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Abstract: In this paper, a system for 3D position estimation in wide, unconstrained indoor
environments is presented that employs infrared optical outside-in tracking of rigid-body targets
with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a
pipeline for robust target identification and 3D point reconstruction has been investigated that
enables camera calibration and tracking in environments with poor illumination, static and moving
ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system
has been successfully applied in three different wide and unconstrained indoor environments,
(1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for
tunneling and (3) machine guidance for mining. The results of each use case are discussed to
embed the presented approach into a larger technological and application context. The experimental
results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed
approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly
extends the available tracking range, while only requiring two cameras and providing a relative 3D
point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m.
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1. Introduction

An increasing number of application areas require spatial context awareness in indoor
environments. These areas comprise navigation, security and surveillance, virtual and augmented
reality (VR/AR) and entertainment as well as remote control, i.e., for underground construction tasks.
As fundamental base for spatial context awareness, accurate position estimation with low latency of
an object in 3D space—such as the user—is required. This position estimation is also referred to
localization or 3 degree of freedom (DOF) tracking. However, due to the lack of availability of global
positioning system (GPS) signals inside buildings, reliable and accurate 3DOF tracking remains a
challenging topic. This is especially true when aiming at accurate position estimates at high update
rates for wide-area tracking in unconstrained indoor environments.

A large number of different tracking technologies for indoor environments exist and each
method has its advantages and disadvantages regarding volume coverage, tracking accuracy,
sensitivity to interferences as well as scalability. Thus, there is no general tracking technology that
perfectly suits all variations of tracking scenarios. Infrared optical tracking detects targets within
camera images in the near infrared spectrum and has been found to be fast, accurate as well as
scalable to a certain extent. It is less susceptible to noise compared to competing approaches, allows
for simultaneous tracking of multiple objects, trackable optical markers can be individually designed,
they are lightweight, re-configurable and wireless. However, state-of-the-art systems suffer from
sensitivity to ambient static or moving light sources during calibration and tracking and only cover
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standard room sized environments with a small amount of vision hardware. This yields lack of
tracking support for wide unconstrained indoor environments and results in high hardware costs
and complex setup as well as maintenance routines when extending the tracking volume. Nowadays,
optical tracking is widely used for position estimation in indoor localization, fostered by the fact
that the majority of these setups are used—up till now—in controlled indoor environments. Thus,
employing optical tracking to other application domains that are located in wide-area unconstrained
indoor environments is impeded by the following three limitations: (1) Tracking coverage, (2) system
sensitivity, and (3) costs.

1.1. Contribution

In this paper, an optical position tracking system is presented that features low latency position
estimation, enhanced robustness against environmental interferences and extended volume coverage.
Sub-parts of the presented system has been previously tested in several heterogeneous use cases, user
tracking for VR/AR reality applications [1], handheld target tracking for tunneling [2] and machine
guidance for mining [3]. The main contributions of this paper are:

1. Providing a detailed overview of the entire system and its capabilities across the use cases.
2. Extending and comparing the results from the heterogeneous use cases to embed the presented

approach into a larger technological and application context.

In Figure 1, the major properties and capabilities of the proposed system are shown. Figure 1a
illustrates the system’s hardware setup while Figure 1b depicts a successfully detected target of our
system in the camera image that can be subsequently employed for calibration and tracking. In
summary, the presented system provides the following major capabilities:

• Wide-Area Tracking in Unconstrained Environments: The system provides model-based
infrared optical tracking of multiple rigid-body targets in wide, unconstrained volumes while
requiring a minimal hardware setup of two cameras. The system automatically tracks
visible target(s), thus temporary occlusions can be recovered and no initial manual sighting
is necessary as it is a prerequisite of laser measurement systems. At each stage of the
system’s workflow—target training, extrinsic camera calibration and 3D position tracking—no
constraining of the tracking volume is necessary. This enables the system to fully function
in indoor environments with static and moving light sources, varying ambient up to very
poor illumination.

• Robust Camera Calibration: The presented external calibration approach allows for parameter
estimation of stereo cameras rigs with wide baselines under varying illumination. Therefore,
the tracking target is re-used to artificially generate point features that are crucial in poorly
illuminated environments or in scenarios with little geometric structure. Furthermore, the
target’s properties support reliable correspondence matching without requiring the epipolar
geometry for correspondence analysis.

• Adaptable Design and Ease of Use; Targets are designed to be highly reconfigurable and are
equipped with standard infrared light emitting diodes. They can act as a hand-held point
measure unit or can be attached to arbitrary objects. The small amount of hardware enables
quick system installation, yielding only minimal disturbances of activities within the tracking
volume. No further preconditioning of the environment is necessary, increasing the system’s
ease of use during setup and maintenance and making it unobtrusive and cost efficient.

• General Purpose Tracking System: The system’s design allow for application to a broad range
of scenarios. To demonstrate the system’s capabilities to act a general purpose measurement
tool in indoor environments, it was experimentally applied to three different unconstrained
wide area scenarios. (1) position tracking for VR/AR tasks; (2) tunneling surveying tasks and
(3) autonomous machine guidance for underground construction. The experimental results
show relative millimeter point accuracy up to 30 m and centimeter deviation up to 90 m. These
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results clearly improve state-of-the-art systems and reveal the system’s applicability for a broad
range of use cases.
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Figure 1. Key properties of the presented optical tracking system.

With its features, the presented system addresses the need of cost-efficient, wide-area, robust,
accurate 3D position estimation in indoor environments.

1.2. Related Work

To achieve the major objective of this work, to track objects in large, unconstrained indoor
environments, the tracking system must be capable to cope with ambient interfering lights, infrared
radiation, temporary occlusions and even harsh environmental conditions, such as fog and dust. In
addition, the authors aim at tracking at large distances with a small amount of hardware to minimize
the necessary preconditioning of the tracking environment. To track objects in space and especially in
large volumes, different techniques exist from commercially available products to on-going research
prototypes. Extensive research has been performed to develop indoor location systems (ILS) for
enabling context-aware applications, user tracking and surveillance [4]. Since this work focuses
on positioning in indoor environments, we do not discuss related work based on global navigation
satellite systems (GNSS) or tracking solely based on inertial sensors, as inertial measurements suffer
from significant drift over time, especially for position estimation. Moreover, we do not incorporate
magnetic tracking into the discussion of related technologies, as it is subject to interference from
ferromagnetic materials in the tracking volume and magnetic fields generated by other electronic
devices, and it is sensitive against conductive materials that are placed near to emitters or sensors.
These factors tremendously limit potential tracking environments and making it impractical for the
intended environments. Regarding optical tracking, techniques based on natural features are not
reviewed as well, since they require prominent and distinctive structures for pose estimation. These
distinct features must either be found on the tracked object in an Outside-In scenario, or have to be
distributed throughout the volume in an Inside-Out tracking setup [5]. For both scenarios, a reliable
feature distribution and an adequate illumination cannot be guaranteed in all of the intended tracking
environments that have been investigated and can be targeted with this work.

To summarize, the most relevant tracking technologies for the intended wide area indoor
environments are radio frequency (RF), ultra-sonic and model-based optical systems. Since they
all have advantages and disadvantages regarding accuracy, latency, reliability, scalability and cost,
no de-facto standard has been established yet. Thus, we outline state-of-the-art ILS techniques and
discuss their advantages and disadvantages.
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1.2.1. Radio Frequency and Ultra Sound

Radio frequency systems based on Wi-Fi infrastructure or radio-frequency identification
(RFID) [6] require a number of readers within the measurement volume to enable object tracking
with low latency in large volumes [7]. However, WiFi signals tend to be extremely noisy and signal
strength highly depends on surrounding building structures and materials. Thus, precise position
estimation cannot be guaranteed even with multiple readers in the volume. In addition, the extensive
pre-conditioning of the tracking volume is cost-intensive due to the amount of necessary hardware.
Recently, a number of commercially available ILS applications such as Google Indoor Maps [8],
SensionLab [9] as well as Indoors [10] emerged to localize a smartphone (and thus its user) by
fusing mobile cellular data, WiFi and inertial measurements to minimize position jitter from WiFi
data. Google Indoor Maps optimizes the position accuracy by pre-measuring and mapping the
signal strength of the WiFi spot within the volume. However, this process takes time before the
actual tracking can start. Furthermore, all systems require pre-built indoor floor plans for position
visualization and only provide—in best case—several meter accuracy.

Ultra-sonic location systems such as [11,12] rely on time-of-flight measurement of ultra-sonic
signals, calculated using the velocity of sound. Such systems are scalable and can track multiple
moving objects. However, current systems offer in the very best case meter-level accuracy under
optimal conditions for 3D position estimation [13]. Furthermore, precision and range are not reliable
since velocity of sound in the air is highly dependent on environmental conditions, especially
humidity and temperature. In particular at long ranges, ultra-sonic systems are often extremely noisy
and for that reason not a proper solution for our system’s objectives.

Compared to ultrasound, the RF-based Ultra Wide Band (UWB) technology enables distance
measurements without line-of-sight requirements. An example for such a system is Ubisense [14]
that employs TDoA (Time-Difference-of-Arrival) and AoA (Angle-of-Arrival) measurements between
mobile tags and a minimum of four fixed base stations. It offers fast signal speed and hence high
sample rates (approximately 135 Hz) and provides an accuracy of down to 0.2 m. The LPM system
by Abatec [15] offers a sample rate of 1 kHz with an accuracy down to 0.10 m. It measures the
distance between fixed base stations and mobile tags based on the frequency modulated continuous
wave principle [16]. Although large distances can be covered, the ultrasound and RF-based systems
are expensive and the resulting accuracy is not sufficient for precise user tracking for virtual
reality applications.

1.2.2. Optical Tracking

Model-based optical tracking systems require the target to be within the line-of-sight of one or
more cameras to estimate its 3D coordinates from the 2D image-projections [17]. It is robust against
magnetic, electric and acoustic interference and works with light-emitting (active) or retro-reflective
(passive) targets. One camera is sufficient for tracking in an Inside-Out scenario; such as setup,
i.e., the InterSense IS 1200 system [18] is employing. It offers a scalable, cost-effective solution
for wide area tracking as it fuses optical tracking of planar bitmap patterns [19,20] with inertial
measurement data. Therefore, an inertial measurement unit is combined with a single camera and
attached to the trackable object to observe passive markers that have to be distributed throughout
the volume. While this setup offers high updates rates with very low latency (max. 8 ms) it
requires sufficient illumination and a large number of targets that have to additionally be in close
range to the camera to ensure robust tracking. These prerequisites make this system impractical
and even impossible to apply for our intended environments. As the implicit nature of Inside-Out
tracking requires well-distributed visual features throughout the volume, it can be concluded
that using active targets would also not be a sufficient approach since it would violate the our
goals of omitting pre-conditioning of the environment and of minimizing the necessary amount of
hardware components.
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Outside-In optical tracking systems require the target to be within the line-of-sight of two or
multiple cameras. In the following, a number of state-of-the-art Outside-In model-based tracking
systems are presented. The near infrared (NIR) spectrum based systems, such as Vicon [21],
A.R.T [22] or iotracker [23,24] offer (sub)-millimeter accuracy in standard room sized environments
(4× 4× 3 m3) and provide tracking of multiple targets with very low latency. To enlarge the tracking
volume, those systems increase the number of employed cameras (up to 50 in A.R.T). However, this
causes a tremendous growth of costs and setup complexity. The PPT-E system [25] is able to cover
areas up to 20 × 20 m2 with a minimum of four cameras but sub-millimeter tracking accuracy is
guaranteed only for volumes up to 3× 3× 3 m3. No accuracies are provided for larger volumes. The
Prime41 system [26] offers multiple user tracking by detecting passive targets up to 30 m, using a
perimeter setup with multiple cameras. However, no further details on accuracy nor the number of
cameras are given to cover this volume. Furthermore, as the most cost efficient systems of the above
mentioned, one Prime41 camera still costs about 5000 Euro. A minimal four-camera perimeter setup
results in pure camera costs of 20,000 Euro (without software), which is a multiple of our complete
system costs.

For tracking in larger, unconstrained indoor environments, such as tunnels and mines,
examples of application of optical tracking systems are rare and only exist for highly special
measurement purposes. One example is the application of a hand-held digital camera in combination
with fixed installed visual markers for monitoring tunnel wall displacements by close-range
photogrammetry [27,28]. The system requires huge installation effort and therefore is not practical
for daily application. A further example is the use of a tracking camera and retro-reflecting targets to
track the relative position between two shields of a double shield tunnel boring machine as part
of a guidance system. The system is in use in several tunnel projects and reported to function
properly [29]. However, both optical tracking systems are not designed to simultaneously track
several targets over longer distances in real-time.

Summarizing, existing Outside-In optical systems rely on artificial features for model-based
tracking and are thus robust against environments with non-distinctive geometric structure and poor
illumination. However, for wide area tracking they require a complex system setup and thus are cost
intensive. Furthermore, existing NIR tracking technology remains to be highly sensitive to ambient
interfering lights and infrared radiation, especially during camera calibration, making those systems
incapable of being deployed in unconstrained indoor environments.

1.2.3. Laser Measurement Systems

For determining the 3D position of objects with very high accuracy, classical surveying
methodology such as laser measurement systems are widely applied in research and industry. The
employed instruments (total stations, terrestrial laser scanners and laser trackers) simultaneously
measure the horizontal and vertical angle to the target-point together with the slope distance by using
laser distance measurement. Based on these polar observations, the 3D coordinates of the target-point
are then processed. Depending on the specific surveying task, the target-point is either a geodetic
prism or a non-signalized point, directly located on the object surface (reflector-less measurement).
The most frequently used instrument type is the total station [30,31]. In the application field, it can be
found manually operated as well as integrated in automatic measurement and mobile multi-sensor
systems. Advanced total stations have the capability to automatically search for, recognize, measure
and even lock a prism, thus, are able to follow a slowly moving object. These options are primarily
used to facilitate manual operation, increase speed of work and are indispensable when kinematic
surveying is to be performed. Total stations are highly accurate for large distances of 100 m and more.
They are used for setting out, network measurements, tunnel heading control, machine guidance and
displacement monitoring. However, specialized personnel are required for instrument control and
several (kinematic) visual objects cannot be simultaneously sighted and measured.
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The technology of laser scanning by use of Terrestrial Laser Scanners (TLS) [32] is also broadly
common in underground construction. It is routinely applied for a variety of purposes, such as
tunnel profile control, volume determination and check of tunnel surface quality [33–35]. Recent
research work [36] aims to use the technology for monitoring of tunnel wall displacements. As with
total stations, laser scanners are operated either manually or automatically when integrated in tunnel
laser scanning systems. They can perform static and kinematic scanning. However, the technology
requires extensive post-processing of 3D point clouds and does not allow for efficient measurement of
defined points or objects with low latency. So far, the technology does not provide real-time capability.
Recently, Leica Geosystems introduced an approach that integrates an optical tracking system with a
laser tracker [37,38]. It offers automatic lock-on and tracking of the 3D position (by the laser tracker)
and 3D orientation (by the optical tracking system) of a hand-held target [39] with high precision
and low latency up to 18 m. As a portable system, it is designed for industrial applications (e.g.,
prototyping and reverse engineering, tooling inspection and part mating, positioning and aligning of
machines). By using a special corner cube reflector, the range can be extended up to 160 m but only
for the laser tracker, not for the optical tracking system. However, up to now, this system is only used
for very particular measurement tasks in tunnel construction. The only example of regular use is the
check of tunnel segment geometry, a daily task performed in the segment factory. Up to now, laser
trackers cannot be found underground as they are expensive and not considered robust enough to
operate in harsh environments. Besides, they cannot simultaneously track multiple targets.

2. Methodology

Although prior art in infrared optical tracking systems lack the capabilities of robust wide-area
3D position estimation, the underlying technology is very promising to achieve our goals since it
offers high precision with very low latency. Therefore, we extend this technology to overcome
limitations of state of the art systems. In this section, we describe the proposed wide-area
Outside-Looking-In optical tracking system for 3D position estimation that is based on a stereo camera
setup to track targets up to distances of 30–100 m, depending on the tracking task. It provides high
tracking accuracy while being robust against interfering lights during calibration and tracking.

2.1. System Requirements

To achieve the outlined research goals the following requirements were specified to be fulfilled
by the tracking system:

• Cover Wide Tracking Volume: Target(s) shall be tracked with two cameras up to distances of
100 m. To account for different real-life tracking scenarios, the distance between both cameras
(baseline) may vary. Both cameras are connected to one processing unit, thus data exchange
interfaces are required that support long distance cable transmission.

• Accurate Camera Calibration: To optimally compensate optical aberrations, the intrinsic and
extrinsic calibration must be able to be performed with the complete camera encasement. The
extrinsic calibration has to be capable to be performed during on-going activities in the tracking
volume and thus must be able to cope with heavy interferences and large distances.

• Unique Target Identification: Interfering light sources must be filtered to allow for a robust target
detection during calibration and tracking, as illustrated in Figure 1b.

• Continuous and Accurate 3D Position: The hardware and software algorithms have to ensure
precise target detection at large distances and in environments with poor visibility due to
particles (dust, dirt) in the air. Continuous 3D position estimation must be provided within
the whole tracking volume.

• Robust Hardware Casing: To ensure system reliability in real-life environments, hardware
components (cameras, lenses, target, processing unit) have to be encased to be dust- and
dampness proof. Nevertheless, the system must be easy and quick to setup and the target should
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be usable even with thick gloves. Furthermore, side effects on the camera’s field-of-view (FOV)
as well as optical aberrations must be considered when encasing the vision parts of the system.

2.2. Algorithmic Overview

Based on the system’s requirements, a 3D position estimation pipeline using stereo image pairs
was designed. Its overall work-flow is depicted in Figure 2. In the following sections, each module
and the underlying algorithmic approach are described.

Figure 2. Overview over the system’s workflow.

2.3. Target Design

Within the whole intended tracking volume, the target must be reliably visible in the cameras’
images to ensure robust feature segmentation. The target’s optical features can either be arranged on
a planar surface or consist of spherical optical markers so that their 2D representations in the camera
image (Blob) are defined by circles whose centroids are computed. These spherical optical markers
can either be passive—reflecting infrared light that is strobed into the tracking volume back to the
camera—or active—light sources that emit towards the cameras and must be individually powered.

In a preliminary study [40], we practically evaluated passive and active targets at large distances
in a harsh environment (a tunnel during on-going construction). Test images have been captured
using a high machine vision camera (1/1.8" Mono CCD, 1624× 1224 px), an IR long-wave pass filter,
a vari-focal lens (focal lengths f = 12, 36 mm, aperture = F2.8) with 8 bit pixel depth at distances of
30 m, 50 m and 70 m, employing open aperture ( f /2.8). We defined a blob to be robustly detectable
if it features 80%–100% of the maximal luminance [23]. As passive targets, retro reflective foil targets
in combination with a 850 nm illuminator were employed. The active target comprised an infrared
light emitting diode (IR-LED) with a peak wavelength at 850 nm and a viewing half-angle of 23◦. As
illustrated in Figure 3, passive as well as active targets were robustly segmented in the camera image
up to a distance of 50 m. At a distance of 70 m, blobs of passive targets could not be robustly detected
while active targets were still visible and could be accurately segmented despite dust and dirt in the
air. Consequently, active targets are suitable to fulfill the proposed system’s objectives.

f = 12mm f = 36mm

Active Marker
f = 12mm f = 36mm

Passive Marker

Figure 3. Blobs at 50 m distance with minimal/maximal focal length of f = 12 / 36 mm.
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Based on these findings, we propose to use IR-LEDs as optical markers to assure precise feature
segmentation in scenarios with interferences as well as at large distances. To protect the IR-LEDs and
to prevent optical aberrations (flare artifacts on the blob edges in the camera images), each IR-LED
is covered with a translucent diffuse plastic sphere. To detect the targets’ blobs amongst interfering
lights in the camera image, the active optical markers are arranged as a line as geometric constellation,
as illustrated in Figure 4. It consists of four collinear IR-LEDs which are attached in fixed distances
d1, d2, d3 to each other, forming a Rigid Body Target.

Figure 4. The 2D model design features projective invariant properties.

Four points along a line comprises two projective invariant properties, cross ratio and
collinearity [41]. These target model properties can be exploited for robust Model Fitting within
the camera images, as described in Section 2.5, as well as for occlusion recovery, as explained in
Section 2.7. Model Fitting is known as the problem of determining the correspondences between the
detected 2D image features and the optical features of the tracked object. It can be accomplished by
matching and fitting the detected 2D image features to the underlying target model that describes
the structure of features on the tracked object. With the proposed line approach, different unique
constellations can be easily designed to distinguish between multiple targets in the same tracking
volume. Existing 3D rigid body targets (e.g., [42]) also offer permutation invariant geometric
constellations to track multiple targets. However, enabling Model Fitting in 2D has three advantages
over 3D approaches that are crucial for our intended research goals:

1. The line target can robustly detected across both camera images with no a priori knowledge
of the camera’s epipolar geometry. Thereby, extrinsic camera calibration can be performed
even in the presence of interfering lights by using the visual features of the target. Competing
approaches [21–23] perform Model Fitting in 3D space, making these systems not able to cope
with unconstrained conditions during camera calibration.

2. We can re-purpose the tracking target as calibration apparatus since Model Fitting is always
performed in the 2D image domain. Thereby, the overall amount of necessary hardware for
setup and maintenance can be reduced.

3. Fixing the IR-LEDs in a 2D manner increases the physical robustness of the target against
accidental breaking off when touching the target during usage; this is especially an issue for
tracking at larger distances since the target requires enlarged dimensions as well. Accidental
breaking off is a common problem with the rather sensitive 3D rigid targets that need frequent
replacement or repair by experts.

2.4. Camera Calibration

The proposed stereo camera rig must be calibrated to perform precise feature segmentation and
to provide 3D point reconstruction of the target model’s IR-LEDs. Determining both the intrinsic and
extrinsic camera parameters yield the process of Camera Calibration. For each camera that is involved
in this stereo setup, both parameter sets are described by the Camera Projection Matrix P [17].

2.4.1. Background

A number of calibration approaches exist, and all share the common principle of determining the
cameras’ parameter by initially obtaining a specific number of 3D world→2D image point relations, to
later use these relationships in an optimization procedure. The existing approaches for multiple view
camera calibration can be categorized based on the applied calibration object and its dimensionality.
Calibration based on a 2D or 3D reference target usually observes the object that is only shown at a
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few different orientations [43,44] undergoing an unknown translation. The object’s 2D, respective
3D geometry, is known with high precision. In 2D, this is typically a planar pattern and in 3D
two or three planar pattern in an orthogonal geometric arrangement to each other. With such a
reference object, each cameras’ internal (focal length, principal point offset, aspect ratio, radial and
tangential distortion coefficients) and external parameters (position and orientation) can be computed
efficiently [41]. Multiple view camera calibration can also be performed with a 0D object, such
as corresponding points across the views. These points can be manually generated by waving a
single point [45,46]—such as a light emitting diode or retro-reflective sphere—through the volume.
Alternatively, these points are determined by extracting natural features [47–50] from the observed
scene, which is referred to as Auto-Calibration. The single point methods cannot account for estimation
of distortion coefficients, they only recover the extrinsic parameters. To achieve intrinsic parameter
estimation, the single point methods can be combined with a 2D planar pattern calibration that
is applied in advance. A sufficient number of corresponding image points (a minimum of seven
is required) must be generated by a moving apertures or natural features to be able to estimate
the Fundamental Matrix F [17,51]. The extrinsic camera parameters can then be derived—up to a
scale factor—from F through its encapsulated epipolar geometry. To overcome the limitations of the
calibration based on multiple single points, [52] presents a bar with optical markers at both ends as
calibration apparatus for which the physical distance between the spheres is known. Thereby, internal
and external camera parameters can be linearly determined in an initialization step, and then refined
with a nonlinear least squares optimization method. Furthermore, the scale factor can be determined
from the real and known distance between both spheres.

2.4.2. Intrinsic Calibration

In the presented system, the intrinsic and extrinsic camera calibration is split into two steps.
The intrinsic parameters, described by Camera Calibration Matrix K [17], are estimated using a
planar apparatus (2D feature), a chessboard pattern. This approach is known to be robust and
targets can be quickly constructed. To enhance the estimation of the parameters, all optical
components (camera with lens and infrared filter) of the final tracking setup should be included in
the calibration procedure.

(a) Infrared light (b) Reflective pattern (c) Camera IR image

Figure 5. Intrinsic camera calibration with a retro-reflective pattern.

However, with such a setup, a normal black/white chessboard pattern would not be visible in
the camera image. Therefore, we extended the standard intrinsic calibration setup by developing
a chessboard plane made of retro-reflective foil that is illuminated with an infrared light source
to provide chessboard images in the NIR (Near Infrared) spectrum. The Camera Calibration
Toolbox [53] is used for intrinsic parameter determination. The complete intrinsic setup is illustrated
in Figure 5. Since the lens configuration must not change after intrinsic calibration and the tracking
will be at large distances, the focus settings are set to unlimited that results in a blurred pattern at close
ranges. With this setting, the images of the tracking system’s cameras and lenses (see Section 3.1)
are in focus from 4 m onwards. Thus, the pattern must have a sufficient size to cover the entire
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camera image at a distance of 4 m. Furthermore, the sharpness of calibration images was enhanced
by decreasing the aperture ( f /8) for increased depth of field.

2.4.3. Extrinsic Calibration

Due to the intended calibration scenario with wide camera baseline, varying ambient
illumination and little distinct geometric structures, we had to omit extrinsic camera calibration
methods employing a 2D or 3D calibration apparatus. This would have resulted in a large target to be
visible at distances of 10–70 m while being planar to provide precise corner extraction. Furthermore,
its surface would have to be composed of retro-reflective foil, which is sensitive and requires
additional hardware for pattern illumination. Such an apparatus would neither be transportable nor
suitable. In addition, methods based on 0D natural point features are not applicable as well since they
require well-distributed features throughout the entire tracking volume to function robustly. This can
be easily true in cluttered and well-illuminated environments but is hard to achieve in rather dark
environments or scenarios with little geometric structures.

The proposed calibration approach uses artificial points that are created by manually waving
the calibration target through the volume to achieve a high amount of detectable features. To
allow for calibration in unconstrained environments with interfering lights, methods using solely
a single point [23,24,45,46] are not sufficient. Those approaches require to manually mask
interferences in a trained background images to avoid false positive feature correspondences;
obviously, those techniques cannot cope with moving interfering lights. The approach [52] tries to
overcome this limitation by evaluating the screen-space coordinates of two blobs—that corresponding
physical markers have a known distance—over a sequence of camera images. To find the image
correspondences, the algorithms seeks for the two longest paths of possible marker motion in each
camera image and assumes that no other reflections or markers are moved through the entire working
volume in a similar manner as the calibration apparatus. Using the corresponding image points the
Essential Matrix E is estimated by performing the Nominalized 8-Point Algorithm [17,51]. Furthermore,
this methods determines the scale factor from the known distance between both optical markers.
Compared to [23,46]), the affine transformation to obtain real-world distance units [mm] is not only
computed once—that can result in inaccurate tracking at larger distances—but takes the measured
distance between both optical markers of each processed camera frame into account.

scale =
dreal
dmean

(1)

where dreal is the real known distance between the two markers and dmean is the mean distance
calculated based on all measured distances between the two markers over all observed image frames.
When deriving the Camera Projection Matrix P from the epipolar geometry, the scale can then be
applied by re-formulating t as

tmetric = t · scale, P′ = [R|tmetric] (2)

However, this approach is prone to error in the presence of interfering lights in the tracking
volume and in the case of short marker tracks. Thus, we extended the approach [52] and developed a
pipeline—as illustrated in Figure 6—to further expunge any assumptions of marker movement and
to allow single point pair correspondences.
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Figure 6. Extrinsic calibration pipeline.

A line target, as described in Section 2.3, is used as calibration apparatus. Its pattern can already
be recognized in a 2D camera image, thus no epipolar geometry is necessary to provide correct point
correspondences for the estimation of E. During calibration, interferences are filtered and the target
is identified (Model Identification) using the developed pipeline from Section 2.5. This pipeline returns
a set of four ordered points p for each camera L and R of a frame at time t.

St
L = {pt

L,1, pt
L,2, pt

L,3, pt
L,4}, St

R = {pt
R,1, pt

R,2, pt
R,3, pt

R,4} (3)

where pt
L,i , pt

R,i ∈ R2, i = 1...4

Although the model fitting is reliable, the target detection in each image is still independent from
each other. Thereby, errors can occur such as a false positive identification in camera 1 and a hit in
camera 2, or a hit in camera 1 and no detection in camera 2 (due to occlusions). Such erroneous input
data would decrease the stability of the estimation of E and thus should be avoided. Therefore, a
Similarity Check between both sets St

L, St
R is performed. Since the epipolar geometry is not known

yet, stereo correspondence search along the epipolar lines can not be exploited [17]. The proposed
similarity check is based on the idea, that the detected target has a similar orientation in both images
at time t up to a threshold, depending on the camera setup. For the similarity evaluation, the target in
the left image is considered as a vector ~vL = pL,1, pL,4, respectively ~vR in the right image. The angles
(φx, φy) between ~v and the x-axis, respectively the y-axis, are determined for the left and the right
image. Outliers are detected if the angles differ by more than a given threshold λ, as in Equation (4).
The same is done for the y-axis. Thereby, the algorithm can be used on images taken from both
horizontally and vertically aligned cameras.

outlier =

{
~vL, ~vR if |φx,L − φx,R| > λ

0 otherwise
(4)

If outliers have been detected, the point sets (St
L, St

R) are rejected, if not, the sets are considered
as correct target blobs and are fed into the calibration routine. Since K is known from Section 2.4.2,
the Normalized 8-Point Algorithm is applied for computation of the Essential Matrix E to enhance
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the stability of the epipolar geometry estimation [17]. To obtain a metric scale for Equation (2), the
distance between the two outermost IR-LEDs of the calibration target are measured to sub-millimeter
accuracy with a high precision total station, yielding dreal .

With our described pipeline, we achieve a robust calibration procedure that can be performed
in the presence of static and moving light sources. No pre-conditioning of the volume is necessary
and background training as well as manual masking can be omitted, which increases the system’s
ease of use during setup and maintenance. Furthermore, by re-using a tracking target for extrinsic
calibration and scale estimation, additional equipment can be minimized.

2.5. Interference Filtering

To provide robust target identification at each stage of a optical tracking system work-flow
(extrinsic calibration, target tracking), static and moving interfering lights must be robustly filtered
out. In unconstrained tracking environments, a varying number of ambient light sources (wall
illumination, spot lights, reflections, vehicle lights, ...) might exist. To evaluate the wavelength
emission, we measured frequently occurring standard illumination sources with a spectrograph.
Their emission curves are illustrated in Figure 7. As depicted, almost all ambient light sources show
infrared radiation. A portion of the interferences can be filtered by inserting a longwave pass filter
with a cut-on value of 780 nm into the optical path. However, most of the interfering lights are
still visible in the camera images and result in bright circular blobs, similar to the IR-LEDs from the
target model.

IRVIS

Figure 7. Wavelengths of various light sources.

To robustly detect the target amongst static and moving ambient interfering lights, we developed
a software-based identification pipeline, as described in Section 2.5.2. It is built around the 2D model
fitting approach that exploits the aforementioned permutation and perspective invariant properties
of the target design. The target model must be thus trained once before it can be recognized during
calibration and tracking.

2.5.1. Model Training

To obtain the unique properties of a target pattern, it is trained once in an off-line process to
determine its Model, as illustrated in Figure 8.
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Figure 8. Pipeline to obtain the target’s model.

The following steps—based on [54,55]—are performed:

1. The distances d1, d2, d3 (see Figure 4) between the target’s LEDs are precisely measured using a
total station.

2. Based on d1, d2, d3, the cross ratio λ is computed and used as input argument for the function J
to obtain an initial estimate for p2

range. The eigenvalue of the moment matrix M as a measure for
collinearity is set to an initial value such as ev 6= 0, ev < 0.

3. The target is captured at all intended tracking distances to obtain a sufficient number of samples
(images) for the complete tracking volume.

4. Each of the captured images is then processed and blob candidates are obtained by performing
feature segmentation and classification (see Figure 9). p2

range and ev are applied to the blob
candidates and subsequently refined to account for noise of cross ratio and collinearity.

5. After the refinement phase, the minimum and maximum length of the target in the 2D images
over all images are measured to obtain a threshold thrange.

6. Finally, the obtained model is stored, containing p2
range as the minimum and maximum values

of the pattern’s p2-invariants, ev, as the collinearity error model and thrange.

2.5.2. Model Identification

The pipeline of model identification is illustrated in Figure 9. After a new image (frame)
is captured from the camera with the attached long-wave pass filter, all blobs are segmented
(Feature Segmentation) as proposed in [23]. First, the camera image is transformed to a binary
image using a dynamic threshold. Blobs are created by applying a connected component analysis
as well as a circular Hough transform [56]. Next, the center of each blob (centroid) is determined
using a luminance-weighted average of the connected pixels, which describe the blob’s 2D position
with sub-pixel accuracy. For further processing, the centroids are undistorted based on the
Camera Calibration Matrix K.

In the next step, each resulting blob is classified by performing shape- and size-based
classification (Feature Classification). The minimum and maximum values for the size-filter can be
manually defined to provide quick configuration for different tracking ranges. The classification
results in circular-shaped blobs (Blob Candidates) that diameters lie within the specified range. In
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practice however further filtering must be performed since interfering lights can have a similar size
as the target’s IR-LED blobs. Based on approaches [54,57–59], a 2D Model Fitting within the set
of remaining blob candidates is performed. Therefore, the p2-Invariants of the blob candidates as
well as their collinear properties are computed and compared to the pre-calculated target model.
Thereby, false positive blob candidates are rejected and the target’s blobs are determined. Due
to the permutation invariant properties of the computed p2-invariants, an ordered set of blobs
St = {pt

i}, i = 1...N, p ∈ R2 for each image at time t is output to be further used for calibration
or tracking.

Figure 9. Pipeline for model identification.

2.6. 3 Degree-Of-Freedom Tracking

To track optical markers in 3D space, the following two problems have to be solved: (1) the 2D
blobs have to be identified throughout all camera views and then transformed to 3D marker locations,
and (2) the 3D markers need to be tracked through time. The online image-processing pipeline for
tracking is depicted in Figure 10.

Given an intrinsically and extrinsically calibrated, shutter-synchronized stereo camera rig, the
tracking is performed as follows. After a new frame is received from each camera, blob candidates
are segmented and classified in both frames, as described above. Next, the aforementioned 2D model
fitting approach is applied within the camera image to detect the target pattern. The 3D position
of the pattern’s optical marker are only computed if and after the pattern was found in the image.
To minimize computational load, the model identification is only performed in Image 1 by applying
model fitting within the set of all blob candidates. After the target blobs have been determined in
Image 1, their correspondences have to be identified in Image 2 amongst all blob candidates that result
from the feature classification by exploiting the epipolar geometry, which is encapsulated in E. For
each target blob in Image 1, a search for its corresponding blob is performed along its epipolar line
(Stereo Correspondence) in Image 2 [17].
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Figure 10. Tracking pipeline.

By applying model fitting within the 2D projections of the target’s IR-LED not only
a drastically reduced set of correspondence candidates and ambiguities is obtained but the
combinatorial complexity of the multiple-view correlation problem can be considerably decreased
as well. By performing a projective triangulation between each correlated 2D blob-tuple
(Projective Reconstruction), the 3D-coordinate of each optical marker can be reconstructed.
Following [23], we apply the standard Singular Value Decomposition (SVD) to obtain the initial 3D
estimate for each blob-tuple, followed by bundle adjustment [60] with a Levenberg-Marquardt
non-linear least squares algorithm for refinement. This results in a 3D point cloud of the reconstructed
model points T = {P1, P2, P3, P4}, P ∈ R3 that is optimized using the least square approach of [61]. To
further increase the algorithm’s robustness against outliers of the model fitting, the model points T
are validated with a threshold to account for noise against the target’s geometric constraints d1, d2, d3
(see Section 2.5.1) and volume [54]. Based on T and a given distance depi as the real distance between
the outermost IR-LED and the epicenter of the target, the target’s epicenter C ∈ R3 can be calculated
(Position Estimation) as follows.

C = P4 − (depi ∗ m̂) (5)

Therefore, we normalize the vectors ~a = P2P1, ~b = P3P2, ~c = P4P3, resulting in â, b̂, ĉ. By
calculating the arithmetic mean of â, b̂, ĉ, we determine the mean direction m̂ which is applied
according to Equation (5). Thereby, an arbitrary point along the line can be determined, resulting
in the 3D pose of the target. In order to enhance the robustness when tracking the target through
time, the resulting target pose can be fed into a recursive filter (Predictive Filtering). Thereby, jitter
can be reduced and the system’s intrinsic latency can be compensated. Since we currently aim for
position tracking, the non-extended Kalman Filter [62,63] is therefore employed.
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2.7. Occlusion Recovery

If a target’s IR-LED and an interfering light source lie on the same line of sight of the camera,
their corresponding blobs can overlap in the images. Furthermore, parts of the target can be
occluded, i.e., when the target gets partly hidden behind an object in the scene. Our model fitting
approach requires four optical markers. Currently, the proposed target identification pipeline can
compensate one occluded marker while retaining the capability of detecting the target within the
set of blob candidates. After projective reconstruction, the 3D positions of occluded markers can be
reconstructed based on the target’s geometric model and the resulting 3D point cloud. The recovery
of occluded IR-LEDs optimizes the accuracy of the 3D position estimate of the target’s epicenter. With
this recovery functionality, loss of tracking can be reduced in cases of occlusions or over-blooming by
(stronger) interfering light sources.

3. System Development

Based on the methodological approach, we developed a hardware- as well as software system to
test our tracking system in large, unconstrained indoor environments.

3.1. Hardware

Our hardware prototype comprises the vision system, target(s) and a standard notebook as main
processing unit. The schematics of the hardware components as well as cabling and power supply
are illustrated in Figure 11.

Figure 11. The cabling of the hardware prototype.

3.1.1. Vision System

The vision component of the proposed tracking system comprises two cameras, lenses and
filters. To meet the system’s requirements we designed an optical setup that can cope with minimal
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illumination, is IR sensitive and minimizes optical aberration as well as rasterization effects while
providing a sufficient field-of-view (FOV) as well as depth-of-field to cover the intended tracking
volume with objects in focus. The coverage depends on focal length f , the distance between the
cameras (baseline) as well as the amount of yaw-rotation β of each camera. Our system uses
high-resolution machine vision cameras in combination with low-distortion lenses that feature large
aperture and minimal optical aberrations. We use two Dalsa Genie HM1400/XDR cameras which
feature low heat evolution and a global-shutter CMOS sensor (1” monochromatic) with high NIR
spectral sensitivity. Low heat evolution and large image sensors yield little sensor noise to minimize
jitter in the camera image. Together with the high resolution image sensors, precise segmentation
can be provided even at longer distances. The cameras offer high global shutter speed to minimize
motion blur when the target is moving fast. It is capable of delivering 60 frames per second
(fps) with a resolution of 1400 × 1024 pixels. Both cameras are equipped with a EdmundOptics
NT63-246 high-resolution and fast ( f /1.4– f /16) fixed focal lens ( f = 25 mm). To filter light from
the visible wavelength spectrum, we attached a Heliopan RG-780 long wave pass filter allowing only
wavelength above 780 nm to transmit.

Both cameras form a Stereo Camera Rig and are shutter-synchronized by an external trigger signal
to guarantee temporal synchronous image pairs. Therefore, a square-wave current loop signal is
generated by the trigger unit with a built-in programmable oscillator. The trigger unit comprises
two BNC (Bayonet Neill Concelman) connectors to interface with the cameras and the trigger signal,
generated by an Arduino Uno board [64]. Via USB 2.0, the Arduino board connects to the mobile
workstation for communication with the tracking software as well as for power supply. The Arduino
Uno board furthermore interfaces with a 2.4 GHz radio module, consisting of a Nordic nRF24L01+
chip and a 5 dBi dipol-antenna. Via this radio transmission, the target’s state can be remotely
controlled to provide quick system configuration during testing.

To provide wide area tracking in width and depth, the baselines can heavily vary in the intended
tracking environment. Thus, data transmission from the cameras to the workstation is performed
using GigE Vision [65] to guarantee lossless image transmission while providing long cable lengths.
Both cameras are connected to one workstation for image processing and tracking.

3.1.2. Workstation

The workstation runs the software prototype and features two Gigabyte Ethernet host adapters
(1× built-in, 1× ExpressCard) to interface via ISO/IEC 11801 (Category 6) cable with the cameras.
The components of the base station are centrally powered by one external 240 ACV supply.

3.1.3. Target

We developed three target prototypes to account for the three different evaluation scenarios:
(1) User tracking for VR/AR applications; (2) Handheld target tracking for tunneling; and (3) Machine
guidance for mining. Each target prototype follows the design principles from Section 2.3 and is
described in the following:

• Target for Virtual Reality: For the VR/AR setup, we developed a target prototype that offers
continuously adjustable positioning of the IR-LEDs by fixing each LED separately with nuts
on a rigid bar to allow a rapid arrangement of the IR-LEDs. The target prototype has a total
length of 687 mm and is equipped with four IR-LEDs OSRAM 4850 E7800 in a permutation
invariant constellation. Each IR-LED emits a peak wavelength of 850 nm with a radiant intensity
of 40 mW/sr (mW/sr: milli watts per steradian) and features a viewing half angle of ±23◦.
Thereby, robust feature segmentation up to a distance of 30 m can be performed. With the
employed vision hardware setup, a minimum distance of 130 mm between two neighboring
LEDs is advisable with a shutter speed of 1000 µs to avoid blob overlaps in the camera image at
the maximum tracking distance of 30 m. Tracking in a smaller volume automatically leads to a
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decreased target size with the above mentioned setup. To further reduce the physical target size
for volumes up to 30 m, LEDs with different radiant intensity properties are applicable.

For testing, the IR-LED bar was attached to the front of a head mounted display. It has to
be noted that a single line target is sufficient to determine the user’s (head) 3D position in
scenarios in which the user faces the cameras, i.e., in our test setup or in a semi-immersive
VR scenario in which the user is tracked in front of a projector wall. In a fully immersive VR
environment—where the user freely moves in space—a single line target in combination with
two cameras results in occlusions as soon as the user turns around. This occlusion problem can
be compensated by applying a composed setup of multiple unique line targets.

• Target for Tunneling: The target prototype was developed in cooperation with Geodata
Ziviltechniker GmbH (Leoben, Austria) and is depicted in Figure 12. The target provides an
array of holes at fixed distances, in which the IR-LEDs can be mounted. This allows for the
rapid arrangement of multiple IR-LEDs in a permutation invariant geometric constellation.
Furthermore, multiple unique constellations can be easily designed to simultaneously track one
or more targets in the same tracking volume. The maximal distance between the two outermost
IR-LEDs is 82.0 cm, while the targets total length is 120.0 cm. The target is equipped with
six IR-LEDs OSRAM 4850 E7800 to be able to construct a planar pattern in future as well.
However, all experimental results are based on four collinear LEDs. Each IR-LED emits at a
peak wavelength of 850 nm with a radiant intensity of 40 mW/sr and features a viewing half
angle of ±23◦. A minimum distance of 175 mm between two neighboring LEDs with a shutter
speed of 1000 µs is required to ensure robust feature segmentation up to a distance of 70 m. This
distance was empirically determined with the given vision.

Figure 12. Developed target prototype.

With the developed prototype, the 3D position of a static point can be measured. This is a
common tunneling task. Since the target features a 20 cm long tip without any optical markers
attached, also points that are not visible to the cameras can be tracked. Thereby, the disadvantage
of vision-based tracking systems that require a line-of-sight between cameras and measured
point can be compensated to a certain extent. As soon the target is freely moved in space the 3D
position of the target’s tip is continuously tracked. In Figure 13, further details of the prototype
are shown, including the coating of the IR-LED as well as dampness-proof cabling.

(a) Single IR-LED (b) Cabling (c) Control box (d) Electronics

Figure 13. Details of the developed target prototype.
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• Target for Machine Guidance: For the third evaluation scenario—machine guidance—two
re-configurable targets were developed. In this scenario, a tracking range up to 100 m had
to be provided. Therefore, IR-LED tests were performed to account fo the required extended
tracking range. To enable reliable tracking throughout the extended tracking range, robust
feature segmentation and blob centroid determination must be ensured. Therefore, different
LED types from various suppliers have been evaluated at distances from 30–110 m featuring
radiant intensities from 40–230 mW/sr. The aim was to find the IR-LED with the best balance
between appropriate intensity for long distance feature segmentation and minimal distance
between two neighboring LEDs. For all tests, the vision setup from Section 3.1.1 was employed.
We ran the LEDs with VF = 1.5 V, IF = 100 mA and an operating voltage of 5 V. Images were
captured with 8 bit, a shutter speed of 1000 µs, unlimited focus and open aperture ( f /1.4). Over
all tests, the IR-LED Vishay TSHG6210 with 230 mW/sr and a half angle of ±10◦ achieved the
best blob quality at large distances.

In Figure 14, the blobs of Vishay TSHG6210 and OSRAM 4850 E7800 (used for the target
prototypes for VR/AR user tracking and tunneling) are illustrated. The difference in luminance
quality and even distribution is clearly visible. For the machine tracking prototype, a target
has been constructed in cooperation with Geodata Ziviltechniker GmbH (Leoben, Austria) that
consist of multiple Vishay TSHG6210 IR-LEDs. Each LED is encased in a plastic hemisphere
which acts as a light diffuser (see Figure 15b) and is installed in the center of a retro-reflecting
tape target.

(a) OSRAM 4850 E7800 (b) Vishay TSHG6210

Figure 14. Comparison of blob quality at 110 m with an inter LED distance of 34 cm.

The diffuser serves for an optimal light diffusion and feature segmentation as well as protects
the IR-LED. The target design enables simultaneous geodetic measurement and optical tracking;
thereby, the camera system’s world coordinate system can be transformed into a geodetic
reference system for comparison as well as real-life use. Coordinate system transformation is
subject to future work, thus this part is not covered and discussed within the proposed work.
Four to five of the single IR-LEDs are combined to form a line target, as shown in Figure 15.
Each single target is mounted to a 160.0 cm square bar steel and its position can be freely
adjusted along the bar. The minimal LED distance is 22 cm to be able to distinguish between
two neighboring LEDs at a distance of 120 m. A geodesic prism can be attached as well, as
shown in Figure 15a to measure the target with a theodolite as well. We developed two of these
line targets to test multiple constellations as well as simultaneous tracking. All IR-LEDs of both
targets are centrally powered by one main unit, featuring battery as well as 240 Hz power supply.
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(a) The line target (b) A single target

Figure 15. The IR-LED line target prototype for machine tracking.

3.1.4. System Costs

As stated in Section 1, cost efficiency is one of the objectives of the presented tracking system.
Therefore, we minimized the amount of necessary hardware and focused on off-the-shelf components
as well as open source hardware and software. The current hardware prototype costs in total
∼7300 Euro, excluding camera- and target casing. The price includes both cameras (each 2000 Euro
with IR filter), lenses (each 600 Euro), notebook (2000 Euro), the synchronization unit (30 Euro for
Arduino, BNC adapters and cabling) and technical parts for the target (60 Euro for Arduino, radio
chip, battery, wires, IR-LEDs and target material). The achieved price outperforms existing optical
tracking solutions, i.e., the Prime41 system [26] that yields a minimum of 20,000 Euro only for
hardware to provide tracking up to 30 m.

3.2. Software

The developed software framework follows a three-tier-architecture comprising hardware
abstraction, a processing layer and data visualization on a graphical user interface, as shown
in Figure 16. The processing core consists of loosely-coupled modules for the offline processes
intrinsic calibration and model training, as well as for the online processes target identification,
extrinsic calibration and tracking. The modules and their functionalities are centrally accessed by
the controller component that delivers data from the processing layer to the GUI. Our software
framework prototype is implemented in C/C++ and MATLAB. For the intrinsic camera calibration,
the open-source MATLAB Camera Calibration Toolbox [53] was integrated. With the open-source
Arduino IDE [64], we developed the embedded component for camera synchronization and radio
communication.

Training and intrinsic calibration are performed in an offline process and are implemented as
stand-alone software packages. The graphical user interface of the model training component is
shown in Figure 17. Please note that for visualization purpose, the camera images in Figures 17 and
18 have been inverted. Based on a selected model training set, the model properties are automatically
extracted and the user is informed about problems during autonomous model identification. In case
of a detection of a problematic image, the user can manually adjust collinearity and p2-invariant
range or can discard the image from the training set. If no problematic training image was found, the
estimated model properties are stored in a XML model file.
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Figure 16. Software architecture and modules.

Figure 17. User interface of semi-autonomous Model Trainer.

The image in Figure 17 shows an example of model detection in training images that have been
captured in unconstrained settings. In this example, target reflections in a water puddle causes the
model training to detect the target twice in the image based on the given projective invariant settings,
as indicated by the red arrows. Since the model detection correctly performs with the provided
collinearity and p2-invariant range, no manual adjustment of the values is desired and the training
image can be discarded from the set.

The graphical user interface of the Controller module for analyzing the input data during
calibration and tracking is depicted in Figure 18. In this example, the same situation as in Figure 17
is shown. However, due to filtering and correspondence analysis, the blobs that are reflected
in the water (indicated by the red arrow) are not considered for model fitting and subsequent
tracking, demonstrating the robustness of the model identification pipeline. All parameters for
hardware access, feature segmentation and model fitting and tracking are centrally stored in one
XML configuration file, that can be edited and is read during system start-up.
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Figure 18. User interface of Controller to analyze data during calibration and tracking.

4. Experimental Results

Based on the developed hard- and software prototype from Section 3, the system’s
capabilities were experimentally evaluated within three different application scenarios that share the
requirements of wide area tracking in an unconstrained and even harsh indoor environment:

1. User tracking for VR/AR applications
2. Handheld target tracking for tunneling
3. Machine guidance for mining

In each scenario, the robustness of target identification and the accuracy of the relative 3D
position estimation was evaluated using the performance measures as described in Section 4.1. We
tested our system on a Lenovo W520 notebook, featuring an Intel Quadcore i7 2820QM at 2.3 GHz,
8 GB memory and Windows7 (64 bit). The notebook acts as processing core unit that runs the software
prototype. It features two Gigabyte Ethernet host adapters to interface via Category 6 cable with
the cameras.

4.1. Test Cases and Performance Measures

The sources of error for an optical tracking system originate from a combination of optical
aberrations, image processing inaccuracies as well as varying lighting situations. Since these factors
potentially influence both the estimation of the external camera parameters as well as the position
tracking, we separated them into two test cases in each of the three scenarios.

4.1.1. Calibration Performance

Calibration performance was measured by evaluating the target identification robustness and
the subsequent accuracy of the estimated relative 3D positions. Therefore, the detected blob centroids
p ∈ R2 in both cameras images are plotted as a function of 2D measurements over time, as defined in
Equation (6).

f (x, y) = px,y(tk), k = 1, ..., n (6)
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Thereby, false positive and loss of calibration target identification, target occlusions and
the feature distribution across the image are visualized and can be evaluated. The calibration
performance is further examined by evaluating the relative accuracy of the estimated 3D positions.
Their implicit dependency on the determined camera parameters allow for conclusions to be drawn
about the quality of the calibration.

4.1.2. Tracking Performance

The following measures are determined during testing to evaluate the system’s tracking
performance within the three different tracking scenarios.

• Relative Position Accuracy: To obtain a valid ground truth for evaluating the relative position
accuracy of the estimated 3D target position, the geometric distance between the two outermost
target’s IR-LEDs is firstly measured to millimeter precision using the Leica TPS700. Thereby,
ground truth dbar is determined. During tracking, the position of target’s IR-LEDs L1..L4 ∈ R3

are calculated for each frame i and used for obtaining d̂bar,i = ‖L4, L1‖, where ‖ denotes the
Euclidean norm. To avoid distortion of the 3D position reconstruction, no predictive filtering is
applied for testing. The estimated bar length d̂bar is then applied to obtain the arithmetic mean
µ̂bar with standard deviation σ̂bar over all processed frames i = 1...n, its absolute arithmetic mean
deviation |ε̂bar| and root mean square are denoted as follows:

d̂bar(RMS) =

√
1
n
(d̂2

bar1
+ d̂2

bar2
+ ... + d̂2

bari
) (7)

d̂bar(RMS) is subsequently employed to obtain the deviation xRMS(bar), as an accuracy measure
of the distance between the two outermost LEDs, and xRMS(P), as a measure of the relative
accuracy of a single LED. Both measures are obtained as follows:

xRMS(bar) = dbar − d̂bar(RMS) (8)

xRMS(P) =
xRMS(bar)

2
(9)

Thereby, the relative 3D position accuracy of a single target point can be evaluated against a
ground truth throughout the tracking volume.

• Position Stability: Based on the estimated target’s IR-LED L1..L4, the target’s epicenter
C = Cx,y,z ∈ R3 is determined during tracking, as described in Section 2.6. To evaluate static
jitter of the system and thus the stability (inner accuracy) of the 3D point estimation, the standard
deviation σ̂ of Cx, Cy, Cz as well as C over the sequence of consecutive frames is calculated and
used to evaluate the system’s intrinsic tracking performance.

• Tracking Latency: To obtain a measure for time-dependent tracking performance, the systems
latency is measured as the time delay between the change in tracker pose and the time, the
system has estimated and outputs the new tracker pose.

4.2. Tracking for Virtual and Augmented Reality

Wide area user tracking can be applied to a number of application scenarios, such as user
tracking in VR in environments using redirected walking approaches [66], tracking of artists on stages
or personnel in workshops and factories. In Figure 19, an example scenario for user tracking in a
virtual environment is depicted, that is characterized by static and moving light sources and distances
up to 30 m.
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Figure 19. Wide area user tracking in a virtual reality setup.

4.2.1. Test Environment

Since we were lacking access to an indoor environment that features the intended tracking
ranges, we deployed the prototype in an outdoor environment during twilight and night. We added
light sources (neon lights, halogen spots up to 1500 W) to simulate wall illuminations, reflections
and locomotive interfering lights. Thereby, we established a controllable realistic simulation of the
intended tracking scenario. Both calibration and tracking were performed in an environment with
static as well as moving interfering lights. We employed a baseline dbase ≈ 10 m and tracking
distances between the vision system and target dtrack of 7.5–30.0 m.

4.2.2. Model Training

As the developed target’s prototype from Section 3.1.3 is used for calibration and tracking, its
model was obtained in an offline process. First, the real distances d1, d2, d3 between the target’s LEDs
were precisely measured with millimeter precision using a Total Station (Leica TPS700). Afterwards,
the target’s projective invariant properties were calculated by evaluating 110 captured camera images
across the entire tracking volume from 5 to 30 m.

4.2.3. Camera Calibration

Before setup, both cameras were intrinsically calibrated in an offline process using 34 images
that captured the retro-reflective chessboard pattern from different angles and distances. For
extrinsic calibration and subsequent tracking, the stereo camera system was setup with the following
parameters to account for tracking distance and poor lighting situation: real baseline dbase ≈ 10 m,
yaw-rotation βcam1 = 30◦, βcam2 = −30◦, lens focus = ∞, aperture 1.4/ f , shutter speed 1000 µs. Using
the proposed tracking target prototype, we performed the calibration at a distance around 15.0 m
from the cameras. We ran three different calibration tests with ∼1200 frames each to evaluate the
robustness of the calibration procedure. As depicted in Figure 20, our system robustly identifies the
target despite static and locomotive interfering lights, resulting in continuous blob traces of the two
outermost IR-LEDs. As illustrated, the blob trace was interrupted at some points due to complete
occlusion of the target because of obstacles in the environment. Despite the unconstrained test
calibration environment, our system robustly estimated the Essential Matrix E at each run. In average,
E was determined with a duration of ∼110 s. The second factor for evaluating the calibration is
the quality of the reconstructed 3D points. We found the calibration yielding consistent 3D point
estimates for all tracking distances, as presented in detail in the following.
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(a) Right view (b) Left view

Figure 20. Corresponding blob traces used for extrinsic calibration.

4.2.4. 3D Position Accuracy

To evaluate the accuracy of relative 3D position estimation, we performed measurements at six
different distances between camera and target, denoted as dtrack for each calibration procedure.

At each accuracy run, the 3D coordinate of each target’s IR-LED L1..L4 as well as of the target’s
epicenter C = Cx,y,z was estimated based on 300 consecutive frames. Thereby, accuracy and stability
were evaluated for the entire tracking volume. The obtained xRMS(P) values for each calibration run
and each tracking distance dtrack are listed in detail in Table 1. In Figure 21, the arithmetic mean of
xRMS(P) over all three calibration runs with respect to the tracking distance is depicted.

Table 1. Relative accuracy xRMS(P) of three independent calibrations.

dtrack(m) Calibration 1 Calibration 2 Calibration 3

xRMS(P) (mm) xRMS(P) (mm) xRMS(P) (mm)

5 3.39 2.99 1.78
10 4.12 3.91 2.63
15 4.76 4.54 4.58
20 6.08 6.23 7.47
25 6.64 6.97 8.92
30 7.44 7.96 9.22
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Figure 21. Mean of relative accuracy xRMS(P) over all three calibrations.
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4.2.5. 3D Position Stability

To evaluate static jitter of the system and thus the stability (inner accuracy) of the system, we
fixated the target and tracked it over a sequence of 200 consecutive frames. In each frame, Cxyz was
calculated to determine the empirical standard deviation σ̂x, σ̂y and σ̂z of the target’s center of gravity.
Throughout the entire tracking volume and across the three calibration runs, we found sub-millimeter
deviation for 3D position estimation with σ̂x = 0.05 mm, σ̂y = 0.03 mm, σ̂z = 0.11 mm, resulting in
an overall mean standard deviation of σ̂ = 0.06 mm for C.

4.2.6. Tracking Performance

To determine the system’s capability to continuously track a target throughout the tracking
space, we moved it through the volume. The resulting 3D position reconstruction of each target’s
IR-LED is illustrated in Figure 22. Depending on the number of interfering lights, our system
identifies and tracks a target with a latency of ~69 ms within the unconstrained test environment.
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Figure 22. 3D position tracking from 7.5–27 m.

4.3. Hand-held Target Tracking for Tunneling

To further exploit the capabilities of the developed tracking system beyond application scenarios
for VR/AR, it was tested in an underground scenario, using a hand-held target to track the 3D
position of arbitrary static points or the moving target over time. As described in Section 1.2.3,
existing technology lacks the ability of tracking a fast moving target, tracking of multiple targets
as well as tracking without manual sighting. The intended underground tracking scenario, such as a
tunnel or a mine, is illustrated in Figure 23. Two cameras are directed towards the tracking volume
and connected to one processing unit. As soon as the hand-held target comes into sight of the cameras,
tracking of the target’s 3D position automatically starts.

Compared to the previous scenario from Section 4.2, the tracking system does not only need to
be able to cope with static and moving interferences, such as wall illumination and (strong) vehicles
lights, but also with larger distances and harsh environmental conditions, such as dust or dirt. Dust,
as a large number of small particles in the air, can influence the visibility of the target, especially
at long distances, and hence decrease the quality of feature segmentation during calibration and
tracking. To account for these additional challenges, a specialized hand-held target was developed
and all vision components were carefully encased to enable tracking from 30–70 m.
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Figure 23. Tracking situation in an underground environment.

4.3.1. System Encasement

To protect the system’s electronic parts against dampness and dust in the harsh test environment,
special encasement was developed in cooperation with Geodata Ziviltechniker GmbH (Leoben,
Austria). All electronic components for LED control, radio and power supply are robustly encased
in the control box that features feedback LEDs to inform the user about the current tracking state.
Furthermore, each camera was encased separately. The components of the base station, comprising
notebook with power supply, camera trigger and radio were encased as well for protection and to be
transportable and are shown in Figure 24.

(a) Encased camera (b) Camera (c) Cabling

Figure 24. Robust and dampness proof encasement of cameras and base station.

4.3.2. Test Environment

We deployed the prototype in an underground metro station that offers a long-range tracking
volume with static illumination characteristics, similar to a tunnel construction site. Furthermore, we
dynamically applied moving light sources by hand, i.e., halogen light up to an intensity of 1500 W,
to establish a controllable and realistic simulation of the application scenario, as shown in Figure 25.
Again, both calibration and tracking was performed in an environment with static as well as moving
interfering lights. With respect to underground measurement scenarios, we performed calibration
and tracking tests with baselines dbase from 6–12 m and distances between the vision system and
target dtrack from 30–70 m. Therefore, we prepared our test volume by measuring and marking fixed
spatial points on the ground within the tracking volume in distances of dtrack = 30, 40, 50, 60, 70 m,
using a Leica TPS700.
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(a) Cameras facing into test environment. (b) Light situation during calibration

Figure 25. Test environment in a metro underground station.

4.3.3. Model Training

As the target’s prototype from Section 3.1.3 is used for calibration and tracking, its model again
was obtained in an offline process. First, the real distances d1, d2, d3 between the target’s LEDs were
precisely measured with millimeter precision using a Total Station (Leica TPS700) and dbar = 820 mm
was obtained. Afterwards, the target’s properties were calculated by evaluating 205 captured camera
images across the entire tracking volume from 30–70 m. To enhance robustness of the obtained model,
we rotated the model during training as well.

4.3.4. Camera Calibration

Before setup, both cameras were intrinsically calibrated in an offline process using 44 images
captured from different angles and distances. For extrinsic calibration and subsequent tracking, the
stereo camera system was setup with the following parameters to account for tracking distance and
poor lighting situation: real baselines dbase ≈ 6–12 m, lens focus ∞, aperture 1.4/ f , shutter speed
1000 µs.

Upon each physical re-configuration of the camera stereo system, we performed extrinsic
calibrations in various distances dcalib between camera and target—ranging from 30–70 m—with
a total number of ∼1400 frames at each run. Again, our system had to continuously identify the
target despite the interfering lights in the tracking volume. Figure 26 depicts the continuous feature
segmentation and resulting blob traces of the two outermost IR-LEDs for a baseline dbase ≈ 6 m while
performing the calibration between 30–70 m.
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Figure 26. Calibration with dbase ≈ 6 m.

As shown, our system robustly detects the target and can provide continuous blob traces for
both cameras. For our tests at distances of 30, 50, 70 m the coverage of blob traces in the camera
images decreases as distance between cameras and target increases. With decreasing blob coverage,
a decrease in accuracy of the estimated extrinsic parameters could be observed. The calibration tests
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indicate the importance of well distributed blob coverage on the image to obtain an accurate extrinsic
calibration result.

4.3.5. Accuracy and Stability of 3D Position Estimation

To evaluate the accuracy and stability of the relative 3D position estimation, we fixated the
target’s tip to the previously measured spatial markers on the ground. Next, we performed yaw(α),
pitch(β) and roll(γ) rotations around the fixated tip over a sequence of consecutive frames. Applying
these movements, we received data for an extensive and robust evaluation of the entire tracking
pipeline. In Figure 27, the reconstructed 3D positions off all IR-LEDs L1..L4 and the target’s tip (epi
center) C are visualized.

Figure 27. Target movement during accuracy and stability measurements.

We performed six runs in varying distances, dtrack = 30–70 m, with two different baselines,
dbase6 = 6 m (distance approximation = 5.95 m), dbase12 = 12 m (distance approximation = 12.29 m)
and dcalib = 30 m. Each test was running 300 consecutive frames with α, β, γ ranging from 0◦–45◦.
For each run, the 3D coordinates L1..L4 as well as C were estimated to be able to evaluate relative
position accuracy by analyzing µ̂bar, σ̂bar and |ε̂bar|, and the stability (inner accuracy) of the 3D point,
using σ̂(C).

• Relative Position Accuracy: To evaluate the accuracy of the relative 3D position estimation, we
performed measurements at three different distances between camera and target, denoted as
dtrack for each baseline. At each run, the 3D coordinate of each target’s IR-LED L1..L4 as well as
of the target’s epicenter C = Cx,y,z were estimated based on 300 consecutive frames.

εbar with respect to both baselines dbase and all tracking distances dtrack is depicted in Figure 28.
As it can be seen for both baselines, |ε̂bar| increases as dtrack increases. This is due to a more
inaccurate feature segmentation at larger distances since blob size and luminance diminish. This
causes bigger rasterization artifacts than in close range that reduces the accuracy of blob centroid
computation. Furthermore, the distances between the blobs in the camera images decrease,
especially when large rotations of α, β = 45◦ are applied. With dbase12, more accurate results
at larger distances can be achieved compared to dbase6. 3D point reconstruction [67,68] can be
more robustly performed as the baseline dbase increases since the glancing intersection between
both rays decreases. All results of µ̂, σ̂ and xRMS(bar) are listed in detail in Table 2.

31510



Sensors 2015, 15, 31482–31524

Table 2. Deviations and error of dbar.

dtrack (m) dbase ≈ 6 m dbase ≈ 12 m

|ε̂bar| (mm) σ̂bar (mm) |ε̂bar| (mm) σ̂bar (mm)

30 0.95 5.29 0.94 1.54
50 13.58 14.24 9.56 3.46
70 21.98 11.04 18.06 10.09
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Figure 28. |ε̂bar| for all dbase and dtrack.

Up to 30 m with dbase ≈ 6–12 m, the system is able to provide relative 3D accuracy with
sub-millimeter deviation of 0.95 mm for dbase6, and 0.94 mm for dbase12. At 70 m, the system
achieves 3D accuracy with a maximal deviation of 21.98 mm for dbase6, and 18.06 mm for dbase12.
Hence, accuracy decreases as distance increases, and larger baselines results in better accuracy,
especially at large distances. However, our evaluation for dbase6 also reveals 3D position outliers
in the result set for 30 m and 50 m since as a consequence, σ̂bar is larger. This does not indicate an
overall lack of 3D position robustness since σ̂bar is low at 30 m with dbase6 and at all distances with
dbase12. Since no filtering was applied to avoid distortion of the 3D position estimation results,
such outliers and its influence can be minimized application tracking using predictive filtering.

Overall, our proposed system provides a relative 3D measurement accuracy with an absolute
maximal error |ε̂bar| = 21.98 mm (σ̂bar = 11.04 mm) for baselines dbase ≈ 6–12 m throughout
the entire volume. This accuracy has been achieved under constant movement and changes in
rotation of α, β, γ up to 45◦.

• Stability: After evaluating the accuracy of the relative position estimation, we evaluated the
stability of the relative position estimation over 300 consecutive frames. Again, we continuously
rotated the target by α, β, γ = 0◦–45◦. The results are shown in detail in Table 3 with respect to
dbase and dtrack.

Table 3. Standard deviations σ̂ (C) at different tracking distances dtrack.

dtrack (m) dbase ≈ 6 m dbase ≈ 12 m

σ̂x (mm) σ̂y (mm) σ̂z (mm) σ̂x (mm) σ̂y (mm) σ̂z (mm)

30 4.07 3.61 12.80 4.92 4.04 5.57
50 4.62 4,49 24.32 6.09 3.09 11.94
70 4.18 6.98 44.92 7.50 5.29 29.61
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The deviation of C correlates with the results and findings of Section 4.3.5. Above all, σ̂z increases
most as dtrack increases while σ̂x, σ̂y remain rather constant and are ≤ 7.5 mm for the entire
tracking volume. Thus, tracking of the head’s 3D position is very stable for the x/y-axes with
both baselines dbase6, dbase12. Our optical setup as well as the software processing results in
millimeter deviation for Cx,y with both baselines up to 70 m. These results can be improved by
using image sensors with higher resolution. σ̂z varies most at 70 m with dbase6 with a maximal
deviation of 44.92 mm. With larger baselines, the 3D position estimation of Cz gets more stable
(σ̂z is decreasing for dbase ≈ 12 m).

4.3.6. Tracking Performance

Besides the accuracy and stability evaluation, we performed tests to determine the system’s
capability to continuously track the target in the intended tracking space. Therefore, we moved and
rotated the target through the whole volume for dtrack = 30–70 m and inserted static and moving
interfering lights into the tracking volume. Currently the system provides ten 3D position estimates
per second (10 fps). Those rates allow for interactive tracking of static and moving objects. Figure 29
illustrates the target tracking and depicts the 3D position of L1..L4 as well as C, indicated as cross.
As illustrated, the target is robustly and continuously tracked with various rotations trough th entire
tracking volume.
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Figure 29. 3D position tracking of a moving target through the entire volume.

4.4. Machine Tracking for Underground Guidance

Besides the ability to measure static or moving points using a handheld target, there is a huge
demand in underground construction to track machines to enable remote control. Machines such as
roadheaders, jumbos, dredgers contribute to significant cost reductions and the increase of safety and
efficiency of underground works.

For an efficient control of these machines the continuous and precise determination of their 3D
position and orientation in the underground space is mandatory. The productivity of such machines
depends on their efficient control. Therefore, an on-board machine control system is required to be
able to measure, process and provide quickly, accurately and reliably all data that is needed for an
optimal machine operation. One important subsystem of any such control system is the machine
guidance system (navigation system) that is responsible for the determination of the absolute 3D
position and orientation of a given machine and (more importantly) its different tools (e.g., booms,
cutting heads) in the underground space.

4.4.1. Shortcoming of Existing Technology

As described in Section 1.2.3, classical surveying methodology such as laser measurement
systems are widely applied to determine the 3D position of objects with very high accuracy.
Existing automatic systems use conventional tunnel lasers in combination with active laser
targets/laser receivers that are installed on the machine (e.g., for jumbos). Other approaches apply
classical surveying methods such as tachymetry where computer-controlled, robotic totalstations
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automatically and periodically measure to shutter prisms mounted on the machine (e.g., as used
for roadheaders). However, the existing technologies suffer from the following shortcomings:

• They are highly specialized and designed for particular types of machines only; therefore, they
lack the universal application to other machine types.

• They can only measure and thus control one machine at a time and lack the capability of tracking
multiple machines as well as machine parts that simultaneously operate.

• They can only be used for the purpose of machine guidance but not also for other measuring
and surveying tasks such as setting out, profile control or deformation monitoring.

• They lack real-time tracking capability, especially when using totalstations.
• They are expensive, in particular their sensor hardware.

4.4.2. Test Environment

As a first approach to overcome the shortcomings of existing underground machine guidance
systems, the developed tracking system from Section 2 was tested by tracking two line targets that
are rigidly attached to a wheel loader.

The tests were conducted in cooperation with Geodata Ziviltechniker GmbH (Leoben, Austria)
and Sandvik Mining and Construction GmbH (Zeltweg, Austria). For testing, the loader was tracked
open air at twilight and night during standstill and in motion, as well as under the influence of
moving interfering lights as well as artificial smoke. The described test environment is illustrated
in Figure 30, the images are manually brightened by 20% for enhanced visualization. In this
environment, the tracking system has to cope with additional challenges compared to Section 4.3,
such as heavy vibrations of the wheel loader during movement and standstill with engine at rest, as
well as with an increased tracking volume ranging from 20–110 m. With respect to underground
measurement scenarios in tunnels and mines, we performed calibration and tracking tests with
baselines dbase from 3–9 m and distances between the vision system and target dtrack from 20–110 m.

(a) Environment with uncased camera (b) Wheel loader with two line targets

Figure 30. Details of the test environment.

4.4.3. Model Training

As the target’s prototype from Section 3.1.3 is used for calibration and tracking, its model again
was obtained in an offline process, as described in Section 2.5.1. First, the single LEDs of each target
were set to a unique geometric constellation; then the real distances d1, d2, d3 between the target’s
LEDs were measured using a total station (Leica TPS700), resulting in the following distances for
Target 1: d1 = 25.0 cm, d2 = 40.0 cm, d3 = 85.0 cm; and d1 = 25.0 cm, d2 = 55.0 cm, d3 = 70.0 cm for
Target 2. Hence, for both targets, the distance between the two outermost IR-LEDs dbar = 150.0 cm.
Afterwards, the properties for each target were calculated by evaluating 255 captures camera images
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across the entire tracking volume from 20–110 m. This results in the following p2-Invariant ranges,
defined by

[
Jmin
i , Jmax

i

]
:

p2
range(Target1) =

[
2.2270, 2.5200

]
p2

range(Target2) =
[
2.1108, 2.1696

]
As it can be seen, the chosen geometric constellation of both targets results in different,

non-overlapping p2-Invariant ranges. This is important for robust model identification.

4.4.4. Camera Calibration

Before setup, both cameras were intrinsically calibrated in an offline process using 42 images
captured from different angles and distances. The stereo camera system was setup with the following
parameters to account for constrained baselines of a later application environment, the intended
tracking distance as well as poor lighting situation, real baselines dbase ≈ 3–9 m, lens focus ∞, aperture
1.4/ f , shutter speed 1000 µs. At each run, the system was calibrated with ∼1100 images.

4.4.5. Accuracy and Stability of 3D Position Estimation

To evaluate the accuracy and the stability of the relative 3D position estimation, we performed
measurements at different distances dtrack of both targets during standstill of the wheel loader with
engines shut off. At each accuracy run, the 3D coordinate of each target’s IR-LED L1..L4 as well as of
the target’s epicenter C = Cx,y,z was estimated based on 180 consecutive frames at 10 fps. Thereby,
accuracy and stability were evaluated for the entire tracking volume. The obtained xRMS(P) values as
well as the empirical standard deviations of σ (C) of the horizontal target with a baseline dbase ≈ 9 m
are listed in Table 4.

Table 4. Relative point accuracy and standard deviation σ̂C for dbase ≈ 9 m.

dtrack (m) xRMS(P) (mm) σ̂x (mm) σ̂y (mm) σ̂z (mm)

20 7.28 0.19 0.12 0.73
30 17.19 0.18 0.09 0.59
40 29.04 1.57 1.28 5.86
50 42.62 0.94 0.27 3.51
60 49.04 0.56 0.23 3.16
70 49.60 0.65 0.37 4.33
80 60.72 1.05 0.59 4.71
90 78.88 0.90 0.50 5.91

100 89.31 3.70 1.28 23.53

The results of the relative point accuracy show deviations in the low cm-range throughout the
volume, and up to 80 m a very high distance-invariant stability (a good repeatability of measurement
results) in the low mm-range as well as even below 1 mm in the X/Y-plane (vertical cross section).
As to be expected and explicable by theory of 3D point reconstruction [17], relative point accuracy
and stability decreases with the distance of the target to the cameras as the intersection angle for
3D point reconstruction becomes smaller. For measuring distances higher than approx. 100 m the
low cm-level is exceeded in the stability results, leading to unreliable point measurements as well as
increased system jitter. For dbase ≈ 9 m, measurements above 100 m could not be performed due to
immobile objects that were in the line of sight of Camera 1.

As shown in Table 5, similar stability results were found for dbase ≈ 3 m throughout the volume.
Since no objects were in the line of sight, target identification and tracking could be obtained until
120 m distance. However, we observed instabilities in the calibration process leading to unreliable
point measurements for dbase ≈ 3 m and higher point accuracy deviations compared to the previous
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experiments for dbase ≈ 9 m. This was found due to a insufficient blob coverage of only about 50%
in both camera images in the specific test environment. Since we could not repeat the field test, we
further investigated this issue, as described in Section 5.

Table 5. Empirical standard deviation σ̂C for dbase ≈ 3 m.

dtrack (m) σ̂x (mm) σ̂y (mm) σ̂z(mm)

20 0.03 0.03 0.15
30 0.13 0.10 1.74
40 0.14 0.08 2.22
50 0.32 0.17 4.57
60 0.39 0.14 4.08
70 0.72 0.15 5.90
80 2.79 0.41 7.47
90 2.97 0.54 10.72

100 2.71 0.43 18.21
110 6.31 0.85 26.77
120 4.24 0.82 31.60

To summarize our findings of the overall tracking performance, the target prototype has a
maximum measuring range of approx. 120 m under good conditions (clear atmosphere, good
visibility, rectangular viewing direction of the IR-LEDs towards the camera). At greater distances, the
IR-LEDs cannot be reliably segmented by the Model Identification pipeline anymore. Up to 80 m, the
points’ stability is reliable, resulting in robust point measurements and small system jitter. Increasing
the distance between the LEDs associated with a higher radiant intensity of each LED would provide
an improved target visibility and tracking stability at larger distances.

Influence of Vibrations

To evaluate the influence of heavy vibrations, such as the wheel loader engine, to relative point
accuracy and stability, the targets were measured in 20, 40, 60 m distances during standstill with
engine shutoff (Test 1) and at standstill while the machine’s motor was running (Test 2). For each
run at each distance, about 200 frames were evaluated with 10 fps. The comparison of the tracking
results of the horizontal wheel loader target is described in Table 6.

Table 6. Comparison of relative point accuracy xRMS(P) and standard deviation σ̂ (C) without (motor
shut off) and under heavy vibrations (motor running).

dtrack (m)
Test 1 Test 2

x̂RMS(P)(mm) σ̂x (mm) σ̂y (mm) σ̂z (mm) xRMS(P)(mm) σ̂x (mm) σ̂y (mm) σ̂z (mm)

20 7.36 0.10 0.09 0.33 7.37 0.68 0.42 2.30
40 32.63 0.17 0.16 0.68 32.51 0.54 0.39 3.40
60 53.40 0.81 0.41 3.52 53.23 1.07 0.47 4.61

Since no predictive filtering was applied during evaluation, the table shows the unaltered
results of the influence of external vibrations. The tests reveal that the system’s jitter increase from
sub-millimeter to low millimeter deviation when the wheel loader’s engine is running. However,
the increased jitter was not found to be strong enough to have a significant influence on relative point
accuracy. This is due to the fast shutter speed of 1000 µs which should be further decreased to account
for this very fast movements of the target; thereby, standard deviation could be reduced as well.
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4.4.6. Tracking Performance for Machine Guidance

As described in Section 4.4.2, a wheel loader was equipped with the two line targets (Figure 30b)
and tracked during operation to gain practical experience in the performance and capability of the
system prototype for machine guidance applications. Currently the system provides ten 3D position
estimates per second (10 fps). For mining and tunneling applications such as machine guidance, this
update rate is already sufficient.

• Tracking under Normal Visibility: First, we tracked the wheel loader under normal visibility
conditions during driving operation from 20–110 m. The estimated 3D points of the target are
depicted in Figure 31 where only the horizontal target is shown for better visualization. The
wheel loader was tracked over a sequence of 2560 frames; in only two frames of this data set
tracking was not successful. All tracking results are directly plotted, as no filtering to remove
outliers is applied. Thereby, the robustness and accuracy of the entire tracking pipeline could be
objectivity evaluated, resulting in a robust and continuous tracking.

Figure 31. Kinematic tracking of the horizontal target from 20–110 m with dbase ≈ 3 m.

• Tracking with Occlusions and Poor Visibility: Next, disturbing infrared light sources were held
in the line of sight and fog has been produced artificially by a machine to simulate difficult
environmental conditions and other disturbing influences. In the following, three example
images are given to test both environmental interferences. In each example, both targets are
simultaneously tracked and the data output of the tracking pipeline indicates a successful target
tracking of the horizontal target with blue crosses, and green for the vertical target. In case of
occlusions, a successful target model identification is marked by yellow crosses.

To test the system’s robustness to filter interfering lights, both targets were tracked over a
sequence of 499 subsequent frames while the wheel loader was positioned at a distance dtrack =

23 m in front of the cameras with dbase ≈ 9 m. The horizontal target could be tracked in each
frame of the sequence as it was not heavily affected by the interfering lights. The vertical model
was subject to heavy occlusions and interferences. It’s model could be fully identified in more
than 50% of the frames. In 206 frames, occlusions of one or more IR-LEDs occurred. In case of
one occluded LED, the target model could still be identified and its 3D epicenter was estimated
after occlusion recovery was performed. In the accuracy and stability data, we found comparable
results to the measurements obtained during accuracy and stability evaluation in Section 4.4.5
(see Table 4) with xRMS(P) = 8.90 mm and σ̂x/y/z = 0.09/0.11/0.32 mm. This demonstrates the
robustness of model identification and recovery of the tracking pipeline.
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As it can be seen in Figures 32 and 33, the manually inserted disturbing lights only affect the
model identification in case that the interfering lights are directly in front of or very close to
the target’s IR-LEDs. This case is given in Figure 32 where the heavy interference leads to the
occlusion of one LED of the vertical target. However, the tracking pipeline is still able to correctly
identify the target model, as indicated by the yellow crosses in Figure 32b. Thereby, the system
is able to subsequently recover the missing LED in 3D for epicenter estimation. The heavy light
interference that is illustrated in Figure 33 did not lead to occlusions of the target due to the
LED’s properties. Both targets’ models are fully identified and tracked by the tracking pipeline
despite the interference.

(a) View on the scene in visible light spectrum (b) IR scene view with tracking state output

Figure 32. The vertical target is successfully identified (yellow crosses) despite occlusions.

(a) View on the scene in visible light spectrum (b) IR scene view with tracking state output

Figure 33. Both targets’ models are identified and tracked despite heavy interfering light.

(a) View on the scene in visible light spectrum (b) IR scene view with tracking state output

Figure 34. Both targets’ models are fully identified and tracked during fog tests.
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Poor visibility due to fog or dust clearly reduces the measuring range and the tracking update
rate. This is a common disadvantage of all optical tracking systems as well as geodetic total
stations. However, as it is depicted in Figure 34, our system is able to cope even with dense
fog in front of the IR-LEDs since their radiant intensity is strong enough. Tracking loss was
only temporary for a few frames and system readiness was immediately and automatically
reestablished as soon as visibility improves. This is a huge advantage compared to i.e., geodetic
total stations, where tracking loss requires additional sighting of the target.

5. Discussion

We have experimentally evaluated the tracking system’s performance properties in three
different wide area tracking environments, all featuring unconstrained lightening conditions and two
having additionally harsh characteristics. The proposed system provides quick setup since it needs
a minimal hardware setup consisting of two high quality machine vision cameras and a standard
(portable) workstation for data processing. Besides stereo camera setup, pre-conditioning of the
tracking volume is not required since interfering lights during camera calibration and tracking are
filtered out and partly occluded targets can be recovered. Targets are designed to be re-configurable
and are equipped with standard infrared light emitting diodes. We demonstrated the system’s
capabilities to extrinsically calibrate the stereo camera system as well as target tracking despite heavy
interferences (lights, fog). Thus, the tracking system can operate during on-going activities in the
volume, featuring it to be highly unobtrusive. The system offers tracking at interactive frame rates
with centimeter precision of the relative 3D position estimates up to 100 m.

1. We proposed a wide area tracking prototype that can be used for user tracking in VR/AR
applications. Our results demonstrate relative 3D point accuracy xRMS(P) < 9.2 mm with
sub-millimeter static position jitter σ̂ = 0.0675 mm throughout the entire tracking volume,
ranging from 5–30 m. We tested our system with several different target constellations, which
can be detected within both camera views with rotations yaw and pitch from 0◦–45◦ as well
as roll from 0◦–360◦. To our best knowledge, no competing approach provides comparable
accuracy for this range, especially not with the minimal amount of only two cameras. Therefore,
the presented system goes clearly beyond state-of-the-art.

2. We demonstrated the capabilities of optical tracking to be applicable to measurement scenarios
beyond virtual reality environments. By providing robust hardware encasement and a simple
but flexible target design, it can be used in underground scenarios such as tunnels and mines.
It can be simultaneously used for a large variety of independent underground surveying tasks,
such as setting out, profile control, deformation monitoring, personnel tracking for safety and
machine tracking. It provides relative 3D point accuracy with a deviation of ≤ 21.98 mm
throughout the tracking volume of 12 m × 8 m × (30–70) m. Up to 80 m, we demonstrated
relative point accuracy of xRMS(P) < 60.72 mm with a very high distance-invariant stability,
indicated by the (sub)-millimeter static position jitter (σ̂x = 1.05 mm, σ̂y = 0.59 mm,
σ̂z = 4.71 mm). Compared to state-of-the-art underground measurement systems, our approach
has the capabilities of (1) automatically starting to track one or multiple targets as soon as the
target is within the view of the vision system, thus manual sighting can be omitted; (2) tracking
moving as well as partly occluded targets; (3) provides a flexible target design that allows
general usage of various tracking and measuring tasks and (4) addresses the need for highly
automated positioning systems [33,69].

5.1. Position Estimation

Compared to indoor tracking technologies, such as RFID that support multiple targets in a large
volume, our proposed system supersedes pre-conditioning of the tracking volume to provide cost-
and time-efficiency. Comparing the presented system to state-of-the-art infrared optical tracking
systems in terms of range coverage and accuracy, it significantly extends the available tracking
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range up to 100 m while requiring only two cameras and providing a relative 3D point accuracy
with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m, as shown in
Tables 1, 2 and 4. To our best knowledge, none of the existing systems, as described in Section 1.2.2
gives accuracy specifications for distances greater than 10 m. Due to the implicit line characteristic
of the target design, orientation can only be provided up to two DOFs. However, for user head
tracking, this can be compensated by combining several line targets into one composite target.
Tracking accuracy in terms of orientation has not been part of this work and will be evaluated in
the future. For underground surveying tasks, the achieved relative 3D point accuracy is adequate
for machine guidance but was found not accurate enough for tasks such as setting out. However,
the following aspects were identified to increase the accuracy. Extending the baseline results in
better depth accuracy, while using an image sensor with higher resolution minimizes segmentation
inaccuracies that leads as well to enhanced precision. The main aspect of optimization was found in
the extrinsic calibration approach.

In addition, the following aspects have been identified during evaluation to further optimize the
system. (1) The software prototype of the proposed tracking pipeline offers interactive frame rates.
However, the MATLAB image processing components [70] should be replaced by C/C++ modules
and parallelization should be exploited to decrease tracking latency. This reduces this shortcoming to
a pure software development task; (2) As every optical technology, the proposed system requires good
visibility. In presence of strong fog and dust, the achievable measuring range is reduced, however,
this effect can be partly mitigated by using LEDs with higher radiant intensity as well as LED arrays.

5.2. Calibration

The evaluation of our proposed calibration method indicates promising results. Despite
interfering lights, the target’s LEDs are robustly segmented to ensure sufficient and reliable camera
parameter estimation. However, tests revealed some limitations of the current approach. The manual
movement of the target through the volume keeps the tracking system independent from additional
(fixed-installed) visual features. However, not all areas of the camera image can be covered and most
blobs are found in the camera images’ center which results in an unbalanced blob distribution, as
depicted in Figures 20 and 26. Especially in the vertical direction, distribution is limited by human
size and the length of the calibration target as well as by the natural boundaries of the physical
environment, such as the ceiling and the ground. The distribution can be improved by using a
longer calibration apparatus but as stated only to a certain extend. Therefore, a future aspect of the
research is to use additional visual features that are extracted from the environment and fuse them
with the blob features to increase the feature distribution along the edges and in the corners of the
images. In a well illuminated environment, i.e., for VR/AR tracking, natural features can be extracted
from the environment. In an underground environment, where illumination is poor and geometric
structures are mostly found around the front face, natural feature extraction would not significantly
enhance the feature distribution in the camera images. Here, the installation of additional single
IR-LED markers would serve as an adequate solution. They could be equally distributed within
the tracking volume and autonomously detected and subsequently extracted by exploiting the radio
connection to remotely control the LEDs state. Thereby, the system’s unique features to function in an
unconstrained environment while requiring a small amount of hardware and little user interaction
would be retained. The author has conducted research and initial tests with the proposed solution,
the work has not been published until the submission of this work.
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6. Conclusions

In this paper, a robust wide area optical tracking approach was presented that estimates
the 3D position of model-based targets across three different use cases. The approach extends
state-of-the-art optical tracking systems by proposing a robust extrinsic stereo camera calibration,
by presenting a highly re-configurable target design, and by providing a software-based processing
pipeline that enables the system to cope with large tracking distances, static and moving interfering
lights, partly occluded targets as well as disturbances such as fog and dust during calibration and
tracking. We employ projective invariant property matching to robustly identify the model-based
optical apparatus (target) that is used for extrinsic calibration and tracking. For estimating the
external camera parameters, the apparatus is used to artificially generate 0D image features that are
crucial in poorly illuminated environments with little geometric structure. Furthermore, the target’s
properties support reliable correspondence matching without requiring the epipolar geometry for
correspondence analysis. During tracking, the approach allows model fitting already in the 2D
image domain that results in a drastically reduced set of correspondence candidates. This in turn
considerably decreases the combinatorial complexity of the multiple-view correlation problem.

Summarizing, the demonstrated system’s properties allows for robust and cost efficient wide
area position tracking that is required by a number of indoor application areas that require spatial
context awareness, such as navigation, automated surveying, VR/AR, entertainment as well as
remote object control. By overcoming limitations of existing optical systems, it can foster the
further emerging of the aforementioned applications areas within wide indoor environments that
are currently impeded by the limitations of state-of-the-art systems.

Future Directions

The evaluation of the entire system across the three use cases revealed the following open topics
to be addressed in future research.

• To enhance the estimation of external camera parameters in terms of robustness and accuracy,
feature distribution in the camera image should be improved. We found an unbalanced blob
coverage of the artificially generated point features especially in the vertical dimension that is
caused by limited human size and the length of the calibration target as well as by the natural
boundaries of the physical environment, such as the ceiling and the ground. Therefore, we will
investigate concepts to extract natural features from distinct environmental structures and fuse
them with the blob features to increase the distribution along the edges and in the corner of
the images. This approach requires a well illuminated environment with a sufficient amount of
prominent geometrical structure that might be given in a standard indoor environment. In an
underground scenario, where illumination is poor and geometric structures are mostly found
around the front face, natural feature extraction would not significantly enhance the feature
distribution in the camera images. Here, additional single IR-LED markers that are installed
throughout the volume would be an adequate solution to improve the feature distribution. These
single blob features could be autonomously detected and extracted using the proposed hardware
interference filtering approaches from Section 2. With these methods, we hope to achieve a
more accurate calibration for stereo rigs with large baseline in both illuminated as well as poorly
illuminated and non-cluttered environments.

• To extend the field of view and thereby, the horizontal and vertical tracking coverage, the relative
point accuracy should be evaluated with different hardware setups using higher resolution
cameras and lenses with smaller focal length. Additionally, we will examine infrared LEDs
with less radiant intensity to reduce the tracking target length. Both aspects can be beneficial
especially for tracking at smaller distances up to 30 m.

• To obtain absolute 3D coordinates for surveying measurement tasks, linking the camera’s
coordinate system to the geo-reference coordinate system is required. The geo-reference
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coordinate system is obtained by geodesic measurements using a total station/theodolite. To
determine the transformation matrix between the two coordinate systems, we plan to equip the
tracking targets as well as additional stationary single point targets with geodesic prisms that
are measured with a theodolite to obtain highly accurate geo-referenced 3D measurements.
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