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Kurzfassung

Embedded Systems sind in der Unterhaltungselektronik, der Heimautomatisierung und
auch in verschiedenen sicherheitskritischen Bereichen wie medizinischen Geräten oder
Automobilsystemen weit verbreitet. Durch ihren großen Einfluss auf unser modernes
Leben sind sie beliebte Ziele von Angriffen. Diese zielen meistens darauf ab, Daten zu
kompromittieren oder Geräte funktionsunfähig zu machen. Um sich zu schützen, ist die
Entwicklung robuster und sicherer Embedded Systems von größter Bedeutung.

Um die Systemsicherheit zu verbessern, ist eine proaktive Erkennung und Behebung von
Schwachstellen von entscheidender Bedeutung. Fuzzing erweist sich als äußerst effektiv,
um dieses Ziel zu erreichen.

Fuzzing ist ein automatisierter Ansatz für Softwaretests, bei dem ungültige oder uner-
wartete Eingaben in ein Programm eingegeben werden. Das Verhalten des Programms
wird auf Anomalien wie Abstürze oder Speicherlecks untersucht. Trotz der wachsenden
Popularität von Fuzzing gibt es in Bezug auf Embedded Systems verhältnismäßig wenig
Forschungspublikationen. Dies liegt in erster Linie an den Herausforderungen, die mit
der Durchführung effektiver Fuzz-Tests auf solchen Systemen verbunden sind.

In dieser Arbeit wird ein Prototyp eines Fuzzers für Anwendungen entwickelt, die auf
SocketCAN zur Kommunikation angewiesen sind. SocketCAN ist eine Implementierung
des, in Embedded Systems, weit verbreiteten Controller Area Network (CAN) Protokolls.

Der auf virtueller Maschinen basierende Snapshot-Fuzzer adressiert problematische Eigen-
schaften von Embedded Systems wie Zustandsabhängigkeiten und komplexe Eingaben.
Einer seiner Hauptvorteile ist, dass er die Kommunikation mit dem Fuzzing-Ziel emuliert,
was zu einer verbesserten Leistung und breiteren Anwendbarkeit führt. Dies trägt dazu
bei, die Forschungslücken in Bezug auf die Sicherheit von Embedded Systems und die
Praxis des Fuzzings in diesem Kontext zu schließen.

Um weiterführende Forschung auf diesem Gebiet zu unterstützen, beinhaltet diese Arbeit
einen Diskurs über Fuzzing von Embedded Systems, der Inhaltlich über den Umfang
dieser Arbeit hinausgeht.
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Abstract

Embedded systems are prevalent in all parts of modern life, consumer electronics, home
automation, and also in various safety critical areas such as medical devices or automotive
systems. Their large influence means they attract malicious intent. Attackers aim to
compromise data or render devices nonfunctional. Therefore, the creation of robust and
secure embedded systems is paramount. Despite their ubiquity in our daily life, their
financial viability has meant that in practice important aspects of embedded systems,
such as security are frequently overlooked. Additionally, numerous vulnerable systems
are currently available on the market without the capability for updates therefor making
fixes impossible. This underscores the significance of ensuring that these systems are
launched with minimal bugs and vulnerabilities.

To enhance system security, proactive vulnerability detection and mitigation are crucial.
Fuzzing proves highly effective in achieving this goal.

Fuzzing is an automated software testing approach that involves introducing invalid,
malformed, or unexpected inputs into a program. The program’s behaviour is observed
for anomalies like crashes or memory leaks, aiming to identify software defects and
vulnerabilities. Despite the growing popularity of fuzzing, the field of fuzzing embedded
systems lacks research publications, primarily due to the challenges associated with
conducting effective fuzz testing on such systems.

In this thesis, a prototype fuzzer is created for applications that rely on SocketCAN for
communication. SocketCAN is an implementation of the widely adopted Controller Area
Network (CAN) protocol within embedded systems. It is a virtual machine based snapshot
fuzzer addressing problematic characteristics of embedded systems like statefulness and
specialized inputs. One of its primary benefits is that it emulates communication with
the fuzzing target, leading to improved performance and broader applicability. This
contributes to addressing the research gaps concerning security in embedded systems and
the practice of fuzzing within this context.

Furthermore, this thesis includes a discourse on the subject of fuzzing applications
utilising embedded protocols, aiming to encourage further exploration in this domain.
This knowledge can be employed to expand the developed prototype fuzzer and to
contribute to various other fuzzing projects as well.
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CHAPTER 1
Introduction

In today’s technologically advanced world, embedded systems play an integral role in our
daily lives. The rapid growth of the Internet of Things (IoT) has greatly contributed to
this situation. A recent study showed that there should exist approximately 30 billion IoT
devices by 2030 [40]. They are now pervasive in various industries, including Automotive
Systems, Aerospace and Aviation, and Medical Devices. The integration of embedded
systems in these industries demands a robust approach to safeguard against potential
vulnerabilities because they have become essential for the functioning of societies and
economies, and any vulnerabilities or disruptions can have severe consequences. In reality,
these systems are often insecure. The Mirai malware [12] was a notorious cyber attack
that hijacked vulnerable IoT devices to create a massive network of compromised devices,
enabling large-scale distributed distributed denial-of-service (DDoS) attacks. Beavers
et al. [21] showcased that it is feasible to hack current models of pacemakers. In a
recent incident, the Controller Area Network (CAN) bus, which is a standard component
in nearly all modern vehicles, was compromised, allowing the theft of a new Toyota
RAV4 [3]. Although not directly tested, it is reasonable to assume that this attack could
be replicated on other automobile models as well.
Detecting and fixing vulnerabilities prior to exploitation by malicious actors can signifi-
cantly enhance the security of these systems. Fuzzing presents itself as a highly effective
approach in accomplishing this objective.
Fuzzing or fuzz testing is an automated software testing technique that injects invalid,
malformed, or unexpected inputs into a program. The program is monitored for exceptions
such as crashes or memory leaks, with the aim to detect software defects and vulnerabilities
that could be exploited by a malicious attacker. By subjecting a system or application to
a wide range of inputs, including malformed or unexpected data, fuzzing helps identify
weak points that may have been overlooked during development or testing. Due to the
limited testing depth achieved by pure random input, advanced fuzzing tools leverage
supplementary information, such as input structure or code coverage, to generate inputs
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1. Introduction

with a higher likelihood of reaching substantial sections of the code base. With its ability
to uncover unknown vulnerabilities and trigger unexpected software behaviours, fuzzing
has become a valuable technique in improving the security and reliability of software
systems.

In the past, the majority of research was done to improve the fuzzing algorithms [57].
Grammar-based and coverage-guided fuzzing were primary research domains that received
significant attention. Grammar-based fuzzing involves creating a grammar that specifies
the structure and syntax of the input data that the program under test can accept.
Grammar-based fuzzing is useful when the input data format is complex, it leverages
a grammar to generate inputs that adhere to the required structure. Coverage-guided
fuzzing involves using feedback from the program under test to guide the fuzzing process.
The feedback can be obtained by instrumenting the program and collecting code coverage
information. Coverage information can be used to guide the generation of new inputs
that are more likely to explore previously untested parts of the code. It is useful when the
goal is to test as much of the target’s code as possible. The idea behind snapshot-based
fuzzing is to capture and reuse program states during the fuzzing process. Instead
of starting each fuzzing iteration from scratch, the fuzzer captures a snapshot of the
program. This approach improves efficiency and increases test case diversity. Combining
the grammar-based and coverage-guided approaches with snapshot based fuzzing makes
them even more efficient and enables the discovery of vulnerabilities that might otherwise
remain undetected.

It is increasingly apparent that the capability to fuzz new targets is proving to have a
greater practical impact as opposed to refining the algorithmic level. It is highly probable
that any application subjected to fuzzing for the first time will reveal numerous security-
relevant discoveries [23]. Hence, this thesis endeavors not to enhance the algorithmic level
of fuzzers, but instead to leverage the present state of contemporary fuzzers, particularly
coverage-guided snapshot-based, to perform fuzzing on systems utilising embedded system
protocols. The significance of pursuing this approach stems from the inherent limitations
in utilising existing fuzzing research for embedded systems, mainly due to obstacles
such as multi-architecture support [25], difficulties in crash detection [46], and resource
constraints. The absence of adequate research leaves these systems and their domains
vulnerable. Additionally, the limited applicability of published embedded system fuzzing
research further compounds the issue, as their usability beyond their proposed example
scenarios becomes increasingly challenging.

1.1 Expected Results
The aim of this thesis is to increase the applicability of modern fuzzing techniques on
systems using embedded system protocols. Since there is currently no widely applicable
state-of-the-art open-source fuzzer available for such systems, the goal is achieved by
developing a new prototype fuzzer. To leverage the advancements in current research, the
prototype in this thesis is built upon an existing open-source fuzzer. A suitable choice
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1.1. Expected Results

for this purpose is Nyx-Net [57], a coverage-guided, snapshot-based fuzzer designed for
targeting network-based systems.

Systems using embedded protocols are often stateful and involving passing multiple
messages back and forth, which poses unique challenges in contrast to traditional fuzzing
targets. Nyx-Net tackles these challenges with its design principles that include hypervisor-
based snapshot fuzzing to ensure noise-free fuzzing and to speed up resetting to a clean
slate, and selective emulation of network functionality to avoid the heavy cost of real
network traffic. Another obstacle in fuzzing systems with embedded protocols is their
complex input, which is much more interactive than classical fuzzing targets using a
static file format. Nyx-Net addresses this problem by adopting a generative approach,
where the user specifies opcodes that are then chained by the fuzzer. Via C code the user
is able to implement opcodes to establish connections and opcodes to send packets to the
established connections. The input of the sent packets is created by converting packet
dumps into a byte format that the fuzzer can effectively process. This approach presents
a considerable advantage over grammar-based input generation, as it allows the user to
easily capture input packets for the target, in contrast to the process of defining a specific
grammar. By combining Nyx-Net’s coverage-guided snapshot-based fuzzing technique
with its generative input approach, users can easily and efficiently fuzz targets. Two more
factors for favoring Nyx-Net is its high usability working with network-based targets
and its superior performance compared to similar fuzzers, which is an improving test
throughput by up to 300x and coverage by up to 70%. Additionally, Nyx-Net discovered
crashes in two of ProFuzzBench’s (a benchmark for stateful protocol fuzzing) targets
that no other fuzzer had previously detected.

The CAN protocol is chosen as an example to demonstrate the practical application of the
developed prototype in this thesis. It is a widely used communication protocol specifically
designed for embedded systems and real-time applications. It provides robust and efficient
means of communication between electronic control units within a vehicle or industrial
setting. With its message-based structure and deterministic behaviour, the CAN protocol
enables reliable and high-speed data transmission, making it ideal for applications that
require real-time communication and fault tolerance. SocketCAN [16] is a Linux-based
networking subsystem that provides a standardized interface for CAN communication. It
allows applications to interact with CAN devices by utilising a socket-based API, making
it easier to develop CAN-enabled software on Linux platforms. SocketCAN supports
various functionalities such as sending and receiving CAN frames, setting filter rules,
and managing multiple CAN interfaces, providing a flexible and efficient solution for
CAN-based communication. Due to these characteristics, SocketCAN is a suitable choice
for demonstrating the functionality of this thesis’ prototype.

The following research questions will be answered in this thesis:

• RQ1: What are the key requirements and considerations for adapting the Nyx-Net
fuzzer to effectively test and fuzz a program using the protocol implementation
SocketCAN, and how can these challenges be addressed?

3



1. Introduction

• RQ2: How can the modifications to Nyx-Net be implemented to preserve its original
functionality while incorporating the new changes?

• RQ3: How can the findings and insights gained from successful fuzzing of a target
utilising SocketCAN be leveraged to advance fuzzing research on other CAN protocol
implementations?

• RQ4: How can the knowledge acquired from successful fuzzing of a target using
SocketCAN be applied to advance research on embedded protocols in general?

1.2 Outline
The subsequent sections of this thesis are organized as follows.

Related Work Chapter 2 includes the analysis of related work and existing academic
projects to help identify relevant concepts. General fuzzing papers serve as a valuable
starting point to gain an overview of the broad field of fuzzing. However, the focus of this
thesis is on network and embedded fuzzing, leading to a deeper examination of literature
in these specific areas. The selected literature encompasses a range of resources, including
survey papers that cover the whole fuzzing domains, as well as proposals and descriptions
of specific fuzzing tools.

Background In chapter 3 foundational knowledge about this thesis’ prototype fuzzer is
presented. Before starting to implement the new prototype, Nyx-Net needs to be set up
and executed on the development machine. This involves running Nyx-Net on an Ubuntu
22.04 LTS installation, which may require making necessary adjustments to Nyx-Net’s
configuration as it differs from the original tested version. To ensure its functionality,
Nyx-Net is used to fuzz one of the example targets, dnsMasq, during this stage.

Prior to making any modifications to Nyx-Net, it is imperative to gain a comprehensive
understanding of how it operates. A thorough understanding of the steps involved in
fuzzing a target program is important. Specifically, areas such as the QEMU setup,
network emulation, and the generation of fuzzing input require careful consideration, as
these are the aspects that will need modification to enable fuzzing of a target program
utilising SocketCAN.

Since this thesis focuses on implementations of the CAN protocol, it is crucial to
understand how the target program can be constructed accordingly. In the context of
Linux, SocketCAN presents a suitable option, as it offers an implementation of CAN
protocols specifically designed for the Linux environment.

Prototype Implementation A detailed explanation of the prototype implementation
is described in chapter 4. The general objective is to gradually customize the fuzzer
to effectively fuzz a target program that utilises SocketCAN. The process follows an
iterative approach, beginning with a straightforward test target program containing a
vulnerability that the fuzzer must identify. The target program is then systematically
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1.2. Outline

enhanced, becoming more intricate in each iteration. Throughout this process, the fuzzer
is continuously adjusted to accommodate the changes in the target program and ensure
its functionality.

A significant portion of the development process is focused on the communication with
the target program. Targets, which receive and send message through the SocketCAN
interface are dealing with specific types of messages and the configuration of the sockets.
To make sure the fuzzer can deal with these distinctions, a more detailed research in
the technology needs to be done, followed by necessary adaptations. During fuzzing, the
target program operates within a custom version of QEMU. For smoother development,
QEMU is launched with enabled CAN support. Among the available options, this thesis
employs the setting where QEMU utilises a virtual CAN interface on the host system,
requiring manual startup before fuzzing. This setup facilitates monitoring target messages
during fuzzing. Once development concludes, CAN support within the virtual machine is
no longer essential since Nyx-Net’s socket emulation bypasses the CAN interface for data
transmission.

Evaluation Chapter 5 includes steps to verify the functionality of the implemented
fuzzer in this thesis. Within the scope of this study, this entails verifying that the fuzzer
can effectively fuzz a target employing the SocketCAN interface and successfully identify
artificially introduced vulnerabilities that lead to program crashes. A range of test targets
are supplied, each varying in terms of their functionality and complexity.

Future Work and Research Directions Fuzzing the SocketCAN protocol implementa-
tion marks a first step within the broader realm of CAN protocol and embedded protocol
fuzzing. Chapter 6 provides the reader with ideas for further expanding the research in
the area of embedded protocol fuzzing, especially while using the fuzzer created in this
thesis.
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CHAPTER 2
Related Work

This chapter provides an overview of the current state of general fuzzing and embedded
fuzzing techniques. Section 2.1 presents fundamental concepts in fuzzing, including
its application to embedded systems, while also addressing the major challenges of it.
Section 2.2 provides an introduction to various fuzzing tools, beginning with the popular
and widely adapted AFL fuzzer and its descendants, followed by fuzzers specifically
designed for network based targets and embedded systems. When possible, a comparison
is drawn with the Nyx-Net fuzzer, which helps to highlight why Nyx-Net serves as the
foundation for the prototype developed in this thesis. The chapter ends with section 2.3,
which presents various existing fuzzing tools for the CAN protocol.

2.1 Fuzzing Surveys
Fuzzing was first introduced in the early 1990’s from Miller et al. [45] and is now one of
the most widely used techniques to test software correctness and reliability [44]. In a
broad sense, fuzzing involves the iterative execution of a program using generated inputs,
which could be potentially malformed either in their syntax or semantics. The primary
objective is to discover vulnerabilities within a program. Nowadays, many of the big
technology companies include fuzzing in their development practises. Some examples are:
Cisco [5], Google [8, 9, 2] and Microsoft [11, 24].

At a high level, fuzzers can be classified into three categories: black-box, grey-box, and
white-box [44]. A black-box fuzzer operates without access to the internal workings of the
target program. To guide the fuzzing process it relies solely on information obtained from
observing the outputs generated by the corresponding inputs. White-box fuzzing creates
test cases by examining the internal structure of the target program and leveraging
information gathered during its execution. Combining elements of both black- and
white-box fuzzers, grey-box fuzzers can access some internal information about the target
program. Unlike white-box fuzzers, grey-box fuzzers do not reason about the complete
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semantics of the target, instead they might perform lightweight static analysis or gather
dynamic information such as code coverage. Grey-box fuzzers rely on approximated and
imperfect information to gain speed and effectively test a larger number of inputs.

The three categorise explained above are just one way of differentiating the vast amount
of existing fuzzers. There are other aspects, such as:

• Instrumentation: Program instrumentation can be executed either statically or
dynamically. Static instrumentation occurs before the target program runs, while
dynamic instrumentation takes place while the target program is running.

• Seed Selection: Optimize code coverage by selecting specific seeds.

• Preparing a Driver Application: Sometimes it is more efficient to not fuzz the target
program directly, but to prepare a driver for fuzzing. For example IoTFuzzer [26]
targets IoT devices by letting the driver communicate with the corresponding
smartphone application.

• Scheduling: The objective of scheduling is to analyse the available information on
configurations between test cases and choose the one that is more likely to yield
favorable outcomes, such as finding a higher number of unique bugs or maximizing
code coverage with the generated inputs.

• Input Generation: The technique employed for input generation is a critical design
choice in a fuzzer since the content of a test case directly determines whether a
bug is triggered or not. There are two types: generation-based and mutation-based.
Generation-based fuzzers create test cases based on a specified model that describes
the expected inputs for the target program. These are referred to as model-based
fuzzers. On the other hand, mutation-based fuzzers generate test cases by modifying
existing seed inputs. Such fuzzers are considered model-less because seed inputs are
merely examples and do not comprehensively cover the entire input space expected
by the target program.

The paper of Zhu et al. [67] describes the knowledge gaps to develop efficient defect
detection solutions for fuzzers. The key gaps are briefly summarized as:

• Strict valid input space: As modern applications grow in complexity it gets increas-
ingly harder to generate valid inputs that conform to the requirements of these
applications.

• Various targets: The diverse range of targets introduces variations in the execution
environment and the types of defects encountered. As a result, effectively fuzzing
across this broad spectrum of targets becomes a challenge.

8



2.1. Fuzzing Surveys

Recent research has been conducted in various aspects of fuzzing. These range from
the input generation, such as grammar-based test case generation [39, 61], as well as
fuzzing different types of target programs, including kernel [58] and neural network
testing [36, 49]. The present thesis concentrates its literature research on fuzzing network
based and embedded system targets.

Figure 2.1: Taxonomy of embedded system fuzzers. [62]

Figure 2.1 provides an overview of the taxonomy for embedded system fuzzing, while also
including the conventional classification of black-box, grey-box, and white-box fuzzing. In
the context of this taxonomy the fuzzer implementation of this thesis can be put into the
category of Emulated-based Fuzzing –> Full System Emulation —> Grey-box fuzzing.

In the context of embedded system fuzzers, it is more appropriate to classify them based
on their connectivity to the embedded system hosting the target program. Yun et al. [62]
emphasized this in their study. As a result, the first types of our taxonomy are direct
fuzzing, emulation based fuzzing, and firmware analysis. The direct fuzzing approach
involves directly connecting to the target device and testing the system firmware without
any intermediary components. This category comprises two types of fuzzing methods. The
first type involves fuzzing via a network, which allows testing only network applications
and is relatively straightforward, but it limits the fuzzing to a black-box approach. The
second type, known as fuzzing via debugging interfaces, such as UART or JTAG, enables
testing of the operating system and applications, making it more advantageous. However,
this method requires significant effort and might not always be possible due to the
removal of debugging interfaces. The emulation based fuzzing approach involves using
emulation with firmware extracted from embedded devices. Full emulation of every piece
of hardware is not always possible due to restrictions on supported kernels and CPUs.
To address this, partial emulation forwards peripheral API requests to the real device.
This achieves a similar effect as system-mode emulation, but it requires intensive work
to prepare the actual device and forwarding mechanism. Another technique, known as
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2. Related Work

user-mode emulation, only migrates user-level programs to the host OS using a shared
memory state (RAM file) with system-mode emulation. The firmware analysis approach
is useful in cases where dynamic analysis or emulation is not feasible. In such scenarios,
it is possible to perform static code analysis on the firmware. This approach commonly
requires comprehensive program information, thus, only white-box fuzzing is possible.

Recent surveys on embedded system fuzzing [62, 32, 30] outline key differences between
traditional and embedded system fuzzing. The main challenges are:

• Strong Hardware Dependency/Diversity: Embedded devices use various microcon-
trollers and operating systems, whereas desktop systems are typically based on
x86-64 CPUs and Linux OS. There are more than 10 common types of microcon-
trollers used in embedded devices, such as ARM, MIPS and Alpha, and more than
5 different operating systems, including Linux, VxWorks and QNX. Desktop fuzzers
work directly on the target system, while embedded system fuzzers work on another
system due to the low power and limited resources of embedded devices. To tackle
this problem, most embedded system fuzzers use emulation or re-host firmware.

• Crash Detection: Crash detection can be challenging compared to desktop fuzzing.
The crash detection ratio in embedded systems is lower, with only 37% compared to
desktop systems [46]. Desktop systems benefit from various detection mechanisms
like error messages, security warnings, and system logs. In embedded system fuzzing,
crash detection is complicated because embedded operating systems often lack fault
generation mechanisms, and there might not be output devices like monitors to
notice crashes. To address this, embedded fuzzers use alternative methods for crash
detection: Liveness checks make it possible to periodically probe the state of the
device, memory checking tools can detect security violations, and debug ports can
help to gain insights into the device.

• Instrumentation: In embedded systems, obtaining the source code of firmware or
applications is often not possible. Moreover, recompilation is not an option due to
the diverse CPU architectures and operating systems present in embedded devices.
As a result, traditional source code instrumentation becomes challenging in this
context. To address this limitation, dynamic binary instrumentation tools like
Pin [43] and Valgrind [47] are employed. These tools allow for instrumentation of
program binaries during testing. This approach is primarily applicable to general-
purpose OS-based devices and may not be suitable for embedded OS-specific devices
or devices lacking an operating system.

• Performance and Scalability: Embedded systems face performance and scalability
challenges due to their limited computational resources and low power constraints.
To address these limitations, several techniques have been developed. Functional
upgrades are implemented to enhance performance by changing software while
keeping the hardware unchanged. Real-time processing and optimised compilers
help overcome computational limitations. Additionally, utilising registers, caches,
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and DMA instead of memory can improve performance. Parallelisation is often
impossible due to limited resources and economic reasons. As a result, embedded
systems fuzzing struggles with scalability, and state-of-the-art solutions do not offer
parallel fuzzing support.

2.2 Fuzzing Tools
American fuzzy lop [63] (AFL) is a security-orientated fuzzer that employs compile-
time instrumentation and genetic algorithms to automatically discover new test cases
that trigger previously unseen states in the target binary. AFL stands out for its
practical design, featuring low performance overhead, effective fuzzing strategies, minimal
configuration requirements, and seamless handling of complex real-world scenarios like
image parsing or file compression libraries. There is a more advanced fork called
AFL++ [34] that incorporates numerous enhancements (more speed, better mutation,
and better instrumentation) and additional features. However, AFL remains noteworthy
due to its significant influence as many fuzzers in recent years have been built upon its
foundation. One example is AFLNet [50], a grey-box fuzzer for protocol implementations
that utilises mutation techniques, state-feedback, and code-coverage feedback to guide
the fuzzing process, and unlike other protocol fuzzers, it relies on a recorded corpus of
message exchanges rather than protocol specifications or grammars. AFLNet has some
key drawbacks when compare to the fuzzer Nyx-Net. First, using real network connections
is significantly slower than the function hijacking approach of Nyx-Net. Secondly, because
the fuzzer has no clear point to start a new test case, AFLNet has to wait a manually
specified amount of time before a test case is executed. Additionally, when using AFLNet,
the user must also develop a cleanup script to ensure that the fuzzing target is in an
appropriate state after each test case. These cleanup tasks might involve actions such as
rolling back file systems or databases to their original state, ensuring a clean slate for
subsequent test cases.
In the past, research had already been conducted to improve the feasibility of fuzzing
new target applications. Much of this research centred on generating function-style
harnesses and employing snapshots taken at the beginning of a test case. One example
of function-style harness research is the work by Babić, et al. [20], which focused on
fuzzing C and C++ libraries, particularly the generation of fuzz drivers essential for
fuzzing these libraries. Another study addressed the challenge of fuzzing Windows
applications, which is still under-represented compared to fuzzing on Unix-like systems.
Jung, et al. [41] proposed a practical system called Winnie to enhance fuzzing of Windows
applications. LibFuzzer [10] is another library for coverage-guided fuzzing, it was replaced
by FuzzTest [2], a C++ testing framework for writing and executing fuzz tests. These are
property-based tests executed using coverage-guided fuzzing. They are similar to Unit
tests but more generic and powerful, for example instead of saying: "for this specific input,
that specific output is expected", it is: "for these types of input, this generic property must
be true". Examples for snapshot based research are: FirmAfl [66], which extends AFL to
fuzz IoT firmware, Dong et al. [28] used snapshots to improve fuzzing Android apps, and
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the fuzzer Agamotto [59] used a similar approach to Nyx-Net’s incremental snapshots to
accelerate kernel-level fuzzing. The big difference between all these mentioned tools and
Nyx-Net is that they do not focus on complex network based targets.

Snappfuzz [18] is a fuzzer for network applications. With using a user-mode approach it
avoids a lot of complexity Nyx-Net comes with, but with the downside of not being able
to fuzz advanced targets like hypervisors.

Aichernig et. al [17] proposed a testing tool for black-box systems, combining automata
learning and stateful fuzzing. Automata learning provides enough insight into the black-
box system to fuzz targets successfully. Using a grey-box fuzzer allows for more targeted
and efficient testing, resulting in a shorter testing cycle and a lower overall cost, thus is
preferred in this thesis.

MultiFuzz [64] and SFuzz [27] are fuzzers each focus on specific domains, with MultiFuzz
specializing in fuzzing for IoT publish/subscribe protocols, and SFuzz being a slice-based
fuzzing tool designed to detect security vulnerabilities in real-time operating systems.

Finding memory corruption vulnerabilities in IoT devices without access of firmware
images is done by the tool IoTFuzzer [26]. As many IoT devices are controlled by mobile
apps, IoTFuzzer creates fitting fuzzing input with the help of the observed communication
between the app and the IoT device. This thesis’ prototype should not be restricted to
embedded protocols used through a mobile app.

Another fuzzer tackling firmware is Ember-IO from Farrelly et al. [33]. It is an automated
testing tool for embedded systems specified on monolithic firmware and supporting
firmware built for ARM Cortex-M microcontrollers. The fuzzing tool Fuzzware, a fuzzing
tool introduced in a study by Scharnowski et al. [53], specialises in monolithic firmware
fuzzing. It is especially efficient in identifying crucial fuzzing inputs by precisely analysing
how hardware-generated values are utilised within the firmware. This capability allows
Fuzzware to effectively pinpoint the inputs that have the most impact, leading to more
efficient and targeted fuzzing results. A recent case study conducted by Scharnowski
et al. [54] delves into the domain of fuzzing satellite firmware. This study presents
challenges faced in this area, such as the complex boot process commonly found in
satellite firmwares, resulting in a slower test case throughput speed. The researchers
also configure the firmware fuzzer Fuzzware to work on certain satellite firmware images,
which enables them to effectively fuzz and discover bugs.

ZigBee is a widely adopted wireless embedded protocol. Z-Fuzzer [52] is a device-agnostic
fuzzing tool for detecting security vulnerabilities in Zigbee implementations. It uses a
commercial embedded device simulation and hardware interrupts to interact with the
fuzzing tool.

AFLIoT [29] is a on device fuzzing framework for Linux based IoT programs, it uses
offset-free binary-level instrumentation to fuzz directly on an IoT device. The on device
restriction is not suitable for the aim of this thesis.
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Eisele, Max, et al. [31] utilising the debug interface of microcontrollers to fuzz embedded
systems. By setting hardware breakpoints it is possible to extract partial coverage
feedback even for uninstrumented binary code. As it does not use virtualisation it is not
suitable to use as foundation.

A more comprehensive list of fuzzing tools can be found in the survey papers: [44, 62, 30,
32, 31, 67].

2.3 CAN Fuzzing Research
Lee et al. [42] present a successful attack in which they inject malicious CAN packets into
a car’s network via Bluetooth. In the first phase of their experiment, they inject fuzzed
data exclusively into the data section of a CAN message. For accurate transmission
of data with the correct CAN ID, they first listen to normal communication on the
CAN bus, and extracting the required CAN IDs. This process is facilitated using freely
available internet tools. In the second phase, they employ fuzzing inputs for the entire
CAN message. These tests are executed on two commonly used car models, with data
injection occurring through the Bluetooth-CAN converter present in the vehicles for
maintenance purposes. They observe the behaviour of the attacked vehicles through
the instrumentation panels, leaving uncertainty as to whether the displayed behavioural
changes actually impacted the cars or merely appeared on the panels.

Nishimura et al. [48] use beStorm 1, a commercial dynamic application security testing
tool, to investigate vulnerabilities for the CAN FD protocol. Their implementation
is not able to process the response of the component under test after fuzzing input is
injected, thus cannot be seen as a full functioning fuzzer. Their test runs are executed
with beStorm running on a 64-bit machine having Windows 7 as operating system. This
machine is connected through a USB serial cable to the development board where the
CAN bus is integrated.

A recent study of Zhang et al. [65] proposes another fuzz testing method for the CAN
bus. Their mutation engine is constructed to generate fuzzy messages that are similar to
real CAN messages, this ensures that the messages are not rejected by intrusion detection
systems. An evaluation on real-world vehicle systems demonstrates the effectiveness of
the fuzzer. The fuzzing program consists of two main components, a data generator and
an anomaly monitor. It runs on a of-the-shelf computer. The fuzzing target is a real
vehicle set into parking mode. To make communication between the fuzzer program and
the vehicle possible, a CAN bus controller + transceiver is used.

Fowler et al. [35] introduce a fuzzer to allow for experimentation against a target vehicle’s
CAN bus, specifically developed for HORIBA MIRA Ltd. and thus not publicly available.
The fuzz testing software is crafted on a computer linked to a Vector vehicle simulator, a
widely-used equipment in the automotive industry. Utilising a vehicle simulator simplifies
the development process as direct access to the target vehicle is unnecessary. To establish

1https://www.beyondsecurity.com/products/bestorm
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a connection between the fuzzer software and the CAN bus, PCAN-USB, a Universal
Serial Bus to CAN hardware adaptor is utilised.

The majority of the currently proposed fuzzers for the CAN protocol adopt a similar
configuration, as depicted in Figure 2.2. The fuzzer is executed on a machine with a
64-bit desktop operating system. To establish communication between the fuzzer and the
test target, which communicates through the CAN protocol, a CAN board is employed.
This board encompasses a CAN controller and a CAN transceiver. A USB to CAN
adapter, such as the PCAN-USB, is utilised to link the fuzzer’s machine to the CAN
board. The CAN board is further connected to the CAN bus, thereby interfacing with
the test target.

Figure 2.2: Commonly used CAN fuzzing setup.
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CHAPTER 3
Background

The following chapter outlines fundamental concepts and theoretical underpinnings that
provide a solid foundation for the subsequent chapters of this thesis. The first section 3.1
gives a brief overview of embedded systems. Sections 3.2 to 3.5 describe underlying
technologies used in the prototype created within this thesis, such as Controller Area
Network (CAN), Virtual Machine (VM) or Quick Emulator (QEMU). Section 3.6 is
about Nyx-Net, the foundation of the newly created prototype. It should provide readers
with sufficient information to understand the modifications implemented.

3.1 Embedded System
Embedded systems are specialized computer systems designed for specific functions
within larger systems or devices [37]. They are typically compact, power-efficient, and
operate in real-time or constrained environments. Embedded systems can be found in a
wide range of applications, such as consumer electronics, automotive systems, medical
devices, and industrial control systems. These systems often have dedicated hardware
and firmware tailored to their specific tasks. They are commonly used for controlling and
monitoring processes, collecting and processing data, and providing interface functionality.
Embedded systems typically consist of a processor, memory, and peripherals. The software
responsible for running these systems is stored in read-only memory or flash memory
chips [38]. This software, known as firmware, is composed of three main components:
the bootloader, an operating system , and a file system [60]. These elements collectively
facilitate the proper functioning of the embedded system, enabling it to execute its
designated tasks efficiently.

Because they are in some ways accessible by an attacker and are likely to have some kind
of vulnerability, the applications running on the embedded system are the most common
targets of embedded fuzzers.
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Figure 3.1 provides a classification scheme to organize the diverse realm of embedded sys-
tems into different categories. This classification helps in understanding and categorising
the various types of embedded systems based on specific criteria and characteristics. In
their classification Yun et al. [62] are using the criteria of performance, the performance
of micro-controllers, and operating system types.

Figure 3.1: Types of embedded devices. [62]

Based on their performance characteristics embedded devices can be divided into four
main groups: real-time, stand-alone, networked, and mobile. Additionally, according to
the performance of their microcontrollers into three groups: small-scale, medium-scale,
and sophisticated embedded devices. The distinction regarding operating system types is
done in:

• General-purpose OS: General-purpose operating systems offer a wide range of
features, compatibility, and ongoing support from developers, making them suitable
for use in embedded devices as well. However, due to the performance constraints of
embedded systems, minimal configurations of operating systems are often preferred.
For instance, combinations of lightweight user environments like Busybox 1 or
uClibc 2, along with a Linux OS kernel, are commonly employed in the embedded
domain. This approach allows for optimized performance while still providing
essential functionalities required by the embedded devices.

• Custom-built OS: These include real-time operating systems (RTOS) designed for
applications that require data processing without buffer delays. These operating
systems are ideal for low-power devices. Representative examples of RTOS in

1https://busybox.net/
2https://www.uclibc.org/
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the embedded domain are VxWorks 3 and QNX 4, both widely used in various
embedded devices.

• Monolithic Software: Monolithic software serves as both the system and the
application. Small-scale devices like SmartCards, GPS receivers, and thermostats
often fall into this category. Typically, such devices lack a hardware abstraction
layer that hides the physical hardware and provides programming interfaces.

The prototype implementation of this thesis focuses on fuzzing targets which are able
to run on a sophisticated microcontroller, is a network target and runs inside a general
purpose OS.

3.2 Controller Area Network (CAN)
The CAN bus is a widely used high-integrity serial bus system that enables communication
between devices. It is commonly found in automotive and industrial systems. CAN
bus operates using a message-based protocol, allowing microcontrollers and devices to
transmit and receive data frames.

In modern cars, there can be 70 or more Electronic Control Units that require communi-
cation between them. Initially, all components were directly wired, resulting in complex
connections. To address this issue, the CAN bus was introduced by Robert Bosch GmbH
in 1986. CAN allows individual components to communicate through a centralized bus,
simplifying the wiring complexity. Figure 3.2 illustrates the different approaches.

Figure 3.2: Point-to-point communication versus CAN bus approach.

3https://www.windriver.com/products/vxworks
4https://blackberry.qnx.com/en/products/foundation-software/qnx-rtos
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On a CAN bus, data is transmitted in the form of a CAN frame. There are two types, a
base frame format with 11 identifier bits and a extended frame format with 29 identifier
bits. Figure 3.3 shows a standard frame.

Figure 3.3: Standard CAN frame. [7]
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3.3 SocketCAN
The SocketCAN package is an implementation of CAN protocols for Linux. SocketCAN
utilises the Berkeley socket API and leverages the Linux network stack to implement
CAN device drivers as network interfaces. The CAN socket API is intentionally designed
to resemble the TCP/IP protocols, enabling programmers with knowledge of network
programming to quickly adapt to using CAN sockets. To communicate over the CAN
network a socket [15] has to be created. There are currently two CAN protocols available:
the raw socket protocol, and the broadcast manager. After binding [1] (raw protocol)
or connecting [6] (broadcast) to the socket, it is possible to read and write from the
socket using the commonly known operations. A message sent through the SocketCAN
interface has the format of a classical CAN structure as shown in listing 3.1 or the CAN
FD structure described in listing 3.2. The classical frame structure is a simplified version
of the standard CAN frame seen in figure 3.3. The can_id identifies the message sent.
The data attribute contains the payload and len or can_dlc representing the length of it.
To pass the raw DLC from or to a classical CAN network device the len8_dlc element
can contain values 9 .. 15 when the real payload length for all DLC values greater or
equal to 8. The CAN FD structure is an extension to the classical CAN structure. The
main difference is that the data payload can be up to 64 byte in length.

1 struct can_frame {
2 canid_t can_id ;
3 union {
4 __u8 l en ;
5 __u8 can_dlc ; /∗ depreca ted ∗/
6 } ;
7 __u8 __pad ; /∗ padding ∗/
8 __u8 __res0 ; /∗ re se rved / padding ∗/
9 __u8 len8_dlc ; /∗ o p t i o n a l DLC ∗/

10 __u8 data [ 8 ] __attribute__ ( ( a l i gned ( 8 ) ) ) ;
11 } ;

Listing 3.1: CAN frame as specified in the linux kernel (include/linux/can.h).

1 struct canfd_frame {
2 canid_t can_id ; /∗ 32 b i t CAN_ID + EFF/RTR/ERR f l a g s ∗/
3 __u8 l en ; /∗ frame payload l e n g t h in by t e ∗/
4 __u8 f l a g s ; /∗ a d d i t i o n a l f l a g s f o r CAN FD ∗/
5 __u8 __res0 ; /∗ re se rved / padding ∗/
6 __u8 __res1 ; /∗ re se rved / padding ∗/
7 __u8 data [ 6 4 ] __attribute__ ( ( a l i gned ( 8 ) ) ) ;
8 } ;

Listing 3.2: CAN FD frame as specified in the linux kernel (include/linux/can.h).
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A virtual CAN interface allows for the transmission and reception of CAN frames without
real CAN controller hardware. A virtual SocketCAN interface is used for this thesis’
fuzzing approach, as it provides a flexible and convenient way to simulate CAN bus
communication.

3.4 Virtualisation
A Virtual Machine (VM) is an emulation of a physical computer, often referred to as a
guest, running on a physical machine known as the host.

Virtualisation enables the creation of multiple VMs, each having its own Operating
System (OS) and applications, all hosted on a single physical machine. However, VMs
cannot directly interact with the physical hardware. Instead, a lightweight software layer
called a hypervisor acts as an intermediary, managing communication between the VM
and the underlying physical hardware. The hypervisor allocates physical computing
resources, such as processors, memory, and storage, to each VM, ensuring that they
operate independently and do not interfere with one another.

When utilising a hypervisor on a physical computer or server (also known as a bare
metal server), the system can decouple its operating system and applications from the
underlying hardware. This enables the division of the system into multiple independent
virtual machines.

Each of these virtual machines operates with its own operating system and applications
while sharing the original resources of the bare metal server, which are managed by the
hypervisor. These resources include memory, RAM, storage, and more. The hypervisor
acts as a mediator, effectively allocating the resources of the bare metal server to each
virtual machine to ensure they operate without interference.

There are two main types of hypervisors:

• Type 1 hypervisors: Run directly on the physical hardware, replacing the need
for an operating system. Specific software is used to create and manage virtual
machines on this type of hypervisor. Management tools like VMware’s vSphere 5

allow users to select a guest OS for installation in the virtual machine.

• Type 2 hypervisors: Run as applications within a host OS and are commonly used
on a single-user desktop. With this type of hypervisor, users manually create virtual
machines and then install a guest OS within them. The hypervisor allows users
to allocate physical resources to the VMs, manually configuring the number of
processor cores and memory they can use.

5https://www.vmware.com/products/vsphere.html
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Figure 3.4 shows an overview of the concept of virtualisation, both with type 1 and type
2 hypervisors.

Typically fuzzers make use of virtualisation to create an isolated and externally controlled
environment. In the case of this thesis’ prototype, the target programs and a custom
component (Agent) run inside a virtual machine. As it uses QEMU, it utilises type 2
hypervisor virtualisation.

Figure 3.4: Virtualisation with type 1 and type 2 hypervisors.

3.4.1 VMWare Backdoor
The VMWare Backdoor is a feature to increase the performance of virtual machines
running on hypervisors. This interface is designed to enhance the communication and
coordination between the guest operating system running inside the virtual machine and
the VMware hypervisor. This interaction is made faster, through allowing the guest
operating system to interact with the hypervisor in a more efficient manner. In the
context of this thesis, enabling this feature allows for a more efficient communication
between the Fuzzer component running on the host and the virtual machine which
comprises the Agent component and the fuzzing target.

3.4.2 Quick Emulator (QEMU)
QEMU [22] is a versatile machine emulator and virtualiser. It enables the emulation
of various hardware platforms, allowing software to run on different architectures and
operating systems. The flexibility of QEMU makes it a valuable tool for software develop-
ment, testing, and debugging, as it allows developers to simulate different environments
and configurations. QEMU comes with a CAN bus emulation support [51, 14], which
makes it possible to connect individual busses to the host systems CAN API.
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The prototype of this thesis, leverages QEMU to create VMs for running target programs.
By configuring QEMU to enable CAN support, it becomes possible to run target programs
that receive data through the SocketCAN interface. One way to enable CAN support in
QEMU ca be seen in listing 3.3.

1 −ob j e c t can−bus , id=canbus0
2 −ob j e c t can−host−socketcan , id=canhost0 , i f=can0 , canbus=canbus0
3 −dev i c e kvaser_pci , canbus=canbus0

Listing 3.3: Configuration to enable CAN support in a QEMU VM for qemu-system-
x86_64

3.4.3 Kernel-based Virtual Machine (KVM)

KVM is an open-source virtualisation solution for Linux, it functions as a hypervisor
and allows running multiple VMs on a single host machine. KVM transforms Linux into
a bare-metal hypervisor. Since KVM is integrated into the Linux kernel, it inherently
possesses all the necessary components such as memory management, process scheduling,
I/O stack, device drivers, security management, and network stack. Each VM created
within KVM is treated as a regular Linux process, utilising dedicated virtual hardware
resources including network cards, graphics adapters, CPUs, memory, and disks. These
VMs are seamlessly scheduled by the standard Linux scheduler, ensuring efficient and
reliable operation.

As already done in Nyx-Net, the prototype employs a customized version of QEMU in
conjunction with a modified build of KVM to create a VM environment. This optimised
configuration guarantees efficient and high-performance virtualisation capabilities.

3.5 LLVM/Clang

The LLVM Project is a collection of modular and reusable compiler and toolchain
technologies. It simplifies the process of converting source code into machine code.
LLVM is able to represent high-level source code using a language-agnostic code called
intermediate representation, this enables different programming languages like CUDA or
Rust to share analysis and optimization tools before they are translated into machine
code. LLVM consists of multiple sub-projects, one of them is Clang. The Clang project
offers a language front-end and tooling infrastructure for C family languages, including
C, C++, Objective C/C++, OpenCL, CUDA, and RenderScript. It can be used as
a replacement for the GNU Compiler Collection, and was started with the intention
of better diagnostics, better integration with IDEs, a license that is compatible with
commercial products, and a nimble compiler that is easy to develop and maintain. Clang
works in three stages: The first stage is responsible for parsing the source code, performing
error checks, and generating a language-specific Abstract Syntax Tree (AST). The second
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stage optimizes the AST that was generated by stage one. And the third stage, produces
the final machine-executable code.

3.6 Nyx-Net Basics
Nyx-Net [57] created by Schumilo, Sergej, et al., is a fuzzer specialising on complex,
stateful message-passing systems such as network services. It has demonstrated successful
bug discovery in various applications including MySQL Client, Lighttpd, and Firefox.
Nyx-Net is built upon two primary design principles. Firstly, hypervisor-based snapshot
fuzzing to guarantee fuzzing without interference and fast reset to a clean state. Secondly,
selective emulation of network functionality to avoid the creation of slow real network
traffic. Their implementation is based on kAFL [56], Redqueen [19] and Nyx [55].
kAFL addresses the challenge of coverage-guided kernel fuzzing by employing an OS-
independent and hardware-assisted approach. Using a hypervisor and Intel’s Processor
Trace technology, it achieves independence from the target operating system, because it
only requires a minimal user space component to interact with the target OS. Redqueen
is a fast general purpose fuzzer for x86 binary applications. Nyx is a fast coverage-guided
hypervisor fuzzer with a mutation engine that utilises custom bytecode programs encoded
as directed acyclic graphs and affine types. Nyx’s approach provides the possibility to
express target input for complex scenarios.

3.6.1 Nyx-Net Components

Figure 3.5: Overview of Nyx-Net components. [57]

In figure 3.5 an overview of Nyx-Net’s components is shown. This section explains the
components involved.

Share folder

The Share Folder contains all the essential elements required for fuzzing a particular
target, such as the target application, its dependencies, seeds, configurations, and a
description of the affine type opcodes that define the fuzzing input. It is located within
the targets directory.
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A bash script may be composed to prepare a target program. This script can contain
procedures such as creating a new Linux user or copying files. These scripts should
be placed in the targets/extra_folders/<target> directory and named setup.sh. The
building process for a target program can be encapsulated within a bash script as well.
Running this script provides the Fuzzer with a compiled version of the target program.
The tool Nyx-Packer [13] is used for this purpose. It consists of a multitude of tools
to ready a specific target program for fuzzing. Users can specify configurations, such
as the nyx_net_port, defining the target program’s port, the path to the setup scripts
mentioned above, and a path directed at the folder containing the fuzzing input creation
logic.

The fuzzing input specification of a target is located within the targets/specs directory.
A file named nyx_net_spec.py defines the specification. It includes the payloads data
type and its restrictions, a defined kAFL hypercall to create the intermediate snapshots
and optional seed inputs the mutation engine can use to create better fuzzing input.
During fuzzing the Agent component delivers these inputs to all function calls that try
to read data from the specified connection, for example read or recv calls. The directory
targets/specs includes various examples and in section 4.8 the approach is explained in
more detail.

Fuzzer

Before fuzzing starts the Fuzzer component loads all relevant information from Share
Folder. During fuzzing it communicates with the Agent and Target components which
are running inside a custom QEMU VM utilising a modified build of a KVM. The fuzzer
maintains a root and incremental snapshot of the same VM. The fuzzing input is stored
in a shared memory accessible by the Agent, and coverage information from the Target is
obtained through another shared memory. Running the Fuzzer outside of the VM allows
it to has full control over the environment.

Nyx-Net utilises a customized version of QEMU, combined with a modified build of
Kernel-based Virtual Machine (KVM), to create a Virtual Machine (VM) environment
where the fuzzing Target and Agent run. QEMU is responsible for configuring the VM
state and emulating devices, while KVM leverages hardware virtualisation extensions
to enable native execution of the guest OS within the VM. This configuration ensures
efficient and high-performance virtualisation. The Fuzzer component interacts with both
QEMU and KVM to gain control over the VM and perform operations such as resetting
the state to a specific snapshot.

Agent

Nyx-Net utilises an Agent component within the VM to manage the fuzzing cycle. This
agent signals the readiness of the Target to receive input and decides when to create snap-
shots. Subsequently, the Agent transfers the input provided by the Fuzzer to the Target,
and upon test case completion, notifies the Fuzzer. Interactions between Fuzzer and Agent
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are facilitated through hypercalls, which are similar to syscalls but specifically designed
for VMs. Socket emulation is done by hooking into existing libc networking functionalities.
The code for the Agent component is located in packer/packer/linux_x86_64-userspace.

The fuzzer Nyx-Net is capable of fuzzing both client and server targets, with the Agent
component always taking the opposite role. The socket emulation consists of two main
concepts, connections and socket related function hooks. The Agent creates a custom
connection instance for each socket connection in the target program. This instance
includes the client and server socket file descriptors, the server port, and a flag indicating
whether the connection is disabled. In cases where the target duplicates file descriptors,
up to 8 different file descriptors per client and server can be saved. The number of saved
file descriptors for this specific use case is also stored in a separate variable. The type
definition of the Agent’s connection is shown in listing 3.4.

1 typedef struct i n t e r f a c e s _ s {
2 int s e rve r_socke t s [ 8 ] ; // s e r v e r f d s
3 uint8_t server_sockets_num ; // amount s e r v e r f d s
4
5 int c l i e n t _ s o c k e t s [ 8 ] ; // c l i e n t f d s
6 uint8_t cl ient_sockets_num ; // amount c l i e n t f d s
7
8 uint16_t port ; // s e r v e r por t
9 bool d i s ab l ed ; // d i s a b l e d i n d i c a t i o n

10 } i n t e r f a c e s _ t ;
Listing 3.4: Typedefinition of a connection in Nyx-Net.

All active connections are saved in a list. The information saved in these connections is
updated and accessed throughout the whole fuzzing cycle. It is mainly used from inside
the hooks of socket related functions calls, and guides the communication with the target
program.

To enhance the speed of network targets during fuzzing and enable the injection of
custom fuzzing data, most network APIs are emulated, utilising an LD_PRELOAD
interceptor for common libc functions. LD_PRELOAD is a feature in the Linux dynamic
linker that allows users to preload shared object files into the address space of a process.
The LD_PRELOAD environment variable contains a list of shared object files that are
loaded by the dynamic linker before other shared object files. These files, referred to as
preload libraries, are injected into the address space of a process when it is launched.
By specifying LD_PRELOAD, the process’s function calls will be redirected to the
implementations within the preload libraries instead of the system libraries or other
shared object files. This mechanism allows users to override or extend the behaviour of
existing functions in a process without modifying its source code.

In Nyx-Net the hijacked functions are located in the directory
packer/packer/linux_x86_64-userspace/src/netfuzz/inject.c. The scope of the hooks
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encompasses a wide range of function calls such as read and recv, as well as APIs that
operate on file descriptors like dup and close. The hooks closely interact with the
connections described in listing 3.4, relying on their information and updating their
values when necessary. Nyx-Net emulates the behaviour of the real calls by returning
values that mimic their expected outcomes. For instance, in the case of read, the number
of bytes read is returned on success, while -1 is returned on error.

Target

The Target component represents the test program to be fuzzed. It runs together with
the agent inside the custom QEMU VM.

3.6.2 Incremental Snapshots

Network applications often maintain state between test cases or have expensive startup
routines. Taking a snapshot of the system’s state before executing each test case allows
for a deterministic reset, independent of the state and complexity of the startup routine.
Nyx-Net is able to reset the memory and some limited kernel state of target ring-3
processes to create a snapshot of a whole VM and to reset back to this snapshot after
each test. In conventional approaches, creating a snapshot involves duplicating the
physical memory and device state. However, due to the potential large size of physical
memory, it is desirable to avoid the complete copying and overwriting of memory with
every snapshot creation. To address this, Nyx-Net employs a technique where it monitors
and tracks the pages within the VM’s memory that have been modified since the start
of a test case execution. This enables Nyx-Net to avoid overwriting the entire memory
during snapshot creation and allows efficient and deterministic fuzzing of a whole OS and
even hypervisors. A modern Central Processing Unit (CPU) is equipped with hardware
acceleration capabilities that facilitate efficient monitoring of modified pages. The CPU
actively tracks and detects when a page is altered. After a certain number of pages
have been modified, reaching a predefined threshold (typically up to 512), the CPU
interrupts the VM context and informs the hypervisor about the affected pages. The
custom KVM used by Nyx-Net, saves these modified pages in a stack, allowing the fuzzer
to avoid searching for pages which need to be reset. Furthermore, Nyx-Net incorporates
a specialized reset mechanism for emulated devices, which offers significantly improved
performance compared to the default device serialisation and deserialisation routine of
QEMU.

When fuzzing complex target programs, it is common to encounter specific program
states that require a lengthy sequence of received messages to reach. For instance, if a
stream of 120 packets needs to be fuzzed, it may be more efficient to focus on mutating
and executing the input for only the last 20 packets in each test case. With Nyx-Net
this optimisation can be achieved by utilising incremental snapshots, allowing for the
creation and removal of snapshots after processing specific portions of the input.
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3.6.3 Fuzzing Example Server
The provided pseudocode in Listing 3.5 demonstrates the implementation of a target
program that emulates traditional server logic. The subsequent portion of this section
outlines the interaction between the fuzzer and the target program. This approach is
also applicable to other targets, making this description a guideline for understanding
the inner workings of the fuzzing process within the Agent component.

1 // . . . c r ea t e and bind socke t to por t 8080 . . .
2 l i s t e n ( server_fd , 3)
3
4 new_socket = accept ( server_fd , ( struct sockaddr∗)& address ,
5 ( socklen_t ∗)& addr len )
6
7 va l r ead = read ( new_socket , bu f f e r , 1024 ) ;
8
9 // . . . do something wi th r e c e i v ed data . . .

Listing 3.5: Pseudo server example.

The first injection of custom logic occurs when the target program invokes the listen
function on line 2. It calls the real listen 6 function and in the end forwards it’s return
value to the target program. Additionally, if not previously done, creates a new connection
(as defined in listing 4.9) with the port the socket file descriptor server_fd is bind to. If
another connection already exists for this port, it is updated rather than created anew,
ensuring that each port associated with the target program has only one corresponding
connection. Subsequent updates related to the connection with port 8080 will be managed
by this existing connection. The hook on the listen function also includes code to create
a new socket and connects it to the server address. As the Agent plays the role of a client
in this scenario, it also adds this newly created socket to the client_sockets attribute of
the connection.

During the hook of the call accept 7, the socket server_fd is added to the server_sockets
attribute of the connection.

At the time of writing, the Agent has one active connection with server_sockets containing
the socket file descriptor created by the target program, server_sockets_num and
client_sockets_num set to one, client_sockets containing the socket file descriptor created
by the Agent component itself, the port set to 8080 and both is_can and disabled set to
false.

While hooking the read 8 call, the Agent directly writes the data generated by the
mutation engine to the memory location pointed to by the variable buffer. This data is

6https://man7.org/linux/man-pages/man2/listen.2.html
7https://man7.org/linux/man-pages/man2/accept.2.html
8https://man7.org/linux/man-pages/man2/read.2.html
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subsequently available for further processing within the target program.
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CHAPTER 4
Prototype Implementation

The fuzzer Nyx-Net is constructed with the help of the Nyx framework 1. This framework
consists of various modules which can be used to build a custom fuzzer. In this thesis’
prototype the following three modules are used:

• Spec-Fuzzer 2: Serves as a fuzzing frontend with an advantage in handling
complex interactive sequences of actions, such as network packets, hypercalls,
syscalls, api-calls, or GUI interactions. This is achieved by expressing these actions
in a specification, which defines a set of functions with affine types, similar to
Rust functions. By chaining and combining these functions, the fuzzer generates
sequences of validly typed function calls. The specification is compiled into a
straightforward header-only bytecode interpreter. The format of this fuzzer allows
for the utilisation of incremental snapshots, which significantly accelerates the
fuzzing process.

• QEMU-Nyx 3: is a modified version of QEMU. It consists of several enhancements
to QEMU to enable various functionalities, such as Hypervisor-based snapshots,
Intel-PT based tracing, and REDQUEEN style magic byte resolution. The ex-
tensions make it possible to reset memory and devices, thus providing precise
disassembly of the running code even when some parts are swapped out or unavail-
able. Additionally, it facilitates Intel-PT decoding and allows code instrumentation
with breakpoint-based hooks. Moreover, it establishes seamless communication with
a fuzzing frontend, which can be based on libnyx 4, enabling a more comprehensive
and efficient fuzzing process.

1https://github.com/nyx-fuzz/nyx
2https://github.com/nyx-fuzz/spec-fuzzer
3https://github.com/nyx-fuzz/QEMU-Nyx
4https://github.com/nyx-fuzz/libnyx
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• Nyx-Packer 5: Is a packing tool designed specifically for Nyx virtual machines,
including those used in Nyx-Net. It serves as a versatile utility, capable of executing
a range of tasks to create a fully functional and comprehensive Share Folder. This
Share Folder houses all the data required to initiate and efficiently run the virtual
machines during the fuzzing process.

For the modules Spec-Fuzzer and Nyx-Packer it was not possible to update without main
changes, thus the same version where used as in the publication of the fuzzer Nyx-Net.
The module QEMU-Nyx is updated to the version of 13. April 2023.

This chapter describes the implementation of the prototype created within this thesis, it
aims to fuzz target programs utilising the SocketCAN interface. The chapter starts with
providing the reader with an overview of the introduced changes in section 4.1. Then, the
development setup is described in section 4.2. Sections 4.3 and 4.4 outline the changes
made regarding the VM setup. Sections 4.5 and 4.6 introduce new configuration options.
In section 4.7 to 4.9 details about the fuzzing process are specified and section 4.10 shows
how a crash found by the fuzzer can be reproduced manually. Section 4.11 ends this
chapter with a description of fuzzing an example target program which uses SocketCAN.

4.1 Changes Overview
To gain insight into the alterations made to Nyx-Net and to grasp the details discussed in
subsequent sections, figure 4.1 presents the newly introduced changes. It incorporates the
Nyx-Net overview depicted in figure 3.5 and highlights the additions and modifications.
The adaptions are distinguishable with a distinct font style and are highlighted in red.
Whenever an entire component is altered or a new one is introduced, it is encompassed
within a blue box for clear identification.

To enhance the convenience of working with the fuzzer following user scripts are added:

• all_canlinux.sh: Takes care of compiling all the necessary components and
initiating the fuzzing process of a SocketCAN target.

• canreceive_rust_fuzzer_debug.sh: After a crash is discovered, this file can
be executed to generate a more readable crash input.

• can-send-data.py: Proves useful in sending the crash input to a target program
running on the host, allowing for easy reproduction and further investigation of the
crash.

• all_dnsmasq.sh: Compile and fuzz the target dnsMasq, which was already part
of Nyx-Net.

5https://github.com/nyx-fuzz/packer
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Figure 4.1: Overview of changes within the new fuzzer. Changes are marked red and
blue.

Inside the Share Folder the specifications, seeds and configurations have changed. A new
specification for fuzzing input has been introduced, specifically designed for handling
the creation of data sent over a CAN interface. This updated specification makes use
of multiple seed inputs in the form of PCAP files, each containing relevant information
about CAN messages suitable for target programs that utilise a CAN interface. Addi-
tionally, certain modifications have been made to the configuration process when fuzzing
CAN targets. These changes to the specifications, seeds, and configurations have been
implemented to enhance the efficacy and success of the fuzzing process, when dealing
with CAN targets.

The new fuzzer provides the option for users to enable a CAN mode when necessary. It is
essential to enable this mode only when the target program utilises a CAN interface, as
otherwise it could lead to undesired behaviour especially in regards to the communication
from the Agent to the Target. Inappropriately injecting fuzzing input of type can_frame
or canfd_frame when the communication does not occur through a CAN interface is not
desirable. Therefore, it is important to ensure that this mode is activated only when the
CAN interface is in use by the target program. By default, the newly introduced CAN
mode remains disabled, ensuring that the fuzzer operates just as it did before all these
modifications were made.

The virtual machine’s operating system has undergone a significant overhaul, resulting in
a fresh, minimalistic Linux installation with integrated CAN bus support. Additionally,
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the Linux Kernel has been upgraded to a newer version. These changes now enable the
option to start the operating system with or without CAN support, ensuring that the
original functionality of Nyx-Net remains intact without any disruption. When CAN
support is enabled, a CAN interface is active within the operating system, allowing
target programs to interact with it. This CAN interface within the virtual machine
communicates with a corresponding virtual CAN interface on the host system.

The Agent component has undergone most of its updates regarding the connection
management and socket emulation. These changes are active only if the CAN mode is
enabled. Regarding the connections to the target, the logic for creating new ones and
determining the existence of a them has been altered. As for the socket emulation, the
primary focus has been on providing appropriate fuzzing input to the target program.
Although the Agent still utilises system call hooks to inject input, the process is not as
straightforward as before. While there have been considerable changes, it’s essential to
note that not the entire Agent’s code has been overhauled, as much of the existing logic
from Nyx-Net remains applicable to targets utilising a CAN interface.

4.2 Local Setup
Before making any adaptations to the fuzzer Nyx-Net, it is essential to verify that it is
set up to carry out the fuzzing process successfully. This is ensured by enabling Nyx-Net
to fuzz one of the example targets provided. The development environment comprises a
machine with Ubuntu 22.04 LTS and Linux kernel version 5.19.0-46-generic. This section
outlines all the necessary changes to enable successful fuzzing with Nyx-Net on that
machine.

To begin the setup process, it is recommended to start with a clean installation of
Ubuntu. The packages that need to be installed include pkg-config, build-essential, curl
and libgtk-3-dev, without these packages the fuzzer will not compile.
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Compilation errors

There is a problem when using a Rust version greater than 1.53.0 for compiling the
fuzzer. An error is thrown that states reference to packed field is unaligned. A more
comprehensive explanation of this issue can be found in the tracking issue on GitHub 6.
As a temporary solution to this problem, it is currently recommended to install and
use Rust version 1.53.0. This can be achieved by executing the commands provided in
listing 4.1.

1 c u r l −−proto ’=https ’ −−t l s v 1 . 2 −sS f https : // sh . rustup . r s | sh
2 sudo snap i n s t a l l rustup −−c l a s s i c
3 rustup i n s t a l l 1 . 5 3 . 0
4 rustup o v e r r i d e set 1 . 5 3 . 0

Listing 4.1: Commands to install Rust version 1.53.0.

Another encountered error while running the fuzzer is related to the usage of the transmute
function in Rust. In Rust, the transmute function allows for reinterpretation of data
types, but is restricted to constant expressions and static variables to ensure safety. The
specific error message displayed is: ’transmute’ is only allowed in constants and statics
for now. The issue lies in the file .cargo/registry/src/github.com-1ecc6299db9ec823/nix-
0.26.2/src/sys/time.rs. The .cargo folder is automatically generated by Cargo, the Rust
package manager, and contains essential configuration files and project-specific data. To
resolve this problem, the nix package, where the error occurs, needs to be downgraded to
version 0.25.1 or lower. This is necessary because Rust version 1.53.0 is required, and it
is not compatible with the latest version of nix (0.26.2).

6https://github.com/rust-lang/rust/issues/82523
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VMWare backdoor

To ensure proper functioning of the fuzzer, it is necessary to enable the VMware backdoor.
It is a feature to increase the performance of virtual machines running on hypervisors
within the KVM kernel module. (see section 3.4.1 for a detailed description)

Activating the VMware backdoor involves passing specific parameters to the KVM modules
during the reloading process. Enabling this virtualisation support can be accomplished
by using the commands provided in listing 4.2. The modules kvm and kvm-intel are
getting removed, and then added again with the option enable_vmware_backdoor set to
yes. By following these steps, the fuzzer can fully harness the capabilities of the VMware
backdoor, optimizing the performance of virtual machines and enhancing the overall
efficiency of the fuzzing process.

1 sudo modprobe −r kvm−i n t e l
2 sudo modprobe −r kvm
3 sudo modprobe kvm enable_vmware_backdoor=y
4 sudo modprobe kvm−i n t e l

Listing 4.2: Commands to enable VMware backdoor support.
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LLVM version

LLVM is a powerful compiler infrastructure designed to optimize and compile source
code for various CPUs. (see section 3.5 for a detailed description) Ubuntu 22.04 comes
pre-installed with LLVM version 14. However, since Nyx-Net utilises AFL, which requires
LLVM with a version lower than 12, it becomes necessary to manually install the
compatible LLVM version to ensure the successful compilation of AFL, hence the correct
fuzzing with the fuzzer. In the development setup, LLVM version 11 is installed.

Listing 4.3 provides a comprehensive and step-by-step procedure to set up LLVM and
Clang with version 11. The first step involves configuring the system to be able to fetch
and install packages from the LLVM repository. To be able to install LLVM packages
especially with version 11, the repository l lvm-toolchain-bionic-11 is added to the list of
software sources used by the package manager in Ubuntu. In the next step, the individual
packages are installed, which are llvm-11, lldb-11, llvm-11-de and libllvm11. After
successfully installing the required LLVM packages, the update-alternatives command
is used to update the alternatives for the llvm-config command in Ubuntu. This allows
users to switch between different versions of llvm-config in a convenient way. In this
example the version 11 of the command is added as alternative, and also set as default.

A similar process is followed to set up Clang with version 11. Clang is a part of the
LLVM project and serves as a language front-end and tooling infrastructure for languages
in the C family. First the needed packages (clang-11, lldb-11, lld-11 ) are installed, and
with the commands update-alternatives and ln, the default is set to version 11 whenever
Clang is used.

1 sudo wget −−no−check−c e r t i f i c a t e −O \
2 − https : // apt . l lvm . org / llvm−snapshot . gpg . key \
3 | sudo apt−key add − && \
4 sudo add−apt−r e p o s i t o r y ’ deb␣ http :// apt . l lvm . org / b i o n i c /␣\
5 ␣␣ llvm−too l cha in −bion ic −11␣␣main ’ && \
6 sudo apt−get i n s t a l l llvm −11 l ldb −11 llvm−11−dev l i b l l vm11 \
7 llvm−11−runtime −y && \
8 sudo update−a l t e r n a t i v e s −−i n s t a l l / usr / bin / llvm−c o n f i g \
9 llvm−c o n f i g / usr / bin / llvm−conf i g −11 11 && \

10 sudo update−a l t e r n a t i v e s −−c o n f i g llvm−c o n f i g && \
11 sudo apt i n s t a l l c lang −11 l ldb −11 l l d −11 −y && \
12 sudo update−a l t e r n a t i v e s −−i n s t a l l / usr / bin / cc cc \
13 / usr / bin / clang −11 100 && \
14 sudo update−a l t e r n a t i v e s −−i n s t a l l / usr / bin /c++ c++ \
15 / usr / bin / c lang++−11 100 && \
16 sudo ln −s / usr / bin / clang −11 / usr / bin / c lang && \
17 sudo ln −s / usr / bin / c lang++−11 / usr / bin / c lang++

Listing 4.3: Commands to install LLVM and Clang version 11.
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4.3 QEMU CAN Support

To ease the development of the fuzzer on a target utilising SocketCAN, CAN support
within the QEMU environment is enabled. This configuration allows programs running
inside the VM to access and interact with a running CAN interface on the host system.
When initialising a QEMU VM, the Fuzzer component configures the virtual environment.
It must start the VMs with the correct parameters which are shown in the code snippet 4.4.

1 cmd . push ( "−ob j e c t " . to_st r ing ( ) ) ;
2 cmd . push ( " can−bus , id=canbus0 " . to_st r ing ( ) ) ;
3 cmd . push ( "−ob j e c t " . to_st r ing ( ) ) ;
4 cmd . push ( " can−host−socketcan , id=canhost0 , i f=can0 ,
5 ␣␣␣␣␣␣␣␣␣␣canbus=canbus0 " . to_st r ing ( ) ) ;
6 cmd . push ( "−dev i c e " . to_st r ing ( ) ) ;
7 cmd . push ( " kvaser_pci , canbus=canbus0 " . to_st r ing ( ) ) ;

Listing 4.4: Changes in the fuzzer component (fuzzer/libnyx/-
fuzz_runner/src/nyx/params.rs) to enable CAN support in all VMs.

In order for programs within the VM to utilise the CAN interface of the host system, two
additional steps must be executed. First, a CAN interface needs to be set up with a defined
bitrate, the bitrate determines the speed of data transmission on the CAN bus, indicating
the number of bits that can be transmitted per second. The second step involves bringing
up the CAN interface, activating it for data communication. Both of these steps must be
performed within the running VM. To accomplish this, the code provided in listing 4.5 is
added to the fuzzing setup script located in targets/extra_folders/canlinux/setup.sh. The
used ip link command is a Linux networking utility used for configuring and managing
network interfaces on a system. It allows users to view, add, remove, and modify network
interfaces, as well as set their properties and states.

1 // s e t b i t r a t e
2 ip l i n k s e t can0 type can b i t r a t e 1000000
3 // i n i t CAN i n t e r f a c e
4 ip l i n k s e t can0 up

Listing 4.5: Setup for enabling CAN inside the VM.

The easiest option to listen to messages send and received from a target program is
the command line tool candump 7. It is part of can-utils 8, a collection of useful tools
regarding SocketCAN. A more detailed description of available tools can be found in
section 5.5.1.

7https://manpages.debian.org/testing/can-utils/candump.1.en.html
8https://github.com/linux-can/can-utils
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4.4 Minimal Linux
The Agent and Target components are executed within a VM that runs a minimal Linux
installation supporting the CAN interface. This minimal Linux uses a Linux kernel
version 6.2.11 with CAN bus subsystem support. This system was created with the help
of Buildroot 9, a tool designed for generating embedded Linux systems through cross-
compilation. Relevant configuration details can be found in listing 4.6, it uses the sample
toolchain x86_64-unknown-linux-gnu from the toolchain generator crosstool-NG 10 and
enables recent kernel headers and glibc support. Additionally, Buildroot is instructed to
generate a cpio archive for the root filesystem and enables the iproute2 11 utilities.

1 Toolchain −> Toolchain type −> External t oo l c h a i n
2 Toolchain −> Toolchain −> Custom t oo l c h a i n
3 Toolchain −> Toolchain o r i g i n −> Pre−i n s t a l l e d t oo l c h a i n
4 Toolchain −> Toolchain path −> ~/x−t o o l s /x86_64−unknown−l inux −gnu
5 Toolchain −> Toolchain p r e f i x −> x86_64−unknown−l inux −gnu
6 Toolchain −> External t o o l c h a i n ke rne l headers s e r i e s
7 −> 6 . 1 . x or l a t e r
8 Toolchain −> External t o o l c h a i n C l i b r a r y −> g l i b c
9 Fi l e sys tem images −> cpio the root f i l e s y s t e m −> yes

10 Fi l e sys tem images −> cpio the root f i l e s y s t e m
11 −> Compression method −> gz ip
12 Target packages −> Networking a p p l i c a t i o n s −> iproute2 −> yes

Listing 4.6: Minimal Linux configuration used by the new prototype fuzzer.

4.5 CAN_MODE
In order to avoid disrupting Nyx-Net’s functionality while introducing new features, a
new environment variable called CAN_MODE is introduced. If this variable is enabled,
the fuzzer utilises different logic during the fuzzing process. To activate the CAN_MODE
the user must provide the option nyx_net_can when using the Nyx-Packer for creating
the Share Folder.

By employing this mode, the fuzzer is also capable of fuzzing targets that simultaneously
utilise traditional sockets (e.g., with domain AF_INET) and sockets employing a CAN
interface. In this scenario, the fuzzer primarily generates appropriate inputs for the
CAN sockets, but also injects data into the other type of sockets. This functionality
can be modified by adjusting the specification of the target input (see section 4.8 for
more information). Given the focus of this thesis on SocketCAN targets, this approach
appears to be fitting.

9https://buildroot.org/
10https://crosstool-ng.github.io/
11https://wiki.linuxfoundation.org/networking/iproute2
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4.6 CAN_SPEC_TEST_MODE
To assess the efficacy of the formulated input specification for SocketCAN targets, a new
mode named CAN_SPEC_TEST_MODE is introduced. This mode functions as an
environment variable, analog to the behaviour of CAN_MODE, and can be configured
using the can_spec_test_mode option within the Nyx-Packer tool when generating the
designated Share Folder. This enhancement adds a practical dimension to the testing
process, allowing for user friendly assessments of the input specification within SocketCAN
targets.

When this environment variable is set, the fuzzer does not hook the libc syscall write,
and thus it is possible for a target program to write data on the CAN interface inside
the virtual machine. From the interface on the host system, the messages can then be
observed and analyzed.

By executing the file all_can_spec_test.sh, users have the option to activate this envi-
ronment variable and subsequently generate an output of all data produced through the
input specification. This file serves as a trigger for a series of tasks, encompassing:

• Initiate the fuzzing process for the target program can_spec_test.c. This particular
file is designed solely to utilise the system call write 12 for sending the received
CAN messages through the CAN interface.

• On the host system a new terminal is opened and the command candump any
is executed. This command will generate output showcasing all the messages
transmitted by the target program running within the virtual machine of the fuzzer,
and thus all the fuzzing data created with the help of the defined target input
specification.

• By monitoring the terminal where candump is running, all the generated input
which is being injected into the target program can be observed. If necessary, it is
possible to modify the candump command to record the observed messages into a
file, facilitating subsequent analysis.

12https://man7.org/linux/man-pages/man2/write.2.html

38

https://man7.org/linux/man-pages/man2/write.2.html


4.7. Fuzzing Workflow

4.7 Fuzzing Workflow
The fuzzing workflow for a target is depicted in figure 4.2. Detailed explanations of each
step are presented in the related subsections, which will additionally guide the reader on
making any necessary adaptations. To facilitate the execution of all the required steps, it
is enough to run the file all_canlinux.sh.

Figure 4.2: Fuzzing workflow.

Setup

Running setup.sh compiles an AFL clang compiler, the custom version of QEMU and
two additional tools it depends on: capstone 13, a disassembly framework, and libxdc 14,
an Intel-PT decoding library. These tools are used to analyse and understand the
behaviour of the target programs during the fuzzing procedure. It also compiles the
Fuzzer component, which incorporates an additional debugging version specially designed
for reproducing any crashes encountered during the fuzzing process. The procedure for
reproducing such crashes is thoroughly explained in section 4.10. Furthermore, running
setup.sh involves the process of preparing the initial RAM file system for starting the
VMs.

Build target

Executing the file targets/setup_scripts/canlinux/build.sh uses the AFL clang compiler
to build the target program.

13https://github.com/capstone-engine/capstone
14https://github.com/nyx-fuzz/libxdc
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Create share folder

Running file targets/packer_scripts/pack_canlinux.sh uses the Nyx-Packer tool to create
the Share Folder for the target program. The invocation to the packer is shown in
listing 4.7. The option –nyx_net_can enables the CAN_MODE, -spec takes a path
pointing to the specification of suitable fuzzing input, and the path in –setup_folder
contains necessary files to prepare the fuzzer. Once the process is complete, the Share
Folder is prepared and ready for utilisation by the Fuzzer component.

1 python3 nyx_packer . py <path to compiled target > <output path> m64 \
2 −−afl_mode \
3 −−purge \
4 −−nyx_net \
5 −−nyx_net_can \
6 −spec . . / spec s / can l inux / \
7 −−setup_fo lder . . / ex t r a_ fo ld e r s / can l inux && \

Listing 4.7: Packacking of a SocketCAN target program using the Nyx-Packer tool.

The last step before running the fuzzer involves generating the configuration for the VM
and the Kernel. This is accomplished by running the file nyx_config_gen.py.

Fuzz

In the directory fuzzer/rust_fuzzer run the command
cargo run –release –verbose – -s ../../targets/packed_targets/nyx_canlinux/.

4.8 Target Program Input Specification
The input specification for a target program that receives data through a SocketCAN
interface can be found in the directory targets/specs/canlinux. It includes:

• seed inputs

• the file send_code_raw.include.c, specifying how the Agent receives the fuzzing
input

• the file nyx_net_spec.py, containing the specification logic
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Figure 4.3: Wireshark trace of CAN messages.

The seed inputs consist of PCAP files containing sets of CAN messages. Figure 4.3
displays an example output in Wireshark before being exported as PCAP files.

Executing the file send_code_raw.include.c copies the fuzzing input values created by
the mutation engine to a memory location the Agent component is able to access.

The specification of the fuzzing input is defined in the Python file nyx_net_spec.py.
This file serves as the blueprint for generating target inputs used during the fuzzing
process. The specification is designed as a directed acyclic graph, consisting of multiple
interconnected nodes that define the structure and rules for creating valid inputs. When
dealing with SocketCAN targets, the specification involves two main nodes. The first node
is responsible for creating snapshots, utilising kAFL hypercalls, which provides developers
with a convenient way to manage and manipulate snapshots during the fuzzing process.
These snapshots are essential for preserving the target program’s state and ensuring
reproducibility during fuzzing. The other node contains the input definition, including its
data type, data restrictions, and the content of the file send_code_raw.include.c. This
node ensures that the generated inputs adhere to the expected format and constraints.
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The payload of the seed inputs provided as PCAP files can be extracted using a few lines of
Python code, as demonstrated in listing 4.8. This capability allows for easy integration of
existing data and real-world scenarios into the fuzzing process. The resulting specification
is then made accessible within the Share Folder, ready to be utilised by the Fuzzer
component.

1 for path in glob . g lob ( " pcaps /∗ . pcap " ) :
2 cap = pyshark . Fi leCapture (
3 path , d i s p l a y _ f i l t e r=" can " ,
4 include_raw=True , use_json=True
5 )
6
7 for pkt in cap :
8 i f int ( pkt . data . len ) != 0 :
9 data = bytearray . fromhex ( pkt . data . data_raw [ 0 ] )

10 # . . . add data to mutation engine . . .
11 cap . c l o s e ( )

Listing 4.8: Example of extracting payload data from CAN messages exported as PCAP
files.

Add new target

For simple SocketCAN target programs it should be enough to put the source code and
everything needed to build the program into the folder additional-files/canLinuxExample.
For more advanced target’s it is possible to add and adapt certain configurations. This
document should provide the reader with enough information for doing that, especially
the specific steps highlighted in section 4.7 are directing the reader to the most critical
aspects. The high level process of fuzzing a new advanced target program is to run
the program locally, transmit packets using tools such as cansend [4] or similar utilities,
trace the sent packets using tools like Wireshark, and transform the traced packets into
suitable input the fuzzing engine can work with.
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4.9 Agent
Figure 4.4 presents a high-level overview of the Agent’s socket emulation, offering clarity
on how communication with the Target component is done. This diagram aims to simplify
the understanding of the more detailed explanations regarding the functioning of the
Agent component.

Figure 4.4: Agent socket emulation overview inside the fuzzer.

The Agent component maintains a list of all active connections established with the
target. These connections store essential information about the associated socket and
the nature of the connection. The Agent effectively utilises libc function hooks to modify
connection attributes, but also to receive certain information.

The libc functions within the target program can be classified into two domains. Firstly,
there are functions responsible for creating, updating, or closing sockets, primarily hooked
by the Agent to prepare for injecting the appropriate fuzzing input. Secondly, there
are libc function calls used by the target program to receive data, such as the read 15

function. By intercepting these calls, the hooks are changing the functions behaviour
with the end goal of injecting data into the target. The data is provided by the mutation
engine, which is using the input specification to create suitable fuzzing input.

15https://man7.org/linux/man-pages/man2/read.2.html
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4.9.1 Connection Management
As described in section 3.6.1 the Agent holds a list of custom connections (see 3.4) including
important information for guiding the fuzzing process. However, when dealing with
SocketCAN target programs, specific adaptations need to be made to those connections.
Unlike regular target programs, which are bound to specific ports, SocketCAN target
programs receive data through the CAN interface, making port-based identification
unsuitable for the program logic. To overcome this challenge, new functionality for the
connections is introduced. A boolean variable is now included in the connection structure,
serving as an indicator of a CAN connection. In CAN_MODE, the fuzzer relies on
this new boolean variable to determine the presence of a connection instead of the port,
which was the norm before these changes were introduced. The updated definition of the
adapted connection structure can be observed in listing 4.9. These adaptations ensure
that the fuzzer remains flexible and capable of handling different types of target programs,
including those utilising the SocketCAN interface.

1 typedef struct i n t e r f a c e s _ s {
2 int s e rve r_socke t s [ 8 ] ; // s e r v e r sock e t f d s
3 uint8_t server_sockets_num ; // amount s e r v e r s o c k e t s
4 int c l i e n t _ s o c k e t s [ 8 ] ; // c l i e n t s o c k e t f d s
5 uint8_t cl ient_sockets_num ; // amount c l i e n t s o c k e t s
6 uint16_t port ;
7 bool is_can ;
8 bool d i s ab l ed ;
9 } i n t e r f a c e s _ t ;

Listing 4.9: Adapted type definition representing a connection within the new fuzzer.
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4.9.2 Target Input Injection

1 read ( int fd , void ∗buf , s i z e_t count )
Listing 4.10: Read syscall definition.

In scenarios where the target program does not receive data via the SocketCAN interface,
the fuzzer’s Agent component is equipped to directly write the payload into the buffer
utilised by the libc calls. For instance, in case of the read function, as depicted in
listing 4.10, the fuzzer would typically inject the fuzzing input directly into the memory
address pointed to by buf parameter. However, when the target program utilises the
SocketCAN interface, the structure pointed to by the buf parameter takes the form of
a can_frame 3.1 or a canfd_frame 3.2. The problem is now that the fuzzers mutation
engine generates values solely for the data attribute of these two structs. To tackle this
issue the Agent constructs a CAN(FD) specific frame and writes it to the address of
buf when running in CAN_MODE. Doing it only while CAN_MODE is enabled the
adaptions do not interfere with the logic of fuzzing classical socket based targets. In the
current implementation the CAN(FD)’s ID, length and data attributes are set. This is
enough to fuzz most of the SocketCAN targets. To get the ID needed for constructing the
frame, the Agent hooks the system call getsockopt 16. This allows the Agent to retrieve
a variable of type can_filter, which holds the CAN filters defined by the target program.
A sample code for retrieving the ID is shown in listing 4.11.

1 struct c a n _ f i l t e r f i l t e r ;
2 socklen_t opt l en = s izeof ( f i l t e r ) ;
3 get sockopt ( socket_fd , SOL_CAN_RAW, CAN_RAW_FILTER, &f i l t e r , &opt l en )
4 // CAN f i l t e r ID now in f i l t e r . can_id

Listing 4.11: Example of retrieving a CAN ID from a socket used in the target.

The other values, length and data, are provided by the mutation engine. Having all values
present, a CAN(FD) specific frame can now be constructed and written to the memory
address pointed to by the paramter buf. A simplified example is seen in listing 4.12.

1 struct can_frame frame ;
2 frame . can_id = used_can_f i l t e r . can_id ;
3 frame . l en = num_copied ; // from mutation engine
4 // data_buf f e r conta ins the data prov ided by the mutation engine
5 memcpy( frame . data , &data_buf fer [ next_data ] , num_copied ) ;

Listing 4.12: Example of extracting target input if SocketCAN is used.

The decision to limit the mutation engine’s involvement to the data section of a CAN
message was intentional. By ensuring that the CAN ID and data length are always set

16https://man7.org/linux/man-pages/man2/setsockopt.2.html
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to their correct values, the risk of false positive encountered crashes is minimized, and
the potential for reaching deeper program states during fuzzing is increased.

4.10 Crash Reproduction Workflow
Figure 4.5 illustrates all the steps to manually reproduce a crash found by the fuzzer.
The remaining section contains a detailed description of the steps included.

Figure 4.5: Steps to reproduce a crash.

• Crash found: Execute all_canlinux.sh to start fuzzing and wait until a crash is
found. For a comprehensive description of the fuzzing process itself see section 4.7.

• Fuzz in debug mode: Execute canreceive_rust_fuzzer_debug.sh to run the fuzzer
in debug mode. This saves the inputs which caused a crash to /tmp/workdir/cor-
pus/crash_reproducible/.

• Run target locally: Run the target locally listening on CAN interface with name
can0.

• Crash target locally: This can be done through running the script can-send-data.py
with the target input as argument:

packer/packer/can-send-data.py /tmp/workdir/corpus/crash_reproducible/<file name>

can-send-data.py, the file which helps to crash a target locally, is able to operate with
input that represents a can_frame 3.1 or canfd_frame 3.2 message in byte format. In this
context a can_frame message is always 16 bytes long, with the first 8 bytes representing
the CAN ID and the trailing 8 bytes containing the payload data. A canfd_frame message
is only different in the length of the payload being 64 bytes. The script uses the Python
library python-can 17 to send a CAN message.

In the current implementation, it is assumed that the CAN filter is set with a mask of
0xFF0, indicating that the lower 4 bytes of the 8 byte CAN ID are not used. Therefore,
only the first four bytes need to be considered when extracting the CAN ID. To obtain
the ID used in the target program, the individual bytes are transformed from little-endian
to big-endian. The same transformation is done for the payload to get the correct values.
Subsequently, a CAN message comprising these two values is transmitted through the
CAN interface named can0.

17https://python-can.readthedocs.io/en/stable/
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If the target program that encountered the crash, detected by the fuzzer, is configured to
receive messages on the can0 interface, the reproduction of the crash should be achievable
with this approach.

The following example should make the workings of can-send-data.py more understandable.
Considering the bytes 50 05 00 00 08 FE 0C 25 00 06 01 00 FF 08 00 00 as input for the
script, the CAN ID is calculated by transforming the first four bytes from little-endian
format to big-endian, which results in 05 50 and from the last 8 bytes the payload,
respectively the data part of the can_frame 3.1 is calculated the same way and results
in 00 00 08 ff 00 01 06 00. These values are then included in a CAN message and send
through the CAN interface to the target program.This takes the input provided by the
fuzzer running in debug mode and sends it to the target program.

4.11 Fuzzing Example Server SocketCAN

This section provides a simplified description of reading from the SocketCAN interface,
aiming to provide readers with sufficient information to understand the fuzzing process
of these programs. Further, it outlines the behaviour of the fuzzer’s Agent component. It
primarily delves into the hooking of specific libc calls. The described logic represents one
fuzzing round, which is repeated multiple times during the whole fuzzing process of a
target. In subsequent rounds, no new connection is established, but the injected fuzzing
input varies from round to round.

The fuzzing targets in this thesis are C programs that communicate with CAN devices
using the SocketCAN interface. For communication raw socket protocols are used and
the name of the SocketCAN interface is always can0. Definitions for the CAN network
layer and the raw CAN sockets can be found in the Linux header files linux/can.h 18

and linux/can/raw.h 19. Comprehensive information about the SocketCAN package is
available in the official documentation 20.

To begin communication over a CAN interface, the first step is to open a socket using
the socket21 system call. As the raw socket approach is used, the arguments PF_CAN,
SOCK_RAW, and CAN_RAW are specified, representing the domain, type of socket,
and protocol family, respectively. Example code is shown in listing 4.13.

1 int s ;
2 s = socket (PF_CAN, SOCK_RAW, CAN_RAW) ;

Listing 4.13: Example of creating CAN socket.

18https://github.com/linux-can/can-utils/blob/master/include/linux/can.h
19https://github.com/linux-can/can-utils/blob/master/include/linux/can/raw.

h
20https://docs.kernel.org/networking/can.html
21https://man7.org/linux/man-pages/man2/socket.2.html
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Next, the created socket binds to the CAN interface. To do this the correct address
has to be provided to the bind 22 system call. The address family is set to PF_CAN,
which corresponds to the socket type. To ensure that the socket is bound to the correct
interface, the interface index of the address is set to the CAN interface with the name
can0. The index is obtained using the ioctl 23 system call. Refer to Listing 4.14 for the
code example.

1 struct sockaddr_can addr ;
2 struct i f r e q i f r ;
3
4 addr . can_family = PF_CAN;
5 s t r cpy ( i f r . ifr_name , " can0 " ) ;
6 i o c t l ( s , SIOCGIFINDEX, &i f r ) ;
7 addr . can_i f index = i f r . i f r _ i f i n d e x ;
8 bind ( s , ( struct sockaddr ∗)&addr , s izeof ( addr ) ) ;

Listing 4.14: Example of binding to CAN socket.

It is possible to filter out CAN messages the program receives. This is commonly
done in practice but not mandatory. The filtering process occurs at the driver level,
providing more efficiency compared to filtering each frame in the user-mode application.
To establish a filter, an array of can_filter structures is passed to the setsockopt 24 system
call. A can_filter struct consists of a can_id and can_mask and the filter matches
if <received_can_id> & can_mask == can_id & can_mask. In the provided code
snippet 4.15, the program receives only messages with an CAN ID of 0x550. The CAN
mask is set to 0xFF0, indicating that the lower 4 bytes of the CAN ID are not considered
in the filtering process.

1 r f i l t e r [ 0 ] . can_id = 0x550 ;
2 r f i l t e r [ 0 ] . can_mask = 0xFF0 ;
3 s e t sockopt ( s , SOL_CAN_RAW, CAN_RAW_FILTER, &r f i l t e r , s izeof ( r f i l t e r ) ) ;

Listing 4.15: Example of filtering CAN messages.

22https://man7.org/linux/man-pages/man2/bind.2.html
23https://man7.org/linux/man-pages/man2/ioctl.2.html
24https://man7.org/linux/man-pages/man3/setsockopt.3p.html
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To receive messages, various functions associated with reading from a socket can be used.
In this case, the read 25 function is utilised, which writes the received message into a
buffer of type can_frame 3.1 or canfd_frame 3.2. An illustrative code snippet can be
found in listing 4.16.

1 struct can_frame frame ;
2 read ( s , &frame , s izeof ( frame ) ) ;

Listing 4.16: Example of reading CAN messages.

Upon the invocation of the bind function presented in listing 4.14, the Agent intercepts
the call and performs two actions. Firstly, it invokes the actual bind 26 function to
complete the socket binding process. Additionally, it prepares the fuzzer for future
interactions with this socket. If there is no existing connection to a CAN interface, the
Agent creates a new connection (see 4.9), adds the target program’s socket file descriptor
to the server_sockets attribute, increments the value of server_sockets_num by one, sets
is_can to true and includes this connection in the list of active connections. Subsequently,
all communication of the target program via the SocketCAN interface is managed through
this established connection. Assuming the socket file descriptor has value 1, listing 4.17
shows the state of the existing connection after these steps.

1 s e rve r_socke t s = [ 1 ]
2 server_sockets_num = 1
3 c l i e n t _ s o c k e t s = [ ]
4 cl ient_sockets_num = 0
5 port = <empty>
6 is_can = true
7 d i s ab l ed = f a l s e

Listing 4.17: Connection state as described in listing 4.9 after bind hook.

The next call intercepted by the Agent is read (see listing 4.16). Because there exists a
connection to the socket the target program reads from, fuzzing input is injected. This
is done the following way: The frame argument of the read call is expected to be of
type can_frame 3.1, Thus, the Agent generates a new can_frame with the can_id set
according to the socket options, the data field populated with the bytes from the mutation
engine, and the len field indicating its length. Listing 4.18 shows the values of the frame.

1 can_id = 0x550
2 l en = 8
3 data = 0102030405060708

Listing 4.18: CAN frame values which are injected into target program.

25https://man7.org/linux/man-pages/man2/read.2.html
26https://man7.org/linux/man-pages/man2/bind.2.html
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This newly created can_frame is then written to the memory address pointed to by the
frame parameter. The function returns the size of the created can_frame, or -1 if an
error occurs during execution.

Following the call to read, the target program would proceed to handle the received input
stored in the frame variable. If the target program closes the socket, the connection
created in the Agent component is deleted.
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CHAPTER 5
Evaluation

This chapter undertakes the evaluation of the prototype fuzzer formulated and developed
as a part of this thesis. Evaluation serves as the process to assess the extent to which the
designed solution aligns with its intended objectives and successfully meets requirements.

The chapter starts by outlining the specifics of the evaluation setup, followed by the
evaluation of the fuzzer Nyx-Net (without changes). Prior to delving into the assessment
of test cases affiliated with SocketCAN, a representative target program that employs
TCP sockets is evaluated in section 5.3. Following this preliminary evaluation, the focus
of assessment pivots towards targets reliant on the SocketCAN protocol. The evaluation
encompasses a spectrum of target programs, characterized by varying behaviours and
degrees of complexity, aiming to provide a comprehensive insight into the fuzzer’s
capabilities.

5.1 Setup

The prototype fuzzer is developed and tested on a laptop possessing the following
specifications:

• Memory: 16 GiB

• Processor: 12th Gen Intel Core i7-1260P × 16

• OS: Ubuntu 22.04.2 LTS

• Linux Kernel: 5.19.0-50-generic
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Fuzzer configuration

There are three ways of fine-tuning the fuzzers configuration, snapshot scheduling, parallel
fuzzing and adaption of the target’s input specification:

• Snapshot scheduling: The fuzzer offers the flexibility of selecting the point at which
an incremental snapshot is taken, this feature is already integrated into Nyx-Net
and is not changed in any way for this thesis’ implementation. Three snapshot
scheduling strategies are available: Nyx-Net-none, Nyx-Net-balanced, and Nyx-Net-
aggressive. In the Nyx-Net-none strategy, only the root snapshot is chosen, and
no incremental snapshots are taken. With the Nyx-Net-balanced strategy, inputs
containing more than four packets select the root snapshot 4% of the time, while
others randomly choose an index in either the entire sequence or the second half.
The Nyx-Net-aggressive strategy initiates snapshots at the end of an input the first
time, then progressively shifts the snapshot earlier by one packet every 50 iterations
if no new inputs are discovered. Once the earliest index is reached, the process
restarts from the input’s end. This dynamic approach allows the fuzzer to exploit
incremental snapshots more effectively, considering a balance between snapshot
timing and the exploration of different paths in the sequence.

• Parallel fuzzing: This can be activated by utilizing the -t parameter when initiating
the fuzzer. This parameter specifies the number of concurrent running fuzzer
instances.

• Adapt target input specification: As outlined in section 4.8, the provision of seed
inputs can influence the fuzzer’s behaviour. When these seed inputs are closely
related to potential crash-triggering inputs, there’s a higher probability that the
fuzzer will generate such inputs. Another way is to establish rules for the fuzzing
input using regular expression. However, this thesis doesn’t delve into this method,
because as indicated in the Nyx-Net paper, fast performance is attainable by solely
providing seed inputs without requiring an intricate protocol-specific description.

5.2 Evaluation of Setup
Prior to starting the creation of the new prototype fuzzer capable of fuzzing targets
utilising SocketCAN, it is imperative to complete the setup of Nyx-Net. To validate if
the fuzzer is able to run, the target example dnsMasq, which is already included in the
Nyx-Net fuzzer, is fuzz tested.

Following the adjustments outlined in section 4.2, it becomes feasible to conduct fuzzing
on dnsMasq. The testing session was executed for a duration of 20 minutes, which
was to short to find crashes. To ensure the continued effectiveness of the fuzzer after
implementing modifications, a set of simpler test targets with introduced vulnerabilities
are created. Detailed descriptions of these targets can be found in both Section 5.3 and
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Section 5.5. These targets are structured in a manner that facilitates the fuzzer’s ability
to uncover program crashes within a reasonable amount of time.

One of the initial modifications implemented for the new fuzzer involved replacing the
operating system utilised by the virtual machine in which the Agent component and
target program are executed. The details of these adjustments are elaborated upon in
section 4.4. Although it is feasible to manually revert to the previous operating system
configuration, the aim is to ensure users’ convenience by enabling fuzzing of classical
socket targets using the new minimal Linux operating system. To validate this, the target
dnsMasq was also subjected to fuzz testing with the new operating system, resulting in
no identified issues.

5.3 Evaluation without SocketCAN
To ensure the new fuzzer’s compatibility with targets that do not rely on the SocketCAN
interface for data reception and to verify the fuzzer’s ability to find crashes, a basic
target program is developed and evaluated. This program is available in the additional-
files/customsocket directory and is coded in the C programming language. The intention
behind its creation is to emulate a conventional TCP server program and simulate a
vulnerability. The program is structured as outlined below:

1. Create a TCP socket.

2. Bind socket to the server address.

3. Wait for the client to make a connection.

4. Establish a connection to the client.

5. Receive data on the socket.

6. If the received data possess a certain condition, crash the program. A crash is
simulated with a call to abort 1.

The crash conditions are simple checks for certain bytes in the received data of the target
program. The fuzzer is able to identify this vulnerability in approximately 10 seconds,
enabling the verification of the fuzzer during development through fuzz testing on this
target.

5.4 Evaluation of Input Specification on SocketCAN
Targets

To verify the suitability of the input specification tailored for SocketCAN targets, the
newly introduced CAN_SPEC_TEST_MODE can be employed. A comprehensive

1https://man7.org/linux/man-pages/man3/abort.3.html
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explanation can be found in section 4.6. The suitability criteria for data which is created
by using the SocketCAN input specification are:

• Numerous input messages must be injected into the target.

• The data created must differ between each other. While it’s acceptable for the
same data to occur multiple times, the fuzzer should avoid consistently producing
identical data.

• There should be multiple messages injected into the target per second.

Executing the experiment via the all_can_spec_test.sh script shows the fulfilment of all
outlined requirements. A sample output of the candump tool is presented in Listing 5.1,
where the columns signify: the Unix timestamp 2 in seconds, the interface name of
message reception, the CAN ID of the message, the data length, and the payload data
of the transmitted message. The fuzzer takes around 10 to 15 seconds to create other
payload data than zero bytes but after that all the requirements are satisfied. As shown,
multiple messages are getting sent to the target program. It is not seen in the output
but there are sometimes messages which are having the same payload. This only occurs
for a time frame of about 2 to 3 seconds. In general, the payload differs quit broad. As
seen on the timestamp in the left most column, there are also multiple messages send
from the fuzzer to the target program within one second.

1 (1692290616 .276581) can0 000 [ 8 ] 00 00 00 00 00 00 00 00
2 (1692290616 .276623) can0 000 [ 8 ] 00 00 00 00 00 00 00 00
3 (1692290616 .276665) can0 000 [ 8 ] 8E E3 03 A6 ED 57 8F F8
4 (1692290616 .276711) can0 000 [ 8 ] 6E B2 E3 56 DE 25 A4 A1
5 (1692290616 .276757) can0 000 [ 8 ] 9D B1 5E 33 F6 B9 63 0E
6 (1692290616 .276802) can0 000 [ 8 ] E7 06 31 05 2D 55 EB 93
7 (1692290616 .276847) can0 000 [ 8 ] 13 19 0D A4 59 8E F9 87
8 (1692290616 .276892) can0 000 [ 8 ] BD 5F 11 75 36 BD F1 56
9 (1692290616 .276938) can0 000 [ 8 ] 25 26 D4 5C E2 BA 60 DB

10 (1692290616 .276983) can0 000 [ 8 ] 09 44 B9 1B C5 64 8C E5
11 (1692290616 .277028) can0 000 [ 8 ] 70 97 8F C3 4A 8D 31 2C

Listing 5.1: Snapshot of target input while fuzzing.

5.5 Evaluation of SocketCAN Targets
To assess the prototype fuzzer’s performance with SocketCAN targets, C programs are
used as the target applications. These programs intentionally contain vulnerabilities,
and the fuzzer’s capability to discover them is evaluated. The target applications can be
categorized into two groups: stateful and stateless.

2https://www.unixtimestamp.com/
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5.5.1 Stateless Target

Different examples of stateless targets can be found in additional-files/0CanExamples.
These examples all share a common underlying principle:

1. Bind socket to a CAN/CAN FD interface.

2. Optional: set filter for a CAN ID.

3. Use read(), recv() or recvfrom() to receive data.

4. If the received message contains certain bytes, crash the program. For example,
the program crashes if the message received comes with ID 0x550 and the data
payload includes the bytes 06 and FF.

The messages received are in the classical CAN or in the CAN FD format, meaning they
have the form of a can_frame 3.1 respectively canfd_frame 3.2. A crash is simulated
with a call to abort 3, this causes an abnormal process termination which is detected
and recorded by the fuzzer. To trigger a crash the fuzzer must send a payload which
contains specified bytes. Listing 5.2 shows how crashes are triggered in target programs.
In the given example a crash is triggered if the payload of the message contains the
byte 06 and FF. The byte comparison could be written within only one if-block, but
by breaking down the comparisons into nested steps, the fuzzer can gradually piece
together the "puzzle" and determine when it’s on the correct path, typically indicated
by reaching a deeper program state. This approach is called comparison coverage and
was first introduced within the fuzzer AFL++ [34]. Some compilers used for fuzzing
are applying such techniques automatically. For example, the additional LLVM passes
implemented for the AFL fuzzer have integrated solutions to create comparisons in
this form. These passes assist in systematically exploring program execution paths and
identifying promising directions for further exploration. The target programs used for
these test runs also employ a filtering mechanism based on specific CAN IDs. As this is
done through the socket option configurations, it is not re-verified whether the target
program exclusively crashes when a particular CAN ID is configured.

1 i f ( conta insByte (&frame , 0x06 ) ) {
2 i f ( conta insByte (&frame , 0xFF) ) {
3 abort ( ) ;
4 }
5 }

Listing 5.2: Example crash trigger in target programs.

3https://man7.org/linux/man-pages/man3/abort.3.html
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can-test

The target programs utilised for this section are drawn from the can-test GitHub
repository 4, which is curated and managed by the developers of SocketCAN. This
repository contains a collection of diverse SocketCAN test applications. These programs
can serve as suitable fuzzing targets with just a minor adjustment. The user interactions
are omitted to facilitate direct submission of fuzzing input by the fuzzer as soon as the
target program executes. Assessment runs encompass different levels of difficulty to
identify crashes. As the test targets are quit simple, these test cases are specifically
employed to verify the fuzzer’s capability to uncover crashes and do not significantly
reflect its performance on more complex targets. The provided times aim to offer readers
an insight into the complexity of the individual test scenarios.

Crash Values Seconds to Crash (CAN) Seconds to Crash (CAN FD)
C3 0.1 0.19
DA 0.25 0.53
06, FF 0.2 0.26
11, AD 0.82 0.95
06, FF, 11 0.92 0.28
DD, AC, BC 0.88 1.42
00, 04, E3, 84 78.76 0.29
C3, F5, 09, DA 10.11 0.14
01, 02, 03, 04, 05 2.09 0.13
32, 5F, 1A, 52, E4 435.62 4.09

Table 5.1: Fuzzer evaluation collection with read call and filter for ID.

There exist two test targets utilising the read 5 function to receive messages. One target
employs classical CAN communication, while the other utilises CAN FD. Both programs
only accept messages with a CAN ID of 0x550.

Table 5.1 shows the evaluation of different test runs. The Crash Values column illustrates
the bytes necessary in the payload of the CAN message to induce a crash. The two other
columns indicate the time in seconds taken by the fuzzer to detect a crash, once for
conventional CAN messages and again for CAN FD messages.

Examining table 5.1, it is evident that when communication is conducted through
CAN FD, the fuzzer can detect crashes faster as the test case difficulty increase. This
phenomenon occurs because classical CAN messages have a payload length of only 8
bytes, while CAN FD messages consist of 64 bytes. Thus, the fuzzer creates different
inputs having a maximum length of 8 bytes respectively 64 bytes. By introducing crashes
in target programs as illustrated in listing 5.2, the likelihood of finding a specific byte in
the longer messages is higher. This is the case because the fuzzer is able to send more

4https://github.com/linux-can/can-tests
5https://man7.org/linux/man-pages/man2/read.2.html
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distinct bytes within one fuzzing input. Furthermore, these test runs demonstrate that
the fuzzer can successfully infer more than 50% of a CAN message data bytes within a
time frame of 7.5 minutes.

To reproduce these test runs, use the file additional-files/0CanExamples/can_read_filter.c
for CAN messages and additional-files/0CanExamples/can_fd_read_filter.c for CAN
FD messages. Adapt the abort condition as needed, copy the content into additional-
files/canLinuxExample/canreceive.c and run all_canlinux.sh. Crash times are written to
/tmp/workdir/crash_times.txt.

The next target uses the recv 6 function for communication and filters for 0x550 as CAN
ID. The message received is in the form of a classical CAN frame.

Outcomes of the test runs can be seen in table 5.2. The data shows that the fuzzer is able
to infer up to 5 bytes of the 8 bytes message payload within two minutes. Particularly, the
test runs involving 06, FF; 06, FF, 11, and DD, AC, BC exhibit rapid crash discovery
by the fuzzer. This could be attributed to the inclusion of these values in the initial seed
inputs, prompting the fuzzer to prioritize them in the initial fuzzing iterations.

Crash Values Seconds to Crash (CAN)
C3 0.12
DA 3.01
06, FF 0.0025
11, AD 0.39
06, FF, 11 0.002
DD, AC, BC 0.002
00, 04, E3, 84 8.96
C3, F5, 09, DA 118.35
01, 02, 03, 04, 05 1.9
32, 5F, 1A, 52, E4 115.75

Table 5.2: Fuzzer evaluation collection with recv call and filter for ID.

To reproduce these test runs use additional-files/0CanExamples/can_recv_filter.c. Copy
the content to additional-files/canLinuxExample/canreceive.c, adapt the abort condition
as needed, and run all_canlinux.sh. Crash times are written to /tmp/workdir/crash_times.txt.

6https://man7.org/linux/man-pages/man2/recv.2.html
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Another target used for verification is utilising the function recvfrom 7 and does not filter
for messages having a specific CAN ID. The type of the communication is classical CAN.

Table 5.3 demonstrates the outcome of the individual test runs. In general, it’s evident
that the time required to discover the initial crash falls within the range of approximately
6.5 minutes. With test runs having three or less crash values being much quicker. It’s
noteworthy that as the complexity of the test cases increases, the time to detect a crash
also extends, with one notable exception being the test run featuring the crash values 01,
02, 03, 04, 05. This anomaly might be attributed, once more, to these values being part
of the initial seed inputs, causing the fuzzer to quickly identify them in the initial stages.

Crash Values Seconds to Crash (CAN)
C3 1.1
DA 0.9
06, FF 1.71
11, AD 1.7
06, FF, 11 1.9
DD, AC, BC 1.7
00, 04, E3, 84 126.89
C3, F5, 09, DA 375.49
01, 02, 03, 04, 05 3.99
32, 5F, 1A, 52, E4 57.14

Table 5.3: Fuzzer evaluation collection with recvfrom call.

To reproduce these test runs use additional-files/0CanExamples/can_recvfrom_no_filter.c.
Copy the content to additional-files/canLinuxExample/canreceive.c, adapt the abort
condition as needed, and run all_canlinux.sh. Crash times are written to /tmp/-
workdir/crash_times.txt.

7https://man7.org/linux/man-pages/man2/recv.2.html
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The experiments presented in this section provide evidence of the fuzzer’s effectiveness on
target programs that employ the SocketCAN interface. Moreover, the fuzzer demonstrates
its capability to manage different target implementations.

A comparison between experiments done so far (tables 5.1, 5.2, 5.3) is shown in figure 5.1.
The mere utilization of distinct functions (read, recv, recvfrom) for message reception
shouldn’t inherently result in the observed variations in overall time. This is because
recv and recvfrom are employed without any additional option flags, and as such, their
behavior should be analogous to that of read. However, these time differences can likely
be attributed to two main factors. Firstly, the fuzzer doesn’t apply the same mutations
to the input in every run, leading to variable execution times. Secondly, the target
programs vary for each type of message reception, leading to a different position of the
crash condition.

Figure 5.1: Time to crash comparison for target programs utilising read, recv and
recvfrom.

When comparing the medians of the various experiments, it becomes evident that read
CAN FD tends to have lower values. This further supports the hypothesis that when
searching for a byte within a collection of 64 bytes, it is easier for the fuzzer compared to
searching within a collection of 8 bytes.

The observed times for experiment recv CAN display the greatest degree scatter. This
variability can be attributed, again, to the initial fuzzing values employed by the fuzzer.
At certain points, the fuzzer progressed rapidly, as evidenced by test runs completing
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within 0.002 seconds to cause a crash. Conversely, there were instances where the fuzzer
required significantly more time, such as the test run that consumed 118.35 seconds.

It is also worth noting that all the outliers fall above the upper whiskers. This suggests
that the majority of values are on the smaller side, but there are a few instances with
exceptionally large values. This phenomenon is reinforced by the right skewness apparent
in most of the experiments.

Another stateless test scenario introduces a more practical vulnerability: Upon data
reception, a mathematical computation is performed to determine an index for accessing
an array. This scenario replicates an out-of-bounds read vulnerability 8, where data is
read beyond the intended buffer’s end or before its beginning. Following data reading,
the index calculation is based on the values of byte 1 added to byte 2 minus byte 3
of the received payload. If the calculated index is less than zero or greater than the
array’s length, which results in accessing a memory location beyond the array’s bounds,
an exceptional process termination occurs. Executing this fuzz test case leads to the
discovery of a crash in 0.26 seconds. The introduced vulnerability can be seen in listing 5.3.
The parameter frame is provided by the fuzzer.

Demonstration of the out-of-bounds read illustrates that the fuzzer is effective for more
practical examples as well. While the logic to trigger a crash isn’t overly complex, it
highlights the fuzzer’s ability to detect this type of bug. As the difficulty level increases,
it’s expected to impact only the time it takes the fuzzer to identify the crash, rather than
its ability to find one.

1 int accessArrayOnIndex ( const struct can_frame ∗ frame ) {
2 int myNumbers [ 4 ] = {25 , 50 , 75 , 100} ;
3 int index = frame−>data [ 0 ] + frame−>data [ 1 ] − frame−>data [ 2 ] ;
4 int value = myNumbers [ index ] ;
5 return value ;
6 }

Listing 5.3: Out-of-bounds read vulnerability.

8https://cwe.mitre.org/data/definitions/125.html
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can-utils

The project can-utils 9 is a composition of SocketCAN user space applications. It contains
utilities for:

• Display, record, generate and replay CAN traffic

• CAN access via IP sockets

• CAN in-kernel gateway configuration

• CAN bus measurement and testing

• ISO-TP tools (implements data transfers according ISO 15765-2)

• J1939/ISOBus tools

• Log file converters (e.g. convert ASC logfile to compact CAN frame logfile)

• Serial Line Discipline configuration (e.g userspace tool for serial line CAN interface
configuration)

Included in the toolset is a CAN message logging server tool named canlogserver. This
utility serves as a practical example for testing the fuzzer. To ensure reproducibility
and eliminate dependency on changes in the GitHub repository, a self-contained copy
of the program and its dependencies are stored within the directory named additional-
files/canlogserver. Each file is accompanied by the corresponding SHA commit hash
associated with the last modification. The complete project encompasses:

• The CAN log server: canlogserver.c, including a vulnerability which is triggered if
the received CAN message includes certain data bytes.

• The file to build the log server: Makefile

• Dependencies and helpers: include, check_cc.sh, fork_test.c, libc. lib.h

During the test runs, the logging server is configured to listen to all accessible CAN
interfaces. Messages are transmitted via a CAN interface named can0.

9https://github.com/linux-can/can-utils
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A vulnerability is introduced in the program the following way: Upon receiving a message,
the logserver crafts a log message that encapsulates key details of the received input, such
as its reception time and size. During this log message construction, an offset is deduced.
The offset calculation is the helper function showcased in listing 5.4. The primary role
of this function is to fetch an alternate CAN FD frame to determine the offset within
the log message string buffer. Notably, there’s an instance where this function returns
a NULL pointer. Subsequently, an attempt to read from the intended CAN FD frame
inadvertently dereferences this NULL pointer.

1 struct canfd_frame∗ get_related_frame ( struct canfd_frame ∗ c f ) {
2 // Some ( con t r i v ed ) cond i t i on based on the data t h a t
3 // determines i f NULL shou ld be re turned .
4 i f ( c f−>data [ 4 ] == 0xAA) {
5 i f ( c f−>data [ 5 ] == 0xBB) {
6 return NULL;
7 }
8 }
9

10 // In a rea l −world scenar io , t h e r e would be some l o g i c
11 // here to ge t a r e l a t e d frame .
12 // For our purposes , we ’ l l j u s t re turn the input frame .
13 return c f ;
14 }

Listing 5.4: Introduced vulnerability in canlogserver target.

The fuzzer can identify this kind of vulnerability in less than one second. This demon-
strates the fuzzer’s effective capability to detect NULL pointer vulnerabilities.
To replicate the test scenarios, modify the crash condition within the file additional-
files/canlogserver/canlogserver.c, and then run the script all_canlogserver.sh. The
recorded crash detection times are saved in the file /tmp/workdir/crash_times.txt.
Another program included in the can-utils project is cansniffer. It is a command-line
utility commonly used in CAN bus analysis. It allows to monitor and capture CAN traffic
on a network. By listening to data frames transmitted on the CAN interface, cansniffer
provides insights into the communication between different nodes, for example to identify
messages, their IDs, or payload content in real-time.
Similar to the canlogserver example, to guarantee reproducibility and remove reliance on
alterations in the GitHub repository, a duplicate of the program along with its necessary
components is stored in the directory denoted as additional-files/cansniffer, which consists
of:

• The CAN sniffer program: cansniffer.c, including a vulnerability

• The file to build the log server: Makefile
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• A C header file used by the sniffer: terminal.h

Following conditions need to be met to cause the program to crash:

• The payload data must be different from the previous message with the same CAN
ID

• For the classical CAN message format, the received data length must match the
size of a can_frame 3.1, and for CAN FD messages, it must correspond to the size
of a canfd_frame 3.2

• The program cansniffer can only manage up to 2048 distinct (by CAN ID) messages
simultaneously; if there are more messages, the program won’t accept new ones;
the stored messages are automatically cleared after a specific time duration

A buffer overflow occurs when all the aforementioned conditions are satisfied. It is
introduced in the following manner: The function depicted in listing 5.5 attempts to swap
the data values of two distinct canfd_frames. The issue arises because the temporary
variable, intended to aid in swapping the values, is of type can_frame and thus has a
smaller data attribute size. Consequently, when executing line 3 of the code snippet,
arbitrary memory is overwritten. This problem is compounded by the usage of the
function returnChunkSize(), which is responsible for determining the correct number of
bytes to be copied. The problem is that it has a flaw in its calculation, for example it
can return -1, causing memcpy 10 to attempt copying the maximum number of bytes.

1 int vu lnerab l e_funct ion ( struct s n i f input ) {
2 struct can_frame tmp ;
3 memcpy(tmp . data , input . marker . data , returnChunkSize ( ) ) ;
4 p r i n t f ( " tmp␣ data : ␣%s " , tmp . data ) ;
5 memcpy( input . marker . data , input . notch . data , returnChunkSize ( ) ) ;
6 memcpy( input . notch . data , tmp . data , returnChunkSize ( ) ) ;
7 return 0 ;
8 }

Listing 5.5: Introduced vulnerability in cansniffer target.

The fuzzer is able to detect the crash in 1.3 seconds. This shows that it effectively navigates
through the program’s deeper states without encountering issues. The conditions required
to reach these deeper program states are met without substantial time discrepancies
compared to the other test runs in previous sections.

To reproduce the test cases, adapt the crash condition inside additional-files/cansniffer/cansniffer.c
and execute the file all_cansniffer.sh. The times for detecting a crash are written to
/tmp/workdir/crash_times.txt.

10https://man7.org/linux/man-pages/man3/memcpy.3.html
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5.5.2 Stateful Target
The fuzzer implemented in this thesis employs incremental snapshots during the fuzzing
process, making it particularly effective for fuzzing stateful target programs. This section
provides an evaluation of using the fuzzer with such a stateful target.

All bytes within the CAN FD message payload are presented in hexadecimal format.

The full target program can be found under additional-files/canvehicle/canvehicle.c.

This test target undergoes fuzz testing using two different tools. Firstly, the fuzzer
developed within this thesis is employed. Secondly, cangen 11, a tool for generating
random CAN frames and transmitting them through a CAN interface, is utilised.

The target program simulates various vehicle components. The fuzzer and other programs
are able to communication with the target via the SocketCAN interface with name can0.
Messages exchanged via this interface must be assigned a CAN ID of 0x550 and adhere
to the extended CAN FD format.

Every component inside the program has a certain state. For most of them the state
can be on and off, but there is one component called speed which consists of an integer
representing the speed in km/h. Following components exists:

• front light (on/off)

• heating (on/off)

• aircon (on/off)

• privileged mode (on/off)

• speed (integer)

Furthermore, there are actions that can be initiated, all of which are outlined below.
Some requiring privileged mode for execution.

• turn components on or off

• password check to go in privileged mode

• calculate speed of the vehicle

• change the engine configuration (only in privileged mode)

• buy a product (only in privileged mode)

• play music (only in privileged mode)
11https://manpages.debian.org/stretch-backports/can-utils/cangen.1.en.html
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The program executes on behalf of the CAN message payload. As the message is in CAN
FD format the payload has a maximum length of 64 bytes. To guide the program in
different directions, rules are established on behalf of the received payload:

• If the payload is only zeros, the program prints the state of all components.

• If the first two bytes are not zero, they are used to turn the various components on
and off.

• If the first two bytes are zero, different actions can be triggered. The specific action
depends on the remaining content.

Inside the program five vulnerabilities are introduced.

Out-of-bounds write: An out-of-bounds write vulnerability 12 involves the writing
of data beyond the boundaries of a buffer, either before its start or after its end. This
often leads to data corruption, program crashes, or even unauthorized code execution. It
occurs when the program alters an index or conducts pointer calculations that reference
a memory location outside the buffer’s defined limits. Subsequent write operations in
such cases yield undefined or unexpected outcomes.

Two vulnerabilities of this type are presented in the target program. Listing 5.6 depicts
the first. This vulnerability resides within the engine code section, necessitating the
program to be executed in privileged mode. Additional crash conditions are: the third
byte of the payload must be set to 33, and the fourth byte to 44. Additionally, as evident
in the if-statements within the code, the front light and air conditioning must both be
turned on. The target program crashes when the expression distances[NUM_NODES
- 1] - 2 results in a negative number. This occurs because the memcpy function 13

assumes that the value is unsigned, leading it to interpret it as the maximum integer
value minus one. Consequently, it copies significantly more memory than is available to
the destination buffer. The value distances[NUM_NODES - 1] - 2 is the outcome of
a computation based on the Dijkstra shortest path algorithm, dependent on the input
received from the fuzzer.

1 i f ( v e h i c l e _s t a t e . f r on t_ l i gh t_s ta t e == 1) {
2 i f ( v e h i c l e _s t a t e . a i r con == 1) {
3 char destBuf [ 1 0 ] ;
4 char srcBuf [ 1 0 ] ;
5 memcpy( destBuf , srcBuf , ( d i s t a n c e s [NUM_NODES − 1] −2)) ;
6 }
7 }

Listing 5.6: First out-of-bounds write vulnerability in stateful target program.

12https://cwe.mitre.org/data/definitions/787.html
13https://man7.org/linux/man-pages/man3/memcpy.3.html
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The second out-of-bounds write vulnerability within the target program is illustrated
in listing 5.7. To exploit this vulnerability, privileged mode must be enabled, the third
byte of the payload should be set to 55, and the fourth byte must be greater than EC.
The program consistently crashes when line 3 of the listing, specifically the statement
memcpy(product2, newProduct, (calculate()-1));, is executed. This is due to the fact that
the function calculate consistently returns -1. As a result, the same issue as previously
described occurs, where significantly more memory is copied into the destination buffer
than it can accommodate.

1 i f ( frame . data [ 3 ] >= 0xEC) {
2 char ∗newProduct [ 3 ] = { "N" , "E" , "W" } ;
3 memcpy( product2 , newProduct , ( c a l c u l a t e ( ) −1)) ;
4 }

Listing 5.7: Second out-of-bounds write vulnerability in stateful target program.

One potential mitigation strategy for these vulnerabilities is to validate the third parameter
of the memcpy call, ensuring that the correct amount of memory is copied.

Out-of-bounds read: In an out-of-bounds read vulnerability 14, a program reads data
beyond the end or before the beginning of the intended buffer. Typically, this can enable
attackers to access sensitive information from other memory locations or trigger a program
crash. A crash may occur when the code reads a variable amount of data and assumes
the presence of a sentinel to terminate the read operation, such as a NULL character
in a string. However, the expected sentinel might not be located in the out-of-bounds
memory, resulting in the reading of excessive data, which can lead to a segmentation
fault or buffer overflow. This type of vulnerability can occur when the program modifies
an index or performs pointer arithmetic that references a memory location outside the
buffer’s boundaries, leading to undefined or unexpected results.

The introduced vulnerability in the target program is depicted in listing 5.8. To access
this code, the program must operate in privileged mode, the third byte of the payload
must be 55, and the fourth byte should be smaller than 33. The songs struct contains
five entries, thus if choice - 1 exceeds 4, it results in reading from an undefined memory
location. The variable choice is influenced by the input provided to the target program
where it undergoes a mathematical computation before its usage.

1 i f ( cho i c e > 0) {
2 p r i n t f ( "Now␣ p lay ing ␣%s \n\n " , songs [ cho i c e − 1 ] ) ;
3 }

Listing 5.8: Out-of-bounds read vulnerability in stateful target program.

To address this problem, it’s advisable to validate the variable choice to ensure it doesn’t
exceed the size of the songs struct, rather than solely checking that it’s greater than 0.

14https://cwe.mitre.org/data/definitions/125.html
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NULL Pointer Dereference: A NULL pointer dereference 15 occurs when the applica-
tion dereferences a pointer that it expects to be valid, but is NULL, typically causing
a crash or exit. NULL pointer dereference issues can occur through a number of flaws,
including race conditions, and simple programming omissions.

In listing 5.9 the vulnerability inside the target program can be seen. This function is
called when privileged mode is enabled, byte number three is 33, byte number four is
44, byte number ten is A4, byte number eleven is 7E and byte number fourteen is A4.
If the code is executed it will always end in a crash because the address used as first
parameter to gethostbyaddr 16 are bytes used from the received message payload of the
CAN FD messages. These are never result in an well-formed internet address, leading
to gethostbyaddr returning NULL. Since the code does not check the return value from
gethostbyaddr, a NULL pointer dereference occurs in the call to strcpy 17. This scenario
may not be very common within a system employing the CAN protocol, but it showcases
the fuzzer’s capability to handle more intricate input protocol requirements.

1 void vu lnerab l e_funct ion ( char ∗ user_supplied_addr ){
2 struct hostent ∗hp ;
3 in_addr_t ∗addr ;
4 char hostname [ 6 4 ] ;
5 in_addr_t inet_addr ( const char ∗cp ) ;
6
7 addr = inet_addr ( user_supplied_addr ) ;
8 hp = gethostbyaddr ( addr , s izeof ( struct in_addr ) ,
9 AF_INET) ;

10 s t r cpy ( hostname , hp−>h_name ) ;
11 }

Listing 5.9: NULL pointer dereference vulnerability in stateful target program.

To mitigate this issue, it is important to validate the user input in being a well-formed
internet address.

15https://cwe.mitre.org/data/definitions/476.html
16https://linux.die.net/man/3/gethostbyaddr
17https://man7.org/linux/man-pages/man3/strcpy.3.html
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Call to abort: The last vulnerability introduced in the target is a call to abort 18.

The relevant code piece is shown in listing 5.10. The code piece is reached if the first five
bytes of the payload are 00 00 01 55 FF. And as seen in the if-statements the aircon,
heating and front light must be turned on to trigger the crash through the call to abort.

1 i f ( v e h i c l e _s t a t e . a i r con ) {
2 i f ( ! v e h i c l e _s t a t e . heat ing ) {
3 i f ( v e h i c l e _s t a t e . f r on t_ l i gh t_s ta t e ) {
4 abort ( ) ;
5 }
6 }
7 }

Listing 5.10: Abort call in stateful target program.

18https://man7.org/linux/man-pages/man3/abort.3.html
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Test run evaluation

Table 5.4 shows vulnerabilities found by each test run. The five different vulnerabilities are
defined as V1 to V5 and the reference to the listing describing the type is given. The runs
are conducted for 5, 15, 30 and 60 minutes with the tool cangen and the prototype fuzzer.
For all runs, three fuzzing instances run simultaneously and the snapshot strategies none,
balanced and aggressive are used.

Test Run V1 (lst.5.6) V2 (lst.5.7) V3 (lst.5.8) V4 (lst.5.9) V5 (lst.5.10)
cangen 5 - - - - -
cangen 15 - - - - -
cangen 30 - - - - -
cangen 60 - - - - -
none 5 - - - - -
none 15 ✓ ✓ ✓ - ✓
none 30 ✓ ✓ ✓ - ✓
none 60 - ✓ ✓ - ✓
balanced 5 - - ✓ - ✓
balanced 15 - ✓ ✓ - ✓
balanced 30 ✓ ✓ ✓ - ✓
balanced 60 ✓ ✓ ✓ - ✓
aggressive 5 ✓ ✓ ✓ - ✓
aggressive 15 ✓ ✓ ✓ - ✓
aggressive 30 ✓ ✓ ✓ - ✓
aggressive 60 ✓ ✓ ✓ - ✓

Table 5.4: Vulnerabilities found within each test run for the stateful target program. Test
runs are executed for 5, 15, 30 and 60 minutes by the tool cangen and the prototype
fuzzer with snapshot scheduling of none, balanced and aggressive. For all runs, three
fuzzing instances run simultaneously. The specific vulnerabilities are defined as V1 to V5
with the description reference appended.

The performance of the prototype fuzzer significantly outperforms the cangen tool. No-
tably, cangen fails to uncover any vulnerabilities, whereas the prototype fuzzer successfully
detects all vulnerabilities except for V4, which relates to a NULL pointer dereference.

Additionally, the impact of the fuzzer’s scheduling configuration is evident. Without
utilising any intermediate snapshots (none), the fuzzer takes more time to uncover
vulnerabilities, and in some instances, such as V1, it fails to do so even after running
for 60 minutes. When applying balanced snapshot scheduling, the fuzzer encounters
difficulties in finding V1 but eventually succeeds given enough time.

The most consistent and reliable results are achieved when the prototype fuzzer operates in
aggressive snapshot scheduling mode. In all test runs conducted under this configuration,
vulnerabilities V1, V2, V3, and V5 are successfully detected. As previously mentioned,

69



5. Evaluation

V4 remains elusive, but given the fuzzer’s increasing line and branch coverage over time,
it is reasonable to assume that it will be discovered with extended fuzzing runtime.

Table 5.5 provides a comprehensive summary of the line coverage statistics across all test
runs. For a clearer representation, please refer to the line graph illustrated in Figure 5.2.

Test Run Lines Total Lines Covered Lines Covered (%)
cangen 5 175 45 0.26
cangen 15 175 56 0.32
cangen 30 175 56 0.32
cangen 60 175 56 0.32
none 5 175 80 0.46
none 15 175 155 0.89
none 30 175 150 0.86
none 60 175 152 0.87
balanced 5 175 105 0.60
balanced 15 175 152 0.87
balanced 30 175 161 0.92
balanced 60 175 159 0.91
aggressive 5 175 161 0.92
aggressive 15 175 152 0.87
aggressive 30 175 157 0.90
aggressive 60 175 159 0.91

Table 5.5: Line coverage within each test run of the stateful target. Test runs are executed
for 5, 15, 30 and 60 minutes by the tool cangen and the prototype fuzzer with snapshot
scheduling of none, balanced and aggressive. For all runs, three fuzzing instances run
simultaneously

When comparing the performance of the prototype fuzzer with the tool cangen, it becomes
evident again that the fuzzer consistently outperforms cangen. Even after running for a
full 60 minutes, cangen is unable to achieve line coverage beyond 32%.

Using the fuzzer without intermediate snapshots proves to be less efficient compared
to the balanced or aggressive scheduling. The test run for 5 minutes achieves a line
coverage of only 39%, indicating that it takes longer to explore program lines. Similarly,
after 60 minutes, the line coverage reaches only 87%, highlighting that not employing
intermediate snapshots is not as effective as the other options in a longer time period.

The fuzzer’s balanced snapshot scheduling option achieves higher line coverage after 5
minutes compared to the none option. It even surpasses the line coverage of the aggressive
scheduling option within the 30 minute test run.

An interesting observation emerges regarding the aggressive snapshot scheduling option.
In this case, the test run lasting only 5 minutes outperforms all other runs, achieving
a 92% line coverage. This highlights the variability in the fuzzer’s performance within
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Figure 5.2: Line coverage comparison of each test run of the stateful target.

different test runs on the same target. The variation is mainly attributed to the initial
selection of highly suitable inputs. However, when examining the line coverage with the
none and balanced options, it becomes also apparent that the fuzzer may begin with less
suitable inputs but progressively improves its performance over time to yield favorable
results.
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Within a computer program, a branch refers to one of the potential execution paths the
code may follow during the evaluation of a decision statement, such as an if-statement.
The statistics pertaining to branch coverage, as displayed in table 5.6 and graphically
represented in figure 5.3, offer a similar perspective to the line coverage findings.

Test Run Branches Total Branches Covered Branches Covered (%)
cangen 5 106 13 0.13
cangen 15 106 19 0.18
cangen 30 106 19 0.18
cangen 60 106 19 0.18
none 5 106 41 0.39
none 15 106 95 0.90
none 30 106 91 0.86
none 60 106 96 0.91
balanced 5 106 55 0.52
balanced 15 106 90 0.85
balanced 30 106 97 0.92
balanced 60 106 97 0.92
aggressive 5 106 96 0.91
aggressive 15 106 89 0.84
aggressive 30 106 94 0.89
aggressive 60 106 97 0.92

Table 5.6: Branch coverage within each test run of the stateful target. Test runs are
executed for 5, 15, 30 and 60 minutes by the tool cangen and the prototype fuzzer
with snapshot scheduling of none, balanced and aggressive. For all runs, three fuzzing
instances run simultaneously

During fuzzing operations with the cangen tool, branch coverage remains below 18%,
significantly lower than what is achieved when employing the prototype fuzzer developed
within this thesis.

When employing the fuzzer’s none scheduling option, branch coverage reaches only 39%
after 5 minutes. However, this coverage improves notably when the fuzzer runs for an
extended period. But, it does not match the performance achieved when using the
balanced or aggressive options.

The balanced snapshot option initiates with a 52% branch coverage in the 5 minute test
run and subsequently reaches a peak of 92% during the 30 and 60 minute runs.

The aggressive snapshot scheduling option in the fuzzer maintains consistently high
branch coverage in all test runs, with the lowest being 84% in the 15 minute test run
and the highest at 92% in the 60 minute test run.

Within the experiments executed in this thesis, it can be concluded that the choice of
snapshot scheduling options from the prototype fuzzer has a more significant impact
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Figure 5.3: Branch coverage comparison of each test run of the stateful target..

when the testing period is shorter. This is likely because, with intermediate snapshots,
the fuzzer can explore new program paths more rapidly. During the experiments the
performance differences among different snapshot options become less pronounced when
running for 15 minutes or longer. This could be attributed to the target program’s
relative lack of complexity, which limits the advantage of different snapshot scheduling
options in the long run.

To reproduce the test cases, first run all_canvehicle.sh with the respective snapshot config-
uration set, then execute canvehicle_rust_fuzzer_debug.sh. To get coverage information,
build the target program with

make CC="gcc" CFLAGS="-fprofile-arcs -ftest-coverage –coverage -g -O0"

Use can-send-data.py in canfd mode and provide the path to the fuzzing input created
by running the fuzzer in debug mode. This is normally

/tmp/workdir/corpus/crash_reproducible/cnt_<X>.py or

/tmp/workdir/corpus/normal_reproducible/cnt_<X>.py

After that, use the tool gcovr 19 for displaying the coverage information.

19https://gcovr.com/en/stable/
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CHAPTER 6
Future Work and Research

Directions

Throughout this thesis, a prototype fuzzer tailored to the SocketCAN interface is created.
This can be seen as a first practical step within the research domain of fuzzing real-world
CAN implementations, as well as extending the scope to fuzzing embedded protocols.

This chapter starts with section 6.1 describing the requirements for extending the
fuzzer’s capability to encompass CAN protocol implementations that are more commonly
employed in practical scenarios. Section 6.2 uses this knowledge to discuss the process of
transforming the fuzzer created in this thesis to work for embedded protocols in general.

6.1 SocketCAN to CAN
Unlike other fuzzing tools outlined in section 2.3, when employing the fuzzer developed
in this thesis, the target programs operate within a virtual machine created by QEMU.
To preserve the advantages of snapshot-based fuzzing, maintaining this approach is
preferable.

Currently, the fuzzer can only manage targets that employ standard C sockets, which
isn’t common for most applications utilising the CAN protocol. A necessary adjustment
is to make communication between the fuzzer and the target program work for different
technologies. Additionally, there might be challenges in detecting crashes during fuzzing
the target program. By now, the fuzzer identifies crashes when the target program
process terminates abnormally. This functionality must be maintained or the monitoring
logic of the fuzzer adapted.

When extending the fuzzer’s applicability to CAN protocol implementations beyond
SocketCAN, the following new questions emerge:
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1. Can the new targets deployed with a CAN protocol implementation be executed
within the fuzzer’s provided virtual machine environment?

2. Does the target program need specific CAN support inside the virtual machine?

3. Is it possible to inject fuzzing data into the target in a similar way as with
SocketCAN?

4. Are crashes of the target program still discovered by the fuzzer?

5. Can a crash be reproduced without a bare-metal setup as depicted in figure 2.2?

If questions 1-4 are answered with yes, the fuzzing setup shown in figure 2.2 can be
transformed to the one outlined in figure 6.1. The CAN Board and CAN Bus components
are not needed anymore because there is no real communication through a CAN bus
happening during fuzzing. To reproduce a found crash, a configuration similar to the one
depicted in figure 2.2 is required, or at the very least, the capability to emulate a CAN
interface besides SocketCAN on the host system must be present. The possibility of it
must still be evaluated.

Figure 6.1: Thesis’ fuzzer CAN fuzz setup idea.

6.2 Fuzzing Embedded Protocols
The outline provided for transitioning the fuzzer from SocketCAN to CAN effectively
serves as a foundational framework for discussing embedded protocols at large. In this
part of the thesis, the questions raised in the preceding section are extrapolated or
directly applied to encompass embedded protocols in a broader sense. Consequently, this
generates five key questions to the broader integration of the existing fuzzer for diverse
embedded protocols:
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1. How can the targets be executed within the fuzzer’s provided virtual machine
environment?

2. Is there the need for specific virtual machine configuration/support regarding the
utilised embedded protocol?

3. How does the communication between fuzzer and target work?

4. Are crashes of the target program still discovered by the fuzzer?

5. How can a crash be reproduced?

The remaining part of this section explores these questions in more detail.

Can the targets be executed within the fuzzer’s provided virtual machine
environment?

In the current developmental stage of the fuzzer, the target programs are executed
within a virtual machine alongside the Agent component. This virtual machine adopts
a Linux-based operating system and operates on a 64-bit x86 architecture emulated
through QEMU. A custom version of QEMU is used, called QEMU-Nyx 1. This modified
version of QEMU is tailored for the Nyx fuzzing framework, which is also employed in
the prototype for this thesis. While the adapted QEMU version is obligatory for the
correct functioning of the fuzzer, there remains the flexibility to customize or expand it
to suit specific needs. The specific virtual hardware configuration involves a customized
kAFL64 architecture, with a corresponding kAFL64-Hypervisor CPU model. A notable
prerequisite for the target program is its compatibility with the afl-clang-fast or afl-clang-
fast++ compiler 2. This should not be a big problem as a vast amount of firmwares are
written in a language of the C family.

Firmware are in general closely coupled to the hardware they are running on. A
illustration of this is the Klipper 3D printer firmware 3, which, when equipped with
CAN support, can solely be employed on microcontrollers like STM32 4, SAME5x 5, and
rp2040 6. Embedded software is designed to also run on a particular device. Compared
to (embedded) firmware it controls higher-level functions of the device. In practice, the
distinction between software and firmware can sometimes be blurry, thus for the remainder
of this section, firmware will encompass both. Given the hardware interdependency,
one of the main challenges is that publicly available firmware may not be compiled and
executed within the virtual machine currently provided by the fuzzer.

1https://github.com/nyx-fuzz/QEMU-Nyx
2https://manpages.ubuntu.com/manpages/xenial/man1/afl-clang-fast.1.html
3https://www.klipper3d.org/
4https://www.st.com/en/microcontrollers-microprocessors/

stm32-32-bit-arm-cortex-mcus.html
5https://microchipdeveloper.com/32bit:same5
6https://www.raspberrypi.com/documentation/microcontrollers/rp2040.html
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In the absence of adjustments to the existing virtual machine configuration, the task
of identifying fitting firmware for fuzzing becomes challenging. This extends to both
implementations of the CAN protocol and embedded protocols at large. As the current
virtual machine setup demonstrates limitations in accommodating a diverse range of
firmware variations, a need arises to refine the setup to a wider scope of firmware types.
Operating systems based on the Linux kernel are widely used in embedded systems such
as consumer electronics, industrial automation and spacecraft flight software. This means
by having a Linux OS installed in the virtual machine of the fuzzer, it should be still
possible to find firmware which can run inside this operating system. A bigger problem
could be the used machine type (kAFL64) and CPU model (kAFL64-Hypervisor) in the
virtual machine of the fuzzer. An assessment is needed to determine the viability of the
current configuration, or if modifications are required to avoid disrupting the fuzzer’s
operations. Should the QEMU configuration of the fuzzer be reconfigured to emulate
an architecture suitable for a specific firmware, a comprehensive guide outlining the
modification process would be valuable. Given that various firmwares necessitate distinct
configurations, a comprehensive understanding of adapting the fuzzer and the ability
to implement changes would significantly enhance the fuzzer’s potential to test a wider
variety of firmwares.

Is there the need for specific virtual machine configuration/support
regarding the used protocol?

Enabling fuzz testing for a target program utilising a communication protocol imple-
mentation other than TCP sockets and SocketCAN shouldn’t pose significant challenges
in regard of the virtual machine setup. This is the case because the fuzzer intercepts
all receive and write functionalities during the fuzzing process, ensuring that no actual
communication occurs. While there are other factors to be addressed for seamless op-
eration of the interceptions, these aspects will be discussed in the subsequent question.
In scenarios where more complex programs involve multiple communication pathways,
the ideal scenario is that all these pathways are handled by the fuzzer’s function hooks.
However, practicality might dictate that not all communication functions are feasibly
hooked. In such instances, it becomes inevitable that the unhooked communication
functions can execute accurately.

The process of integrating a new target into the fuzzer can result in substantial time
savings by not implementing virtualisation support for a new communication protocol.
But, as in the case of the SocketCAN development it turned out to be very useful to
have CAN support added to the QEMU virtual machine, and saved time in the long run.
The decision if it is necessary to to have the support is best taken by the developer who
adapts the fuzzer.

If the decision is made to incorporate virtualisation support for a new protocol, several
factors should be taken into account. QEMU supports an extensive range of protocols
that are applicable, even in the realm of embedded systems. Reflecting on the experience
of developing the SocketCAN extension for the fuzzer, it turned out that having accessible
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transmitted data on the host system was beneficial, although it did require some effort to
achieve. Additionally, toggling specific functionalities related to SocketCAN was found
to be valuable. This practice could also be applied when developing extensions for new
protocols. Enabling and disabling functionalities can be best facilitated by introducing
an environment variable, similar to CAN_MODE, with an analogous approach for the
new protocol’s support.

A guide similar to the one provided for the CAN protocol in section 4.3 can prove valuable
when dealing with the integration of new protocols. Different protocols differ in their
implementation but it is still useful to have access to such a guide because it can help
during the debugging process in the event of any issues and helps in adding support
for additional communication protocols. This approach not only promotes consistency
across various protocol implementations but also facilitates the expansion of the fuzzer’s
compatibility with additional communication protocols.

How does the communication between fuzzer and target work?

The socket emulation is one of the pivotal aspects of the fuzzer crafted within the
scope of this thesis. In section 3.6 the technology behind it is explained briefly. An
LD_PRELOAD interceptor is used to hook and transform the functionalities of the
functions employed by the target program for data reception and transmission. Even
functions pertaining to the management of socket connections are effectively overridden,
thereby enabling the establishment of a custom connection management framework within
the fuzzer. While currently, this approach is confined to libc functions, its extensibility
spans the realm of any library calls. Hence, this implies the possibility for extending the
fuzzer’s functionality to hook other communication related functions in diverse protocols.

In relation to SocketCAN, a new mode named CAN_MODE has been introduced. This
addition serves a specific purpose: to tailor the behaviour of certain socket functions
based on the socket type. While this mode’s creation is rooted in the need of having
hooks behave differently for the same function, the concept of introducing new modes
could be beneficial for accommodating potential variations in other protocols as well.

When venturing into fuzzing a new protocol-based target, a new target input specification
has to be created to make the fuzzing process as efficient as possible. The description of
the input specification in section 4.8 can be used as a guideline. This tailored specification
aims to optimize the fuzzing process by incorporating seed files and implementing their
parsing to extract payload data. This extracted data is subsequently employed by the
mutation engine to craft the fuzz test inputs. While the process of obtaining seed files
might vary depending on the target, the approach employed so far involves running the
target locally and recording received data using tools like Wireshark. Although this
method might prove more intricate for other targets, manual provision of suitable seeds
remains a viable alternative. Extracting data from these seeds should follow a process
similar to that used for the SocketCAN targets, with only minor differences in naming
conventions expected.
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Most time spend during this adaptation process will center around adjusting the con-
nection management and function hooks. For instance, in the case of SocketCAN, the
connection management was expanded to accommodate CAN socket connections. The
structure of the code implies that for each new protocol introduced, the likelihood of
having to modify or extend the connection management system is quite high, prompting
a consideration of potential redesigns.

Function hooks responsible for injecting data into the target, must provide the input
data in the same type definition as defined in the target program, a task often best
accomplished by replicating the type definition and populating values as needed. These
values can often be draw from other function hooks.

Are crashes of the target program still discovered by the fuzzer?

The challenge of detecting crashes in embedded systems is a well-recognized concern
within the domain of fuzzing. This challenge becomes particularly pronounced due to
the unique characteristics of embedded operating environments. This issue has been
explored, as highlighted in the discussion presented in section 2.1. The intricacy arises
from the fact that embedded operating systems often lack the comprehensive fault
generation mechanisms commonly found in conventional systems. Moreover, the absence
of conventional output devices like monitors further complicates the task of identifying
crashes in such environments. The architecture of the developed fuzzer, runs the target
program within a Linux operating system, thus the fuzzer can effectively detect abnormal
process terminations and closely monitor any occurrences of crashes. This inherent
capability is derived from the Linux environment’s intrinsic mechanisms for recognizing
anomalous program behaviour. A wide spectrum of available embedded system programs,
often functioning within Linux operating systems, ensures that a diverse array of target
programs can be effectively monitored for crashes. Consequently, the current fuzzer
setup stands to benefit from the existing robust crash detection mechanisms without
necessitating any fundamental changes in this regard.

If the virtual machine setup transition towards a less powerful operating system environ-
ment, problems regarding the crash detection will arise. As the fuzzer might not receive
sufficient information to effectively evaluate whether a crash has occurred, it may not be
able to report found crashes to the user. This situation arises due to the altered contextual
information provided to the fuzzer within the new environment. Addressing this challenge
requires exploration of alternative strategies for crash detection. In this context, there are
broadly known solutions to ensure effective crash detection even in constrained operating
environments. For example liveness checks make it possible to periodically probe the
state of the device, memory checking tools can detect security violations, and debug ports
can help to gain insight into the device. However, the integration of these alternative
methods into the existing fuzzer infrastructure necessitates a fundamental shift in the
core functionality of the tool. Specialising the fuzzer to accommodate embedded systems
while potentially relinquishing support for classical network targets. If such changes in
the fuzzer are made, the methodology outlined in chapter 5 can serve as a useful guide
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to test the new functionalities. A custom test target featuring a distinct vulnerability
could be employed to assess the fuzzer’s new crash detection mechanisms.

The behaviour of crash detection is not closely tied to the specific communication protocol
employed. Rather, it depends on the configuration of the virtual machine and the manner
in which the target application addresses anomalous behaviour. A solution devised for a
particular setup and application behaviour should have the potential to be applicable
across various protocols that share the same underlying setup and program behaviour
characteristics.

How can a crash be reproduced?

A comprehensive guide outlining the procedure for reproducing a crash in the fuzzer’s
present development state is expounded upon in section 4.10. To succinctly summarize,
once the fuzzer identifies a crash, it must be executed in debug mode to translate the
injected input into a usable format. Subsequently, the target program is run on the
local system, and a Python script is employed to transmit the crash input to the target,
ultimately leading to the occurrence of a crash.

When we focus solely on target programs that can be executed within a Linux virtual
machine, the existing crash reproduction workflow remains largely unaffected. The
transition to this new context primarily involves adjusting the previously mentioned
Python script, tailoring it to align with the characteristics of the new target. Alternatively,
for those inclined, the process of sending a specific input to the target can be executed
manually, thereby eliminating the necessity for the Python script. It’s worth noting that
some scenarios might involve target programs crashing only after a sequence of inputs is
received. In such cases, it proves more convenient to create an additional script rather
than manually executing the steps, especially when dealing with multiple crashes in the
same program. This systematic approach ensures a consistent and efficient procedure for
crash reproduction, irrespective of the specific target and its intricacies.

In the event of a change in the virtual machine setup, additional factors need consideration.
The main question is about the setup in which the target program now operates. It’s
conceivable that the target program may no longer be feasible to run directly on the
host system. If such a scenario arises, new hardware has to be obtained, or virtualisation
is used. Using virtualisation the same configuration can be applied as used during the
fuzzing process. Subsequently, the target program would be executed within this virtual
environment, and the target input could be dispatched either manually or via a script.
This particular step in the process is unlikely to pose substantial challenges, considering
that the virtual machine’s configuration has already been established. As previously
mentioned, QEMU offers extensive hardware emulation capabilities, encompassing a wide
array of hardware configurations. This inherent flexibility should facilitate the fuzzing of
target programs with diverse hardware or other requirements, providing the necessary
adaptability to accommodate potential variations in the virtual machine environment.
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CHAPTER 7
Conclusion

The integration of embedded systems within a broad range of industries necessitates a
resilient strategy to mitigate potential vulnerabilities. The ramifications of any vulnerabil-
ities or disruptions can be dire. Unfortunately, the security of these systems often leaves
much to be desired. Identifying and rectifying vulnerabilities prior to their exploitation
by malicious entities holds the potential to significantly bolster the security of these
systems.

In this context, fuzzing emerges as a notably effective approach to achieve this objective.
In order to foster security research on embedded system this thesis expands the reach
and relevance of contemporary fuzzing techniques in the realm of systems employing
protocols specific to embedded systems.

This thesis expands the capabilities of the open-source fuzzer Nyx-Net to encompass
programs utilising the SocketCAN protocol for communication. The enhanced fuzzer
operates on the latest version of Ubuntu, which, as of the time of writing, is Ubuntu 22.04
LTS. It offers user-friendly scripts to streamline the utilisation of the fuzzer. Additionally,
it integrates support for the CAN protocol within the virtual machine where the target
program executes. Furthermore, the development entails crafting an individualised input
specification tailored for targets that receive CAN-specific data. The process of injecting
this custom input into the targets is fitted to SocketCAN communication. The newly
implemented functionalities are evaluated and tested across various target programs.

In Chapter 6, forthcoming challenges in the expansion of the fuzzer’s capabilities are
discussed, accompanied by solutions and ideas. Five questions are raised to discuss topics
regarding the fuzzer’s virtual machine setup, the intricacies of communication with the
target and crash management. The ideas provided lay the path for using the fuzzer in
relation to other embedded protocols.

Chapter 1 introduces specific research questions concerning the fuzzing of embedded
protocols. The remainder of this chapter aims to provide answers to these inquiries.
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RQ1: What are the key requirements and considerations for adapting the
Nyx-Net fuzzer to effectively test and fuzz a program using the protocol
implementation SocketCAN, and how can these challenges be addressed?

To facilitate further research, the Nyx-Net fuzzer is expanded to encompass target
programs employing the SocketCAN protocol. Since Nyx-Net is inherently designed for
network applications rather than embedded systems, various modifications are required
across its components. For a comprehensive understanding of these adaptations and
extensions, the Background chapter 3 delves into the technologies utilised within Nyx-Net
and how they are integrated. This chapter also furnishes a detailed exposition of Nyx-Net,
with a specific focus on the areas that underwent alterations.

In the subsequent chapter 4, the necessary fixes, adaptations, and new features for
the development of a new fuzzer based on Nyx-Net are explained. The fuzzing setup
initially encountered challenges with the Ubuntu 22.04 LTS operating system. Fur-
thermore, the virtual machine configuration is augmented to include support for CAN,
necessitating an update to the Linux kernel to enable certain features. One of the
primary challenges revolved around establishing accurate communication between the
target program and the fuzzer, primarily due to the distinct data structures employed by
SocketCAN targets. The introduction of new functionalities such as CAN_MODE and
CAN_SPEC_TEST_MODE allows for seamless fuzzing of SocketCAN targets without
disrupting Nyx-Net’s existing functionalities, and additionally aiding in the development
of the new fuzzer.

RQ2: How can the modifications to Nyx-Net be implemented to preserve its
original functionality while incorporating the new changes?

To have the fuzzer not only work for the SocketCAN protocol implementation, but also for
the targets intended by the used foundation which is the fuzzer Nyx-Net, there should be
a way to support both type of targets. This challenge is effectively addressed through the
introduction of a new mode called CAN_MODE. By default, this mode remains disabled,
ensuring that the fuzzer operates in a manner consistent with Nyx-Net. However, when
this mode is activated, the fuzzer becomes capable of effectively fuzzing programs that
rely on data received through SocketCAN.

At one hand, enabling CAN_MODE leads to adjustments in the virtual machine con-
figuration wherein the target program executes. Additionally, it entails adaptations in
the fuzzer’s communication approach with the target program. For a comprehensive
understanding of the implementation and technical aspects of this mode, refer to the
same chapter as discussed in RQ1, namely chapter 4.
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RQ3: How can the findings and insights gained from successful fuzzing of a
target utilising SocketCAN be leveraged to advance fuzzing research on
other CAN protocol implementations?

Given that there exist various implementations of the CAN protocol beyond SocketCAN,
broadening the fuzzer’s scope to encompass one of these alternatives can be seen as a
natural next step. An ideal candidate for this expansion could be a program employed in
automotive systems. However, it’s important to note that such programs are often not
publicly accessible. Therefore, successful integration would likely necessitate collaboration
with the respective manufacturers.

In Section 2.3, an overview of existing tools for fuzzing applications employing the CAN
protocol is provided. Notably, all of these tools have relied on actual hardware within
their fuzzing setups.

In Section 6.1, an exploration of challenges and potential solutions related to adapting
the existing fuzzer for other CAN protocol implementations is presented. This section
outlines five pivotal questions that address the intricacies when extending the fuzzer’s
capabilities to encompass new CAN protocol variants. These inquiries center around
aspects such as the virtual machine setup, bidirectional communication with the target
program, and the crucial matters of crash detection and reproducibility.

RQ4: How can the knowledge acquired from successful fuzzing of a target
using SocketCAN be applied to advance research on embedded protocols in
general?

The insights derived from the experience of fuzzing SocketCAN applications and the
study of CAN targets can be leveraged to derive the potential use of the developed fuzzer
for various other embedded protocols. Section 6.2 takes the lessons learned from fuzzing
SocketCAN to encompass other CAN protocols, and broadens the approach to cater to a
more generalized scope. Five key questions are raised, revolving around the same topics
as the questions raised for RQ4, namely virtualisation, target communication and crash
processing.
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