-powers then yields the following well-known recurrence relation for the 

functions S),: 

Sy =+iva, (4.2.4) 

Sy a’ 1 ı' __0 __IU___I / S = 257 i 4(1n(a)) : (4.2.5) 

! 1 = el u Sg = 35 Sr), n>2. (4.2.6) 
j=1 

The computation of each S,, n > 0, thus involves one integration constant. Further, the 

repeated differentiation in (4.2.6) indicates that a WKB approximation relying on N + 1 
terms in the truncated series (4.2.2) requires a € CN (T). Moreover, the fact that the r.h.s. 
of (4.2.4) has two different signs implies that there are two sequences of functions, which 

solve (4.2.4)-(4.2.6). This corresponds to the fact that there are two fundamental solutions 
of the ODE in (4.1.1). Let us denote by ($, )nen, the sequence induced by the choice 
Sy = -iya. The one following from $, = iy/a will be denoted by (ST )nen.. Then, a 
simple observation is the following proposition. 
  

IWe say that two functions f,g : I x (0,&0) — C are asymptotically equivalent as e — 0, if and only if for 

any x € I it holds f(xz,e) — g(z,e) = o(g(z,e)) ase — 0. In this case we write f(z,e) » g(z,e),e—0. 
?We say that a function f : I x (0,60) — C has an asymptotic expansion as e — 0, if and only if 

there exist sequences of functions (fn : I — C),en, and (ön : (0,E0) > C)nen, satisfying for all n € 
No and z € I that dn+ıle)fnrılz) = o(dn(e)fu(x)) as € — 0, such that for all N > 0 it holds 
f(z,e)— ZN Ön(E)fn(z) = oldn(e)fn(x)) ase — 0. In this case we write f(z,c) ~ > oo, dn(e) fu(x), 
€e—0. We call an asymptotic expansion uniform w.r.t. x € I, if all the order symbols hold uniformly in 

zel. 

88



4.2 WKB approximation 
  

Proposition 4.2.1. 

(S5 (@) = ~(54,) (@) € iR, (4.2.7) 
(San41)'(2) = (S3p41)'(2) € R, (4.2.8) 

forallx € I andn > 0. 

Proof. The statement can easily be verified by induction on n €E No. O 

Since both sequences ($F)nen, lead to an approximate solution of the ODE in (4.1.1), 
the general approximate solution can be written as the linear combination 

N N 

pr v KB .= QN ¢ €XP > "s,) + Bn,g EXP > ost) , (4.2.9) 

n=0 n=0 

with arbitrary ane, Bne € C. Note that all integration constants in the computation of 

S, and S,} can be “absorbed” into an,. and n,., respectively. Hence, these integration 

constants can be set to zero without loss of generality. More precisely, we define 

SH (2) := l ’ (SH) (r)dr. (4.2.10) 

With this, Proposition 4.2.1 implies 

Sy (x) = =S5 (z) € iR, (4.2.11) 

Sant1(7) = Sp1(z) ER, (4.2.12) 

for all x € I and n > 0. Hence, functions with even indices only contribute to the phase of 

the WKB approximation % X8 whereas functions with odd indices only provide correc- 

tions to the amplitude. 

Note that in general the constants a&n,. and Bn,. can be uniquely determined by initial 

or boundary conditions. Here, for the WKB approximation (4.2.9) to satisfy the initial 

conditions in (4.1.1), we set 

00 (oe (Sg) - Pi 
S e ((ST)(€) — (Sn)(€)) 
01 = 20 (Doc (CE) 
S oem ((ST)(€) — (S2)(©) 

In the following we will often simply write S, whenever one could insert either $, or S}. 

According to [BO99, Sec. 10.2], for the WKB-ansatz (4.2.1)-(4.2.2) to be valid on the 
whole interval I, it is necessary that the series > oo „e”"1$,(x) is a uniform asymptotic 
expansion of &!$(z) ase — 0. This implies that for any n € Ng the relation 

E"Snrı(2) = ole"1S,(2)), E>0, (4.2.15) 

  ON, = (4.2.13) 

  PN. = (4.2.14) 

must hold uniformly in x € I. Note that this condition is violated if the interval I includes 

so-called turning points, i.e., points zo € I with a(zo) = 0. Indeed, this is already evident 

from (4.2.5), which implies that $ı blows up at such turning points. 
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4.3 Error analysis 

In this section we aim to find an explicit (w.r.t. e and the truncation order N) error 
estimate for the WKB approximation (4.2.9). One key ingredient will be the following a 

priori estimate for the solution p of the inhomogeneous analog of the Schrödinger equation- 

IVP (4.1.1). 

Proposition 4.3.1. Leta € W'*(T) with a(z) > ag > 0 and f € C(I). Further, let 
¢ € C?(I) be the solution of the inhomogeneous IVP 

et +a(z)p=f(z), zEI, 
90(5) = 950 ’ 

5901(5) = 2 ’ 

with constants pg, p1 €C. Then there exists C > 0 independent ofe such that 

C x . 
el Loy < ;||f||L2(I) + C (|¢1] + |dol) » (4.3.1) 

C x . 
e’ || Loo(ry < ?”f”L?(I) + C (|@1] + [ol) - (4.3.2) 

Proof. Estimates (4.3.1)-(4.3.2) can be derived by finding an upper bound for the real- 
valued function E(z) := &|e'|? + alpl?. At first, it holds that 

d d d I Ele) = 2 ol? 2a 1ol? 4 o lol? ee SR tage Hal 
= 2Re((e?p" + ap)p') + a’|p]? 
= 2Re(f) + a|pl? 
< als] + lla’ | Loy lepl* - (4.3.3) 

Using Young’s inequality, we obtain 

1 le + eg. (4.3.4) 
Moreover, a(t) > ao > 0 implies that 

le’lz=c = il < = ale. (4.3.5) 

Thus, from (4.3.3)-(4.3.5) we obtain with c := max(l, le Iren ) >1 
ao 

d 1,09 
a) < zif + cE(z) . (4.3.6) 

Applying Gronwall’s inequality, we therefore get 

1 _ 512) < (511 + B(E) ) -9 
o (1 x . et (Zen + 101+ aO)lu?) (43.7) 

which implies the estimates (4.3.1)-(4.3.2). O 

90



4.3 Error analysis 
  

In order to derive an error estimate for the WKB approximation (4.2.9), which is explicit 

not only w.r.t. € but also w.r.t. the truncation order N, it is essential to control the growth 

of the functions S,, w.r.t. n € Ny. Asa first step, we aim to establish upper bounds for 

the derivatives S/, which are given by recurrence relation (4.2.4)-(4.2.6). To this end, we 
employ a strategy similar to [Mel97, Lemma 2], which relies heavily on Cauchy’s integral 

formula. To enable us to apply this tool, we shall assume that Sy is not only defined on 

the real interval I, but also on a complex neighbourhood G C C of I. This leads us to 

introduce the following assumption. 

Hypothesis C. A Let S} be analytic on a complex, bounded, simply connected neighbour- 

hood G C C of I, satisfying Sy(z) #0 for anyzEeG. 

As a consequence of Hypothesis C, a and all S,,, n € N are analytic on G. In particular, 

each 5, is bounded on I. 

For the next lemma, we introduce the open set 

Gs := {z € G | dist(z,9G) > &} (4.3.8) 

for some 6 > 0. 

Lemma 4.3.2. Let Hypothesis C be satisfied and let 0 < 6 <1 be such that Gs # 0. Then 

there exist constants 0 < K;< < K with K depending only on G and Sy such that 

Shi, < Soli Kön”ö", neNo. (4.3.9) 

Here we define 0° as 1. 

Proof. Define the auxiliary functions 5”, := —(25/)-157,. By using (4.2.4)-(4.2.6) we then 

find that the functions S/, satisfy the following recurrence relation 

„1 

- [E38 + (24) (2), n21. (4.3.11) 

Note that since Sj is analytic on G, it follows from recurrence relation (4.2.4)-(4.2.6) that 
$/, and hence also $/, are analytic on G, for every n € No. We will now prove by induction 

on n that 

1- 
II”, II (G5) < RK} n"ö” n.ne No . (4.3.12) 

Obviously, this estimate does hold for n = 0, according to (4.3.10). Assume now that the 
estimate in (4.3.12) holds for 0 <j <n- 1 with some fixed n > 1. We will now prove it 

for n. Let 0 < k < 1 and z € G5. We denote with 9B,s(z) a circle of radius kd around z, 
see the left of Figure 4.3.1. Then Cauchy’s integral formula implies 
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4 Optimally truncated WKB approximation for the highly oscillatory Schrödinger equation 

  

—_—     dist(1,0G) =: k 

  
  

  

(2) (b) 

Figure 4.3.1: (a) Exemplary sketch of the situation from the proof of Lemma 4.3.2: G5 C Ga-r)s € G, where G 

is a complex neighbourhood of the interval /. Here, the point z € Gs is very close to the boundary 

0G5, which makes it clear why one has to consider G(1_,)5 in the r.h.s. of (4.3.14). (b) Every possible 
candidate G for the minimum on the l.h.s. of (4.3.22) can be reduced to a set G* := {z € C | dist(z,I) < 
x}, where « := dist(/,8G) > 0. 

2-1) 
— 72 d 

/aBNJ(z) (€ —2)? ° 

2 leo |H-ılreansey (6)? - (4.3.13) 

~ 1 _9g' 9! ! _ 2-1) = 5- 
DTKÖ 

DT 

  
  < 

This, together with the fact that 0Bys(2) C G(1_,)s5, now yields 

1(=2868, 1) llzo=(as) < 218512006y (58) 181 llzoe(Gs sy - (4.3.14) 
By applying estimate (4.3.14) and the induction hypothesis to (4.3.11), we find 

1Sl Loo(Gy) < Z”S;'”L°°(G5)”S:z—j||L°°(G5) 
=1 

1 B a 
+ 11(50) %Il zoo () 2150l oo (@) (68) ~HISn—1llzoo(Ga ) 
1 ~ n—1 ' . 

< Kg") (n— )" 
=1 

1 _ non ı (Rn - I) 
+ „!(50) ?|| oo () |1Soll oo 6y 0 K§ m (4.3.15) 

Since J(n - 5)? 73 <(n- 1)" forall1<j<n-1, we can bound the sum in the first 
term of (4.3.15) by (n — 1)”. Thus, we obtain 

1 (”__1>n + 1055) "2l Lo (@5) 1 S0l Lo () (n _ 7] Ft 1 nn 

S’ || 7.00 < —KPn™6™" x | nz (Gs) = 2 on 9 n 2Ksk(l _ n)"—ln n 

  

(4.3.16) 
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It now suffices to show that the expression in the square brackets is less than or equal to 

  

  

  

1. By further estimating (”T_l)n < 1, and choosing « = 1, we get 

a 1 1 [1050) Ireccy IS0l Lo () 
S || 00 < =Kfn"6 " | — il 4.3.1 

Thus it is sufficient to choose 

an e _ 

Ks := 7o 1 1050) 2| oo () 10| oo (@) - (4.3.18) 

Finally, we note that K5 < K := 5= 1(50) %Il oo () 190l oo () for any 0 < § < 1. This 
concludes the proof. O 

A simple but important implication of Lemma 4.3.2 is the fact that we are now able to 

provide estimates not only for all the derivatives of 5, but also for S, itself: 

Corollary 4.3.3. Let Hypothesis C be satisfied. Then there exist constants Kı,Ka > 0 

depending only on G and Sy such that 

Salon <n-HllSolie@pKzn”, nENo, (4.3.19) 

IS < |Sollueoy(k - NIKI" Kön”, neNo, keN. (4.3.20) 

Here we define 0° as 1. 

Proof. Since G is a complex neighbourhood of I, there is some 0<ö<1such that I C Gas. 

To prove estimate (4.3.20), we start with the trivial estimate s® In < ,s® || L% (Gas) 
Then, for any k €e N and z € Gas, Cauchy’s integral formula implies 

Sn(2) 
/835(z) (u 

By applying Lemma 4.3.2 on the r.h.s. of (4.3.21) we conclude that (4.3.20) holds with 
Kı := 1/6 and Ka := Ky,/6. Estimate (4.3.19) then follows from (4.3.20) for k= 1 and by 
the definition of $„, see (4.2.10). MD 

(k—1)! (k) — IS®(2)| = EZ < (k= VIEH IS || Loo(ay) - (4.3.21) 
    

Remark 4.3.4. Of course, it is of great interest to find a constant Ko from Corollary 4.3.3 

which is as small as possible. To this end one would have to minimize the constant K; /0 
in estimate (4.3.9). In particular, one has to fir some complex neighbourhood G of I as 

well as a constant 0 < § < 1 such that it holds IC Gs. Further, the proof of Lemma 4.3.2 

indicates that K; can be reduced by choosing G small, see (4.3.18). However, this means 

that one is forced to reduce also the value of 6. Hence, this procedure usually results in a 

trade-off between the magnitudes of RK; and ö. More precisely, one would have to solve the 

following minimization problem: 

1050) %Il oo (cs) 101 oo () _ 150l oo (G9) 
  

I\—2 . M0 IL>(G?) 

02821 5 10S0) ™"l ooz min, — , (4.3.22) 
GcC 

GcC 

ICGs 
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where G? := {z € C | dist(z, I) < ö}. Equality in (4.3.22) holds for the following reasons: 
First, on the l.h.s. of (4.3.22) one only needs to consider sets G C C of the form G = G* := 

{z € C | dist(z,I) < k}, with k > 0. For any 0 < § < 1 such that I C Gs, this follows 
since the numerator on the Lh.s. of (4.3.22) is not increased when replacing G and G5 
by Gdst(1,9C) and (Gäist(l 0G));, respectively, see the right of Figure 4.3.1. The condition 

I < Gs then simply reads k > 6. Second, since for a fixed < § < 1 and § < K1 < Ko 

it holds that G"" C G? and (G*!)s C (G"?)s, it is sufficient to consider simply the sets 
G°+®, with € > 0 being an arbitrarily small number. The equality in (4.3.22) then follows 

from the fact that lim. ,o G°+* = G® and lim. ,0(G°*°%)5 — lim. 30 G* =[50 G = 1. 

We will later make use of the residual of the WKB approximation (4.2.9) w.r.t. the ODE 
in (4.1.1). For this, the following lemma will be helpful. 

Lemma 4.3.5. Denote with L. := ed + a(xz) the linear operator appearing in the 

Schrödinger equation (4.1.1) and let Zn := exp (I en1g,), N ENo. Then it holds 

Leon = N fNe (4.3.23) 

where 

N N 

In se A) +, ES (4.3.24) 
n=2 k=2+N—n 

for N<2 the double sum drops. 

Proof. First we observe that 

L.Dn = E’dn + a(z)dn 

1 X 

ev (ee) Hase) <ot 
n= n=0 

N 

=on | Y. SIS+ S +a(z) | - (4.3.25) 
0<n,k<N n=0 

Let us denote the second factor in (4.3.25) by fn,..- We will now show that fn,. reduces to 

(4.3.24). To this end, let us first rewrite fn,. as 

N-1 

In: = (S@+a) + ( o eSS+ ) s”+1s,’;) 
1<n+k<N n=0 
0<n,k<N 

+ DD Heish) +, ESS, (4.3.26) 
n+k=N+1 n+k>N+1 
0<n k<N 0<n k<N 
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Now, the first term in (4.3.26) vanishes due to (4.2.4). The second term also vanishes since 

n+1 

> s =S s 
1<n+k<N n= 
0<n,k<N 

= yet 2595 rl j 
n= 

_ — „= ers (4.3.27) 

where we used in the last equation recurrence relation (4.2.6) for the function S;,_ ;. Fi- 
nally, by using (4.2.6) for the function Sy _,, the third term in (4.3.26) simplifies to 
eVt (2531 1). The claim follows. O 

Recalling that So(z) € iR we note that g (z) is, for fixed z € I, uniformly bounded 
w.r.t. € € (0,1]. Thus the r.h.s. of (4.3.23) is of the order O(e*+!), and we conclude from 
Lemma 4.3.5 that the function Zn satisfies the ODE L,p = 0 asymptotically, as e — 0. 

This is one of the main properties we can utilize to show that also the numerical error of 

the WKB approximation (4.2.9) will approach 0 as e — 0, at least for N >1. To this end 

we need the following lemma. 

Lemma 4.3.6. Let Hypothesis C be satisfied and define pr := exp vH enigt), Ne 

No. Then there exist constants eg € (0,1) and C >O such that it holds for e € (0,&o]: 

N 

lanepnllLem < C (ie Sole) >, €” Kan” + vn) 
n=0 

1 
x exp | (n- gllSollueo) >, K" (2n+ 1) |, (4.3.28) 

n=0 

with an, from (4.2.13). For N = 0 the last sum drops. The same estimate holds for 

185,08 | Loo(ny- In particular, since the initial values p9 and pı are assumed to be uniformly 

bounded w.r.t. e, so is yW KB in LX(T). 

Proof. We will prove only the estimate for ay p,. For 8 NepN it is fully analogous. First 

notice that Proposition 4.2.1 implies that 

  
ALS - ¢ 

(4.3.29) 
2[ThE e st ie) 

|aN,€| = 
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Due to a(x) > ao > 0, we have |(S{Y(E)| > Yao > 0. Thus, there exists co € (0,1) 
sufficiently small such that 

5] 13 
TE > SEE IE | 
n=0 n=1 

NE
 

| 

> Yo-) ES 
1 

1 
> — 0. > 57 (4.3.30) 

for all e € (0,&o] and some C > 0 (since (S5, )’ is bounded on I). Hence, we obtain 

N 
ILS - Fi 
n=0 

lane| < C (4.3.31) 
    

N-1 
Next, (4.2.11)-(4.2.12) imply |py(z)| < exp (Z}L:% I 22m Sn) for allx € 1. To- 

gether with (4.3.31) this yields 

N | 252 ] 

lanepn ()| < C (Isool > e |(SHY + en) exp | D) e" se) | (4.3.32) 

for allx € I. Applying Corollary 4.3.3 then yields the claim. O 

Finally, we provide an error estimate for the WKB approximation (4.2.9). 

Theorem 4.3.7. Let Hypothesis C be satisfied and let o € C?(T) be the solution of IVP 
(4.1.1). There exist constants eo € (0,1) and C > 0 independent of N and e such that it 
holds for e € (0,eo|: 

N 

Ip - en lie < ClSolix(e, (I IEnlrere) Ye an" + eı) 
n=0 

Il 

xexp | (n-HllSolln >, €" K2"t (2m + 1)?+! 
n=0 

N N 

x er (N + 1)N+1 + >, >, gun) 

n=2 k=2+N—n 

(4.3.33) 

For N =0 the sum in the exponential function drops, and for N <2 the double sum drops. 
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Proof. To compute the residual of the WKB approximation (4.2.9), we notice that goK,’K B — 

aNePy T flN,gcp"]\',, where pn = exp (Do nis), By applying Lemma 4.3.5, we obtain 

Le(y — vWKB) = _O‘N,ELEQOJT]' = Bn,sLepi 

= —aNePNINe = BNeONIN ¢ (4.3.34) 

where the functions ffi,e are given by (4.3.24) when inserting S for S,. Further, since 

oWKB satisfies the initial conditions in (4.1.1), we have (p — yVKP)(E) = 0 and e(p — 
oWKBY(E)=0. Thus, Proposition 4.3.1 for ¢g, 21 = 0 implies (note that I e C(T) and 

a € W!:*(T)) the existence of some C > 0 independent of N and e such that 

C ro 
Ip - en |Iren < „lansenfn. + An,cpnfn.iien 

    1 + nepkllienlifßellesn) ; 
(4.3.35) 

C _ — 
< z (HCVN,SSONHLOO(I) fie 

where C := vn- €C. Further, according to Corollary 4.3.3, 

N N 

£ llpoocry < 26N Spllpoon 1SN 11 ooy + > D € FIShllLoon | Skll o2y 
n=2k=2+N—n 

N N 

< 5 (2RI VLY ST ) 
n=2 k=2+N—n 

(4.3.36) 

Estimate (4.3.33) now follows from (4.3.35)-(4.3.36) by applying Lemma 4.3.6. This con- 
cludes the proof. O 

Remark 4.3.8. As a consequence of Theorem 4.5.7, we have that 

lo — Pr" ion = Ole"), e0. (4.3.37) 

4.3.1 Refined error estimate incorporating quadrature errors 

Theorem 4.3.7 yields an explicit (w.r.t.eand N) error estimate for the WKB approximation 

(4.2.9). However, in practice one cannot expect to be able to compute (4.2.9) exactly. 
Indeed, even though for a given function a one can compute the derivatives (SE) exactly 

through (4.2.4)-(4.2.6), one still has to deal with the integrals JESE) dr in (4.2.10) in 

order to compute the functions $=. For a detailed description of the method we use to 
approximate these integrals, we refer to Section 4.4.1. 

For now, let us assume we are given numerical approximations SE, n € No, of the 

functions S7, which satisfy |S7 — Sz||re(nm < €n with positive constants en. We then 
define the corresponding “perturbed” WKB approximation as 

N N 
DNKB = an.exp > 3, + Bn,g exp > es) (4.3.38) 
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Notice that we use here the exact constants an,. and Pn,; as given by formulas (4.2.13)- 

(4.2.14) (since the values (S7)’(£) are exactly known from (4.2.4)-(4.2.6)). 

We are now interested in an error estimate for the perturbed WKB approximation 

(4.3.38). Such an estimate is provided by the following theorem: 

Theorem 4.3.9. Let Hypothesis C be satisfied and let p € C?(T) be the solution of IVP 
(4.1.1). Purther assume Sy (z) € iR, n € Ny, for any x € I. Then, there exist constants 
g0 € (0,1) and C > 0 independent of N and & such that it holds for e € (0,&o]: 

Er 

Io - EN Fllen <exp | (m-OlSolıey >, © K2"* (2m + 1)?rt! 
n=0 

N 

x eisili=ie (Iallsit-ode ze +lal) 
n=0 

N N 

X (era + 1) + + > y, tagt) 

n=2 k=2+N—n 

N |57 

+ (lane| + [Bnel) (Z = exp y, ent | 
n=0 n=0 

(4.3.39) 

For N = 0 the sums in the exponential functions drop, and for N < 2 the double sum 

drops. 

Proof. Obviously, we have that 

lo - ER lien < IP - o “Pllzoo(n + llen - Mio: (4.3.40) 

Now, the first term in (4.3.40) can be estimated using Theorem 4.3.7 and enforces the 
restriction € € (0, eo]. For the second term we estimate 

        

        

N N 

Ion - ON lvo < lan;el |exp > es, — exp > :,) 
n=0 n=0 L= (1) 

N N _ 
+ |Pn,e| |\exp > söst) — exp 1% st) 

n=0 n=0 Lx®(T) 

(4.3.41) 
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Let us introduce the abbreviation AST := gff — ST and estimate 

N N _ 
exp & eos: — exp > 3) 

n=0         L°(T) 

Texp on (I ua (st +tasi)) dt         Lo (1) 

IA
 

n 

11 N 1 2 

< ® I MS lzeen + tlASr Moon) | dt (De tasii-n) 

    

N 
exp > (+ as;)) 

n=0     

N 

dt > e1Sil-o) 
L®() n=0 

NZ] N 

< exp 3 ™ (I1S2ng1 oo (ry + AS 11l Loo(ry) (Z €n_1||ASf||Loo(1)> 
n=0 n=0 

1 1 
<exp | (n—ESol=@ Y K" (2n+ 1) Jexp | Y e¥esnta 

n=0 n=0 

N 

x > = (4.3.42) 
n=0 

where we used in the third step that SZ, (x) +tAS5,(z) € iR for every ¢t € [0,1] and = € I, 

which is a direct consequence of (4.2.11) and the assumption SE (« ) e iR. Moreover, in the 
last step we used Corollary 4.3.3. The claim now follows by combining (4.3.40)-(4.3.42). O 

Let us compare the extended error estimate (4.3.39) with (4.3.33). The new (additional) 
second term inside the square brackets in (4.3.39) is due to the perturbed functions Si 
and includes the approximation error bounds e,„. In particular, the factor 2, erle,, is 

rather unfavorable, as it is of order O(e”!), as e — 0. We note that the appearance of this 

O(e”!)-term in estimate (4.3.39) is strongly related to the appearance of the O(e”")-terms 
in [AANI11, Theorem 3.1], [AKU22, Theorem 3.2] and [JL03, Eg. (35)]. There it implied 
an upper step size limit A < h(e) = &? with some y € (0,1). Similarly, it would require 

here some e-dependent upper bound on the quadrature error eg of SE. We specify this 

observation in the following remark. 

Remark 4.3.10. It is evident from (4.3.31) that an, = O(1), € = 0. The same holds for 
Bn,s. Hence, we see from (4.3.39) that 

N 

Io - EN Fllen = Ole) + Ole )en, 20. (4.3.43) 
n=0 

Thus, asymptotically, as e — 0, the approzimation error of SE has the biggest impact 

on the overall error since it is multiplied by a factor O(e”!). In order to recover an 
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overall O(e) error behavior, as in Theorem 4.3.7, one should hence aim for highly accurate 

approximations of the functions SH, with an e-dependent error order of at most e, = 
OleN tl), 

4.4 Computation of the WKB approximation 

In this section we present the methods we use to compute the (perturbed) WKB approxi- 

mation (4.2.9), (4.3.38). This process can be divided into two steps. First, the computation 
of the functions S„. Second, an adequate truncation of the asymptotic series (4.2.2). 

4.4.1 Computation of the functions S, 

The computation of the functions S, relies on recurrence relation (4.2.4)-(4.2.6) as well as 
on definition (4.2.10). Since the latter involves the evaluation of an integral, one cannot 
expect to be able to compute 5, exactly, in general. Consequently, we will instead compute 

approximations S, ~ S, = JE $/, dr which satisfy the assumption Son (x JEIR,neENo, 

such that the resulting error for the corresponding perturbed WKB approximation can be 

controlled by Theorem 4.3.9. 

As the first step, we compute the derivatives $/, through (4.2.4)-(4.2.6) exactly, em- 
ploying symbolical computation?. Secondly, we employ a highly accurate quadrature for 

approximating the integral in (4.2.10). For this, we use the well-known Clenshaw-Curtis 

algorithm [CC60], which we shall briefly explain in the following. 
The basic idea of this method is an expansion of the integrand f in terms of Chebyshev 

polynomials the integrals of which are known. More precisely, one considers a truncated 

Chebyshev series for the integrand, i.e. f(l) X >“, arI,(l), Le [-1,1], where T,(l) = 
cos(r arccos(l)), r € No, are the Chebyshev polynomials. Here, the spectral coeflicients 

a, are determined with a collocation method on the Chebyshev collocation points I, = 

cos(kw/M), k = 0,..., M, by solving the M + 1 equations f(lx) = >“, a, cos ("FR for 
the a,,r =0,...,M. Therefore, the spectral coeflicients can be computed by the discrete 

cosine transformation (DCT‘) of the function f sampled at the collocations points. We note 

that the DCT is related to the discrete Fourier transform and can be computed efficiently 

using the fast Fourier transform algorithm after some preprocessing (e.g., see [Tre00, Chap. 

8]). 

Then, the antiderivative of f can be approximated again by a Chebyshev sum, 

/ fir ars Dr) (4.4.1) 
r=0 

where the coefficients b, are related to the a,, see [CC60] for the detailed formulas. In 
[Cha68] it was shown that the Clenshaw-Curtis method approximates integrals of analytic 
functions with spectral accuracy, i.e., the numerical error is decreasing exponentially with 

the number of modes M. 
  

® As an alternative to (4.2.4)-(4.2.6), in [RR00] the authors established an almost explicit formula for the 
derivatives S/,, depending on a and its derivatives a’,...,a”). Although not used here, this approach 

may prove advantageous with regard to the computational time. 
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4.4 Computation of the WKB approximation 
  

An integration over the interval x € [E, n] is realized by mapping x = n(1+l)/2+£(1-1)/2, 
le [-1,1] to the interval [-1,1]. Thus, by sampling the derivatives $/, at the transformed 
Chebyshev points z,, k =0,..., M in the interval I = [¢, 7], we obtain the approximations 

Sn(zx) = Sp(xr). Notably, the coefficients b, are such that the r.h.s. of (4.4.1) vanishes at 
[ = —1, implying §n(§) = 0. Hence, the perturbed WKB approximation (4.3.38) satisfies 
the first initial condition in (4.1.1), namely, %W XB(¢) = ane + Bne = wo. Finally, it is 

worth mentioning that when employing the Clenshaw-Curtis algorithm for the integrals in 

(4.2.10), it follows that §2n(xk) € iR. As a consequence, the error of the corresponding 

perturbed WKB approximation (4.3.38) can be controlled with the aid of Theorem 4.3.9. 

We note that an alternative and efficient way of approximating the functions $, can be 

realized without the need for symbolical computation of the derivatives S7,. Indeed, one can 

instead employ a spectral method to perform the differentiation of the predecessor S/,_, in 

the recursion (4.2.6). For instance, by using the (M+1)x (M-+1) Chebyshev differentiation 
matrices Du as described in [Tre00, Chap. 6], one can efficiently approximate the derivative 

of a function at Chebyshev grid points I, € [-1,1, k=0,1,...,M. Thus, to approximate 

the derivative of a function sampled at transformed Chebyshev points 2, € [&,n], it is 

necessary to use the scaled matrix Dy := :D M- Following recurrence relation (4.2.4)- 

(4.2.6), we can therefore approximate the derivatives S/, sampled at Chebyshev points rx 

through the following pointwise definition on the grid: 

_ Zi\io(fiM)k+1,l
+156 (:Ul) 

25y (zk) ’ 

Din Shan), _; (ar) + Do Dm)e+,141Sn-1 (01) 

25y (xk) ’ 

S1(zx) ==   (4.4.2) 

  5 (2%) = — n>2, (4.4.3) 

for Kk = 0,...,M. One then obtains approximations §n(:1:k) ~ Sp(zr) by employing the 
Clenshaw-Curtis algorithm using the approximations S/ (zz) ~ S (zx), k =0,..., M. 

However, note that approximating S;, using (4.4.2)-(4.4.3) can lead to a rapid accumula- 
tion of errors, as repeated numerical differentiation is intrinsically unstable. The reason for 

this behavior lies in the ill-conditioned Chebyshev differentiation matrices Djs. It is known 

that the condition number of these matrices is of order O(M?) (e.g., see [BE92, Fun87)]). 
In a finite precision approach this leads to a big loss, which means that roughly two orders 

of magnitude are lost in accuracy in each application of the recurrence relation to compute 

the S/. Consequently, it is recommendable to employ this approach primarily for small 

values of N. 

4.4.2 Truncation of the WKB series 

When truncating the asymptotic series 

oo 

frei, E20 (4.4.4) 
n=0 

after some finite order N, one would like to analyze the difference f — N, E” fn. But 

since the function S in (4.2.1)-(4.2.2) remains unknown, we shall investigate the numerical 
error of the WKB approximation, as started in Section 4.3. 
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4 Optimally truncated WKB approximation for the highly oscillatory Schrödinger equation 
  

Recall that for a fixed N > 0, Theorem 4.3.7 guarantees that |p-yN "?l|reın = Ole‘) 
ase — 0, see also Remark 4.3.8. In practical applications, however, the situation is exactly 

the opposite, namely, the small parameter e is fixed and N can be chosen freely. Note also 

that just including more terms into the series (4.2.2) does not necessarily reduce the error of 
the WKB approximation, simply since the asymptotic series is typically divergent. Hence 

the question arises which choice of N will minimize ||p — N KPllien, often referred to 
as optimal truncation. In this context, we denote with Nopt = Nopt(E) := argminyeng||P — 

on Pllier ı) the optimal truncation order. In general, an optimally truncated asymptotic 

series is sometimes referred to as superasymptotics (e.g., see [Boy99]). The corresponding 

error of an optimally truncated series is then typically of the form ~ exp(—c/¢), as € — 0, 
with some constant ¢ > 0. 

In practice, a useful heuristic for finding the optimal truncation order for a fixed e is given 

in [Boy99]. It suggests that it can be obtained by truncating the asymptotic series before 

its smallest term. In our case, we would hence have to find the minimizer Npeu = Nheu(E) 

of n e"|Sn+ılluo(n- This can either be found by “brute force”, comparing the size of 
each term up to some prescribed maximal order Nmax, or by utilizing Corollary 4.3.3 to 

(roughly) predict Nneu- Indeed, for any N € No, estimate (4.3.19) implies 

N Swsilluoan < m -OlSllame KEN AN. (4.4.5) 
Treating N as a continuous variable for a moment, we find the minimum of 

  

g(N) := In (e* KN+UN +1)N +) (4.4.6) 

at 

Nhen = Nheule) = — — 1 (4.4.7) heu 7 +Yheu = eKae .4. 

Hence, the minimum of the right-hand side of (4.4.5) is 

(n- HllSo leo) 1 
(n HllSollzeco) eXp (sNneu)) = f eXp 5) . (4.4.8) 

So, the first term of the remainder of the asymptotic series appearing in the WKB-ansatz 

(4.2.1)-(4.2.2), truncated at the nearest integer value to Npcu, is exponentially small w.r.t. 

e. Recalling that the term exp(g(N)) = e\ K+!(N + 1)N+! also appears in estimate 
(4.3.33), we therefore might also expect the error ||p — oNKBI| (1) t0 be exponentially 

small w.r.t. e, if N is chosen adequately. Indeed, this is guaranteed by the following 

corollary of Theorem 4.3.7. 

Corollary 4.4.1. Let Hypothesis C be satisfied and let p € C?(T) be the solution of IVP 
(4.1.1). Then there exist &, € (0,1) and N= N(e) EN such that it holds for e € (0,£0|: 

C r WKB 
IP - en In < -2 exp (--) 3 (4.4.9) 

with constants C,r > 0 independent ofe. 
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4.4 Computation of the WKB approximation 
  

Proof. We prove estimate (4.4.9) by applying Theorem 4.3.7 for a specific choice of N = 
N(e). First, choose 0 < E0 < min(eo, 5) with eo € (0,1) being the constant from The- 
orem 4.3.7 and Ka from Corollary 4.3.3. Then there exists some constant ¢ € [e K&y, €) 
implying that N := |x,,| - 12 0 for anyee (0,£0]. The idea is now to majorize, for 
this choice of N, several sums in (4.3.33) by convergent geometric series. First, we have 

  

  

N N 00 

S (ekany < SRV + ) < 3 (2) =- I, (4.4.10) 
n=0 n=0 n=0 e 

where we used eKa(N +1) < 2. Similarly, we get 

Eu 1] 
>, Er(Kalan +1)" <Ky Y (eKa(N + 1)) (2n + 1) 

N en 

SOMNONES 

(4.4.11)   

where we used the geometric series variant » . ¢"n = DR for anygqeR with |g|l <1. 

At this point, Theorem 4.3.7 and (4.4.10)-(4.4.11) imply for € € (0, £0] 

N N 

n=2 k=2+N—n 

where C > 0 is some constant independent of €. Now, for the first term in (4.4.12) we have 
that 

N KN 4 1)V < - (2) 0 <& (E)Tz = 2 exp (-2) (4.4.13) 
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with r := und 9 >0. Finally, the second term in (4.4.12) can be estimated as follows: 

N N 

DD De a 15 5 (eKaN)"(eKaN)* 
n=2 k=2+N—n En? k=2+N—n 

1 n 

= -(eKaN)Nt? y eKaN)* 
£ 

IN
 

o
l
 

M
|
 

=
 

(EKQN)N +2 Z Z 

(eKaN)N +? —— 

Ka c \? ey ek 
1-2 (5) (2) 

c C\ Kae 

(e-c)Kae? (2) 
c r 

= — ). 4.4.14 
(e-c)Kae? AP ( -) ) 

We observe that the r.h.s. of (4.4.13) can be bounded by the r.h.s. of (4.4.14) (up to a 
multiplicative constant) for € € (0, £p]. Thus, the claim follows. O 

    IN
 

IA
 

Remark 4.4.2. We note that the specific value N from the proof of Corollary 4.4.1 is 

not necessarily equal to the optimal truncation order Nop:. However, as a consequence of 

Corollary 4.4.1, and by the definition of Nopt, we conclude that 

Ip - N KPllıeen = Ole” exp(r/e)), E>0, r>0. (4.4.15) 

Finally, we note that, apart from Npeu and Neu; another option for predicting the 

optimal truncation order Nopt is to find the minimizer of error estimate (4.3.33) (for e fixed), 

say Nopt = Nopt(s), although this rather complicated expression can only be minimized 

numerically by brute force. 

At this point, it seems convenient to summarize the notations and meanings of the 

different mentioned truncation orders which aim to estimate Nopt — see Table 4.4.1. In 

the next section we will compare results for each truncation order from Table 4.4.1, since 

it is not clear a priori which of these orders provides the most accurate prediction of 

Nopt- Nonetheless, let us note that in our experiments N opt, Nopt; and Nne„ can only be 

determined by brute force, while Nyeu 18 given explicitly by formula (4.4.7). 

4.5 Numerical simulations 

In this section we present several numerical simulations to illustrate some of the theoretical 

results we derived in Section 4.3. To this end, we will compute the (perturbed) WKB 
approximation as described in Section 4.4.1. That is, the functions $/, are pre-computed 
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Nopt  minimizer of || — @7 ¥ || Leo(sy (optimal truncation order) 
Nopt minimizer of error estimate (4.3.33) (prediction of Nopt) 
Nhew minimizer of EN ||Sy+ıllı (r, (heuristic prediction of Nopt) 

Nneu minimizer of the r.h.s. of (4.4.5) (prediction of Npeu) 
  

Table 4.4.1: Terminology for the different truncation orders mentioned in Section 4.4. The numbers Nopt and Neu 

are predictions for Nop: and Nneu by means of (4.3.33) and (4.4.5), respectively. 

symbolically and are then integrated numerically using the Clenshaw-Curtis algorithm 

based on a Chebyshev grid with M +1 grid points, where M will be specified later. All 

computations are carried out using MATLAB version 9.13.0.2049777 (R2022b). Further, 

since we are dealing with very small errors for the WKB approximation, especially when 

investigating the optimal truncation order, we use the Advanpix Multiprecision Computing 

Toolbox for MATLAB [Adv23] with quadruple-precision to avoid rounding errors. 

4.5.1 Example 1: Airy equation 

Consider the initial value problem 

ey" (2) + zp(x) =0, zell2, 
(1) = Ail- 373) +iBi(- a) ; (4.5.1) 
eyp'(1) = —e!/3 (A 37%) +iBi/(- Ze)) 

where the exact solution is given by 

T 
Pezact(T) = Al(_ 273) + i Bil 73) . (4.5.2) 

Here, Ai and Bi denote the Airy functions of first and second kind, respectively (e.g., see 

[OLBC10, Chap. 9]). Note that for this example, where a(x) = x, the derivatives S/, are 
given by powers of x (up to a constant factor). Hence, the functions SH can be computed 

exactly from (4.2.10); however, we shall use them here only as reference solutions for the 

approximations SE, Indeed, for a fixed number M +1 of Chebyshev grid points, we are 

then able to compute explicitly the approximation error ||S* — S#|| L(N) =: En. Since SH 

is only available at the grid points, we actually compute the discrete analog of this norm. 

On the left of Figure 4.5.1 the real part of Yezact is plotted for the choice e = 2%, 

which illustrates well the highly oscillatory behavior of the solution. Let us first investigate 

numerically the result from Corollary 4.3.3. For this, let us compute a constant Ka, as indi- 

cated by the proof of Corollary 4.3.3 and Remark 4.3.4. Indeed, by using the minimization 

strategy from (4.3.22), we find that (note that here Sy(2) = £iv/z; 6 =1) 

e . v2+6 V3e Ko = _ 
210 6 2e—1 
      * 1.0612 (4.5.3) 

is a suitable constant within the context of Corollary 4.3.3. On the right of Figure 4.5.1, 

we present the L%(T)-norms of the functions S/, and the approximations $,„ when using 
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Figure 4.5.1: Left: Real part of the exact solution (4.5.2) of IVP (4.5.1) for the choice e = 278. Right: L (I)-norm 

of S/, and 5, as functions of n, for the example a(x) = x on the interval [1,2]. 

M = 25, along with the theoretical bound (4.3.20) on ||Sy,||zec(r). We observe that the 
true norms consistently remain below the theoretical bound. Additionally, we include as a 

dashed line the theoretical bound (4.3.20) when replacing Ka and || Sy || x (@) by the fitted 

values Kfited —= 10/37 = 0.27 and 0.25, respectively. We observe very good agreement 

between the norms ||S,||re(r) and the dashed line. This demonstrates well that, in the 
present example, the norms ||S} ||xo(r) grow as Corollary 4.3.3 suggests, i.e., ||Sy, Iren) ” 
CKzan" asn > 00, for some ©, Ka > 0. In general, however, this is not the case. We refer 

to Appendix 4.A and Section 4.5.3 for an example, where the functions S/ and S,, even 

decay, as n — x. 

Next, we investigate numerically the behavior of the WKB approximation error ||p — 

AN Flle as a function of e. We may compare the results with the error “estimate” 

(4.3.43). As a first test, we set M = 8 to compute DNK P, This results in an approximation 

error for 5, of e, ~ 1078, n =0, ...,4. On the left of Figure 4.5.2 we plot for N =0,...,4 

the error as a function of e: For N = 2,3,4 and small values of ¢, the O(e”!)eg-term is 
dominant. In contrast, for N=0 and N =1 this error term is not visible for the given 

range of e-values such that the O(e)-term is dominant. As a second test, we set again 

M = 8, but now use in SVX3 the exactly computed function So. The O(e”!)eg-term 

from (4.3.43) is thus eliminated. On the right of Figure 4.5.2 we show again the error 

Ip - 7 IT n) as a function of e: For N = 2,3,4 and small e-values, the O(e')eı-term, 
which is the next term in the sum in (4.3.43), now dominates. Indeed, the error curves 

show an almost constant value of approximately 2-10”? for small values of e. For larger e, 

the error curves behave like O(e"). As a third test, we set M = 25 and approximate again 

all functions 5,n = 0,...,4 (as in the first test). The corresponding approximation errors 

of $,„ are en = 10°, n = 0,...,4. On the left of Figure 4.5.3 we present the resulting 
WKB approximation errors. We observe that, on this scale, all O(e”"!)e„-terms in the sum 

of (4.3.43) are essentially eliminated, since all the shown error curves behave like O(e”). 
Overall, we observe very good agreement between the numerical results of each of the three 

tests and the statements from Theorem 4.3.9 and Remark 4.3.10. 
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Figure 4.5.2: L”X (T)-norm of the error of the WKB approximation as a function of e, for the IVP (4.5.1) and several 

choices of N. Left: M =8. Right: M = 8; using the exactly computed function So. 
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Figure 4.5.3: Left: L°(T)-norm of the error of the WKB approximation as a function of e, for the IVP (4.5.1) and 
several choices of N. Here, we set M = 25. Right: L” (T)-norm of the error of the WKB approximation 
as a function of N, for the IVP (4.5.1) and several choices of e. The dash-dotted lines correspond to 
the error estimate according to Theorem 4.3.7 and the solid lines correspond to the actual error of the 

WKB approximation. 
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Figure 4.5.4: Left: The optimal truncation order Nopt as well as the predicted “optimal” orders Nopt, Nneu, and 

Npeu a8 functions of €. The dashed line is proportional to 1/e. Right: The optimal error achieved by 

using Nopt as well as error estimate (4.3.33) when using N = Nopt, both as functions of e. The dashed 

line is proportional to 2 exp(- . 

Next we investigate the error of the (perturbed) WKB approximation as a function of 
the truncation order N. For this, we set again M = 25, yielding approximation errors 

of S, as m =~ 1072 for n = 0,1,.... We may therefore neglect the errors caused by 

approximating the functions $„. On the right of Figure 4.5.3 we plot the actual error 

Ip- EN RP|| (rn and its error estimate (4.3.33) while again using K. Jutted _ 10/37, both as 
functions of N, for several e-values. We observe that, even when using the fitted constant 

Kfited the “optimal” truncation order Nopt, as predicted by the estimate (4.3.33), is 

smaller than N.p: (determined as the argmin of the actual error curve). For instance, we 

have Nopı(2"%) © 14 < 22% Nopı(2%) and Nop(2"3) & 29 < 44 ~ Nopı(2?), respectively. 
In Figure 4.5.4 we plot on the left the optimal truncation order Nopt(E) as a function of 

e as well as its predictions Nopt(E), Npeu(E), and Nyeu(E). The plot suggests that Nopt; 
1 nn 

Nopt, and Nneu are proportional to e”", ase — 0 (for Neu this is already evident from 

(4.4.7)). Further, for e = 271,273,274,275 we observe that Nopt = Neu: On the right of 
Figure 4.5.4 we plot the corresponding optimal error which is achieved by using Nopt as 

well as error estimate (4.3.33) when using N = Nopı, both as a function of e. As indicated 
by the dashed line, the optimal error decays like O(e”? exp(-r/e)), with r ~ 13/10 being 
a fitted value, in good agreement with Remark 4.4.2. 

4.5.2 Example 2 

As our second example let us consider the initial value problem 

e2¢"(z) + e p(z) =0, =z€l0,1], 

(0) =1 (4.5.4) 
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Figure 4.5.5: Left: Exact solution (4.5.5) of IVP (4.5.4) for the choice e = 102. Right: L°(I)-norm of S/, and Sy 
as functions of n, for the example a(x) = exp(5x) on the interval I = [0,1]. 

where the exact solution is given by“ 

T (B 6527 Y (2) ~Yo (£ 67 7, (2)   Soewact(m) = (4.5.5) 

Here, J, and Y, denote the Bessel functions of first and second kind of order v, respectively 

(e.g., see [OLBC10, Chap. 10]). 

On the left of Figure 4.5.5 the exact solution Yezact is plotted for the choice e = 10°. 

Throughout the whole interval, due to the fast growth of the function a(z) = exp(ör), 
the solution exhibits a rapid increase of its oscillatory behavior. Further, we plot on the 

right of Figure 4.5.5 the L%(I)-norms of the derivatives $/, and the approximations S, 
when using M = 30. As indicated by the dashed line, the smallest (fitted) constant Ka 

such that estimate (4.3.20) holds is Kfited * 9/20 (here we also replaced ||Sp|Ix(c) in 
(4.3.20) by the fitted value 0.6). In Figure 4.5.6 we present the WKB approximation error 

Ip - 7 RT 1) a8 a function of e and may again compare the results with the error 

“estimate” (4.3.43). We observe that, on this scale, all O(e”"!)e„-terms are essentially 
eliminated, since all the shown error curves behave like O(e"). Overall, we observe very 
good agreement with the statements from T'heorem 4.3.9 and Remark 4.3.10. Finally, we 

plot i in Figure 4.5.7 on the left the optimal truncation order N.p: as well as its predietions 

Nopt, Npeu, and Naeu; as functions of e. We find that Non: is proportional to e~ 1 as 

g — 0. On the right of Figure 4.5.7 we present the corresponding optimal error as well as 

error estimate (4.3.33) when using N = Nopt; both as a function of €. As the dashed line 

indicates, the error decays like O(e”? exp(—r/e)), with r = 3/4 being a fitted value. This 
is in good agreement with Remark 4.4.2. 

  

4We found the exact solution by using the Symbolic Math Toolbox of MATLAB. 
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Figure 4.5.6: L°°(I)-norm of the error of the WKB approximation as a function of e, for the IVP (4.5.4) and several 
choices of N. Here, we set M = 30. 
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Figure 4.5.7: Left: The optimal truncation order Nopt as well as the predicted “optimal” orders Nopt, Nneu, and 

Npeu as functions of e. The dashed line is proportional to 1/e. Right: The optimal error achieved by 

using Nopt as well as error estimate (4.3.33) when using N = Nopt, both as functions of €. The dashed 

line is proportional to e”? exp -2). 
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4.5.3 Example 3: Convergent WKB approximation 

As a final example, let us consider a(x) = (1+r+2?)"?. We are interested in investigating 
the initial value problem 

e2¢"(@) + (1+z+2%)2p(z) =0, z€l0]], 
p(0) =1, (4.5.6) 

ep'(0) =1, 

where the exact solution Pezact is given by” 

Pezact(X) = a sin (e) (aretan > ") B %>> 

— a(z)"* cos <7(5) (aretan FE) _ :)) | (4.5.7) 

where (e) := v3? +4/(v38). 
This example is special in the sense that a(z) = (1 + = + z2)~2 belongs to the class of 

functions represented as (Ci + Cax + C32?)?, with constants C;, i = 1,2,3, satisfying 

ICa| + |C3| > 0 and C2 £ ACı1C3. Further details regarding this class of functions are 
discussed in Appendix 4.A, particularly with regard to the corresponding WKB series. 

Notably, for such functions it holds that 5] #0, 9 #0 and 53 = 0, see Remark 4.A.2. 
Moreover, according to Proposition 4.A.1 and Remark 4.A.3, it follows that 

  

Sl =0 ((n - 1)-3/2|0103 — ca /ar-t) . n— oo, (4.5.8) 

Sh =0, n>1. (4.5.9) 

Consequently, this implies that the underlying asymptotic series (4.2.2) is (geometrically) 
convergent for any e < |C1C3 — C2/4|=V/?, see again Remark 4.A.3. In this case, given 
that |CiC3 — C2/A| = 3/4, the functions S5, (and hence Sa,) exhibit exponential decay 
as n > x, uniformly in x € I. The corresponding WKB series is convergent for any 

e €(0,2//3]. 
In Figure 4.5.8 on the left we plot Yexact for the choice e = 2-9. Moreover, on the right 

of Figure 4.5.8 we plot the L%(T)-norm of S;, and S„, both as a function of n. Here, we set 
M = 30 for the numerical integration of the functions $/,. We observe that the norms indeed 
decay exponentially, in agreement with Remark 4.A.3. Here, the dashed line is precisely 

given by the r.h.s. of (4.A.7) with Ci = Ca = Ca = 1. In Figure 4.5.9 on the left we plot 
for N=0,...,4 the error of the WKB approximation ||p — PN *P||7(r) as a function of e. 
By comparing the results with (4.3.43), we observe that all O(e””!)e„-terms are essentially 
eliminated. Further, the error curves for N = 0, 1,3 behave like O(¢") whereas the curves 

corresponding to the choices N = 2,4 behave like O(e"+!). This is because the given 
function a implies S5, ., = 0, for any n > 1, which means pW*? = YWK? for any even 
N>2. 
  

5We found the exact solution by using the Symbolic Math Toolbox of MATLAB. 
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Figure 4.5.8: Left: Exact solution (4.5.7) of IVP (4.5.6) for the choice € = 279. Right: L°°(I)-norm of S/, and S, as 
functions of even n, for the example a(z) = (1 + z + x2?)-? on the interval I = [0,1]. The dashed line 
is proportional to the r.h.s. of (4.A.7) with C; = C2 = C3 = 1. 
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Figure 4.5.9: Left: L°°(I)-norm of the error of the WKB approximation as a function of e, for the IVP (4.5.6) and 
several choices of N. Here, we set M = 30. The yellow curve for N = 2 is the same as for N = 3 and 

hence not visible in the shown plot. Right: L%(T)-norm of the error of the WKB approximation as a 

function of N, for the IVP (4.5.6) and several choices of e. Here, we set M = 30. 
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Finally, on the right of Figure 4.5.9 we plot the error ||¢ — &k %5||L(r) as a function 
of the truncation order N, for several e-values. We observe that all shown error curves 

are decreasing functions in N, up to the point where they reach values of approximately 

10-22, This is due to the approximation of the functions S,. More precisely, the first term 

of the sum in (4.3.43), namely, the O(e”!)eg-term corresponding to the approximation of 
So, becomes dominant at this point. For this reason, the minimum achievable error level 

is growing with decreasing e. Besides from this saturation effect, the plot aligns well with 

Remark 4.A.3, suggesting that the WKB approximation converges to the exact solution 

of IVP (4.5.6) as N — oo, for all displayed e-values. Furthermore, one can observe again 

the fact that yWK B — gofile for even N > 2, as indicated by the step-like behavior of all 

shown error curves. 

4.6 Conclusion 

In this chapter we analyzed the WKB approximation of the solution to a highly oscillatory 

initial value problem. Assuming that the potential in the equation is analytic, we found 

explicit upper bounds for the terms occurring in the asymptotic WKB series of the approx- 

imate solution. Building on that, we proved error estimates which are explicit not only 

w.r.t. the small parameter € but also w.r.t. IV, the chosen number of terms in the truncated 

asymptotic series. We showed that the optimal truncation order N.pt is proportional to 

e 1, and this results in an approximation error that is exponentially small w.r.t. e. We 

confirmed our theoretical results by several numerical experiments. 

113





Appendix 

4.A Convergent WKB series 

In this appendix we provide examples where the asymptotic series (4.2.2) is convergent in 

L°(T). In practice, the norms ||S, |», (and ||Sp | ze(r)) often decrease up to a certain 
number of n before they start to increase rapidly, e.g., see the right plot of Figure 4.5.1. 

However, there are examples where one can easily verify that this is not the case. For 

instance, consider the simplest case in which a = ao is constant. By (4.2.5) this is equivalent 

to 5] = 0, which by (4.2.6) then implies $/, = 0 for every n > 1. Similarly, one easily verifies 
that 5) = 0 is equivalent to a having the form a(z) = (Cı + Car) * for some constants 
Cı and Ca, see also [BO99, Problem 10.2]. It then holds S/, = 0 for every n > 2. Thus, 

in both of the just mentioned cases, the asymptotic series (4.2.2) terminates automatically 

and is therefore convergent. The corresponding WKB approximation (4.2.9) with N > 0 
(respectively N > 1) is then the exact solution to IVP (4.1.1). Indeed, revisiting (4.3.24), 
it is clear that the r.h.s. in (4.3.35) then vanishes, i.e. ||p — @& *B| Loy = 0. 

In the subsequent discussion, we will give examples of convergent WKB series which do 

not terminate automatically. 

Proposition 4.A.1. Let S3 =0. Then it holds 

ı _g.[_ 52" 
Son = 52 2 In; (4.A.1) 

Sn; (4.A.2) 

for n > 2. Here, the sequence a, is recursively defined by aı :=1 and 

n 

An+1 != > jan+ı-j , n>1. (4.A.3) 

jel 

Proof. It is easy to check, that (4.A.1) and (4.A.2) hold for n = 2. We proceed now by 
induction on n. To this end, assume that formulas (4.A.1) and (4.A.2) hold for all2<k<n 
for some fixed n > 2. We shall now prove them for n+1. The induction hypothesis implies 
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that S5, ; = 0 as well as 5; = 0 for all odd indices j such that 1 < j < 2n + 1. Hence, 

ı (vH 

Sonta = _2_5(/) Z nr; + Santı 
Jj=1 

= gr 3,5 2(n+1-5) 

-3,(- a) Damıı- 2 

ı\n 

= 5 (- 92 2) an+1 , (4.A.4) 
257 

where we have again used the induction hypothesis in the third equation. Differentiating 

(4.A.4) and using 2—9 = —25] we further obtain 
0 

S 

Moreover, the induction hypothesis implies +43; = 0 for 2 < 5 < 2n + 1 since either 

j or 2n 4+ 3 — j is odd. Therefore, we get 

ı (m 

Son+3 = _2_5(1) Z Sr + Sn+2 
j=1 

1 / 
25[ (251 Sanı2 + Sin+2) 

1 
) ( 2—5(’)) (2(77, +1)8155 + (n + 1)S§')an+1 es 
gt! n 

(- zer) | (n+ 1)S%an+1 

0, (4.A.6) 

by assumption on S3. This concludes the proof. O 

Remark 4.A.2. Proposition 4.A.1 assumes S5 = 0, which is equivalent to a(x) satisfying 

the third order nonlinear ODE 15a’ + 4a2a™ — 18aa’a” = 0. With the aid of MATLAB’s 
Symbolic Math Toolbox we find that the general solution to this ODE is given by a(x) = 

(Cı +Ca2+032?) 2, where C1,Ca and C3 are constants. A simple computation then shows 

that if |Ca| + |Ca| > 0 and C2 # ACıC5, the coefficient function a does not have one of 
the two forms mentioned before Proposition 4.A.1, i.e., S Z 0 and S§ # 0. Thus, due to 

Proposition 4.A.1, the corresponding WKB series does not terminate in this case. 

Remark 4.A.3. The numbers a„ =: c,_1 in Proposition 4.A.1 are the so-called Catalan 

numbers (e.g., see [GKP91]), which are known to grow asymptotically aS Cn TER? 
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forn — oo. Let us assume that a(z) = (C1 + Coz + C3x2)™2 such that S5 = 0, see 
Remark 4.A.2. We then have Sh(x)/Sh(z) = C1C3/2 — C2/8. According to (4.A.1), we 
thus have for n > 2 

        

        

  

, , 5 n—1 

SI < IISallzrn 257 Cn—1 
0 Il Loo(1) 

Salem || 285 ||" 
= | ar , N — 00 

(n - 13? Yr || 5, ren 

152 || oo (1 2 |" = Rn €105 — 22 (4.A.7) 

By definition (4.2.10), we conclude that 

[Sanllzory = O ((n=1)"¥2C1Cs - CJ/4" 1), m—oo.  (4A8) 

Thus, the constants C;, i = 1,2,3, determine whether the function ||Szn|| (1, is expo- 

nentially growing or decaying, as n — 00. Note that Proposition 4.A.1 also implies that 

Santı =0 forn>1. A short calculation then shows that (4.A.8) implies that the corre- 

sponding WKB series exp() oo " 1S, (x)) is (geometrically) convergent for any x € I, if 
e < ‘0103 — C§/4|_1/2. 
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