

Influence of the lignin content as a natural adhesive in biocomposites using holocellulose and Asplund fibers from spruce wood

SDEWES Conference – Dubrovnik 2023 DI Cornelia Hofbauer

In cooperation with...

Sebastian Serna-Loaiza ^a, Luis Zelaya-Lainez ^b, Luisa Scolari ^c, Florian Zikeli ^d, Josef Füssl ^b, Markus Lukacevic ^b, Hinrich Grothe ^c, Juha Fiskari ^e, Anton Friedl ^a, Michael Harasek ^a

- ^a Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- ^b Institute for Mechanics of Materials and Structures, Technische Universität Wien, Vienna, Austria
- ^c Institute of Materials Chemistry, Technische Universität Wien, Vienna, Austria
- ^d Department for Innovation in Biological, Forest and Agrofood Systems, Tuscia University, Italy
- Fibre Science and Communication Network, Mid-Sweden University, Sundsvall, Sweden

What is the purpose...

- Long-term CO₂ storage
- Composites without nondegradable synthetic adhesives
- Biodegradable and environmentally friendly building material
- Improve the value chain of sawmill by-products (wood chips, sawdust, etc.)

Methods

Results

Conclusions

Agenda

Study Part I – Pretreatment and Impregnation

Introduction and Materials

• Purpose and raw materials

Methods

- Asplund (Thermo-mechanical)
- PAA (Peracetic acid)

Results

- Microscopy
- Chemical composition

Conclusions

Study Part II – Pressing

Introduction and Materials

Pressing

Methods

- Pressing conditions
- Strength testing

Results - PAA

- Density
- Bending Tests

Conclusions

troduction and Materials	Methods	Results	Conclusions

- Pretreatments
- Impregnation
- Chemical and optical analysis

Why PAA-pulping?

- Fibrillation process without severe mechanical treatment
- Initial fiber length almost completely preserved
- Pulping at 80-100°C moderate temperatures
- Selective extraction of lignin

Why Asplund^[2] pulping?

- Fibrillation process with minor chemical effects
 → initial composition almost preserved
- Native lignin and hemicellulose for enhanced bonding abilities
- Low energy process (80 kWh/ton)

Raw material - PAA

- Spruce wood chips
- Different particle sizes (1mm < x < 5cm)
- Air dried and stored open in a bag

Asplund fibers^[2]

- Mid Sweden University
- Norway spruce chips
- Pilot scale refiner
- Similar to the industrial process related to thermomechanical pulp (TMP)
- High moisture content for refining process
 - Heating was provided by steam (165°C)

Nethods

PAA – process Peracetic Acid^[3]

Methods

PAA – pulping

- Mixing wood chips and solvent at room temperature
 - Mixing ratio: 1:9 (wt%)
- 2 pulping cycles (50 min) with stirring at 100°C
- Between cycles mechanical treatment (3 min)

[4] JIANG, Bo, et al. Lignin as a wood-inspired binder enabled strong, water stable, and biodegradable paper for plastic replacement. *Advanced Functional Materials*, 2020, 30. Jg., Nr. 4, S. 1906307.

ISL-process steps

ISL

2. Cycle step – ISL

3. Fibers directly after blending

4. Impregnated fibers after 24h

Impregnated PAA-pulp					
0wt%	10wt%	20wt%	30wt%	40wt%	

Impregnated Asplund-pulp					
0wt%	10wt%	20wt%	30wt%	40wt%	

SDEWES | September 2023

100°C

Chemical analysis Klason lignin content

- Impregnation with different lignin contents:
 - 2 batches: Holocellulose (PAA_pulp) and Asplund fibers (Asplund_pulp)
 - Lignin contents: 0, 10, 20, 30 and 40wt%
 - (PAA_ 0 40 and Asplund_0 40)
- Losses of lignin during the ISL process in both pulps

Chemical analysis Carbohydrates in solids

- The PAA-pulp has the highest glucose (cellulose) content
- After swelling the glucose content decreased significantly
- For the impregnated PAA-batch, no specific trend is visible – inhomogeneity of the pulping process
- The impregnated Asplund batch shows a trend

Conclusions

What we learned...

- Good fibrillation during the PAA-pulping process
- During the impregnation lignin is further extracted
- Swelling decreases the glucose content significantly
- Homogeneous distribution of the supernatant on the fibers
- Lignin content sufficient controllable in the pulp

Introduction and Materials	Methods	Results	Conclusions

- Pressing
- Mechanical analysis

Why do we press?

- Chemical and physical bonding between the components under heat and pressure
- Mobilization of lignin in the fiber network
- Production of specimen called "beams"
 - Dimensions: 120x10x10 mm

Methods

Pressing conditions

- Displacement controlled
- Max. temperature: 200 °C
- Holding time: 20min
- Force: 54kN
- Cooled after holding time to 40°C

Mechanical and physical analysis

- Density and dimensions of the "beams"
- Bending test
 - Until failure of the material
- Modulus of rupture (MOR)

PAA – Physical and mechanical properties

PAA – Physical and mechanical properties

PAA – physical/chemical properties

Conclusions

What we learned...

- High values (90-120 MPa) can be achieved
- The MOR of the beams vary because of inhomogeneous fiber composition
- PAA-pulping needs to be more controllable
- The bonding ability and strength of the composite is very depending on the composition of the fiber and homogeneity of the pulp
- Lignin is a suitable natural binder

Outlook

- Press and evaluate the Asplund pulp
- More controllability over the whole process (pulp composition, homogeneity, losses)
- Optimization of the pulping and pressing conditions
- Study of different lignins for better binding abilities

Thank you!

- A big thank you to my colleagues:
 - Sebastian Serna Loaiza, Luisa Scolari, Luis Zelaya, Markus Lukacevic, Florian Zikeli
- And to the Mid Sweden University: Prof. Juha Fiskari

cornelia.hofbauer@tuwien.ac.at

