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1 Introduction

This paper is devoted to the e�cient and accurate a posteriori error estimation
for numerical approximations to boundary value problems (BVPs) for second
order ordinary di�erential equations (ODEs). We consider the class of BVPs

Lu(t) = f(t, u(t), u′(t)) =: F (u)(t), a < t < b, Lu = u′′, (1.1a)

with general linear boundary conditions

Ba ·
 u(a)
u′(a)

+Bb ·
 u(b)
u′(b)

 =

 s0
s1

 , Ba, Bb ∈ R2×2. (1.1b)

We assume that the problem is well-posed, with Lipschitz continuous right-
hand side and a su�ciently smooth solution u(t).

Problem (1.1) can be cast into the standard form of a system of �rst-
order ODEs, and techniques developed for the �rst-order case may be applied
(cf. e.g. [5]). The alternative is direct discretization which we are consider-
ing here, since we are explicitly exploiting it in the design and analysis of a
method for estimating the global error. As we shall see, this estimate is of a
particularly high accuracy on arbitrary meshes. The present paper is of a the-
oretical nature; more practical questions concerning adaptive mesh selection
and comparison which other established adaptive strategies are not addressed.
However, in [9] it has been demonstrated that direct treatment of the second-
order problem promises computational advantages particularly with respect to
adaptive mesh selection, and the conditioning may also be favorable in some
situations, see [13].

A preliminary version of the respective analysis has been given in the
Ph.D. thesis by the third author [18]. In particular, we consider asymptot-
ically correct global error estimators, designed for the purpose of practical
mesh adaptation, for given piecewise polynomial collocation solutions. This
continues the work from [5,6,15], where related techniques for �rst order ODE
systems were analyzed. Our particular focus on collocation approximations is
motivated by their satisfactory and robust performance for large classes of
ODE problems, see for instance [1�3,14].

A collocation solution is a piecewise polynomial function the defect of which
(i.e., its pointwise residual with respect to the given ODE) is well-de�ned and
vanishes at the collocation nodes. The overall behavior of the defect is a qual-
ity measure which may be used for mesh adaptation, but it yields no direct
indication of the behavior of the global error. In [20] it was proposed, in a
general setting, to combine defect computation with a backsolving procedure
based on an auxiliary, simple �nite-di�erence scheme (SDS) in order to esti-
mate the global error. The heuristic motivation for this approach is based on
the well-known principle of defect correction [20]. But already for �rst order
ODEs it turns out that the precise de�nition of the defect and its interplay
with the auxiliary scheme is essential for the successful performance of defect
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correction algorithms, see for instance [3,7,8,11,15] and references therein,
and [4,5], in particular.

The concept of exact di�erence schemes (EDS) for ODEs is very useful
in this context. An EDS is a system of di�erence equations involving integral
terms obtained by locally integrating the given ODE over a grid, which is
exactly satis�ed by the solution of the ODE. This serves as the conceptual
basis for the design of high order schemes. Detailed material on EDS and their
direct or iterative computational realization can for example be found in [8,
10,12,16,19]. Here, in contrast, we are using an appropriately designed EDS
for defect computation only, i.e., the defect of a given numerical solution will
be de�ned as its residual with respect to the EDS. In practice this is realized
via su�ciently accurate quadrature.

1.1 Overview

The analysis of a defect-based global error estimate in the context of �rst-
order nonlinear regular problems was given in [5]. It could be shown that for
a collocation method with an O(h) mesh and stage order O(hm), the error of
the estimate (the di�erence between the global error and its estimate) is of
order O(hm+1).

In the case of second order ODEs, the analysis of the error estimator is
signi�cantly more involved. Therefore, for the details of this analysis, we re-
strict ourselves to a standard class of scalar second order semilinear ODEs
with Dirichlet boundary conditions, see Section 3. The focus of our analysis
is on the robustness with respect to nonequidistant grids and on the partic-
ular high asymptotic quality of the estimator. Indeed, it turns out that the
error of the error estimator for a collocation method of order m is at least
of order m + 2 due to a supraconvergence e�ect1 and may be even higher in
special situations. The scope of applicability of our approach is much wider
than the presentation in this paper, however, awaiting closer investigation of
more general boundary value problems; see the discussion in Section 7.3.

Remark 1.1 In our analysis we are assuming that (1.1) is well-posed and that
the methods considered (a collocation method and a simple auxiliary �nite-
di�erence scheme) are stable. We do not explicitly recapitulate standard sta-
bility arguments for these schemes which are available in the literature. The
stability and convergence arguments as given in [2], for instance, are natural
in the sense that the stability of the discrete schemes is directly related to the
conditioning of the given BVP; see [2, Section 5].

However, in order to obtain sharp estimates for the deviation of the advo-
cated global error estimate, we will make use of re�ned �nite-di�erence sta-
bility estimates based on the structure of Green's function of the (linearized)
BVP, see Section 3.3.

1 See Section 3.3 for an explanation of the notion of supraconvergence.
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2 Error estimation based on EDS defect: general setting

2.1 Design of an a posteriori error estimate

In an abstract, informal setting, the defect-based error estimation procedure
can be described as follows:2

� Let
Lu = F (u) (2.1a)

represent the given ODE problem, with exact solution u. Here, L is to
be identi�ed with the leading, explicit linear part of the given di�erential
operator.

� An exact di�erence scheme (EDS) is a discrete version of (2.1a) in the form
of a set of �nite-di�erence equations

L∆u = I(F (u)), (2.1b)

which is exactly satis�ed by the solution u of (2.1a). Here, L∆ is a dis-
cretization of L over a given grid ∆, and I(·) is a certain linear functional
typically de�ned via weighted local integral means of F (u). For computa-
tional realization, I(·) is replaced by a higher-order quadrature approxi-
mation Q(·).

� Furthermore, let û be de�ned as the solution of an auxiliary (discrete)
problem

L∆û = F̂ (û) (2.2)

which will be chosen as a simple, stable, low-order �nite-di�erence approx-
imation (simple di�erence scheme, SDS) to (2.1a) over a grid ∆. Note that
L∆ in (2.1b) and (2.2) are assumed to be identical.

Now, for a given approximation ũ ≈ u (in our case computed by a high-order
collocation method), we consider its (discrete) defect

d := L∆ũ−Q(F (ũ)) ≈ L∆ũ− I(F (ũ)), (2.3a)

such that ũ is an exact solution of the `neighboring problem'

L∆ũ = Q(F (ũ)) + d. (2.3b)

We approximate (2.3b) by its SDS analog,

L∆̂̃u = F̂ (̂̃u) + d. (2.4)

For su�ciently small d, we expect

̂̃u− ũ ≈ û− u, (2.5a)

2 In this introductory section, we refrain from denoting continuous and discrete objects
in di�erent styles.
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i.e., the known error of the SDS approximation ̂̃u of the neighboring prob-
lem (2.3b) serves as an estimate for the unknown error of the SDS approxi-
mation û to the original problem (2.1) over the grid ∆. Equivalently,

ε := ̂̃u− û ≈ ũ− u =: e, (2.5b)

i.e., the left-hand side ε of (2.5b), computed at low cost compared to the
typical e�ort for computing ũ, provides an estimate for the error e = ũ− u.

Remark 2.1 In the concrete setting which we consider in the sequel, two dif-
ferent grids are involved (see Sections 3 and 4): a coarse grid ∆N which corre-
sponds to N collocation intervals, and a �ne grid ∆ comprising ∆N together
with all interior collocation nodes. The auxiliary scheme (2.2) operates on the
�ne grid ∆.

2.2 How to analyze the deviation of the error estimate

Let

θ := e− ε = (ũ− u)− (̂̃u− û) (2.6)

denote the deviation of the error estimate. For the analysis of the asymptotic
behavior of θ we will proceed as follows. From (2.1b) and (2.3b),

L∆e = Q(F (ũ)) + d− I(F (u))

= Q(F (ũ)− F (u)) + (Q− I)(F (u)) + d. (2.7)

On the other hand, from (2.2) and (2.4),

L∆ε = L∆(̂̃u− û) = F̂ (̂̃u)− F̂ (û) + d. (2.8)

Subtracting (2.8) from (2.7) the defect cancels out, giving

L∆θ = (F̂ (û)− F̂ (̂̃u)) +Q(F (ũ)− F (u)) + (Q− I)(F (u))

= (F̂ (ũ)− F̂ (u))− (F̂ (̂̃u)− F̂ (û)) (2.9)

+Q(F (ũ)− F (u))− (F̂ (ũ)− F̂ (u)) + (Q− I)(F (u)).

Relation (2.9) is sort of a nonlinear di�erence equation of SDS type for θ. In
order to show that ε is asymptotically correct, i.e., that θ is of higher order
than e itself, one uses quasilinearization combined with stability arguments
and, in addition, estimates the asymptotic behavior of both contributions to
the inhomogeneity in (2.9),

(i) the di�erence (QF − F̂ )(ũ)− (QF − F̂ )(u),
(ii) the quadrature error (Q− I)(F (u)) = (Q− I)(Lu).
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Assuming su�cient smoothness of the problem data and u, (ii) indicates the
required order for the quadrature formula Q∆(·). On the other hand, (i) is
typically determined by the asymptotic behavior of the error e and some of
its lower derivatives. This has to be analyzed in detail with the goal to ensure
that (i) is of higher order than the error e itself.

These relations become particularly simple for linear problems,
F (u) = Hu+ q, where H denotes the linear part of the a�ne operator F .
In this case, ε can be directly obtained by solving the SDS

L∆ε = Ĥε+ d. (2.10)

Using an analogous notation for F̂∆ we obtain from (2.9):

L∆θ = Ĥθ + (Q(He)− Ĥe) + (Q− I)(F (u)). (2.11)

The analysis in Section 6 will be based on (2.11) and (2.9), respectively.

Remark 2.2 Recapitulating these considerations, with the `classical', pointwise
defect L ũ − F (ũ) instead of the modi�ed EDS-defect (2.3a), one observes
that an additional term would arise which in�uences the quality of ε, namely
(L∆−L)(e). Typically, this term depends on a higher derivative of the error e,
and it will not show the desired asymptotic behavior in typical applications.
We also note that for a collocation solution ũ the pointwise defect evaluated
at the collocation nodes vanishes and thus provides no information.

Another feature of the EDS formulation is that it is robust with respect
to nonequidistant grids, e.g., for the case of Gaussian collocation points. See
also the discussion in [5,7] for the case of �rst order ODE systems. In this case
the quadrature realization of EDS is closely related to a higher-order implicit
Runge-Kutta scheme. This way of estimating the global error for �rst-order
problems has also been analyzed for the case of singular BVPs, see [6,15], and
it is implemented in the Matlab

3 package sbvp, an adaptive solver for �rst
order boundary value problems, see [3].

3 Second order boundary value problems, SDS and EDS

3.1 Problem class

Considering the problem class (1.1), a complete analysis will be given for the
case of Dirichlet boundary conditions

u(a) = ua, u(b) = ub. (3.1)

3
Matlab is a trademark of The MathWorks, Inc.

sbvp is available at www.mathworks.de/matlabcentral/fileexchange/1464-sbvp-1-0-package.
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We will �rst consider well-posed linear Dirichlet problems

u′′(t) = c1(t)u′(t) + c0(t)u(t) + q(t) =: (Hu)(t) + q(t), (3.2a)

u(a) = ua, u(b) = ub, (3.2b)

with bounded, smooth data functions. It will then be shown how this analysis
extends to nonlinear problems (1.1a). The treatment of more general boundary
conditions (1.1b) will be brie�y discussed from the algorithmic point of view
in Section 7.

For v ∈ C[a, b], as usual we denote

‖v‖∞ := max
a≤t≤b

|v(t)|.

In the following subsections we introduce some further notation and brie�y
recall relevant facts about �nite-di�erence approximations to be used later on.

3.2 Simple �nite-di�erence scheme (SDS)

Consider a grid

∆ :=
(
a = t0 < t1 < · · · < tn−1 < tn = b

)
⊆ [a, b]. (3.3)

For an interior grid point t`, we denote

δ`− 1
2

:= t` − t`−1, δ`+ 1
2

:= t`+1 − t`, δ` := 1
2 (δ`− 1

2
+ δ`+ 1

2
). (3.4a)

Then,
δ`− 1

2
= α` δ`, δ`+ 1

2
= β` δ`, with α` + β` = 2. (3.4b)

Furthermore we denote

t`± 1
2

= t` ± 1
2 δ`± 1

2
, ` = 1 . . . n− 1. (3.4c)

We assume that ∆ is quasiuniform, i.e.,

h := max
1≤`≤n−1

δ` ≤ K · min
1≤`≤n−1

δ` (3.5)

with a moderate-sized constant K, see [2, Assunption 5.92]. On ∆, we de�ne
corresponding grid functions

v∆ =
(
v0, . . . , vn

)
.

The max-norm on the space of grid functions is denoted by

‖v∆‖∆ := max
0≤`≤n

|v`|.

For a continuous function v ∈ C[a, b], we denote by R∆ its pointwise projection
onto the space of grid functions,

R∆(v) :=
(
v(t0), . . . , v(tn)

)
.
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We also denote v(t`) simply by v`, and f(t`, · · · ) by f`(· · · ).
The second di�erence quotient

(L∆v)` :=

v`+1 − v`
δ`+ 1

2

− v` − v`−1
δ`− 1

2

δ`
=
β` v`−1 − 2 v` + α` v`+1

α`β` δ`
2 (3.6a)

is an approximation to (Lv)(t`). Furthermore, let

(∂∆v)` :=
v`+1 − v`−1

2 δ`
(3.6b)

denote the centered di�erence approximation to v′(t`). Both (3.6a) and (3.6b)
are �rst-order accurate, in the equidistant case they are second-order accurate.

The standard compact, centered �nite-di�erence approximation (SDS)
to (1.1a) reads

(L∆û∆)` = f`(û`, (∂∆û∆)`) =: F̂∆(û∆)`, ` = 1 . . . n− 1. (3.7)

Solution of (3.7) subject to boundary conditions (3.2b) provides a grid function

û∆ =
(
û0, û1, . . . , ûn−1, ûn

)
(3.8)

with û0 = ua, ûn = ub, and û` ≈ u(t`).

For the linear BVP (3.2), the SDS (3.7) takes the form

(L∆û∆)` = (Ĥ∆û∆)` + q`, ` = 1 . . . n− 1, (3.9a)

where Ĥ∆v∆ denotes the centered discretization of H(v)(t`), i.e.,

(Ĥ∆v∆)` = c1(t`)(∂∆v∆)` + c0(t`)v`. (3.9b)

We assume that the SDS discretization is stable with respect to ‖ · ‖∆ for
su�ciently small h. Typically, stability depends on ∆ in an uncritical way
under the assumption of a quasiuniform grid ∆.4

3.3 Discrete Green's function and supraconvergence of the SDS

Since (3.6a) and (3.6b) are only �rst-order accurate in the nonequidistant case,
the local truncation error of the SDS (3.7) is only O(h). However, it is well-
known that the global order of the resulting approximation is again O(h2), a
phenomenon called supraconvergence. This has been analyzed in [17], see also
references therein.

Here we do not repeat a proof of supraconvergence in detail, but we list the
essential technical tools. Namely, in Section 6 we will rely on related techniques;

4 This remark applies to several related estimates, as for instance (3.13c), (3.16) below,
and to all error estimates obtained.
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in particular, we will show that the global error estimate to be de�ned in
Section 5 is also `supra-accurate'.

We will make use of the following facts. Consider the simple Dirichlet
problem

u′′(t) = q(t), a < t < b, u(a) = u(b) = 0, (3.10a)

with solution

u(t) =

∫ b

a

G(t, τ) q(τ) dτ, a ≤ t ≤ b, (3.10b)

where G(t, τ) is Green's function

G(t, τ) =


(b− t)(a− τ)

b− a
, a ≤ τ ≤ t ≤ b,

(b− τ)(a− t)
b− a

, a ≤ t ≤ τ ≤ b.
(3.10c)

The proof of the following lemma is straightforward.

Lemma 3.1 Consider an arbitrary interior grid point t` and let g∆;` :=
G(·, t`), i.e., (g∆;`)k = G(tk, t`). Then,

(L∆ g∆;`)k =

{
0, k 6= `,
1
δ`
, k = `.

Discretization of (3.10a) according to (3.6a), i.e.,

(L∆û∆)` = q`, ` = 1 . . . n− 1, (3.11)

leads to a system of n− 1 di�erence equations for û∆, with û0 = ûn = 0. As a
consequence of Lemma 3.1, the inverse of this discrete system, i.e., its discrete
Green's function, is the exact pointwise restriction of G(t, τ) onto ∆×∆. The
following discrete solution representation is a direct consequence of this fact.

Lemma 3.2 The unique solution û∆ of (3.11) is given by

û` = L−1∆ R∆(q) =

n−1∑
k=1

G(t`, tk) δk qk, ` = 1 . . . n− 1. (3.12)

In the remainder of this section we discuss the solution structure of an SDS
with a special inhomogeneity, which provides the technical basis for supracon-
vergence proofs and for the analysis to be given in Section 6. In particular, we
consider

(L∆v̌∆)` = 1
δ`

(
z`+ 1

2
− z`− 1

2

)
+ r`, ` = 1 . . . n− 1, (3.13a)

with given zk and r`. Using Lemma 3.2 and applying partial summation, the
solution v̌∆ of (3.13a) with v̌0 = v̌n = 0, can be written as

v̌` =

n−1∑
k=0

(
G(t`, tk)−G(t`, tk+1)

)
zk+ 1

2
+

n−1∑
k=0

G(t`, tk) δk rk. (3.13b)
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Since G(t, τ) is bounded and smooth away from the diagonal t = τ , this
shows that an estimate

‖v̌∆‖∆ ≤ C
(

max
0≤k≤n−1

|zk+ 1
2
|+ max

1≤k≤n−1
|rk|
)

(3.13c)

is valid. Furthermore, from (3.13b) we obtain

(∂∆v̌∆)` =

n−1∑
k=0

(∂
[2]
∆ G)`,k zk+ 1

2
+ (∂

[1]
∆ G)`,k rk, (3.14)

with

(∂
[1]
∆ G)`,k = 1

2 δ`

(
G(t`+1, tk)−G(t`−1, tk

)
=

{
O(h), k 6= `,
O(1), k = `,

(3.15a)

and

(∂
[2]
∆ G)`,k = 1

2 δ`

(
G(t`+1, tk)−G(t`−1, tk)

)
(3.15b)

− 1
2 δ`

(
G(t`+1, tk+1)−G(t`−1, tk+1)

)
=

{
O(h), k 6∈ {`− 1, `},
O(1), k ∈ {`− 1, `}.

This shows that there exists a constant C such that we also have

‖∂∆v̌∆‖∆ ≤ C
(

max
0≤k≤n−1

|zk+ 1
2
|+ max

1≤k≤n−1
|rk|
)
. (3.16)

For a proof of supraconvergence of the SDS one makes use of (3.13), repre-
senting the local truncation error in the form of the right-hand side in (3.13a),
i.e., as a di�erence quotient which is O(h) plus an O(h2) term. This is com-
bined with a stability argument for the full scheme.

In a way analogous to (3.13), the solution v̌∆ of an SDS of the form

(L∆v̌∆)` = (∂∆z∆)` + r` = 1
2 δ`

(
z`+1 − z`−1

)
+ r`, ` = 1 . . . n− 1, (3.17a)

with v̌0 = v̌n = 0, can be written as

v̌` =

n−1∑
k=0

(
G(t`, tk−1)−G(t`, tk+1)

)
zk +

n−1∑
k=0

G(t`, tk) δk rk, (3.17b)

resulting in estimates analogous to (3.13c) and (3.16).

As a result of these considerations, a perturbation argument combined
with stability of the full SDS, involving some minor technicalities, implies
supraconvergence of û∆ and (∂∆û∆)∆, that is,

‖û∆ −R∆(u)‖∆ = O(h2) and ‖∂∆û∆ −R∆(u′)‖∆ = O(h2). (3.18)
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3.4 Exact �nite-di�erence scheme (EDS)

De�nition 3.1 By

Ĉ2[t`−1, t`, t`+1] := {v ∈ C1[t`−1, t`+1] : v′′ continuous on [t`−1, t`) ∪ (t`, t`+1],

lim
t ↑ t`

v′′(t) ∈ R, lim
t ↓ t`

v′′(t) ∈ R exist}

we denote the class of functions from C1[t`−1, t`+1] for which v′′ is allowed to
have a jump discontinuity at t = t`.

Lemma 3.3 For v ∈ Ĉ2[t`−1, t`, t`+1] and L∆v de�ned in (3.6a), we have

(L∆v)` =

∫ β`

−α`
K`(ξ) v

′′(t` + δ` ξ) dξ, (3.19a)

with kernel

K`(ξ) =

{
1 + ξ

α`
, ξ ∈ [−α`, 0],

1− ξ
β`
, ξ ∈ [0, β`].

(3.19b)

Proof A routine argument based on integration by parts [12,19]. ut

Lemma 3.3 represents a special instance of an identity sometimes called
Marchuk or Chawla identity, relating a general second order di�erential oper-
ator to its �nite-di�erence analog via local weighted integral means.

For functions w = w(t) we adopt the denotation

I`(w) :=

∫ β`

−α`
K`(ξ)w(t` + δ` ξ) dξ (3.20)

with K` from (3.19b). By locally integrating the ODE (1.1a), we see that, at
all interior grid points t`, its solution u(t) exactly satis�es the EDS equations

(L∆u)` = I`(f(·, u(·), u′(·)). (3.21)

Later on, (3.21) together with appropriate quadrature formulasQ` ≈ I` will be
used for de�ning a higher-order EDS-type defect of a given numerical solution,
see Section 5.

4 Review of collocation methods

We recapitulate classical results for piecewise polynomial collocation methods
for second order BVPs (1.1), see [2, Section 5]. For the numerical approxima-
tion we de�ne a mesh

∆N :=
(
a = τ0 < τ1 < · · · < τN = b

)
⊆ [a, b],



12 W. Auzinger, O. Koch, A. Saboor Bagherzadeh

and set li := τi − τi−1, i = 1 . . . N . Here li = O(h), with h de�ned in (3.5).

For collocation, m points are inserted in each subinterval [τi, τi+1]. This
yields the (�ne) grid5

∆ :=
{
ti,j = τi + ρj li, i = 0 . . . N − 1, j = 0 . . .m+ 1

}
, (4.1a)

with given nodes

0 =: ρ0 < ρ1 < · · · < ρm < ρm+1 := 1. (4.1b)

This grid ∆ contains n+ 1 = (m+ 1)N + 1 points and is to be identi�ed with
∆ from (3.3), with �attened indexing

t` ≡ ti,j , ` = (m+ 1)i+ j, i = 0 . . . N − 1, j = 0 . . .m. (4.2)

De�nition 4.1 Consider a quasiuniform grid ∆ as speci�ed in (4.1a). A con-
tinuously di�erentiable collocation solution ũ(t) := ũi(t), t ∈ [τi, τi+1], i =
0 . . . N − 1, of (1.1) is a piecewise polynomial function of degree m+ 1, corre-
sponding to m collocation points in each subinterval, which satis�es (1.1a) at
the m collocation points in each of the N subintervals, i.e.

ũ′′(ti,j) = f(ti,j , ũ(ti,j), ũ
′(ti,j)), i = 0 . . . N − 1, j = 1 . . .m,

and, in addition, the boundary conditions (1.1b). Here, ũ(t) and ũ′(t) are
required to be continuous at the endpoints of the subintervals [τi, τi+1], but
ũ′′(t) will have jump discontinuities at the τi. Thus, in the neighborhood of

τi, ũ(t) is of the type Ĉ2[τi−1, τi, τi+1] in the sense of De�nition 3.1.

Let
e(t) := ũ(t)− u(t)

denote the collocation error. Under standard assumptions on the given BVP, a
collocation solution is stable and convergent (see [2, Chapter 5]). The following
theorem states a convergence result for the problem (1.1a). The proof of the
following theorem follows from general convergence results, see [2, Section 5.6].

Theorem 4.1 Assume that the given BVP is well-posed, i.e., it has a locally

unique and su�ciently smooth solution u(t). For a collocation solution ũ(t)
according to De�nition 4.1, the following uniform estimates hold:

‖e(ν)‖∞ = ‖ũ(ν) − u(ν)‖∞ = O(hm), ν = 0, 1, 2. (4.3a)

The higher derivatives satisfy

‖e(ν)‖∞ = ‖ũ(ν) − u(ν)‖∞ = O(hm+2−ν), ν = 3 . . .m+ 1. (4.3b)

In the special case where m is odd and the nodes ρj are symmetrically dis-

tributed, i.e., ρj = ρm+1−j, the following improved uniform estimates hold:

‖e(ν)‖∞ = ‖ũ(ν) − u(ν)‖∞ = O(hm+1), ν = 0, 1. (4.4)

5 For convenience, we denote τi by ti,0 ≡ ti−1,m+1, i = 1 . . . N − 1.
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5 Construction of the error estimate

We design an a posteriori estimate for the global error e(t) of a given collocation
solution ũ(t). The construction principle has been introduced in Section 2.1
and it is now applied in our concrete setting. We mainly consider the case of
Dirichlet conditions (3.1) where no defect occurs at the boundary. Remarks
on handling more general boundary conditions are given in Section 7.

Let us describe the procedure and its algorithmic components in detail:

� The given approximation is the collocation solution ũ(t), for which the
error e(t) = ũ(t)− u(t) is to be estimated.

� The (discrete) defect d∆ of ũ is computed by inserting ũ(t) into the EDS
reformulation of the original problem (see (2.1b)), which has been intro-
duced in Section 3.4. In the computational realization, the integral oper-
ators I` = Ii,j are replaced by a set of higher-order quadrature formulas
Q` = Qi,j , see (2.3a) and Section 5.1 below.

� The auxiliary scheme (2.2) is the SDS (3.7) operating on the �ne grid
∆ given by (4.1a). Its solution is denoted by û∆ = (û0, û1, . . . , ûn−1, ûn),
see (3.8).

� Solving the auxiliary scheme with additional inhomogeneity d∆ (see (2.4))

gives another grid function ̂̃u∆ =
(̂̃u0, ̂̃u1, . . . , ̂̃un−1, ̂̃un).

With these settings, the (discrete) error estimator ε∆ is de�ned according
to (2.5b) as

ε∆ := ̂̃u∆ − û∆ ≈ R∆(e). (5.1)

5.1 Quadrature formulas for defect computation

At each interior grid point t` = ti,j ∈ ∆, the exact EDS defect of ũ reads
(see (3.21))

(L∆ũ)i,j − Ii,j(f(·, ũ(·), ũ′(·)). (5.2)

Here,

Ii,j(w) =

∫ βi,j

−αi,j
Ki,j(ξ)w(ti,j + δi,j ξ) dξ (5.3a)

is the integral operator de�ned in (3.20), with kernel

Ki,j(ξ) =

{
1 + ξ

αi,j
, ξ ∈ [−αi,j , 0],

1− ξ
βi,j

, ξ ∈ [0, βi,j ],
(5.3b)

from (3.19b). Practical approximation of integrals of the form (5.3) by inter-
polatory quadrature can be performed in a standard way. We consider two
di�erent cases:
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� For the case where ti,j ∈ (τi, τi+1) is an interior collocation node, we con-
struct interpolatory quadrature formulas Qi,j ≈ Ii,j in the usual way via

Ii,j(w) ≈ Qi,j(w) :=

∫ βi,j

−αi,j
Ki,j(ξ)πi(ti,j + δi,j ξ) dξ =

m+1∑
k=0

ωj,k w(ti,k),

where πi is the local Lagrange interpolant of degree m + 1 to w at the
nodes ti,0, . . . , ti,m+1.

� For the case where ti,0 = τi ∈ (a, b) is an endpoint between two neighboring
collocation subintervals (i = 1 . . . N−1), we split the integral into two parts,

Ii,j(w) = I−i,0(w) + I+i,0(w) :=

=

∫ 0

−αi,0

(
1 + ξ

αi,0

)
w(τi + δi,0 ξ) dξ +

∫ βi,0

0

(
1− ξ

βi,0

)
w(τi + δi,0 ξ) dξ,

and we separately approximate the two terms using data from the left and
right subintervals, respectively, in the same way as before. This gives

Ii,0(w) ≈ Qi,0(w) = Q−i,0(w) +Q+
i,0(w)

=

m+1∑
k=0

ω−0,k w(ti−1,k) +

m+1∑
k=0

ω+
0,k w(ti,k)

for i = 1 . . . N − 1.

Since the distribution of the collocation nodes is �xed (de�ned via ρj ∈ [0, 1],

see (4.1)), the coe�cients ω
[±]
j,k of these quadrature formulas do not depend

on i and can be computed in a preprocessing phase. In this way, the defect of
ũ(t) is de�ned by the computable object

di,j := (L∆ũ)i,j −Qi,j(f(·, ũ(·), ũ′(·)), (5.4)

at all interior grid points ti,j ∈ ∆.
Standard arguments show

Qi,j(w)− Ii,j(w) = O(hm+2), (5.5a)

for su�ciently smooth w = w(t). In the special case where m is odd and the
nodes ρj are symmetrically distributed, i.e., ρj = ρm+1−j , we have

Qi,j(w)− Ii,j(w) = O(hm+3). (5.5b)

In particular, we shall make use of (5.5) for w = u′′.
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6 Analysis of the error estimate

For simplicity of notation we write e, ε, θ, etc. instead of R∆(e), ε∆, θ∆, etc.,
and we use the �attened index notation (4.2).

For the deviation of θ = e− ε, an estimate of the form ‖θ‖∆ = ‖e− ε‖∆ =
O(hm+1) can be derived in a similar manner as in [5] for the case of �rst-order
systems. Here, the asymptotic behavior of the collocation error described in
Theorem 4.1 is essential. In the sequel we prove that the error estimate is even
supra-accurate, i.e., ‖θ‖∆ = ‖e − ε‖∆ = O(hm+2) is valid. In particular, this
implies that the error estimate is asymptotically correct also in the case where
already e = O(hm+1) holds, see Theorem 4.1.

Remark 6.1 We believe that for the case where e = O(hm+1), i.e., for m
odd and symmetrically distributed ρj , the estimates (4.4) and (5.5b) can be
exploited in order to show that even ‖θ‖∆ = O(hm+3) is valid, which is also
observed in numerical experiments, see Section 7. This would involve further
technicalities, in particular an extension of Lemma 6.1 below, and coping with
the reduced order e′′ = O(hm). This would however exceed the scope of the
present work.

For the sake of clarity we consider the linear case �rst. The proof for the
nonlinear case in Section 6.2 is an extension of the linear version, based on
quasilinearization and supraconvergence arguments.

6.1 The linear case

We �rst derive a representation for the leading term in the inhomogeneity of
the linear di�erence equation (2.11) for θ in the form of a di�erence quotient
plus a higher-order term.

Lemma 6.1 For the linear BVP (3.2), at all grid points t` we have

I`(He)− (Ĥ∆e)` (6.1)

= 1
δ`

(
δ`+ 1

2
z
[1]

`+ 1
2

− δ`− 1
2
z
[1]

`− 1
2

)
+ 1

δ`

(
δ`+ 1

2
z
[0]

`+ 1
2

− δ`− 1
2
z
[0]

`− 1
2

)
+O(hm+2).

Here,

z
[0]

`± 1
2

= δ`± 1
2

∫ 1
2

− 1
2

(
ζ2

2 + 1
8

)
(c0 e)

′(t`± 1
2

+ ζ δ`± 1
2
) dζ = O(hm+1), (6.2a)

z
[1]

`± 1
2

= −c1(t`± 1
2
)

∫ 1
2

− 1
2

ζ e′(t`± 1
2

+ ζ δ`± 1
2
) dζ (6.2b)

− δ`± 1
2
c′1(t`± 1

2
)

∫ 1
2

− 1
2

(
ζ2 − 1

4

)
e′(t`± 1

2
+ ζ δ`± 1

2
) dζ = O(hm+1).
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Proof By de�nition of H and Ĥ∆ (see (3.2),(3.9b)),

I`(He)− (Ĥ∆e)` =
(
I`(c1 e′)− c1(t`)(∂∆e)`

)︸ ︷︷ ︸
D1

+
(
I`(c0 e)− (c0 e)(t`)

)︸ ︷︷ ︸
D0

. (6.3)

Representation and estimation of D0. By de�nition of I` (see (3.20)) and with
α` + β` = 2,

D0 =

∫ β`

−α`
K`(ξ) (c0 e)(t` + ξ δ`) dξ − (c0 e)(t`)

=

∫ 0

−α`

(
1 + ξ

α`

)
(c0 e)(t` + ξ δ`) dξ︸ ︷︷ ︸
I−0

− 1
2 α` (c0 e)(t`)

+

∫ β`

0

(
1− ξ

β`

)
(c0 e)(t` + ξ δ`) dξ︸ ︷︷ ︸
I+0

− 1
2 β` (c0 e)(t`).

In I−0 we substitute 1
2 + ξ

α`
= ζ and integrate by parts to obtain

I−0 = α`

(
3
8 (c0 e)(t`) + 1

8 (c0 e)(t`−1)

− δ`− 1
2

∫ 1
2

− 1
2

(
ζ2

2 + ζ
2

)
(c0 e)

′(t`− 1
2

+ ζ δ`− 1
2
) dζ

)
= α`

(
1
2 (c0 e)(t`−1)− δ`− 1

2

∫ 1
2

− 1
2

(
ζ2

2 + ζ
2 −

3
8

)
(c0 e)

′(t`− 1
2

+ ζ δ`− 1
2
) dζ

)
,

hence

I−0 − 1
2 α` (c0 e)(t`) = −α` δ`− 1

2

∫ 1
2

− 1
2

(
ζ2

2 + ζ
2 + 1

8

)
(c0 e)

′(t`− 1
2

+ ζ δ`− 1
2
) dζ

= −α` z[0]`− 1
2

− α` δ`− 1
2

∫ 1
2

− 1
2

ζ
2 (c0 e)

′(t`− 1
2

+ ζ δ`− 1
2
) dζ,

with z
[0]

`− 1
2

as de�ned in (6.2a). Here, z
[0]

`− 1
2

= O(hm+1) follows from e′ =

O(hm), and after integration by parts,

δ`− 1
2

∫ 1
2

− 1
2

ζ
2 (c0 e)

′(t`− 1
2

+ ζ δ`− 1
2
) dζ = O(hm+2)

follows from e′′ = O(hm) (see (4.3a)).

For I+0 , substituting − 1
2 + ξ

β`
= ζ we obtain in an analogous way

I+0 − 1
2 β` (c0 e)(t`) = β` z

[0]

`+ 1
2

− β` δ`+ 1
2

∫ 1
2

− 1
2

ζ
2 (c0 e)

′(t`+ 1
2

+ ζ δ`+ 1
2
) dζ,
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with analogous estimates. Altogether, this shows

D0 = β` z
[0]

`+ 1
2

− α` z[0]`− 1
2

+O(hm+2) (6.4a)

= 1
δ`

(
δ`+ 1

2
z
[0]

`+ 1
2

− δ`− 1
2
z
[0]

`− 1
2

)
+O(hm+2), z

[0]

`± 1
2

= O(hm+1).

Representation and estimation of D1. By de�nition of I` (see (5.3)) and with
α` + β` = 2,

D1 = I`(c1 e′)− c1(t`)(∂∆e)`

=

∫ β`

−α`
K`(ξ) (c1 e

′)(t` + ξ δ`) dξ − 1
2 c1(t`)

∫ β`

−α`
e′(t` + ξ δ`) dξ

=

∫ β`

−α`

(
K`(ξ) c1(t` + ξ δ`)− 1

2 c1(t`)
)
e′(t` + ξ δ`) dξ

=

∫ 0

−α`

((
1 + ξ

α`

)
c1(t` + ξ δ`)− 1

2 c1(t`)
)
e′(t` + ξ δ`) dξ︸ ︷︷ ︸

I−1

+

∫ β`

0

((
1− ξ

β`

)
c1(t` + ξ δ`)− 1

2 c1(t`)
)
e′(t` + ξ δ`) dξ︸ ︷︷ ︸

I+1

.

For I−1 we substitute 1
2 + ξ

α`
= ζ to obtain

I−1 = α`

∫ 1
2

− 1
2

((
ζ+ 1

2

)
c1(t`− 1

2
+ζ δ`− 1

2
)− 1

2 c1(t`− 1
2
+ 1

2 δ`− 1
2
)
)
e′(t`− 1

2
+ζ δ`− 1

2
) dζ.

By Taylor expansion of c1(t) about t = t`− 1
2
,(

ζ + 1
2

)
c1(t`− 1

2
+ ζ δ`− 1

2
)− 1

2 c1(t`− 1
2

+ 1
2 δ`− 1

2
)

= ζ c1(t`− 1
2
) + δ`− 1

2

(
ζ2 + ζ

2 −
1
4

)
c′1(t`− 1

2
) +O(h2),

and using analogous arguments as for D0 above we obtain

I−1 = α` c1(t`− 1
2
)

∫ 1
2

− 1
2

ζ e′(t`− 1
2

+ ζ δ`− 1
2
) dζ︸ ︷︷ ︸

=O(hm+1)

+ α` δ`− 1
2
c′1(t`− 1

2
)

∫ 1
2

− 1
2

(
ζ2 − 1

4

)
e′(t`− 1

2
+ ζ δ`− 1

2
) dζ︸ ︷︷ ︸

=O(hm)

+ α` δ`− 1
2
c′1(t`− 1

2
)

∫ 1
2

− 1
2

ζ
2 e
′(t`− 1

2
+ ζ δ`− 1

2
) dζ︸ ︷︷ ︸

=O(hm+1)

+O(hm+2),
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i.e.,

I−1 = −α` z[1]`− 1
2

+O(hm+2),

with z
[1]

`− 1
2

de�ned in (6.2b), which is indeed seen to be O(hm+1).

For I+1 , substituting − 1
2 + ξ

β`
= ζ we obtain in an analogous way

I+1 = β` z
[1]

`+ 1
2

+O(hm+2),

with z
[1]

`+ 1
2

= O(hm+1) de�ned in (6.2b). Altogether, this shows

D1 = β` z
[1]

`+ 1
2

− α` z[1]`− 1
2

+O(hm+2) (6.4b)

= 1
δ`

(
δ`+ 1

2
z
[1]

`+ 1
2

− δ`− 1
2
z
[1]

`− 1
2

)
+O(hm+2), z

[1]

`± 1
2

= O(hm+1).

Combining (6.3) with (6.4a) and (6.4b) completes the proof. �

Theorem 6.1 For the linear BVP (3.2), the deviation of the error estimate

satis�es

‖θ‖∆ = ‖e− ε‖∆ = O(hm+2).

Proof According to (2.11), the deviation θ = e− ε = (ũ−u)− (̂̃u− û) satis�es
the SDS-type di�erence equation

(L∆ θ)` = (Ĥ∆ θ)` +
(
Q`(He)− (Ĥ∆e)`

)
+ (Q` − I`)(F (u)) (6.5)

= (Ĥ∆ θ)` +
(
I`(He)− (Ĥ∆e)`

)︸ ︷︷ ︸
J1

+
(
Q` − I`

)
(He)︸ ︷︷ ︸

J2

+O(hm+2),

for ` = 1 . . . n − 1, with homogeneous boundary conditions. Here (Q` −
I`)(F (u)) = (Q`−I`)(Lu) is a higher-order quadrature error, see Section 5.1.

Representation and estimation of J1 and J2. According to Lemma 6.1,

J1 = 1
δ`

(
z`+ 1

2
− z`− 1

2

)
+O(hm+2), (6.6a)

with

z`± 1
2

= δ`± 1
2

(
z
[1]

`± 1
2

+ z
[0]

`± 1
2

)
= O(hm+2), (6.6b)

see (6.2).

The quadrature error J2 depends on the (m + 2)-nd derivative of He =
c1 e
′ + c0 e,

|J2| ≤ C hm+2, C = C
(
(c1 e

′ + c0 e)
(m+2)

)
.

In order to guarantee J2 = O(hm+2) we thus have to show that the higher
derivatives e(ν) = ũ(ν)−u(ν) are bounded independently of h up to ν = m+3.
Since the degree of ũ is m+ 1, we have e(ν) = −u(ν) for ν = m+ 2,m+ 3. For
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ν = 0 . . .m+1, the uniform boundedness of e(ν) immediately follows from (4.3)
(Theorem 4.1). Altogether this shows

J2 = O(hm+2). (6.7)

Estimation of θ. From (6.5)�(6.7),

(L∆ θ)` = (Ĥ∆ θ)` + 1
δ`

(
z`+ 1

2
− z`− 1

2

)
+O(hm+2), z`± 1

2
= O(hm+2), (6.8a)

with homogeneous boundary conditions. Let us �rst consider the simpli�ed
scheme

(L∆ θ̌)` = 1
δ`

(
z`+ 1

2
− z`− 1

2

)
+O(hm+2) (6.8b)

of type (3.13a) with solution according to (3.13b),

θ̌` =

n−1∑
k=0

(
G(t`, tk)−G(t`, tk+1)

)
zk+ 1

2
+

n−1∑
k=0

G(t`, tk) · O(hm+2) = O(hm+2),

(6.9)
see (3.13c). It remains to be shown that ‖θ− θ̌‖∆ = O(hm+2) holds. Subtract-
ing (6.8b) from (6.8a) yields

(L∆(θ − θ̌))` = (Ĥ∆(θ − θ̌))` + (Ĥ∆ θ̌)`,

and, due to stability of the SDS, it remains to show that

(Ĥ∆ θ̌)` = c1(t`)(∂∆θ̌)` + c0(t`)θ̌` = O(hm+2) (6.10)

is valid. Here, c0(t`)θ̌` = O(hm+2), and from (6.9) we obtain

(∂∆ θ̌)` =

n−1∑
k=0

(∂
[2]
∆ G)`,k zk+ 1

2
+ (∂

[1]
∆ G)`,k · O(hm+2),

with zk+ 1
2

= O(hm+2) and (∂
[ν]
∆ G)`,k from (3.15), which implies c1(t`)(∂∆θ̌)` =

O(hm+2). Altogether this shows that (6.10) indeed holds, which completes the
proof. �

6.2 The nonlinear case

Supra-accuracy of the error estimate extends to the nonlinear case. We present
the proof in a concise style, using quasilinearization arguments. The focus is
on how to organize this in a way such that Lemma 6.1 and (supra)convergence
of the SDS can be exploited.

Theorem 6.2 For the nonlinear BVP (1.1a), (3.1), the deviation of the error

estimate satis�es

‖θ‖∆ = ‖e− ε‖∆ = O(hm+2).
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Proof We use vector notation for continuous and discrete functions,

V (t) :=

 v(t)
v′(t)

 , V` :=

 v`
(∂∆v)`

 ,

i.e., capital or boldface capital letters typographically represent the named
object together with its derivative or centered di�erence quotient, respectively.
Furthermore, emplyoing the the mean value theorem we will denote6

H(t, V,W ) :=

∫ 1

0

∇f(t, V + σW ) dσ, Ĥ`(V,W ) := H(t`, V,W ).

Di�erence equation for θ via quasilinearization. According to (2.9), the devi-

ation θ = e− ε = (ũ− u)− (̂̃u− û) satis�es

(L∆ θ)` = (F̂ (ũ)` − F̂ (u)`)− (F̂ (̂̃u)` − F̂ (û)`)

+Q`(F (ũ)− F (u))− (F̂ (ũ)` − F̂ (u)`) + (Q` − I`)(F (u))

= I`(F (ũ)− F (u))− (F̂ (̂̃u)` − F̂ (û)`) (6.11)

+ (Q` − I`)(F (ũ)− F (u)) + (Q` − I`)(Lu)︸ ︷︷ ︸
=O(hm+2)

,

for ` = 1 . . . n− 1, with homogeneous boundary conditions. Here,

(F̂ (ũ)` − F̂ (u)`) = f`(Ũ`)− f`(U`) = Ĥ`(U`,E`) ·E`,

(F̂ (̂̃u)` − F̂ (û)`) = f`(
̂̃
U `)− f`(Û`) = Ĥ`(Û`,E`) · E`,

and

(F (ũ)− F (u))(t) = f(t, Ũ(t))− f(t, U(t)) = H(t, U(t), E(t)) · E(t).

After rearranging terms, (6.11) now takes the form of a linearized scheme of
SDS type for Θ` = E` − E`,

(L∆ θ)` = Ĥ`(Û`,E`) ·Θ`

+
(
Ĥ`(U(t`), E(t`))− Ĥ`(Û`,E`)

)
·E`︸ ︷︷ ︸

J0

+
(
I`
(
H(·, U(·), E(·)) · E(·)

)
− Ĥ`(U(t`), E(t`)) ·E`︸ ︷︷ ︸

J1

+ (Q` − I`)
(
H(·, U(·), E(·)) · E(·)

)︸ ︷︷ ︸
J2

+O(hm+2).

Estimation of J0. In the linear case this term vanishes. For the nonlinear case
we exploit supraconvergence (3.18) of the SDS, i.e., U(t`)− Û` = O(h2), and
E(t) = O(hm) (Theorem 4.1, (4.3)) to conclude J0 = O(hm+2).

6 Here, ∇f(t, V ) is the gradient with respect to V .
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Estimation of J1. For all grid points t`,

H(t, U(t), E(t)) · E(t) = c1(t)e′(t) + c0(t)e(t)

with smooth coe�cient functions

c0(t) = c0(t, U(t), E(t)) =

∫ 1

0

∂vf(t, U(t) + σE(t)) dσ,

c1(t) = c1(t, U(t), E(t)) =

∫ 1

0

∂v′f(t, U(t) + σE(t)) dσ,

additionally depending on U = (u, u′) and E = (e, e′). Furthermore,

Ĥ`(U(t`), E(t`)) ·E` = c1(t`)(∂∆e)` + c0(t`)e(t`)

with the same functions c0 and c1. Thus, for J1 we can resort to Lemma 6.1
as in the linear case.

Estimation of J2. The estimate

J2 = (Q` − I`)(c1 e′ + c0 e) = O(hm+2)

is obtained in the same way as in the linear case.

The assertion of the theorem is now also obtained in an analogous way as
in the proof of Theorem 6.1. �

7 Implementation, extensions, and numerical illustration

7.1 Implementation

The collocation method and the a posteriori error estimator were implemented
in a test code on the basis of Matlab. For an arbitrary given collocation
mesh ∆N and given collocation nodes {ρj} the algebraic equations de�ning
the piecewise polynomial solution ũ(t) are generated via di�erentiation matri-
ces representing the evaluation of ũ′(ti,j) and ũ′′(ti,j) in terms of the ũ(ti,j).
The respective coe�cients as well as the quadrature coe�cients required for
evaluation of the defect are static data which can be generated in a prepro-
cessing step.

For linear problems, the respective systems of linear algebraic equations
are solved by direct elimination. For the nonlinear case, Newton iteration with
residual-based control was implemented.
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7.2 Treatment of general linear boundary conditions

For boundary conditions (1.1b), the idea again is to convert them into exact
di�erence equations, employing the given di�erential equation. For illustration,
let us consider the case where Neumann data are given at tn = b, i.e., u′(b) =
s1. In the SDS (2.2) for computing û∆, the di�erence equation at the Neumann
boundary is discretized by the one-sided di�erence quotient

(∂−1 û)n :=
ûn − ûn−1
δn− 1

2

= s1. (7.1a)

Due to the Peano representation

(∂−1 v)n − v′(tn) = −δn− 1
2
In(v′′), In(w) :=

∫ 1

0

ξ w(tn−1 + ξ δn− 1
2
) dξ,

the solution u(t) of the BVP exactly satis�es

(∂−1 u)n = s1 − δn− 1
2
In(f(·, u(·), u′(·))).

The corresponding defect of the collocation solution ũ(t) is

dn = (∂−1 ũ)n + δn− 1
2
Qnf(·, ũ(·), ũ′(·))− s1,

where Qn is the quadrature approximation to In obtained in the same way
as in Section 5.1, with quadrature nodes from the rightmost collocation in-
terval [τN−1, τN ]. In contrast to Dirichlet boundary conditions, which are
exactly satis�es by ũ, we now have to account for the defect with respect to
the boundary condition. This means that the boundary equation

(∂−1
̂̃u)n = s1 + dn

is incorporated into the SDS (2.4) de�ning the auxiliary grid function ̂̃u∆.
In order to further enhance the asymptotic quality of the error estimate

obtained in this way, one can modify the SDS using a one-sided second-order
approximation ∂−2 v to v′ involving three consecutive grid points (as in BDF2
schemes), and replaces (7.1a) by

(∂−2 û)n = s1. (7.1b)

The respective coe�cients, the corresponding `EDS integral operator' In and
its quadrature approximation Qn are obtained by a routine calculation. This
rede�nes dn, and the rest of the procedure is the same as before. For a numer-
ical illustration, see Section 7.3.

It is evident how the procedure extends to the case of general linear bound-
ary conditions (1.1b). For the treatment of nonlinear boundary conditions, see
Section 7.3.
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7.3 Examples

We present two selected numerical examples. These serve to illustrate the
theoretical results but, in particular, Example 2 also indicates extensions of the
convergence results obtained, for the case of m odd and symmetric collocation
nodes, and for general linear boundary condition. Further numerical results
are reported in [18].

Example 1: A nonlinear BVP with Dirichlet boundary conditions. For

u′′(t) = 1− (u′(t))2,

u(0) = 1
2 , u(1) = 1

4 ,

the analytic solution is known. We choose m = 4 (with collocation degree
m + 1 = 5), ρ = (0, ρ1, ρ2, ρ3, ρ4, 1) including Chebyshev nodes ρ1, ρ2, ρ3, ρ4,
and N collocation intervals of length 1/N . The results are shown in Table 7.1.

N ‖R∆(e)‖∆ pe ‖θ∆‖∆ pθ
4 7.171 e−08 6.588 e−10
8 4.524 e−09 3.99 9.187 e−12 6.16
16 2.809 e−10 4.01 1.212 e−13 6.24

Table 7.1 Results for Example 1. Observed orders: pe ≈ m = 4 for the collocation error,
and pθ ≈ m+ 2 = 6 for the deviation of the error estimate. These results are in accordance
with the assertion of Theorem 6.2.

As the practical purpose of an error estimate is its use for mesh adaptation,
it is essential that collocation intervals of variable lengths are admitted. We
note that our theoretical results from Section 6 do not rely on the assumption
of an equidistant collocation mesh ∆N . We illustrate this point by repeating
the experiment documented in Table 7.1, but starting with a non-uniformly
distributed mesh ∆N , followed by coherent re�nement to observe orders. The
results are shown in Table 7.2.

N ‖R∆(e)‖∆ pe ‖θ∆‖∆ pθ
4 4.481 e−06 5.234 e−07
8 3.267 e−07 3.77 4.254 e−09 6.94
16 1.936 e−08 4.08 6.054 e−11 6.13

Table 7.2 Results for Example 1, with initial mesh ∆N =
(
0, 0.01, 0.1, 0.3, 1

)
and coherent

re�nement. All other data are the same as for Table 7.1. Here, the maximal stepsize is
signi�cantly larger, resulting in a larger error. However, the behavior of the observed orders
has not changed.
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Example 2: A linear BVP with general linear boundary conditions. For

u′′(t) = 1
2 u
′(t) + 1

2 u(t)− ( 1
2 + 3 t) et

with boundary conditions 1 −2
−1 0

· u(a)
u′(a)

+

1 0
3 1

· u(b)
u′(b)

 =

−2
−e


and known analytic solution, we choosem = 3 (with collocation degreem+1 =
4), ρ = (0, ρ1, ρ2, ρ3, 1) including Chebyshev nodes ρ1, ρ2, ρ3, andN collocation
intervals of length 1/N . The results are shown in Table 7.3.

N ‖R∆(e)‖∆ pe ‖θ[1]∆ ‖∆ p
[1]
θ ‖θ[2]∆ ‖∆ p

[2]
θ

4 1.609 e−06 1.205 e−07 2.683 e−09
8 1.050 e−07 4.01 3.210 e−09 5.23 4.414 e−11 5.93
16 6.544 e−09 4.00 1.003 e−10 5.00 8.687 e−13 5.67

Table 7.3 Results for Example 2. Here, θ
[1]
∆ and θ

[2]
∆ correspond to a treatment of the

derivatives in the boundary conditions in the sense of (7.1a) and (7.1b) respectively. The

observed orders are of the expected quality, namely p
[1]
θ ≈ m+1 = 5 and p

[2]
θ ≈ m+2 = 6.

7.4 Further extensions

General nonlinear boundary conditions

Linear boundary conditions frequently occur in applications, but the case of
nonlinear boundary conditions

bi(u(a), u′(a), u(b), u′(b)) = 0, i = 1, 2, (7.2)

is of course also relevant. For the collocation solver, incorporation of (7.2) is
straightforward; for the �nite-di�erence schemes, u′(a) and u′(b) are again ap-
proximated by di�erence quotients. Since our approach relies on an underlying
EDS for the computation of the defect, the question is how to translate (7.2) to
the EDS context. This can be accomplished on the basis of the considerations
from Section 7.2. Consider for instance a right boundary condition of the form

b2(u(b), u′(b)) = 0. (7.3)

In the notation from Section 7.2, the solution u(t) of the BVP exactly satis�es

u′(b) = u′(tn) = (∂−1 u)n + δn− 1
2
In(f(·, u(·), u′(·))).
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On the basis of this identity, the defect of an approximate solution ũ with
respect to (7.3) reads

dn = b2(ũn, (∂
−
1 ũ)n + δn− 1

2
Qn(f(·, u(·), ũ′(·)))).

In the SDS de�ning the auxiliary grid function ̂̃u∆, the corresponding boundary
equation becomes

b2(̂̃un, (∂−1 ̂̃u)n) = dn.

Variable coe�cients, ODE systems, and higher-order problems

As the idea of EDS is rather general and well-developed, see [12,19], it can be
expected that a similar approach can be successfully applied to more general
problem classes, e.g., for the case where Lu is a di�erential operator with
variable coe�cients or of higher order. Also, the extension to systems or mixed
systems seems to be within the scope. Again we stress that in our approach the
EDS formulation is only used for evaluation of the defect, which is signi�cantly
simpler to realize than solving the EDS equations up to high order.

Acknowledgements We would like to thank Mechthild Thalhammer for helpful com-
ments, and Gerhard Kitzler for realizing numerical experiments in Matlab.
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