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Kurzfassung

Die Bedeutung der Erklärung von Modellen des maschinellen Lernens hat in letzter
Zeit aufgrund des Fortschritts des Deep Learning und der Anwendung dieser Modelle in
verschiedenen Bereichen stark zugenommen[ABV+20]. Da die meisten dieser Modelle in
einer black-box präsentiert werden, ist es wichtig, Vertrauen und Klarheit in ihr Verhalten
zu gewährleisten, um ihre ordnungsgemäße Verwendung zu ermöglichen [TH22]. In
diesem Zusammenhang ist LIME [RSG16] aufgrund seiner zufriedenstellenden Ergebnisse
in mehreren Studien und seiner modellagnostischen Eigenschaft [HSM+20] eines der
wichtigsten Werkzeuge im Bereich der XAI.
In Anbetracht dessen evaluiert diese Arbeit die Erklärbarkeit von LIME speziell für die
Aufgabe der Relationsextraktion und stellt fest, dass LIME diese Aufgabe nicht korrekt
behandelt, da er bei der Erstellung seiner Stichproben zufällig Wörter entfernt, was dazu
führt, dass Beziehungsentitäten, die eine Relationsextraktionsaufgabe charakterisieren,
entfernt werden. Daher wird in dieser Arbeit eine Lösung für dieses Problem vorgeschlagen,
indem die interne Funktionalität von LIME so modifiziert wird, dass die Entfernung von
Entitäten während des Sampling-Prozesses vermieden wird.
Qualitative und quantitative Metriken wurden verwendet, um die Erklärbarkeit von LIME
in zwei separaten Modellen zur Relationsextraktion zu bewerten: ein neuronales Black-
Box-Modell namens AGGCN [GZL19] und ein traditionelles maschinelles Lernmodell,
Naive Bayes. Der verwendete Datensatz ist SemEval-10 Aufgabe 8 [HKK+10].
Die Metriken umfassen: Faithfulness[DJR+20], einschließlich der Berechnung von Sufficien-
cy und Comprehensiveness, Stability[BCL23] mit Inherent und Parameter Stability, und
Global Inference (Bewertung von SP-LIME[RSG16]). Sie werden anhand des Vergleichs
zwischen den beiden Modellen bewertet.
Die Ergebnisse zeigten, dass die LIME-Rationale für die entsprechenden Vorhersagen
(faithful Rationale) in dieser experimentellen Konfiguration sehr einflussreich zu sein
scheint. Darüber hinaus zeigte LIME eine inhärente Stabilität (was die Ergebnisse der vor-
herigen Studie bestätigt[BCL23]) und wies für etwa 70% der getesteten Proben in beiden
Modellen eine Parameterstabilität auf. Darüber hinaus zeigt LIME unterdurchschnitt-
liche Ergebnisse bei der globalen Analyse mit SP-LIME, insbesondere beim Umgang
mit Mehrklassenproblemen und textuellen Daten. Außerdem, haben die übermäßigen
Laufzeiten von LIME für komplexe Modelle einen erheblichen Nachteil der Methode
offenbart.
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Abstract

The importance of explaining machine learning models has significantly grown recently
due to the advance of Deep Learning and the application of these models in several fields
[ABV+20]. Since most of these models are presented in a black-box matter, it is essential
to ensure trustfulness and clarity in their behavior to enable their proper use [TH22]. In
this context, LIME [RSG16] is one of the most important tools in the field of XAI due
to its satisfactory results in several studies and its model-agnostic trait [HSM+20].

In consideration of the aforementioned, this work evaluates LIME explainability specifi-
cally for the task of Relation Extraction and identifies that LIME does not handle this
task correctly since it randomly removes words when creating its samples, consequently
resulting in the removal of relation entities that characterize a Relation Extraction task.
Therefore, this work proposes a solution for the issue by modifying LIME’s internal
functionality to avoid the removal of the entities in the sampling process.

Qualitative and quantitative metrics were used to assess LIME explainability in two
separate models for relation extraction: a black-box neural model named AGGCN
[GZL19] and a traditional machine learning model, Naive Bayes. The dataset used is
SemEval-10 task 8 [HKK+10].

The metrics encompass: Faithfulness[DJR+20], including the computation of Sufficiency
and Comprehensiveness, Stability[BCL23] comprising Inherent and Parameter Stability,
and Global Inference (evaluation of SP-LIME[RSG16]). They are assessed by considering
the comparison between the two models .

The results showed that LIME rationales appear to be highly influential for the corre-
sponding predictions (faithful rationales) in this experimental configuration. Furthermore,
LIME presented inherent stability (confirming the previous study’s findings [BCL23])
and exhibited parameter stability for approximately 70% of the tested samples in both
models. Moreover, LIME demonstrates underwhelming results for global analysis using
SP-LIME, especially for dealing with multi-class problems and textual data. Additionally,
the excessive running times of LIME for complex models revealed a significant drawback
of the method.
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CHAPTER 1
Introduction

Artificial Intelligence (AI) and Deep Learning (DL) are powerful technologies that present
great potential to provide benefits to society. Their recent advances have increased the
number of tasks performed with high accuracy and success in complex problems such as
image classification, face recognition, sentiment analysis, text classification, and speech
understanding [Mat19]. Researchers have also started to explore how these approaches
could highly benefit different domains such as healthcare, the criminal justice system,
finance, and security [WA22]. Especially in healthcare, AI has shown to be relevant in
discovering new uses for existing drugs, revealing cancer in tissues, detecting cardiac
arrhythmia, and predicting hypoglycemic events in diabetics three hours before the
medical industry average[Mat19].

However, these models are usually applied in a black-box manner, meaning that the inter-
nal functionality that led to a prediction is either unknown or known but uninterpretable
by humans [GMR+18]. This is problematic due to lack of transparency, possible biases
inherited by the algorithms from human prejudice embedded in the training data, and
lack of trustworthiness [GMR+18]. Additionally, the European Union has recently been
discussing the regulation of AI in what is known as the "AI Act", which intends to classify
AI systems according to four levels of risk: from minimal to unacceptable[Mad21].

Therefore, to address trustfulness in AI, it is important to propose techniques to un-
derstand how the model behaves and assess if the decisions are made properly. This is
what the field of study "Explainability in AI" (XAI) focused on. In this sense, XAI is a
key part of applying ethics to AI because it tries to understand how machines perform
computational work, reducing the imprint of unconscious biases and increasing trust in
model decisions[Tur].

LIME [RSG16] (acronym for Local Interpretable Model-agnostic Explanations), presented
in 2016, is one of the most popular tools for explainability, as well as one of the first
techniques that emerged in the field [HSM+20]. One of the reasons why the method
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1. Introduction

succeeded is its capability to function without requiring any information about the
internals of the model to be explained, such as topology, learned parameters (weights,
biases), and activation values [HSM+20].

Natural Language Processing (NLP) is a branch of AI involved with processing and
analyzing human language [IBM]. It is placed at an intersection of computer science,
artificial intelligence, and computational linguistics [LK17]. In other words, NLP is
concerned with computers analyzing, understanding, and deriving meaning from human
language in a smart and useful way [LK17]. Typical tasks of NLP include, but are not
limited to: speech recognition, sentiment analysis, spam detection, machine translation,
and relation extraction [IBM].

The great advances in computerized language processing led to the emergence of the Large
Language Models (LLMs) [HQS+23], and their popularization in the form of user-friendly
tools like Chat-GPT. They compress considerably potency in their capability to under-
stand intricate linguistic patterns and provide coherent and contextually fitting responses
[HQS+23]. However, those powerful models carry an inherent lack of explainability and
transparency [HQS+23], meaning that the increase in the model complexity and the
nature of their training process led to a deprecation of model understanding. The amount
of parameters, in the degree of millions or billions, ensures the challenge of understanding
the decision-making process of one prediction [HQS+23].

Relation Extraction (RE) is an important task within the NLP field since it focuses on
extracting the semantic relationship between entities based on their related context, which
is essential in the fields of Information Extraction (IE) and knowledge base construction
[CZX+22]. RE plays an important role in domains like: automatic question-answering
systems, retrieval systems, ontology learning, and semantic web labeling tasks[ZCL17].

1.1 Problem Statement
Given the aforementioned context, this master’s thesis intends to address the following
problem: are the current methods for explainability in ML/AI reliable? Specifically,
the work focuses on evaluating the performance of LIME for the NLP task of Relation
Extraction. The objective is to appraise how well it is possible to trust the explanations
provided by LIME, focusing on this particular task. For this goal, the project is concen-
trated on Relation Extraction between a pair of nominals (entities), which consists of
classifying the kind of relation that two nominals have in a sentence.

LIME is a method that works by creating samples around the instance to be explained,
as perturbations of the original one [RSG16]. For textual data, this process occurs by
randomly removing some words of a document [RSG16]. This approach is particularly
dangerous when dealing with Relation Extraction problems since the relational entities
may be removed when creating the samples. The issue comes from the fact that these
created samples later obtain their prediction from the target model (the one which is
intended to be explained), and since the entities are not present, the model is not able
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1.1. Problem Statement

to predict the relation between them coherently. Moreover, some models even need to
receive the relation entities together with the sentence as input to output a prediction
[GZL19].

Thus, the thesis intends to address two Research questions:

• How to enable explanations of LIME in Relation Extraction tasks, in light of the
LIME inherent process of removing words during its sampling step and potentially
removing the relation entities?

• How well does LIME perform in Relation Extraction tasks regarding its explain-
ability evaluation on several metrics?

For the first, we propose a modification of one of LIME’s methods for text explanations
to make it viable to provide the explanations without losing the relation entities in the
process. For the second, LIME explanations will be analyzed individually for 2 different
models, an explainable machine learning model, and a black box neural model. These
explanations will be assessed using qualitative and quantitative metrics. Those metrics
are: Faithfulness (Sufficiency and Comprehensiveness) [DJR+20], Stability (Inherent and
Parameter)[BCL23], and Global Inference (evaluation of SP-LIME [RSG16]) and are
explained in details in section 3.2, section 3.3, and section 3.4, respectively.

The contributions of this present work include the thorough assessment of LIME explana-
tions regarding RE tasks, the comparison of LIME performance among different models
and metrics, and the proposal of LIME modifications to allow consistent explanations of
RE tasks.

The document follows the structure: chapter 2, named Background and related work,
discusses the main concepts of this study, among which are Explainability (encompassing
explainability in NLP, techniques for evaluating explainability, and LIME), Relation
Extraction and details about the dataset used in the experiments. The chapter 3,
Methodology, analyzes LIME for Relation Extraction, explains the proposed modifications
for the tool, presents in detail the metrics that will be used for assessment, and describes
the Experimental setup. The chapter 4 refers to Results and Discussion and, lastly,
chapter 5 closes with the conclusions and suggestions for future work.
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CHAPTER 2
Background and related work

2.1 Explainability
The advance of AI systems and the fact that researchers are indicating that those
can even outperform humans in some analytical tasks (such as pattern recognition in
imaging) is followed by the emerging importance of providing explanations for models’
decisions[ABV+20]. The legal and ethical uncertainties surrounding these complex models
make it difficult to advance this technology to its full potential [ABV+20], especially
in fields such as medical or financial where the consequences of the decisions can cause
considerable harm [YXHD23]. Therefore, there is a remarkable demand for research
advances to provide more clarity and transparency in the model decision.

The growing importance of Explainability in various research communities is outstanding
and ensured by workshops on: Explanation-aware Computing (ExaCt), Fairness, Account-
ability, and Transparency (FAT-ML), Workshop on Human Interpretability in Machine
Learning (WHI), Interpretable ML for Complex Systems, Workshop on Explainable AI,
Human-Centred Machine Learning, and Explainable Smart Systems [RR19].

Nevertheless, the work of Rosenfeld & Richardson (2019)[RR19] discusses that the term
Explanability seems to have no consensus regarding its precise definition, as well as
other related terms such as interpretability, transparency, explicitness, and faithfulness.
However, the machine learning community frequently refers to explainability as the
attempt to understand how machine learning algorithms make their decisions and how
interpretations can be derived either directly or secondarily from machine learning
components. Additionally, the authors discuss that papers seem to provide no difference
between interpretable or explainable systems, and their opposite is usually referred to as
"opacity" or "black-box". Transparency, on the other hand, is defined by the authors as
a trait from a model that requires no additional information to be understood, such as
Decision-trees for example.
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2. Background and related work

Furthermore, a distinction is often made between two methods of achieving interpretability:
interpreting existing models via post-hoc techniques (application of interpretation methods
after model training ) and designing inherently interpretable models [Mol22] [JG20]. This
present work focuses on post-hoc techniques.

2.1.1 Explainability in NLP
Rationales are an important concept when analyzing Explainability in NLP. They can be
defined as: given a model prediction of a document, it consists of the set of the most
important words that contributed to this prediction [DJR+20][ZA22]. Explanations in
NLP are usually carried out by identifying the rationales of a certain output [ZA22].

Some examples of techniques for Explainability in NLP are: Provenance-based, Surrogate
model, Example-driven, and Feature importance [DQA+20]. To illustrate, Example-
driven is a technique that explains an instance by identifying and presenting other
instances, from available labeled data, that are semantically similar to the target one. For
that, the work of [CRB19] proposes a method of selecting semantically similar examples by
using Layerwise Relevance Propagation[BBM+15], an approach that assigns a relevance
score for each feature.

Feature importance is a technique in which the explanation is given by providing the
importance scores of the input features. One example is the research of Wallace et al.
(2018) [WFBG18] that proposes a technique for feature importance in text classification
of neural models using Deep k-Nearest Neighbors (DKNN) [PM18].

Surrogate model is an approach where the predictions of a model are explained by another
model, usually more explainable, as a proxy [DQA+20]. Its use can be already seen in
1995, when the authors [CS95] proposed the use of Decision-trees as a surrogate model
for neural models to explain their decisions. The huge advantage of this technique is
that it can be used to explain any model (model-agnostic). Another benefit is that it can
accomplish both local and global explanations [SHSRF19]. This is the principle used by
LIME [RSG16].

Furthermore, the work of [ZA22] discusses the challenges of explainability in NLP. The
authors argue that the field requires improvement regarding the use of rationales as
explanations because words are a combination of syntax, semantics, and previous context.
Therefore, they cannot easily be dissected from the input to interdependently serve as
explanations [ZA22]. Nonetheless, explainable methods are intended as approximations,
and they are inserted in an evolving field that should tackle these challenges during its
progress.

2.1.2 Evaluating explainability
Several approaches currently exist to evaluate explainability techniques. One of those
is referred to as "Plausibility". It seeks to assess how useful the explanation is to
humans[JG20]. To accomplish this, a few metrics are employed to compare the rationales
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2.1. Explainability

selected by the explainability tool with those chosen by humans [SMGBN22]. Examples
are: BLEU [PRWZ02], MAXSIM[CN08], Intersection-over-Union (IOU)[DJR+20] and
Area Under the Precision-Recall Curve (AUPRC)[SMGBN22]. The research of [SCNB23]
proposes a framework to evaluate plausibility in language generation tasks. In addition,
another study [NGS21] evaluates plausibility in a sentence comparison task.

Faithfulness is another relevant measure for gauging the explanations. It can be defined
as an assessment of how accurately the explanation reflects the true reasoning process
of a model [JG20]. The metric is presented by Deyoung et al. (2020) [DJR+20] which
proposes the calculation of the metric by two evaluations: first, the degree to which
the selected rationales were enough for the prediction, referred as "Sufficiency" and,
secondly, the degree to which all the required features were selected as rationales, namely
"Comprehensiveness" [DJR+20]. More details on this metric can be found in section 3.2.

2.1.3 LIME
One of the most popular approaches proposed for AI explainability is LIME1 (Local In-
terpretable Model-agnostic Explanations)[HSM+20]. It is a method capable of explaining
any model, irrespective of its level of complexity or configuration (model-agnostic). In
addition, LIME operates locally, explaining the prediction of a single sample, rather than
addressing the entire model globally. The explanations are carried out by showing which
parts of the input (features) had the highest importance for the referred prediction; for
example, a model that predicts a person’s salary might show a high level of importance
in features such as age and educational level when explained. Similarly, for images, the
method identifies the most important patches, while for textual data, it highlights the
most relevant words[RSG16].

LIME is a surrogate-based explanation technique [HSM+20]. This means it intends to
explain the predictions of complex models (target models) by approximating a more
interpretable model, named surrogate, in the locality of the instance to be explained.
Ultimately, the decision is explained by interpreting the surrogate model prediction
instead of the complex model. Through this approach, LIME ensures its ability to explain
any complex model, as its intrinsic functionality is irrelevant.

The Figure 2.1 is a toy example that illustrates the LIME functionality [RSG16]. On the
left side, there is a complex non-linear model to predict Diabetes, and the instance to be
explained is selected. On the right side, we can observe that, in the vicinity around the
instance, a simple linear model would be enough to explain the decisions. Thus, LIME
explains the sample decision from the target model by approximating a surrogate model
locally.

In summary, an explanation by LIME works as follows: given the prediction of an instance
by a target model to be explained, LIME creates perturbations of the instance and weighs
them according to their distance to the original instance. Then, the created samples are

1Github repository: https://github.com/marcotcr/lime
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2. Background and related work

Figure 2.1: Toy example to illustrate the functionality of LIME via surrogate model. The
left side indicates a complex model, and an instance is selected for explanation. On the
right side, we can observe that in the vicinity of the sample, a linear model can be fitted
to explain the decisions (the surrogate model). Modified from [Ale22].

labeled by the target model, resulting in the neighborhood dataset. The surrogate model
is then created by being fitted in this dataset. Lastly, the prediction from the surrogate
model of the target instance is explained[RSG16].

Additionally, the explanation involves a Fidelity-Interpretability trade-off. This means
that the surrogate model should be simple enough to be understood by humans, implying
high Interpretability. In contrast, it should also strive to approximate to the predictions of
the target model locally, indicating high Fidelity. Therefore, the intention is to optimize
the fidelity of the surrogate to the target model while keeping the complexity of the
surrogate model low enough [RSG16].

Let g be the surrogate model, f be the target model, Ω(g) be the complexity of the
surrogate model, and fix be the neighborhood of perturbed samples around x, the instance
to be explained. Moreover, let L(f, g, fix) be a function that measures the infidelity of g
to f in the locality defined by fix, meaning the degree of how different the predictions
of g are in relation to f in the neighborhood fix. The explanation ›(x) is obtained
as a minimization problem, as indicated in ?? [RSG16]. In order to guarantee both
Interpretability and local Fidelity, L(f, g, fix) should be minimized while ensuring that
Ω(g) is low enough to allow interpretation by humans [RSG16].

›(x) = argmin
gœG

(L(f, g, fix) + Ω(g)) (2.1)

The measure of L(f, g, fix) is computed by a locally weighted square loss of the f and
g predictions in the locality fix. Let zÕ represent elements of the set Z, which is the
perturbed samples dataset, and z the recovered sample in its original representation;
they are weighted by the distance in relation to x, denoted by fix(z) . Furthermore, the
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2.1. Explainability

loss is computed as the sum of the weighted squared difference in the prediction of the
target model f(z) and the surrogate model g(zÕ), for each z, zÕ pair from Z, as defined in
Equation 2.2 [RSG16].

L(f, g, fix) =
ÿ

z,zÕœZ

fix(z)
!
f(z) ≠ g(zÕ)

"2 (2.2)

Given fix(z) as a function that defines the weights of a perturbed sample z in relation
to the original sample x and D as the distance function between them, the calculation
of fix(z) is depicted in Equation 2.3. It consists of an exponential kernel with D as the
distance function. For textual data, D is expressed as the cosine distance between x and
z with width defined by ‡. The fact that weights are considered and determined based
on the distance makes the method quite resilient to sampling noise [RSG16].

fix(z) = exp
A

≠D(x, z)2

‡2

B
(2.3)

Moreover, the complexity of g, denoted as Ω(g), is defined depending on the type of the
explainable model. For linear models, it may be the number of non-zero weights, and for
decision trees, it may be the depth of the tree [RSG16].

LIME for textual data

The LIME explanations for textual data occur as follows: given an instance (referred
to as the target sentence in this context) to be explained, it creates perturbed data
points by randomly removing some of its words, resulting in a total of 5000 new samples.
Further, each new perturbed sentence is weighted regarding the distance to the original
one, defined by fix, and calculated via Equation 2.3.

The new sentences are then fed into the black-box classifier and their predictions are
obtained, resulting in a weighted neighborhood dataset. Afterward, a linear model is
trained in this dataset and used to predict the target sentence. Finally, the LIME expla-
nation is the interpretation of the linear model prediction of the target sentence[Mol22].
The interpretation is carried out by analyzing the weights of the model’s features since
they correspond to the respective importance of the words to the prediction [Ern18].
These are illustrated in the Figure 2.2.

For a given sentence, LIME will return the prediction probability of each class, as well as
a list with the words that contributed the most for the prediction, the LIME rationales.
The Figure 2.3 shows an example of LIME explanation for RE task, which the sentence
is classified as "Product-Producer" relation (with probability of 1 and remaining classes
with probability of 0) and the rationales are: "composed", "a", "for", "famous" and "was".

Regarding the pros and cons of the method, the ability to explain any model is a significant
advantage and it can be found numerous successful applications of LIME in different
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2. Background and related work

Figure 2.2: LIME functionality for textual data. The diagram indicates a simplified
version of the steps LIME takes when generating an explanation. The steps show that
LIME actually explains the prediction of a surrogate model, instead of the model itself,
and this approximation is made locally.

Figure 2.3: Example of LIME explanation. The figure shows on the left side the prediction
probabilities for each class, in the middle, the weights of each rational for the prediction
of the class Product-Producer, and below the sentence with the highlighted words as the
rationales, with color saturation proportional to its weights.
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2.2. Relation Extraction

domains. However, using a surrogate model only indirectly solves the problem since the
explanation of the target model is highly dependable on the quality of the surrogate fit,
which requires dense sampling, resulting in excessive computational costs. Additionally,
sampling leads to instability where the same instance can be susceptible to different
explanations from different runs[HSM+20].

2.1.4 Related work on LIME for NLP
Within the literature review, one of the studies [TSB+21] suggests employing LIME to
assess a model intended to classify the misuse of opioids in textual clinical data. The work
obtains the explanations from LIME in all individual predictions to assess for differences
in features between race/ethnic groups. Additionally, it indicates that LIME can also be
used to detect bias in models.

Another research [THZ+22], focusing on detecting toxicity in social media text, used
LIME to detect the toxic spans, meaning the parts of the text that are toxic. First, the
documents are classified by a Long Short Term Memory (LSTM) model with GloVE as
toxic or not. Later, the selection of the toxic parts is carried out by the LIME explanation
of the model decision. The text selection is the LIME rationales since it encompasses the
set of the most important words for the prediction. The successful results demonstrate
an accuracy of 98% for LIME in detecting toxic spans.

Lastly, additional work [ZGW+19] proposes the calculation of semantic similarity between
medical text pairs, using Convolutional Neural Networks (CNN) and LIME to detect
which words were decisive for the prediction results, aiming to enhance the model
interpretability.

2.2 Relation Extraction
The amount of textual data generated due to the advent of Web 2.0 is growing ex-
ponentially [NJM21] [MF16]. This data comprises a variety of sources, such as social
networks, online blogs, magazines, news articles, research publications, and question-
answering forums [NJM21] [PPB17]. The possibility to analyze this huge amount of data
holds the potential to yield valuable insights for a variety of purposes, thereby elevating
its significance as a task of great importance[NJM21]. Especially for medical data, it
could generate numerous benefits by the processing of electronic health records (EHRs)
[WWRM+18]. The NLP domain dedicated to addressing this challenge is known as
Information Extraction (IE), which encompasses the transformation of unstructured or
semi-structured data into structured data [NJM21]. Name Entity Recognition (NER)
and Relation Extraction (RE) are disciplines part of this field.

Specifically, Relation Extraction pertains to the problem of extracting semantic relation-
ships between entities. For example, in a sentence that has as entities a person and an
organization, they may be linked through relations such as "employed at" [PPB17].To
illustrate, the phrase: “Fizzy [drinks] and meat cause heart disease and [diabetes]”, has
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annotated entities as e1 = “drinks” and e2 = “diabetes”, the goal of the task would
be to automatically detect the cause-effect relationship, indicated with the notation
Cause-Effect(e1,e2) [WCDML16].

RE carries huge importance for advanced NLP, since it is used in tasks such as Machine
Translation (MT), Question Answering (QA) systems, and Event Extraction [NJM21].
Other examples of its utilization are the detection of interactions between drugs to build
a medical database and the extraction of relationships among people to create an easily
searchable knowledge base[HRG23].

Regarding the related work in the field, the research of [LRW+18] deals with the task of
Relation Extraction in multiple relations among multiple entities in unstructured text.
It uses the SemEval 2017 dataset and proposes to solve the problem using a dynamic
Long Short-Term Memory (LSTM) network. To train the model, entity features, entity
position, and part of speech features were used. In another study, the reference [YL10]
employs a graph-based model to extract relationships from data sourced from Wikipedia.

2.2.1 Dataset
The Dataset comprising the Relation Extraction task chosen for this work is called
SemEval 2010 task 8. Semantic Evaluation (SemEval) Corpus is a yearly workshop
focused on semantic-oriented problems [NJM21] and its repositories possess several
datasets extensively employed for different Information Extraction tasks. A prominent
one is SemEval 2010 task 8, for Relation Extraction[NJM21].

The dataset was introduced by Hendrickx et al. (2010) [HKK+10]. It consists of a
Multi-class classification of semantic relations between pairs of nominals (noun, noun
phrase, or any word or group of words that functions as a noun [Nor19]), consisting of 9
relations plus class ’Other’ and 10,717 annotated examples. The average length of the
sentences is 19 words. The following list displays the classes and provides an example of
one sample from each:

• Cause-Effect (CE): "The <e1>burst</e1> has been caused by water hammer
<e2>pressure</e2>."

• Instrument-Agency (IA): "The <e1>author</e1> of a keygen uses a <e2>disassembler</e2>
to look at the raw assembly code."

• Product-Producer (PP): "The <e1>court</e1> decided the objection by mak-
ing the instalment <e2>order</e2> as sought."

• Content-Container (CC): "The <e1>lawsonite</e1> was contained in a <e2>platinum
crucible</e2> and the counter-weight was a plastic crucible with metal pieces."

• Entity-Origin (EO): "The technology is available to produce and transmit
<e1>electricity</e1> economically from OTEC <e2>systems</e2>."
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• Entity-Destination (ED): "<e1>People</e1> have been moving back into
<e2>downtown</e2>."

• Component-Whole (CW): "The system as described above has its greatest ap-
plication in an arrayed <e1>configuration</e1> of antenna <e2>elements</e2>."

• Member-Collection (MC): "The <e1>student</e1> <e2>association</e2> is
the voice of the undergraduate student population of the State University of New
York at Buffalo."

• Message-Topic (MT): "The Pulitzer Committee issues an official <e1>citation</e1>
explaining the <e2>reasons</e2> for the award."

• Other: "Unlike other fish, grunion come out of the water completely to lay their
eggs in the wet <e1>sand</e1> of the <e2>beach</e2>."

The distribution of the classes by their percentage and frequency of samples can be seen
in Table 2.1

Table 2.1: Classes distribution in the dataset SemEval 10 - task 8. For each class is
indicated the amount of samples (Frequency), and its Percentage.

Relation Frequency Percentage
Cause-Effect 1331 12.4%
Component-Whole 1253 11.7%
Entity-Destination 1137 10.6%
Entity-Origin 974 9.1%
Product-Producer 948 8.8%
Member-Collection 923 8.6%
Message-Topic 895 8.4%
Content-Container 732 6.8%
Instrument-Agency 660 6.2%
Other 1864 17.4%
Total 10717 100%

The dataset has been utilized by several researchers. For instance, the work of[GCH+20]
introduced a model named Tree-Structured LSTM with Attention, achieving state-of-the-
art results with an F1 score of 0.871; another study by Wang et al. (2016) [WCDML16],
presents a Convolutional Neural Network architecture with two levels of attention; lastly,
the model called Attention Guided Graph Convolutional Networks for Relation Extraction
(AGGCN)[GZL19] achieves F1 score of 0.8513 on this dataset. The latter is one of the
models chosen to be evaluated in this present work since it enabled clear and easy
reproducibility of its results with a good performance.
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CHAPTER 3
Methodology

This chapter will explain the LIME modifications carried out for Relation Extraction,
the metrics used in our experiments, the experimental setup, and the models used in the
evaluations.

3.1 LIME for Relation Extraction

As referred to in subsection 2.1.3, the process of using LIME for textual data includes
creating perturbations of the sentence to be explained, which is carried out by randomly
removing some of its words. The following step is to obtain the predictions of the newly
created samples from the target model.

The problem when dealing with Relation Extraction is that the relational entities may
be removed during this process, so the model predictions will not work coherently. Given
that the goal of the task is to predict the relation between the entities, if those are not
present, the task is inconsistent. It is especially damaging when the model requires as
input not only the sentence but the position of the relational entities or the entities
themselves, as in the case of our experiments for the AGGCN model (further details
about the preprocessing of the dataset in subsection 3.5.1).

The strategy to overcome this issue was the following: to guarantee that the predictions
work correctly, we added the constraint that the relation entities can not be removed
during LIME sampling process. With this limitation, we still ensure that the variations
among the created samples are different enough since only 2 words are blocked from
being removed. Hence, those variations consistently enable a good fit from the surrogate
model. To achieve it, we present modifications for the LIME method used for explaining
textual data: LimeTextExplainer().

15
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3.1.1 Modifications of LimeTextExplainer()

This present project proposes a solution to enable coherent functionality of LIME ex-
planations for Relation Extraction by modifying the method LimeTextExplainer()1.
In summary, we implemented a new input field in the function that provides explana-
tions for adding the relational entities. Thus, when the user requests an explanation
from a sentence, it can optionally add the relational entities in the new parameter
exception_words, as displayed below:

explainer = ExtendedLimeTextExplainer()
exp = explainer.explain_instance(sentence, classifier_fn,
exception_words=(entity1, entity2))

After receiving this information as input, the modified LimeTextExplainer method
(namely ExtendedLimeTextExplainer()) has internal constraints to avoid the re-
moval of the entities during the step of creating perturbed sentences.

The steps in details are:

1. Modification of the vector that defines the number of words to be omitted in each
perturbed sample: the vector is of size (1, n), where n is the number of perturbed
sentences and each of its elements indicates the number of words to be removed for
the respective sentence. Originally, each element of the vector is randomly chosen
in the range from 1 to the total length of the sentence. Now, the range is from 1 to
total length subtracted by 2 (thus, all words, except 2, can be omitted).

2. LIME creates a matrix of ones, where each column represents a word and each row
represents a sentence. Each row of this matrix is iterated, and some of the ones
are replaced by zeros, meaning that some words are removed for each sentence.
The number of words to be removed in each sentence is defined by the previously
described vector. In this step, we added the constraint that no value from the
columns referred to the entities can be replaced by zero.

3. By the end of the loop, the final matrix has several 0s in random positions, but
the columns referred to the relation entities only have 1s, meaning that they will
remain in the sentences.

3.2 Faithfulness
The first metric to be used for the evaluation of LIME explanations is called Faithfulness.
The metric is presented in the paper "ERASER: A Benchmark to Evaluate Rationalized
NLP Models" [DJR+20]. The authors start by discussing the growing importance of

1The details of the implementation can be found in the repository, together with results of some of the
experiments carried out in this work: https://github.com/thaisbeham/RE_Lime_evaluation
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3.2. Faithfulness

explainability, specifically in the NLP field, and that the research has been carried out
non-uniformly (different datasets, aims, and metrics). To overcome it, they propose a
benchmark where multiple datasets and models are evaluated with specific metrics and
human annotation. The work focuses on the evaluation of the rationales.

The benchmark is called ERASER: Evaluating Rationales And Simple English Reasoning.
To evaluate the rationales, it presents the metric Faithfulness, used to assess if the ra-
tionales of a model, in fact, informed its prediction. It is also measured if the model’s
rationales agree with the ones provided by humans. The assessment is carried out
for different datasets, models, and NLP tasks (Sentiment analysis, QA tasks, Natural
Language inference, etc), enabling comparison from different criteria [DJR+20].

Moreover, Faithful rationales are the set of words from a sentence that has a meaningful
influence on its prediction from a model. To ascertain the degree to which the rationales
are faithful, the authors introduce two metrics: Comprehensiveness and Sufficiency. The
details about them are:

• Comprehensiveness: the degree to which all the required features were selected as
rationales [DJR+20].

• Sufficiency: the degree to which the selected rationales are enough for the prediction.
[DJR+20].

The rationales analyzed in the experimental part of this present work are the ones
provided by LIME through its explanation process, as the method outputs a list of the
most important words that led to the prediction.

3.2.1 Comprehensiveness
Comprehensiveness is calculated by the difference between the prediction probabilities of
a sentence and its modified version without the rationales. The rationales and prediction
probabilities are obtained via the LIME explanation.

The details of the implementation are:

• Given a sentence prediction by a model, the prediction is explained using LIME.

• LIME returns the class, rationales, and prediction probability for that prediction.

• A modified sentence is created by removing the rationales.

• The prediction of the modified sentence is explained by LIME which returns class,
rationales, and prediction probability for that prediction.

• The difference between the prediction probabilities of the original and modified
sentence is calculated for the outputted class of the original sentence. This final
value is the Comprehensiveness score.
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The logic behind this approach is that a higher prediction probability for a certain
class indicates that a model has more confidence in its prediction. Comparably, a lower
prediction probability reflects reduced certainty in the model’s prediction for that class.

Given that m(xi)j indicates the prediction probability for sentence xi and class j and
m

1
xi
ri

2
j

indicates the prediction probability of class j from the sentence xi without
its rationals ri, the Comprehensiveness metric is calculated by the difference in those
predictions probabilities, as demonstrated in Equation 3.1.

Comprehensiveness = m(xi)j ≠ m

3
xi

ri

4
j

(3.1)

When calculating the difference between the prediction probabilities for the whole sentence
and that of the sentence without the rationals, a positive and high value is expected.
The intent is that this difference should be as big as possible, indicating that the model
is much more confident in predicting a sentence with the rationales compared with a
sentence without them.

Contrarily, a lower value of Comprehensiveness means that the rationales were less
influential for the prediction. Moreover, a negative value indicates more confidence
without the rationales [DJR+20]. Additionally, Comprehensiveness specifically focuses
on the degree to which all the needed features for the prediction were selected.

Furthermore, constraints are added when creating the modified sentences to ensure that
the relational entities are not removed.

Example of a LIME explanation of Sentence (1):

Ten million quake <survivors> moved into makeshift <houses>. (Sentence
1)

This sentence is extracted from the test set and the words marked in green are the
rationales defined by LIME, where the importance of the word is represented by their
level of saturation. The relational entities are "survivors" and "houses".

For this case, the modified sentence would be Sentence (2):

Ten <survivors> into <houses> (Sentence 2)

Sentence 2 removed the rationales but still kept the entities. Subsequently, the LIME
explanation of it is carried out, and its prediction probability for the class outputted in
Sentence 1 is used in the Equation 3.1.

3.2.2 Sufficiency
For Sufficiency, it complements the Comprehensiveness metric by proposing the opposite:
instead of removing the rationals, it keeps them and removes all the other words. The
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constraint that the relational entities must continue in the sentence, whether they are
rationales or not, is also maintained for this metric.

Given that m(xi)j stands for the prediction probability of sentence xi for class j, and
let m(ri)j be the prediction probability for class j of a sentence composed only with the
rationales ri, the Sufficiency is computed by the difference of the prediction probabilities
as indicated in Equation 3.2

Sufficiency = m(xi)j ≠ m(ri)j (3.2)

The Equation 3.2 shows that the difference between the prediction probability of the
original and the modified sentence is again calculated (for the class with the highest
prediction probability of the original sentence). Sufficiency is expected to be the lowest
possible (near zero or negative) since it indicates that only the rationales are already
sufficient to make the prediction. Negative values for Sufficiency can indicate that the
model is even more confident when having only the rationales.

Given the Sentence (1) from 3.2.1, the modified sentence with only the rationales (plus
entities) would be:

million quake <survivors> moved makeshift <houses> (Sentence 3)

3.2.3 AOPC
Considering that LIME requires the user to set the number of rationales returned
per explanation, we use an approach called AOPC where the metric (Sufficiency or
Comprehensiveness) is calculated repetitively for different numbers of rationales, and
the average of these results is taken as the final value of the metric for a given sentence.
This is the same methodology followed by [DJR+20], and its name means "Area Over
the Perturbation Curve” (AOPC), a method that derives from the ROAR, "RemOve
And Retrain" from Hooker et al.(2019) [HEKK19].

The choice of the number of rationales is made by percentages of the total number
of words in a sentence, referred to as bins. The authors [DJR+20] used the following
bins: 1%, 5%, 10%, 20%, and 50%. Given k as the bins, — + 1 as the total number of
bins, and i as the instance, the method applied for Comprehensiveness is defined by
Equation 3.3. The equation shows the summation of the Comprehensiveness values (for
different numbers of rationales) ranging from 0 until —; then the total is divided by — + 1,
closing the average calculation. The analogous version is computed for Sufficiency.

1
|—| + 1

Qa —ÿ
k=0

m(xi)j ≠ m

3
xi

rik

4
j

Rb (3.3)

Since our dataset presents a much smaller number of words compared to the paper (our
average length is 19 words), many bins would result in the same and smaller number
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of words. For example, 1% and 5% of 19 words would both mean only one word, when
rounding to the highest integer. Therefore, different bins were chosen to provide more
meaningful results. They were: 20%, 50%, 70%, and 90%.

Furthermore, the random version of the metrics (Sufficiency and Comprehensiveness)
is calculated as a way to compare the obtained results. Wherein the rationales are
substituted by a set of randomly chosen words when creating the modified sentences.
Likewise, the AOPC approach is applied in this configuration.

3.2.4 Faithfulness results for other tasks and related work

DeYoung et al. (2020) [DJR+20] provides an extensive list of Faithfulness metrics’ results
for different tasks and models, that can be found in Table 3.1. It demonstrated an
interesting comparison by providing values for Attention and Gradient weights, LIME,
and Random. The column Performance (Perf.) stands for macro F1 or accuracy.

Is notable that LIME performed well across all the tasks and got the best scores for
"BoolQ", "Movies", "FEVER", "MultiRC", "CoS-E" and "e-SNLI". Additionally, it can be
observed that the values for Comprehensiveness are included in the range ≠0.002 until
0.437 and Sufficiency, from ≠0.079 until 0.583.

Another work [EZMMA22] evaluates a different version of Faithfulness for Sentiment
Analysis Explanations. Faithfulness is evaluated, in this case, by the difference in accuracy
between the model prediction of whole sentences and the sentence with only the rationales
(or referred to in the paper as "explanation"). Moreover, the authors also introduce the
concept of plausability, which consists of measuring the agreement between explainable
methods and human judgment. Together with LIME, the tools SHAP and Anchors are
also evaluated. The results conclude that there is a "remarkable discrepancy" between
the results of the three methods and that LIME considerably outperforms the others.

The work of [KDI+21] evaluates explanations in terms of Sufficiency and Comprehen-
siveness for the task of hate speech detection in Bengali language. Instead of using
LIME to select the rationales, those are selected by permutation feature importance. The
explainability is measured in 5 different models and the results can be found in Table 3.2.

Additionally, the work of [BKG23] calculates, among other metrics, Faithfulness to evalu-
ate different explainable methods: SFFA [BKG23], L-Shapley and C-Shapley [CSWJ18]
and IntGrad[STY17] for different datasets and two models: attention bi-directional LSTM
(Attbilstm) and Convolutional Neural Network (CNN). The metrics are also calculated
using the AOPC methodology. The results are displayed in Table 3.3. It can be seen that
LIME outperformed some methods in some configurations and underperformed in others;
in general, there was no huge discrepancy among the results of the methods, however
SFFA had the best results in all experiments.

20



3.3. Stability

3.3 Stability
The second metric used for evaluating LIME explanations is called Stability, introduced
by Burger, C., Chen, L., & Le, T. (2023)[BCL23]. It consists of evaluating how stable
are the explanations of LIME based on the change of parameters considered of low
importance. It is divided into two separate evaluations: inherent Stability and parameter
Stability.

3.3.1 Inherent Stability
Inherent Stability comprises the observation of changes in the LIME output, specifically
in the ranked list of rationales, by varying the random seed and the sampling rate. The
default sampling rate in LIME is 5000, this means that for each sentence, in which the
prediction is to be explained, LIME creates 5000 modified sentences that are used in the
process of generating the explanation. There are no justifications for why the number
5000 is chosen but it seems to work well in practice [BCL23].

The metric consists of varying the rate from 500 to 10000, with 500 as the step. In
each round the LIME explanation will return a ranked list of rationales and it will be
compared with the list outputted by the explanation with the default sampling rate
(5000). The comparison is carried out by using RBO (Rank Biased Overlap) [WMZ10].
Further, the whole process is repeated for another random seed.

The authors [BCL23] did this analysis for only one sample per model, however, it was
observed that the choice of this sample could result in significantly different outcomes.
Therefore, it was chosen to calculate the metric for 10 samples for each model, using the
same 2 random seeds, and averaging the results of all samples for each sampling rate.

RBO

RBO is a statistical metric that measures the similarity between two ranked lists [WMZ10].
It calculates the expected average overlap between two ranked lists, considering progres-
sively deeper levels of comparison. The degree of depth to be considered is tuned by
the parameter p (persistence), varying from 0 to 1. The lower value of p gives more
importance to the top elements of the ranked list, and higher p would distribute the
emphasis more evenly across all ranks. Additionally, p equals zero means that only the
first element of the list will be considered[WMZ10].

Let S and T be two ranked lists being compared, p the persistence, and Ad the agreement
at depth d between the two lists; RBO calculation is defined by Equation 3.4 [WMZ10].

RBO(S, T, p) = (1 ≠ p)
Œÿ

d=1
p(d≠1) · Ad (3.4)

RBO is a metric that ranges from 0 to 1. When equal to 0, it means that the two
lists are totally disjoint, and when equal to 1, it means that they are identical[WMZ10].
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Therefore, when analyzing inherent Stability of LIME explanations, given two lists of
rationales to be compared, higher values of RBO would indicate that the lists are more
similar and, therefore, the LIME explanations are more stable.

We followed the methodology of [BCL23] for our experiments, where the parameter p
was set to 0.8. It means that higher importance is given to elements at the top of the
list, however, all the elements can have an impact on the calculation.

3.3.2 Parameter Stability
The second type of Stability metric is called parameter Stability. It consists of replacing
irrelevant words with their synonyms and testing the difference in the LIME output
(the meaning of irrelevant is explained below). It is expected that LIME would not
be significantly sensitive to irrelevant changes in the sentence. The implementation
consisted of the following steps: replacement of words, calculation of angular similarity
and comparison of rationales’ lists. Those are presented in the next subsections.

Replacement of words

The metric process starts by selecting a sentence to be analyzed and obtaining its
explanation by LIME, in order to define the rationales. Further, we define the words
capable of being replaced by their synonyms, referred to as unimportant words, as all
the words with exception of the rationales and the relational entities.

The paper that introduces the metric [BCL23] carried out the replacement of unimportant
words by using the embedding paragram-sl999. However, it did not present very good
results during our tests since words were frequently replaced by their translation in
different languages instead of their synonyms. Thus, it was decided to use the embedding
paragram-ws353 (using the library gensim[ŘS10]) in our experiments. An example of
replacement using these two embeddings in one of the sentences from the test set is
shown below:

Original: "Skype, a free software, allows a hookup of multiple computer users to join in
an online conference call without incurring any telephone costs.”

WS353: Skype, another free-of-charge software, enables another hook-up de diverse
computers customers towards joining across another on-line conferences calls unless incurs
everything phone costs.

SL999: Skype, une freie software, enables une hook-up du diverse computers customers
pour joining at either on-line conferences calls ohne incurs everything phone costs.

After defining the embedding for the replacement, some constraints were adopted, follow-
ing the methodology of [BCL23]. Those were:

• Ensure that a word can only be replaced by one of the same Part of the Speech
(POS). Additionally, it is allowed to change verbs with nouns (and vice-versa).
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• The number of words to be replaced per sentence is constraint by either (what
happens first):

– Angular Similarity (explained below) between the original and modified sen-
tence should remain above 0.5.

– Maximum number of modified words is 5.

Angular similarity

The angular similarity measures the degree to which two pieces of text carry the same
meaning [Kag20] and is calculated to ensure that the difference between the original
and modified sentence is not so prominent. Thus, both sentences should remain with
Angular Similarity above 0.5.The calculation follows the methodology presented in the
paper [BCL23].

First, the sentences are converted into an embedded form using the Universal Sentence
Encoder presented in the paper [CYyK+18]. Finally, the Angular similarity is computed
by the inner product of the embedded sentences’ vectors.

Comparing Rationales lists

After the previous steps, two sentences are obtained: the original and the perturbed one.
Subsequently, an analysis is conducted to determine whether it impacted the explanations
of LIME by examining if the perturbed sentence yields a significantly different output
compared to the original sentence.

For that, the list of LIME rationales of both sentences are compared using RBO (with
p = 0.8), as they consist of ranked lists. If the RBO calculation is below 0.5, it means
that the output of the modified sentence was considerably different. In this situation, it
means that the LIME explanation was not stable and it is referred to as a "successful
attack".

3.4 Global Inference
The third metric, Global Inference, is intended to evaluate if it is possible to have a
broad understanding of how the model works based on the local analysis of specially
picked instances. LIME provides a tool for this task, called SP-LIME, which stands for
"Sub-modular Pick-LIME" [RSG16]. Therefore, the Global Inference metric intends to
evaluate qualitatively the effectiveness of understanding the model predictions globally
using the SP-LIME tool, specifically for the Relation Extraction task.

The idea behind SP-LIME is to display to the user some explanations that are specially
selected to provide meaningful information instead of randomly looking at some of
them. The chosen explanations should cover important components, they should not
be redundant and the number of explanations should be low enough to allow quality
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Figure 3.1: Representation of SP-LIME for textual data, where each row represents a
document, and each column a feature (words). Given that feature 2 has the highest
importance by belonging in most explanations, the documents chosen are the second and
last, so all the features, except f1, would be covered in the explanations. Extracted from:
[RSG16].

analysis. Important components are those features that are present in a high number of
explanations.

Firstly, it works by assigning an importance score to the features in the dataset based on
the number of explanations they are included. For textual data, it means that words used
to explain several sentences have a higher importance score. The next step is to select
explanations that present different rationales. Finally, the result is a set of explanations
that comprise important words and those are not repeated [RSG16].

The Figure 3.1 extracted from [RSG16] illustrates this method for textual data. The
columns stand for the features (words), and the rows for the documents. Feature 2 is
considered the most important as it explains the highest number of documents (4 out
of 5). Therefore, at least one of the selected documents should contain this word. The
second and last documents are the ones selected since both contain information about all
the features (especially f2), besides f1.

3.5 Experimental setup
3.5.1 Pre-processing
One of the models used in the experiments, the AGGCN, requires as input not only
the sentence but other information such as dependency parsing and the locations of the
relational entities. To illustrate, the Figure 3.2 shows an example of a sample from the
test set.
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The paper that presented the model [GZL19] does not specify how the preprocessing was
carried out. Since LIME creates modified samples and those obtain their prediction from
the target model, they consist of strings and do not carry information about dependency
parsing, contrary to the dataset used to train the model. Therefore, it was necessary to
analyze how it was done and replicate it to apply on the created samples from LIME so
those can be inputted in the target model.

Figure 3.2: Example of an instance from the dataset SemEval 2010 - task 8 [HKK+10]
used in the AGGCN model. It can be noted that the model not only receives the sentence
as input but also information about dependency parsing and the position of the relational
entities.

Given the analysis of Figure 3.2, the field stanford_pos refers to POS (Part-of-
Speech), stanford_head stands for the tag head and stanford_deprel indicates
the dependency relations. The names suggested that the Stanford dependency parsing
was used. Therefore, the library stanza [QZZ+20] from Stanford NLP Group, was utilized
to calculate the dependency parsing "POS", "head" and "DepRel" for the samples created
by LIME.

Previously, the Standford NLP Group used the called "Stanford Dependency Parsing"
which only contemplated the English language. Later on, it adopted instead the Universal
Dependency (UD) Parsing, which enables its use for any language [DMM08]. The stanza
library comtemplates the Universal Depency parsing.

The observance of samples from the dataset revealed that the field "DepRel" was referred
to the Stanford dependency parsing, instead of UD. Since the differences are minimal,
it was decided to still continue with the stanza library. On the other hand, POS was
likewise obtained using the Stanford dependency parsing, which, in this case, is quite
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different from UD tags. In this situation, the stanza library allows additionally to use
POS from the Stanford dependency parsing nomenclature by setting the parameter to
"xpos" instead of "upos" when requesting the parsing[Gro20]. Their difference can be
seen in Table 3.4. Regarding the field "head", there is no significant difference among
both methods.

The "subj_start", "subj_end", "obj_start", "obj_end" fields refer to the position
of the relational entities respectively. In the dataset, there is no differentiation between
start and end since the entities always consist of only one word. The position count
starts at zero and punctuation is also taken into consideration.

3.6 Models
3.6.1 AGGCN
The Neural Model chosen for the evaluation is Attention Guided Graph Convolutional
Networks (AGGCNs)[GZL19]. The parameters chosen were the same as the ones provided
in their repository 2. The reason is that it reached almost the state-of-the-art performance
from the chosen dataset and provided enough information to allow the reproducibility of
the results correctly.

3.6.2 Naive Bayes
In comparison, a Machine Learning model that does not use neural networks was chosen.
Naive Bayes was the final choice since it is a very popular method and performed fast
and significantly well in our dataset. The algorithm comes from the Bayes theorem that
describes the conditional probability P(A|B). The naive part comes from the assumption
that the features have no correlation with each other and all contribute to the probability
of the class[Cam22]. It was implemented using the scikit-learn library [PVG+11] with
the function "GaussianNB" that enables classification.

3.7 Using LIME with AGGCN
The LIME function to provide explanations for textual data is called "explain_instance"
and can be observed below:

explain_instance(text_instance, classifier_fn, labels=(1,),
top_labels=None, num_features=10, num_samples=5000,
distance_metric=’cosine’, model_regressor=None)

It can be noticed that it requires from the user two inputs: a sentence ("text_instance")
and a function ("classifier_fn"). The latter should be one that must only receive as

2https://github.com/Cartus/AGGCN/tree/master
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3.7. Using LIME with AGGCN

input a sentence or list of sentences and outputs the prediction probabilities for all classes
of the inputted sentence using the target model (model that wants to be explained).

In detail, the function classifier_fn takes as input a list of strings (the sentences)
and outputs the prediction probabilities as a NumPy array with format (d, k), where d
stands for the number of strings and k, the number of classes. For scikit-learn classifiers,
it is simply the classifier.predict_proba function. For complex models like
AGGCN, it is necessary to create a separate function that follows these constraints.
The AGGCN model makes it especially challenging since it not only requires a sentence
as input but also several fields, such as tags, parsing, and position of the entities (as
shown in Figure 3.2). Therefore, it was necessary to make a workaround to enable LIME
functionality since it strictly only receives a sentence as input .

Thus, to make possible the use of LIME to explain AGGCN predictions, the function
classifier_fn was implemented comprising several steps inside it. Those steps were:

1. The function classifier_fn receives as input several sentences, as expected.

2. Each sentence is preprocessed and added all the required information (dependency
parsing, position of entities, tokens, etc) to fit the format of the original dataset, as
displayed in Figure 3.2.

3. The preprocessed samples are saved together in a newly created JSON file.

4. The model reads the JSON file and outputs the prediction probabilities in the
format of a (d, k) numpy array, where d is the number of sentences and k the
number of classes.

These steps can be visualized in the Figure 3.3 where the two first elements of the
diagram stand for the LIME process of creating the perturbed samples and are carried
out inside the LimeTextExplainer method. The next 3 steps are done inside the
classifier_fn function and should be constructed by the user. In our case the
approach used was to develop the preprocessing of each sentence and save them in a
JSON file, then provide this file as input to the AGGCN model and return the prediction
probabilities.
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3. Methodology

Figure 3.3: LIME explanations steps for AGGCN model. Thu diagram indicates the steps
done inside the created function "classifier_fn", which includes the preprocessing of
each sentence and storing them in a JSON file, providing this file as input to the model,
and returning the prediction probabilities in required format. The steps carried out by
LIME text explainer include: taking a sentence and creating variations of it.
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Table 3.1: Faithfulness metrics (Comprehensiveness and Sufficiency) for different tasks,
models, and datasets. Perf. stands for performance in macro F1 or accuracy - Modified
from [DJR+20]

Perf. Comp. ø Suff. ¿
Evidence Inference
GloVe + LSTM Attention 0.429 -0.002 -0.023
GloVe + LSTM Gradient 0.429 0.046 -0.138
GloVe + LSTM Lime 0.429 0.006 -0.128
GloVe + LSTM Random 0.429 -0.001 -0.026
BoolQ
GloVe + LSTM Attention 0.471 0.010 0.022
GloVe + LSTM Gradient 0.471 0.024 0.031
GloVe + LSTM Lime 0.471 0.028 -0.154
GloVe + LSTM Random 0.471 0.000 0.005
Movies
BERT+LSTM Attention 0.970 0.129 0.097
BERT+LSTM Gradient 0.970 0.142 0.112
BERT+LSTM Lime 0.970 0.187 0.093
BERT+LSTM Random 0.970 0.058 0.330

FEVER
BERT+LSTM Attention 0.870 0.037 0.122
BERT+LSTM Gradient 0.870 0.059 0.136
BERT+LSTM Lime 0.870 0.212 0.014
BERT+LSTM Random 0.870 0.034 0.122

MultiRC
BERT+LSTM Attention 0.655 0.036 0.052
BERT+LSTM Gradient 0.655 0.077 0.064
BERT+LSTM Lime 0.655 0.213 -0.079
BERT+LSTM Random 0.655 0.029 0.081

CoS-E
BERT+LSTM Attention 0.487 0.080 0.217
BERT+LSTM Gradient 0.487 0.124 0.226
BERT+LSTM Lime 0.487 0.223 0.143
BERT+LSTM Random 0.487 0.072 0.224

e-SNLI
BERT+LSTM Attention 0.960 0.105 0.583
BERT+LSTM Gradient 0.960 0.180 0.472
BERT+LSTM Lime 0.960 0.437 0.389
BERT+LSTM Random 0.960 0.081 0.487
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Table 3.2: Faithfulness Performance in Hate Speech detection for Bengali language task,
extracted from [KDI+21]

Classifier Comprehensiveness Sufficiency
GBT 0.79 0.25
Conv-LSTM 0.73 0.15
Bangla BERT 0.78 0.25
XML-RoBERTa 0.84 0.44
mBERT-uncased 0.81 0.35
mBERT-cased 0.76 0.28

Table 3.3: Comparison of Comprehensiveness and Sufficiency across 2 models and 3
datasets, evaluating the rationales extracted from several methods, including LIME.
Extracted from [BKG23]

Model Dataset SFFA L-Shapley C-Shapley IntGrad LIME

Attbilstm
IMDB Compr. ø 0.643 0.4136 0.127 0.423 0.459

Suff. ¿ 0.020 0.083 0.101 0.061 0.185

YELP Compr. ø 0.631 0.406 0.394 0.402 0.439
Suff. ¿ 0.110 0.266 0.268 0.150 0.234

AG news Compr. ø 0.721 0.295 0.259 0.483 0.291
Suff. ¿ 0.003 0.070 0.089 0.031 0.103

CNN
IMDB Compr. ø 0.476 0.438 0.418 0.408 0.375

Suff. ¿ -0.134 -0.125 -0.118 -0.115 0.014

YELP Compr. ø 0.513 0.468 0.466 0.472 0.207
Suff. ¿ -0.138 -0.133 -0.132 -0.141 0.011

AG news Compr. ø 0.684 0.212 0.167 0.351 0.275
Suff. ¿ -0.021 0.134 0.162 0.044 0.111

Table 3.4: Difference between xpos and upos for an example sentence (modified from
[Gro20])

Word upos xpos
Barack PROPN NNP
Obama PROPN NNP
was AUX VBD
born VERB VBN
in ADP IN
Hawaii PROPN NNP
. PUNCT .
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CHAPTER 4
Results & Discussion

This chapter will present the results of the metrics: Faithfulness, Stability, and Global
Inference. It will also depict the models’ performance and running times to compute the
metrics.

4.1 Models’ performance
Achieving high performance in the models was not the objective of this project. However,
it is worth mentioning to assess whether their variations impact LIME outputs. Table 4.1
shows the classification metrics Precision, Recall, F1-Score, and Support for each one of
the classes and their Macro Average measure. The same is displayed for AGGCN model
at Table 4.2.

Table 4.1: Naive Bayes Model Performance for the task Relation Extraction with the
SemEval 2010 - task 8 dataset[HKK+10]

Category Precision Recall F1-Score Support
Cause-Effect 0.705 0.838 0.766 328
Component-Whole 0.499 0.603 0.546 312
Content-Container 0.780 0.573 0.661 192
Entity-Destination 0.785 0.613 0.688 292
Entity-Origin 0.770 0.376 0.505 258
Instrument-Agency 0.78 0.090 0.161 156
Member-Collection 0.723 0.369 0.489 233
Message-Topic 0.769 0.318 0.450 261
Other 0.245 0.595 0.347 454
Product-Producer 0.582 0.277 0.375 231
Macro Avg 0.664 0.465 0.499
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Table 4.2: AGGCN Model[GZL19] Performance for the task Relation Extraction with
the SemEval 2010 - task 8 dataset [HKK+10]

Category Precision Recall F1-Score Support
Cause-Effect 0.918 0.918 0.918 328
Component-Whole 0.839 0.837 0.838 312
Content-Container 0.803 0.891 0.844 192
Entity-Destination 0.882 0.925 0.903 292
Entity-Origin 0.837 0.837 0.837 258
Instrument-Agency 0.768 0.744 0.756 156
Member-Collection 0.820 0.901 0.859 233
Message-Topic 0.819 0.935 0.873 261
Product-Producer 0.802 0.858 0.829 231
Macro avg 0.832 0.872 0.851

4.2 Faithfulness
This section comprises the results of the Faithfulness metric. Since the running times
for the LIME explanations were extremely high, with an approximate duration of 30
minutes for the explanation of one sentence for the AGGCN model, it was decided to
reduce the parameter sampling rate of LIME from 5000 (default) to 2000 to speed up
the computation. It means that, for each sentence, LIME will create 2000 perturbed
sentences instead of previously 5000. Nevertheless, the running time still lasted almost
4 days in this configuration, as can be seen in the section 4.5. Additionally, the metric
"Inherent Stability" also confirmed that the sampling rate reduction does not significantly
affect the outputs (presented in subsection 4.3.1).

It can be observed in Table 4.3 the results of the Faithfulness metric, divided into
Comprehensiveness and Sufficiency. Each value represents the average result computed
for 100 samples. The F1 score was calculated using the whole test set. Additionally, the
AOPC method is applied for each sample for both normal and random configurations.
The latter consists of the metric being calculated several times for each sentence, with a
different number of rationales per round, and then the result is averaged. The number of
rationales is defined by percentages of the total words, called bins. The bins chosen were
20%, 50%, 70%, and 90%. More details about AOPC in subsection 3.2.3.

Comprehensiveness a metric that higher results represent better performance, as it is
calculated by the difference between the prediction probabilities of the whole sentence
and the sentence without the rationals (refer to subsection 3.2.1). Consequently, the
expectation is for this difference to be maximized, meaning that the model exhibits
reduced confidence without the inclusion of rationales.

The Comprehensiveness results for both models (AGGCN and Naive Bayes) are positive
and greater than random calculations, indicating a favorable performance. Moreover,
when analyzing the outcomes provided in the ERASER paper [DJR+20], in Table 3.1,
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Table 4.3: Faithfulness results (Comprehensiveness and Sufficiency) and F1 score for
AGGCN and Naive Bayes models, using LIME sampling rate of 2000. Random models
stand for random selection of rationales.

Model F1 Comprehensiveness ø Sufficiency ¿
AGGCN 0.85 0.3669 0.0471
AGGCN random 0.2222 0.1478
Naive Bayes 0.50 0.3772 0.0633
Naive Bayes random 0.2572 0.1875

for different tasks, the average performance of LIME is 0.186 for this metric, which shows
that our outputs are higher than this. Thus, it seems to indicate that the degree to which
all the required features were selected as rationales is high.

For Sufficiency, it is observed that values are near zero for both models, with AGGCN’s
outcome being slightly below the one from Naive Bayes and both of them being under
the random results. Since Sufficiency is a metric calculated by the difference between the
prediction probabilities of the whole sentence and the sentence with only the rationales,
values near zero indicate that the model could achieve similar confidence with only the
rationales. This fact is crucial as it highlights LIME’s ability to choose rationales that
are sufficient for making the prediction.

The analysis of Comprehensiveness and Sufficiency outputs points to a high degree of
all the required features being selected as rationales and those being enough for the
prediction. The findings suggest that the rationales are faithful, thus indicating that the
degree to which those words contributed to the prediction is high. This demonstrates that
LIME can indeed provide good explanations by generating faithful rationales, confirming
the findings of [DJR+20] and [MSY+21].

It is worth stating that the metric does not provide exact thresholds to define what would
precisely represent faithful rationales since the results vary a lot regarding the model and
dataset used. Nonetheless, as previously mentioned, the outcomes indicate a positive
overall performance. Additionally, the idea proposed by [DJR+20] which introduced the
metrics, is that researchers should submit their results to a common leaderboard1 to
allow a broader comparison of values. Currently, no values for this exact task or dataset
are there.

4.3 Stability

This section will exhibit the results for inherent and parameter Stability metrics.

1The leaderboard can be accessed at https://www.eraserbenchmark.com.
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Figure 4.1: Inherent Stability results for AGGCN model: each data point corresponds
to the RBO score, comparing the ranked rationales list generated by LIME at various
sampling rates indicated on the x-axis against the baseline with a sampling rate of 5000
(default). The process is repeated for another random seed. The data points presented
the average computed over 10 samples. The parameter p in RBO is set to 0.8.

4.3.1 Inherent Stability

The graphs in Figure 4.1 and Figure 4.2 present the results of the inherent Stability
computation for evaluating the impact in LIME explanations when varying the sampling
rate in 20 different rates ranging from 500 to 10000 (with 500 as the step) in 2 different
seeds (defined as 1 and 28989) for 10 sentences from the test set. Each data point in
the visualizations refers to the averaged calculation of RBO of the 10 sentences for the
respective seed and sampling rate. The parameter p from RBO is set to 0.8.

RBO is a metric used for calculations of similarity between ranked lists. The lists
compared are: the rationales derived from an explanation using a given sampling rate
against the rationales obtained using the default sampling rate.

The Table 4.4 summarizes the data presented in the visualizations by showcasing the mean
and median of their data points. The values are expressed in terms of RBO calculations,
ranging from 0 to 1. A value of 1 signifies that the rationales of the compared sentences
are identical, while a value of 0 indicates that they are entirely different. The obtained
values of 0.70 to 0.74 suggest that the LIME explanations were not significantly affected by
the change in the sampling rate and random seed. The referred work [BCL23], presented
mean and median results above 0.80% in 3 out of 4 experiments, confirming our findings.

Furthermore, the graph Figure 4.1 revealed that, for the AGGCN model, the LIME
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Figure 4.2: Inherent Stability results for Naive Bayes model: each data point corresponds
to the RBO score, comparing the ranked rationales list generated by LIME at various
sampling rates indicated on the x-axis against the baseline with a sampling rate of 5000
(default). The process is repeated for another random seed. The data points presented
the average computed over 10 samples. The parameter p in RBO is set to 0.8.

Table 4.4: Inherent Stability metric calculated in terms of similarity among different
sampling rates and seeds. Similarity is calculated with RBO. The mean and Median were
computed by averaging across 10 samples.

Model Mean RBO Median RBO
AGGCN 0.70 0.71
Naive Bayes 0.73 0.74

explanations that used sampling rates ranging from 2000 to 8000 presented minimal
differences among each other. This consideration is important for efficiency, especially
given the highly time-consuming nature of explanations. Scaling down from 5000 to 2000
already yields significant benefits in reducing computational demands. Consequently, we
selected 2000 as the sampling rate for the Faithfulness experiments in section 4.2.

The results for Naive Bayes, exhibited in Figure 4.2, indicate that the reduction or
increase of the sampling rate did not significantly impact the LIME explanations output
(with some exceptions for the rates 500 and 1000). Therefore, it seems that complex
models can suffer more from the choice of the correct sampling rate than simpler models
and that the sampling rate of 2000 appears to be a good choice to deliver an output
similar to the sampling rate of 5000.
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Examining the effect of changing the random seed in our experiments depicts that it does
not seem to have a significant impact on the explanations in both models. Nonetheless,
this impact was even less significant in the Naive Bayes.

4.3.2 Parameter Stability

The parameter Stability metric is calculated in terms of the rate of "attacks" effectiveness.
It compares the LIME explanations of the original sentence and the perturbed one (with
replacement of some of its words by their synonyms). If their explanations are significantly
different (in terms of the list of rationales), an attack was successful, as explained in
depth in subsection 3.3.2. The results are displayed as the percentage of sentences that
suffered an effective attack. Consequently, lower values indicate that LIME explanations
were more stable regarding parameter Stability.

The Table 4.5 illustrates the results, where 100 sentences from the test set were evaluated.
It can be noticed that approximately 30% of both models’ explanations of modified
sentences were susceptible to significantly different outputs when compared to the
original ones. The outcome partly agrees with the study [BCL23], where the metric is
introduced, since they obtained rates of 37.06%, 55.56% for IMDB dataset and 6.25%,
3.37% for HateSpeech dataset, for FNN and BERT models each, respectively. Due to the
results varying significantly when compared with the previous work, it can imply that
the stability of the explanations is highly dependent on the chosen dataset and model.

The average of RBO calculations is also presented in Table 4.5. They are quite similar
between both models and differ by only 0.01. The authors [BCL23] obtained 0.417,
0.436 for IMDB and 0.328, 0.442 for HateSpeech, for FNN and BERT, respectively,
indicating that our RBO calculations reveal a better performance on average compared
to their values, depicting that we obtained more stable explanations regarding parameter
Stability.

Table 4.5: Parameter Stability results expressed in terms of Attack Success Rate. A
success attack is considered when the perturbed sentence provides a significantly different
output from LIME compared with the original one.

Model Attack Success Rate ¿ RBO ø
AGGCN 32% 0.5715
Naive Bayes 27% 0.5761

It can also be observed that Naive Bayes performed slightly better than AGGCN, with
27% against 32%. It confirms that models with less complexity are more robust and less
susceptible to an attack.
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4.4 Global Inference

Global Inference is a metric that intends to evaluate the performance of LIME in providing
a global understanding of the model. It assesses the outcomes provided by the SP-LIME,
a tool inside LIME intended for global explanations, by choosing a set of representative
samples using submodular pick optimization [RSG16].

The function SP-LIME was run for the first 2000 samples of the test set and with the
model Naive Bayes since this tool showed to be highly expensive computationally, thus
the simpler model would provide faster running times. Nonetheless, it needed 10 minutes
to finalize, ten times more than the calculations of the other metrics for this model. It
led to the conclusion that the computation would be impractical for the AGGCN model.

The number of explanations outputted is a parameter set by the user with the default
value of 5. It was chosen 10 explanations since the dataset consists of 10 different
classes and was expected more or less an even distribution among them. The number
of rationales per explanation was set to 5 since it showed as a good value in previous
experiments and it agrees with the documents’ average length.

The result was that SP-LIME returned the explanation of 10 samples, intended to
be a represented set of the whole 2000 samples. However, the class distribution was
significantly unbalanced, given that 7 out of 10 explanations were from the class "Other",
2 from class "Cause-Effect" and 1 from "Container-Content". The outputs of the latter
classes and one from "Other" can be observed in Figure 4.3, Figure 4.4, Figure 4.5 and
Figure 4.6.

The first conclusion inferred from the results was that, specifically for multi-class problems,
it is challenging to gain a complete understanding of the model when 70% of the samples
chosen by SP-LIME belong to the same class. In our case, it was especially negative
since the class "Other" does not intend to be meaningful and simply refers to enclosing
all the relations that do not fit in the specified classes.

Regarding the positive sides of the metric, both explanations for "Cause-Effect" class
(Figure 4.4 and Figure 4.5), showed the highest importance for the words "cause" and
"caused", respectively, which provides a good understanding of how the model is inter-
preting this class and indicates "plausibility" (term explained in subsection 3.2.4) of the
explanation since these rationales would probably agree with an explanation provided
by a human. For Figure 4.4, the results are even more interesting since both relational
entities are also selected as rationales ("fat" and "disease").

The results plausibility is likewise presented in Figure 4.6, where the word of highest
importance is "bottle", which indicates a container, suggesting that the model can detect
these features and relate them with the class "Content-Container". Additionally, this
word is one of the relational entities. The word "in", at third place of importance, also
demonstrates interesting results since it is usually used to express the relation between a
"Content" and a "Container".
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Figure 4.3: LIME-SP output for class Other. The original sentence is: "A year later,
Arlonzia married Bizzell Pettway and moved into one of the new <e1>houses</e1> built
by the <e2>government</e2>.", the entities are "houses" and "government" and it was
incorrectly predicted, since the original class is "Product-Producer".

One of the goals of the method is that the explanations should not be redundant.
Thus, they should have different rationales. However, the class "Cause-Effect" had two
explanations where the most important word was a variation of the verb "cause" in
each, resulting in a certain redundancy. It is noticeable that if lemmatization had been
performed on the rationales before giving their importance scores, it would have prevented
the selection of explanations containing both the words "cause" and "caused", potentially
delivering more interesting results.

Lastly, the result of class "Other" (Figure 4.3), specifically for our problem, can not
be used for interpretation since the class itself does not present a significant meaning.
Nevertheless, it could be noticed that the explanation chosen was actually from a sample
that got a wrong prediction (the original class is "Product-Producer"). Understanding
whether the model’s decisions were correct or incorrect can provide valuable information
for assessing the model’s weaknesses. Furthermore, the method SP-LIME does not display
the sentence referring to the explanation to the user, only the explanation itself. Hence,
to be able to identify from which sample that explanation belongs, one has to manually
look for the sample that matches the words in the explanation.

In light of all the above stated, some suggestions for improvements are presented:

• In multi-class problems, ensure a more balanced distribution of the classes when
selecting the explanations to avoid most of them being from only one class.
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Figure 4.4: SP-LIME output for class Cause-Effect. The original sentence is: "The
<e1>fat</e1> and cholesterol cause heart <e2>disease</e2>; the animal protein causes
cancer.", where "fat" and "disease" are the relational entities

• Indicate if the outputted class is the correct one or not.

• Apply lemmatization before giving importance scores to the rationales since it
would avoid redundant explanations, as in the case of our results that presented
the words "causes," "cause," and "caused".

• Indicate the sentence associated with the given explanation.

4.5 Running time
LIME is shown as a highly expensive computational method. Since it operates through
a surrogate model, maintaining a high sampling rate is crucial to replicate the target
model locally effectively. However, this elevated sampling rate leads to excessively long
running times for complex models. The Table 4.6 depicts the running times for all the
metrics separated by model.

The time for Faithfulness refers to one metric (among Comprehensiveness, Sufficiency, and
the random version of them) since their running times were quite similar and each of them
was calculated in the same configuration of 100 samples and 2000 as the sampling rate.
Ultimately, the consumed time in total was 4 times the computation of approximately 80
hours, resulting in about 320 hours. Inherent Stability was calculated with 10 samples
for each model and Global Inference with 2000 samples.
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Figure 4.5: Second SP-LIME output for class Cause-Effect, the original sentence is:
"The <e1>visit</e1> caused a <e2>sensation</e2> on the Whangaparaoa Peninsula
with people reporting the orca and rushing out to photograph and film them, from a safe
distance.", the relational entities are: "visit" and "sensation".

Table 4.6: Running times per metric and per model. The Faithfulness metric indicates
the average time of each of the metrics (Comprehensiveness, Sufficiency and Random
version of both

Metric AGGCN NB
Faithfulness 79.5 h 1 min
Inherent Stability 60.8 h 1 min
Parameter Stability 20 h 1 min
Global Inference - 10 min
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Figure 4.6: SP-LIME output for class Content-Container. The original sentence is:
"The <e1>drug</e1> was in a <e2>bottle</e2> that was not prescribed to her", the
relational entities are "drug" and "bottle".
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CHAPTER 5
Conclusion

This work proposed to create modifications for the LIME library to enable the correct
functionality for Relation Extraction tasks which was successfully achieved. The im-
plementation was tested with two different models and for calculating the metrics of
Faithfulness and Stability. The results and details of the implementation are available in
the repository: https://github.com/thaisbeham/RE_Lime_evaluation.

Regarding the metric Faithfulness, the results for Sufficiency exhibited values near
zero, which suggests that the sentences with only the rationales could almost reproduce
the same performance as the prediction in the original sentences, revealing that the
rationales were indeed representative of the important information in the document and
practically sufficient to provide same results. These findings suggest that LIME was able
to select faithful rationales in our experiments, confirming the conclusion of [RSG16]
and [MSY+21]. Furthermore, the metric Comprehensiveness showed favorable results,
surpassing random calculations and indicating that the model performance got more
confident (higher prediction probability) in sentences with rationales compared with
sentences without them. Nonetheless, Faithfulness consists of a metric highly dependent
on the model and dataset, culminating in a non-straightforward comparison with values
from other works.

Moreover, our findings on the Stability metric reveal that LIME explanations possess
inherent Stability. This conclusion was delivered by additional comparison with results
from the study of Burger, C. et al. (2023)[BCL23]. Concerning parameter Stability,
our determinations demonstrate that the majority of LIME explanations were stable
regarding changes in unimportant features for our experiment setup. Nevertheless, the
comparison with the previously mentioned work [BCL23] showed divergent outcomes,
which can indicate that this stability presents a correlation with the type of task, model,
and dataset used, thus diminishing the reliability of the method.
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5. Conclusion

Subsequently, the Global Inference showed that explaining a model’s predictions globally
using a local method is challenging, especially when dealing with textual data and
multi-class problems. Some suggestions to make the output of SP-LIME more meaningful
are: ensuring a more or less even distribution of the explanations for all the classes,
considering lemmatization before defining the most important words, indicating the
sentence referred to in the explanation and if the explanation was for a sample correctly
predicted or not.

In conclusion, LIME, when evaluating RE tasks, is a method that needed a correction
in its functionality to return the explanations properly. After the modifications, the
method depicted several positive performances, such as: indication that LIME rationales
are faithful and its explanation are stable (observed for our experimental conditions).
On the other hand, high computational costs and the deficits of SP-LIME to effectively
understand the model globally are factors that need to be balanced out when choosing
LIME for explanations.

Lastly, the main contribution of this work includes: the proposal of modifications
for coherent functionality of LIME explanations in Relation Extraction problems and
evaluation of Faithfulness of LIME rationales, stability of its explanations, and global
explanation via SP-LIME. Suggestions for future works are: repetition of the experimental
setup for a different dataset and the implementation of the proposed improvements for
the tool SP-LIME.
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