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Abstract: Deep Learning has enabled significant progress towards more accurate predictions and
is increasingly integrated into our everyday lives in real-world applications; this is true especially
for Convolutional Neural Networks (CNNs) in the field of image analysis. Nevertheless, it has
been shown that Deep Learning is vulnerable against well-crafted, small perturbations to the input,
i.e., adversarial examples. Defending against such attacks is therefore crucial to ensure the proper
functioning of these models—especially when autonomous decisions are taken in safety-critical
applications, such as autonomous vehicles. In this work, shallow machine learning models, such as
Logistic Regression and Support Vector Machine, are utilised as surrogates of a CNN based on the
assumption that they would be differently affected by the minute modifications crafted for CNNs. We
develop three detection strategies for adversarial examples by analysing differences in the prediction
of the surrogate and the CNN model: namely, deviation in (i) the prediction, (ii) the distance of the
predictions, and (iii) the confidence of the predictions. We consider three different feature spaces:
raw images, extracted features, and the activations of the CNN model. Our evaluation shows that
our methods achieve state-of-the-art performance compared to other approaches, such as Feature
Squeezing, MagNet, PixelDefend, and Subset Scanning, on the MNIST, Fashion-MNIST, and CIFAR-
10 datasets while being robust in the sense that they do not entirely fail against selected single attacks.
Further, we evaluate our defence against an adaptive attacker in a grey-box setting.

Keywords: machine learning; adversarial examples; detection; surrogate model; convolutional neural
networks; image classification

1. Introduction

Deep Learning (DL) has made significant progress in domains such as image or text
analysis, with various forms of Deep Neural Networks (DNNs) being proposed. The
most successful architecture in the image domain is the Convolutional Neural Network
(CNN), which is often utilised for classification tasks, i.e., mapping of input data to one of
the predefined classes based on the knowledge built from a training set. Deep Learning
is increasingly integrated into our everyday lives and used in real-world applications.
These may be safety-critical systems, which raises concerns about security (and safety).
Recent studies showed that DL is vulnerable against small perturbations of the input
samples [1], called adversarial examples. The goal of the adversary is to introduce a minimal
perturbation to the input—not noticeable by the human eye—but that tricks the targeted
model into predicting a different class than for the unmodified input. An adversary is a
user who leverages adversarial examples to attack the integrity or availability of a model.
Several works have shown that adversarial examples also work in real-world settings, i.e.,
when inputs (e.g., images) are recorded by sensors (e.g., cameras), demonstrated, e.g., by
[2]; researchers from McAfee showed that such attacks are also possible against autonomous
vehicles (https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-
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to-pave-safer-roads-for-autonomous-vehicles/, (accessed on 20 October 2023)), which can
eventually cause physical harm to humans.

It is thus important to detect and defend against these attacks. Defensive strategies
against these attacks can be either reactive, e.g., detecting the adversarial input after the model
is built, or proactive, i.e., making the model more robust, e.g., by taking into consideration
adversarial examples during the training time [3].

Our contribution is a new method for detecting adversarial examples and informing
a user of the possible attack and is thus a reactive approach. To this end, we employ
the idea of (global) surrogate models [4]. We train (global) surrogates of a CNN model,
trained on the predictions of the (black-box) CNN model to approximate its behaviour.
Specifically, we employ models that are considered “traditional machine learning”, i.e.,
shallow models such as, e.g., Logistic Regression or SVMs. We base our detection methods
on the assumption that these shallow ML models, while not having the same effectiveness,
are differently affected by the perturbations in adversarial examples. Therefore, a strong
deviation between the predictions of the CNN model and its surrogate can be seen as
an alarm. Several works have argued that adversarial examples are linked to overfitting
(e.g., [5]), while others suggest that the cause is, rather, the inevitable trade-off between
fitting and generalisation in a model [6]. By employing surrogate models that have different
properties for fitting their models as compared to CNNs, we build on and try to leverage
these assumptions.

We propose three different detection strategies: Prediction Deviation (deviation in the
prediction), Distance Deviation (deviation in the distance of the predictions), and Confidence
Drop (deviation in the confidence of the predictions). To compensate for the shortcomings of
individual surrogates, an ensemble of surrogate detectors is utilised. A desired property of
a detection method is its effectiveness against a wide range of attacks. Moreover, having a
detector that cannot only defend against known attacks but is able to detect unseen attacks
is a major challenge. Therefore, we evaluate our methods against seven common white-
box attacks compromising the effectiveness of the targeted CNN model; we also consider
an adaptive attacker. We generate adversarial examples in the testing stage by altering
the input data and not by modifying the models, i.e., we deploy an evasion attack. We
evaluate our method on three benchmark datasets: MNIST, Fashion-MNIST, and CIFAR-10.
We show that our method is comparable to state-of-the-art approaches—outperforming
them in several cases. Our method is thus an additional technique that can be utilised to
compensate for specific shortcomings of other methods. Our main contributions are thus:

• Creation of three novel detection strategies exploiting the differences in predictions of
original and surrogate models;

• Using ensembles of surrogate models for increased robustness;
• A large-scale evaluation against seven strong white-box attacks on multiple well-

known CNN architectures, including an adaptive attacker setting.

This paper is structured as follows. After reviewing related work in Section 2 and
defining our Threat Model Section 3, we present our detection method in Section 4. Section 5
details the evaluation setup and is followed by an analysis of the results in Section 6. We
conclude with a discussion of our method and an outlook on future work in Section 7.

2. Related Work

In this section, we discuss the wider field of adversarial machine learning and how
adversarial examples relate to other attacks and then review related work for generating as
well as countering adversarial examples.

Adversarial Machine Learning comprises several attacks on a machine learning
pipeline. They can be grouped, e.g., using the categorisation proposed in [7], which
is based on the attacker’s goals and capabilities to manipulate training and test data. An
attacker can have one of the following goals along the axes of the well-known CIA (Con-
fidentiality, Integrity, and Availability) triad, which is used analogously for other assets
in cybersecurity:

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
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• Availability: misclassifications that compromise normal system operation;
• Integrity: misclassifications that do not compromise normal system operation;
• Confidentiality/privacy: revelation of confidential information on the learned model,

its users, or its training data.

Table 1 shows attacks against ML systems, categorised along these axes, i.e., the goal
along the CIA triad and the step in the workflow at which the attack occurs—either the
model training (learning) or the prediction (test and inference) phase.

Table 1. Adversarial attacks against Machine Learning, adapted from [7].

Attacker’s Capability
Attacker’s Goal

Integrity Availability Confidentiality

Test data Evasion (e.g.,
adversarial examples) -

Model stealing,
model inversion,

membership
inference, . . .

Train data
Poisoning for

subsequent intrusions
(e.g., backdoors)

Poisoning to
maximise error -

Several types of attacks address the confidentiality of the data used to train a model,
e.g., membership disclosure [8] or model inversion [9], or the confidentiality of a learned
model itself, thus representing a case of intellectual property violation via illegal distribu-
tion [10] or model stealing [11].

In terms of availability and integrity, two well-known attacks are adversarial exam-
ples [1], a form of evasion attack, and backdoor attacks, e.g., via data poisoning [12]. An
adversarial example [1] is an input with intentional perturbations generated with the goal
of deceiving a machine learning model, i.e., producing an incorrect output. A key difference
between a backdoor and an adversarial example is that the latter is a form of test-time
evasion attack and aims to discover or manipulate inputs at the prediction time so that they
lead to wrong inferences. Contrarily, poisoning attacks interfere during the training phase
and are thus readily exploitable during the prediction phase.

Several popular methods to generate adversarial examples have been proposed; most
approaches modify an existing input and try to minimise the number of changes introduced
to the input while optimising the induced change in the prediction of the machine learning
model, e.g., the confidence for the individual classes. The different approaches for solving
this optimisation vary greatly in the computational complexity required, which is another
factor to consider for an attacker.

Attacks are often categorised based on the knowledge of an adversary. In white-box
attacks, it is assumed that the target model is directly exposed to attackers. Therefore,
an attacker can generate perturbations utilising all information about the model, i.e., its
weights, loss, activation functions, etc. In black-box attacks , the adversary has no access
to the targeted trained model—the victim model—but only knows the output of the model
(label or confidence score). Grey-box attacks are in between, e.g., an adversary is assumed
to know the architecture of the target model but to have no access to the weights. Then,
the adversary crafts adversarial examples on a surrogate classifier of the same architecture.
Most approaches assume a white-box setting. They differ mostly in the computational
effort required and the amount of perturbation introduced in the adversarial example. We
consider a powerful adversary; therefore, we test our methods against seven state-of-the-art
white-box attacks.
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2.1. Adversarial Example Generation

The Fast Gradient Sign Method (FGSM) generates an adversarial example based on
the direction of the gradient sign of the targeted CNN model, i.e., it determines whether
the pixel’s value should be increased or decreased [13]. The attack is designed to be fast
and not to produce minimal perturbations. The perturbation strength is controlled by a
parameter ε.

Basic Iterative Method (BIM) is an iterative version of FGSM [14] that applies it
multiple times with a small step size α. After each iteration, the pixel values of the
intermediate image are clipped so that they are in an ε-neighbourhood of the original image.

Projected Gradient Descent (PGD) [15] is a sophisticated version of BIM, formulated
as a constraint optimisation problem to find a perturbation that maximises the loss of the
CNN so that the crafted perturbation lies within a permitted range. The method starts by
taking a random sample inside the Lp ball of the original input xxx and applying one FGSM
gradient step with a small step size α. The intermediate result xxx′ is then projected onto the
Lp ball of xxx, thus keeping the perturbation smaller than a specified ε.

The Jacobian-based Saliency Map Attack (JSMA) [16] is based on modifying a limited
number of pixels that are selected using adversarial saliency maps. The attack extends the
concept of saliency maps to create maps that indicate pixels an adversary should perturb to
increase the misclassification.

DeepFool [17] iteratively searches for the closest class boundary. The minimal perturba-
tion is estimated by an orthogonal projection of inputs onto the closest separating hyperplane.

Carlini and Wagner (CW) [18] proposed one of the strongest attacks, achieving a high
fooling rate while introducing only minimal perturbation. The authors proposed three
versions of the attack depending on the different Lp norm, i.e., L0, L2, and L∞ attacks. The
attack is formulated to penalise the true class having the highest logit, i.e., input to the
softmax layer.

Instead of crafting a perturbation specifically for each input, universal perturba-
tions [19] accumulate the perturbation of each image in a batch. To ensure a permitted data
range, the perturbation is projected on the Lp ball of the original input.

2.2. Defences against Adversarial Examples

A wide range of defences against adversarial attacks has been proposed in the litera-
ture. Miller et al. [20] review several different defence methods, e.g., robust classification,
which might modify the training process to make the model more robust (e.g., adversarial
training [1] or feature obfuscation [21]). While this shall make the ML-based system robust
against attacks, another approach is to detect an adversarial example and then act there-
upon (e.g., refuse the classification); Miller et al. [20] refer to this as “anomaly detection”
of test-time evasion attacks. Detection methods are often categorised in training a detector,
utilising p-statistics, or inconsistency. In the following, we describe state-of-the-art methods
that we will eventually compare our defence to. A recent survey [22] reviews several
different methods.

Feature Squeezing [21] is based on low-cost image manipulation techniques. The
authors argue that the input space of a CNN model is often large and could be reduced
without significant loss. The method thus tries to make it harder for an adversary to craft
an adversarial example by squeezing out redundant features. It detects by comparing the
prediction of the model on the original input with the input after applying squeezing
methods, e.g., colour bit reduction or spatial smoothing.

MagNet [23] also exploits prediction differences by training an autoencoder to ap-
proximate the distribution of clean (unmodified) images. MagNet’s detection component
combines multiple detectors, while the reformer component seeks to find, given an input
xxx, an example xxxre on the manifold, where xxxre is a close approximation of xxx. We compare
our method to the detection component, specifically, the detectors based on the probability
divergence, which measures the divergence of the probabilities (output of the softmax
layer) for an input image xxx and the reconstructed image xxxre.
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PixelDefend [24] utilises p-statistics by means of a generative models, specifically
PixelCNN [25], to approximate the training distribution. The authors argue that everything
outside the training distribution is considered an outlier and in this case as adversarial.
PixelCNN uses autoregressive connections to model images pixel by pixel, decomposing
the joint distribution of pixels over an image as a product of conditional distributions. Then,
for a given input, a probability density under the generative model is calculated, and its
rank among the densities of the training examples is determined. The rank is used as a test
statistic to determine whether or not the image was drawn from the training distribution.
The authors further propose PixelDefend, which tries to find a purified image within the Lp
ball of the input image.

Several detection methods utilise intermediate layers of a CNN model, resp. its ac-
tivations. Subset Scanning [26] applies a non-parametric scan statistic over activations,
looking for the nodes that are most responsible for anomalous behaviour caused by ad-
versarial examples. Anomalies are detected with respect to the activations on unmodified
inputs BH0 , i.e., baseline data that are known to be unmodified. The empirical p-value for
each node j in the network is defined as the fraction of activations of BH0 that is larger than
the activation from the given input at node j. Then, the method searches for a subset in the
activations that contains the most evidence of having an anomaly.

The authors of [27] analyse activation patterns with a secondary DNN, called the alarm
network, whereas the authors of [28] quantise activations using a set of thresholds and
then train an SVM classifier with an rbf kernel to detect adversarial examples. The authors
of [29] use a small detector subnetwork, which consists of convolutional and pooling layers
and branches off the main network. Ref. [30] utilises simple statistics on the convolutional
layer outputs (normalised PCA coefficients, minimal and maximal values, etc.) as features
for a cascade SVM classifier. The authors of [31] argue that CNN features should be
more robust to attacks, as adversarial generation algorithms are meant to trick only the
final classification. Therefore, they use activations of the last pooling layer as features
for a k-NN classifier whose prediction score they use as a measure of the target network
confidence. The authors of [32] use the estimated conditional Gaussian distribution of the
last convolutional layer for the detection. In our method, we follow a similar approach
but build on a more advanced analysis of the difference in the CNN and other models
(such as the above-mentioned k-NN) trained on its features, and we also consider another
form of inputs to these models in addition to the output of the CNN. Combining defences
sequentially is explored [33].

Some works have considered ensembles to achieve a certain level of robustness, e.g., [34],
which ensures diversity among the classifiers by enforcing different regularisation; [35], which
uses different levels of precision on the learned model parameters to return an ensemble of
results; or [36], which builds ensembles to ensure sufficient diversity, so that the redundancy
can act as error-correcting codes to allow for robust classification.

While we also employ ensembles to ensure diversity and thus robustness in our
prediction, we train the members of our ensemble very differently: namely, as surrogate
models from the (intermediate) outputs from the target CNN, and we do not just perform
an ensemble vote but analyse in detail the differences in the predictions.

Several works have argued that adversarial examples are a result of machine learning
models overfitting [5] and thus picking up too many spurious, minute details in the input
signal. A recent work [6] has argued that adversarial examples exist due to the inescapable
trade-off that exists in machine learning between fitting and generalisation. Adversarial
examples are practically situated on true class positions, and being fooled by them is linked
to the fitting capability; high-variance models show increasing robustness to adversarial
examples. Also, Shamir et al. [37] argue that adversarial examples with very small distances
to the correct target class exist due to the fact that decision boundaries in DNNs lie close
to the inputs. They argue this is due to what they call the “dimpled manifold”, where
the decision boundary is very undulated around the images that otherwise lie on a lower-
dimensional manifold.
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We aim to build on and utilise these observations by exploiting classifiers with different
characteristics when it comes to fitting, e.g., Support Vector Machine (SVM), which explicitly
maximises the margin between different classes.

3. Threat Model

We define the attacker’s goal, knowledge, and capability of manipulating the input
data based on the discussion by Biggio and Roli (2018) [7].

3.1. Attacker’s Goal

The attacker’s goal is defined in the following terms:

• Security violation: We classify the violation along the integrity, availability, and confi-
dentiality (CIA) triangle. The attacker we consider aims to cause either an integrity
violation, i.e., to evade detection without compromising normal system operation,
or an availability violation, i.e., to compromise the normal system functionalities
available to legitimate users. Confidentiality of the model or data is not our concern.

• Attack specificity: We consider both targeted and untargeted attacks. Targeted attacks
aim to cause the model to misclassify a specific set of samples (to target a given system
user or protected service), while with untargeted attacks, the attacker aims to cause
misclassification of any sample (to target any system user or protected service, e.g.,
with universal adversarial examples).

• Error specificity: We consider the attacker aiming to misclassify a sample misclassified
to a specific class or generically as any of the classes different from the true class.

3.2. Attacker’s Knowledge

The attacker’s knowledge of the targeted system includes knowledge of, e.g., the
training data, the feature representations, the learning algorithm along with the objective
function and possibly the learned parameters, as well as a potential detection or defence
method. We can consider the following cases:

• White-box setting: the attacker is assumed to know everything about the targeted system.
• Gray-box setting: the attacker is assumed to know something about the targeted system.
• Black-box setting: the attacker is assumed to know nothing about the targeted system.

3.3. Attacker’s Capability

In terms of the influence that the attacker has on the input data, adversarial examples
are exploratory attacks, i.e., the attacker can only manipulate test data; this is also known
as an evasion attack. In contrast, in a causative attack, the attacker can manipulate both
training and test data (commonly known as poisoning attacks). There are no specific
data manipulation constraints in our work except that the resulting inputs need to still be
valid images.

3.4. Adaptive Attacker

We also consider an adaptive attacker, i.e., an attacker that is aware that a defence will
be employed. The adaptive attack carried out in this paper follows a threat model wherein
we assume the attacker has white-box knowledge of the CNN (the target/victim model).
Following the definition of Carlini et al. [38], we assume the defender holds some limited
amount of information secret. While Carlini et al. state that “the defining characteristic of
a white-box evaluation is that the threat model assumes the attacker has full knowledge
of the underlying system”, it does not mean that “all information has to be available to
the adversary”, and that “it can be acceptable for the defender to hold a small amount of
information secret”.
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Along this line, our attacker has grey-box knowledge of the defence: that is, the
attacker knows the type of defence and its parameters (e.g., prediction deviation with
an ensemble of SVM and Logistic Regression, and the target FP rate). The attacker does
know the hyperparameters to train the detectors (e.g., which kernel and the complexity
(regularisation) parameter for the SVM) but not the resulting model of the detector, i.e., not
the hyperplane of the SVM. The attacker knows the required training hyperparameters
(e.g., which optimiser and learning rate was used) but does not have the exact same training
data available as the original model creator. Thus, the resulting detector the attacker obtains
in white-box access will be very similar but not necessarily an exact duplicate.

Specifically in this work, we consider the EMNIST Balanced [39] and STL-10 datasets [40]
as datasets close enough to represent the original MNIST and CIFAR-10 datasets.

4. Surrogates for Detecting Adversarial Examples

Our approach is depicted in Figure 1. As surrogates, we aim to cover a broad spectrum
of different learning paradigms to reduce the risk of having all surrogates being affected by
a single attack, and we thus utilise the following shallow models: k-Nearest Neighbours
(k-NN), which is based on the prediction of a sample’s nearest neighbours; Decision Trees
(DTs), which consists of decision rules arranged in a tree; (Gaussian) Naive Bayes ((G)NB),
which is based on applying the Bayes’ theorem with strong independence assumptions
among features; (Multinomial) Logistic Regression ((M)LR) from the family of linear
classifiers; and Support Vector Machines (SVMs), which seek the largest margin of the
decision boundary.

Train a 
CNN model

Train a 
surrogate

 model

Predictions
Choose 

threshold 
values (FP 5%)

Select 
ensemble

 model
Detect

Training data
(50,000/60,000)

Tuning data
(300)

Test data
(700)

Figure 1. Pipeline for detecting adversarial examples using surrogate models. A CNN model is
trained on the training data (50,000 for CIFAR-10 and 60,000 for MNIST and Fashion-MNIST). Then,
a surrogate model is trained on the predictions of the CNN model using features derived from
the training data directly (raw image and the Histogram of Oriented Gradients) or through the
CNN model (activations). Threshold values for surrogate detectors are chosen on the training data,
targeting a desired false positive rate. After that, we select an ensemble model on the tuning set,
which consists of generated adversarial examples. Finally, we test our model on the test data. Blue
subsets represent unmodified examples, whereas orange represents adversarial examples. All subsets
are non-overlapping.

Most of these methods are designed to handle one-dimensional input; to handle a
two-dimensional image, preprocessing is needed. To measure the influence of the feature
space that surrogates utilise in the detection of adversarial examples, we train surrogates
using three different feature spaces: (i) raw images, (ii) the activations of the targeted
CNN model (on the last convolutional layer), and (iii) descriptive features extracted from
the raw image. Raw images as inputs match the feature space of the surrogates with the
CNN model. As preprocessing, the inputs are scaled to the range [0.0, 1.0] for the CNN
models. The image is further transformed row-wise into a one-dimensional vector. This
representation loses the spatial information of an image. Activations as inputs correspond to
the representation learned in the fully connected layers of the CNN model. The assumption
is that even though the activations are contaminated by the adversarial example, the
adversarial example is meant to fool the final classification [31], so the activations might
still carry useful features for the detection.

To obtain a one-dimensional activation vector suitable for the surrogate models, we
utilise the inputs to the last layer in the CNN. Thus, all layers up to the final (fully connected)
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layer, e.g., the convolutional and pooling layers, are applied. The resulting activations are
standardised to have a zero mean and a variance equal to one. In order to filter “adversarial”
features, i.e., features that predominately pick up information relevant to the perturbations,
Principal Component Analysis (PCA)—a dimensionality reduction technique—is applied
on the activations, and 16, 32, or 64 components are selected. Lastly, extracted features for
the surrogate models are obtained using the Histogram of Oriented Gradients (HOG) [41],
which uses the distribution of oriented gradients in local neighbourhoods of an image as
the descriptor. Hence, while this input space preserves spatial information, it does not
match the input space of the CNN model.

Parameters for the Histogram of Oriented Gradients descriptor on the MNIST and
Fashion-MNIST datasets are the following: number of orientations is 8, pixels per cell is a
tuple (4,4), and cells per block is (1,1), which for an image produces a vector of length 392.
On the CIFAR-10, the number of orientations is 9, pixels per cell is a tuple (8,8), and cells
per block is (3,3), which for an image produces a vector of length 324. The parameters were
chosen by optimising the accuracy of surrogates on the test sets. The parameter values for
the number of orientations were 6, 8, and 9, values for pixels per cell (2,2), (4,4), (6,6), and
(8,8), and cells per block were (1,1) and (3,3).

As mentioned earlier, a surrogate model approximates the behaviour of a black-box
model: in our case, a CNN. Therefore, when given an input, their decisions should be
similar or even equal. Based on that expectation, we formulate the following three methods
to detect potential adversarial examples.

4.1. Prediction Deviation

This method compares the prediction of a CNN and its surrogate model. Let’s suppose
an adversarial example xxx′ fools the targeted CNN model to a class c′. The input xxx′ either
fools a surrogate of the CNN model or not, i.e., changes its prediction for that input or does
not influence it. If a surrogate model deviates from the CNN, i.e., they predict different
classes, then the input is flagged as potentially adversarial. The assumption is that the
adversarial example generated for the CNN model will not fool the surrogate model at
all, or not to the same (wrong) class as the targeted model. The false positive rate of the
proposed detection strategy depends solely on the ability of the surrogate to mimic the
CNN model’s reasoning, i.e., the accuracy of the surrogate test set. This method does not
have the ability to control the rate of falsely flagged inputs since there is no threshold value
for the detection. Consequently, it may falsely flag many unmodified inputs as adversarial.

4.2. Distance Deviation

Distance Deviation is a refinement of Prediction Deviation. It requires the predictions to
be only similar, not equal. We compare the class probability vector of a surrogate model
to one of the CNN; the exact way we compute the class vectors is given in Appendix B.
The difference is measured using the Lp (Minkowski) distance metric. In this paper, the L1
distance metric (also known as a city block or Manhattan distance) is selected. Therefore,
the distance between the prediction vectors of a CNN model and its surrogate model is
defined as:

dscore(xxx) = ‖F(xxx)−−− surr(xxx)‖1 (1)

where F(xxx) and surr(xxx) represent the class probability vectors of the CNN and the surrogate
model, respectively. The range of dscore for the L1 metric is from 0 to 2. The maximum value
is reached when each prediction vector consists of 1 for different classes and 0 otherwise.
An analysis of the results (cf. Section 6) for Prediction Deviation shows that a surrogate
model can approximate the prediction of the CNN on the unmodified images, whereas they
disagree most of the time on adversarial images. Therefore, it is expected that dscore is close
to 0 on unmodified inputs and closer to 2 on adversarial examples—the prediction vectors
are similar on the unmodified inputs, but they deviate notably on adversarial examples.
Figure 2 supports this by depicting dscore for unmodified and adversarial examples of the
SVM surrogate trained on the activations. The peak of dscore for the unmodified inputs is
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always near 0, and the peak of dscore for the adversarial examples is near 2. Selecting a
threshold value that decides to flag an input as adversarial between the two distributions
is a balance between a high detection rate and false alarms. Examples that achieve dscore
higher than the threshold value are flagged as adversarial. The concrete threshold value is
selected on the training set.

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10
Figure 2. Histograms of the dscore values (logarithmic scale) for the CNN and their best surrogate
(SVM) utilising Distance Deviation trained on the activations of the CNN across three datasets. The
blue line represents dscore on the unmodified inputs—a set used for choosing a threshold value—while
the orange line represents dscore on the generated adversarial examples.

4.3. Confidence Drop

A CNN classifier outputs a class probability vector that indicates how confident it is in
the prediction. The predicted class is the class that has the maximum class probability in the
vector. For example, if a CNN network is trained on a dataset that has 10 classes, then the
predicted class has a probability of at least 0.1 if all classes are equally likely. The learning
algorithm that is used to train the CNN classifier utilises the Cross-Entropy loss function
that steers the CNN model towards more confident predictions.

Confidence Drop is thus based on the confidence of the predicted class. Several attacks
are able to craft adversarial examples that are classified wrongly with high confidence,
e.g., BIM. Therefore, instead of observing the confidence of the CNN, we look for a drop in
confidence of its surrogate—we assume that their prediction is less confident on adversarial
examples. In order to confidently rely on the prediction of the CNN model, the probability
of the predicted class P(c | xxx) on an input xxx should be above a threshold value. If this idea
is extended further to surrogate models, then the prediction of a CNN model should not
be trusted if the CNN model or its surrogate model has a P(c | xxx) value below threshold
values, which are selected for each model independently. Figure 3 depicts our assumption
by plotting the confidence of the SVM surrogate trained on the activations. An example
is flagged as adversarial if the prediction of a surrogate has a confidence lower than a
threshold value. This method differs from the aforementioned ones in the way that it is not
assumed that a CNN and its surrogate behave similarly.

The threshold values are determined so that the FP rate on the validation set reaches a
certain value n. A threshold value is a confidence that ranks in n-th percentile of the pre-
dicted class probabilities in descending order. Therefore, all examples that have predicted
class confidence lower than the threshold are considered adversarial. The main idea of the
detection strategy is the assumption that the prediction of a CNN model or its surrogate,
which approximates the predictions of the CNN model, is less confident with adversarial
examples. This strategy differs from the aforementioned strategies, Prediction Deviation and
Distance Deviation, in the way that it is not expected that a CNN model and its surrogate
behave similarly, i.e., predict the same class or have similar prediction vectors.



Mach. Learn. Knowl. Extr. 2023, 5 1805

(a) MNIST (b) Fashion-MNIST (c) CIFAR-10
Figure 3. Histogram of predicted class probabilities of the best surrogate (SVM) utilising Confidence
Drop and trained on the activations across three datasets. The blue line represents the unmodified
inputs, and orange is the adversarial examples.

To compensate for the potential shortcomings of individual surrogate models, we
consider an ensemble thereof. Moreover, we model an ensemble based on voting—an input
is considered as an adversarial example if at least n surrogate models in the ensemble mark
it as adversarial. The value of n is decided on the training set. The authors in [42] argue
that an ensemble of detectors is weak against an adaptive attacker, i.e., an attacker that
targets the detection method and the CNN model. However, in Section 6, we show that
ensembles enhance the prediction of single models, and in Section 6.4, where we simulate
an adaptive attacker in a grey-box setting, our methods achieve results relatively similar or
even equal to defence against a normal attack.

5. Evaluation Methodology

This section describes the evaluation methodology, including the utilised benchmark
datasets, the attacks considered for generating adversarial examples, and the evaluation
metrics. We compare our defence to four state-of-the-art defence methods: namely Feature
Squeezing, MagNet, Pixel Defend, and Subset Scanning, all of which are described in
Section 2.

5.1. Datasets

The first dataset is the well-known handwritten digit database MNIST [43], which
has been extensively studied in the domain of adversarial attacks. The database contains
60,000 training and 10,000 testing images. All images are in greyscale and are sized
28× 28 pixels. All digits are centred and normalised in size.

Fashion-MNIST [44] is modelled analogously to MNIST regarding size, colour tone,
and number of classes and is intended as a more challenging replacement to MNIST. The
goal is to distinguish types of clothing, such as trousers, pullover, shirt, or trainers.

CIFAR-10 [45] is also often used for demonstrating adversarial examples. It consists of
60,000 colour images of 32 × 32 pixels divided into 50,000 training and 10,000 test images.
The 10 classes include airplane, automobile, cat, dog, horse, ship, or truck.

For each dataset, we selected a state-of-the-art CNN according to these main requirements:
reasonable computational effort, a network that does not utilise an ensemble, and high perfor-
mance on the dataset. The models chosen for MNIST, SimpleNet [46], and Fashion-MNIST,
DualPath network [47] with WideResNet28-10 [48], denoted as DualPath_28_10, achieve an
accuracy similar to state-of-the-art results (https://paperswithcode.com/) (accessed on 16 Oc-
tober 2023). For CIFAR-10, the chosen CNN, DenseNet [49], achieves an accuracy of 94.48%,
whereas the best accuracy of 99.70% is achieved by EffNet-L2 [50]. Nevertheless, the results that
DenseNet achieves on CIFAR-10 are sufficient to demonstrate our novel detection methods.

Each dataset is split into training (50,000 for CIFAR-10 and 60,000 for MNIST and
Fashion-MNIST). We generate 1,000 adversarial examples, split into a subset for selecting
detector parameters and model selection (300 images), i.e., the tuning set, and a subset on
which the results are tested (700 images).

https://paperswithcode.com/
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To prepare the output of a convolutional layer as input for the surrogates, prepro-
cessing is needed. Preprocessing of the SimpleNet activations is carried out by a simple
squeezing operation, which is used to remove single-dimensional entries from the shape of
a matrix. On the other hand, DualPath_28_10 and DenseNet activations are transformed
by Average Pooling.

The hyperparameters for surrogate models are obtained from a grid search: a grid of
parameters is defined for each model, and models are trained with every combination of
these parameters. After that, the model that achieves the highest accuracy is selected.

5.2. Attacks

We evaluate our methods on the attacks described in Section 2. These are chosen to
cover a variety of approaches in generating adversarial examples: simple attacks that utilise
gradient information (FGSM), iterative attacks (BIM and DeepFool), attacks constructed
as optimisation problems (PGD and Carlini and Wagner), attacks that use Saliency Maps
(JSMA), and attacks that create universal perturbation. These universal perturbations are
obtained for the aforementioned attacks in 20 passes on the batch, excluding the CW attack,
due to the long generation time (about four hours for one pass). Epsilon values used for the
gradient attacks (FGSM, BIM, and PGD) are 0.1, 0.2, and 0.3 with a step of 0.01 for BIM and
PGD. We used the parameters proposed by the authors for other attacks. The parameters
are also listed in Table 2.

Table 2. Parameter settings for the used attacks. The variable x represents epsilon values: 0.1, 0.2,
or 0.3.

Attack FGM-x BIM-x PGD-x JSMA DeepFool CW Universal
Attack

Parameters eps = x eps = x ,
eps_step = 0.01

eps = x,
eps_step = 0.01

gamma = 0.145 de f ault de f ault eps = 0.2,
batch_size = 500

In total, we thus test our detection methods against 23 specific attacks (12 individual
and 11 universal (Carlini–Wagner is excluded from universal attacks due to infeasible
computation time)). Motivated by [18], we generate 1000 images (randomly selected,
therefore the classes in the subset are similarly sized) adversarial examples, resulting in
a total of 23,000 adversarial images. We utilise the implementations by the Adversarial
Robustness Toolbox (ART) [51] except for the CW attack, for which the implementation
from advertorch [52] is used due to higher efficiency. To avoid generating easily detectable
images, each adversarial example is clipped inside the valid range [0.0, 1.0].

The CW, BIM, and PGD attacks all achieve high success rates: usually at or close to
100%. FGM achieves very varied results depending on the dataset and the attack strength
(epsilon); its success ranges between a low 8% for low epsilons on SimpleNet on MNIST to
around 90%. JSMA ranges from 70 to 90%. The universal attack using JSMA as the base
attack shows intriguing properties. Specifically, the attack adds equal noise to all the pixels,
resulting in an adversarial image that is an original image with higher brightness. Detailed
results can be seen in Tables A1–A3. We can also observe that the CW attack generates
adversarial images with the smallest perturbation at the cost of longer generation time.

5.3. Evaluation Metrics

Motivated by [21], three types of image inputs are considered in the detection: success-
ful adversarial example (SAE), failed adversarial example (FAE), and unmodified input.
An SAE input is an adversarial example that managed to deceive the targeted CNN, while
an FAE input is an adversarial example that failed to deceive the CNN. Nevertheless, it is
important to flag that input as a potential threat,as it might stem from an early-stage attack.
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We measure the detection performance using the detection rate on successful ad-
versarial examples (SAE rate) and on failed adversarial examples (FAE rate) as well as
by measuring the false positive rate (FP rate), i.e., unmodified inputs that are flagged as
adversarial examples. The goal is to have a detector that has high overall SAE and FAE
detection rates but a low FP rate. However, our main focus is on creating a balance between
a high SAE and a low FP rate. Therefore, in order to quantify that balance, we introduce
a new detection metric as a harmonic mean of both. This metric is inspired by the F-score,
which provides a harmonic mean between precision and recall. It exhibits a parameter β
that controls that balance. In our metric, precision is analogous to an SAE rate, v, and recall
to the complement of an FP rate, i.e., we take the complement of the FP rate, and we seek
to maximise that complement. Specifically, our metric is defined as:

h = (1 + β2)
SAE · (100− FP)

β2 · SAE + (100− FP)
(2)

where β is chosen such that the FP rate is considered β times more important than the
overall SAE detection rate. Selecting a β value is application-specific. In our evaluation, β is
set to 1.5 so that the FP rate is preferred over the SAE rate. This is due to the fact that some
surrogate models achieve a high SAE detection rate at the cost of a high FP rate, which we
want to prevent. Nevertheless, we present an F1 score value as well, i.e., β = 1.0.

6. Evaluation

In this section, we report the results from our evaluation and compare them to state-
of-the-art detection methods. As mentioned earlier, the threshold value for the detection
methods represents a balance between a high SAE detection rate and a low FP rate, and
all threshold values are tuned on the training set. In order to compare our approaches
with other state-of-the-art methods, the threshold values are selected so that the detector
achieves an FP rate of 5% on the training set, which is a value often used in related work
(e.g., [21]). We sort all the detection values on the training set in ascending order and take
the value at the fifth percentile for Distance Deviation, and we use descending order and the
fifth percentile for Confidence Drop. In an ensemble, first a threshold value for each model
is set so that the model achieves an FP rate of 5% as above, and then the number of votes
n needed to flag a sample as adversarial is selected so that the FP rate of the ensemble is
closest to the targeted FP rate. However, the targeted FP rate is not always 5% on the test
set; therefore, we propose the harmonic rate presented in Section 5.3.

6.1. Evaluation Configuration

In the following, we summarise specific parameter settings and configurations used in
our evaluation.

Feature space: We trained surrogate models using three feature spaces: raw images,
the activations of the CNN, and extracted features (Histogram of Oriented Gradients). Due
to the low accuracy achieved by surrogates for CIFAR-10 on raw images and extracted
features, we consider only results on the activations as inputs for these. Figure 4 shows
the influence of the three input types on the harmonic rate on the Fashion-MNIST dataset;
the surrogates follow the same trend on the MNIST dataset. We observed that there is no
input space that performs the best for all three detection methods. When utilising Prediction
Deviation, the highest harmonic rate is achieved with raw images, followed by extracted
features. The surrogates trained on the activations achieve notably lower harmonic rates,
except the GNB and the SVM. The influence of the feature space is less evident when
surrogates utilise Distance Deviation, except for DT and GNB, which perform notably better
on the activations. When the Confidence Drop method is used, activations outperform other
input types, which achieve a harmonic rate lower than 50.
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(a) Prediction Deviation (b) Distance Deviation (c) Confidence Drop
Figure 4. Influence of feature space on the harmonic rate of the surrogates on Fashion-MNIST.

PCA filtering: The activations of the CNN models were transformed using principal
components. The best surrogate model utilising activations as input is the SVM surrogate.
We observed that when selecting 64 components, the harmonic rate of the SVM detector al-
ways improves (marginally or notably). The harmonic rates of other surrogates decreases in
certain settings. However, when utilised with SVM in an ensemble, we manage to improve
the harmonic rate of the SVM surrogate as an individual detector. Overall, we suggest
transforming the activations of SimpleNet with 16 PCs and activations of DualPath_28_10
and DenseNet with 64 PCs.

Ensembles: An ensemble is constructed from all combinations of surrogate models
trained on the same input type; thus, a total of 25 − 1 (31) different ensembles are built. The
ensemble that achieves the highest harmonic rate on the tuning set is chosen. We provide
our observations for the best-performing individual surrogate models. The improvement
is least evident on MNIST and is at most 0.11 since the surrogate models already achieve a
high harmonic rate (at least 93.15). On Fashion-MNIST and CIFAR-10, the best-performing
individual models achieve a lower harmonic rate of at least 89.98 and 80.69, respectively.
Therefore, the improvement to the ensembles is higher than on MNIST: namely, up to
2.08 on Fashion-MNIST and 10.50 on CIFAR-10.

Comparison to State-of-the-Art: We compare our methods to the state-of-the-art
approaches mentioned in Section 2: Feature Squeezing, MagNet, PixelDefend, and Subset
Scanning. All aforementioned detection methods utilise threshold values to decide if an
input is considered adversarial or not. We choose a threshold value so that the FP rate
of the detectors on the training set is 5%, as motivated by [21]. For a fair comparison,
the best-performing parameter settings for state-of-the-art methods are estimated on the
tuning set and are tested on the same subsets as the best-performing ensembles. For the
state-of-the-art methods, we choose the parameters suggested by the authors. For datasets
on which no results were reported, i.e., Feature Squeezing and MagNet on Fashion-MNIST
and PixelDefend on MNIST and Fashion-MNIST datasets, we tried to tune the parameters
to the best of our knowledge to achieve the highest performance.

6.2. Results of the Basic Defence

In the following, we present and analyse the results of using our three defence methods
in the basic setting, i.e., without an adaptive attacker.

6.2.1. MNIST

The best-performing ensemble for SimpleNet and Prediction Deviation achieves a
harmonic rate of 95.56, as seen in Table 3. It consists of k-NN and MLR on raw images
with n = 2, which means that an example is considered adversarial if both detectors mark
it as such. The highest harmonic rate of 94.22 for a detector utilising Distance Deviation is
achieved by the DT, k-NN, and SVM ensemble on raw images with threshold values of
1.9366, 0.7695, and 0.9345, respectively, and n = 2. We note that in general, a lower threshold
value is preferred, as that increases the sensitivity of the detector towards adversarial
examples. The DT has a very high threshold, meaning that most of the adversarial examples
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will bypass its detection—however, it might still help in the detection of certain examples
when utilised in the ensemble. The best ensemble for Confidence Drop is the DT and SVM
ensemble on the first 16 principal components of the activations: achieving a harmonic
rate of 93.18 and with threshold values of 100% and 99.94%, respectively, and n = 1. The
DT overfit to the attack patterns since it has a very high confidence threshold of 100%,
but it achieves a low SAE detection rate of 26.77 as an individual detector due to high
confidence on adversarial examples, too. However, it slightly enhances the SVM surrogate
in an ensemble. As shown in Table 3, all the detectors achieve an FP rate close to the desired
value of 5.00 except for Prediction Deviation, which achieves the lowest FP rate of 2.45.
Distance Deviation does not work well against the CW attack, achieving an SAE detection
rate of 85.82. All proposed methods are vulnerable against FGSM with ε = 0.1, against
which they achieve SAE detection rates of 72.41, 77.59, and 81.03, respectively. Confidence
Drop struggles to detect adversarial examples generated by the BIM and PGD attacks with
ε = 0.1 and ε = 0.2, achieving SAE detection rates between 50.34 and 73.38.

From the state-of-the-art methods for SimpleNet, Feature Squeezing achieves high
detection rates against all attacks excluding BIM with ε = 0.2 and ε = 0.3, against which it
achieves an SAE detection rate of 84.32 and 73.67, respectively. MagNet showed no vulner-
ability against any of the tested attacks and achieved SAE detection rates of 100.00 against
all of them. We observe that PixelDefend is vulnerable to the JSMA attack, against which it
achieves an SAE detection rate of at most 88.63, whereas for other attacks it achieves an
SAE detection rate of 100.00. Subset Scanning shows similar behaviour as PixelDefend,
i.e., it achieves a perfect SAE detection rate of 100.00 against all attacks except JSMA,
against which it achieves a 72.95 SAE rate. Only Prediction Deviation and Distance Deviation
achieved low FAE detection rates of 6.69 and 42.74, respectively. The highest harmonic
rate is achieved by Feature Squeezing at 97.01, whereas our methods, Prediction Deviation,
Distance Deviation and Confidence Drop, achieve harmonic rates of 95.56, 94.22, and 93.18,
respectively. Prediction Deviation has a similar harmonic rate to PixelDefend and Subset
Scan even though it has a much lower SAE detection rate of 91.35 compared to PixelDefend
(98.38) and Subset Scan (96.14) due to a low FP rate of 2.45 compared to the FP rates of
PixelDefend (5.04) and Subset Scan (4.60).

It is worth mentioning that when using the DualPath_28_10 network as a classifier
for MNIST, our detection strategies achieve better performance, as shown in Table 4. They
might thus be better suited as detectors for this type of network, and maybe SimpleNet
for MNIST is a combination that does not exhibit sufficient differences between the fully
connected layer of the CNN compared to the shallow classifiers we employ.

The best-performing surrogate ensembles of DualPath_28_10 for each proposed de-
tection strategy are the k-NN surrogate on raw images utilising Prediction Deviation, with
a 97.21 harmonic detection rate; the DT and SVM weighted ensemble with n = 1 and
thresholds 0.043 and 0.042, respectively, trained on the activations processed with 64 prin-
cipal components utilising Distance Deviation, with a 96.01 harmonic detection rate; and
the DT, k-NN, and SVM weighted ensemble with n = 1 and thresholds 100.00%, 100.00%,
and 99.68%, respectively, trained on the activations processed with the first 64 principal
components utilising Confidence Drop and achieving a 96.87 harmonic detection rate.

We further tried to combine two of our methods, namely, Confidence Drop and Prediction
Deviation, on the primary architecture used for this dataset, i.e., SimpleNet. We used an
ensemble of k-NN and MLR with n = 2 for Prediction Deviation and for Confidence Drop with
confidence thresholds of 52.46% and 47.41%. The performance increased for the attacks
against which Confidence Drop struggled when used as a single predictor—namely, all but
one variant of the BIM, all variants of PGD, universal BIM, and one variant of universal
PGD—while only marginally worsening in the other settings. Thus, it achieves an overall
slightly higher harmonic rate, showing that these two methods can be combined together
to achieve an overall more reliable detector, and both methods can be recommended
as detectors.
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Table 3. Surrogates for SimpleNet on the MNIST dataset together with state-of-the-art approaches;
detection rates in % for successful adversarial examples.

Attack Pred
Dev

Dist
Dev

Conf
Drop

Joint
PD and CD

Feat
Sqz

Mag
Net

Pixel
Defend

Subset
Scan

FP rate 2.45 4.75 4.89 5.76 3.02 5.32 5.04 4.60

CW 92.91 85.82 100.00 94.07 99.86 100.00 100.00 100.00

DeepFool 93.63 89.94 97.33 95.07 99.59 100.00 100.00 100.00

JSMA 95.83 93.24 100.00 96.40 99.86 100.00 88.63 72.95

FGSM-0.1 72.41 77.59 81.03 81.03 94.83 100.00 100.00 100.00

FGSM-0.2 88.39 90.26 99.25 92.13 99.63 100.00 100.00 100.00

FGSM-0.3 93.84 92.92 99.77 95.43 100.00 100.00 100.00 100.00

BIM-0.1 88.01 96.96 50.34 90.20 98.48 100.00 100.00 100.00

BIM-0.2 86.76 96.12 73.38 89.50 84.32 100.00 100.00 100.00

BIM-0.3 83.45 94.82 91.80 86.33 73.67 100.00 100.00 100.00

PGD-0.1 89.47 96.60 54.62 91.73 98.87 100.00 100.00 100.00

PGD-0.2 89.21 96.83 72.37 91.22 95.25 100.00 100.00 100.00

PGD-0.3 89.78 96.55 88.20 91.22 98.27 100.00 100.00 100.00

UnivJSMA 97.64 94.61 100.00 97.98 99.66 100.00 100.00 100.00

UnivDeepFool 96.97 95.96 100.00 96.97 100.00 100.00 100.00 100.00

UnivFGSM-
0.1 97.51 97.01 100.00 98.01 100.00 100.00 100.00 100.00

UnivFGSM-
0.2 97.09 94.19 99.42 98.26 100.00 100.00 100.00 100.00

UnivFGSM-
0.3 98.28 95.40 100.00 98.85 100.00 100.00 100.00 100.00

UnivBIM-
0.1 96.83 94.44 91.27 97.62 95.24 100.00 100.00 100.00

UnivBIM-
0.2 95.80 93.28 45.38 96.64 98.32 100.00 100.00 100.00

UnivBIM-
0.3 98.15 96.30 97.22 98.15 99.07 100.00 100.00 100.00

UnivPGD-
0.1 90.96 96.99 100.00 92.17 100.00 100.00 100.00 100.00

UnivPGD-
0.2 96.41 95.81 52.69 98.20 99.40 100.00 100.00 100.00

UnivPGD-
0.3 97.74 95.49 99.25 97.74 100.00 100.00 100.00 100.00

SAE rate 91.35 91.99 89.12 93.21 97.09 100.00 98.38 96.14

FAE rate 6.69 42.74 85.64 11.05 94.76 99.50 100.00 100.00

Harm.
rate 95.56 94.22 93.18 93.92 97.01 96.25 95.99 95.62

F1 rate 94.35 93.59 92.02 93.72 97.04 97.27 96.64 95.76
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Table 4. Surrogates for DualPath_28_10 on the MNIST dataset together with state-of-the-art ap-
proaches; detection rates in % for successful adversarial examples. Universal and FGSM attacks
are averaged.

Attack Pred
Dev

Dist
Dev

Conf
Drop

Feat
Sqz

Mag
Net

Pixel
Defend

Subset
Scan

FP rate 3.34 5.38 4.22 5.52 5.09 3.49 5.09

CW 97.80 100.00 100.00 99.85 99.71 98.98 100.00

DeepFool 98.31 95.08 95.76 98.14 99.66 99.83 100.00

JSMA 99.85 100.00 100.00 99.27 100.00 49.49 23.49

FGSM 97.84 100.00 100.00 98.87 100.00 100.00 100.00

BIM-0.1 97.90 99.84 100.00 99.84 100.00 100.00 100.00

BIM-0.2 97.82 100.00 100.00 99.56 99.42 100.00 100.00

BIM-0.3 96.66 100.00 100.00 97.97 70.64 100.00 100.00

PGD-0.1 98.25 99.84 100.00 100.00 100.00 100.00 100.00

PGD-0.2 98.55 100.00 100.00 99.56 99.56 100.00 100.00

PGD-0.3 98.26 100.00 100.00 99.42 75.44 100.00 100.00

Universal 99.66 100.00 100.00 99.94 99.94 11.44 100.00

SAE rate 98.47 99.28 99.39 99.27 97.12 79.96 89.07

FAE rate 1.94 99.99 100.00 78.17 93.44 86.18 100.00

Harm. rate 97.21 96.01 96.87 95.90 95.58 90.73 93.04

F1 rate 97.56 96.89 97.55 96.82 96.00 87.46 91.90

6.2.2. Fashion MNIST

On Fashion-MNIST, the target model is DualPath_28_10. The best-performing ensem-
ble utilising Prediction Deviation is made of k-NN and SVM with n = 2 on raw images,
which achieves a 92.03 harmonic rate. The GNB and SVM ensemble on the first 64 principal
components of the CNN achieves the highest harmonic rate of 95.42 among ensembles that
utilise Distance Deviation. The ensemble parameters are n = 1, and distance thresholds are
0.3918 for GNB and 0.3762 for SVM. Note that these threshold values are much lower than
the thresholds of the best-performing ensemble on MNIST. The best ensemble that utilises
Confidence Drop uses the same input type, i.e., the first 64 principal components of the CNN
activations, and consists of MLR and SVM with n = 1 and confidence thresholds of 71.87%
and 81.56%. This ensemble achieves a 95.49 harmonic rate.

Most of the detectors achieve an FP rate higher than 5.00 except Feature Squeezing
(4.45) and Subset Scan (4.90). MagNet achieves the highest FP rate of 7.27, as shown in
Table 5. In contrast to their performance on MNIST, Distance Deviation and Confidence
Drop achieve higher harmonic rates of 95.42 and 95.49, respectively, compared to Prediction
Deviation at 92.03. PixelDefend, Distance Deviation and Confidence Drop achieve a perfect
detection rate of 100.00 against first-order attacks, i.e., FGSM, BIM, and PGD. Moreover,
Distance Deviation and Confidence Drop achieve a 100.00 SAE detection rate against the
Universal JSMA attack, which fools other approaches notably. Feature Squeezer achieves
an SAE detection rate between 65.51 and 77.27 against FGSM attacks. CW, DeepFool, and
JSMA and its universal version avoided most of the detection of PixelDefend, against
which it achieves SAE detection rates of 11.13, 20.46, 26.26, and 49.76, respectively. Subset
Scanning achieves a very low SAE detection rate against JSMA (13.65) and its universal
version (15.31).
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Table 5. Surrogates and state-of-the-art approaches for DualPath_28_10 on the Fashion-MNIST
dataset; detection rates in % for successful adversarial examples. Universal attacks excluding Univer-
sal are averaged.

Attack Pred
Dev

Dist
Dev

Conf
Drop

Joint
PD and CD

Feat
Sqz

Mag
Net

Pixel
Defend

Subset
Scan

FP rate 6.53 5.64 5.49 6.38 4.45 7.27 5.93 4.90

CW 90.06 96.88 94.66 99.55 42.88 90.65 11.13 80.86

DeepFool 91.02 89.77 92.07 93.11 23.80 87.68 20.46 84.76

JSMA 99.11 98.66 97.77 98.07 70.92 83.83 26.26 13.65

FGM-0.1 89.77 100.00 100.00 100.00 65.51 88.12 100.00 100.00

FGM-0.2 86.50 100.00 100.00 100.00 73.17 88.29 100.00 100.00

FGM-0.3 75.49 100.00 100.00 100.00 77.27 81.01 100.00 100.00

BIM-0.1 86.80 100.00 100.00 100.00 83.83 99.70 100.00 85.31

BIM-0.2 81.90 100.00 100.00 100.00 95.85 98.96 100.00 94.81

BIM-0.3 74.78 100.00 100.00 100.00 97.92 98.22 100.00 97.33

PGD-0.1 90.65 100.00 100.00 100.00 64.84 100.00 100.00 86.35

PGD-0.2 89.91 100.00 100.00 100.00 74.33 100.00 100.00 99.55

PGD-0.3 85.01 100.00 100.00 100.00 80.86 100.00 100.00 100.00

UnivJSMA 38.28 100.00 100.00 100.00 17.70 77.03 49.76 15.31

Universal
etc. 93.79 99.78 99.87 99.81 65.79 96.55 99.97 99.42

SAE rate 88.93 97.87 97.77 98.65 62.41 91.67 64.75 79.83

FAE rate 6.23 98.51 97.70 99.07 50.57 82.14 71.86 91.47

Harm.
rate 92.03 95.42 95.49 95.11 82.13 92.40 82.56 89.82

F1 rate 91.15 96.09 96.11 96.07 75.50 92.20 76.70 86.80

Again, we combined Prediction Deviation and Confidence Drop using an ensemble of
MLR and SVM with thresholds of 71.87% and 81.56%. For a small increase in the FP rate
compared to Confidence Drop, the detection improved against almost all attacks except the
average against universal attacks, where it, however, decreases by a mere 0.06%, at a very
high rate of 99.81%. Thus, we can recommend the combination of the methods above over
the single Confidence Drop approach.

6.2.3. CIFAR-10

As mentioned before, results of surrogates for this dataset are reported only on the
activations of the CNN model, resp. the first 64 principal components thereof. The
best-performing ensembles are the k-NN and SVM ensemble utilising Prediction Deviation
with n = 1, achieving an 88.54 harmonic rate; the MLR and SVM ensemble utilising
Distance Deviation with n = 1 and distance thresholds of 0.3934 and 1.0301, respectively,
achieving a 92.09 harmonic rate; and the MLR and SVM ensemble utilising Confidence
Drop with n = 1 and confidence threshold of 74.76% and 51.84%, respectively, achieving a
89.24 harmonic rate.

As shown in Table 6, notably higher FP rates than 5.00 are caused by Distance Deviation
(5.93), Confidence Drop (7.29), and MagNet (7.29). Distance Deviation and Confidence Drop
showed vulnerability against CW, DeepFool, and JSMA attacks, achieving SAE detection
rates between 53.05 and 82.83, but they achieved an SAE rate of at least 99.82 against
first-order attacks (FGSM, BIM, and PGD) and an SAE rate of 99.63 against universal
attacks, excluding Universal JSMA. Moreover, Prediction Deviation showed higher SAE
detection rates against CW, DeepFool, and JSMA attacks (between 83.04 and 91.34) but
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lower SAE rates against first-order attacks (at most, 85.26). Feature Squeezer achieves high
detection rates against CW (96.05) and DeepFool (93.86) attacks. However, it does not
perform well against the first-order and universal attacks (However, it has to be noted that
on this dataset, we did not manage to reproduce the results reported by [21], albeit utilising
the same settings and target model as they reported. The discrepancy in the results might
come from the difference in the generation process of the adversarial examples. We crafted
examples on a CNN model with the logits as the last layer, which is recommended by
the authors of the adversarial library, whereas the authors in [21] used a model with the
softmax layer as the last one. The authors state better results on first-order attacks, with
an average SAE rate of 83.6, on a slightly less diverse set of attacks than tested by us. This
result is, in any case, still lower than our best result).

MagNet achieves low SAE rates against the FGSM attack (at most 53.79) but very high
SAE rates against its iterative versions (at least 99.39). Furthermore, MagNet achieves lower
detection rates against universal attacks in comparison to Distance Deviation and Prediction
Deviation. Similarly to Distance Deviation and Prediction Deviation, PixelDefend and Subset
Scan show vulnerability against CW, DeepFool, and JSMA attacks, but they achieve much
lower SAE detection rates of at most 6.69, 6.43, and 8.36, respectively. However, Subset
Scan shows very high SAE rates against the first-order attacks (at least 99.70) and universal
attacks (98.84), excluding Universal JSMA, against which all detection methods achieve a
low rate.

Table 6. Surrogates for DenseNet on the CIFAR-10 dataset together with the state-of-the-art ap-
proaches; detection rates in % for successful adversarial examples. Universal attacks excluding
Universal JSMA are averaged.

Attack Pred
Dev

Dist
Dev

Conf
Drop

Joint
PD and CD

Feat
Sqz

Mag
Net

Pixel
Defend

Subset
Scan

FP rate 4.10 5.93 7.29 4.71 3.04 7.29 5.47 4.86

CW 83.59 68.54 53.50 84.65 96.05 82.37 6.69 5.02

DeepFool 83.04 68.42 57.31 83.33 93.86 79.82 6.43 6.43

JSMA 91.34 82.83 69.91 90.12 74.77 86.63 5.47 8.36

FGM-0.1 81.55 99.82 100.00 100.00 3.16 35.33 82.78 100.00

FGM-0.2 67.13 100.00 100.00 100.00 0.17 41.18 99.31 100.00

FGM-0.3 81.62 100.00 100.00 100.00 0.00 53.79 100.00 100.00

BIM-0.1 85.26 100.00 100.00 100.00 0.00 99.39 15.96 100.00

BIM-0.2 85.26 100.00 100.00 100.00 0.00 99.54 41.79 100.00

BIM-0.3 85.26 100.00 100.00 100.00 0.00 99.85 47.57 100.00

PGD-0.1 56.23 100.00 100.00 100.00 0.00 99.85 13.98 99.70

PGD-0.2 19.91 100.00 100.00 100.00 0.00 100.00 97.26 100.00

PGD-0.3 22.64 100.00 100.00 100.00 0.00 100.00 99.85 100.00

UnivJSMA 57.32 57.32 52.44 47.56 54.88 65.85 0.00 17.07

Universal
etc. 77.53 99.63 99.84 99.42 3.58 63.53 72.90 99.84

SAE rate 75.52 87.93 82.32 98.26 39.15 79.36 40.62 58.86

FAE rate 60.94 87.22 82.68 83.86 33.40 55.17 55.32 65.98

Harm. rate 88.54 92.09 89.24 94.65 66.67 88.15 67.12 79.97

F1 rate 84.49 90.90 87.20 94.26 55.78 85.52 56.83 72.73

Again, we further tried to combine two of our methods: namely, Confidence Drop and
Prediction Deviation. We used an ensemble of MLR and SVM with n = 2 for Prediction
Deviation and for Confidence Drop with confidence thresholds of 59.40% and 37.99% and
n = 1; we aimed for a lower FP rate of the ensemble utilising Confidence Drop to keep the
overall FP rate within the targeted 5%. The performance increased against CW, DeepFool,
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and JSMA, against which Confidence Drop struggled. Achieving a harmonic rate of 94.65,
we showed that these two strategies can be combined together and complement each other
also on this dataset.

6.3. Changing the Tuning Set

We utilised the tuning set to select an ensemble model that would potentially perform
the best in the test phase. Moreover, the parameters for the state-of-the-art methods against
which we compare our results were selected on the same set. So far, the tuning set used in
our evaluation consisted of adversarial examples generated by all attacks—therefore, we
implicitly assumed that the attacks would be known in the test phase. This thus provides
an upper bound of achievable defence if the defender has extensive information on the
attack strategy. Therefore, we evaluated both our defence as well as the state-of-the-art
defences on tuning sets that consist only of adversarial examples generated by one of the
available attacks in order to test how well these transfer to other attacks. In that way,
we estimate how general the methods are when the defender has little to no knowledge
about the attacks. To provide a lower bound on the success rate, we also tried a default
setting where we assume no prior knowledge of adversarial attacks—there is no tuning set
on which we select an ensemble. In that setting, we select an SVM surrogate as a single
detector. Having the same results for different tuning sets means that the same detector
is selected for both. We do not test PixelDefend on different tuning sets since it does not
utilise a tuning set to select its parameters.

On the MNIST dataset in Figure 5, detectors that utilise Prediction Deviation and
Distance Deviation achieve similar results in terms of harmonic rate despite different tuning
sets used, whereas detectors that utilise Confidence Drop have more volatile performance.
Ensembles that utilise Distance Deviation achieve a high FP rate of 9.21 when either CW or
FGSM attacks are used in tuning sets. Confidence Drop ensemble models chosen on either
CW, JSMA, DeepFool, or FGSM attacks achieve low detection rates against the BIM and
PGD attacks. However, they achieve harmonic rates of at least 84.67 due to low FP rates
that compensate for low SAE detection rates. Feature Squeezer, MagNet, and Subset Scan
have the same results for most of the variations of tuning sets except for the tuning set
based on BIM for Feature Squeezer and JSMA for Subset Scan.

The impact of the tuning set on Fashion-MNIST shown in Figure 6 is less obvious in the
proposed detection methods compared to state-of-the-art methods. The biggest difference
for ensembles utilising Distance Deviation is on tuning sets consisting of either CW or JSMA,
and for ensembles utilising Confidence Drop, it is on tuning sets consisting of CW and
DeepFool. Feature Squeezer has the biggest difference in results for detectors chosen on
either CW or DeepFool, achieving harmonic rates of only 38.80 and 54.44, respectively,
in comparison to the highest result of 82.13. MagNet and Subset Scan do not have those
big oscillations in harmonic rates, but the performance of the detector on certain attacks
depends widely on the tuning set. For example, MagNet achieves a detection rate against
BIM of 100.00 or 0.00 depending on a tuning set consisting of BIM or DeepFool, respectively.

All tested methods (proposed and state-of-the-art) are volatile to the selection of a
tuning set on the CIFAR-10 dataset, as shown in Figure 7. Prediction Deviation achieves the
least variance in the harmonic rate, whereas Feature Squeezer has the most, varying from
5.10 to 66.68. All proposed methods, Prediction Deviation, Distance Deviation, and Confidence
Drop, struggled to detect BIM and PGD when a tuning set consists of either CW, JSMA,
DeepFool, or FGSM attacks. Similar behaviour can be seen for MagNet. Feature Squeezer
manages to detect CW, JSMA, and DeepFool only when a tuning set consists of one of
those attacks. In contrast to others, Subset Scan shows the most stable harmonic rates
across different tuning sets—excluding the tuning sets consisting of either CW or DeepFool
attacks, where it achieves harmonic rates of 13.64 and 50.84, respectively.

From the evaluation with a variable tuning set, we observe that the default setting
utilising one of the proposed methods showed similar results to those of ensembles chosen
on the tuning set consisting of all attacks on the MNIST and Fashion-MNIST datasets,
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whereas on the CIFAR-10 dataset, the difference in the harmonic rate is most evident for
Confidence Drop: from 89.24 with all attacks in the tuning set to 83.66 for the default setting.
Moreover, ensembles chosen on the tuning set consisting of only CW attacks showed the
worst performance for all proposed methods across three datasets. If only one attack is
available for generating a tuning set, we recommend either BIM or PGD since the ensembles
chosen on those tuning sets achieve harmonic rates that are the closest to the best ones.
Ensembles chosen on Universal attacks showed better performance than ensembles chosen
on either BIM or PGD attacks in some settings, but the tuning set consisting of Universal
attacks uses all other attacks, e.g., Universal FGSM, Universal DeepFool, etc.

(a) Prediction Deviation (b) Distance Deviation (c) Confidence Drop

(d) Feature Squeezer (e) MagNet (f) Subset Scan
Figure 5. Tuning set transferability on MNIST; detection rates in % for successful adversarial examples.

(a) Prediction Deviation (b) Distance Deviation (c) Confidence Drop

(d) Feature Squeezer (e) MagNet (f) Subset Scan
Figure 6. Tuning set transferability on Fashion-MNIST; detection rates in % for successful adversar-
ial examples.
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(a) Prediction Deviation (b) Distance Deviation (c) Confidence Drop

(d) Feature Squeezer (e) MagNet (f) Subset Scan
Figure 7. Tuning Set transferability on CIFAR-10; detection rates in % for successful adversarial examples.

6.4. Adaptive Attacker

To get a better understanding of how our detection methods might perform against
adaptive attacks, we perform an adaptive attack specifically created to target a given detec-
tion method after the method has been completely specified. The authors in [53] argued the
importance of testing detection methods against adaptive attacks to get an approximation
of how strong the detection method is in a real-world setting.

As defined in Section 3, the adaptive attack carried out in this paper follows a threat
model wherein we assume the attacker has white-box knowledge of the CNN (the tar-
get/victim model) and grey-box access to the surrogate models. In other words, the attacker
is aware of the surrogate models used in an ensemble and their hyperparameters but does
not have access to either their parameters nor to the original dataset that the surrogates
were trained on. Instead, the attacker has to obtain a similar dataset and train the surrogate
models on them. Consequently, those models will have different weights and different
threshold values compared to the original ones. We consider this as a realistic scenario
since on the one hand, the CNN architecture and its learned parameters might be publicly
available (or can be obtained or approximated, e.g., via a model extraction attack [54] if the
model is exposed for querying access, e.g., via an API), but on the other hand, the learned
parameters of the detection method are not published and cannot be queried.

The authors in [42] argue that ensembles of detectors are weak against an adaptive
attacker. However, they consider that an attacker has white-box access to the detection
method as well, whereas we consider a scenario wherein details about the detection used are
partially known (grey-box access), and the CNN’s architecture and its learned parameters
are publicly available.

We considered the EMNIST Balanced [39] and STL-10 datasets [40] as (surrogate)
datasets that are similar to the MNIST and CIFAR-10 datasets, respectively. We are not
aware of a fitting dataset for the Fashion-MNIST. The attacker uses these datasets to train
his/her own detector with weights as close as possible to those of the original detector
used by the defender.

As some of the surrogate models used in the ensembles are non-differentiable, e.g.,
DT, GNB, and k-NNN, we decided to use a score-based attack that utilises Particle Swarm
Optimisation (PSO), as in [55]. The authors claim that the attack uses a low number of
queries to generate adversarial examples with high success rates. The attack is black-box
since it only queries the targeted model and observes the labels it returns without any other
knowledge about the model. The loss function that the PSO algorithm optimises tries to
reduce the confidence of the true class on the adversarial input:

Loss = |pCNN(xxx)−−− pCNN(x′x
′x′)| (3)
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so that it maximises the difference between the confidence of the true class on the unmodified
xxx and adversarial input x′x′x′. We call the original loss function CNNterm. The algorithm stops
when an adversarial image manages to deceive the targeted CNN model. The perturbations
are controlled by defining an upper bound L∞ distance between the unmodified image and
the adversarial image.

The goal of our adaptive attack is to fool the targeted CNN model and bypass detection
at the same time. We incorporated a detection term in the loss function that the PSO
attack optimises:

Loss = |pCNN(xxx)−−− pCNN(x′x
′x′)|+ 1

c× n
× detTerm (4)

where n is the number of surrogates in the ensemble. The constant c is chosen so that
the CNNterm and the surrTerm are on the same scale. The detection term is created
specifically for each method. For Distance Deviation, we optimise so that the distance
between the prediction vectors of the targeted CNN and a surrogate model is smaller than
the threshold value. Therefore, detTerm = ∑surr

(
d(F(xxx), surr(xxx))−−− d(F(xxx′), surr(xxx′)

)
,

where we sum distances of the targeted CNN model and each surrogate model in the
ensemble. The c constant is set to 2, as the L1 distance has a range between 0 and 2, whereas
the confidence has a range between 0 and 1. We used the same detTerm for Prediction
Deviation since detection is bypassed when the targeted CNN and a surrogate model
predict the same label, which implies that their prediction vectors are similar. In order to
fool Confidence Drop, the attacker should craft an adversarial example so that the confidence
of the predicted class of a surrogate model is higher than the threshold value; therefore,
detTerm = −−−∑surr

(
psurr(xxx)−−− psurr(x′x′x′)

)
.

The PSO stops when the adversarial example fools the targeted CNN model and
bypasses detection. The parameters are set as proposed by [55]. We evaluated the adaptive
attack on the first 100 samples in the test set that were not already successful adaptive
attacks, i.e., on images that were correctly classified by the CNN model and not flagged as
adversarial. We also present the statistics for the PSO attack on the targeted CNN without
defence as a benchmark.

We are aware that a gradient-based attack could be used against non-differentiable
models with some modifications, as in [56]. However, we chose the PSO attack as a strong
attack that achieves a 100% success rate against the targeted CNN model without a defence,
i.e., it generates a successful adversarial example against the targeted CNN model for every
sample in the subset.

We performed the experiment in a way that the adversarial examples are crafted to
deceive the original CNN model and the surrogate models trained on a similar dataset.
The results are then reported using the original CNN and the original surrogate models
as detectors.

As shown in Tables 7 and 8, the number of queries and iterations needed for the
adaptive attack is much higher compared to a regular attack on the CNN model. For
example, on the MNIST dataset, the regular attack has on average 4.98 iterations, while the
adaptive attack for Confidence Drop takes 761.47 iterations, i.e., a 152-fold increase.

The detection rates of Prediction Deviation, Distance Deviation, and Confidence Drop on
MNIST are 74.26%, 16.83%, and 89.11%, respectively. For reference, their average detection
rate against the attacks on the CNN model without a defence on the MNIST dataset in
Section 6 is 90.82%. A similar trend is observed on the CIFAR-10 dataset, for which the
best performing model is Confidence Drop, with a 72.27% detection rate; after it, Prediction
Deviation has a 69.30 % rate, and the worst-performing Distance Deviation has a 51.48% rate.
Their average detection rate in Section 6 is 81.92%.

An explanation for the low detection rate of Distance Deviation is that the threshold that
surrogates use is relatively high, i.e., an average threshold is 0.85 on MNIST and 0.71 on
CIFAR-10. The L1 distance is in the range from 0 to 2, and threshold values closer to 0
are favourable. Due to the high threshold value, the attacking space is larger compared
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to that of Prediction Deviation. Consequently, the prediction vectors of the CNN model
and its surrogate can be similar enough, i.e., their distance is lower than the threshold
value, even if they predict different classes. For example, if Prediction Deviation is used
on the images crafted against Distance Deviation, the detection rate jumps from 16.83%
to 80.19% on the MNIST dataset and from 51.48% to 78.22% on CIFAR-10 (This is an
example of the superiority of Prediction Deviation over Distance Deviation in this setting.
Detection rates are higher than those reported in Tables 7 and 8 because here we do not
stick with our initial assumption that adversarial examples are crafted specifically to fool
the targeted detection method. In other words, the attacker could proceed with the crafting
of an adversarial example until it potentially fools Prediction Deviation as well). The best-
performing method against the adaptive attacker is Confidence Drop, which on the MNIST
dataset has no degradation in detection rate, i.e., in Section 6, it achieves a rate of 89.12%,
and in Table 7 it achieves a rate of 89.11%. This stems from the fact that it is hard to craft
an adversarial example that will fool the CNN model and at the same time achieve high
prediction confidence on all of its surrogates, i.e., one of the surrogates usually has low
confidence in the adaptive example and thus successfully detects it. For example, the
average threshold confidence of the surrogates on MNIST is 99.97%, whereas the average
confidence of the least confident surrogate on adaptive examples is 40.96%; on CIFAR-10,
the average threshold is 63.30%, and the average confidence of the least confident surrogate
on adaptive examples is 48.46%.

Table 7. Adaptive attack on MNIST; detection rates in % for successful adversarial examples.

Only CNN PredDev DistDev ConfDrop

L2 distance 4.75 5.61 5.29 5.56

Queries 50.81 424.75 1180.96 10,000.08

Iterations 4.98 34.49 92.10 761.47

Detection rate (%) — 74.26 16.83 89.11

Table 8. Adaptive attack on CIFAR-10; detection rates in % for successful adversarial examples.

Only CNN PredDev DistDev ConfDrop

L2 distance 1.41 1.49 1.45 1.53

Queries 173.70 2568.34 438.84 2156.13

Iterations 14.89 197.86 36.35 169.27

Detection rate (%) — 69.30 51.48 72.27

7. Discussion and Future Work

We presented three methods based on surrogate models to detect adversarial examples
and evaluated these against seven different techniques to generate adversarial examples.
The results show that the surrogate models can be used to achieve high harmonic detection
rates on the tested datasets (MNIST, Fashion-MNIST, and CIFAR-10). Combining individual
models in ensembles in some settings further increases our detection rates.

Our detection rates are on par and sometimes exceed the state-of-the-art methods
PixelCNN, MagNet, Subset Scan, and Feature Squeezer. From our observations and the
literature, there is no silver-bullet method that fits all settings and attacks. Thus, the
availability of diverse defence methods is important. One advantage of our method is that
it rarely fails completely against a specific attack, while some of the other state-of-the-art
methods achieve success rates well below 50% or even 30% for several cases. Our method
is thus well-generalising to different attacks. Since the ensembles are chosen on a tuning
set, we also evaluate with different tuning sets without knowledge of the attack, where
our methods show a satisfying level of transferability of parameters chosen on a different
type of attack. For the state-of-the-art defences evaluated, similar parameter selection is
performed on the tuning set. While transfer success rates differ depending on the datasets,
our method is able to outperform the state-of-the-art approaches in several cases, and
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overall, the state-of-the-art techniques are comparable to our proposed methods. We base
our detection method on the principle that a CNN model and its surrogate model should
have the same or very similar reasoning given the same input. Therefore, the proposed
method is not restricted to image datasets only.

In order to tackle the complexity of a dataset, we relied on the CNN activations as
inputs to surrogate models; thus, the surrogate models, even though they are lightweight
models, are not expected to completely fail in other scenarios.

We can observe that our methods have varying strengths compared to the state-of-
the-art, depending on the model type. As such, when detecting adversarial examples for
DualPath_28_10, our method matches or often outperforms the ones from the literature,
while for the more-shallow SimpleNet architecture, our method matches or is sometimes
marginally worse than the state-of-the-art methods. On the CIFAR-10 dataset, the proposed
strategies achieve higher detection rates than PixelCNN, Subset Scan, and Feature Squeezer
on the DenseNet architecture. Future work will thus investigate this influence of the model
type in greater detail. It might be a general hypothesis that the proposed detection method
works better for deeper architectures, but this will need to be confirmed by future work.
Overall, we recommend using either the combination detector originating from joining
Prediction Deviation and Confidence Drop or using Confidence Drop alone—both methods are
overall very reliable and never completely fail.

Finally, we evaluated an adaptive attack, i.e., an attack where the attacker anticipates
the defence method. The adaptive attack we carried out in this paper follows a threat
model wherein we assume the attacker has white-box knowledge of the CNN and grey-box
knowledge of the defence, i.e., the attacker knows the type of defence and its parameters
but does not have the exact same training data available as the original model creator.
We can observe that compared to the original attack without a defence, now (i) the attack
requires a larger amount of queries (and thus processing time) to generate the adversarial
examples, (ii) the generated adversarial examples are often more different from the original
images than before (as noted also, e.g., in [20]), and (iii) the detection rates of our methods
do not drop significantly. Generally, Confidence Drop works the best, especially against the
attack on MNIST, where it achieved the same performance as against the original attack
without a defence.

Being able to fully assess the effectiveness of a defence, one needs to also put the types
of mistakes the method can make, i.e., false positives and false negatives, in perspective.
False positives might e.g., deny legitimate users from accessing resources they should
be entitled to, which might be an inconvenience; not detecting an attack and allowing
unauthorised access likely has a much larger impact. However, these ramifications are also
very use-case specific and cannot be answered universally.

Future work will include considering internal layer activations and learning null
density models from these, as performed, e.g., in [57] as additional information besides,
e.g., Confidence Drop.
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Appendix A. ROC Curves for Detector

The results provided throughout this paper are focused on a single performance point
at a desired false positive (FP) rate that is chosen according to the literature. However, every
detector actually has a receiver operating characteristic (ROC) curve. The ROC curve is a
graphical plot that illustrates the diagnostic ability of a binary classifier as its discrimination
threshold (here, the detection threshold) is varied. The ROC curve is created by plotting
the true positive (TP) rate against the false positive (FP) rate at various threshold settings.
As it would be infeasible to plot all ROC curves, we exemplify the behaviour. As can be
seen in Figure A1a against DeepFool, after a small TP rate at the beginning, the detector
achieves a TP rate close to 1 after a certain FP rate; this behaviour is very similar against all
attacks—another example is provided in Figure A1b against the JSMA attack.

(a) DeepFool Attack (b) JSMA Attack
Figure A1. ROC curve on MNIST against two attacks for the ensemble presented in Table 3.

Appendix B. Class Vector for Surrogate ML Models

In Distance Deviation and Confidence Drop, we utilised prediction vectors of the sur-
rogate models even though not all models use class probabilities for classification. In
other words, MLR and GNB output class probabilities by definition, whereas for other
models, we used well-accepted techniques for approximating a class probability vector.
The class probability vector of DT is estimated as the fraction of samples of the same
class as the leaf used for prediction. Likewise, k-NN models its class probability in a
similar way, i.e., as the fraction of samples of the same class in the neighbourhood. For
all surrogates, we used the implementation in the machine learning package Scikit-learn
(https://scikit-learn.org/stable/ (accessed on 16 October 2023)). Specifically, for SVM,
we used an implementation in the same package based on [58], where probabilities are
calibrated using a pair-wise coupling method. The number of neighbours for k-NN and
minimal number of samples in a leaf for DT is higher or equal to the number of classes
(for all datasets used, there are 10 classes); therefore, the prediction vector has meaningful
class probabilities.

Appendix C. Accuracy of the Surrogates

Surrogates trained on the activations achieve the highest accuracy in approximating the
behaviour of the CNN models, as seen in Figure A2. As shown in Section 6, some surrogates
that are trained on the activations overfit the specific attack pattern. It is an interesting
observation that surrogates that achieve the highest accuracy do not necessarily achieve
the highest harmonic rate. For example, the SVM surrogate trained on the activations
does not achieve the highest accuracy; however, when utilised for detection, it usually
outperforms others. Surrogates using extracted features on the CIFAR-10 dataset achieve
very low accuracy; therefore, they are not utilised in our detection methods.

https://scikit-learn.org/stable/
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(a) MNIST (b) Fashion-MNIST (c) CIFAR-10

Figure A2. Accuracy of the surrogates on different input spaces.

Appendix D. Detailed Results and Generation Properties for the Adversarial
Example Attacks

Table A1. Attacks together with their success rate, average distortion ϕ, and time needed to generate
adversarial examples for the MNIST subset.

Attack
SimpleNet DualPath_28_10

Success Rate ϕ Time Success Rate ϕ Time

CW 100.00 0.12 9 h 1 m 46 s
745 ms 99.80 0.11 21 h 40 m 33 s

646 ms

DeepFool 75.05 0.34 4 m 2 s 624 ms 88.11 0.32 20 m 2 s
628 ms

JSMA 100.00 0.42 8 m 4 s 367 ms 98.78 0.35 13 m 59 s
470 ms

FGM-0.1 8.85 0.24 667 ms 38.41 0.24 2 s 858 ms
FGM-0.2 40.44 0.49 660 ms 85.67 0.49 2 s 857 ms
FGM-0.3 65.09 0.72 656 ms 92.78 0.72 2 s 884 ms

BIM-0.1 86.12 0.22 34 s 14 ms 90.35 0.24 2 m 34 s
926 ms

BIM-0.2 100.00 0.32 33 s 732 ms 100.00 0.44 2 m 34 s
934 ms

BIM-0.3 100.00 0.38 33 s 702 ms 100.00 0.62 2 m 35 s
209 ms

PGD-0.1 86.12 0.22 14 m 13 s
133 ms 91.57 0.24 1 h 40 m 3 s

368 ms

PGD-0.2 100.00 0.34 14 m 12 s
238 ms 100.00 0.46 1 h 40 m 14 s

924 ms

PGD-0.3 100.00 0.45 14 m 11 s
475 ms 100.00 0.69 1 h 40 m 44 s

688 ms

UnivJSMA 44.27 0.63 20 m 54 s
170 ms 17.58 0.63 1 h 2 m 9 s

791 ms

UnivDeepFool 15.59 0.42 9 m 41 s
462 ms 52.54 0.37 1 h 13 m 12 s

857 ms
UnivFGM-

eps0.1 28.67 0.45 28 s 714 ms 86.18 0.46 2 s 567 ms

UnivFGM-
eps0.2 26.06 0.48 25 s 451 ms 68.50 0.48 12 s 537 ms

UnivFGM-
eps0.3 31.59 0.50 25 s 343 ms 71.65 0.50 3 s 109 ms

UnivBIM-
eps0.1 12.07 0.32 8 m 45 s

813 ms 82.42 0.42 28 s 11 ms

UnivBIM-
eps0.2 21.13 0.34 6 m 37 s

298 ms 79.17 0.47 27 s 211 ms

UnivBIM-
eps0.3 14.49 0.34 6 m 36 s

942 ms 71.34 0.49 21 s 988 ms

UnivPGD-
eps0.1 23.04 0.36 2 h 37 m 29 s

769 ms 77.54 0.44 8 m 3 s 688 ms

UnivPGD-
eps0.2 28.87 0.37 2 h 5 m 27 s

528 ms 74.29 0.48 14 m 47 s
863 ms

UnivPGD-
eps0.3 13.68 0.44 2 h 2 m 1 s

564 ms 77.54 0.50 8 m 5 s 145 ms
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Table A2. Attacks together with their success rate, average distortion ϕ, and time needed to generate
adversarial examples for the Fashion-MNIST subset.

Attack
SimpleNet DualPath_28_10

Success Rate ϕ Time Success Rate ϕ Time

CW 100.00 0.03 5 h 29 m 38 s
800 ms 99.79 0.01 40 h 45m 51s

955 ms

DeepFool 69.01 0.06 3 m 49 s
894 ms 59.19 0.03 19 m 53s

693 ms

JSMA 71.78 0.12 1 m 33 s
760 ms 100.00 0.10 9 m 29s

483 ms
FGM-0.1 73.06 0.22 629 ms 88.58 0.22 2 s 943 ms
FGM-0.2 90.84 0.42 627 ms 90.03 0.42 2 s 833 ms
FGM-0.3 93.29 0.62 627 ms 91.07 0.62 2 s 847 ms

BIM-0.1 100.00 0.17 32 s 29 ms 100.00 0.17 2 m 33 s
979 ms

BIM-0.2 100.00 0.27 31 s 937 ms 100.00 0.28 2 m 34 s
432 ms

BIM-0.3 100.00 0.32 31 s 912 ms 100.00 0.35 2 m 34 s
452 ms

PGD-0.1 100.00 0.18 12 m 39 s
933 ms 100.00 0.17 1 h 47 m 5 s

865 ms

PGD-0.2 100.00 0.31 12 m 40 s
462 ms 100.00 0.30 1 h 46 m 57 s

358 ms

PGD-0.3 100.00 0.42 12 m 38 s
518 ms 100.00 0.41 1 h 47 m 6 s

843 ms

UnivJSMA 27.90 0.51 26 m 27 s
324 ms 32.09 0.51 44 m 21 s

34 ms

UnivDeepFool 25.13 0.19 10 m 2 s
932 ms 56.28 0.11 1 h 4 m 25 s

954 ms
UnivFGM-

eps0.1 49.73 0.34 18 s 255 ms 84.74 0.34 8 s 965 ms

UnivFGM-
eps0.2 41.11 0.37 17 s 633 ms 82.24 0.38 8 s 799 ms

UnivFGM-
eps0.3 57.72 0.37 18 s 262 ms 81.83 0.40 9 s 342 ms

UnivBIM-
eps0.1 81.15 0.32 1 m 28 s

174 ms 86.71 0.29 18 s 55 ms

UnivBIM-
eps0.2 81.58 0.33 2 m 48 s

347 ms 82.35 0.30 19 s 865 ms

UnivBIM-
eps0.3 71.03 0.34 39 s 529 ms 87.12 0.31 18 s 172 ms

UnivPGD-
eps0.1 79.98 0.30 1 h 12 m 20 s

30 ms 85.36 0.29 16 m 28 s
73 ms

UnivPGD-
eps0.2 84.98 0.29 1 h 20 m 53 s

146 ms 83.70 0.32 5 m 46 s
353 ms

UnivPGD-
eps0.3 82.75 0.33 1 h 26 m 10 s

425 ms 83.49 0.37 5 m 30 s 18 ms

Table A3. Attacks together with their success rate, average distortion ϕ, and time needed to generate
adversarial examples for the CIFAR-10 subset.

Attack
DenseNet

Success Rate ϕ Time

CW 100.00 0.00 8 h 38 m 31 s 252 ms
DeepFool 52.55 0.00 18 m 49 s 226 ms

JSMA 100.00 0.03 5 m 47 s 191 ms
FGM-0.1 87.13 0.20 2 s 920 ms
FGM-0.2 88.40 0.38 2 s 928 ms
FGM-0.3 89.79 0.56 2 s 960 ms
BIM-0.1 100.00 0.12 2 m 33 s 926 ms
BIM-0.2 100.00 0.16 2 m 33 s 356 ms
BIM-0.3 100.00 0.17 2 m 34 s 687 ms
PGD-0.1 100.00 0.13 51 m 9 s 740 ms
PGD-0.2 100.00 0.23 51 m 22 s 294 ms
PGD-0.3 100.00 0.32 51 m 17 s 39 ms

UnivJSMA 11.70 0.34 24 m 6 s 587 ms
UnivDeepFool 65.43 0.04 26 m 59 s 453 ms

UnivFGM-eps0.1 86.49 0.26 3 s 443 ms
UnivFGM-eps0.2 87.02 0.32 3 s 439 ms
UnivFGM-eps0.3 87.45 0.34 3 s 466 ms
UnivBIM-eps0.1 88.62 0.21 14 s 281 ms
UnivBIM-eps0.2 89.47 0.20 14 s 140 ms
UnivBIM-eps0.3 90.32 0.22 12 s 307 ms
UnivPGD-eps0.1 89.04 0.21 10 m 38 s 399 ms
UnivPGD-eps0.2 90.64 0.27 2 m 18 s 398 ms
UnivPGD-eps0.3 90.64 0.29 2 m 18 s 380 ms
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