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SUMMARY

A new mathematical procedure is suggested for relative orientation of
aerial photographs. The procedure is theoretically interesting, provides
a simple geometric meaning of residuals, it is effective in execution,
and suits advantageously the subsequent processes of model connection

and strip homogenization.

A process of strip homogenization is proposed to be solved simultaneously
for each strip following the relative orientation of photographs and
preliminary model connection. The process is mathematically simple, and

provides advantages similar to those of a triplet triangulation.

The concept of '"'geometric weights" is introduced into the theory of
adjustment computations. This concept facilitates greatly the geometric
understanding of adjustments. It is very important in network planning,

and in processes of blunder detection.

With the help of the geometric weight concept, the interrelation of
different technics of blunder detection is treated (Baarda, Kraus, Stefanovic).
In this, relationships of eminent theoretical and practical importance have

been introduced.

The results of theoretical investigations are realized in the system
of two programs PHOTO and MODEL. These programs are the most current
stage in a process of 14 years of research, program development, and

of production application.
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INTRODUCTION

Programs for relative orientation and model connection (strip formation)
are basic pieces of application software in analytical photogrammetry.
They should be systematically updated. This is not always done because
present day computational costs are low while the creation of new
software is expensive. The result is a tendency toward technical
conservatism which is manifested in the use of far outdated programs

by many photogrammetric organizations.

Requirements for more universal programs follow from the application of
the same aerial triangulation software for diverse purposes in diverse
areas spread over continents. This occurs by international firms or in

the case of software purchase.

Blunder detection is one of the main tasks of applying differentiated pro-
cesses of analytical aerial triangulation as a preparatory stage to a
final simultaneous adjustment. This is important in both technical and

economical respects. The task of preliminary blunder detection and

elimination in the processes of relative orientation and strip formation
can now be solved satisfactorily by applying the newest developments in

least squares techniques, and by refining the differentiated analytical

processes themselves, so to be able to cope with "small blunders"

effectively.

At the same time, refined differentiated processes yield better preliminary

coordinates for the following simultaneous adjustment. When applying a

block adjustment of "independent models" following these refined

analytical processes, one can replace strip sections for single models.

As practice indicates, no noticable accuracy decrease occurs when using
sections of two models, and accuracy decreases just slightly when using
sections of three models. Adjustment of sections rather than single

models can be performed with computation times drastically decreased /20/.

There is an increasing interest in‘analytical plotters these years. A
wider spread of this technique in photogrammetric production will mean

strong demand in improved software.

All these points make the old, out of fashion subject of analytical
relative orientation and strip formation a current issue. Considering

it is divided in this work into two interrelated parts. The first one



with theoretical and practical questions of mainly photogrammetrical char-
acter, and the second one belonging more to the realm of adjustment

computations and featuring questions of blunder detection and elimination.

The theoretical and practical points treated in this report are realized
in a system of the two programs PHOTO and MODEL. These programs are the
most current stage in a long process of research, program development,
and of production application (3 independent ALGOL versions in Hungary,
1965-72; completely new FORTRAN programs in the U.S., in two versions,
1975-77; and the current, completely re-written and nearly doubled in
size FORTRAN programs running on the CDC Cyber 74 of the Technical
University of Vienna, Austria). PHOTO and MODEL match the requirements of

mass production in analytical aerial triangulation.

dbg PHOTOGRAMMETRIC ASPECTS

+)

1.1 General description of the major processes in the programs

1.1.1 Data registered on stereo or monocomparators are preprocessed by

program PHOTO. The aims of the processes involved are:

- formal checking,
- determining image coordinates corrected for systematic influences
(film deformation, refraction, and optical distorsion),

- preliminary checking of data sufficiency.

Notes on and formulas of taking into account systematic image coordinate
errors are given in Appendix I. Appendix II. contains an example of a

REPORT file.

Photographs may be read in any arbitrary position (positive or negative,
emulsion up or down, arbitrary kappa-orientation). All these cases are
universally converted into some common case determined by the elements of
interior orientation of the camera (focal length, x and y displacements of

the projection center, calibrated fiducial coordinates and distortion

+ .
) Although the FORTRAN text of the programs is now more than 3500 cards

long, their structure is suitable for overlaying. Therefore they can be
adjusted to computers as small as a DEC PDP 11-34,



coefficients). The choice of the coordinate system for interior
orientation influences the sign of the elements of relative orientation and

of model (strip) coordinates yielded by the procedure.

Working with stereocomparators, the photograph read in right side position
for one model is read again in left side position for the next model. These
readings are combined by taking the fiducial readings in the right side
position as basis, and transforming the readings in the left side position
by the formulas applied later on for fiducial transformation. This process
of "left-to-right position transformation" offers a safe way of blunder
detection in fiducial readings. The combined readings are then transformed
applying the calibrated coordinates of fiducials or some replacement for
them. Statistics of these '"fiducial transformations" yield characteristics

of film deformation of photographs within each strip.

1.1.2 Program MODEL performs the following major processes:

- relative orientation of photographs,
- model connection (strip formation),
- post-processing of each strip to refine homogeneity,

- printing tables of statistics.

Details on these processes are to be found in the next chapters.

1.2 Relative orientation of photographs

1.2.1 Review

From a purely mathematical point of view it is certainly impossible to show
decisive advantages of one properly applied way of relative orientation
over another. There are, however, other respects influencing a choice. In
this sense the following advantages are inherent to the method described

below:

- photogrammetric obviousness of the geometry and of residuals,
- easy of strip formation,
- geometry consistent with the post-processing stage,

- simplicity and effectivness of the linearized correction equation.



Changing the spatial position of the right projection center is the main

geometric peculiarity of this method. In this way a new right side

photograph is constructed which forms a normal stereogram with the left

photograph. The position of the preceding (left side) photograph is not
changed within the process of relative orientation (this last moment

being common with the widely spread method of Shut /1/).

Such geometry of relative orientation has a rich past in the Russian
photogrammetry. Thechnologies presupposing the presence of a highly
developed optical industry were not acceptable to Russian photogrammetrists
in the early 1930-s. The solution is due to Drobishew who constructed

the famous stereometer. Stereometers are portable photogrammetric in-
struments, theoretically based upon analytical relative orientation and

solving the corresponding equations for x-coordinates by correction

mechanisms. The mechanisms have to be set to the elements of relative
orientation. And this is the point: such elements were determined by
computation, based upon stereocomparator measurements. The corresponding
simplified theory and procedure were created by Zhukow. This solution
resulted in a mass production in analytical photogrammetry as early as
the middle 1930-s /2/. Numerous refinements of the Zhukow procedure have

been published later in the Russian photogrammetric literature.

Unlike these methods the relative orientation procedure described here
is thought to be applied in modern computer programs, and therefore it

does not contain any neglections.

As to a classification of methods of relative orientation one could
suggest to differentiate between those methods determining the spatial
position and orientation of the original bundles of rays (class 1), and
those constructing normal stereograms (class 2). In both cases it is pos-
sible to fix the origin and orientation of the model coordinate system to
the base, as done by Lobanoff for the first class of methods /5/, and by
Urmajew for the second /10/; or to fix the origin and orientation of the
model coordinate system to the left photograph, as done, for the first
class of methods, by Shut /1/ and Jerie /3/, and by the method

described in this work for the second class. This last case involves the

computational creation of a third bundle of rays.




1.2.2 Deduction of equations for relative orientation

The derivation of needed formulas is divided here into two major steps,

both of which are common and simple. The first step takes care of the
angular elements of relative orientation w, ¢ and k, all of them related

to the right side photograph. Having performed the corresponding transforma-
tion, we arrive at the situation shown in Fig. 1 by the photograph with
projection center at S" whose axes xg gzg are parallel to those of the

left photograph. The second step considers then the base elements By and B,.

1.2.2.1 Rotational elements of the right side photograph

In order not to lose the geometric image which photogrammetrists are
accustomed to, a trigonometric solution is applied. In particular, one in
which the rotation around the Y axis (¢) is considered as secondary. The

corresponding formulas:

Xz = Axn (1.1)
where
E Hq
X‘t
X{ = Yg with Z{ # - ¢
1"
th
S(Il-‘
X" =y with z" = -c
Zl'
a1 212 ai3
A =laz1 az2 azs
a3zl a32 a3y
ajqq = cos¢ cosk aj3 = sing
ap1] = cosw sink + sinw sin¢ cosk apg =-sinw cos¢
az] = sinw sink - cosw sin¢ cosk agz3 = cosw cosé
aj? = -cos¢ sink
aop = cosw cosk - sinw sin¢ sink

agzp = sinw cosk + cosw sin¢ sink
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(1.1) expresses a mathematical transformation. In photogrammetry the word
transformation means more than that. We must determine the intersection of
the rotated (by the mathematical transformation) bundle of rays with the

plane of the new photograph to be constructed. This is solved by the

formula
X"
X = = =2 ZM where xn = x ith = -
t Zn t + = yt W1l Z'E = c (1.2)
t ZH
G

Fig.1: S' is the projection center of the left photograph. The axes of
the photo coordinate system of it (x'y'z') are taken as coordinate
system of the model to be created. The right side photograph with
projection center S" has been transformed into a position parallel
to the xy-plane of the left photograph. (Axes Ty uzy are parallel
to x' yr 2'). S" is the projection center of tge new right side
photograph to be created analytically in the process of relative
orientation. The plane S"S;SH is perpendicular to the plane

§'s{s), and S{ is the orthogonal projection of S" onto this last

plane. M is an arbitrary point of the terrain.
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1.2.2.2 Projection center movements (base elements)

The expressions which take care of the projection center movements or,

in other words, of the base elements, can be derived using Fig. 1.

In final expressions, instead of speaking in terms of the linear movements

of B_ and B,, we use correspondingly, v and t. In exact terms,

Y

B,
Z

tan T = - (1.3)
BX

and

B

tan V = L (1.4)
Bx

Expressions have to be derived expressing vy and Xy of the right
photograph of the normal stereogram. It is important to note that this is
a new photograph to be numerically constructed, as opposed to a changed

position of the original right photograph attained by transformation.

This point will become obvious later.

1.2.2.2.1 Expression for ygff(x',yf,x2£y¥,r,v)
. ol

The determinants written below are equal to O because of the coplanarity of
the participating vectors: of some base vector S'S" connecting two
projection centers, and of two other vectors pointing from these projection
centers to the corresponding images of the terrain point M. To shorten

the description such cases will be referred to just by (S'S"M), always
applying the corresponding projection centers. Notations correspond

to fig.l. The index t refers to photographs transformed by w,¢ and «.

(S'S"M):
BX By B,
x' y' -c =0
x% y% =&

Taking into consideration (1.3) and (1.4), and rearranging the expression:

x‘y%—x%y'

t_n _ ' _ -
= tant + (x xt)tarv (y y%) =0 (1.5)
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(S'S"M):
o
Bx 0] 0]
x! ! -c = 0
xg yg -c

This determinant is the photogrammetric co-planarity condition in our case

of relative orientation, and expresses the equality of corresponding y photo

coordinates in normal stereograms:

Y' = yn (1.6)

(1.5) and (1.6) yield the sought expression for yg

X' H__XH !
"n - " yt ty ! "
Vg = y§ + ———— tant + (x —xt)tanv (1.7)
€
Because of errors of different origin, summarized as observation errors,
remainder vertical parallaxes are always present, and therefore (1.6) has
to be rewritten as

1 = - _ .
y'=yg = Py v (1.8)

where Pyo = O is the vertical parallax in the constructed normal
stereogram, or, in other words, the remainder vertical parallax. Comparing
expressions (1.5) to (1.8) the corresponding observation equation can be
written:
| L R | R
x'yi-xiy
——————— tant + (x'-x")tanv - (y'-y") = v (1.9)
t t
f
As tant and tanv are taken directly as unknowns in this process,
(1.9) is linear (with regard to tant and tanv ).

1.2.2.2.2 Expression for x::f(x',y',xgizg,f,v)

The expression for xg plays an important role in computing model
coordinates. This way it conveys the inaccuracy of relative orientation
to these coordinates. Therefore care should be taken in deriving the
expression for xg: some ways of derivation yield formulas which may

enlarge the influence of the inaccuracies mentioned.
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1nmen .
(STSOM).
0 0 B,
x" yn -c = 0
i T
" n -
XO yo (c)

yl'
x!! = §% X! (1.10)
T
(S"S¥M):
0 By 0
xg vy -c| = O
Xt vt -c
and therefore
mooz o g 1.11
X X} ( )

(1.11) expresses the fact known from terrestrial photogrammetry that
By (Bz in terrestrial notation) does not influence the x coordinates.
This is why height differences of camera stations can be neglected

in the "normal" case of terrestrial photogrammetry.

1 1" .
(s STM).
! Bx 0 B,
x' ! -c| = O
x¥ ¥ -c

which yields, after some elementary steps:

c + X" tant
t

n - 1
It c + x' tant 7 (1.12)



- iy =
(1.10) to (1.12) combined:

yg ¢ + x'tant
X = X - (1.13)

ty' CEf xgtanT
The number of this formula, 13, indicates probably the danger connected
with it: the factor yJ/y' must be taken for 1. This may be done if no
rude errors are present. Blunder detection and elimination are solved

satisfactorily (part 2 ), and therefore (1.13) can be replaced by

c + x'tanTt
c + le!tanT

(1.14)

+ =

Another way of deduction yields the following unsatisfactory expression

"
for X3

y' - x'tanVv

yg - x{tanv

A still further dangerous expression is:

c tanV - y! tant
" yo
t ¢ tanv - y% tant

= X

1.2.2.2.3 The geometric meaning of the recursivity

Formulas (1.7), (1.9), and (1.14) are recursive because of using x{ and
yg on the "right side'". These values become precise only in the final

iteration steps.

This recursivity cannot be eliminated and it has a very certain
photogrammetric meaning: a photograph '"taken" from an arbitrary "third"
point can only be constructed if the model of the terrain has already
been reconstructed. In other words, the change of the spatial position of

a projection center is a stereophotogrammetric task. Were this not so, we

could construct a second photograph of the terrain using just one
photo, and then count the terrain heights using the old and the

constructed photographs as a pair.
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One solves recursive expressions by iterations. The same is needed by
using least squares techniques for non-linear equations anyway. Therefore,
the above recursivity does not mean further complication to the process in

this respect.

1.2.2.3 The iterative process

The process of iterations takes into consideration the geometric fact
that transforming a single photograph by expression (1.2), using any
arbitrary values for w, ¢ and k is a rigorous process. This means that
the erroneousness of the elements will not distort the corresponding
bundle of rays. Using the not quite precise elements Sw,8¢, and 6k

of the last iteration, applying expressions (1.2) to the right side
photograph, one gets a geometrically new situation which can be

handled as if no iterations had been completed before. The final

values for w,$ and k will mean, in this case, the sum of the values Sw,

8¢ and Sk gained in the course of consecutive iterations.

Because of the geometrical circumstance in connection with the

recursivity of expression (1.9) we cannot apply the same approach

to the base elements T and v . The coefficients of (1.9) are updated after
each iteration. Using these updated observation equations the entire

values of tant and tanv are determined again and again.

Taking the above into consideration, the linearization of (1.9) can be
reduced to the linearization of the corresponding row in (1.2). (1.2) and
(1.9) yield:

"2 1" "

yi Xt vt xly-xlly!
(c+ —E—)Gw- §¢ +xi6k + —5 — tant +(x'-x{)tany -(y'-y}) = v

(1.21)

where x%,y% are coordinates of the right side photo, transformed by
(1.2) due tows¢> and k of the (n-1) th iteration; in the
O-th iterationw ,¢, and k of the previous model will be
used, or - as an option of program MODEL - given first

approximations;

w = 8w ¢:Z<S¢> K = Iék

T = arctan(tant), and V= arctan (tanv)
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(1.21) appears as if it would not contain any non-linear terms. This is
partly due to the updating of xg and y% coordinates in each iteration,
which makes the process rigorous in the sence of Pope's notes /4/; and

‘partly due to the use of (tan T ) and (tanv ) directly as unknowns.

The described mathematical model needs a relatively small amount of
computations for each iteration, and the convergence of the process is
no worse or better than that of the widely applied relative orientation

procedures /1,5/.

1.2.2.4 A second system of formulas

It is interesting in some theoretical, pedagogical and historical respects
that the formulas derived in this chapter 1.2.2 can be transverted into
expressions written as functions of just photo coordinates of the normal
stereogram to be constructed. The expressions gained can be useful when
applied, for instance, in mechanical analogue constructions similar to

Stereometers mentioned earlier.

The corresponding derivations are given in Appendix IV, and yield a

second system of formulas.

1.2.2.5 Computing model coordinates

Having performed the relative orientation in the described way, one can
use very simple formulas for computing the model coordinates - because a

normal stereogram has been constructed:

B
X
X S x (1.22)
mod Dy
where
1
XmOd |X 1"
|y Y Vo
Xmod— mod and x = 5
Zmod -
and
B = x'-x"

XO
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In program MODEL BX is taken equal to the mean value of P, of the first
model of the strip. This results in model coordinates approximately in
photo scale. The mean value of P, is equal to some 90 mm-s in the very
typical case of a 23x23 cm? format and 60 % overlapping. If this value

is between 80 an 100 mm-s, B, of the first model of a strip is taken to be
equal to 100 mm-s. This is advantageous in finding points on the basis of
their X strip coordinates (an X strip coordinate equal, for instance,

to 550 mm, will mean roughly that the corresponding point is to be found

in the area of the 6-th model).

1.2.2.5 Strip formation by scaling and shifting the model coordinate systems

The %, y and z axes of the first photograph of the strip are accepted as

X, Y and Z axes of the strip. The model coordinate system of the first
model is automatically this system. The angular elements of relative orien-
tation of the first two photos ®W, ¢ and k determine the orientation of the
second photograph in the coordinate system of the strip. Therefore,
transforming the second photograph - using expressions (1.2) - by these
elements the plane of this photo becomes parallel to the XY plane of the
strip system. The reader will understand at this point that it is

possible to perform the transformation of the second photo by (1.2) but
the task of moving the second projection center to a new position,

shifting it by B, and B, of the previous model, is not solvable for the

part of this phoio which belongs to the second model: the second model has
not yet been reconstructed. Performing a relative orientation by the
described method after this transformation, the model coordinate system
of the second model will be parallel to the strip coordinate system - but
its origin displaced by B,, By and BZ of the first model. One could

count and use these values to shift the two systems together, but instead

gravity center coordinates of passpoints have been applied for this

purpose, more advantageous in a stochastical sense.
In general terms the described way of model connection can be represented as
X' = Xy + mIX" (1.23.a)

where X' contains the strip coordinates, Xg the shifts of the model
coordinate system (determined independently and indirectly by shifting

together the gravity centers of passpoints), m denotes the scale factor,
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and X" the model coordinates. In the transformation (1.23.a) the unit matrix I

replaces the rotation matrix.

The scale of the model to be connected can be determined in this geometry
simply as a relation of the corresponding Y' and Y" model coordinates
related to the corresponding gravity centers G' and G" of passpoints. This
is because, as shown below, no X model coordinate discrepancies occur, and
because of the narrowness of the triple overlap zone. A normal equation

with one unknown: m - the scale factor, is used for this purpose:

it 2 BYm@&th@&ﬂ (1.23.b)

[r-e7]

1.3 Strip homogenization

One cannot overemphasize the importance of the fact that the use of

two-photo simply

per . ) This is a result

of basically two circumstances. First, that in such cases measurements are
improperly checked (see part 2 ). Second, as a result of insufficient
accuracy of relative orientation, model distorsions occur that are larger
than generally expected. Both these interrelated problems can be essentially
solved without increasing the data amount, by not neglecting the information

contained in passpoints.

Triplet triangulation is the best known and most widely spread solution /8/.
In this case three bundles of rays are solved each time in one system, and
the "double models" gained this way joined then by spatial linear

transformation.

A simple and not less adequate solution is introduced in this chapter: the

homogenization of the strip gained by sequential two-photo orientations.

Such postprocessing method is identical in its principle with strip

homogenization in numerical analogue triangulation /11/.

The postprocessing method has to remain simple otherwise the sense of applying

a differentiated way of aerial triangulation could be lost. This same is

+ : - . . : d
)We think it important to drow attention to this fact especially in Europe

where the spread of analytical methods is just in process, and
corresponding experience seems to be missing.
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needed to arrive at well conditioned systems of equations. Therefore
we are considering only the linearized expressions, and thus restricting

the procedure to the '"nearly vertical case'" of analytical aerial

triangulation.

To gain the functions needed for strip homogenization systematic
discrepancies in model coordinates of passpoints of adjacent models have
to be analyzed as functions of errors of the relative orientation. For

this, fig. 2 will be used.

m

Fig. 2 <illustrating that Sx', Sx", or Sx" <mage coordinate errors
(all in x-direction) do not cause any AX model coordinate
discrepancies in model connection.

Program PHOTO, when applied to stereocomparator readings, converts them
to photo coordinates as if read in a monocomparator. This way point
transfer errors distorting x'" are checked and averaged (or rejected) as

reading errors in the middle photograph. As a result, no model coordinate

discrepancies occur in X. A derivation is given in Appendix V proving

the validity of this statement in a general case. Appendix III provides

the empirical proof.

Neither constant nor linear parts occur in Y-discrepancies as a result
of shifting and scaling by (1.23). The rest of Y-discrepancies, AY,, is
a function of Y2 (the derivation is given in Appendix VI). This part is

apparent as an assymmetrical error in Y:




- 20 -

—y2(Ll Lw'tde" 1 N_Ag! "y =
MY ==Y (3 5 - (Ak"-bk")) (VI.u') = (1.24)
with Aw', Ak', Aw" and A" indicating errors in the corresponding elements of

relative orientation of two adjacent models.

Point transfer in y can be solved very precisely with point transfer devices
marking, at the very least, the point on the middle photograph. Therefore

(1.24) contains valuable information.

Errors of relative orientation cause very noticable discrepancies in 2

that can be divided into a shift and a part which is a linear function in (V).

The shift contains the influence of errors in ¢ and t, and disappears in the
process of model connection by (1.23). The second part can be expressed, as

shown in Appendix VII, as:
BZ=YZ(5 (Bo'+ Aw")+g (Ak"-bk')) (VII.2') = (1.25)

(1.24) and (1.25), applied as correction equations, form the most complex

way of the proposed strip homogenization.

Care schould be taken as to degrees of freedom and data distribution.

Clearly, the first model has to be kept unchanged. Even though (1.24) and
(1.25), when applied to a strip of just 2 models, yield a singular system.
Geometrically this means that we cannot separate the influence of k errors,
resulting in a minor rotation of the model around the X-axis, from the
influence of w errors, resulting in a torsion of the model surface. -
Therefore, the relative orientation of the first and last models of

each strip should remain unchanged in the homogenizing process.

Good passpoint distribution yields well conditioned systems. However, if
this is not the case (or there is ground for suspicion in this respect),
one has to sacrifice a certain degree of flexibility, and to involve in
the VTWVtmin condition the unknowns themselves (with a suitable weight,

naturally). This way, undesired effects of '"overcorrection" can be avoided.

In cases where only the heights have to be determined with high accuracy,
the process can be considerably simplified. If the point transfer in y
is not solved adequately, (1.24) has not to be applied. The surface of

each model, as long as heights are concerned, becomes a hyperbolic paraboloid
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as a result of errors in relative orientation /6/. We cannot correct for
the paraboloid. Therefore the homogenization can be set up with unknowns

that are parameters of the individual hyperboloids a'- b'":
a'y + b'Xy - (a"Y + b"Xy) = AZ (1.26)

(1.26) means noneglections when compared with (1.25). A further simplifi-
cation can be considered, that of replacing hyperboloids by planes. In this

case:
a'y - a"vy = AZ (1.27)

Although (1.27) means neglections, it has a very important advantage: it
yields safe, well-conditioned systems even for relatively weak passpoint
configurations. The planes replacing the hyperboloids are symmetrically
oriented, and this way the neglection is somewhat compensated: its rest

hardly exceeds the noise level of Z-transfer errors.

Naturally, whether applying (1.26) or (1.27), the notices on degrees of

freedom and data distribution given before remain valid.

Strip homogenization with (1.27) has been applied in the practice of pro-
duction since 1975 by Berger Associates, Columbus, Ohio. Experience indi-
cates that results are, at least in Z, not only of equal quality but, as

a tendency, identical to the results of triplet triangulation /12/.



2. BLUNDER PROCESSING

As major tasks, blunder processing involves data amount and distribution
checking, blunder searching (blunder detection and location), and the con-
nected task of tolerance determination. All these can be considered on a
general level, and on the level of some application - in our case that of
self checking photogrammetric relative orientation and strip formation, as
introduced in part 1. This second being our subject, general discussion
will be kept here to a minimum with the exception of introducing the con-
cept of geometric weights which seems to us inevitable. Otherwise three
major sources of the related special literature will be cited: the pioneer-
ing work of Baarda /15/, the article of Kraus concerning practice /16/, and
the recent complex study by Stefanovic /17/. Concentrating on the tasks of
blunder processing in analytical relative orientation and strip formation
we limit all discussions to the case of "indirect observations". Naturally,
the concepts involved can be extended, without much difficulty, to other

cases of least squares techniques.

2.1 Introducing the concept of geometric weight coefficient matrix

Let us consider the system of n correction equations
Ax = 1+ v (2.1)

where A is the coefficient matrix of unknowns,
x 1s the vector of u unknowns,
1 is the vector of observations, and

v is the vector of residuals.

r = n - u denotes theredundancy of this system, and r/n is termed as rela-
tive redundancy. When r=0 the vector of residuals v becomes 0, meaning that
in such case the solution absorbes the observational errors. In an opposite
extreme with all observations repeated infinite times (r==) no error absorp-
tion occurs, and the vector of residuals will correspond to the vector of
observational errors €. As shown in /17/, residuals and observational errors

are connected by the relationship

v = - Q,We (2.2)

AL .
1] s the weight

matrix of observed quantities. W is an a-priori matrix and its elements do

where vi is the cofactor matrix of residuals, and W = Q
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not change in the process of adjustment. Therefore the a-posteriori matrix
vi contains the coefficients describing the error absorption in the process

of adjustment.

Hungarian geodesists-practitioners apply the expression 'geometric weight',
and in the U.S. I have heard the expression '"geometric constraint", both

in the following sense: when a measured quantity has a large geometric weight
it will have large influence on the unknowns to be determined, and the cor-
responding residual after the adjustment is expected to be small even if

some rude error is distorting theat measurement. This weight or constraint

is felt to be depending on data distribution and mathematical model.

Considering (2.2) it is easy to notice that the error absorbing capacity

of the process and the "geometric weights'" express reciprocal tendencies.

They are the proper interpretation of the cofactor matrix of residuals vi’

which therefore could be given the name ''geometric weight coefficient matrix".

This would mean, naturally, the introduction of another - a-posteriori -
weight concept, being contraversial because of the danger of simplistic
understanding. So the reader has to judge whether the advantages of this

principle outweigh the dangers of misinterpretation.

The reader will remember that the variance-covariance matrix of residuals

Zvv can be written, by definition, as

Zvv= E [(v—uv)(v—uv)T] = EENFI] = uvu;r, = E[vvrl]

with H, the first moment (expectation of the mean) of residuals which is
equal to O in an unbiased adjustment, and

Q =90 %5 = c;QEE-vT] (2.3)

vv o VvV

=2 . ; . .
where 9, denotes the reference variance. Appendix VIII contains a deriv-

ation of Q .
vv

In the case of some ideal adjustment the expectation of variance of each

"homogenized" residual should be equal to the variance of the observational
. . . 2 .

errors. For an adjustment free of bias the reference variance o, 1is the

least squares' estimate of the variance of observational errors with the

a-priori weight unity. With regard to (2.3) this means that QVV should be
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equal to the unit matrix I. This is the extreme case mentioned above with
r=, In the other extreme case with r=0 diagonal elements in vi become 0.
For all intermediate cases - where all practice belongs - these geometric
weight coefficients are intermediate values, indicating the measure of error
absorption in the area of each point /15/. Given this measure, residuals

can be ''scaled":
L
- — 10
= 2.4
v QVV v ( )

where 6§v denotes (diag vi).

The expression "scaling of residuals" in connection with (2.4) is mislead-
ing when understood literally. Random errors in all the observations mean
random tensions to the mathematical model (2.,1), and therefore individual
"'scaled" residuals;i , being tensions introduced to the model, are in no
linear relationship with observational errors. In other terms: (2.4) is not
a direct consequence of (2.2). These questions will be explicitely dealt

with in chapter 2.2.

An often applied way of handling a-priori weights is the homogenization of
the system of observational equations so to arrive at an uncorrelated equal
weight situation. As a result of homogenization a-priori weights become

implicit. On the other hand, "geometric weights'" always have to be consid-
ered as implicitely present in the starting equations. When so understood,
the "scaling of residuals" in form of (2.4) becomes natural as takint into

account these weights.

The application of (2.4) yields equally accurate residuals v. With them,

as proven in Appendix IX, the reference variance can be counted as

T T
2.1 T=2 -2 _ 1= - (2.5)
s 7 vi Qll vi vV=oaV L7

The denominator in (2.5) is the number n of observation equations because
the influence of error absorption has been taken into account by (2.4).
This a-posteriori homegenization is understandable with regard to (2.2),

as well.
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It appears very obvious to interpret the role played by QVV as geometric

weight coefficient matrix in counting influences of partial data elimination

(a matter extensively treated in Stefanovic /17/).

Let us denote the residual on a point having participated in the adjustment
by v+, and the corresponding residual when the point has been removed from
the adjustment by v (not to be mistaken for v : the scaled residual in
(2.4)). It is easy to comprehend the geometric meaning of processes and
formulas when keeping in mind some point, loosely speaking, '"of large geo-
metric weight" and correspondingly with small diagonal geometric weight
coefficient Q5 E.g. in case of relative orientation of photographs some
remote point standing alone in the corner of the model (2.2.3.1.1). v’ in
this point is to be expected small according to formula (2.2). The "scaled"
residual v can be determined by applying (2.4) and expresses the tension
introduced by this point into the adjustment. Removing the point from the
adjustment means removing this tension. The geometric weight of the point
exercises a reverse effect in this case and therefore v can be determined
as
-1
v=@H *V (2.6)

where Q+ denotes the corresponding submatrix (the corresponding diagonal
element) of vi counted with the elements of the adjustment with the point
participating. (2.6) is valid for groups of points, as well. For this, v

also has to be counted with the corresponding submatrix of QVv /17/.

Submatrices of Qs include off-diagonal elements. Off-diagonal elements

in Q,, express the functional dependence of residuals. As a result of the
functional dependence of residuals, QVV is singular (of rank r). In addition
it is idempotent. Therefore all submatrices which are of greater size than

r x r are singular. In this form the fact is expressed that the equation
system cannot be solved when less than u observations are present. This
means that when removing more than r points from the adjustment (2.6), looses

its sense /17/.

To determine the cofactor submatrix in (2.6) as a function of elements of
the new adjustment with the point(s) removed, one has to apply to (2.1) as
to a function the rules of propagation of variances and covariances. The cor-

responding elementary deduction yields
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- - T
= - . . €27
fo Qv‘v’ t # AlQXXAl )

where Ai is the corresponding row in the coefficient matrix of unknowns,
and Qxx is the cofactor matrix of unknowns determined in the adjustment
with the point(s) removed. Comparing (2.6) and (2.7), the following equali-
ty should exist when Qll = I (weighting is inapplicable to fo):

R Qpe (2.8)

or, with more details:

o T _l_ - T (2 g)
(I - AQ A;) "=1+AQ A
This relationship, speaking for the concept of geometric weights, is proven

in Appendix X.

Elements of Q,, express the "strength of the figure" to be adjusted /15/.

As Q, is counted without the vector 1 of observed quantities, it is possi-

ble to estimate its elements in advance at the stage of network planning.

Diagonal elements in vi should dominate, and be close to each other in
value. High mutual dependence of any two residuals has to be avoided in
order to assure adequate blunder location (this involves checking the cor-
responding 2 x 2 submatrices of QVV on singularity). All this can be achiev—
ed by changing data amount and/or data distribution. In Baarda's words ob-
servations of a network planned this way become "equivalent'": of equal un-
known determining strength, and equally well checked (see later). - In this
very prominent application QVV appears explicitely as ''geometric weight

coefficient matrix", yielding numerical characteristics of the geometric

quality ("strength") of the network.

Further extremely important relationships containing Q,, are given by Ste-
fanovic /17/. A1l of them can be interestingly interpreted in the light of
our concept. Still further examples of such interpretation will occur in the

course of this work.
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2.2 Blunder detectionX/

2.2.1 General

Let us exclude a point (or a group of points) from the set of data, and

perform the adjustment with the rest of data. If this new set yields a well
conditioned system, and contains just 'random'" errors (as opposed to blun-
ders), we expect v~ of the excluded point to be equal to the observational

error(s) €

E[V—JZ € (2.10)

where the index V indicates the point excluded. The accuracy of this equali-
ty can be assessed with the help of the cofactor matrices on any side of
(2.8):

T =l 2 = 2 =]

E[v v:l— 0, Qep = 0,(Q) (2.11)
Correspondingly, in comparisons of the absolute value of v~ with some tole-
rance § , this tolerance has to vary with the location of the removed point:

1

lv=] < 8(Q") ? (2.12)

With regard to (2.6) this can be rewritten as

v <6 (2.13)

(2.13) is of central importance in blunder detection. It shows that scaled
residuals are 'equally well checked" /15/ all over the network, and there-
fore the maximal absolute scaled residual indicates the worse point with

high probability. In ill conditioned systems and in systems with low rela-
tive redundancy symmetricities occur which result in high functional depen-
dence among residuals. In such systems, especially with additional blunders

present, such indication becomes uncertain or even singular /17/.

The geometric essence of the application of (2.13) remains as described by

x/ As treated in this section, blunder detection involves both the "detec-

tion" and the "location" of blunders, as defined by Stefanovic /17/.
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(2.10) and (2.12)%/

method is dependent on the geometric weight coefficient of the point in ques-

Therefore the sensitivity of blunder detection by this

tion. Considering (2.11) and (2.12) the tolerance can be based on some a-pri-
ori estimate 02 of the reference variance og , and on some multiplyer to it
defining bounds of 'random" errors (as opposed to blunders) in the particular
distribution, generally taken for 3. In such case the minimal undetectable
blunder vmin can be written as

1

19 . | < 30(Q" ? (2.14)

m1n|
meaning, as compared with (2.10) and (2.11), that within these limits the
blunder V can be compensated by random influences. (2.14) shows another

time that points of networks planned so to yield nearly equal (and dominating

within QVV) geometric weight coefficients will be checked equally well.

2.2.2 Review of methods

First of all one should differentiate between methods of blunder detection
aiming at individual differences as test values and those aiming at quadratic
forms. Quadratic forms, especially when corresponding to large groups of
points, are apt to hide small blunders. They are usually compared with tole-
rances determined with the help of the x2 or of the F-distribution. Stefa-
novic describes a better, partially empirical way of determining tolerances
for quadratic forms which yields tighter values /17/. This improvement hard-

ly can solve the problem for large groups of points, however.

As it has been shown in the previous section, the right way of checking

x/ This means that applying (2.13) for blunder detection corresponds to
first, excluding temporarily the most suspicious point out of the adjust-
ment as indicated by the maximal absolute scaled residual |V| , and second,
repeating the adjustment, and comparing |v‘| of the temporarily excluded
point with a tolerance depending upon geometric weight in accordance with
(2.12). This direct way may be of advantage in computer programs especially
when original error equations are not linear. So it is realized in program

MODEL for checking relative orientation, as well.
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individual differences is concerned with "scaled" residuals, as expressed
by (2.13). One can imagine two other ideas, in certain sense symmetric to
this way. The first has been intensively applied in the practice of least
squares, and aimes just at the individual residuals themselves.

|v.| <6 (2.15)
z

The second can be expressed as

lvi| < 8 (2.16)
1

Taking into consideration the circumstance that a blunder distorts the en-
tire adjustment, blunder processing is in most cases concerned

the maximal in its absolute value difference. In the light of this (2.16)
corresponds to the checking of the maximal in its absolute value observa-
tional error (in the sense of (2.10)), determined by solving the equation
system n times, each time with n-1 observations involved, and always remov-

ing another point (!).

The exact way of setting tolerances in (2.15) has to proceed in correspond-
ence with (2.4), and for (2.16) in accordance with (2.12). In such way, as

far as tolerances are concerned, (2.15) and (2.16) go over in (2.13). When,
however, § is set to a fixed value independent of the location of the point
(of the corresponding geometric weight coefficient), blunder detection with
(2.15) or (2.16) becomes less sensitive, especially in cases with low rela-

tive redundancy.

Apart from problems of sensitivity, the application of (2.15) and (2.16)
for finding the worse observation is theoretically inadequate, as shown
in connection with (2.13). The connected danger is rising with the relative

redundancy growing smaller.

The theoretically most comprihensive strategy of blunder searching has
been described by Stefanovic /17/. Its essence is the following: one sup-
poses the presence of k blunders, taking k first for 1, and then, if nec-~
essary, each timeraising it by 1 and entering the process again. For k=1
the process corresponds to a checking according to (2.13). In addition,

. . . =2\
the quadratic form corresponding to the rest of observations (q° ) is com-
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pared with a suitable tolerance. When k>1, groups of observations containing
k points each are checked and opposed to the rest of n-k points. All possible
combinations without repetition are checked. (2.6) in form of

=1

) v (2.17)

4 +

B = v Qg

5 . . : =2 .
is applied. Both groups yield quadratic forms (A and q ) which are compared
with suitable tolerances. "All observations are blunders in those test groups

. . =2
of the smallest size for which A exceeds the tolerance and q does not'"/17/.

The weakness of this method lies in the lacking sensitivity of checking the

quadratic form EQ. As a result, it works for k>1 only for large blunders.

A more sensitive solution can be constructed by applying just (2.13), and

retaining the "error and trial" way of blunder processing which generally

has been applied for the last decades. This technique means always excluding
just the largest blunder, and repeating the adjustment with the rest of
data. Finally, all excluded observations are checked by the last solution,
and if needed, some of them taken back for a closing blunderfree adjustment.
What is very important: when adjusting linear models (not just linearized
ones), all the repeated adjustments may be constructed on the basis of a
single first adjustment with all the data included. For this, the needed

expressions are given in Stefanovic /17/.

The method proposed by Kraus /16/ is a special case which can be derived

from the theory given by Baarda /15/. Kraus's coefficient ki equivalent
Eg_—& , and therefore his method is ic ascr
previous paragraph. aspects by

work are: the formulas which connect adjustments with and without the blun-
ders (Stefanovic), the relationships proven in Appendices IX and X, and

a considerably better geometrical understanding of the processes (contri-
butions to the variance by groups of points by Stefanovic, the geometric
weight concept, and to some extent the interpretations grouped around for-

mulas (2.10) - (2.14) and (2.16)).
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2.2.3 Blunder detection as applied to analytical relative orientation

and strip formation

Table 2.1 provides a review of technologies of analytical aerial triangula-
tion as applied in our days. Processes are divided into three stages, re-
ferred to as first, second, and final. Data amount and applied degrees of
freedom grow drastically from one stage to the next. The same can be stated

about the costs of performing them.

Ideally, all stages had to contain processes of blunder detection. Technical
and economical considerations put limits to this. These limits are the more
prohibitive the more complex and the more expensive the process. In order

to provide guaranties against the widely spread phenomenon of (to put it
bluntly) 'rough garbage in - smooth garbage out'", sophisticated blunder de-

tection has to be applied at least in all preliminary stages.

The essential logic of basing blunder detection on the starting 'differen-

tiated" stages is that of sequential elimination. So, the exclusion of points

with erroneous vertical parallaxes in the process of relative orientation

is inevitable for a successful blunder detection in model connection. Blunder
elimination in the process of model connection is of extreme importance for
strip homogenization. A '"differentiated" (sequential) block adjustment,
whether polynomial or "of independent models', copes greatly safer with
blunders, when blunders in creating the models (or sections), and in pass-

points within each strip have been previously eliminated; and so on. In

Table 2.1

Stages in computational technologies of analytical aerial triangulation

Rirst Second Final
Relative orientation Block adjustment Simultaneous adjustment
(Strip formation) - of independent models of bundles of rays

- of strip sections

- of triplets, quadrapelts,
etc.

Polynomial block adjustment

- of strips

- of strip sections

("piece-wise'" polynomials)
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our opinion and experience, such sequential ways of blunder elimination are
highly satisfactory and economical. In this respect we do not agree with

Férstner /19/.

2.2.3.1 Numerical examples regarding aspects of blunder detection in

analytical relative orientation

2.2.3.1.1 Point distribution; examples of QVV

vi is a symmetric n x n matrix of rank r < n. Off-line elements in QVV
express the functional dependence of residuals. The following expressions

are valid /17/:

I
94158 L4k (@.18)
n
9 5%KE1 K5k Rl
0 < |qij| < 943955 (2.20)
n
1819547 T (2.21)

As a consequence of (2.21), the average diagonal element of vi is equal

to r/n.

A. Example with n = 6

In this case r = n - u = 1, and therefore all rows and columns of vi are
linear combinations of each other (they are proportional among themselves).
This is an expression of the total uncertainty of blunder detection when
r = 1: at the very best, the presence of some blunder can be indicated but

the blunder cannot be located.

N Qv Scheme of point distribution
oo | -.13 .06 -.09 .16 -.07
1030 +25-.13 .17 -.33 .14 o
1050 .06 -.08 .16 -.07
2010 .11 -.22 .10 103
2030 .43 -.19
2050 | symmetric .08
105




B. Example with n = 15

Scheme of point distribution Scheme of distribution of /a;;

1010| e 1011 @ e 2010
1020 e 1021 o e |2020
1030 e 1031 e e 2030
1040 1041 @ e 2040
1050 L‘ 1051 e ° 2050

N Qy
1010 .28 -.27 -,05 .06 .05 -.30 -.09 .03 .04 -.04 .02 .09 .16 .05 -.13
1020 .69 ~.24 +,12 .07 =,07 -,12 =,13 ~,06 .06 ,12 .03 -.04 =.01 .06
1030 .72 -.22 ~,06 .03 -.10 ~.16 ~,10 .03 .11 .00 =09 -.01 ,13
1040 .73 -.28 .05 -.05 =11 -.12 ~,08 04 .00 -.02 .03 .11
1050 .40 -,03 .03 .03 =,09 ~,29 =11 .03 .15 .11 .00
1011 .71 -0 .02 .03 =02 -,29 ~.10 .04 .04 -.02
1021 .90 -,09 =,05 .03 -,11 =10 -.10 =05 .03
1031 .86 -.10 .02 .00 =.09 -,17 -,11 .02
1001 .89 -.09 .03 -.04 -.11 -.12 -,09
1051 .71 -,01 .02 .04 .09 -.29
2010 ) (41 -,29 -.08 .04 .09
2020 277 .19 ~.10 .02
2030 .69 -.22 -.06
2040 .73 -.29
2050 symmetric ) .42

This example illustrates the important fact that an even point distribution
does not result in an even distribution of geometric weights.
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C. Example with n=10 evenly distributed points (minimal advicable set /11/)

Scheme of point distribution

1010 | o e [2010
1020 | ® e 2020
1030 | o e (2030
1040 | ® * 12040
1050 | o e | 2050

N QVV

1010 -.30 -.03 .08 .03 -.13 .ot .18 .07 -.15

1020 .63 -.29 -.14 .10 .07 -.02 -.10 -.04 .09

1030 .65 -.28 -.05 .12 -.03 -.16 -.06 .14

1040 .67 -.33 .05 -.02 -.07 -.03 .06

1050 25 -.12 .08 .IT .06 -.18

2010 .37 -.36 -,08 .05 .10

2020 .72 -.23 -.12 .02

2030 .62 -.27 -.05

2040 L .68 -.34

2050 | Y .28

D. Second example with n=10: less variance along the main diagonal, but
with singular submatrix 1030 - 2030

1010 o e |2010
1020 * 2020
Scheme of point distribution
1030 o ® 12030
1040| o e |2040
1050 2050
N Q
vv

1010| .52 -.48 -.09 .02 .02 -.02 -.02 .10 -.03 -.03

1020 .52 -.09 .02 .02 -.02 -.02 .10 -.03 -.03

1030 .38 -.10 -.10 .10 .10 -.40 .10 .10

1040 .52 -.48 -.02 -.02 .10 -.03 -.03

1050 .52 -.02 -.02 .10 -.03 -.03

2010 ~ .82 -.48 -.10 .03 .03

2020 - .52 -.10 .03 .03

2030 T 42 -.11 -.10

2040 T .53 -.u47

2050 symmetric T .53
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E. Case with n = 8 (minimal acceptable set)

N QVV Scheme of point distribution
1010 .24 -.16 .08 -.33 -.00 .08 .17 -.09
1030 o3 ~.16° -.00-7200 .16 -.38 .19 1010 | @ ° e | 2010
1050 .25 -.00 -.33 -.08 .17 .08 101
1011 .67 .00 -.33 -.01 .00
1051 .67 ,00 -.01 -.33 ° PY 2030
2010 .25 -.17 .08 Lo '
2030 .35 -.17

.26 1051

i — 1050 @ ° e 12050

|
~

F. Two cases with n = 7 (both unacceptable for checking)

N Q.. Scheme of point distribution
1010 .08 =, 1Ib JOE =01 =08 o B T ) 5
1030 -.16 -.31 .17 -.19 .18 1010/ o e | 2010
1050 -~ ,08 -.01 -.08 .17 -.09
1031 .72 -.02 -.31 -.02
2010 .08 -.16 .09 1030|le © e |2030
2030 .49 -.17 1031
2050 symmetric T .09
1050 |e e | 2050
N QVV Scheme of point distribution
1010 .08 -.16 .08 .00 -.08 .16 -.08
1030 .31 -.15 -.00 .16 -.33 .17 1010| @ ¢ |2010
1050 - .08 -.33 -.09 .17 .08
1051 - .67 .01 -.01 -.33
2010 .08 -.17 .08 1030| ¢ ¢ 2030
2030 T .35 -.17
2050 symmetric T 96 1051
e 1050| ® o ® 12050

2.2.3.1.2 Error absorption

Tables 2.2 - 2.5 provide examples of error absorption in the process of
analytical relative orientation. In all cases, vertical parallaxes in all
points have been perturbed with random errors of 0=*0.01 (mm), and in each
case one of the vertical parallaxes distorted with a blunder V=0.05 (mm).
When comparing "geometric weight coefficient matrices" Q,, as given in
2.2.3.1.1, one can see that the last ones govern the extent of error ab-
sorption. The aim of tables 2.2 - 2.4 is to illustrate how the blunder

V=50 virtually disappears as a result of error absorption, and nevertheless
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is rightly indicated by applying (2,13) - with the natural exception of
case 2.3 with r=1, Table 2.5 indicates that a point with a relatively

large ''geometric weight coefficient" resists error absorption.

In all tables, 9 is computed. An F-distribution test at significance lev-
el of 0.05 failes only in two of these cases. This indicates another time
that testing the reference variance o is unsatisfactory for blunder de-

tection purposes /17/.

Table 2.2
Point distribution: "E" in 2.2,3.1.1 or in table 2.6
Right side y of point 2010 distorted by 0.05 mm
N v vQq.. v
ii
1010 .O0u .49 .009
1030 .00k .56 .007
1050 .001 .50 .001
1011 -. 018 .82 -.016
1051 -.005 .82 -.006
XXX 2010 .008 .50 .017 <-- max abs
2030 -.004 159 -.007
2050 . 005 a1 .009
0051.8102
oo/o <<F.05,3’m (1.0<<2.6)
Table 2.3
Right side y of point 1010 distorted by 0.05 mm
N v Vais &5 Scheme of point distribution
xxx 1010 .00k .28 .013
1030 -.007 .56 -.013
[ ] [ ]
1050 .O0y .28 .013 1010 2010
2010 -.00u .28 -.013 <-- max abs
2030 .008 156 OS]
2050 -.004 .28 -.013
5 E T 1030 (e ® 12030
02/02<< F (1,7<<3.8)
o 05,1, ' L
1050 | o ® | 2050




Point distribution:

"B" in 2,2,3.1.1 or in table 2.6
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Right side y of point 1010 distorted by 0.05 mm

XXX

1010
1020
1030
1040
1050
1011
1021
1031
10u1
1051
2010
2020
2030
2040
2050

.027
-.022
.002
.005
-.003
-. 025
-.003
.001
.014
-.002
.003
.013
.003
-.006
-.004

Point distribution:

Va. .

11
.619
.831
.848
.849
.631
.842
.948
.924
942
.841
.643
.876
.834
.857
.647

g =*.015

"E" in 2.2,3.1.1 or in table 2.6

v

.0ou3
-.026
.003
.005
-.005
-.030
-.004
.001
.015
-.002
.005
A@iL5
.003
-.007
-.006

<-- abs max

(2.3 > 1.8)

Right side y of point 1051 distorted by 0.05 mm

XXX

1010
1030
1050
1011
1051
2010
2030
2050

v

-.001
-.006
-.012
.008
.031
-.007
.006
= . [OME

14
.49
.561
.498
.816
.817
.500
. 591
.OiL 1

o =%.023

02/o2> F
O

.05,3

(5.3

-.002
-.011
=402
.010
.038
-.014
.010
=.i037

<-- abs max

Table 2.4

Table 2.5
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2.2.3.1.3 Comparative effectiveness of different ways of blunder detection

A series of numerical relative orientation examples has been computed with
simulated data. Table 2.6 summarizes the results of 400 of them. There have
been chosen 5 different characteristic point distributions (columns 1 and
6). Within each distribution, '"rounds" of experiments have been computed,
each round with a different value of a blunder (column 2). In table 2.6,
each round is represented by one row. Within each round, n relative orien-
tations have been performed (with n the number of points in the correspond-
ing point distribution), and each time distorting the right side y" of an-
other point by the corresponding blunder. Other points have been distorted
by normally distributed 8y" errors with a standard of *0.01 mm, After the
closing iteration, the points with max |v| , max |v™|, and with max |v|
have been found, and mistakes in indications of the blunder counted. Columns

3 - 5 of table 2.6 contain the results.

While the indicator max |v| shows no mistakes above a corresponding blunder
level even in the case with n = 8 points (column 3), the indicators in col-

umns 4 and 5 need 15 points for the same safety in blunder location.

Table 2.7 contains detailed results in one of the experiments participating
in table 2.6 (n = 10, even distribution of points). Point 1010 in the corner
of the model has been distorted. But because points in the corner possess
very large ''geometric weight'", they influence the adjustment strongly, and
past the adjustment show small residuals. In the case considered, the maxi-

mal |v| occurs in point 1020. - Similar situations occur in all experiments

within this point distribution pattern, when distorting one of the corner

Roints.

Checking max |v~| causes still more troubles because residual dependence

plays an important role in this case, as well.

No problems are accounted when checking max l;l.

Table 2.8 contains detailed results for the experiment within point distrib-
ution "D", where the indicator max |v| failed in locating a blunder of uc
(table 2.6). This is an example illustrating the danger of high dependence
of two residuals. The corresponding submatrix of vi is singula® (2.2.8.1.1,
"D'"):

5 0.38 —o.uo\ .

1030—2030:'-0.40 0.42
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Table 2.6
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Table 2,7
Right side y of point 1010 distorted by 0.10 mm
N v vq. . v
ii
xxx 1010 .029 481 .061 <-- abs max
1020 -.041 .793 ~-&051
1030 -.000 .807 -.000
1040 .009 .816 402
1050 .003 .504 .006
2010 -.016 . 523 -.030
2020 .007 .850 .008
2030 JO15 . 784 .019
2040 .015 . 825 .018
2050 -.021 .526 -.040
Table 2.8

Right side y of point 2030 distorted by 0.040 mm

N v Q% . v
1010 .007 728 .009
1020 .000 .723 .000
1030 .01k .615 -.023 <-- abs max
1040 .008 .725 .011
1050 -.002 .725 -.002
2010 -.010 .725 -
2020 .003 .725 .00k

xxx 2030 .01 647 .022
2040 .005 27 .007
2050 -.014 .727 -.019

2.2.3.2.1 General processes of blunder detection in programs

PHOTO and MODEL

Formal errors in recorded data, differences of repeated readings, and film
deformation are checked in program PHOTO. This program contains a prelimi-
nary checking of data amount (for relative orientation and model connection),

as well. All further checking is performed in program MODEL.

Blunder detection in relative orientation is performed in two connected
processes: one of data amount and distribution checking, and second of
applying (2.13) to (1.21). Each time, when a point has to be excluded, the

first process is repeated before continuing the adjustment.

After the adjustment, vertical parallaxes in all "other" points (not having

participated in the adjustment) are compared with a fixed tolerance inde-
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pendent of the point's location.

Model connection is checked in a theoretically similar way. Beside pass-
point distribution and discrepancies in passpoints, parallelity of the
corresponding axes of model coordinate systems is checked. This last check-

ing results in warning messages.

(2.13) is not applied in strip homogenization as blunders have been exclud-
ed in the processes of sequential model connections. Discrepancies in pass-
points past strip homogenization are compared with tolerances independent
of the points' location. Rejected points do not appear in the output file

of strip coordinates.

Angular corrections determined in the process of strip homogenization are
compared with suitable tolerances, as well. This checking results in warn-

ing messages.

"Intermediate'" and "final" tolerances are applied. Intermediate tolerances
are relevant to processes such as preliminary model connection by shifting
and scaling, while final tolerances apply to the final coordinates past

strip homogenization. Naturally, intermediate tolerances have to be some-

what looser.

Final tolerances in PHOTO and MODEL are a uniform system based upon a single
accuracy characteristic t of photogrammetric measurements (upon the standard
accuracy of measuring vertical parallaxes, as specified in input data). Some
options of the programs make interference with this system of tolerances

possible.

The whole system of tolerances is in the first line empirical, and evolved
in the process of some 12 years of application in widely varying circum-
stances. The following notes can be given on the most important elements

of this system:

a/ in the practice, t is chosen between 0.010 and 0.015 mm-s; when work-

ing exclusively with signalized points, t can be chosen smaller;

b/ deviations of repeated readings of image coordinates (or of readings

transverted to such coordinates) from their mean are kept within * t;
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c/ § in (2.13) for relative orientation is taken for 3t;

d/ the "final" tolerance Hyy for checking Y model coordinate discrepan-

cies in passpoints is determined as follows:

In recent decades aerial photography for mapping purposes became highly
standardized with regard to applying image format 23 x 23 cm2, and a camera
constant of 152 mm. This explaines the general belief according to which the
accuracy of determining horizontal coordinates of terrain points, when ex-

pressed in the scale of the photographs, yields a measure of photogrammetric

performance suitable for comparisons. However this is not the case, it pro-

vides good starting for most purposes.

Experience indicates that Hyys expressed in the scale of the photographs,
is depending upon the image scale M (fig. 2.1). This has many reasons of
quite different nature, nevertheless it has to be taken into account. There-
fore the tolerance for checking Y model coordinate differences is determined

in correspondence with Hyy in fig. 2.1:

= 3t (1 + (M - 3000)/15000)
(2.18)

Hxy

where M is the denominator of the
photo scale; if M < 3000, it is
taken for 3000.

e/ model coordinate discrepan-

|
|
|
|
|
; |
| |
I I
cies in Z are compared with a'fi- |
- L A 4 M
0

" C —
nal' tolerance uZ determined as 3000 10000 20 000
e Fig. .2.1
MZ: 5=t (2.19)
p

where p is some typical value of the horizontal parallax.

In special cases, U and Ho have to be determined manually.

XY
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APPENDIX I

CORRECTING IMAGE COORDINATES FOR SYSTEMATIC ERRORS

I.1 Film deformation

In case of side fiducials, a linear affine transformation takes care of

the task.

Corner fiducials control better the entity of the photograph, allowing a
more complex way of handling film deformation without the dangers of extra-
polation. The hyperbolic affine transformation described in /9/ has been
applied:
X, =X
211 34y B3 X%y
351 39 Bpg | | 7171 4%
(X=X )(Y,-Y,)

=

(I.1)

where X:o¥s denote the measured image coordinates,
Xi’Yi the corrected image coordinates, and

a1173,5 the coefficients of the hyperbolic transformation.

It has to be emphasized that this transformation corresponds to a linear

interpolation of film deformation along straight lines (!).

Index 1 refers to the first fiducial. are determined by solving

8117923
two systems of linear equations with 3 unknowns, based upon (I.1) written
for fiducials 2-4 separately in x and y, and substituting calibrated (la-
boratory) coordinates for Xi and Yi' All other points are transformed then

by (I.1) applied in two stages: first determining the approximate values

of corrected image coordinates Xz, Y? by using just 3117 359 and then
counting the hyperbolic corrections (in program messages: the '"torsion'")
GXt and GYt as
o o
6X, .= a, (X;- X, )(Y.;-Y.)
ti 1371 1 1l (1.2)

= o_ o_.
GYti— a23(Xi Xl)(Yi Yl)

Program PHOTO provides statistics of film deformation for each strip in
terms of "affine deformation'" and the "torsion" mentioned before (see
Appendix II). Denoting by S the side length of a photograph, these deform-

ation characteristics are determined as
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2 2

Ayq™ 339
affine deformation = ( p——— = 1) S (I.3)
21" Dp
torsion in X = 82
- %3
torsion in Y = a2332 (I.4)

For each strip, systematic, random standard, and maximal random statistics
of the above deformation characteristics are determined. Both these statis-
tics, and the individual values of deformation characteristics, are compar-
ed with suitable tolerances. Special attention is due to the values of
systematic torsion in X and Y providing fine indication of the mechanical
stability of the camera itself. Oscillations in individual torsion values
indicate, generally, fiducial reading errors. Affine deformation is rela-
tively susceptible to changes in circumstances and therefore less reliable

for checking purposes.

(I.1) is applied in the process of joining readings of one and the same
photographs in two positions in stereocomparators, as well ("left-to-right
position transformations"). Statistics of these transformations provide an
extremely reliable mean of checking fiducial readings of all intermediate

photographs of a strip.

I.2 Optical distorsion

Only radial distorsion is handled. The corresponding formulas /13,14/:
r = 4 %%+ y2

r = r + 6r
c

> €I.5)

§r = r(c1+ c3r2+ csrq+ c7r6+ r(a-sina + b.cosa))

r(c.+ c r2+ c ru+ c
il 3 5 7

"

O+ a*y + b+x) J

where x,y denote image coordinates, coefficients a,b,cl - ¢y describe
optical distorsion, and index c stands for '"corrected"; a is the direction

angle of the vector pointing to the point.

I.3 Atmospheric refraction is corrected as described in /9/:
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2410 H 2410 h h -6
K = = 5 - —-10
H -6H+250 h™-6h+250 H
2 (I.6)
r
rc= K (1 + —5')
(o

where H denotes the flying height, and h the terrain height, both measured

in kilometers above the sea level.

I.4 "Earth curvature'" is no systematic error of image coordinates (as it

often is treated) but a basic difference of the photogrammetric and of the
geodetic coordinate systems. Therefore "Earth curvature' is not relevant

to the processes of relative orientation and of strip formation.

APPENDIX II

Example of a REPORT file of programs PHOTO and MODEL

REPORT is an output file containing messages and statistics.

/see the next pages/



3P OBS VIS HOHE WAND ®°® 78,11,07 PPPEsTPSEIUITIIIIIIPTIUINTIITIRUIOET Y

INITIAL DATA FOCAL LENGTH = 152.67 MM

FLVING HEIGHT 3500, ™
TERRAIN HEIGHT 600, M
TOLERANCE «015 MM

STRI? 1
INPUT MODEL 61

INPUT MIDEL 62
INPUT MIDEL 63

STATISTICS OF LEFT-TO=RIGHT POSITION TRANSFOPMATION

STANJARD FIDUCIAL READING ACCURACY <0046 MM (REDUNDANCY= 2&)

SYSTEMATIC (MM} STANOARD (NMD MAXIMAL-RANDOM (MM)

TORSION 1IN X <802 «007 «035 (PHOTO 63)

INY <802 <017 =.012 (PHOTD 63)
AFFINE =e0N6 <013 -,002 (PHOTO 62)
PHOTO 62 POINT 161

JUT OF & (REDUCED) REBCINGS AT LEAST 1 ERRONEOUS?
115,37% 65,518 <-=
115.389 650569
115.375 65.574
115,375 65574

PHOT3 5£3 POINT 161
OUT OF 6 (REDUCEO) RFADINGS AT LFAST.2 ERRONEOUSS
36.922 76,805 <=o
36.925 76,850
36.911 76.855
36.911 76,0855
36.890 76,850 <=-
36,902 76.839

PHOT) 63 POINT 6370
JUT OF & (REOUCED) REACINGS AT LEAST 1 ERRONEOUS!
118,004 91.00% <==
109.99¢ 91.0822
109.99% 91,0833
109.995 91,028

PHOTO BY PHOTO PROCES3ING

PHOTO 61
PHOT3 62
PHOTO 63
PHOTO b4

STAKDARD READING ACCURACY ON THE STRIP = ,006% WM (REOUNDANCY= 66)

e 2 o

STATISTICS OF FIDUCIAL TRANSFORMATIIN

SYSTEMATIC C¢MM) STANDARD (%M} MAXINAL-RANDOM (MM)

TORSION 1IN X 005 008 =¢010 (PHOTI 64&)
INY «.026 «01% ~e 021 (PHOTM 64}
AFFINE <0190 .007 =« 009 (°HOT) 66}

STRI? 2

INPUT MJIEL 27
INPUT MODZIL 28
INPUT MJDEL @9

STATISTICS OF LEFT=TO-RIGHT POSITION TRANSFORNATION

STANDARD FIOUCIAL READING ACCURACY <0037 MM (REOUNDANCY= 6)

SYSTEMATIC (MM) STANOARD (W) MAXIMAL=RANDIN (MM)

TORSION IN X <002 «01% «019 (PHOYD 29)
. IN V¥ =.003 «005 <003 (PHOTO 29)

AFFINE =.007 «000 =.008 (PHOT3 29

PHOTO 8Y PHOTO PROCESSING

PHOTO 27
PHOTO 28
PHOTO 29
PHOTO 30

STANDARD READING ACCURACY ON THE STRIP = ,0056 MM (REDUNDANCY= 36)

®e® FIOUCIAL READING ERROR, PHOTO 28 = TORSION IN X = QL MM ®°®

STATISTICS OF FIOUCIAL TRANSFORMATION

SYSTEMATIC (HM)} STANDARD (MM) MAXIMAL=-RANCOM (mH)

TORSION 1IN X -.013 -008 «,009 (PHOT) 30)
INY «007 <9019 «022 (PHOTI 27
AFFINE -.0190 . « 015 - 015 (PHOTO 27)

SFTRIP 2 ®%e FATAL ERROR *°%¢

REPORT of program PHOTO

8t



S9es088 86 OHE AAND ®F% 738,11 ,07 PPCSCUIITEIIUINITIINIIIIIIITPINIITIIINIIS
sTRl> 1
TOLERANCES ==

FOR °SMA INJIFR Y-PAPALLAXESS e BUS MM

FOR A00EL CONNECTION OISCREPANCIES IN X AND V8 1.416 MM (= o0557 INCHES)
IN 21 o168 M% (= ,0056 INCHES)
RELATIVE ORIENTATION 61 - 62
OELATIVE ORIENTATION 62 = 63
RELATIVE ORIENTATION 63 = 64
RESULTS ANO STATISTICS
RELATIVE ORIENTATION
PHOTO  PHI IMEGA KAPPA RZ/BX BY/PX RMS OF D.PY
== RAOIANS, (GRADES) == MICRONS- - -
61 @.08000 0.00000 $.00000 «02352 . 06900 9
( 0.08M ( 0.009) ( 0.000) ( 1.¥I7) ( 3.1170
62 .00699 ~. 00129 ~.00066 11400 o 0%618
U .465) ( -.082) ( ~o042) (  700) ( 2.610)
63  .00151 «09899 «00511 +82752 .03631
(  .036) « «572) (  .326) ( 1.751) ( 2.310
64 =-.00317 « 00033 .00726
( =,202) «  .021) ( .462)
MODEL CONNECTION
PHOTOS B8NS X R[MS Y RHS 2 COR. KAPPA COIR. OMEGA
== NIS0NS == == RAOIANSy (JECIMAL SECONOS) ==
61 - 63 3 10 32 .00802 ¢ 12) «000043 ¢ -276)
62 - b4 7 17 22

REPORT of program MODEL, t = 0,015 mm

BSWITISCISSHONHE NAND LR 2 2 70'11.07 AT AT A A A A IS RIS AR RS2 2 AT 2 X RA XX LY 2

STRIP 1
TOLERANCES =-
FOR RFEMAINDER Y-PARALLAXEST «N30 MM

FOR YOOEL CONNECTION DISCREPANCIES IN X AND Y13
IN 2t

el MM (=
«030 MM (=

«0372 INCHES)
<0039 INCTHES)
RELATIVE ORIENTATION 61 = 62

RELATIVE ORIENTATION 62 -~ 63
RELATIVE ORIENTATION 63 - 64

PHOTIS 62- 64 MODEL CONNECTIONS IMPROBABLE SYST, PART IN 2-J)IFFZRINCE>
eee CHECK POINT TRANSFER 1 ---

RESULTS ANO STATISTICS
RELATIVE ORTENTATION

PHOrO PHT OMEGA KaPPA RZ/RX BY/RX RNKS OF Q.PYV
e= RADIANS, (GRAOES) =~ MICRONS
61 0.00000 9.00000 0.00000 «023%2 «0&900 9
( 0.000) ( 0.000) « 0.100) t L.0637) « 3.111
62 « 00699 -. 00129 «.00066 «01100 LR ) [
( o b4S5) ( =082y ( =.0L2) ( «700) ( 2.8100
63 00151 «00899 «00511 002752 «03631 7
{ «096) ( «572) ( «326) ( 1.751) ( 2.310)
6% ~.08317 « 00033 «00726
{ =.202) ( +821) ( «462)
MODEL CONNECTION
P40OTOS RMS X RHS ¥ RMS 2 CORR. KAPPA CORR. OMEGA
=< HISRONS == == RADIANS, COECIMAL SECONOS) =-
61 = 63 3 10 32 00002 ¢ 12) ~.000L3 ( =276}
62 = 6 L4 17 37

REPORT of program MODEL, repeated run, t = 0.010 mm

6h
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APPENDIX III

Abstract of a REPORT file as written by program MODEL. Data are simulated

so to illustrate effects of large errors in x. Messages for models 4 -~ 13
have been omitted here because they refraine those for the first models.
(Past the '"fatal error'" message the program runs further in a checking mode
of operation). The column of "RMS of d.py" (RMSE values of remainder verti-
cal parallaxes) indicates that the normally distributed errors of a standard
of #0.1 mm, introduced into the x image coordinates, did not influence the
accuracy of the relative orientation (y image coordinates have been perturb-
ed with normally distributed errors of a standard of #0.007 mm). However,
processes of model connection indicate these errors both in Y and Z. The
errors totally disappear in X model connection discrepancies (see Appendix

V).

/see the next page/



s0sss95005q

STelP 1

Y TRRCk STANDARD 04907, ¥ ERROF STANNARD 0.1 MM®s®esssvsssavs

TGLFFACES ==

FOC 9FEMATIUER V-PANALLABXES?S eud0 Mt

FIc 4OCFL CONNERTION NiSCREPANCIES IN X AND Y3 «0G53 MM (= .0020 INCHFS)
IN 2t .472 MM (= .0UL3 TNCHES)
HELLFIVE ORIENTATION 1 - 2
ELATIVE ORIENTATION 2 - 3
PHRTNS  1- 3 MODEL CONIZCTION: IMPTO3ASLE SYST. PART IN Z-DIFFFRENCES
== CHELK FUINT TOANSFE? ' --=
€HNTOS 1~ 31 2013 FFROP IN TRANSFEF
(UX=  =,iusy CY= .58G, NZ=  1.027), EXCLUDFN
PHLTOS 1- 23 2630 FRRUP IN TRANSFER
(NX=  -.5Liu, NY= 59, DZ=  1.%76), EXCLUNEN
-== CYECK EVEPY FOINT OM FHOTO 8 2 97 —==
CELLTIVE GRIENTATION 3 - &
PHCTSS  2- 41 MUMEEK OF UNEXCLUUFD PASTBOINTS

TNSUFFICLENT FOR MNOFL CONNWECTION
MON=L COMLECTICN 2= L1
CISTPEPLWCIES IN MM BEFORE THE CORRECTINN PPACESS

] ax ay "4
3019 00T -e0 5 -«167 <~= CHECK T.ANSFER
3ied «0C1 ~ei 5% =31,29%7 <=~ CHFCK TRANSFFR
3535 -e2Cy «L16 «213 <== CHECK TRANSFER
Ik L -ol12 ~-e352
2550 «dC1 ~e627 1.153 - <== CHENK TRANSFER

-== CHECKX EVE?Y POINT ON PHOTO ¢ 3 !¢ ==w
STrTP 1t FATAL £RROR *<*

RELBTIVE QRIFNTATION
eHCTE3 - St NUMEFP CF

4 - 5
UNEXCLUNEC PAS3POINTS

INSUFFICLIENT FO® MONDEL CONNECTION
MOCEL COMNNECTICN 3- St

DISCPEPACLES IN MM BEFORE ThE COKRECTIUW PROFESS

N ax oy 524
L1 «ddv “e0l9 <949
“wh2s ~evly o212 <130
Ly 30 .301 ~e039 ~+826 <=~ THECK TRAMSFER
60 &7 «C03 —edul -e1b6k <== CHFCK TRANSFEP
b.50 «dud «827 <=1.78( <=-- CHECK TRANSFER

-== CHECK EVERY POINT ON FHOTO ¢ & 1] =e-

RELATIVE ORTENTAT
FHOTN PHI

1 0.00000
( velGU)

2 «00262
( «154)

3 «N1125
( «716)

4 «U0adl
( «3J03)

S =.00451
{4 =.287

6 201 345
( «ASA)

7 -.Cn2es
t -.172)

8 =.30840
( -.539)

9 =-.00075
( —eb3M

10 -,00355
( -.2206)

11 = .003«b
( -.219)

12 «033C04
( «193)

13 -.01349
( =.6€E8)

MODFL CONNECTION

PHOTOS  RMS X
1- 3 0
2 - & "
3 - 5 I}
b - 6 1
5 - 7 )
6~ 8 P}
7 -9 0
LIt 0
9 - 11 1
10 - 32 ]
11 - 13 1

o § ==

PESULTS ANP STATISITICS

104
oMcGA KAPPA AZ 73X FY/EX  RMS oF
-= KRACIA&NS, (GFANE3) == 1IC-ON
0.000%y 0G.01070 e (S0 «ful?9 7
¢ G.0u0) ¢ 0.0uv)  3.183) ( JNany
<01 %w? -.00% 6 ~.y3971 «CLC7 2
( <8700 { =-.583) t =6.227) ( ol W)
-G GIATT AR <0517 «0CCT3 8
{ -.018) ( +213) ( 3.723) ( o 21
-s017%87 .u01G9 «Lvi52 -ofy 303 9
{ =-.682) ( «126) ( «u33) ( =.n35)
.0082C =.0u0J82 - 04332 NeIgh 9
( «520) ( =ed"?) ( =7.137) [§ =P
euiub7 -.lu2L0 «1ls 63 ofdb7 9
[ «B6/73) { =e13u4) ( 6fe.372) ( «lw3)
-.ut2ne -«"ilbo -ofWa™3 ~.01N33 1?2
{ - 765) ( ~e723) ( =%.163) ( =«fud)
«J1b7y «3.130 NS R4 R B »
( <329 ( «72%) ( ta11) § 3050
~ewuU15¢ -.00970 ~.0Q3L6 «Lunc2 1
( -« C95) { <590} ( =h,311) { «N1wd
-+ 11353 «0uB8 o ®) 32 -7 &
( =-.8%1) ( <5331 ¢ J.cin) ( <t
-«C090 .00223 JLEuEY LR IS 6
{ =<592) ( =142) C 3.2:% ( =.326)
Y «u(592 ~.04235 -e03M 33 a
( «132) ( <377 ( =3.139)  =.024)
«00695 -. 01518
( e4i3) ( =.966)
RMS ¥ RMS Z CURR. KAPPA CORE, NMqTn
MICRONS =~ -~ RELIANS, (QECIFAL SETINCS) --
35 24€ ue0:Cuu ( 0} dJeCtGud )
2" 1738 [NV VI S o | Sevtud"™ i
ieo 1ol r.3.0"C € M) feluvulfe w)
36 obi Velbuull0 ¢ ™) PefLlie *)
37 55 Geddurew € 7) vellits ( (W]
109 by veul®NO T M) (LIPS VRV RN § R
2 3w Veluedd ¢ 0O VeulNLy ( )
29 112 Ueglivdl ¢ M C.200n3 ¢ ce
217 473 0.33uwlu € 2} vwebulud ¢ b
82 183 9,J00350 ¢ ™) A sty & »
582 972
) J

—~
No strip homogenization performed
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APPENDIX IV

SECOND SYSTEM OF FORMULAS

The expressions derived in chapter 1.2.2.2 can be transverted into functions
of the right side photograph of the normal stereogram to be constructed.

Considering (S”SSM) in fig, 1 provides a key to this transversion:

0 B B
y z
x% y"t -c =0
" n o
Kyl c
or
(x{ys - x0y}) tant + (x} - x!) tanv = O (Iv.15)

Adding (IV.15) to (1.5):

" - n
ytpxo xtp

S YO tant + P, tanv - py =0 (Iv.16)
where
Pyt X'~ X
Boo o g = O
By y'- S

(1.7),(1.9), and (1.14) after some elementary steps can be rewritten as

n - N
ythO ti

yg = y!t': + S NAS tant + pxotan\) ( Iv.17 )
y'"p. - x"p
t XOC tFyo tant + Pxotanv - py = v (Iv.18)
p
X = x%(l + —%9 tant ) (1Iv.19)

where P,, can be computed as

P, ——onw — (1Iv.20)
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(1.2) and (IV.18) yield the correction equation. The linearized form of

it is:
y"2 X”y” y”p - X“P
i __tt o t"xo t'yo _ 1oty =
(ct - )Sw = S+ xtGK + S tant + p__tanv (y yt) v
(Iv.21)
o . R — ;
The coefficients in (IV.21) contain X{s Yis Pyoo and pyo’ the precise

value of which becomes known only in the last iterations ((IV.21) is a

recursive expression).

For the x-direction - for purposes of further analysis - the following
expression can be written, analogous to (IV.21):

XH H x|'2 x”P
——CLw+ (C+T)¢ + y'" +

X0

tant + R = §p_ (Iv.22)

where R is the sum of non-linear terms in the expansion of (1.2), and

APPENDIX V

X-discrepancies in passpoints

Differentiating the first row of (1.24) for the model S'S":

B B
1) = X = X PRI T
d(x")=d( XTxT =z ) (xfdx"-x"dx}) (v.1)

2
Pxo

'
t

Repeating the same for the model S"S"';:

B B
"y - X 1" - X ”" "ne _ mt 1"
da(x )-d(—zF:;gT Xt) B (xtdx.O x! dxt) (v.2)
Pyo

The difference of (V.1l) and (V.2) expresses the discrepancies in X model
coordinates when substituting corresponding values for photo coordinates.
Using the notation p for some typical value of the horizontal parallax,

the following can be written for passpoints common to the above models:

x% ¥ p

L I T
x0 o= x! =0 (v.3)
x"' = -p
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With these, (V.1) and (V.2) become equal to each other:

B
d(x') = =2 ax" = d(x") (V.4)
D t

meaning that their difference is equal to O. For normal stereograms this

can be seen geometrically in fig.l1l.2. The above deduction proves that this
peculiarity remains in strength for a general case, as well. For grid points
this is the exact truth. In practical cases this is a strong tendency (as-

sumptions (V.3) are not exact in practical cases).

Appendix III contains a REPORT file of MODEL, illustrating the above de-

scribed peculiarities.

It is quite interesting to note that discrepancies in x disappear not only
in the process of relative orientation but in the process of model connect-
ion, as well. Such errors influence, however, the values of Y and Z via
distorting the horizontal parallax. This can be seen in the second and

third rows of (1.22), and very apparently, in Appendix III.

The conclusions of this appendix are meaningful for the theory of block

adjustment of independent models. When (V.4) is valid, observation equations

written for the block adjustment in X have to be given a high weight. In
other words, (V.4) justifies a weighting in favour of strip continuity.
(v.4) is valid when measurements of points belonging to one and the same
photograph are checked and averaged before entering the process of relative

orientation. This requirement is fulfilled in program PHOTO.

APPENDIX VI

Y-discrepancies in passpoints

Differentiating the second row of (1.24):

B
e X leaoraqeny - Y b :
dy 5 (2(dyt+dyo) B (dxt dxo)) (VI.1)
X0 X0
where
1] "
_ yt * yo
y = 2

(1.2), (1.21), and (IV.22) yield expressions for dx' dy%, dxg, and

t,
",
dyo.
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2
n <! . % . . :
dxt —Exdw (ct —E_)d¢ y'dk

2
dyi=(ct Xé—)dw'- EéZld¢'+ x'dk’
g, !12 X”P g (VI'Q)
dx"= Xy dw"-(c+ X )de'"-y"'dk" ~ _Xod,[.n
(o] C, (& ©;

"

2
" MMt
dy!'=(c+ T—)du'"- 2T dp"+x"dk"+ —2—dt"4p __dv" :

For the triple overlap zone in fig, 1.2 we can assume:
x' = pj x" = 03 x"' = -p (VI.3)

where p corresponds to some typical value of the horizontal parallax. With
(VI.3) one can wright expressions for the right side of model S'S" and

for the left side of model S"S"'. The difference of these is the full ex-
pression for discrepancies AY in passpoints. It contains, however, parts
which become absorbed in connecting the models by (1.23). Excluding these

constant and linear terms, we gain:

2,1 du"'- de' | 1

- = mey ”n 1
AYa- Y (Z 5 t 5 (dk 2dk"+ dk')) (VI.u)

where the index '"a'" stands for "asymmetric". Taking into account that

dw"'-de'=(dw""'-dw")+(dw"-dw"' )=0w' +Aw"
and (VI.5)
dK" 1 —QdK"‘de':(dK” 1 ‘dK”)-(dK”-dK' ):AKH_AK'

(VI.4) can be re-written in another form:

_ y2,1 hw'+bw"
s Vg —a—

. + % (Ac"=Dk ")) (VI.4")

APPENDIX VII

Z-discrepancies in passpoints

Differentiating the third row in (1.24):

BXc
dz = — (dx!-dx") (VII.1)
2 t o)

X0

(VII.1) is an expression of the well known hyperbolic paraboloid, With
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(VI.2) and (VI.3), and excluding constant and linear terms, an expression

for AZ discrepancies in passpoints can be written:

AZ = YZ(% (dw"'-dw') + % (3" -2dK"+dk 1)) (VII.2)

Taking into account (VI.5):

AZ = YZ(% (Aw'+Aw™) + %(AK"—AK')) (VII.2")

APPENDIX VIII

Derivation of Qvv for the case of indirect observations

Ax =1 +v =1 (VIII.1)

v=1-1=28ax-1

The solution of the corresponding normal equation
system:

. T =y, =2, T =1
x = (A QllA) A Qlll

T -1,.-1,T. -1
= (ACA -
v = (A( QllA) A7Q "Dl
_ R e e i We-1, J1 ST =2 T
QVV—(A(A QllA) A Qll I)Qll(A(A QllA) A Qll 1)
_ _ T
Qll AQxxA (VIII.2)
Taking into account (VIII.1):
_ i
U= B, A
Qv™ Qp- 3 (VIII.3)
APPENDIX IX
Proving that 02 = %'VTW;
Notations: Q = diag vi
= i

=|
"
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—T— _ T=

vvzvWyv
= [
= (Ax-1) W (Ax-1)
= x ATWAX-1 TWAx-x A Wl+1 W1
= T aTHAx-2x A TW1+1 WL
as xTAT: lT+ VT:
= xTATWAx—2(1T+vT)W1 + 1T
= xATWAx - 1TWL - 2viWl
T T
as vlz=yv (Ax—v)=(xTAT—lT)Ax—vTv
= xTATAx - lTAx - vTv = —vTv
(as ATAX = Nx = ATl)
vTﬁl = —VTWV (IX.1)
* WA = 1+ e (1X.2)
T & R 1 = A (IX.3)
_ 5 -1
W=o0 T - (IX.4)

where I denotes the corresponding variance-covariance matrix taken for

diagonal.

E VTVJ 2 EE;TWﬂ: cg El:va—l\J (IX.5)

On the basis of (IX.3), (IX.4), and (IX.5):

[ -l =1 -1
E vT): v] E[lT); l:I— E[XTATZ Ax:’

as for symmetric R x'Rx = tr(xx'R):

E [tr'(lle_l)] - E [‘cr(AxxTATf—lﬂ

with 1 = 1 + v = Ax:

-1 veT] —
tr(E[llTJz )—tr(E[llT]E l)

Tl _ T,
as E I:MMJ —ZMMﬂJMuM'

T,="1 : T\—1
tr((le+ulul)Z )—tr((21i+uiui) )
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T="17 _ -1 A
E[v T v_J = tr((zll—zii)z ) + tr((ulul Hyu

(IX.6) with (IX.7), (IX.8), and (IX.6):

Tk _ =1
E[V b ﬂ— ‘tr((le zﬂ)(zll Zii) ) +
T.10 T, T\="1

tr((AuxuxA Au_n

(IX.5) with (IX.10):

E[?Té] = n02
o

which yields the expression sought:

==
v'v

Q
"
S

and, when Qll# ILH

2 = Sols o 1 T
o 2" <117 " n

Proving that Q;f= (Q+)—l

J

where Q;f= I+ AiQ;xAi

e o # LT
Q=1 - AR Ay

Both fo and Q+ are counted for a group of k points, with k<r (r - the re-

A)Z ) = tr(I) = n
X

(IX.6)

(IX.,7)

(IX.8)

(IX.9)

(IX.10)

(IX.11)

(IX.12)

APPENDIX X
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dundancy) . Ai indicates the corresponding observation equations (k rows

within A).

fo and Q+ are k x k matrices.
RV s (X.1)
XX
Q" = (aTa - aTa )7t (X.2)
XX 1 1@

The difference of inverses of (X.1) and (X.2):

+ (-1 - -1 _ T
(Qf )™= (@ )7 = A,
: " = . + T
Multiplying from the left by AiQxx’ and from the right by QxxAi’
ST i T - = AT + T
830 A 8% A (AiQxxAi)(AiQxxAi)

Adding the unit matrix to both sides, and rearranging:

I +A.Q AT - a.Qt Al - (a.Q” aAD)(a.qQ" A
1 XX 1 dg XX L i XX e 1 XX 1

H
"

- T + T
(I + AiQXXAi)(I - AiQxxAi)

H
"

Multiplying by (I—AiQ;XAI)_l yields the sought expression (this inverse

generally exists because k<r):

or

- T _ T.-1
I +AQ A: = (1 AiQXXAi) (X.8)

(X.1)
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