

Counting and enumerating transformation monoids

Mike Behrisch $^{\times *1}$

 $^{\times}$ Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien

*Institute for Algebra JKU Linz

11th June 2023 • Tartu, Estonia

¹Supported by Austrian Science Fund (FWF) grant P 33878.

 2023, shortly before Easter: Colleague: 'How many transformation monoids on {0,1,2}?' Me: 'Don't know, but Sloane's OEIS should, right?'

- 2023, shortly before Easter: Colleague: 'How many transformation monoids on {0,1,2}?' Me: 'Don't know, but Sloane's OEIS should, right?'
- Sloane's On-line Encyclopedia of Integer Sequences
 (https://oeis.org): ?
 transformation monoid, transformation semigroup,
 full semigroup ... ~> no result

- 2023, shortly before Easter: Colleague: 'How many transformation monoids on {0,1,2}?' Me: 'Don't know, but Sloane's OEIS should, right?'
- NextClosure algorithm: enumerate those monoids:
 → 699 monoids
 colleague satisfied

- 2023, shortly before Easter: Colleague: 'How many transformation monoids on {0,1,2}?' Me: 'Don't know, but Sloane's OEIS should, right?'
- Sloane's On-line Encyclopedia of Integer Sequences

 (https://oeis.org): ?
 transformation monoid, transformation semigroup,
 full semigroup ... ~>> no result
- NextClosure algorithm: enumerate those monoids: ~ 699 monoids colleague satisfied
- 1,6,699 → https://oeis.org/search?q=1%2C6%2C699
 A343140: 'Number of submonoids of the monoid of maps from an *n*-element set to itself.'

(reason why we both didn't find it)

A343140

1, 6, 699

Links Jannik Hess, Automorphism groups of monoids acting on number fields, Bachelor Thesis, 2019.

Keyword bref, hard, nonn, more

Author Max Alekseyev, Jan 27 2022

Keywords

- bref Sequence is too short to do any analysis with
- hard Next term is not known and may be hard to find. Would someone please extend this sequence?
- nonn A sequence of nonnegative numbers
- more More terms are needed! Would someone please extend this sequence? We need enough terms to fill about three lines on the screen.

1, 6, 699

Links Jannik Hess, Automorphism groups of monoids acting on number fields, Bachelor Thesis, 2019.

Keyword bref, hard, nonn, more

Author Max Alekseyev, Jan 27 2022

Keywords

- bref Sequence is too short to do any analysis with
- hard Next term is not known and may be hard to find. Would someone please extend this sequence? Let's try!
- nonn A sequence of nonnegative numbers
- more More terms are needed! Would someone please extend this sequence? We need enough terms to fill about three lines on the screen.

1, 6, 699

Links Jannik Hess, Automorphism groups of monoids acting on number fields, Bachelor Thesis, 2019.

Keyword bref, hard, nonn, more

Author Max Alekseyev, Jan 27 2022

Keywords

- bref Sequence is too short to do any analysis with
- hard Next term is not known and may be hard to find. Would someone please extend this sequence? Let's try!
- nonn A sequence of nonnegative numbers
- more More terms are needed! Would someone please extend this sequence? We need enough terms to fill about three lines on the screen. Let's not be too ambitious

Bernhard Ganter's NextClosure algorithm

A general purpose tool to enumerate all closed sets of a closure operator on a finite set. . .

Setting

- finite $M = \{m_1 < m_2 < m_3 < \cdots < m_k\}$ linearly ordered
- $\langle \rangle : 2^M \longrightarrow 2^M$ a closure operator, $\mathcal{F} = \{ A \in 2^M \mid \langle A \rangle = A \}$
- lexicographic order of 2^M w.r.t. (M, <): for $A, B \in 2^M$: $A <_m B \iff m \in B \setminus A \land$
 - $A \cap \{x \in M \mid x < m\} = B \cap \{x \in M \mid x < m\}$ $A <_{le} B \iff \exists m \in M \colon A <_m B.$ linear order on 2^M.

NextClosure

enumerates closure system \mathcal{F} in lexicographic order beginning with $\langle \emptyset \rangle$

Bernhard Ganter's NextClosure algorithm

A general purpose tool to enumerate all closed sets of a closure operator on a finite set. . .

Setting

- finite $M = \{m_1 < m_2 < m_3 < \cdots < m_k\}$ linearly ordered
- $\langle \rangle : 2^M \longrightarrow 2^M$ a closure operator, $\mathcal{F} = \left\{ A \in 2^M \mid \langle A \rangle = A \right\}$
- lexicographic order of 2^M w.r.t. (M, >): for $A, B \in 2^M$: $A <_m B \iff m \in B \setminus A \land$

$$A \cap \{x \in M \mid x > m\} = B \cap \{x \in M \mid x > m\}$$

$$A <_{le} B \iff \exists m \in M : A <_m B.$$

NextClosure

enumerates closure system ${\cal F}$ in lexicographic order beginning with $\langle \emptyset
angle$

Bernhard Ganter's NextClosure algorithm

A general purpose tool to enumerate all closed sets of a closure operator on a finite set. . .

Setting

- finite $M = \{m_1 < m_2 < m_3 < \cdots < m_k\}$ linearly ordered
- $\langle \rangle : 2^M \longrightarrow 2^M$ a closure operator, $\mathcal{F} = \left\{ A \in 2^M \mid \langle A \rangle = A \right\}$
- lexicographic order of 2^M w.r.t. (M, >): for $A, B \in 2^M$: $A <_m B \iff A(m) = 0 < 1 = B(m) \land$

 $\forall x > m \colon A(x) = B(x)$

$$A <_{\mathsf{le}} B \iff \exists m \in M \colon A <_m B.$$

linear order on 2^M .

NextClosure

enumerates closure system \mathcal{F} in lexicographic order beginning with $\langle \emptyset \rangle$

NextClosure theory

Given
$$A \in 2^{M}$$
 such that $\exists B \in \mathcal{F} : A <_{le} B$ $<_{le}$ w.r.t. $(M, >)$
Theorem (Ganter)
The $<_{le}$ -smallest $B \in \mathcal{F}$ with $A <_{le} B$ is
 $A \oplus m := \langle (A \cap \{x \in M \mid x > m\}) \cup \{m\} \rangle$
where $m \in M$ is $<$ -least (i.e., >-largest) w.r.t. $A <_{m} A \oplus m$ $(\Rightarrow m \notin A)$

If no $m \in M$ with $A <_m A \oplus m$ exists, there is no $B \in \mathcal{F}$ with $A <_{\mathsf{le}} B$.

NextClosure code

Algorithm 1: NextClosure(A) Data: $A \in 2^M$ **Result:** the $<_{le}$ -next $B \in 2^M$, $A <_{le} B$ if it exists, else Error for $m \in M$ in *<*-ascending order do if $m \in A$ then // $A <_m A \oplus m$ impossible $A := A \setminus \{m\}$ // remove m else $B := \langle A \cup \{m\} \rangle$ // compute $A \oplus m$ if $B \setminus A$ contains no element x > m then $// A <_m A \oplus m$ return B else ignore *B* completely and continue with the next *m* return Error // no further closure beyond A exists

NextClosure code

Algorithm 2: NextClosure(A) with characteristic vectors Data: $A \in 2^M$ **Result:** the $<_{le}$ -next $B \in 2^M$, $A <_{le} B$ if it exists, else Error for $m \in M$ in *<*-ascending order do if A(m) = 1 then // $A <_m A \oplus m$ impossible A(m) := 0// remove m else B := A; B(m) := 1; $B := \langle B \rangle$ // copy A, set m, close if $\neg \exists x > m$: B(x) > A(x) then // $A <_m A \oplus m$ return B else \lfloor ignore *B* completely and continue with the next *m* return Error // no further closure beyond A exists

Enumerating all closures

Algorithm 3: AllClosures

Data: closure operator $\langle \rangle$ Output: listing of all closed sets $A = \langle A \rangle$ in lexicographic order $A := \langle \emptyset \rangle$ while $A \neq$ Error do // there is a next closure after AList A // print to screen or store otherwise A := NextClosure(A)

Both algorithms in one

Algorithm 4: AllClosures with NextClosure inlined

Data: closure operator $\langle \rangle$ **Output:** listing of all closed sets $A = \langle A \rangle$ in lexicographic order List $A := \langle \emptyset \rangle$

repeat

 $\begin{aligned} & \text{stop} := \text{true} \qquad // \text{ assume } A \text{ is the last closure, but revert if necessary} \\ & \text{for } m \in M \text{ in } <-\text{ascending order do} \\ & \text{if } A(m) = 1 \text{ then } A(m) := 0 \quad // \text{ if } A <_m A \oplus m \text{ impossible, remove } m \\ & \text{else} \\ & & B := A; \ B(m) := 1; \ B := \langle B \rangle \qquad // \ B := A \oplus m \\ & \text{if } \neg \exists x > m : B(x) > A(x) \text{ then } \qquad // \ A <_m A \oplus m \\ & & \text{List } A := B \qquad // \text{ copy next closure } B \text{ onto } A \\ & & \text{stop} := \text{false} \qquad // \text{ found next closure, hence need to repeat} \\ & & & \text{break for-loop over } m \in M \end{aligned}$

until stop

// there is no next closure after \boldsymbol{A}

Speeding up the core part

Part of AllClosures: (with NextClosure inlined)

After $B := \langle B \rangle$: Question $\{x > m \mid x \in B \setminus A\} \neq \emptyset$?

Speeding up the core part

Part of AllClosures: (with NextClosure inlined)

$$B := A; \quad B(m) := 1$$

$$B := \langle B \rangle \qquad // \quad B := A \oplus m$$

if $\neg \exists x > m : B(x) > A(x)$ then $// \quad A <_m A \oplus m$
List $A := B \qquad // \text{ copy next closure } B \text{ onto } A$
stop $:=$ false // found next closure, hence need to repeat
break for-loop over $m \in M$

After
$$B := \langle B \rangle$$
: Question $\{x > m \mid x \in B \setminus A\} \neq \emptyset$?

 \iff Does application of $\langle B \rangle$ generate a new element x > m?

If yes, then computation of $\langle B \rangle$ does not need to be completed since B is discarded.

Speeding up the core part

Part of AllClosures: (with NextClosure inlined)

$$B := A; \quad B(m) := 1$$

$$B := \langle B \rangle \qquad // \quad B := A \oplus m$$

if $\neg \exists x > m : B(x) > A(x)$ then $// \quad A <_m A \oplus m$
List $A := B \qquad // \text{ copy next closure } B \text{ onto } A$
stop $:=$ false // found next closure, hence need to repeat
break for-loop over $m \in M$

After
$$B := \langle B \rangle$$
: Question $\{x > m \mid x \in B \setminus A\} \neq \emptyset$?

 \iff Does application of $\langle B \rangle$ generate a new element x > m?

If yes, then computation of $\langle B \rangle$ does not need to be completed since *B* is discarded.

For $M = T_n$ (full transformation monoid on *n*), we will shortcut generation $\langle B \rangle = \langle B \rangle_{T_n}$ appropriately

Shortcut code for generating the submonoid $\langle B \rangle_{T_{r}}$

$$B := A; \quad B(m) := 1; \quad B := \langle B \rangle \qquad // \quad B := A \oplus m$$

if $\neg \exists x > m : B(x) > A(x)$ then ... // $A <_m A \oplus m$

Improved part of AllClosures: (with NextClosure inlined)

B := A; B(m) := 1; B(id) = 1 // copy A, add m and id notgennew := true // assume $\langle B \rangle$ does not generate x > mrepeat // compute $\langle B \rangle$

closed := true // assume B is closed, revert if not for $x, y \in B$ do // i.e., $x, y \in M$ with B(x) = B(y) = 1if $B(x \circ y) = 0$ then $B(x \circ y) := 1$; closed := false // product is new, hence repeat if $x \circ y > m$ then notgennew := false // B will be discarded, thus closing break repeat-until-loop // does not have to be completed

until closed if notgennew then ...

// B is closed

Number of all transformation monoids on <i>n</i> elements							
п	1	2	3	4			
$ Sub(T_n) $	1	6	699	?			

Number of all transformation monoids on <i>n</i> elements							
	n	1	2	3	4		
	$ Sub(T_n) $	1	6	699	?		

Audience poll:
$$x = \log_{10}$$
?

- *x* < 5
- 5 ≤ x < 6
- 6 ≤ x < 7
- 7 ≤ x < 9
- $9 \le x < 10$
- x ≥ 10

Number of all transformation monoids on *n* elements $\frac{n \mid 1 \mid 2 \mid 3 \mid 4}{|\operatorname{Sub}(T_n)| \mid 1 \mid 6 \mid 699 \mid \approx 1.58 \cdot 10^9} \quad (\approx 1 \text{ day})$

Number of all transformation monoids on <i>n</i> elements								
Sub(<i>T</i> _	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 6 6	3 99 ≈	1.58 · 1	$\frac{4}{0^9}$ ($\approx 1 \text{ d}$	lay)		
Number of transformation monoids with all constants (constantive)								
	n	1	2	3	4			
$ \{B \le T_n \mid C_n \subseteq \% \text{ of } \text{Sub} \} $	[B} (T _n)	1 100	$2 \approx 33$	$\begin{array}{c} 342 \\ \approx 49 \end{array}$	$pprox 1.25 \cdot 10^9 \ pprox 79$	$(pprox 1 ext{ day})$		

Number of all transformation monoids on *n* elements

Number of transformation monoids with all constants (constantive)

Number of **non-constantive** transformation monoids

Number of all transformation monoids on *n* elements

Number of transformation monoids with all constants (constantive)

Number of transformation monoids without any constants (constant-free)

^{*)} value updated post-lecture (1 Aug 2023)

- wait for the constant-free monoids on $5 = \{0, 1, 2, 3, 4\}$ to finish (guess: about 5 months more)
- Itry to enumerate representatives up to isomorphism

• wait for the constant-free monoids on $5 = \{0, 1, 2, 3, 4\}$ to finish (guess: about 5 months more)

Itry to enumerate representatives up to isomorphism

Questions/Remarks?