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EXTENSIONS AND CONGRUENCES OF PARTIAL LATTICES
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ABSTRACT. For a partial lattice L the so-called two-point extension is defined in order to extend L

to a lattice. We are motivated by the fact that the one-point extension broadly used for partial algebras

does not work in this case, i.e. the one-point extension of a partial lattice need not be a lattice. We

describe these two-point extensions and prove several properties of them. We introduce the concept of

a congruence on a partial lattice and show its relationship to the notion of a homomorphism and its

connections with congruences on the corresponding two-point extension. In particular we prove that

the quotient L/E of a partial lattice L by a congruence E on L is again a partial lattice and that the

two-point extension of L/E is isomorphic to the quotient lattice of the two-point extension L∗ of L by

the congruence on L∗ generated by E. Several illustrative examples are enclosed.
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1. Introduction

Although our paper is devoted to extensions of partial lattices to lattices as well as to congruences
on partial lattices, we assume that it should be helpful to get a brief introduction to partial algebras
in general and then apply these concepts to partial lattices. The source of the following concepts
are the monographs [1] and [2] by P. Burmeister and, concerning partial lattices, the paper [3] by
the first author and Z. Seidl. It is worth noticing that the closedness of classes of partial algebras
with respect to quotients, subalgebras etc. was profoundly investigated by K. Denecke in [4] and
by Bożena and Bogdan Staruch in [5].

In particular, we use the following concepts concerning various types of identities in partial
algebras (see [2]).

Let τ = (ni; i ∈ I) be a similarity type, A = (A,F ) and B = (B,F ) with F = (fi; i ∈ I) partial
algebras of type τ and p, q terms of type τ . Then

p
e
= q

means: p and q are defined and they are equal. We say that A satisfies the weak identity

p
w
≈ q

if the following holds: If a1, . . . , an ∈ A and p(a1, . . . , an) and q(a1, . . . , an) are defined, then
p(a1, . . . , an) = q(a1, . . . , an). We say that A satisfies the strong identity

p
s
≈ q
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if the following holds: For a1, . . . , an ∈ A the expression p(a1, . . . , an) is defined if and only if
q(a1, . . . , an) is defined and in this case p(a1, . . . , an) = q(a1, . . . , an). The identity p ≈ q is called
regular if p and q contain the same variables.

The partial algebra A is called a weak subalgebra of B if A ⊆ B and if for all i ∈ I and all
a1, . . . , ani

∈ A, if fi(a1, . . . , ani
) is defined in A, then it is defined in B and has the same value.

The weak subalgebra A of B is called a subalgebra of B if for all i ∈ I and all a1, . . . , ani ∈ A, if
fi(a1, . . . , ani

) is defined in B, then it is defined in A.

A homomorphism from A to B is a mapping h : A → B such that for all i ∈ I and all

a1, . . . , ani
, a ∈ A, fi(a1, . . . , ani

)
e
= a implies fi

(
h(a1), . . . , h(ani

)
) e

= h(a). A homomorphism

from A to B is called closed if for all i ∈ I and all a1, . . . , ani ∈ A, if fi
(
h(a1), . . . , h(ani)

)
is

defined in B, then fi(a1, . . . , ani
) is defined in A. It is easy to see that A is a weak subalgebra

of B if and only if A ⊆ B and idA is a homomorphism from A to B and that A is a subalgebra
of B if and only if A ⊆ B and idA is a closed homomorphism from A to B. An isomorphism is a
bijective closed homomorphism.

Let A =
(
A, (fi; i ∈ I)

)
be a partial algebra and assume c /∈ A. Then the one-point extension

Ā of A is defined as follows:

(i) If all fi are defined everywhere, then Ā := A.

(ii) If at least one fi is not defined everywhere, then Ā :=
(
A ∪ {c}, (gi; i ∈ I)

)
, where for all

i ∈ I and all a1, . . . , ani ∈ A ∪ {c}

gi(a1, . . . , ani) :=

{
fi(a1, . . . , ani) if fi(a1, . . . , ani) is defined in A,
c otherwise.

It was proved in [4] and [5] that a class of partial algebras can be described by a set of strong and
regular identities if and only if it is closed under the formation of subalgebras, closed homomorphic
images, direct products, initial segments and one-point extensions.

However, not every interesting class of partial algebras can be described by strong and regular
identities. For example, partial lattices treated in [3] are described by identities containing those for
absorption that are neither regular nor strong. This is in accordance with the fact that the one-point
extension of a partial lattice is not a lattice in general. We want to present another construction
for partial lattices, the so-called two-point extension, which preserves also weak identities like the
absorption identities.

2. Partial lattices

There exist several definitions of a partial lattice. For our purposes we adopt the following one
from [3].

Definition 2.1. A partial lattice is a partial algebra (L,∨,∧) of type (2, 2) satisfying the following
identities:

x ∨ x
s
≈ x and x ∧ x

s
≈ x,

x ∨ y
s
≈ y ∨ x and x ∧ y

s
≈ y ∧ x,

(x ∨ y) ∨ z
s
≈ x ∨ (y ∨ z) and (x ∧ y) ∧ z

s
≈ x ∧ (y ∧ z)

as well as the following duality conditions:

x ∨ y e
= x implies x ∧ y e

= y,

x ∧ y e
= x implies x ∨ y e

= y.
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We call weak subalgebras of a partial lattice also partial sublattices.

The following lemma was proved in [3]. For the sake of completeness we repeat the proof.

Lemma 2.1. Let L be a partial lattice. Then the following hold:

(i) L satisfies (x ∨ y) ∧ x
w
≈ x and (x ∧ y) ∨ x

w
≈ x.

(ii) If L satisfies (x ∨ y) ∧ x
s
≈ x and (x ∧ y) ∨ x

s
≈ x, then L is a lattice.

P r o o f. (i) Let a, b ∈ L and assume (a∨ b)∧a to be defined. Then a∨ b is defined. Since a∨a e
= a

we conclude that (a∨ a)∨ b is defined. Hence a∨ (a∨ b) and (a∨ b)∨ a are defined and we obtain

(a ∨ b) ∨ a e
= a ∨ (a ∨ b) e

= (a ∨ a) ∨ b e
= a ∨ b.

Applying the duality conditions yields (a∨b)∧a e
= a. The second weak identity follows analogously.

(ii) is clear. �

Let P = (P,≤) be a poset and a, b ∈ P . We define

L(a, b) := {x ∈ P | x ≤ a, b},
U(a, b) := {x ∈ P | a, b ≤ x}.

The following notions as well as the following result are taken from [3]:

The poset P is said to satisfy the

• lower bound property (LBP) if for all x, y ∈ L the set L(x, y) is either empty or possesses a
greatest element,

• upper bound property (UBP) if for all x, y ∈ L the set U(x, y) is either empty or possesses a
smallest element.

Let L = (L,∨,∧) be a partial lattice. On L we define the binary relations ≤∨ and ≤∧ as follows:

x ≤∨ y if and only if x ∨ y e
= y,

x ≤∧ y if and only if x ∧ y e
= x.

Due to the duality conditions, the relations ≤∨ and ≤∧ coincide and form a partial order relation
on L. We call it the induced order of L and denote it by ≤.

We call a poset satisfying the (LBP) and the (UBP) a partially lattice-ordered set.

Example 2.1. The poset depicted in Figure 1
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a

c

b

d

1

Figure 1.

is not a partially lattice-ordered set since, e.g., U(a, b) = {c, d, 1} 6= ∅, but U(a, b) has no smallest
element.
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The following theorem was partly proved in [3]. For the sake of completeness, we provide a
complete proof.

Theorem 2.1.

(i) Let L = (L,∨,∧) be a partial lattice and ≤ its induced order. Then P(L) := (L,≤) is a
partially lattice-ordered set.

(ii) Let P = (P,≤) be a partially lattice-ordered set and define partial binary operations ∨ and
∧ on P as follows:

x ∨ y
{

:= sup(x, y) if U(x, y) 6= ∅,
is undefined otherwise,

x ∧ y
{

:= inf(x, y) if L(x, y) 6= ∅,
is undefined otherwise

(x, y ∈ P ). Then L(P) := (P,∨,∧) is a partial lattice.

(iii) Let L = (L,∨,∧) be a partial lattice. Then L
(
P(L)

)
= L.

(iv) Let P = (P,≤) be a partially lattice-ordered set. Then P
(
L(P)

)
= P.

P r o o f. (i) Let a, b, c ∈ L. Then a ∨ a e
= a

e
= a ∧ a and hence a ≤ a. If a ≤ b ≤ a, then a ∨ b e

= b

and b ∨ a e
= a and hence a

e
= b ∨ a e

= a ∨ b e
= b. If a ≤ b ≤ c, then

c
e
= b ∨ c e

= (a ∨ b) ∨ c e
= a ∨ (b ∨ c) e

= a ∨ c,

i.e., a ≤ c. Now assume c ∈ U(a, b). Then a ∨ c e
= c and b ∨ c e

= c and hence

c
e
= a ∨ c e

= a ∨ (b ∨ c) e
= (a ∨ b) ∨ c,

i.e., a ∨ b is defined and a ∨ b ≤ c. Because of

a ∨ (a ∨ b) e
= (a ∨ a) ∨ b e

= a ∨ b,

b ∨ (a ∨ b) e
= (a ∨ b) ∨ b e

= a ∨ (b ∨ b) e
= a ∨ b,

we have a, b ≤ a ∨ b. Together we obtain that in case U(a, b) 6= ∅ the element a ∨ b is defined and
coincides with sup(a, b). The dual assertion can be proved analogously.

(ii) Let a, b, c ∈ P . Clearly, a∨a s
= a, a∧a s

= a, a∨b s
= b∨a and a∧b s

= b∧a. Assume (a∨b)∨c
to be defined. Since (a∨b)∨c ∈ U(b, c) the element b∨c is defined and since (a∨b)∨c ∈ U(a, b∨c)
the element a∨ (b∨ c) is defined and we obtain (a∨ b)∨ c = sup(a, b, c) = a∨ (b∨ c). If, conversely,
a ∨ (b ∨ c) is defined, then

a ∨ (b ∨ c) e
= (b ∨ c) ∨ a e

= (c ∨ b) ∨ a e
= c ∨ (b ∨ a)

e
= (b ∨ a) ∨ c e

= (a ∨ b) ∨ c.

The strong identity (x ∧ y) ∧ z
s
≈ x ∧ (y ∧ z) can be proved analogously. Finally, the duality

conditions can be easily verified.

(iii) Let P(L) = (L,≤) and L
(
P(L)

)
= (L,t,u) and a, b ∈ L. According to the proof of (i), if

U(a, b) 6= ∅, then a ∨ b is defined and a ∨ b = sup(a, b). Conversely, if a ∨ b is defined, then

a ∨ (a ∨ b) e
= (a ∨ a) ∨ b e

= a ∨ b,

b ∨ (a ∨ b) e
= (a ∨ b) ∨ b e

= a ∨ (b ∨ b) e
= a ∨ b,

and hence a∨ b ∈ U(a, b) showing U(a, b) 6= ∅. Hence the following are equivalent: a∨ b is defined;
U(a, b) 6= ∅; a t b is defined. In this case we have a t b = sup(a, b) = a ∨ b. Analogously, one can
prove that a u b is defined if and only if a ∧ b is defined and in this case a u b = a ∧ b.
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(iv) If L(P) = (P,∨,∧), P
(
L(P)

)
= (P,v) and a, b ∈ P , then the following are equivalent:

a v b; a ∨ b e
= b; sup(a, b)

e
= b; a ≤ b. This shows P

(
L(P)

)
= P. �

3. Extensions

As mentioned above, the one-point extension of a partial lattice need not be a lattice. In order
to avoid this difficulty, we introduce the two-point extension of a partial lattice as follows.

Definition 3.1. Let L = (L,∨,∧) be a partial lattice and ≤ its induced order and assume
0, 1 /∈ L. Then the two-point extension L∗ = (L∗,≤∗) of L is defined as follows:

(i) If ∨ and ∧ are defined everywhere, then

L∗ := (L,≤).

(ii) If ∧ is defined everywhere, but ∨ is not, then

L∗ :=
(
L ∪ {1},≤ ∪(L∗ × {1})

)
.

(iii) If ∨ is defined everywhere, but ∧ is not, then

L∗ :=
(
L ∪ {0},≤ ∪({0} × L∗)

)
.

(iv) If neither ∨ nor ∧ is defined everywhere, then

L∗ :=
(
L ∪ {0, 1},≤ ∪({0} × L∗) ∪ (L∗ × {1})

)
.

Clearly, L is a partial sublattice of L∗. If L is an infinite lattice having neither a smallest nor a
greatest element, then its two-point extension coincides with L. Hence, one should have in mind
that L∗ neither need have a smallest nor a greatest element.

The following lemma is obvious.

Lemma 3.1. Let L = (L,∨,∧) be a partial lattice and a, b, c, d ∈ L. Then

(i) L∗ is a lattice with lattice operations

x ∨∗ y := sup
≤∗

(x, y) and x ∧∗ y := inf
≤∗

(x, y) (x, y ∈ L∗);

(ii)

a ∨ b e
= c if and only if a ∨∗ b = c and

a ∧ b e
= d if and only if a ∧∗ b = d;

(iii)

a ∨∗ b =

{
a ∨ b if U(a, b) 6= ∅,
1 otherwise

and a ∧∗ b =

{
a ∧ b if L(a, b) 6= ∅,
0 otherwise.

For homomorphisms of partial lattices and their two-point extensions, we can prove the following
result.

Theorem 3.1. Let Li = (Li,∨,∧), i = 1, 2, be partial lattices.

(i) Let h∗ be a homomorphism from L∗1 to L∗2 with h∗(L1) ⊆ L2. Then h∗|L1 is a homomorphism
from L1 to L2.

(ii) Let h be a closed homomorphism from L1 to L2. Then there exists some homomorphism h∗

from L∗1 to L∗2 with h∗|L1 = h.
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P r o o f.

(i) Put h := h∗|L1 and let a, b ∈ L1. First assume a ∨ b to be defined. If h(a) ∨ h(b) would not
be defined, then we would conclude

1L2
= h(a) ∨∗ h(b) = h∗(a) ∨∗ h∗(b) = h∗(a ∨∗ b) = h(a ∨ b) ∈ h(L1) ⊆ L2,

a contradiction. Hence h(a) ∨ h(b) is defined and

h(a ∨ b) = h∗(a ∨∗ b) = h∗(a) ∨∗ h∗(b) = h(a) ∨ h(b).

Analogously, one can prove that whenever a∧b is defined, also h(a)∧h(b) is defined and h(a∧b) =
h(a) ∧ h(b).

(ii) Define h∗ : L∗1 → L∗2 by

h∗(x) := h(x) for all x ∈ L1,

h∗(0L∗
1
) := 0L∗

2
if 0L∗

1
∈ L∗1,

h∗(1L∗
1
) := 1L∗

2
if 1L∗

1
∈ L∗1.

• h∗ is well-defined.
If 0L∗

2
/∈ L∗2, then h(x)∧h(y) is defined for all x, y ∈ L1 and hence, since h is closed, x∧y is defined

for all x, y ∈ L1 showing 0L∗
1
/∈ L∗1. Analogously, one can prove that 1L∗

2
/∈ L∗2 implies 1L∗

1
/∈ L∗1.

• h∗ is a homomorphism from L∗1 to L∗2.
Let a, b ∈ L1. If a ∨ b is defined, then h(a) ∨ h(b) is defined and

h∗(a ∨∗ b) = h(a ∨ b) = h(a) ∨ h(b) = h∗(a) ∨∗ h∗(b).

If a ∨ b is not defined then, since h is closed, h(a) ∨ h(b) is not defined, too, and

h∗(a ∨∗ b) = h∗(1L∗
1
) = 1L∗

2
= h(a) ∨∗ h(b) = h∗(a) ∨∗ h∗(b).

Analogously, one can show h∗(a ∧∗ b) = h∗(a) ∧∗ h∗(b). It is not hard to prove

h∗(x ∨∗ y) = h∗(x) ∨∗ h∗(y),

h∗(x ∧∗ y) = h∗(x) ∧∗ h∗(y)

for all (x, y) ∈ (L∗1)2 \ L2
1.

• h∗|L1 = h.
This is clear. �

The following example shows that L∗ need not be the smallest lattice including L as a partial
sublattice. Moreover, we show that in general the operator ∗ does not preserve inclusion.

Example 3.1. The partial lattice L1 = (L1,∨,∧), visualized in Figure 2,
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Figure 2.

is a partial sublattice of the partial lattice L2 = (L2,∨,∧) depicted in Figure 3.
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Figure 3.

One can see that idL1
is a homomorphism from L1 to L2 which is not closed. Although L1 ⊆ L2,

we do not have L∗1 ⊆ L∗2 since L∗1
∼= N5 whereas L∗2 = L2. Moreover, L∗1 is not the smallest lattice

including L1 as a partial sublattice.

4. Congruences and quotient partial lattices

We are going to introduce the concept of congruence on a partial lattice and show how to define
the partial lattice operations for congruence classes in a natural way.

Definition 4.1. Let L = (L,∨,∧) be a partial lattice. By a congruence on L is meant an
equivalence relation E on L satisfying Θ(E)∩L2 = E, where Θ(E) denotes the congruence on the
lattice L∗ generated by E. Let ConL denote the set of all congruences on L. For E ∈ ConL we
define two partial operation ∨ and ∧ on L/E by

[x]E ∨ [y]E

{
:= [x ∨∗ y]

(
Θ(E)

)
∩ L if this set is non-empty,

is undefined otherwise,

[x]E ∧ [y]E

{
:= [x ∧∗ y]

(
Θ(E)

)
∩ L if this set is non-empty,

is undefined otherwise.

It is easy to see that the operations ∨ and ∧ on L/E are well-defined.

The next lemma shows that congruences as defined above have the expected properties.

Lemma 4.1. Let L = (L,∨,∧) be a partial lattice. Then

(i) ConL = {Θ ∩ L2 | Θ ∈ ConL∗},
(ii) (ConL,⊆) is a complete lattice.

P r o o f.

(i) Let E be an equivalence relation on L. If E ∈ ConL, then Θ(E) ∈ ConL∗ and E = Θ(E)∩L2.
If, conversely, Θ ∈ ConL∗ and Θ ∩ L2 = E, then E ⊆ Θ and hence Θ(E) ⊆ Θ whence

E ⊆ Θ(E) ∩ L2 ⊆ Θ ∩ L2 = E

which implies Θ(E) ∩ L2 = E and hence E ∈ ConL.

(ii) If Ei ∈ ConL for all i ∈ I, then for every i ∈ I, there exists some Θi ∈ ConL∗ satisfying
Θi ∩ L2 = Ei and hence

⋂
i∈I

Θi ∈ ConL∗ and⋂
i∈I

Ei =
⋂
i∈I

(Θi ∩ L2) = (
⋂
i∈I

Θi) ∩ L2 ∈ ConL

according to (i). �

The following lemma describes the partial lattice operations in quotients of partial lattices.
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Lemma 4.2. Let L = (L,∨,∧) be a partial lattice, a, b ∈ L and E ∈ ConL. Then

[a]E ∨ [b]E


= [a ∨ b]E if U(a, b) 6= ∅,
is undefined if U(a, b) = ∅ and [1]

(
Θ(E)

)
= {1},

= [α]E if U(a, b) = ∅ and [1]
(
Θ(E)

)
6= {1},

where α ∈ [1]
(
Θ(E)

)
\ {1}.

P r o o f. If U(a, b) 6= ∅, then

[a ∨∗ b]
(
Θ(E)

)
∩ L = [a ∨ b]

(
Θ(E)

)
∩ L = [a ∨ b]E 6= ∅,

and hence [a]E ∨ [b]E = [a ∨ b]E. If U(a, b) = ∅ and [1]
(
Θ(E)

)
= {1}, then

[a ∨∗ b]
(
Θ(E)

)
∩ L = [1]

(
Θ(E)

)
∩ L = {1} ∩ L = ∅,

and hence [a]E ∨ [b]E is not defined. Assume, finally, U(a, b) = ∅ and [1]
(
Θ(E)

)
6= {1}. Then

[1]
(
Θ(E)

)
∩L = ∅ would imply [1]

(
Θ(E)

)
= {0, 1} and hence Θ(E) = (L∗)2 whence L = L∗ ∩L =

[1]
(
Θ(E)

)
∩ L = ∅, a contradiction. This shows that there exists some α ∈ [1]

(
Θ(E)

)
∩ L. Now

[a ∨∗ b]
(
Θ(E)

)
∩ L = [1]

(
Θ(E)

)
∩ L = [α]

(
Θ(E)

)
∩ L = [α]E 6= ∅,

and hence [a]E ∨ [b]E = [α]E. �

Remark 4.1. Due to duality, the dual version of Lemma 4.2 holds, too.

The main point is to show that the quotient partial algebra (L/E,∨,∧) as defined above is again
a partial lattice, the so-called quotient partial lattice by the congruence E.

Theorem 4.1. Let L = (L,∨,∧) be a partial lattice and E ∈ ConL. Then L/E := (L/E,∨,∧) is
a partial lattice.

P r o o f. In this proof we often use Lemma 4.2. We prove only a part of the conditions mentioned
in Definition 2.1, the remaining conditions follow by duality. Let a, b, c ∈ L. It is evident directly
by Definition 4.1 that the partial operations ∨ and ∧ on L/E satisfy strong idempotency and
strong commutativity. We need to prove also strong associativity. Assume ([a]E ∨ [b]E) ∨ [c]E to
be defined. We have

U(a, b), U(a ∨ b, c) 6= ∅ if and only if U(b, c), U(a, b ∨ c) 6= ∅,

and in this case we conclude

(a ∨ b) ∨ c = sup(a, b, c) = a ∨ (b ∨ c).

• Case 1. U(a, b), U(a ∨ b, c) 6= ∅.
Then [a]E ∨ ([b]E ∨ [c]E) is defined and

([a]E ∨ [b]E) ∨ [c]E = [a ∨ b]E ∨ [c]E = [(a ∨ b) ∨ c]E = [a ∨ (b ∨ c)]E
= [a]E ∨ [b ∨ c]E = [a]E ∨ ([b]E ∨ [c]E).

• Case 2. U(a, b) = ∅ or (U(a, b) 6= ∅ and U(a ∨ b, c) = ∅).
Then 1 ∈ L∗, [1]

(
Θ(E)

)
6= {1} and [a]E ∨ ([b]E ∨ [c]E) is defined. According to the proof of

Lemma 4.2, there exists some α ∈ [1]
(
Θ(E)

)
∩ L and

[x]E ∨ [α]E = [x ∨∗ α]
(
Θ(E)

)
∩ L = [x ∨∗ 1]

(
Θ(E)

)
∩ L = [1]

(
Θ(E)

)
∩ L

= [α]
(
Θ(E)

)
∩ L = [α]E for all x ∈ L.
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• Case 2a. U(a, b) = U(b, c) = ∅.
Then

([a]E ∨ [b]E) ∨ [c]E = [α]E ∨ [c]E = [α]E = [a]E ∨ [α]E = [a]E ∨ ([b]E ∨ [c]E).

Hence ([a]E ∨ [b]E) ∨ [c]E = [a]E ∨ ([b]E ∨ [c]E).
• Case 2b. U(a, b) = ∅ and U(b, c) 6= ∅.
Then U(a, b ∨ c) = ∅ and

([a]E ∨ [b]E) ∨ [c]E = [α]E ∨ [c]E = [α]E = [a]E ∨ [b ∨ c]E = [a]E ∨ ([b]E ∨ [c]E).

• Case 2c. U(a, b) 6= ∅ and U(b, c) = ∅.
Then U(a ∨ b, c) = ∅ and

([a]E ∨ [b]E) ∨ [c]E = [a ∨ b]E ∨ [c]E = [α]E = [a]E ∨ [α]E = [a]E ∨ ([b]E ∨ [c]E).

• Case 2d. U(a, b), U(b, c) 6= ∅ and U(a ∨ b, c) = U(a, b ∨ c) = ∅.
Then

([a]E ∨ [b]E) ∨ [c]E = [a ∨ b]E ∨ [c]E = [α]E = [a]E ∨ [b ∨ c]E = [a]E ∨ ([b]E ∨ [c]E).

If, conversely, [a]E ∨ ([b]E ∨ [c]E) is defined, then

[a]E ∨ ([b]E ∨ [c]E)
e
= ([b]E ∨ [c]E) ∨ [a]E

e
= ([c]E ∨ [b]E) ∨ [a]E

e
= [c]E ∨ ([b]E ∨ [a]E)

e
= ([b]E ∨ [a]E) ∨ [c]E

e
= ([a]E ∨ [b]E) ∨ [c]E.

Finally, the duality conditions remain to be proved. If [a]E ∨ [b]E
e
= [a]E, then a ∈ [a]E ⊆ [a ∨∗

b]
(
Θ(E)

)
, i.e. a Θ(E) (a∨∗b) and hence (a∧∗b) Θ(E)

(
(a∨∗b)∧∗b

)
= b whence [a∧∗b]

(
Θ(E)

)
∩L =

[b]
(
Θ(E)

)
∩ L = [b]E 6= ∅, i.e. [a]E ∧ [b]E

e
= [b]E. �

Similar to the situation for algebras, there exist natural relationships between congruences and
homomorphisms also for partial lattices.

Lemma 4.3. Let L = (L,∨,∧) be a partial lattice and E ∈ ConL and define h : L → L/E by
h(x) := [x]E for all x ∈ L. Then h is a homomorphism from L to L/E and kerh = E. If, in
addition, [0L∗ ]

(
Θ(E)

)
= {0L∗} provided 0L∗ ∈ L∗ and [1L∗ ]

(
Θ(E)

)
= {1L∗} provided 1L∗ ∈ L∗,

then h is a closed homomorphism from L to L/E.

P r o o f. This easily follows from Lemma 4.2. �

For partial lattices we can now prove the following version of the Homomorphism Theorem.

Theorem 4.2. For i = 1, 2 let Li = (Li,∨,∧) be partial lattices and h a closed homomorphism
from L1 to L2. Then kerh ∈ ConL1. If, in addition, [0L∗

1
]
(
Θ(kerh)

)
= {0L∗

1
} provided 0L∗

1
∈ L∗1

and [1L∗
1
]
(
Θ(kerh)

)
= {1L∗

1
} provided 1L∗

1
∈ L∗1, then

(
h(L1),∨,∧

)
(with partial operations defined

as in L2) is a partial lattice which is isomorphic to L1/(kerh).

P r o o f. According to Theorem 3.1, there exists some homomorphism h∗ from L∗1 to L∗2 satisfying
h∗|L1 = h. Now kerh∗ ∈ ConL1 and hence kerh = kerh∗ ∩ L2

1 ∈ ConL1. If the additional
condition holds, then, according to Lemma 4.2, the mapping h(x) 7→ [x] kerh is a well-defined
isomorphism from

(
h(L1),∨,∧

)
to L1/(kerh) since for a, b ∈ L1 the following are equivalent:

h(a) ∨ h(b) exists in L2; a ∨ b exists in L1; [a] kerh ∨ [b] kerh exists in L1/(kerh). Analogous
statements hold for ∧ instead of ∨. �

Now we show that our concept of a quotient partial lattice L/E is sound, i.e. its two-point
extension is isomorphic to the quotient lattice of the two-point extension of L with respect to
Θ(E).
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Theorem 4.3. Let L = (L,∨,∧) be a partial lattice and E ∈ ConL. Then (L/E)∗ ∼= L∗/
(
Θ(E)

)
.

P r o o f. Define f : (L/E)∗ → L∗/
(
Θ(E)

)
in the following way:

f([x]E) := [x]
(
Θ(E)

)
for all x ∈ L,

f(0(L/E)∗) := [0L∗ ]
(
Θ(E)

)
if 0(L/E)∗ ∈ (L/E)∗,

f(1(L/E)∗) := [1L∗ ]
(
Θ(E)

)
if 1(L/E)∗ ∈ (L/E)∗.

We will prove that f is an isomorphism from (L/E)∗ to L∗/
(
Θ(E)

)
. Let a, b ∈ L.

• f is well-defined.
If [a]E = [b]E, then [a]

(
Θ(E)

)
= [b]

(
Θ(E)

)
. We prove that U([a]E, [b]E) = ∅ implies U(a, b) = ∅.

Assume U(a, b) 6= ∅, say c ∈ U(a, b). Then a ∨ c e
= c and b ∨ c e

= c. Hence

[a]E ∨ [c]E = [a ∨∗ c]
(
Θ(E)

)
∩ L = [c]

(
Θ(E)

)
∩ L = [c]E

and, analogously, [b]E ∨ [c]E = [c]E, i.e. [c]E ∈ U([a]E, [b]E) 6= ∅. Hence, if 1(L/E)∗ ∈ (L/E)∗,
then there exist d, e ∈ L with U([d]E, [e]E) = ∅. Therefore U(d, e) = ∅ which shows 1L∗ ∈ L∗.
Analogously, one can prove that 0(L/E)∗ ∈ (L/E)∗ implies 0L∗ ∈ L∗.
• f is injective.
If [a]

(
Θ(E)

)
= [b]

(
Θ(E)

)
, then (a, b) ∈ Θ(E) ∩ L2 = E, i.e. [a]E = [b]E. Now assume 1(L/E)∗ ∈

(L/E)∗ and [a]
(
Θ(E)

)
= [1L∗ ]

(
Θ(E)

)
. Then there exist c, d ∈ L with U([c]E, [d]E) = ∅. Now we

have

[c]E ∨ [a]E = [c ∨∗ a]
(
Θ(E)

)
∩ L = [c ∨∗ 1L∗ ]

(
Θ(E)

)
∩ L = [1L∗ ]

(
Θ(E)

)
∩ L

= [a]
(
Θ(E)

)
∩ L = [a]E

and, analogously, [d]E ∨ [a]E = [a]E. This shows [a]E ∈ U([c]E, [d]E), a contradiction. Hence
[a]
(
Θ(E)

)
6= [1L∗ ]

(
Θ(E)

)
. Analogously, one obtains that in case 0(L/E)∗ ∈ (L/E)∗ we have

[a]
(
Θ(E)

)
6= [0L∗ ]

(
Θ(E)

)
. Now assume 0(L/E)∗ , 1(L/E)∗ ∈ (L/E)∗ and [0L∗ ]

(
Θ(E)

)
= [1L∗ ]

(
Θ(E)

)
.

Then 0L∗ , 1L∗ ∈ L∗ and (0L∗ , 1L∗) ∈ Θ(E) and hence Θ(E) = (L∗)2 whence

E = Θ(E) ∩ L2 = (L∗)2 ∩ L2 = L2

which implies |L/E| = 1 and hence 0(L/E)∗ , 1(L/E)∗ /∈ (L/E)∗, a contradiction.
• f is surjective.
Assume 1L∗ ∈ L∗. If 1(L/E)∗ ∈ (L/E)∗, then f(1(L/E)∗) = [1L∗ ]

(
Θ(E)

)
. Now assume 1(L/E)∗ /∈

(L/E)∗. Then [x]E∨[y]E is defined in L/E for every x, y ∈ L. Suppose [1L∗ ]
(
Θ(E)

)
= {1L∗}. Then

U(x, y) 6= ∅ for all x, y ∈ L and hence 1L∗ /∈ L∗, a contradiction. Therefore [1L∗ ]
(
Θ(E)

)
6= {1L∗}.

According to the proof of Lemma 4.2, there exists some α ∈ [1L∗ ]
(
Θ(E)

)
∩ L and we obtain

f([α]E) = [α]
(
Θ(E)

)
= [1L∗ ]

(
Θ(E)

)
. Analogously, one can show that in case 0L∗ ∈ L∗, there

exists some x ∈ (L/E)∗ with f(x) = [0L∗ ]
(
Θ(E)

)
.

• f is a homomorphism from (L/E)∗ to L∗/
(
Θ(E)

)
.

First assume U(a, b) 6= ∅. Then

f([a]E ∨ [b]E) = f
(

[a ∨∗ b]
(
Θ(E)

)
∩ L
)

= f
(

[a ∨ b]
(
Θ(E)

)
∩ L
)

= f([a ∨ b]E)

= [a ∨ b]
(
Θ(E)

)
= [a]

(
Θ(E)

)
∨ [b]

(
Θ(E)

)
= f([a]E) ∨ f([b]E).

Now assume U(a, b) = ∅. Then 1L∗ ∈ L∗. First assume [1L∗ ]
(
Θ(E)

)
= {1L∗}. Then 1(L/E)∗ ∈

(L/E)∗ and

f([a]E ∨ [b]E) = f(1(L/E)∗) = [1L∗ ]
(
Θ(E)

)
= [a ∨ b]

(
Θ(E)

)
= [a]

(
Θ(E)

)
∨ [b]

(
Θ(E)

)
= f([a]E) ∨ f([b]E).
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Finally, assume [1L∗ ]
(
Θ(E)

)
6= {1L∗}. According to the proof of Lemma 4.2, there exists some

α ∈ [1L∗ ]
(
Θ(E)

)
∩ L, and we have

f([a]E ∨ [b]E) = f
(

[a ∨∗ b]
(
Θ(E)

)
∩ L
)

= f
(

[1L∗ ]
(
Θ(E)

)
∩ L
)

= f
(

[α]
(
Θ(E)

)
∩ L
)

= f([α]E) = [α]
(
Θ(E)

)
= [1L∗ ]

(
Θ(E)

)
= [a ∨ b]

(
Θ(E)

)
= [a]

(
Θ(E)

)
∨ [b]

(
Θ(E)

)
= f([a]E) ∨ f([b]E).

It is easy to see that f(x ∨ y) = f(x) ∨ f(y) for all (x, y) ∈
(
(L/E)∗

)2 \ (L/E)2. Analogously, one
can prove f(x ∧ y) = f(x) ∧ f(y) for all x, y ∈ (L/E)∗. �

5. Examples

In the following we present several examples showing different situations concerning two-point
extensions and quotient partial lattices.

Example 5.1. Let L denote the partial lattice visualized in Figure 4.

u
u u
a

c

b

Figure 4.

The lattice L∗ is depicted in Figure 5.

u
u uu

u

@
@

@
@














�
�

�
�

J
J
J
J
J
J

0L∗

a

c

b

1L∗

Figure 5.

Here 0L∗ , 1L∗ ∈ L∗. Put E := {a, c}2 ∪ {b}2 Then Θ(E) = {0L∗}2 ∪ {a, c}2 ∪ {b}2 ∪ {1L∗}2 and
hence Θ(E) is a congruence on L∗ satisfying Θ(E) ∩ L2 = E and L/E is visualized in Figure 6.u u

[a]E [b]E

Figure 6.
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The lattice (L/E)∗ is depicted in Figure 7,

u
u u

u

@
@

@
@

�
�
�
�

�
�

�
�

@
@
@
@

0(L/E)∗

[a]E [b]E

1(L/E)∗

Figure 7.

and we have 0(L/E)∗ , 1(L/E)∗ ∈ (L/E)∗.

Finally, L∗/
(
Θ(E)

)
is visualized in Figure 8.

u
u u

u

@
@

@
@

�
�
�
�

�
�

�
�

@
@
@
@

[0L∗ ]
(
Θ(E)

)
[a]
(
Θ(E)

)
[b]
(
Θ(E)

)
[1L∗ ]

(
Θ(E)

)

Figure 8.

In accordance with Theorem 4.3, (L/E)∗ ∼= L∗/
(
Θ(E)

)
.

Example 5.2. Let L be the partial lattice depicted in Figure 9.

u
u

u
u

�
�

�
�

@
@
@
@�

�
�
�

a b

c d

Figure 9.
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The lattice L∗ is visualized in Figure 10.
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u u
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@
@

�
�
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�
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�
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@
@
@
@

0L∗

a b

c d

1L∗

Figure 10.

Here 0L∗ , 1L∗ ∈ L∗. Put E := {a}2∪{b, d}2∪{c}2. Let us mention that (b, d) ∈ E and a∨b = c,
but a ∨ d does not exist in L. We have Θ(E) = {0L∗}2 ∪ {a}2 ∪ {b, d}2 ∪ {c, 1L∗}2 and hence
Θ(E) ∩ L2 = E and L/E is depicted in Figure 11.

u u
u

�
�
�
�

@
@
@
@

[a]E [d]E

[c]E

Figure 11.

One can see that although [a]E ∨ [d]E exists in L/E, a ∨ d does not exist in L. The lattice
(L/E)∗ is visualized in Figure 12,

u
u u

u

@
@
@
@

�
�
�
�

�
�
�
�

@
@
@
@

0(L/E)∗

[a]E [d]E

[c]E

Figure 12.

and we have 0(L/E)∗ ∈ (L/E)∗ and 1(L/E)∗ /∈ (L/E)∗.
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Finally, L∗/
(
Θ(E)

)
is depicted in Figure 13.

u
u u

u

@
@

@
@

�
�
�
�

�
�

�
�

@
@
@
@

[0L∗ ]
(
Θ(E)

)
[a]
(
Θ(E)

)
[b]
(
Θ(E)

)
[c]
(
Θ(E)

)

Figure 13.

Example 5.3. Let L denote the partial lattice from Example 5.2. Then 0L∗ , 1L∗ ∈ L∗. Put
E := {a, c}2 ∪ {b}2 ∪ {d}2. Here (a, c) ∈ E and c ∧ d = b, but a ∧ d does not exist in L. We have
Θ(E) = {0L∗ , b}2 ∪ {a, c}2 ∪ {d}2 ∪ {1L∗}2 and hence Θ(E) ∩ L2 = E and L/E is visualized in
Figure 14.

u
u u

@
@
@
@

�
�
�
�

[b]E

[a]E [d]E

Figure 14.

One can see that although [a]E ∧ [b]E exists in L/E, a∧ b does not exists in L. The lattice (L/E)∗

is depicted in Figure 15.
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@

[b]E

[a]E [d]E

[1(L/E)∗ ]E

Figure 15.

and we have 0(L/E)∗ /∈ (L/E)∗ and 1(L/E)∗ ∈ (L/E)∗.
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Finally, L∗/
(
Θ(E)

)
is visualized in Figure 16.
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[0L∗ ]
(
Θ(E)

)
[a]
(
Θ(E)

)
[d]
(
Θ(E)

)
E

[1L∗ ]
(
Θ(E)

)

Figure 16.

The next example shows that L/E may be a lattice even if L is only a partial lattice.

Example 5.4. Let L denote the partial lattice from Example 5.2. Then 0L∗ , 1L∗ ∈ L∗. Put
E := {a}2 ∪ {b, c}2 ∪ {d}2. Then Θ(E) = {0L∗ , a}2 ∪ {b, c}2 ∪ {d, 1L∗}2 and hence Θ(E)∩L2 = E
and L/E is depicted in Figure 17.

u
u
u

[a]E

[b]E

[d]E

Figure 17.

Hence (L/E)∗ = L/E and 0(L/E)∗ , 1(L/E)∗ /∈ (L/E)∗.

Finally, L∗/
(
Θ(E)

)
is visualized in Figure 18.

u
u
u

[0L∗ ]
(
Θ(E)

)
[b]
(
Θ(E)

)
[d]
(
Θ(E)

)

Figure 18.
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6. Conclusion

We introduced the so-called two-point extension of a partial lattice which extends it to a lattice
with everywhere defined operations. This was not possible by using the one-point extension which
was intensively used for partial algebras in general because the one-point extension of a partial
lattice need not be a lattice. However, this is not a final step concerning this research. Namely
lattice distributivity or modularity can be defined for partial lattices by strong and regular identities
but these are not preserved by the two-point extension. For example, if a partial lattice L =
(L,∨,∧) is a finite antichain containing n ≥ 3 elements, then the join, respectively, meet of two
distinct elements of L is not defined and hence L trivially satisfies the strong distributive identity.
However, its two-point extension L∗ is isomorphic to the non-distributive lattice Mn. Hence, this
research may continue with finding other tools which avoid this difficulty.
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