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Abstract Very Long Baseline Interferometry (VLBI) isone of the geodetic techniques used to establish theInternational Terrestrial Reference Frame (ITRF). Itrelies on data collected from multiple antennas situ-ated at various locations across the Earth’s surface.However, the accuracy of VLBI measurements can becompromised by Earth’s crust deformation caused by arange of geophysical factors, including plate tectonics,solid Earth tide-induced loading, atmospheric pres-sure variations, and redistribution of water masses,both over land and in the oceans. Among thesefactors, non-tidal loading (NTL) deformations can alsolead to positional shifts in VLBI sites, thus affectingmeasurement accuracy. To address these NTL effectsin VLBI analysis, geophysical models are employedto correct the displacement of VLBI stations. Theobjective of this study is to compare the NTL productsobtained from different loading services, such as theVieAPL, ESMGFZ, IMLS, and EOST. The evaluation ofhow these NTL products impact VLBI analysis is carriedout using the VieVS software. This assessment entailsthe computation of baseline length repeatability andstation height standard deviation, both before andafter applying the loading corrections.
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1 Introduction

The establishment and maintenance of the ITRF andInternational Terrestrial Reference System (ITRS)represent essential endeavours in modern geodesy.These efforts are pivotal because they provide thefoundation for measuring and interpreting geophysicalphenomena and their impact on Earth’s shape andorientation. Geophysical factors, such as post-glacialrebound, seismic events, and variations in Earth’srotation, induce deformations in the Earth’s surface.Consequently, accurate correction models are re-quired to maintain the stability and accuracy of thereference frame, as they can introduce significantdiscrepancies in geodetic measurements (Altamimiet al., 2016). Calculating the displacements due tovarious geophysical effects allows us to reduce themfrom the station coordinates, obtaining the long-termlinear station motion. Unlike other geophysical mod-els, NTL models are not accurate enough. Therefore,it is advised not to adjust station positions for theseeffects, as per the International Earth Rotation andReference Systems Service (IERS) Convention 2010. Inrecent years, numerous studies have been conductedon specific space geodetic techniques aimed at re-ducing non-tidal loading effects (Schuh et al., 2004;Petrov and Boy , 2004; Eriksson and MacMillan , 2014;Roggenbuck et al., 2015; Glomsda et al., 2020).Non-tidal loading effects displace geodetic stations bya few centimetres on an annual to sub-daily basis (Wi-jaya et al., 2013). Also, the Global Geodetic ObservingSystem (GGOS) was established with the ambitiousobjective of achieving 1mm accuracy in determiningEarth’s geometric parameters, as outlined in its strate-gic plan. Pursuing such unprecedented accuracy hasrevitalized the focus on correcting NTL effects, given
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their substantial impact on geodetic measurementsand the realization of GGOS’s objectives.

2 NTL components and loading services

In this section, we will elucidate the NTL componentsemployed in our investigation, the sources from whichthis data is extracted and the process of standardizingdata from various services to ensure uniform format-ting for comparison. In geodesy, NTL data refers tothe utilization of diverse geophysical models aimedat correcting the theoretical signal delay encounteredduring VLBI observations. These models encompassnon-tidal atmospheric loading (NTAL), non-tidaloceanic loading (NTOL), and hydrological loading(HYDL), which can be employed either independentlyor in combination to address the cumulative loadingeffects. NTAL is specifically designed to consider theimpact of atmospheric pressure fluctuations on theEarth’s surface, arising from dynamic changes inatmospheric pressure driven by meteorological eventsand factors unrelated to tidal forces. HYDL, on theother hand, addresses the deformation of the Earth’scrust resulting from shifts in continental water storage.Lastly, NTOL is concerned with the deformation ofthe Earth’s crust caused by the redistribution of masswithin the oceans.
The displacement data resulting from these threeloading factors is obtained from four distinct sources,which are as follows:1. VieAPL (Vienna Atmospheric Pressure Loading)(https://vmf.geo.tuwien.ac.at/products.html)2. ESMGFZ (Earth-System-Modelling group atGFZ)(http://rz-vm115.gfz-potsdam.de:8080/repository)3. IMLS (International Mass Loading Ser-vice)(http://massloading.net/)4. EOST (École & observatoire des sciences de laTerre)(http://loading.u-strasbg.fr/index.php)
VieAPL, IMLS, and EOST provide users with bothpre-calculated global Grid-based mass loading timeseries and pre-calculated time series customized forparticular space geodesy stations. Furthermore, IMLSenhances its offerings by delivering an on-demandInternet service, granting users the capability torequest data for specific stations and specify their

desired time intervals. In parallel, ESMGFZ deliverspre-computed global Grid-based mass loading timeseries and also allows users the option to retrievedata for particular stations while tailoring the timeranges according to their requirements. Within eachloading category, numerous models are available forgenerating the associated loading products. In ourstudy, the choice of models for different loading cate-gories and services depends on factors such as dataavailability, time steps, update frequency, and spatialresolution level. Table 1 presents the characteristicsof the chosen models. VieAPL and ESMGFZ data isupdated daily, while IMLS data is updated monthly.EOST data undergoes updates every few months.
After selecting models for each loading categoryand service, we acquired center-of-mass frame NTLdata for the year 2020 for this study. We identifieda total of 163 VLBI stations, which remained consis-tent across all services and were categorized as ITRFsites. Following the data extraction process, the nextpivotal step involves data formatting. It’s important tonote that data obtained from different services comein various formats. To facilitate meaningful compar-isons within VieVS, we formatted the data obtainedfrom the models selected from EOST, IMLS, and ES-MGFZ into the VieAPL format of the loading correc-tions.

3 Data comparison

To compare the NTL products from four different ser-vices, we initiate the process by generating a time se-ries graph illustrating NTAL displacement. This initialstep is crucial because VieAPL exclusively offers NTALdata. It’s worth highlighting that the NTAL products de-rived from all four services display a substantial levelof concurrence among them (see Figure 1). This align-ment can be ascribed to the fact that all services utilizethe ECMWF model for extracting loading data.In addition to the NTAL displacement graph, wegenerate another time series graph to evaluate thecumulative sum of all NTL components. It is evidentthat most services demonstrate a high degree ofagreement among themselves in the cumulative NTLtrend (see Figure 2). However, it’s worth highlightingthat there is a significant deviation observed, particu-
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Table 1 Attributes of the selected non-tidal loading models corresponding to different loading components of various services.
Service Loading Model Spatial Resolution Time-steps Data AvailabilityVieAPL NTAL ECMWF 1° × 1° 6h 1994-presentIMLS NTAL MERRA2 2’ × 2’ 6h 1980-presentIMLS NTOL MPIOM06 2’ × 2’ 3h 1980-presentIMLS HYDL MERRA2 2’ × 2’ 3h 1980-presentEOST NTAL ECMWF 0.5° × 0.5° 3h 2000-presentEOST NTOL ECCO1 1° × 1° 12h 1993-2021EOST HYDL GLDAS2 0.25° × 0.25° 3h 2000-2022ESMGFZ NTAL ECMWF 0.5° × 0.5° 3h 1976-presentESMGFZ NTOL MPIOM 1° × 1° 3h 1976-presentESMGFZ HYDL LSDM 0.5° × 0.5° 24h 1976-present

Fig. 1 Site displacement time series due to NTAL in CM-frameat AGGO station.

Fig. 2 Site displacement time series due to all NTL componentsin CM-frame at AGGO station.

larly in the up component of ESMGFZ.
To gain insight into the variations in data relatedto each NTL component of different services, we’veplotted Root Mean Square (RMS) values of the differ-ence in site displacement due to NTL between two ser-

vices in the CM-frame and for 163 VLBI stations (referto Figures 3,4,5). The RMS values are organized basedon the latitude of each respective VLBI station. No-tably, we observe significant RMS values of more than8 mm, mainly occurring within the latitude range of30°N to 65°N, particularly in the Up direction. Amongthe different loading components, the NTAL compo-nent shows the least variation between the two ser-vices, while the HYDL component exhibits the mostsubstantial differences. This discrepancy is especiallypronounced in the case of HYDL component of ES-MGFZ vs. EOST, with an average RMS value of 6.7 mmand a maximum RMS value of 18.5 mm for the up di-rection. These disparities can be attributed to the useof distinct models with varying resolutions by differ-ent services. Additionally, the separate treatment ofSea Level Loading (SLEL) in order to achieve globalmass conservation, as undertaken by ESMGFZ, maycontribute to this observed variation. In contrast, otherservices incorporate partial mass conservation in bothNTOL and HYDL, which could influence the level ofagreement in these components.

4 Data processing in VieVS

We investigated the influence of non-tidal loadingdisplacement models within VLBI analysis. Thesedisplacements resulting from non-tidal loading wereincorporated as adjustments to the station coordi-nates at the observation level. The entire processingwas conducted using VieVS, utilizing a one-yearprocess list of R1/R4 sessions and OPT files for the year2020. Notably, the VieVS graphical user interface (GUI)initially featured the option for loading displacementdue to NTAL data, and subsequently, options for NTOL
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Fig. 3 RMS values of difference of site displacement due todifferent NTL components between ESMGFZ and EOST in CM-frame. The RMS values of stations are organized latitude-wise.

Fig. 4 RMS values of difference of site displacement due todifferent NTL components between ESMGFZ and IMLS in CM-frame. The RMS values of stations are organized latitude-wise.

Fig. 5 RMS values of difference of site displacement due todifferent NTL components between IMLS and EOST in CM-frame.The RMS values of stations are organized latitude-wise.

Fig. 6 Percentage change in BLR before and after applying allNTL models in CM-frame for 142 baseline.

and HYDL were introduced later in the process.
In VLBI analysis, the term ”baseline length repeata-bility” (BLR) denotes the degree of precision in mea-suring the length of a baseline connecting two VLBI sta-tions over a period of time. BLR holds significant impor-tance in VLBI because it directly influences the accu-racy of both geodetic and astrometric measurements.By assessing BLR before and after applying NTL dis-placement products, we can determine whether thereis an improvement in BLR as a result of using NTL mod-els. In Figure 6, we present the percentage change inBLR before and after incorporating all NTL data, focus-ing on a total of 29 stations. The results reveal that71.83% of baselines demonstrate improvement or re-main unchanged when using EOST data, while 70.4%of baselines show improvement or stability with IMLSdata. In contrast, only 48.59% of baselines exhibit im-provement or stability when utilizing ESMGFZ data.Likewise, we’ve computed the standard deviation ofstation heights both before and after the applicationof NTL models for a total of 142 baselines (see Figure7). The result revealed that a total of 67% of stationheight standard deviation improves after the applica-tion of NTL in the case of EOST and IMLS. However, inthe case of ESMGFZ, the improvement is only 52.38%.

5 Conclusions and outlook

The application of NTL displacement corrections toVLBI station coordinates is essential for achievinghigh-precision BLR. It helps reduce systematic errors,
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Fig. 7 Difference in the standard deviation of station heightsboth before and after the application of NTL models in CM-framefor 21 stations.

improve station coordinate accuracy, and enhance thelong-term stability of VLBI measurements. Variation inthe improvement of BLR among services (see Figure6) is primarily due to HYDL and NTOL. The standarddeviation difference of the time series of station heightwith and without NTL shows that the estimation ofstation coordinates improves upon the application ofNTL models (see Figure 7). Also, results from differentservices are consistent with each other except inthe case of ESMGFZ. The distinct approach takenby ESMGFZ in addressing Sea Level Loading (SLEL)with a focus on global mass conservation might be acontributing factor to the observed variation. In orderto enhance our understanding, we will incorporatea broader range of data spanning approximately 20years. We expect that this extended timeframe willprovide valuable insights and contribute to a morecomprehensive analysis.
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