Counting and enumerating transformation monoids

\author{
Mike Behrisch ${ }^{\times * 1}$
 ${ }^{\times}$Institute of Discrete Mathematics and Geometry, Algebra Group, TU Wien
 *Institute for Algebra JKU Linz
 11th June 2023 - Tartu, Estonia
 [^0]}

Background story

- 2023, shortly before Easter:

Colleague: 'How many transformation monoids on $\{0,1,2\}$?' Me :

Background story

- 2023, shortly before Easter:

Colleague: 'How many transformation monoids on $\{0,1,2\}$?' Me : 'Don't know, but Sloane's OEIS should, right?'

- Sloane's On-line Encyclopedia of Integer Sequences (https://oeis.org): ?
transformation monoid, transformation semigroup, full semigroup ...

Background story

- 2023, shortly before Easter:

Colleague: 'How many transformation monoids on $\{0,1,2\}$?' Me: 'Don't know, but Sloane's OEIS should, right?'

- Sloane's On-line Encyclopedia of Integer Sequences (https://oeis.org): ?
transformation monoid, transformation semigroup, full semigroup ...
- NextClosure algorithm: enumerate those monoids:
$\rightsquigarrow 699$ monoids
colleague satisfied

Background story

- 2023, shortly before Easter:

Colleague: 'How many transformation monoids on $\{0,1,2\}$?' Me : 'Don't know, but Sloane's OEIS should, right?'

- Sloane's On-line Encyclopedia of Integer Sequences (https://oeis.org): ?
transformation monoid, transformation semigroup, full semigroup ...
- NextClosure algorithm: enumerate those monoids: $\rightsquigarrow 699$ monoids colleague satisfied
- 1,6, $699 \rightsquigarrow$ https://oeis.org/search?q=1\%2C6\%2C699 A343140: 'Number of submonoids of the monoid of maps from an n-element set to itself.'
(reason why we both didn't find it)

A343140

1, 6, 699
Links Jannik Hess, Automorphism groups of monoids acting on number fields, Bachelor Thesis, 2019.
Keyword bref, hard, nonn, more
Author Max Alekseyev, Jan 272022

Keywords

bref Sequence is too short to do any analysis with
hard Next term is not known and may be hard to find. Would someone please extend this sequence?
nonn A sequence of nonnegative numbers
more More terms are needed! Would someone please extend this sequence? We need enough terms to fill about three lines on the screen.

A343140

1, 6, 699
Links Jannik Hess, Automorphism groups of monoids acting on number fields, Bachelor Thesis, 2019.
Keyword bref, hard, nonn, more
Author Max Alekseyev, Jan 272022

Keywords

bref Sequence is too short to do any analysis with
hard Next term is not known and may be hard to find. Would someone please extend this sequence? Let's try!
nonn A sequence of nonnegative numbers
more More terms are needed! Would someone please extend this sequence? We need enough terms to fill about three lines on the screen.

A343140

1, 6, 699
Links Jannik Hess, Automorphism groups of monoids acting on number fields, Bachelor Thesis, 2019.
Keyword bref, hard, nonn, more
Author Max Alekseyev, Jan 272022

Keywords

bref Sequence is too short to do any analysis with
hard Next term is not known and may be hard to find. Would someone please extend this sequence? Let's try!
nonn A sequence of nonnegative numbers
more More terms are needed! Would someone please extend this sequence? We need enough terms to fill about three lines on the screen. Let's not be too ambitious

Bernhard Ganter's NextClosure algorithm

A general purpose tool to enumerate all closed sets of a closure operator on a finite set...

Setting

- finite $M=\left\{m_{1}<m_{2}<m_{3}<\cdots<m_{k}\right\}$ linearly ordered
- $\left\rangle: 2^{M} \longrightarrow 2^{M}\right.$ a closure operator, $\mathcal{F}=\left\{A \in 2^{M} \mid\langle A\rangle=A\right\}$
- lexicographic order of 2^{M} w.r.t. ($M,<$): for $A, B \in 2^{M}$: $A<_{m} B \Longleftrightarrow m \in B \backslash A \wedge$

$$
A \cap\{x \in M \mid x<m\}=B \cap\{x \in M \mid x<m\}
$$

$A<_{\mathrm{le}} B \Longleftrightarrow \exists m \in M: A<_{m} B$.
linear order on 2^{M}.

NextClosure

enumerates closure system \mathcal{F} in lexicographic order beginning with $\langle\emptyset\rangle$

Bernhard Ganter's NextClosure algorithm

A general purpose tool to enumerate all closed sets of a closure operator on a finite set...

Setting

- finite $M=\left\{m_{1}<m_{2}<m_{3}<\cdots<m_{k}\right\}$ linearly ordered
- $\left\rangle: 2^{M} \longrightarrow 2^{M}\right.$ a closure operator, $\mathcal{F}=\left\{A \in 2^{M} \mid\langle A\rangle=A\right\}$
- lexicographic order of 2^{M} w.r.t. ($M,>$): for $A, B \in 2^{M}$: $A<_{m} B \Longleftrightarrow m \in B \backslash A \wedge$

$$
A \cap\{x \in M \mid x>m\}=B \cap\{x \in M \mid x>m\}
$$

$A<_{\mathrm{le}} B \Longleftrightarrow \exists m \in M: A<_{m} B$.
linear order on 2^{M}.

NextClosure

enumerates closure system \mathcal{F} in lexicographic order beginning with $\langle\emptyset\rangle$

Bernhard Ganter's NextClosure algorithm

A general purpose tool to enumerate all closed sets of a closure operator on a finite set...

Setting

- finite $M=\left\{m_{1}<m_{2}<m_{3}<\cdots<m_{k}\right\}$ linearly ordered
- $\left\rangle: 2^{M} \longrightarrow 2^{M}\right.$ a closure operator, $\mathcal{F}=\left\{A \in 2^{M} \mid\langle A\rangle=A\right\}$
- lexicographic order of 2^{M} w.r.t. ($M,>$): for $A, B \in 2^{M}$: $A<_{m} B \Longleftrightarrow A(m)=0<1=B(m) \wedge$

$$
\forall x>m: A(x)=B(x)
$$

$A<_{\mathrm{le}} B \Longleftrightarrow \exists m \in M: A<_{m} B$. linear order on 2^{M}.

NextClosure

enumerates closure system \mathcal{F} in lexicographic order beginning with $\langle\emptyset\rangle$

NextClosure theory

Given $A \in 2^{M}$ such that $\exists B \in \mathcal{F}: A<_{\text {le }} B \quad<_{\text {le }}$ w.r.t. $(M,>)$
Theorem (Ganter)
The $<_{\mathrm{le}}$-smallest $B \in \mathcal{F}$ with $A<_{\mathrm{le}} B$ is

$$
A \oplus m:=\langle(A \cap\{x \in M \mid x>m\}) \cup\{m\}\rangle
$$

where $m \in M$ is <-least (i.e., >-largest) w.r.t. $A<_{m} A \oplus m \quad(\Rightarrow m \notin A)$
If no $m \in M$ with $A<_{m} A \oplus m$ exists, there is no $B \in \mathcal{F}$ with $A<_{\mathrm{le}} B$.

NextClosure code

Algorithm 1: NextClosure(A)
Data: $A \in 2^{M}$
Result: the $<_{\mathrm{le}}$-next $B \in 2^{M}, A<_{\mathrm{le}} B$ if it exists, else Error for $m \in M$ in <-ascending order do
if $m \in A$ then

$$
/ / A<_{m} A \oplus m \text { impossible }
$$

$$
A:=A \backslash\{m\}
$$

// remove m
else
$B:=\langle A \cup\{m\}\rangle \quad$ // compute $A \oplus m$
if $B \backslash A$ contains no element $x>m$ then $/ / A<_{m} A \oplus m$ return B else
ignore B completely and continue with the next m
return Error
// no further closure beyond A exists

NextClosure code

Algorithm 2: $\operatorname{NextClosure(A)~with~characteristic~vectors~}$
Data: $A \in 2^{M}$
Result: the $<_{l e}$-next $B \in 2^{M}, A<_{\text {le }} B$ if it exists, else Error for $m \in M$ in <-ascending order do
if $A(m)=1$ then
else

$$
B:=A ; B(m):=1 ; B:=\langle B\rangle / / \text { copy } A \text {, set } m \text {, close }
$$

$$
\text { if } \neg \exists x>m: B(x)>A(x) \text { then } \quad / / A<_{m} A \oplus m
$$ return B else ignore B completely and continue with the next m

Enumerating all closures

Algorithm 3: AllClosures

Data: closure operator \rangle

Output: listing of all closed sets $A=\langle A\rangle$ in lexicographic order $A:=\langle\phi\rangle$
while $A \neq$ Error do // there is a next closure after A List A // print to screen or store otherwise $A:=$ NextClosure (A)

Both algorithms in one

Algorithm 4: AllClosures with NextClosure inlined

Data: closure operator \rangle

Output: listing of all closed sets $A=\langle A\rangle$ in lexicographic order
List $A:=\langle\emptyset\rangle$

repeat

stop := true // assume A is the last closure, but revert if necessary
for $m \in M$ in <-ascending order do if $A(m)=1$ then $A(m):=0 \quad / /$ if $A<m A \oplus m$ impossible, remove m else

$$
\begin{array}{ll}
B:=A ; B(m):=1 ; B:=\langle B\rangle & / / B:=A \oplus m \\
\text { if } \neg \exists x>m: B(x)>A(x) \text { then } \quad \text { // } A<_{m} A \oplus m \\
\text { List } A:=B & \text { // copy next closure } B \text { onto } A
\end{array}
$$ stop $:=$ false // found next closure, hence need to repeat break for-loop over $m \in M$

Speeding up the core part

Part of AllClosures: (with NextClosure inlined)
$B:=A ; \quad B(m):=1$
$B:=\langle B\rangle \quad$ // $B:=A \oplus m$
if $\neg \exists x>m: B(x)>A(x)$ then
// $A<_{m} A \oplus m$ List $A:=B \quad / /$ copy next closure B onto A stop := false // found next closure, hence need to repeat break for-loop over $m \in M$

After $B:=\langle B\rangle: \quad$ Question $\{x>m \mid x \in B \backslash A\} \neq \emptyset$?

Speeding up the core part

Part of AllClosures: (with NextClosure inlined)
$B:=A ; \quad B(m):=1$
$B:=\langle B\rangle \quad$ // $B:=A \oplus m$
if $\neg \exists x>m: B(x)>A(x)$ then $\quad / / A<_{m} A \oplus m$ List $A:=B \quad / /$ copy next closure B onto A stop $:=$ false // found next closure, hence need to repeat break for-loop over $m \in M$

After $B:=\langle B\rangle: \quad$ Question $\{x>m \mid x \in B \backslash A\} \neq \emptyset$?
\Longleftrightarrow Does application of $\langle B\rangle$ generate a new element $x>m$?
If yes, then computation of $\langle B\rangle$ does not need to be completed since B is discarded.

Speeding up the core part

Part of AllClosures: (with NextClosure inlined)

$\begin{aligned} & \hline B:=A ; B(m):=1 \\ & B:=\langle B\rangle \\ & \text { if } \neg \exists x>m: B(x)>A(x) \text { then } \quad \text { // copy next closure } B:=A \oplus m \text { onto } A \\ & \begin{array}{l} \text { List } A:=B \\ \text { stop }:=\text { false } / / \text { found next closure, hence need to repeat } \\ \text { break for-loop over } m \in M \end{array} \end{aligned}$

After $B:=\langle B\rangle: \quad$ Question $\{x>m \mid x \in B \backslash A\} \neq \emptyset$?
\Longleftrightarrow Does application of $\langle B\rangle$ generate a new element $x>m$?
If yes, then computation of $\langle B\rangle$ does not need to be completed since B is discarded.

For $M=T_{n}$ (full transformation monoid on n), we will shortcut generation $\langle B\rangle=\langle B\rangle_{T_{n}}$ appropriately

Shortcut code for generating the submonoid $\langle B\rangle_{T_{n}}$

$B:=A ; \quad B(m):=1 ; \quad B:=\langle B\rangle \quad / / B:=A \oplus m$
if $\neg \exists x>m: B(x)>A(x)$ then \ldots
// $A<_{m} A \oplus m$
Improved part of AllClosures: (with NextClosure inlined)
$B:=A ; B(m):=1 ; B(\mathrm{id})=1 \quad / /$ copy A, add m and id notgennew $:=$ true $\quad / /$ assume $\langle B\rangle$ does not generate $x>m$ repeat
// compute $\langle B\rangle$
$\begin{array}{ll}\text { closed }:=\text { true } & / / \text { assume } B \text { is closed, revert if not } \\ \text { for } x, y \in B \text { do } & / / \text { i.e., } x, y \in M \text { with } B(x)=B(y)=1\end{array}$ if $B(x \circ y)=0$ then $B(x \circ y):=1$; closed $:=$ false $/ /$ product is new, hence repeat if $x \circ y>m$ then
notgennew := false // в will be discarded, thus closing break repeat-until-loop // does not have to be completed until closed
if notgennew then ...

Results

Number of all transformation monoids on n elements

n	1	2	3	4
$\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$	1	6	699	$?$

Results

Number of all transformation monoids on n elements

n	1	2	3	4
$\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$	1	6	699	$?$

Audience poll: $x=\log _{10}$?

- $x<5$
- $5 \leq x<6$
- $6 \leq x<7$
- $7 \leq x<9$
- $9 \leq x<10$
- $x \geq 10$

Results

Number of all transformation monoids on n elements

$$
\begin{array}{r||r|r|r|r}
n & 1 & 2 & 3 & 4 \\
\hline\left|\operatorname{Sub}\left(T_{n}\right)\right| & 1 & 6 & 699 & \approx 1.58 \cdot 10^{9}
\end{array} \quad(\approx 1 \text { day })
$$

Results

Number of all transformation monoids on n elements

n	1	2	3	4
$\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$	1	6	699	$\approx 1.58 \cdot 10^{9} \quad(\approx 1$ day $)$,

Number of transformation monoids with all constants (constantive)

n	1	2	3	4	
$\left\|\left\{B \leq T_{n} \mid C_{n} \subseteq B\right\}\right\|$	1	2	342	$\approx 1.25 \cdot 10^{9}$	
$\%$ of $\left\|S u b\left(T_{n}\right)\right\|$	100	≈ 33	≈ 49	≈ 79	

Results

Number of all transformation monoids on n elements

n	1	2	3	4
$\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$	1	6	699	$\approx 1.58 \cdot 10^{9} \quad(\approx 1$ day $)$

Number of transformation monoids with all constants (constantive)

n	1	2	3	4	
$\left\|\left\{B \leq T_{n} \mid C_{n} \subseteq B\right\}\right\|$	1	2	342	$\approx 1.25 \cdot 10^{9}$	
$\%$ of $\left\|S u b\left(T_{n}\right)\right\|$	100	≈ 33	≈ 49	≈ 79	

Number of non-constantive transformation monoids

| n | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\left\|\left\{B \leq T_{n} \mid C_{n} \subseteq B\right\}\right\|$ | 0 | 4 | 357 | $\approx 328 \cdot 10^{6} \quad(\approx 3.25 \mathrm{~h})$ |
| $\%$ of $\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$ | 0 | ≈ 67 | ≈ 51 | ≈ 21 |

Results

Number of all transformation monoids on n elements

n	1	2	3	4
$\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$	1	6	699	$\approx 1.58 \cdot 10^{9} \quad(\approx 1$ day $)$

Number of transformation monoids with all constants (constantive)

n	1	2	3	4	
$\left\|\left\{B \leq T_{n} \mid C_{n} \subseteq B\right\}\right\|$	1	2	342	$\approx 1.25 \cdot 10^{9}$	
$\%$ of $\left\|S u b\left(T_{n}\right)\right\|$	100	≈ 33	≈ 49	≈ 79	

Number of transformation monoids without any constants (constant-free)

n	1	2	3	4	5
$\left\|\left\{B \leq T_{n} \mid C_{n} \cap B=\emptyset\right\}\right\|$	0	2	39	30741	$>46 \cdot 10^{9 *)}$
$\%$ of $\left\|\operatorname{Sub}\left(T_{n}\right)\right\|$	0	≈ 33	≈ 5.6	≈ 0.0019	$?$

*) value updated post-lecture (1 Aug 2023)
(1) wait for the constant-free monoids on $5=\{0,1,2,3,4\}$ to finish (guess: about 5 months more)
(2) try to enumerate representatives up to isomorphism

Future steps

(1) wait for the constant-free monoids on $5=\{0,1,2,3,4\}$ to finish (guess: about 5 months more)
(2) try to enumerate representatives up to isomorphism

Questions/Remarks?

[^0]: ${ }^{1}$ Supported by Austrian Science Fund (FWF) grant P 33878.

