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SUMMARY 

A new mathemat ical procedure is suggested fo r relative orientation of  
aerial photographs. The procedure is  theoretically interesting , prov ides 
a simple geometric mean ing of  res iduals , it is effective in execut ion , 
and suits advantageo us ly the subsequent pro cesses of mo de l connection 
and strip homogenization . 

A process of  strip homogenization is propo sed to be so lved s imultaneo usly 

for each strip fo llowing the relat ive orientat ion of  photographs and 
pre liminary mo del connection . The process  is mathemat ically simp le , and 
prov ides advantages simi lar to those of a triplet triangulation . 

The concept of "geometri c weights" is intro duced into the theory o f  
adjus tment computat ions .  This concept fac ilitate s greatly the geometric 
unders tanding of adjus tments . It is very important in network planning , 
and in processes of  blunder dete ction . 

With the help of  the geometric weight concept, the interre lation o f  
different technics o f  blunder detection is  treated (B aarda, Kraus , Ste fanov ic )  . 

In this , relationships of  eminent theoret ical and pract ical importan ce have 
been introduced . 

The res ults of  theoretical investigations are realized in the system 
of two programs PHOTO and MODEL . These programs are the mo st current 
stage in a process of 14 years o f  research  program development , and 
of production application . 
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INTRODUCTION 

Programs for relative or ientation an d mo del conn ection (str ip format ion ) 
are bas ic pieces of appl icat ion software in analyt ical photogrammetry . 

They should be systemati cally updated .  This is no t always done because 
present day computation al co sts are low wh ile the creat ion of new 
software is expen s ive . The result is a tendency towar d techn ical 
con servatism wh ich is manifested in the use of far outdated pro grams 

by many photogrammetr ic organizations .  

Requirements for more un iversal programs fo llow from the application o f  
the same aer ial triangulation software for diverse purpo ses in diverse 
areas spread over continents . This occurs by intern ational firms or in 

the case of softw re purchase . 

Blunder dete ction is one of  the main tasks of applying di fferent iated pro
cesses of analytical aer ial triangulat ion as a preparatory stage to a 

final s imultaneous adjustment . This is important in both technical an d 
economical respects. The task of blunder detection an d 
elimination in the processes of relative orientation and str ip format ion 

can now be so lved satisfactor ily by applying the n ewest developments in 
least s quares techn iques , an d by refin ing the differ entiated analytical 

processes themselves , so to be able to cope with " small blunders" 
e ffectively . 

At the same time , refined different iated pro cesses yield better preliminary 

coordinate s for the fo llowing s imultaneous adjustment . When applying a 
block adjustmen t of  mo de ls" fo llowing these re fined 

processes , one can replace strip section s for models . 
As practice indicates , no not icable accuracy decrease occur s when using 
section s of two mo dels , an d accuracy decreases just s light ly when us ing 

section s of  three models . Adjustment of  section s rather than single 

mo dels can be performed with computat ion times drastically decreased /20/ . 

There is  an in creasing in terest in.an alyt ical plotter s these years  . A 

wider spread of  this technique in photogrammetr ic product ion will mean 
strong demand in improved software . 

All these po in ts make the old , out of  fash ion subject of  analyt ical 

relative orientation an d strip formation a current issue . Con s idering 

it is div ided in th is work in to two interrelated parts . The first one 
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with theoreti cal and practi cal questions of mainly photogrammetri cal char
acter , and the second one belonging more to the realm o f  adjustment 
computations an d featuring questions of  blunder dete ction and elimination . 

The theoreti cal and practi cal point s treated in thi s report are realized 

in a sy stem of  the two programs PHOTO and MODEL . These programs are the 

mo st current stage in a long process of res earch , program deve lopment , 
and of production application ( 3  independent ALG OL version s in Hungary , 
19 6 5 - 7 2  ; completely new FORTRAN programs in the U .  S. , in two versions ,  
197 5 -7 7  ; and the current , comp letely re-written and nearly doub led in 
si ze FORTRAN programs running on the CDC Cyber 7 4  of the Techni cal 

University of Vi enna , Austria ) .  PHOTO and MODEL mat ch the requirement s of  
mas s  production in analyti cal aerial triangulation. 

1 .  PH OTOGRAMMETRIC ASPEC TS 

1 .  1 +)General of  the in the 

1 . 1 . 1  Data registered on stereo or monocomparators are preprocessed by 

PHOTO .  The aims of the processes invo lv ed are: 

- formal checking , 

- determining image coordinates corrected for sy stemati c influences 
( fi lm de formation , re fraction , and optic al di storsion ) ,  

- prelimin ry checking of  data sufficiency . 

Not es on and formulas of  taking into ac count sy st emati c image coordinate 
errors are giv en in Appendix I .  Appendix II . contains an ex ample of a 
REPORT fi le . 

Photographs may be read in any arbitrary position (po sitiv e or negative , 
emulsion up or down , arbitrary kappa ori entation ). All these cases are 

universally converted into some common cas e determined by the element s of  

interior orientation of  the camera (fo cal length , x and y di splacements of  
the proj ection center , calibrated fi ducial coordinate s  and di stortion 

+ ) Although the FORTRAN text of the programs is  now more than 3500 cards 
lon g ,  their structure is suitable for overlaying .  Therefore they can be 
adjusted to computers as small as a DEC P DP 1 1-34 . 
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coefficients ). The choice of the coordinate system for interior 
orientation influence s the sign of the elements of relat ive orientat ion and 

of mo de l (strip ) coordinates yielded by the procedure. 

Working with stereocomparators , the photograph read in right side po sition 

for one mode l is read again in left side po sition fo r the next model  . These 
readings are combined by taking the fiduc ial readings in the right s ide 
po s ition as bas is , and transforming the readings in the left s ide po s it ion 
by the formulas applied later on for fiducial transformation. This process 
of " left-to -right po sition trans format ion " offers a safe way of blunder 

detect ion in fiducial reading s. The combin ed readings are then transformed 
applying the calibrated coordinates of fiducials or some replacement for 
them. Statist ics of  these "fiducial transformations "  yield characteristics 
of film deformation of photographs within each strip . 

1 .  1 . 2  Program MODEL performs the fo llowing major processes: 

- re lative orientation of photographs , 

- mo de l connection (strip format ion ) ,  

- po st -proces s ing of each strip to refine homogeneity , 
- printing tables of stat ist ics. 

Details on these processes are to be found in the next chapters . 

1.2 Relat ive orientat ion of 

1 .  2. 1 Rev iew 

From a purely mathematical po int of v iew it is certainly impossible to show 
decisive advantages of one properly applied way of relat ive orientat ion 
over another. There are , however , other respects influenc ing a cho ice . In 

this sense the fo llowing advantages are inherent to the metho d described 
below: 

- photogrammetric obviousness of the geometry and of residuals , 
- easy of strip formation , 

- geometry cons istent with the post-proces sing stage , 

- simplicity and effectivness of the linearized correction equat ion. 
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Changing the spatial po s ition of the right pro j ect ion center is the ma in 

geome tric peculiarity of this method . In this way a new side 

is constructed wh ich forms a normal stereogram with the left 

photograph . The position of the preceding ( left s ide ) photograph is not 

changed within the process of relative orientat ion ( this la st moment 

being common with the widely spread method of Shut / 1  / ) .  

Such geometry of re lative orientation has a rich past in the Russ ian 

photogrammetry . Thechnologies presuppos ing the pre sence of a highly 

developed opt ical indus try were not acceptable to Rus s ian photogrammetrists 

in the early 1 9 30 - s  . The solut ion is due to Drob ishew who constructed 

the famous stereometer . Stereometers are portable photogramme tr ic in 

struments , theoretically based upon analyt ical re lative orientat ion and 

solving the corre sponding equat ions for x-coordinates by correction 

mechanisms . The mechan isms have to be set to the elements of re lat ive 

orientation . And this is the point: such elements were determined by 

computat ion , based upon stereocomparator measurements . The corresponding 

s imp lified theory and procedure were created by Zhukow . Th is so lut ion 

resulted in a mas s  production in analyt i cal photograrnmetry as early as 

the middle 19  30-s / 2 /  . Numerous refinements of the Zhukow procedure have 

be e n  publi shed later in the Russ ian phot ogrammetric literature . 

Unl ike the se methods the relat ive or ientat ion procedure de scribed here 

is thought to be applied in modern computer pro grams , and there fore it 

does not contain any neglect ions . 

As to a clas s ification of methods of relat ive or ientat ion one could 

sugge st to di fferent iate between those methods determining the spat ial 

posit ion and orientation of the original bundle s of rays ( c  lass 1 )  , and 

those construct ing normal stereograms ( c  las s  2 )  . In both case s  it is pos

s ible to fix the origin and or ientation of the mo del coordinate system to 

the base , as done by Lobanoff for the first class of methods / 5 /  , and by 

Urmajew for the second / 1  0/ ; or to fix the origin and orientation of the 

model coordinate system to the left photograph , as  done , for the first 

class of me thods , by Shut /1/ and Jerie / 3 /  , and by the method 

de scribed in this work for the second clas s .  This last case involves the 

creat ion of a third bundle of 
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1 .  2 . 2  Deduction of equations for re lat ive orient at ion 

The der ivation of ne eded formulas is divided here into two ma j or steps , 

both of which are common and s imple . The first step takes care of the 

angular e lements of re lat ive or ientat ion w ,  $ and K ,  all of them related 

to the right s ide photograph . Having performed the corresponding trans forma 

tion , we arrive at the s ituat ion shown in Fig . 1 by the photograph with 

proj  ection center at S" whose axes x"y " z "  are parallel to those of the 
t t t 

left photograph . The second step considers then the bas e e lements By and Bz · 

1 .  2 . 2 . 1  Rot at ional element s of the s ide 

In order not to lose the geometric image which photogrammetrists are 

accus tomed to , a trigonometric so lut ion is applied . In particular , one in 

which the rotat ion around the Y axis ($ ) is cons idered as secondary . The 

corresponding formulas : 

where 

a·1 1  = cos$ 

an = cosw 

a3 1  = s inw 

a12  = - cos$ 

a2 2  = cosw 

a32  = s inw 

X" = Ax11t 

xt = Y

X"]
Z" 

t 

X" = Y"f"j
Z" 

rll A = a2 1  

a3 1  

COSK 

a 12 

a2 2  

a3 2  

s inK + s inw 

s in K  - cosw 

s inK 

COSK - s inw 

COSK + cosw 

( 1 . 1  ) 

with zt t - c 

with z "  = -c 

ai: Ja2 3  

a3 3  

a1 3  = s in$ 

s in$ COSK a2 3 = - s inw COS$ 

s in$ COS K a3 3  = cosw cos$ 

s in$ s inK 

s in$ s inK 
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( 1 . 1  ) e xpre sses a mathematical transformation . In photogrammetry the word 

trans formation means more than that . We must determine the intersect ion of 

the rotated ( by the mathemat ical tran sformation ) bundle of rays with the 

plane of the new phot ograph to be constructed . Th is  is so lved by the 

formula 

c [" lx" where X" = Y" with Zif = - c  (1 . 2 )  x" 
t 

= Z" t t t tt 
z" 

t 

z" 

Fig.1: S' is the projection center of the left photograph. The axes of 
the photo coordinate system of it (x'y'z') are taken as coordinate 
system of the model to be created .. The right side photograph with 
projection center S" has been transformed into a position parallel 
to the xy-plane of the left photograph. (Axes are parallel 

x' 0to Y' z1). S" is the projection center of new right side 
photograph to be created analytically in the process of relative 
orientation. The plane s11s:;sg is perpendicular to the plane
S'S si, and s  is the orthogonal projection of S" onto this last 
plane. M is an arbitrary point of the terrain. 
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1 . 2. 2  . 2  Project ion center movements ( base elements ) 

The expre ss ions which take care of the project ion center movements or , 
in other words ,  of the base elements ,  can be derived using F ig . 1 .  

In final expres s ions , instead of speaking in terms of the linear movement s 
of B andy Bz, we use correspondingly , v and T. In exact terms, 

B 
tan T = ( 1 .  3 )  

Bx 
and 

By
tan v = ( 1. 4 )  

Expre ssions have to be derived express ing Y" and x1 1  of the right 
0 0 

photograph of the normal stereogram . It is important to note that this is  

a new photograph to be numerically constructed , as opposed to a changed 
posit ion of the original. right photograph attained by trans format ion . 

This point will become obvious later . 

1 . 2 .  2 . 2 . 1  for T v)' -

The determinants written below are equal to 0 because of the coplanar ity of 
the part icipat ing vectors : of some base vector S ' S" connecting two 

project ion centers , and of two other ve ctors point ing from these projection 
centers to the corre sponding images of the terrain point M .  To shorten 

the descript ion such cases will be re ferred to just by ( S'S "M )  , always 
applying the corresponding project ion centers . Notat ions corre spond 

to fig . 1 .  The index t refers to photographs transformed by w ,¢ and K .  

( s Is "M ) : 

x' y' -c  = 0 

x"t -c  

Taking into cons ideration ( 1  . 3  ) and ( 1  . 4 )  , and rearranging the expre ssion : 

tanT + ( x'-x  ) tar. v - ( y' -y  ) = 0 ( 1 .  5 )  



photogrammetric 

-----

x =f( x' , X J.Y , -r, v )  

- 12 -

( S'S" M )  : 
0 

Bx 0 0 
x ' y '  - c  = 0 
x" y" -c

0 0 

This determinant is the co -planarity condit ion in our case 
of relat ive orientat ion , and expresses the equality of corre sponding y photo 

coordinates in normal stereograms: 

y' = y"
0 

( 1 . 5 )  and ( 1 . 6 )  yield the sought expression for y" 
0 

x ' y"-x"y' t tY  = Yt + 
c 

tan-r + ( x' -x" ) tanv t 

( 1 . 6 )  

( 1 .  7 )  

Because of errors of different origin, summarized as obs ervat ion errors, 

remainder vert ical parallaxes are always present, and there fore ( 1 . 6 )  has 

to be rewritten as 

y'-y" = p = -vo yo ( 1 .  8 )  

where Pyo  0 is the v ertical paral lax in the constructed normal 

stereogram, or, in other words , the remainder vert ical parallax . Comparing 
express ions ( 1 . 5 )  to ( 1 . 8 )  the corresponding observation equat ion can be 
wr itten: 

x'y"-x"y' t t 
f 

tan-r + ( x '  -x  ) tanv - ( y'-y  ) = v ( 1 .  9 )  

As tan-r and tanv are taken directly as unknowns in this process , 

( 1 . 9 ) is linear ( with regard to tan-r and tanv ) .  

1 . 2 . 2 . 2.2 Express ion for , y' 

The expre ss ion for x "  plays an important role in computing model 
0 

coordinates . This way it conveys the inaccuracy of re lat ive orientat ion 

to these coordinates . There fore care should be taken in der iv ing the 
express  ion for x": some ways of derivat ion yield formulas which may 

0 
enlarge the influence of the inaccuracies ment ioned . 
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( S" S"M ): T 0 

0 0 Bz 
y"

T 0x"T 
=-c 

0
x"

0 
-c 

which yields 

0
x" x" ( 1 . 1  0 )  

0 
= 

y  T 

( S" S M ): 

0 B 0y 

t 
= 0-cYt 

x"T y  - c  

and therefore 

x"
T 

= x" 
t 

( 1 . 1  1 )  

( 1 . 11 )  expre sses  the fact known from terrestrial photogrammetry that 

B (Bz in t errestrial notation ) does not influence the x coordinate s .  y 
Th i s  i s  why he ight di fference s of camera stat ions can be neglected 

in the "normal " case of terrestrial photogrammetry . 

( S' S"M ): 
T 

B 0 B zx 
x '  = 0-c 

x" y" -cT T 

which yields , after some elementary steps : 

c + x" tanT 
t 

y  = y '  ( 1.  12 ) 
c + x '  tanT 

... 
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( 1 . 1 3 )  

The number of this formula , 13, indicates probably the danger connected 
wi th it: the factor y /y ' must be taken for 1 .  This may be done if no 
rude errors are pre sent . Blunder detection and eliminat ion are solved 
satisfactorily (part 2 ) , and therefore ( 1 . 13) can be replaced by 

xg = x"t 
c + x '  tanT 
c + x.ttanT ( 1 . 14 )  

Another way of deduction yields the following unsat isfactory express ion 
for x" 0 

x  = x't y ' - x' tan v 
Yt - x't tan \i 

A st ill further dangerous expre ss  ion is : 

x" = x"0 t 
c tan v - y  tan< 
c tanv - y" tan< t 

1 . 2 . 2 . 2 . 3  The meaning of the 

Formulas ( 1 .7 ) ,  ( 1.9 ) ,  and ( 1 . 14 )  are recurs ive because of using x't and 

Yt on the "right side" . Thes e value s become precise only in the final 
iteration steps . 

This recurs ivity cannot be eliminated and it has a very certain 

phot ogrammetric meaning: a photograph "taken " from an arbitrary "third " 

point can only be constructed if  the model of the terrain has already 
been reconstructed . In other words , the change of the spat ial pos it ion of 

a projection center is a task . Were this not so , we 
coul d construct a second photograph of the terrain us ing just one 

photo , and then count the terrain he ight s using the old and the 
constructed photographs as a pair . 
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One solve s recurs ive express ions by iteration s  . The same is needed by 
using least squares techniques for non-linear equat ions anyway . There fore, 
the above recurs ivity does not mean further complicat ion to the process in 
this re spect . 

1 .  2 .  2 .  3 The iterat ive 

The process  of iterat ions takes into cons ideration the geometric fact 
that transforming a single photograph by expres s  ion (1  .2 ), using any 
arbitrary values for w, ¢ and K is a rigorous process  . This means that 
the erroneousnes s of the e lements will not distort the corre sponding 
bundle of rays . Using the not quite precise elements o w,0¢, and OK 
of the last iteration, applying expre ss ions (1  .2  ) to the right s ide 

photograph, one get s a geometrically new situat ion wh ich can be 
handled as if no iterat ions had been completed before . The final 
values for w,¢ and K will mean, in this case, the sum of the values o w, 

0¢ and OK gained in the course of consecutive iterat ions . 

Because of the geometrical circumstance in connection with the 

recurs ivity of express  ion (1.9 ) we cannot apply the same approach 
to the base elements  T and v . The coefficients of (1  . 9 )  are updated after 

each iteration . Using these updated observat ion equat ions the ent ire 
values of tanT and tanv are determined again and again . 

Taking the above into cons iderat ion, the lineari zat ion of ( 1  . 9  ) can be 

reduced to the lineari zation of the corre sponding row in ( 1  .2  ) . (1  .2  ) and 
( 1 .  9 )  yield : 

112yt( c+ -)o w
e 

x'y"-x"y' t t 
c 

(1  .21 )  

where x¥, y  are coordinates of the right side photo, trans formed by 
(1 . 2 )  due to w•¢• and K of the ( n- 1 )  th iterat ion; in the 
0 -th iteration w , ¢, and K of the previous mode l will be 
used, or - as an opt ion of program MODEL - given first 

approximations; 

w = Eo w  ¢ = Eo¢ K = LOK 

T = arctan ( tanT ), and v = arctan ( tanv ) 



Computing 

- 16 -

(1.Ll) appear s as  if it would not conta in any non -linear terms . This is 
partly due to the upda ting of x  and y  coordinates in each iteration, 
which makes the proce ss r igorous in the sence of Pope ' s  notes /4/ ; and 

·partly due to the use of ( tan T and ( tanv ) directly a s  unknowns. 

The de scr ibed mathemat ical  mode l needs a relat ively sma ll amount of 
computat ions for each iterat ion , and the convergence of the process is 
no worse or better than that of the widely applied relat ive or ientat ion 
procedures / 1 , 5 / . 

1.2 . 2 . 4 A second system of formula s 

It is interesting in some theoretical , pedagogical and histor ical respects 
that the formulas der ived in this chapter 1 . 2 . 2  can be transverted into 

express ions wr itten as  funct ions of just photo coordina tes of the normal  

stereogram to  be constructed . The express ions ga ined can be useful when 
applied , for instance, in mechanica l  analogue constructions s imilar to 

Stereometers  mentioned ear lier . 

The corresponding der ivations are given in Appendix IV , and yield a 

second system of formula s  . 

1 . 2 . 2 . 5  model coordinates 

Having per formed the relat ive or ientat ion in the de scribed way , one can 
use very simple formula s for computing the model coordinates - because a 
norma l stereogram ha s been constructed : 

where 

and 

Bx 
x = xmod Pxo 

xmod 

x = Ymodmod 
Zmod 

P = x '  -x" 
XO 0 

( 1 .  2 2 ) 

x ' 
y '  +yg 

and x = 
2 
-c 
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In program MODEL B is taken equal to th e mean value of p of the f irst x x 
model of the strip . Th is re sults in model coordinate s  approximately in 

photo scale. The mean value of px is equal to some 90 mm-s in the very 
typical case of a 2 3x2 3 cm2 format and 60  % overlapp ing. If th is value 
is between 80 an 100 mm-s ,  Bx of th e f irst model of a strip is taken to be 
equal to 100 mm-s. This  is advantageous in f inding points on the bas is of 
their X strip coordinates ( an X strip coordinate equal , for instance , 
to 550  mm , will mean rough ly that th e corre sponding po int is to be found 

in the area of th e 6 -th model ) .  

1 .  2 .  2 . 5  format ion and the model coordinate systems 

The x, y and z axes of the f irst ph otograph of th e strip are accepted as 
X ,  Y and Z axe s of the strip . The model coordinate system of the f irst 
mo del is automat ically th is  system . The angular elements of relat ive orien

tat ion of the f irst two photos w,  and K determine the orientation of the 
second photograph in the coordinate system of the strip . Therefore , 
transforming the second photograph - using express ion s  ( 1 .  2 )  - by th ese 
elements the plane of th is photo becomes parallel to the XY plane of the 
strip system . The reader will understand at th is point that it is 

possible to perform the transformat ion of the second ph oto by ( 1  .2  ) but 
th e task of moving the second project ion center to a new posit ion , 

sh ift ing it by By and Bz of th e previous model , is not solvable for the 
part of th is photo wh ich belongs to the second model : the second model has 
not yet been recon structed . Performing a re lat ive orientat ion by the 
des cribed method af ter th is transformat ion , th e mo del coordinate system 

of the second mode l will be parallel to the strip coordinate system - but 
its origin displaced by Bx , By and B2 of the f irst model . One could 

count and use these values to sh ift the two systems together , but instead 

gravity center coordinates of passpoints have been applied for th is  
purpose , more advantageous in a stochastical sense. 

In general terms th e described way of model connect ion can be repre sented as 

X ' = X" + mIX" 0 ( 1  . 2 3.a ) 

wh ere X ' contains the strip coordinate s ,  X"  the sh if ts  of the mode l 
0 

coordinate system ( determined independently and indirectly by sh if ting 

together the gravity centers of pas spoints  ) ,  m denotes the scale factor , 
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and X" the model coordinates . In the transformat ion (1.23 . a  ) the unit matrix I 

replaces the rotat ion matrix . 

The s cale of the model to be connected can be determined in this geometry 
simply as a relation of the corre sponding Y' and Y" mode l coordinates 
related to the corresponding gravity centers G '  and G" of passpoints . This 
is because , as shown below , no X model coordinate discrepancies occur , and 
becau se of the narrowness of the triple overlap zone . A normal equat ion 

with one unknown: m - the scale factor , is u sed for this purpose: 

( 1  .23.b ) 

1 .  3 homogen ization 

One cannot overemphasize the importance of the fact that the use of 
regular orientat ion procedures is un sat isfactory for 
amounts of points model close to the min imum . +) This is a resu lt 
of basically two circumstances . First, that in such cases measurements are 

improperly checked ( see part 2 ) .  Second, as a result of insu ffic ient 
accuracy of relative orientation , mode l distorsions occur that are larger 
than generally expected . Both these interrelated problems can be essentially 

solved without increas ing the data amount ,  by not neglect ing the information 
contained in pas spoints . 

Triplet triangu lat ion is the best known and most widely spread solut ion /8/ . 

In this case three bundles of rays are solved each time in one system, and 
the "double models" gained this way joined then by spat ial linear 
transformat ion . 

A simple and not less adequate solution is introduce d  in this chapter : the 

homogenizat ion of the gained orientations . 

Su ch postprocessing method is ident ical in its principle with strip 

homogenizat ion in numerical analogue triangulat ion /11/ . 

The postprocess ing method has to remain simple otherwise the sense of applying 

a different iated way of aerial triangulation could be lost . This same is 

+)w h . k · · d · h . f · e t in it important to row attent ion to t is  act especially 
where the spread of analyt ical methods is ju st in process , and 
corresponding experience seems to be missing . 

in Europe 
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needed to arrive at well condi tioned systems of equations. Therefore 
we are considering only the linearized express ions , and thus re strict ing 
the to the vert ical case" of aerial 

To gain the functions needed for strip homogenizat ion systemat ic 
discrepancies in model coordinate s of passpoint s of adjacent mode ls have 
to be analyzed as funct ions of errors of the re lative orientat ion . For 
this , fig . 2 will be used . 

s' 

\ 
' 

' 
\ 

\ 

s" S "' 

\ 1M\ I
'4
M' 

Fig. 2 iUustrating that ox', ox", or ox "' image coordinate errors 
(all in x-direction) do not cause any X model coordinate 
discrepancies in model connection. 

Program PHOTO ,  when applied to stereocomparator readings, converts them 
to photo coordinate s as if read in a monocomparator . This way point 
transfer errors distort ing x" are checked and averaged ( or rejected ) as 

reading errors in the middle photograph . As a result , no mode l coordinate 
occur in X .  A derivation is given in Appendix V proving 

the validity of this statement in a general case . Appendix III provide s  
the empirical proof . 

Ne ither constant nor linear parts occur in Y-discrepancies as a re sult 

of shift ing and scaling by (1 .23 )  . The re st of Y-discrepancie s ,  Ya , is 

a funct ion of Y2 ( the derivation is  given in Appendix VI ) .  This part is 
apparent as an error in Y: 
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( VI .  4 1  ) = ( 1 .  24 ) 

with !':iw ' , f'iK ' , !':iw" and f'iK " indicat ing errors in the corresp_onding elements of 

relat ive orientat ion of two adj acent models . 

Point transfer in y can be solved very precisely with point transfer devices 

marking , at the very least , the point on the middle photograph . Therefore 

( 1 . 2  4 )  contains valuable informat ion . 

Errors of relat ive orientat ion caus e very not icable in Z 
that can be divided into a sh ift and a part which is a linear funct ion in (Y ) . 

The sh ift contains the influence of errors in <P and T, an d disappears in the 

proce ss of mode l connection by ( 1 . 2  3 )  . The second part can be e xpre s sed , as 

shown in Appendix VI I ,  as : 

( VI I .  2 ' )  = ( 1  . 2  5 )  

( 1 . 24 )  and ( 1 . 2  5 ) ,  app lied as correct ion equations , form the mo st complex 

way of the proposed strip homogenization . 

Care schould be taken as to of freedom and data distribut ion . 

Cl earl y ,  the first mode l has to be kept unchanged. Even though ( 1 . 2  4 )  and 

( 1 . 25)  , when applied to a strip of j ust 2 models , yield a s ingular system . 

Geometrically this means that we cannot separate the influence of K errors , 

re sult ing in a minor rotat ion of the model around the X-axis , from the 

influence of w errors , result ing in a tors ion of the model surface . -

There fore , the relative orientat ion of the first and last mode ls of 

each strip should remain unchanged in the homogen izing process. 

Good pas spoint distribution yields well conditioned systems. However , if 

this is not the case ( or there is ground for suspicion in this respect ) ,  

one has to sacrifice a certa in degree of flexibi lity , and to involve in 

the v TWv:min condition the unknown s  themse lve s ( with a suitable we ight , 

naturally ) .  Th is way, undes ired e ffects of "overcorrect ion" can be avo ided . 

In cases where only the he ights have to be determined with high accuracy , 

the process can be cons iderably s impl ified . I f  the point transfer in y 

is not solved adequate ly ,  ( 1 . 24 )  has not to be applied . The surface of 

each model , as long as he ights are concerned , become s a hyperbolic paraboloid 
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as a re sult of errors in re lative orientat ion / 6 /  . We cannot corre ct for 

the paraboloid . There fore the homogen izat ion can be set up with unknowns 

that are parame ters of the individual hyperboloids a ' - b" : 

a ' Y  + b ' XY - ( a" Y + b " XY ) = !J.Z ( 1 .  2 6  ) 

( 1. 26 )  means no neglections when compared with ( 1 . 2  5 )  . A further s implifi

cat ion can be cons idered , that of replacing hyperboloids by p lanes . In this 

case : 

a '  Y - a"Y = !J.Z ( 1 .  27 ) 

Although ( 1. 2  7 )  means neglect ions , it has a very important advantage : it 

yields safe , well-conditioned systems even for re lat ive ly weak passpoint 

configurat ions . The planes replacing the hyperbolo ids are symmetrically 

oriented , and this way the neglect ion is somewhat compensated : its re st  

hardly exceeds the noise level of Z-trans fer errors . 

Naturally , whe ther applying ( 1. 2  6 )  or ( 1  . 2  7 ) ,  the not ices on degree s  of 

freedom and data distribut ion given before remain valid. 

Strip homogenizat ion with ( 1. 2  7 )  has been appl ied in the pract ice of pro

duct ion s ince 197 5 by Berger Associates,  Columbus , Ohio . Exper ience indi

cates that results are , at least in Z ,  not only of equal qua lity but , as 

a tendency , ident ical to the results of triplet tr iangulat ion / 12 /  . 
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2 .  BLUNDER PROCESSING 

As ma j or tasks , blunder proces s ing involve s data amount and di str ibut ion 

check ing , blunder searching ( blunder detect ion and locat ion ) ,  and the con

nected task of tolerance determinat ion . All these can be cons idered on a 

general level , and on the level of some application - in our case that of 

self checking photogrammetric relat ive orientation and strip format ion , as 

introduced in part 1 .  Th is se cond be ing our subj ect , general discuss ion 

will be kept here to a minimum with the exception of introduc ing the con

cept of geometric we ight s which seems to us inevitable . Otherwise three 

ma j or sources of the re lated special literat ure will be cited : the pioneer

ing work of Baarda / 1  5/  , the article of Kraus concerning practice / 16 /  , and 

the recent comp lex study by Stefanovic / 17 /  . Concentrating on the tasks of 

blunder process ing in analyt ical relative orientat ion and strip format ion 

we limit all discuss ions to the case of " ind irect observat ions"  . Naturally , 

the concepts involved can be extended , without much diffi culty , to other 

cases of leas t squares techniques . 

2 . 1  the o f  geome tric weight coeffic ient matri x 

Let us consider the system of n correct ion equat ions 

Ax = 1 + v ( 2 . 1  ) 

where A is the coe fficient matrix of unknowns , 

x is the vector of u unknowns , 

1 is the ve ctor of observat ion s  , and 

v is the vector o f  res iduals . 

r = n - u denotes the edundancy of this system , and r/n is termed as rela

tive redundancy . When r=O the vector of re s iduals v be come s O ,  meaning that 

in such case the solut ion abs orbes the observat ional errors . In an oppo site 

e xtreme with all observations repeated infinite t ime s Cr = )  no error absorp

t ion occurs , and the ve ctor of residuals will correspond to the vector of 

obs ervat ional errors £ .  As shown in / 1 7 /  , re s iduals and observat ional errors 

are connected by the relationship 

v = - Q W£ vv ( 2 . 2 )  

- 1
where Q 

vv 
i s  the cofactor matrix o f  res iduals , and W = Q11 i s  the weight 

matrix of observed quant ities . W is an a-priori matrix and its e lements do 
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not change in the proce s s  of adj ustment . There fore the a-posterior i matrix 

Q
vv 

contains the coefficients de s cribing the error absorpt ion in the proce s s  

of adj ustment . 

Hungar ian geodes ists-practitioners apply the expre s s  ion "geometric weight "  , 

and in the U . S .  I have heard the expre ssion "geome tric con straint" , both 

in the following sense : when a measured quantity has a large geometric weight 

it will have large in fluence on the unknowns to be determined , and the cor

responding res idual after the adj ustment is expe cted to be small even if 

some rude error is dis torting theat measurement . This weight or constraint 

is fe lt to be depending on data distribut ion and mathemat ical model . 

Considering ( 2  . 2 )  it i s  easy to not ice that the error ab s orb ing 

of the and the "geometric weight s "  tendencie s .  

are the proper of the cofactor matrix of re s iduals 

wh ich there fore could be g iven the name "geometric coefficient matrix" . 

This would mean , naturally , the introduct ion of another - a-poster iori -

we ight concep t ,  be ing contraversial because of the danger of s implistic 

unders tanding . So the reader has to j udge wh ether the advantages of this 

principle outweigh the dangers of mis interpretat ion . 

The reader will remember that the variance-covariance matrix of residuals 

E can be wr itten , by de finit ion , as 
vv 

with µ the first moment ( expectat ion of the mean ) of residuals wh i ch is v 
e.qual to 0 in an unbiased adj ustment , and 

( 2 . 3  ) 

- 2where a denotes the re ference variance . Appendix V I I I  contains a deriv
e 

ation of Q . 
vv 

In the case of some ideal adj ustment the expectation of variance of each 

"homogen ized" res idual should be equal to the variance of the observat ional 

errors . For an adj ustment free of bias the referen ce variance a 
2 

is the
0 

leas t square s '  estimate of the variance of observat ional errors with the 

a-priori we ight unity . With regard to ( 2 . 3 )  this means that Q should be 
vv 
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equal to the un it matrix I .  Th i s  i s  the extreme case ment ioned above with 

r=00• In the other extreme case with r=O diagonal elements in Q become 0 .vv 
For all intermed iate cases - where all pract ice belongs - these geometr ic 

weight coefficients are intermediate values , indicating the measure of error 

absorpt ion in the area of each point / 1 5 /  . Given this measure , re s iduals 

can be "scaled" : 
1 

- 2 
v :  = Q

vv 
v 

where Q denote s  ( diag Q ) .
vv vv 

( 2 .  4 )  

The expre ss ion " scaling of re s i duals" in connect ion with ( 2  .4 ) is mi slead

ing when understood literally . Random errors in all the observat ions mean 

random tens ions to the mathematical model ( 2 , 1 ) ,  and therefore ind ividual 

"scaled" res idua ls v. , be ing tens ions introduced to the model , are in no
l 

linear relationship with ob servational errors . In other terms : ( 2 . 4 )  is not 

a direct consequence of ( 2  ,2 )  . These que st ions will be explicitely dealt 

with in chap ter 2 . 2  . 

x 

An often applied way of handling a -priori we ights i s  the homogenizat ion of 

the system of observational equat ions so  to arrive at an uncorrelated equal 

weight s ituation . As a re sult of homogen izat ion a -priori we ights become 

implicit . On the other hand , "geome tri c weight s "  always have to be con s id

ered as impl icitely present in the starting equations . When so understood , 

the " s  cal ing of res iduals" in form of ( 2 .4 )  become s natural as tak int into 

account these weights . 

The appl icat ion of ( 2 . 4 )  yields accurate res iduals v .  With them , 

as proven in Appendix I X ,  the re ference variance can be counted as 

1 
- 2 1
Q v = - v w v

vv n 
( 2 .  5 )  

The denominator in ( 2  .5 ) is the number n of observat ion equatlons because 

the influence of error absorption has been taken into account by ( 2 . 4 ) .  

This a-posteriori homegen izat ion is understandable with regard to ( 2  .2 )  , 

as we ll . 

x 
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It appears very obvious to interpret the role played by Q as geometric 
vv 

weight coeffic ient matrix in influen ces of data e l iminat ion 

( a  matter extensively treated in Stefanovic / 17 / )  . 

Let us denot e the re s idual on a po int having part icipated in the adj ustment 
+

by v , and the corre sponding re sidual when the po int has been removed from 

the adj ustment by v ( not to be mistaken for v : the scaled res idual in 

( 2 . 4  ) ) .  It is easy to comprehend the geometric meaning of processes and 

formulas when keeping in mind some point , loosely speaking , "of large ge o

metric we ight" and corre spond ingly with small diagonal geometric weight 

coefficient q . . . E. g .  in case of relative orientation of photographs some 
ll 

remote point standing alone in the corner of the model ( 2 . 2 . 3  . 1.1 )  . v 
+ 

in 

this point is to be expected small according to formula ( 2 . 2 )  . The "s  caled" 

res idual v can be determined by applying ( 2 .  4 )  and e xpres ses the tens ion 

introduced by this point into the adj ustment. Removing the point from the 

adj ustment means removing this tens ion. The geometric we ight of the point 

e xercises a reverse effect in this case and there fore v can be determined 

as 

v = ( 2 . 6 )  

+
where Q denotes the corresponding submatr ix ( the corre sponding d iagonal 

element ) of Q counted with the e lements of the adj ustment with the point vv 
part icipating . ( 2 . 6 )  is val id for groups of points , as we ll . For this , v 

also has to be counted with the corre sponding s ubmat ix of Q / 17 /  . vv 

Submatrices of Q
vv 

inc lude off-di agonal e lement s.  Off-diagonal elements 

in Q express the funct ional dependence of re siduals . As a result of the vv 
funct ional dependence of re s iduals , Q is s ingular ( of rank r ) .  In addit ion 

vv 
it is idempotent. Therefore all submatr ices which are of greater s ize than 

r x r are s ingular. In this form the fact is expre ssed that the equation 

system cannot be solved when less than u obs ervations are present. Th is 

means that when removing more than r po int s from the adj ustment ( 2 .  6 )  , loos es 

its sense / 17/  . 

To determine the cofactor submatrix in ( 2 . 6 )  as  a funct ion of elements of 

the new adj ustment with the p oint ( s )  removed , one has to apply to ( 2 . 1) as 

to a funct ion the rules of propagation of var iances and covar iances . The cor

responding e lementary de duct ion yields 
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( 2 . 7 )  

where A .  is the corresponding row in the coeffic ient matr ix of unknowns , 
l 

and Q 
-

is the cofactor matrix of unknowns det ermined in the adj ustment 
xx 

with the point ( s )  removed. Comparing ( 2 . 6 )  and ( 2  , 7 )  , the following equali

ty should exist when = I is to 

( 2 . 8 )  

or , with more details : 

( 2 . 9 )  

Th is re lat ionship , speaking for the concept of geometric we ights , is proven 

in Appendix X .  

x 

Elements of Q expre s s  the " strength of the figure " to be adj usted / 1  5 / .  
vv 

As Qvv is counted without the vector 1 of obs erved quant it ie s  , it is poss i 

ble to estimate i t s  e lements in advance a t  the stage of net work 

Diagonal elemen ts in Q should dominate , and be close to each other in 
vv 

value . High mutual dependence o f  any two re s i duals has to be avoided in 

order to as sure adequate blunder locat ion ( this invo lve s check ing the cor

re sponding 2 x 2 submatrices of Q on s ingularity ) .  All this can be achiev
vv 

ed by changing data amount and/or data distribution . In Baarda ' s  words ob

servat ions of a network p lanned this way become "equivalen t "  : of equal un

known determining strength , and equally we ll checked ( see later ) .  - In this 

very prominent application Q appears explicitely as  "geometric weight
vv 

coeffic ient matrix" , num.eri cal characteristics o f  the 

( "  strength" ) of the network . 

x 

Further extremely important relat ion sh ips  c ontain ing Q are given by Ste vv 
fanovic / 17 /  . All of them can be intere st ingly interpreted in the light o f  

our concept. St ill further examples of such int erpretation wil l  occur i n  t he 

cours e of this work . 
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Let us exclude a point ( or a group of points ) from the set of data , and 

perform the adj ustment with the rest of data. I f  this new set yie lds a we ll 

conditioned system , and contains j ust "random" errors ( as opposed to blun 

ders ) ,  we expect v - o f  the excluded point t o  b e  equal to the observat ional 

error (  s )  £; 

( 2 . 10 )  

where the index V indicates the point excluded. The accuracy of this equali

ty can be assessed with the help of the cofactor matrices on any s ide of 

( 2 .  8 )  : 

( 2 . 11 )  

Corre spondingly , in comparisons o f  the absolute value o f  v  with some tole

rance o , this tolerance has to vary with the location of the removed point : 

( 2 . 12 )  

With regard to ( 2 . 6 )  this can be rewritten as 

J'VI < o ( 2  . 1  3 )  

( 2 .  13 )  is of central importance in blunder detection. It shows that scaled 

res iduals are "equally wel l  checked " / 1 5 /  all over the network , and there 

fore the maximal absolute scaled res idual in dicates the worse with 

high probability . In ill conditioned systems and in systems with low rela

t ive redundancy symmetricities occur wh ich re sult in high functional depen

dence among res iduals. In s uch systems , espec ially with addit ional b lunders 

present , s uch indication becomes uncertain or even s ingular / 17 /  . 

The essence of the of ( 2 . 1  3 )  remains as described by 

x/ As treated in this sect ion , blunder detection involve s both the "detec

t ion" and the " location!' of blunders , as defined by Stefanovic / 17 I. 
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( 2 . 10 )  and ( 2 . 1  2 )  x/ There fore the sens itivity of blunder detect ion by this 

me thod is dependent on the geome tric we ight coeffic ient of the point in que s 

t ion .  Cons idering ( 2 . 11 )  and ( 2 . 1  2 )  the tolerance can b e  based on some a-pr i 
. . 2 

f h f . 2 d . .
or i est imate a o t e re erence variance a , an on some mult iplyer to it

0 
defin ing bounds of "random" errors ( as opposed to b lunders ) in the part icular 

distribut ion , generally taken for 3 .  In such case the minimal undetectable 

blunder V . can be wr itten as
min 

1 

I v I < 3a < o 
+ 

) 
2 

min 
( 2 . 14 )  

meaning , as compared with ( 2 . 10 )  and ( 2 . 11 ) ,  that within these limits the 

blunder V can be c ompensated by random influences . ( 2 . 14 )  shows another 

t ime that points of networks planned so to yield nearly equal ( and dominating 

within Q ) geometric we ight coefficients will be checked equally we l l .  
vv 

2 . 2  . 2  Review of methods 

First of all one should di fferent iate between methods of blunder detect ion 

aiming at indivi dual d ifferences as test values and those aiming at quadrat ic 

forms . Quadrat ic forms , espec ially when corre sponding to large groups of 

points , are apt to hide small blunders . They are usually compared with tole

rances determined with the help of the x 
2 

or of the F-distribut ion . Ste fa

nov ic de scribes a better , partially empir ical way of determin ing tolerances 

for quadratic forms which yields t ighter values / 1 7 /  . Th is improvement hard 

ly can solve the prob lem for large group s of points , however . 

x 

As it has been shown in the previous sect ion , the right way o f  check ing 

xi This means that applying ( 2 . 13 )  for blunder detection corre sponds to 

first , excluding temporar ily the mo st susp icious point out of the adj ust

ment as indicated by the maximal ab solut e scaled residual ! v i  , and second , 

repeat ing the adj ustment , and comparing I v- I of the temporarily exc luded 

point with a tolerance depend ing upon geometric we ight in accordance with 

( 2 . 1  2 )  . This direct may be of advantage in computer programs espec ially 

when original error equations are not linear . So it is realized in program 

MO DEL for checking relat ive orientat ion , as well . 
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indiv idual differences is concerned with " s caled" res iduals , as expre s sed 

by ( 2 . 1  3 )  . One can imagine two other ideas , in certain sense symme tric to 

this way . The first has been int ens ively appl ied in the pract ice o f  least 

squares , and aimes j ust at the individual re s iduals themselve s  . 

( 2 . 15 )  

The second can be e xpre s sed as 

( 2 . 16 )  

Taking into cons iderat ion the circumstance that a blunder distorts the en

t ire adj ustment , blunder proces sing is in mos t  cases concerned 

the maximal in it s absolute value di fference . In the light of this ( 2 . 16 )  

corresponds to the check ing of the maximal in its absolute value obs erva 

tional error ( in the sense of ( 2 . 10 )  ) ,  determined by solving the e quat ion 

system n time s , each time with n - 1  ob servat ion s involved , and always remov

ing another point { ! )  . 

The exact way of sett ing tolerances in ( 2 . 1  5 )  has to proceed in corre spond

ence with ( 2 . 4 )  , and for ( 2 . 16 )  in accordance with ( 2 . 12 ) .  In such way , as 

far as tolerances are concerned , ( 2 . 15 )  and ( 2 . 16 )  go over in ( 2 . 1  3 )  . When , 

however , 6 is set to a fixed value independent of the locat ion of the point 

( of the corre sponding geometric we ight coeffic ient ) ,  blunder de tect ion with 

( 2 . 15 )  or ( 2 . 16 )  become s less sensit ive , espec ially in cases w ith low rela

t ive redundancy . 

Apart from problems of sen s it ivity , the applicat ion of ( 2 . 15 )  and ( 2 . 16 )  

for find ing the worse ob servation is theoret ically inadequate , as shown 

in. connection with ( 2 . 1  3 )  . The connected danger is ris ing with the relat ive 

redundancy growing smaller . 

x 

The theoret ically most comprihens ive strategy of blunder search ing has 

been de scribed by Ste fanovic / 17 /  . Its essence is the fol lowing : one sup 

poses the pres ence o f  k blunders , taking k first for 1 ,  and then , if  nec 

essary , each t ime raising it by 1 and entering the proce s s  again . For k = l  

the process corre sponds t o  a check ing accord ing to ( 2 . 1  3 )  . I n  addit ion , 
2

the quadrat ic form corre spond ing to the re st of obs ervations (q ) is com
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pared with a suitable tolerance . When k> l ,  groups of observat ions containing 

k points each are checked and opposed to the rest of n-k point s  . All possib le 

combinat ions without repe tit ion are checke d .  ( 2 . 6 )  in form of 

( 2 . 17 )  

is applied .  Both group s yield quadratic forms (  and q2 
) which are compared 

with suitable tolerances . "All observations are blunders in those test groups 
-2 

of the smallest s ize for wh ich  exceeds the tolerance and q does not " / 17 /  . 

The weakness of this method lies in the lack ing sensit ivity of check ing the 
-2

quadrat ic form q . As a re sult , it work s for k> l  only for large blunders . 

x 

A more sens it ive solut ion can be constructed by j ust ( 2 . 1  3 )  , and 

re taining the "error and trial" way of blunder which generally 

has been applied for the last de cades . This technique means always excluding 

j ust the largest blunder , and repeat ing the adj ustment with the re st  of 

data . Finally , all exc luded observations are checked by the las t solut ion , 

and i f  needed , some of them taken back for a clos ing blunderfree adj ustment . 

What is very important : when adjusting linear models ( not j ust l inearized 

ones ) ,  all the repeated adj ustments may be constructed on the bas is of a 

s ingle first adjustment with all the data included . For this , the needed 

express ions are given in Ste fanov ic / 1 7 /  . 

The method proposed by Kraus / 16 /  is a special case which can be der ived 

from the theory given by Baarda / 15 /  . Kraus ' s  coeffic ient k .  i s
l 

to v .  , and there fore his method is identical with that de scribed in the 
- l 

The new added Stefanovic / 17 /  and in this 

work are : the formulas wh ich connect ad j ustments with and without the blun

ders ( Ste fanovi c )  , the relationships proven in Appendice s I X  and X ,  and 

a con s iderably better geometrical understanding of the processes ( contri

but ions to the var iance by groups of points by Ste fanovic , the geometric 

we ight concept , and to some extent the interpretat ions grouped around for

mulas ( 2 . 10 )  - ( 2 . 14 )  and ( 2 . 1  6 ) ) .  
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2 . 2 . 3  Blunder de tect ion as to analyt ical relative orientat ion 

and format ion 

Table 2 . 1  provides a review of technologies of analyt ical aerial triangula

tion as app lied in our days . Processes are divided into three stages , re

ferred to as first , second , and final . Data amount and app lied degrees of 

freedom grow drastically from one stage to the next . The same can be stated 

about the costs of performing them . 

Ideally , all stages had to contain processes of blunder de tect ion . Technical 

and economical cons iderat ions put limits to this . These limit s are the more 

prohibitive the more complex and the more e xpens ive the process . In order 

to provide guarant ies against the wide ly spread phenomenon of ( to put it 

bluntly ) 1 1rough garbage in - smooth garbage out 1 1  , sophist icated blunder de

tect ion has to be applied at least in all preliminary stages . 

The e s  sent ial logic of bas ing blunder detect ion on the start ing "di fferen

t iat ed11  stages is that of sequent ial el imination . So , the exclus ion of po int s 

with erroneous vert ical parallaxes in the proces s  of relat ive or ientat ion 

is inevitable for a successful blunder detect ion in model connect ion . Blunder 

eliminat ion in the process of mo del connection is of extreme importance for 

strip homogenization . A 1 1different iated" ( s  equent ial ) block adj ustment , 

whether polynomial or "of indep endent models 1 1  , copes greatly safer with 

blunders , when blunders in creating the models ( or sections ) ,  and in pas s 

points within each str ip have been previously el iminated ; and so  on . In 

Table 2 . 1  

Stages in computat ional technol()gies of analyt ical aerial triangulat ion 

First 

Relat ive or ientation 

( Strip format ion ) 

Second 

Block adj ustment 

- of independent mo de ls 

- of strip sect ions 

- of triplets , quadrape lts , 

etc . 

Polynomial block adj ustment 

- of strip s  

- of strip sect ions 

( "p iece-wise1 1  polynomials ) 

Final 

Simultaneous adj ustment 

of bundles of rays 
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our opin ion and exper ience , such sequent ial ways of blunder eliminat ion are 

highly sat is factory and economical . In this respect we do not agree with 

Forstner / 19 /  . 

2 . 2 . 3 . 1  Numer ical regarding of blunder de tection in 

relative orientat ion 

2 . 2  . 3 . 1 . 1  Point of 

Q is a symmetric n x n matrix of rank r < n .  Off-line elements in Q 
vv vv 

express the funct ional dependence of re s iduals . The following expre s s  ions 

are valid / 17 /  : 

n 
2 

qii 
= 

kh qik 

n 
qij  

= 
kh qikqj k  

0 < l q . .  1 < q . . q . .- l ]  - ll J J 

n 

ihqii 
= r 

( 2 . 18 )  

( 2 , 19 )  

( 2 . 2  0 )  

( 2  . 2  1 )  

As a consequence of ( 2 . 2  1 )  , the average diagonal element of Q i s  equal vv 
to r/n . 

A .  Examp le with n = 6 

In this ca se r = n - u = 1 ,  and therefore all rows and column s of Q are 
vv 

l inear combinat ions of each other ( they are proportional among themselve s  ) .  

Th is is an expre s s  ion of the total uncertainty of blunder det ect ion when 

r = 1 :  at the very best , the pre sence of some blunder can be ind icated but 

the blunder cannot be located . 

N Q
vv 

1010 . 06 - . 1  3 . 0  6 - .  09 

1030 . 2  5 - . 1  3 . 17 

1050 . 06 - . 08 

2010 . 1  1 

2030 

2050 symmetric 

. 1  6 - .  07 

- . 3 3 . 14 

. 16 - .  07 

- . 2  2 . 10 

. 4  3 - . 1  9 

. 08 

Scheme of point distribut ion 

1 0 1 0  • • 2010 

1 0 3 0  • • 2030 

1 0 5 0  • • 2050 
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B .  with n = 15 

1 0 1 0  

1 0 20 

1 0 3 0  

1040 

1 0 5 0 

Scheme of point distribut ion Scheme of d istribut ion of lq
ll 

• 1 0 1 1  • • 2010 

• 1021  • • 2 020 

• 1 031 • • 2030 

• 1 0 4 1  • • 2040 

• 1 0 5 1  • • 2050 

II 
1010 .:22. - . 27 • , 05 . , 06 

1020 .:!2. - . 24 - . 12 

, 05 - . 30 •,09 . 0 3  ,04 • , 04 . 02 , 09 , 16 , 05 -. 1 3  

. 07 • , 07 · , 12 • , 13 • , 06 , 06 , 1 2  . 03 • , 04 • , 0 1  . 06 

1030 

1040 

1050 

1011 

102 1 

103 1  

1041 
1051 

2010 

2020 

2030 

2040 

.;]]. - . 22 - . 06 . 03 - . 10 - . 16 • , 10 , 03 , 1 1  . o o  - . 0 9  - . 0 1  , 13 

.;]]._ - . 20 . o5 · . 05 •• 11 - . 12 - . oa ,04 .oo - . 02 . o3 . 11 

 - , 03 . 0 3  . 03 • , 09 - , 29 - . 1 1  . 03 , 1 5  . 1 1 . oo 

 - . 10 . 02 , 03 - . 02 - , 29 - .  10 . 04 ,04 - . 02 

 - , 09 • , 05 . 0 3  • , 11 - . 10 - . 10 - . 0 5  . 03 · 

 - . 10 . 02 .oo - . 09 - . 1 7  - . 1 1  . 02 
.:!'.!.. - . 09 . 03 - . 04 - . 1 1 - . 12 - . 09 

:21. - . 01 , 02 ,04 - . 09 - . 2  9 
 • , 29 · . OB ,04 .09 

.:22. - . 19 - . 10 . 02 

 - . 2 2  - . 06 

2050 symmetric 
.:22 - . 29 

 

0. 84 

• 
Q.9 5  

• 
0:95 

a .es  

This example illustrates the important fact that an even po int distribut ion 
doe s not result in an even dis tribut ion of geometric we ight s  . 
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c .  Example with n = lO distributed ( minimal advicable set / 11 /  ) 

Scheme of point distribut ion 

1010  • • 2010 

1 0 2 0  • • 2020 

1 03 0  • • 2030 

1 0 0  • • 20 0 

1050 • • 20 50 

N Q 
vv 

1010 . 2  3 - . 30 - . 03 . 08 . 03 - . 1  3 . 04 . 18 . 07 - . 15 
1020 . 6  3 - . 2 9 - . 14 . 10 . 07 - . 02 - . 10 - . 04 . 09 
1030 . 6 5 - . 28 - . 05 . 12 - . 03 - . 16 - . 06 . 14 
1040 . 6 7 - . 3 3 . 05 - . 02 - . 07 - . 03 . 06 
1050 . 2 5 - . 12 . 0 3 . 17 . 06 - . 13 
20 10 . 27 - . 36 - .  08 . 05 . 10 
2020 . 7 2  - .  2 3  - . 12 . 02 
2030 . 6 2 - . 2 7 - . 05 
2 040 

symmetric 
. 6 8  - . 34 

2050 . 2 8 

D .  Second e xample with n = lO : les s  variance along the main diagonal , but 
with s ingular submatrix 1030 - 2030 

Scheme of po int distribut ion 

N Q
vv 

1010 . 5  2 - .  4 8  - . 09 . 02 . 02 - . 02 - . 02 
1020 . 5  2 - . 09 . 02 . 02 - . 02 - . 02 
1030 . 3 8 - . 10 - . 10 . 10 . 10 
1040 . 52 - . 48 - . 02 - . 02 
1050 . 5 2 - . 02 - . 02 
2010 . 5 2 - .  48  
2 020 . 5 2 
2030 
2 040 
2050 symmetric 

. 10 

. 10 
- . 40 

. 10 

. 10 
- . 10 
- . 10 

. 4 2 

1 0 1 0  
1 020 

•
• 

1030 • 

1 0 4 0  
1050 

- . 0 3 - . 03 
- .  0 3  - .  03  

. 10 . 10 
- . 03 - . 03 
- . 03 - . 03 

. 03 . 03 

. 03 . 0 3  
- . 11 - . 10 

. 5  3 - . 4 7  
. 5 3 

• 2010• 
2020 

• 2030 

• 2°'0
• 2050 
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E .  Case with n = 8 ( minimal set ) 

N Q
vv 

Scheme of point distribution 

1010 . 24 - . 16 . 08 - . 3  3 - . 00 . 08 . 17 - . 09 
1030 . 3  1 - . 16 - . 00 - . 00 . 16 - . 3  3 . 1 7 1 0  1 0  • • • 2010  
1050 . 2  5 - . 00 - . 3  3 - . 08 . 17 . 08 1 0  1 1  
1011 . 6  7 . 00 - . 3 3 - . 01 . 00 
105 1  . 6  7 . oo - . 01 - . 3 3 

1 030 • • 2 0 3.0 
2010 . 2 5 - . 17 . 08 
2030 . 3 5 - . 17 
2050 . 26 1 05 1  

1 0 5 0  • • • 2050 

F .  Two cases with n = 7 ( both for check ing ) 

N Scheme of point di stribut ion 

1030 . 4 5  - . 16 - . 3 1 . 17 - . 19 . 18 1 0 10 • • 2010 
1050 . 08 - . 01 - . 08 . 1  7 - . 09 
1031 . 7  2 - . 02 - . 3  1 - . 02 
2010 . 08 - . 16 . 09 1 0  3 0  • • • 2030 
2030 . 49 - . 17 1 031 
2050 symmetric , 09 

1050 • • 2050 

N Q 
vv 

Scheme o f  point distribut ion 

1010 . 08 - . 16 . 08 . oo - . 08 . 16 - . 08 
1010  • 201 0  • 

1030 . 3  1 - . 15 - . 00 . 16 - , 3  3 . 17 
1050 . 08 - . 3  3 - . 09 . 17 . 08 
105 1  . 6  7 . 01 - . 01 - . 3 3 
2010 . 08 - . 17 . 08 1030 • • 2030 

2030 . 3 5 - . 17 
2050 symmetric . 26 , 0 5 1  

1 0 5 0  • • • 20 50 

2 . 2 . 3 .  1 . 2  Error absorpt ion 

Tables 2 . 2  - 2 . 5  provide examples of error absorpt ion in the process of 

analyt ical relat ive orientat ion . In all cases , vert ical parallaxes in all 

point s have been perturbed with random errors of cr=±0 . 01 ( mm )  , and in each 

case one of the vert ical parallaxes distorted with a blunder V=0 . 05 ( mm )  . 

When comparing "geometric we ight coefficient matrice s "  Q as given in vv 
2 . 2 . 3 . 1  . 1 ,  one can see that the last one s  govern the extent of error ab

sorption . The aim of tables 2 . 2  - 2 .  4 is to illustrate how the blunder 

V = 5 cr  virtually disappears as a re sult of error absorpt ion , and nevertheless 
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is rightly indicated by applying ( 2 , 13 )  - with the natural exception of 

case 2 . 3  with r= l .  Table 2 . 5  indicates that a point with a relatively 

large " geometric weight coefficient " re s ists error absorpt ion . 

In all tables , a is computed . An F-distribut ion test at s ign ificance lev
o 

el of 0 . 05 failes only in two of these cases . This ind icates another t ime 

that testing the reference variance a is unsat isfactory for blunder de 
o 

tection purposes / 17 /  . 

Table 2 . 2  

Po int distribut ion : "E " in 2 .  2 , 3  . 1 . 1  or in table 2 .6 

Right side y of point 2010 distort ed by 0 .  05 mm 

N v 
ll 

v 

1010 . 004 . 49 . 009 
1030 . 004 . 5  6 . 007 
1050 . 001  . 50 . 00 1  
10 1 1  - . 0  13 . 8  2 - .  016 
105 1  - . 005 . 8  2 - . 006 

xxx 2010 . 008 . 50 . 017 <- max abs 
2030 - .  004 . 5  9 - . 007 
2050 . 005 . 5  1 . 009 

cr0 ± .  g10 
2 

a /a < < F
0 . 05 , 3 ,oo ( l  . 0< < 2  . 6 )  

Table 2 . 3  

Right s ide y of point 1010 distorted by 0 . 05 mm 

N v v Scheme o f  point distr ib ut ion 
xxx 1010 . 004 . 2  8 . 0  1 3  

1030 - .  007 . 5  6 - .  01 3  
1010

1050 . 004 . 2  8 . 01 3  
2010 - . 004 . 28 - . 01 3  < - - max abs 
2030 . 008 . 5  6 . 01 3  
2050 - . 004 . 2  8 - .  01 3  

1 0 30 a ± .  013 
2 2 

a /a < <  F ( 1 , 7  « 3  . 8 )  0 . 05 , 1 ,  00 

1 0 5 0  

• • 20 1 0  

• • 2030 

• 2 050 
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Table 2 .  '+ 

" B " Point distribut ion : in 2 , 2 ,  3 . 1 . 1  or in table 2 .  6 

Right s ide y of po int 1010 distorted by 0 . 05 mm 

N v v
l l  

xxx 1010 . 027 . 6  19 . 04 3  < - - abs max 
1020 - . 02 2  . 8  3 1  - . 026 
1030 . 002 . 848  . 003 
1040 . 005 . 84 9  . 005 
1050 - . 003 . 6  3 1  - . 005 
1011 - . 02 5  . 84 2  - . 0 30 
102 1 - . 003 . 948  - . 004 
103 1 . 001  . 9 24 . 001 
104 1 . 014 . 94 2  . 015 
1051 - . 002 . 84 1  - . 002 
2010 . 003 . 64 3  . 005 
2020 . 0 13 . 87 6  . 015 
2030 . 003 . 8  34 . 003 
2040 - . 006 . 8  57 - . 007 
2050 - .  004 . 647  - . 006 

a =± . 015 
0 

2 2a /a > F ( 2 . 3  > 1 . 8  )0 . 05 ,  12 ,oo 

Table 2 .  5 

Point distribution : "E " in 2 . 2 , 3 .  1 . 1  or in table 2 . 6  

Right s ide y of point 105 1  d istorted by 0 . 05 mm 

N v  v
ll 

1010 - . 00 1  . 4 94 - . 002 
1030 - . 006 . 5  6 1  - . 0 1 1  
1050 - . 012 . 4 98 - .  02 5  
1011 . 008 . 8  16  . 0 10 

xxx 105 1 . 03 1  . 8  17 . 038  < - - abs max 
20 10 - . 007 . 500 - .  014 
2030 . 006 . 5 9 1  . 010 
2050 - . 019 . 5  1 1  - .  037 

a =± . 023  
0 

2 2a /a > F ( 5 . 3  > 2 . 6  )0 . 05 ,  3 ,  oo 
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2 . 2 . 3 . 1 . 3  Comparative effect iveness of different ways of blunder detect ion 

A series of numerical relative or ientat ion examp le s has been comput ed with 

s imulated data . Table 2 .  6 summar izes the results of 400 of them . There have 

been chosen 5 di fferent characteristic po int di stributions ( columns 1 and 

6 )  . With in each distribut ion , "rounds" of experiments have been computed , 

each round with a different value of a blunder ( column 2 )  . In table 2 . 6 ,  

each round is represented by one row . Within each round , n relat ive orien

tat ions have been performed ( with n the number of points in the corre spond 

ing po int distribut ion ) ,  and each time distorting the right s ide y" of an

other point by the corresponding blunder . Other points have been di storted 

by normally di stributed oy" errors with a standard of ±0 . 0  1 mm . After the 

clos ing iterat ion , the points with max l v l  , max I v - I , and with max l v l 
have been found , and mistake s in ind icat ions o f  the blunder counted . Columns 

3 - 5 of table 2 . 6  contain the results . 

While the indicator max l v l  shows no mis take s above a corre sponding blunder 

level even in the case with n = 8 points ( column 3 ) ,  the indicators in col

umns 4 and 5 need 15  po ints for the same safety in b lunder locat ion . 

Table 2 . 7  contains detailed results in one of the experiments partic ipat ing 

in table 2 . 6  ( n  = 10 , even d istribut ion of points ) .  Point 1010 in the corner 

of the mode l has been distorted . But because po int s in the corner possess 

very large "ge ome tric we ight" , they influence the ad j ustment strongly , and 

past the adj ustment show small re s idual s .  In the case cons idered , the maxi

mal l v l occurs in point 1020 . - Similar s ituat ions oc cur in all experiments 

within this distribution pattern , when one of the corner 

Checking max I v - I causes still more troubles be cause res idual dependence 

plays an important role in this case , as we ll . 

No problems are accounted when checking max 

Table 2 . 8  contains detailed results for the experiment within point di strib

ut ion "D" , where the indicator max l v l  fa iled in locating a blunder o f  4o 

( table 2 . 6  ) . This is an e xample il lustrat ing the danger of h igh dependence 

of two res iduals . The corresponding submatr ix of Q is s ingular ( 2 .  2 . 3  . 1 . 1 ,  
vv 

" D" ) :  

- 1  0 . 38 -0 . 40 1  0D
l030-2030- -0 . 40 0 . 4 2  
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of 

i i  

6 

20 

10 

50 

20 20 
10 10 

10 10 10 
- - - -

10 
10 
10 10 
10 10 

7 5  

6 2  
6 2  

0 . 50 
6 2  

4 3  
4 3  

8 6  
7 1  

8 6  
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Table 2 . 6  

(I)
.c.µ Hn (I) 

- - - 4-; 'd
0 s::

::lr--
N ,Q
(I) rlv q

•.-!min (/) 

M i s t a k e s 

-
max I V 1Imax I v !  max ! v i  

Scheme 

point 

di stribut ion 

1 2 3 4 5 

4 2 7  %% %33 a 2 13 
% %4 0 2 13 2 1 3a 

15 

0 .  6 3  

5 
6 
7 
8 
9 

10 

3 
4 
5 
6 
7 

a 
a 
a 
a 
(J 
a 

a 
a 
a 
a 
a 

0 
0 
0 
0 
0 
0 

3 30 % 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

7 70 % 
5 50 % 
5 50 % 
5 50 % 
5 50 % 

1 7 % 
1 7 % 
0 
0 
0 
0 

4 40 % 
4 40  % 
4 40  % 
4 40 % 
4 40  % 

. 

• 

. . 

. • 

" B "  

. . 

. . 

.• 

• 

4 40 %%50 . 50 8 a 0 
•% % . 

9 a 0 4 405 50 

" C M10 a 0 5 50 % 4 40 % 

%1 10 %%3 a 2 2 •• .. 

%% %4 a 1 110 1 
%%5 a 0 11 
%%_ .._  _ _  6 a 0 1 10 1 10 .. 

%7 a 0 11 10 % 
%%0 . 6 3 8 a 0 1 1 10 
% . .  

% 
% .. 

9 a 10 1 
" D  " %10 a 0 1 1 

%3 a 6 7 5  % 6 
4 a 4 50 % 5 

% 
6 2  

6 25 
% 5 6 2  % 

%8 5 a 2 2 5  % 4 50 % 5 
%6 a 1 12 3 38  %% • •5 
%7 a 1 12  % 3 38  % 6 25 

8 a 0 3 38 % 5 6 2  % 
%9 a 0 3 38  % 5 

" E  " %10 a 0 3 38 % 5 6 2  

3 a 6 8 6  % 5 7 1  %3 4 3  % 
% %%4 a 3 8 6  7 16 5 

6 8 6  % 5 7 1  %%5 a 3 
%% %6 a 2 5 7 128 6 •. 

% 
% 

% %7 a 2 8 6  52 8  6 
0 .  28 8 a 2 28 % 6 8 6  % 7 15 

•% 5 7 1  %9 3 4 3  % 6a 
10 a 3 4 3  % 6 8 6  % 5 7 1  % "F"I , 

7 
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Table 2 ,  7 

Right s ide y of point 1010 distorted by 0 . 10 mm 

N v ;q:-: v
ll 

xxx 1010 . 02 9  . 4 8 1  . 06 1  < - - abs max 
1020 - . 04 1  . 79 3  - .  0 5 1  
1030 - .  000 . 8  07 - . 000 
1040 . 009 . 8 16 . 0  12 
1050 . 00 3  . 5  04 . 006 
2010 - . 0  16 . 5  2 3  - .  030 
2020 . 007 . 8 50 . 008 
2030 . 0  15 . 7  84 . 0  19 
2040 . 0  15 . 8  2 5  . 018 
2050 - . 02 1  . 5  2 6  - .  040 

Table 2 . 8  

Right side y of point 2030 dis torted by 0 . 040 mm 
N v  v 

10 10 . 007 . 7 23 . 009 
1020 . 000 . 7  2 3  . 000 
1030 - .  014 . 6 15 - . 02 3  < - abs max 
1040 . 008 . 7  2 5  . 0  11 
1050 - .  002 . 7  2 5  - . 002 
2010 - .  0 10 . 7  2 5  - . 014 
2020 . 003  . 7  2 5  . 004 

xxx 2030 . 014 . 64 7  . 022 
2040 . 005 . 7  2 7  . 007 
2050 - .  014 . 727 - . 0  19 

2 . 2 . 3 . 2 . 1  General processes of blunder detect ion in 

PHOTO and MODEL 

Formal errors in recorded data , di fferences of repeated readings , and film 

deformation are checked in program PHOTO . Th is program contains a pre limi 

nary checking of data amount ( for relative orientat ion and model connect ion ) ,  

as wel l  . All further checking is performed in program MODE L .  

Blunder detect ion in relat ive orientation i s  performed in two connected 

proce s s e s  : one of data amount and distribution check ing , and second of 

applying ( 2 . 1  3 )  to ( 1 . 2  1 )  . Each time , when a point has to be exc luded , the 

first process is repeated before cont inuing the adj ustment . 

After the adj ustment , vertical parallaxes in all "other" point s ( not having 

part icipated in the adj ustment ) are compared with a fixed tolerance inde -
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pendent of the po int ' s  locat ion . 

Model connect ion is checked in a theoret ically s imilar way . Bes ide pa ss

point distribution and discrepancies in passpoints , parallel ity of the 

corresponding axe s of model coordinate sy stems is checke d .  Th is last check

ing re sults in warning me ssages . 

( 2 .  1 3 )  is not applied in strip homogeni zation as blunders have been exc lud

ed in the processes of sequent ial model conne ctions . Discrepancies in pas s 

points past strip homogenizat ion are compared with tolerances independent 

of the points ' locat ion . Re j ec ted points do not appear in the output file 

of strip coordinate s .  

Angular corre ctions determined in the process of strip homogenizat ion are 

compared with suitable tolerances , as well . Thi s  checking results in warn

ing me ss ages . 

x 

" Intermediate " and " final" tolerances are applied . Intermediate tolerances 

are relevant to processes such as pre l iminary model connect ion by sh ift ing 

and scal ing , wh ile final tolerance s apply to the final coord inates past 

strip homogenizat ion . Naturally , int erme diate tolerance s have to be s ome

what looser . 

Final tolerance s in PHOTO and MODE L are a uniform system based upon a s ingle 

accuracy characteristic t of photogrammetri c measurements ( upon the standard 

accuracy of measuring vertical parallaxes , as specified in input data ) .  Some 

opt ions of the programs make interference with th is system of to lerances 

poss ible . 

The whole system of tolerances i s  in the first line empirical , and evolved 

in the process of some 12 years of appl icat ion in wide ly vary ing circum

stances . The fol lowing notes can be given on the most important elements 

of this sys tem : 

a/  in the pra ctice , t is chosen between 0 .  010 and 0 . 0  15 mm- s ;  when work 

ing exclus ive ly with signalized points , t can be chosen smaller ; 

b/ deviat ions of repeated readings of image coordinat es ( or of readings 

transverted to such coordinate s )  from the ir mean are kept within ± t ;  
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c l  o in ( 2 . 1  3 )  for re lative orientat ion is taken for 3t ; 

di the " final" tolerance µ XY for check ing Y model coordinate dis crepan 

cies in passpoints is determined as follows : 

In recent decades aerial photography for mapp ing purposes became highly 

standardized with regard to applying image format 2 3  x 2 3  cm 
2 

, and a camera 

cons tant of 1 5 2  mm .  Th is explaines the general belief according to which the 

accuracy of determining hori zontal coordinat es of terrain points , when ex

in the scale of the yields a measure of photogrammetric 

performance suitable for compar isons . However this is not the case , it pro

vides good start ing for most purposes . 

Experience indicate s that µ XY ' expressed in the scale of the phot ographs , 

is depending upon the image scale M ( f  ig . 2 . 1 )  . This has many reasons of 

quite different nature , nevertheless it has to be taken into account . There

fore the tolerance for checking Y model coordinate differences is determined 

in correspondence with µ XY in fig . 2 . 1 :  

JJ XY = 3t ( 1  + ( M  - 3000 ) 1  15000 ) 

. . . ( 2 . 18 )  

where M is the denominator of the 

photo scale ; if M < 3000 , it is 

taken for 3000 . 

el  mode l coordinate discrepan 

cies in Z are compared with a"fi

nal" tolerance µ 2 determined as 

]J 
= 5z 

c 

p 
t ( 2 . 19 )  

f>t 

3t 

3 000 10  000 

Fig . 2 . 1  

where p is some typical value of the hori zontal parallax . 

In spec ial cases , µXY and µ Z have to be determined manually . 

20 OC() 
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APPEND I X  I 

CORRE CTING IMAGE COORDINATES FOR SYSTEMATIC ERRORS 

I . 1  Film de format ion 

In case o f  si de fiducials , a linear affine trans format ion take s care of 

the task . 

Corner fiducials control better the ent ity of the photograph , allowing a 

more complex way of handling film de format ion without the dangers o f  extra

polat ion . The hyperbolic affine trans formation des cribed in / 9 /  has been 

appl ied : 

y
i

-yl 

( X
i

- Xl ) ( Y
i

-Y
l ) 

= 

where x
i 

, y
i 

denote the measured image coordinate s ,  

X .  , Y . the corre cted image coordinate s ,  andi i 

( I . 1  ) 

a
1 1-a2 3  the coeffic ients of the hyperbolic trans format ion . 

It has to be empha sized that this trans formation corresponds to a linear 

interpolation of film deformation along straight lines ( ! ) .  

Index 1 re fers to the firs t fiducial . a
1 1

-a
2 3  are determined by solving 

two sys tems of linear equations with 3 unknowns , based upon ( I  . 1  ) written 

for fiduc ials 2 -4 separately in x and y ,  and substitut ing calibrated ( la

boratory ) coordinates for X .  and Y . .  All other points are transformed then . i i 
by ( I . 1  ) in two stages : first determining the approximate values 

f d . 
d . X

O Yo 
b 

. . d tho corre cte image coor inates 
i '  i 

y us ing J US t  a
1 1  -

a
2 2  

, an en 

counting the hyperbolic correct ions ( in program me s sages : the "tors ion "  ) 

o x 
t 

and 6 Y  
t 

as 

o x 
t i  = 0 0 

a
1 3  

( X
i 

- X
l ) (  Y

i
-Y

l ) 
( I .  2 )  

oY = 0 0 
ti 

a
2 3

( X
i -

X
l 

) (  Y 
i 

-Y
l ) 

Program PHOTO provides stat istics of film deformation for each in 

terms of "affine deformat ion " and the "torsion" ment ioned be fore ( see 

Appendix I I  ) .  Denot ing by S the s ide iength of a photograph , the se deform

ation characteristics are determined as 



/ 

Atmospheric 

affine de format ion = 

torsion in x 
2 = a1 3 s 

torsion in y 2 
= a

2 3 s 

- 4 6  -

2 2
a

l l
+ a 12 

2 2 
a

2 1
+ a2 2  

- 1 )  s ( I .  3 )  

( I .  4 )  

For each strip , systematic , random standard , and maximal random stat istics 

of the above deformat ion characteristics are determined . Both these stat i s 

tics , and the indiv idual values of de format ion characterist ics , are compar

ed with suitable tolerances . Special attention is due to the values of 

systematic tors ion in X and Y provid ing fine indi cat ion of the mechanical 

stab il  ity of the camera itself . Oscillat ions in individual tors ion values 

indicate , generally , fiducial reading errors . Affine de formation is rela

tive ly suscept ible to changes in c ircumstances and therefore less rel iab le 

for checking purposes . 

( I . 1  ) is applied in the proce s s  of j o  ining readings of one and the same 

photographs in two posit ions in stereocomparators , as well ( "  left -t o  -right 

position transformat ions " )  . Statis tics of these trans format ions provide an 

extremely reliab le mean of checking fiduc ial readings of all intermediate 

photographs of a strip . 

I . 2  Opt ical distors ion 

Only radial distors ion is handled . The corresponding formulas / 1  3 , 14 /  : 

r = x 
2 

+ y 
2 

r = r + or c 
( I .  5 )  

or r ( c
1

+ 
2 4 6 

r ( a  · s ina + b · cosa )  ) = c
3

r + csr + c
7r + 

2 
= r ( c

1
+ c 3r + 4 

csr + 
6 

c
7

r + a · y + b · x  ) 

where x ,  y denote image coordinate s ,  coe fficients a ,  b , c  1 - c7 describe 

opt ical distors ion , and inde x  c stands for " corre cted " ;  a is the d irect ion 

angle of the vector pointing to the p oint . 

I . 3  re fraction is corre cted as described in / 9 /  : 



----- -· 10 

programs 

K = 

r = 
c 

24 10 H 

2 
. 

H -6H+250 

K ( 1  + 

2 
r 

2 
c 

- 4 7  

2410 h h - 6 

h
2

- 6h+2 50 H 

( I .  6 )  

where H denotes the flying he ight , and h the terrain he ight , both measured 

in ki  lometers above the sea level . 

1 .  4 "Earth curvature " is no systemat ic  error of image coordinate s  ( as it 

often is treated ) but a bas ic difference of the photogramme tric and o f  the 

geodetic coordinate systems . There fore "Earth curva.ture" is not re levant 

to the proce sses of re lat ive or ientation and of strip format ion . 

APPEN D I X  I I  

Examp le of a REPORT file of PHOTO and MODE L 

REPORT is an output file containing me ssages and stat istics . 

/s ee the next pages/ 



program 

• •••••• • • • HOH £ WA NO • • • 7 8 .  1 1  . 0 7  • • • ••••• •• • • • • • • • •• • •  • • • • • • • • • • • • • • •• 

IN I T IA L DAT A F'OC AL LENG T H " 
F' l'fl N G  H E  IGHT 
T ERRA I N  HE IG HT 
T OL E RANC E 

U 2 . 67 HH 
35 0 0 ,  " 

6 0 0  . " 
. 0 1 5  "" 

------ - - ----- - -  - ---- - --- - --- - - - ------ --- -- - - - - - - - - - - - - - - - - -- -- - - - ---
St R I  1 

I N P U T  HOD E L  6 1  
I NPUT HJ IJE L 62 
INPUT HJ DEL 63 

S T A T I S T  I C S  OF L EF' T - T O -R I GHT POS IT I ON f RA NS f OP N A T I ON 

S TANlA RO F IDUCIA L  REA D I NG A CCURAC Y 

SYST ENAT IC I HH l  S TANOA O I H MI HAX I H AL-RANOOH C HH  

T Oll SION IN X 

I N Y 

PHOTO 62 POINT 

• a 0 2  
. e. 2  

-. D 6 

OUT Of .. I U  DUCEOI 

PHOTO 63 POINT 
OUT Of r. C R EDUCEO l  

l lt  l 
I H J CI "IG S 

1 1 5  . J 7 t;  
1 1 5  . 38 9  
1 1 5 . 37 5  
1 1 5 .  37 5 

H 1 
R F.A O I NGS 
36 . 9 2 2  
3 f> . 9 2 5  
"! f> . 9 1 1
3 r, . 9 1 1  
3 & . 8 9  0 
3 & . 9 0  2 

PHOTl 63 POINT 61-70 
OUT OF' It C R EOUC E a l  R E A CI "IG S

1 u  . o o i.  
1 1 9  . 99 1o  
1 0 9 . 991t 
1 0 9  .995 

• 0 0 7  
. 0 11 

. 011 3  

AT LEA ST 
l\5 . 5 1 8  
6 5 . %9 
65 . 57 1t  
& 5 . 57 1t  

A T  \. F. A S f
76.  8 5 
7 6 . 8 5 0
7 6 ,  8<;5 
l' & .  855 
7 6 .  85 0 
u , . 9 59 

AT L E A ST 
9 1 . D O lt  
9 1 . 0 22 
9 1 .  0 3  
9 1 , 0 2 8  

, U 5  C PH OT O 6 3 1  
- .  D 1 2  I PHOTO 6 3 1  

-, 00  2 CPHOTO 6 2 1  

1 ERRONEOUS I 
c --

. 2  E'RRONEOUSI 
c--

c--

1 ERRONEOUSI 
c --

PH OT O BY PHOTO PROCESi I N G  

PHO TO 6 1  

PHOTO 6 2  

PH O TO 6 J  

PHOTO &It  

STANDARD REAOI ' AeCU RACY O N  JHE STRIP s . 0 061t " "  C REOUNDANCYs 6 6 1  

-- 2 - -

S TAT I S T  I C S  Of F I DUC I A L  T U NS F OR HA T  IJ'4 

SYSTEttA r I C  ( HH J  S T  ANDARD ( !t it )  H U I A l. • RA N O O H  C HH I 

T ORSION l N  x .a 0 5  . o o a  - . 01 0  C " HOT J 6 1t l  
I N  y • . O Z6 . 0 1c; -. 0 2 1  C PtiOT '.I 6 1t l  

A FFINE . 1 1 1  . 0 01 - · 0 8 9  C "'H O T J  61tl 

- - - - - - - - - - - - - - - - - - - - - - - - - -- - - ----------- - - - - - - - - - - - -  - - - - - - - - - - - - - --

I N PU T  H '.> 'l '!: l.  27 
I N PU T  MJ D l  28 
I N P U T  P' ;> O E L  2 9  

STA TIST I C S  O f l. EF' T •TO-RIGHT P O S lT toN r q NSfORllATION 

. o o  s 7  "" I Rf O U N O I N C Y =  6 1  

SYST£HA T I C  t HH I  STANDARD C,,,  

J O!t  SION I N  X 
IN Y 

AFFINE 

'PH O T O  27 

PH O T O  211 

P H O T O  29 

PHOTO 3 11  

. 0 0 2  
- . 11 0 3  

_ _ , , ,  

, O lio 
.005 

• OD D  

PH OT O BY PHOTO PKOCf:S S t N G  

, OB ( PH OT J  29 1
. O O l  C PHOT O 2 9 1  

• . DO I  IPHOT;J 2 9 1  

STANDARD R EAOIN  ACCU RA CY O N  THE S i  RIP : . 0 0 5 6  H ! REDUNDA NCY= 3 6 1  

••• F ID UC IA L READING E q Ro R ,  P HOTO 2 8  • T O RS IO  IN • a , 11 46 HH • • • 

T ORSION IN X 
IN Y 

STA T I S T IC S  Of f l Dl.C I A L  T'ANSf OR MA T  JON 

SYS f EHAT IC C HHI STANDA RD INHI 

- . 1 \ J
. 0 111 

- . 11 1 1  

.0011  

. 0 1 9 

. 015 

Sf R I P  

• ,  0 0 9  I PHOT) 3 0 1  
• 0 Z Z  C PHOT J 2 7 1  

- .  0 1 5  !PHOT O 2 7 1  

REPORT of PHOTO 

+ 
co 



• • • • • • • •  • • MO  E • • •  • • • • • • • • • • • • • • • • •• • • • •• • • • • • • • • • • • • • • ••• A A NO 7 1 . 1 1  . 0  7 
STltP 1 

TO l. E U NC !:S 

FOR o A  IN,fR Y - P PA L L A XE S t  . O lt 5  H H  
FOR 4 0 0 E L  : ONNE: T I O N  D I  SC REPA NCIES I N  • A N O Y t  1 . 1t1 6  HH l z  . ossr INC HfSI 

I N  Z t  o 11t9 H  C •  . O Q S9 INCHESI 

R!:LA T I V E  o q I !: N TlTI ON 61 • 62 

ELA T I E  o q I EN T A T I O N  6 2  • 6  

RELAT I V E  O R I E N T A T I  ON 63 • 6" 

R E SUL TS ANO STA T I S T I CS 

R ELAT I V !:  ORI E NT 4 T  ION 
PHOT O  PH I :> Pl  FGA KAPPA RZ IBX BY/PX RHS OF OoPY 

• • • A O I A N S ,  CGPAOESI • •  MICRON S - - · 

61 I .  GIGO 0 0 .  0 0 0 0 0  0 .  0 00 0 0  • 0 23 '52 • 0 49 0 0  9 
' o . 0 1 n t  0 • 0 0  I ' 0 .  0 0 0  1 I t . 'ltHI ' 3. 1 1 71 

..62 o 0 D fi 'l 9  -. 00 1 2 9  - . 0 0 0 66 • 11 1 • 0 0  • O ltlt 1 9  
' • ltlt5 I ' -. 0 9 2 1  ' • o !l lt2 1  ( • 70 0 1  ' z . e 1 0 >

r,3 . 00 1 '5 1  . 0 0 8 9 9  • 0 0 5  1 1  · 1 2752 • 0 36 3 1  7 
' . o & I  ' . 5 72 1 ' • 32& I ' 1. 75 1 1  ' 2 . 1 1 01 

6 1t  - . 0 0 3 1 7 • 0 OOJ  . 0 0 12 6  
' -. 2 0 2 1  ( . 0 21 1  ' . 1t6n 

H ODEL C O NNECT ION 
C O .  KAPPAPHOT O S  RMS X H S  Y R MS Z CO<Ro. OMEGA 

N I :   oNS • • otA O I A N S ,  ( ) EC IH A L  S ECONOSI •• 

3 1 0  32 .eaa a z  c t z l  - .  0 0 0 1o :s  c -z76161 - 63 
6Z • &It 7 1 7  22 

REPORT of program MODEL , t = 0 , 0  15 mm 

••••• • • •  ••HOHE WA NO • • • 78 • • • •• • •• • • • • •• • • • •• • • • • •  ... • • • • • •• •  • • • •• • •  . t i  . 0 7  
S TRIP 1 

T OL ER A NC E S 

FOR 'F.HA I N O ER Y - P APA l L A  X E S •  . n  o  HH

F OR ,OOEL CO NNEC T IO N  D I SC R E PA NC IES IN X A N O  Y 1  o 9 1t lt  H M  I •  . 0 372 IN:HESI 
I N  Z t  . oq e  "" I• . 0 0 39 IN: HESI 

RELAT I V E  O R I H Tl T I  ON & 1  • 6 2  

RELA T I V E  Q q I E N T A T I  DN &2 - 6 3  

REL A T IVF. O R l E N T A T I O N  6 S  - 61, 

PHOTlS 6 2 - &  ODEL C ONNE C T I O N !  I HPR O@A8L E SYST . P A T  I N  Z-) 1FF R£ N C E  
C H E C K  POI NT T RA NSF fl!  t ---

R E SUL TS ANO S T A T I  S T IC S  

RELA T I V E  O l EN T A T  IDN 
PHOr o  PHT O H  E G A  KAPPA PZ IRX BY/ RX RHS OF O .PY 

•• R A D I A N S , I G PAOE S I  -- '1 I C R O S  

6 1  0 . 0 0 0 0 0  o .  o n o o o  0 . 11 0 0 0 0  . o z c; z  . 0 1, 9 n o  g 
I o .  o o u  ' 0 .  0 0 0 1  ( 0 . 11 0 0  I ' l o  4l ? I  ' l. 1 11> 

6 Z  • 00 & 9 9  - .  0 0 1 Z 9 - . 0 0 0 &6 . o  u o n  • Q l,1, 1 8  .. 

' • t, 1t '5  I ' -. 0 8 2 ,  ' - .  a 1oz 1  ( . 1o u  ' 2 . 8 1 0 1  
6 S  . 0!1 15 1  . a  o 8 99 . o o c; u  . 11  z 1 c; z  • 0 31- 3 1  7 

( • 09& 1 ' . sn 1  I o3Z&I I 1 . 15 1 1  ( 2 . 3 1  01  
6111 - .  H 3 1 7  0 0 0 033 . 0 117 2 6  

' - • 2021 ' . 1 2 1 1  ( olt6Z I 

ODEL C O NNECT I O N  
P O T O S  RKS x RMS Y Rl<S l COR R .  K A P ? A  c o R .  O l<E  G A  

K I :  R O NS · - RA DI A NS , C O EC I HA L  S EC ONOSl --

:a 1• 32 o U'O D 0 2  C 1 Z l  - . 0 00 1, J  c -:nf» 
, 17 '17 

REPORT of program MODEL , repeated run , t = 0 . 010 mm 
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APPENDIX I I I  

Abstract o f  a REPORT file a s  written by program MODEL . Data are s imulated 

so to il lustrate effects of large errors in x .  Mes sages for mode ls 4 13-

have been omitted here because they refraine those for the first models . 

( Past the " fatal error" me ssage the program runs further in a che cking mode 

of operat ion )  . The column of "RMS of d .  py" ( RMSE values of remainder verti

cal parallaxes ) indicates that the normally distributed errors of a standard 

of ± 0  . 1  mm ,  introduced into the x image coordinate s ,  did not influence the 

accuracy of the re lat ive orientation ( y  image coordinates have been perturb 

ed with normally distributed errors of a standard of ±0 . 007 mm )  . However , 

proce s ses  of mode l connect ion ind icate the se errors both in Y and Z .  The 

errors totally di sappear in X model connection discrepancies ( see Appendix 

V )  . 

/see the next page / 
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• • • •• • • • • • 1  Y R R Ck S T A D A D  J .  0 7 ,  Y  O P S T A N O A D  0 . 1 MM•• • • • • • •  •• •• •• 
S H·lP t 

F O O  o i;:11 I  . l fR Y - P A t< L L  U f ';  I . u J O  Mil  
F'l• OCFL C O NN£ T I O" 'l l  S C f D A N C  I E S  IN I A N O  Y I  

I N  Z I  

. o s •  M M  I =  . 0 0 2 0  ItlC HF SI 

. 1 1 2  HM 1  . o i. o  T NC l<l'.SI 

1 - 2 

0EL A T I V E  O IENTAT I O N  2 - 3 

P H C  JIJS 1 - 3 1100C:L C O Ml :OC T ! O N :  IMP"O 1 A i3L E S Y S T ,  !' A R T  I N  Z-O I F F E RE N C  ES 
C H <: L K  F u r tn J Q A  NS F E'-' . - --

l'H'' TOS 1- J I  2u 1 0  F F R O P  I N  T R A I J'>  F f  
1 [1X: - • j  t C Y =  . S A ,  n z= t . 0 21 1  , 

P11<.. TO"; 1 - .! •  2  3 L  F  R u t>  rn T k A N S  F!I" 
1nx = - •  " u  ' Y= .".'  :,q, O Z =  t . !t & J ,  

--- C'IS:CK E V  E o Y  FOI'IT 011 FHOTO I 2 ! ! • - - 

ELA T I V E  <.. I E N T A T I  ON 3 - 4 
P '1 C T v S  2- 4 1  MU'<Ef.i< OF IJ N ' X C i. •J t.l o D  PA S l' O i l l T ')  

1 t. SUF F I C I E N T  F 'l R  HOOFL C ON N  E CT I ON 
HOO L r;·orn; (CT I C N 2 - 4 1

cr::.co EP  •• c IES IN M:t B i::FO E  THE C O RREC T i fl N PROCESS 
:1  O X  D Y  D Z  

1 " 1 0  . o we - . u  ;, 5  - . 1 6 i  <-- CHECK T .. A1'4S FF. R 
J C .: J  • 0 C t  - . L  :; i;  _ .., .  zq1 < •- C f< F CK T R ANS FO:: R 
Jo 3 ;  - . c  . c  1 &  • 2 1  ·  < -- C H ECK T o{ ANS F E R  
J 4 ..,  • " 0 n - • '- 1 !  - . J 5 c:'  
:! ;j 5 ii  • 3 C1 - . 6 n  1 . 158 . < -- CH Er.K T R ANSF E R  

C HEC K £VE Y POIN T O N  PHGTO f J ! ! !  

OC L U O F n  

OC LUO F!) 

••• Sl f.'. T P  1 1  F AT A L KR O R  •• • 

ELA f I VE O R  IFN A T I O N  " - 5 
P C TO ';  !- 5 1  N U " e FP CF IJN H C L IJ'l  C ? A S o O itJT :i 

! S U F f I C l F T  FOR HOOEL C ONH C T ION 
'I O C<:L C :J l11 £ C T I C N  3- 5 1 

!'I ISCP EPA l•C E S  IN HH 8 FO E  T 11 E  CORRECTI Ull P Ror.i::ss  
N  0 Y D Z  

i. l 1 -l . o  .. 
4 0 2• - .  " au 
4u O  . 0 0 1 
4G " '  • t C J  
.. .  s c  . u J 

- • .; q
.  H 

- . u  3q 
- • .j " "  

. 6 2 7  

, q 49 
• 1 14 

- . 626 
- . 16 1.  

-1 . 760 

<-- 11 f CK T R AN S FE R  
<-- C Y F C K  T R ANS F E R  
< - - CHECK T AN S FE R  

CHEC K  EV ERY POillT O N  FHOTO. I 4 ! ! !  

. . . 

- ... 4 - -

Pf SUL T S  A N  S T AT I T ! C  

RELAT I V E  0 K T E N 1  A T 1 0  

FHOTl'l PftI 0 "  ' \; A  K A ? P A  
-- RA C I Atl S ,  t G F A l" E > I  

1 o . Q O  u O  o . o o o ·J ,;  U .  J l i'  r O 
( • •  C G O I  I U . U u O )  ( 0 .  0 UV I 

2 • 0 0 2 .. 2 • G 1 b7 - • o u o1 b 
( . 1  5 4 1  c , <1 7 0  I I - .  5 8 3  1 

J , q 1 1 2 5 - , r, C.'H ·: . u u ,  .. 4 
I • 7 1 & 1  I - . 0 1 8 >  . 2 B  l 

4 . u C  .. !1 4  - . 0 1  1 8  • u 0 1  « '3  
I • 3 J d I I -. b H 2 l  I . 1 2& l 

<; - . 0 4 5 t  . o o a n  - . c  O J  2 
( - . 2 8 7 1  ( • S ? t> I  ( - . u :! ) 

& . 0 1  J .  . u  1 u " 7  - . o u z t o  

( • ll!>f. I ' . 6 1  ) ( - . 1 3 •.J  
7 - . e n  2o'l - .  iJ t 2 n. 2  - . n .6 l b  

( - . 11 2 1  I -. 7 6 5 1  - . ll  l 
8 - . u o 8 . o  . 1  1+ / ;,  . a . 1 3 u  

( - . S J 'l l I • 'l ! '3 l  I . 7 2 1  
q - . OO U 7!> - . u ll 1  5( - .  U 'l '3°' b  

I - . 4 J " l I - .  C95  1 I - . s<J .. 1 
1n - . o c ;; ss - .  1 35 3  , u 8   

( - .  22bl I - .  8 ' 1  1 I . SJ3 I 
11 - .oo 3'+4 -. c o  q3" • 0 J 2 2  J 

I - .  2 1 9 1  I -. 5<J2 1 l o 11t:? I
12 • 0:1 30 1. •  u 2 JI , u , 50 2  

I . 1 9 3 1  I . 1 3 2  l ( . 37 7  1 
13  - . 01a •9 . Q  0 6Cl5 -. 0 1 51 8 

( - • 6 6 8 I ( . .. .. 3 1  ( - . 9 o& I 

MOD O::l C O NN£CT I O N  

Z  lill 

• (! ..,  ,, .. 
I 3 . 1 o 3 >  

- . " " 7 1  
c -& • ::' 7 1  

• r 5 . 1  '- 7  
( 3 . 72 3 1  

• ( . : 5 2  
I . ... 3 3 )  

- . o  • J 3 2  
I - T , 1 7 1  

• l c ;  43 
I .  J Z >  

- . r •-> "J 
( - • .  lt> J l  

• li 'i· 1 7  
 . 1  '11 1 

- . C  Q·J 4 &  
( - r, .  3 1 1 1  

e l1 c: )  J 2  
J .  Z C 1 J  

• c C: y  .:: 1 . 
J .  2 3 1  

- . C · PS 
I -3 . 1 3 '1 1  

r v1 ,; x  s  F  . PY 
1 I C ·' J  S 

• r u ?CJ 
I • ,, .;. "' 1  

. r-  c :.?  z 
I -  t ·  

. o  r c • 3 
• w 1 l 

- • p "'  ·  r d  'l 
( - .  n :1 5 1  

• r o .  r <+  
( • r ..., .! l 

• "'  O t- 7 q 
I • , 3 1  

- . o ,  n  1  
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APPENDI X IV  

SECOND SYSTEM OF FORMULAS 

The e xpre ss ions derived in chapter 1 . 2 . 2 . 2  can be transverted into funct ions 

of the right s ide photograph of the normal stereogram to be con structed . 

Cons idering ( S  " S " M )  in fig . .  1 provides a key to this transvers ion : 0 

or 

0 B 
y 

B
z 

x" y" -c = 0 
t t 

x" y" -c0 0 

( x"y" - x"y" ) tanT + ( x" - x" ) tarn> = 0 t 0 0 t t 0 

Adding ( IV . 1  5 )  to ( 1 . 5 )  : 

c 

where 

p
xo 

= x '   x"0 

Pyo 
= y ' - y "  "' 00 

p = 
y y '  y"

t 

+ p tanv - p = 0
XO y 

( IV . 15 )  

( IV . 16 )  

( 1 . 7 )  , ( 1 . 9  ) ,  and ( 1 . 14 )  after some elementary steps can be rewr itten as 

y"0 
Y Pxo- x p

yo
= y" + tanT + p tanv t C XO 

Y Pxo


tanT + p tanv - p = v
C XO . y 

Pxo
x" = x" ( l + -- tanT )0 t c 

where p can be computed asXO 

x '  - x" 
t 

p
xo 

= 
x "  

1+ 
t 

tanT 
c 

( IV . 17 )  

( IV . 18 )  

( IV . 19 )  

( I  V .  20 ) 



x"p 
yo 

------"-  

tanT 
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( 1 . 2 )  and ( I  V . 18 )  yield the correct ion equation . The linearized form of 

it i s  : 

x"y" y"p -
t t t XO . :t 

o<j>+ x" O K + tan T + p tarn> - ( y  1 -y " )  = V 
C t C XO t 

( I  V . 2  1 )  

The coefficients in ( I  V . 2  1 )  contain x 
t 
" '  y

t 
"  p , and p , the pre cise 

XO yo 
value of wh ich becomes known only in the last iterat ions ( (  I V .  2 1 )  is a 

re curs ive express ion ) .  

For the x-dire ction - for purposes of further analys is - the following 

expre ssion can be wr itten , analogous to ( IV . 2  1 )  : 

" " "
2 x"p

X XO- w + ( c  + --) <j>  + y" K + + R = o p
c c c x 

( I  V . 2  2 )  

where R is the sum of non-l inear terms in the expansion of ( 1  . 2 )  , and 

op = p - p = -o x" = x" - x"X XO X 0 

X-discrepanc ies in 

APPENDI X V 

Di fferent iat ing the first row of ( 1 .  24  ) for the model S ' S  " :  

d (  X '  ) =d (  

Repeating the 

d (  X" ) =d (  

B 
x 

x '  -x" 
t 0 

same 

B 
x 

x"-x" ' t 0 

B 
X I  ) =  

x 
t 2 

p
xo 

( x '  dx" -x"dx '  ) 
t 0 0 t 

for the model s "S"  I : 

B 
x"  ) =   

t 2 
p

xo 

( x"dx" ' 
t 0 

x"  ' dx "  ) 
0 t 

( V ,  l ) 

( V . 2 )  

The di fference of ( V .  l )  and ( V . 2 )  expre sses the discrepancie s in X mode l 

coordinate s  when substitut ing corresponding value s for photo coordinat e s  . 

Us ing the not at ion p for some typ ical value of the hori zontal parallax , 

the following can be wr itten for pas spo int s common to the above models : 

x '  "' p
t 

x" "' x" "' 0 ( V  , 3 )  
0 t 

x" ' "' -p0 



theory 

independent 

Y-discrepancies passpoints 

- 54  -

With these , ( V . 1 )  and ( V . 2 )  become equal to each other ; 

B 
d(  X '  ) "'  dx" "' d (  X" )  

p t 
( V . 4 )  

meaning that the ir difference is e qual to 0 .  For normal stereograms this 

can be seen geometrically in fig . 1 . 2 .  The above deduction proves that this 

pe culiarity remains in strength for a general case , as well . For grid points 

this is the exact truth . In pract ical cases this is a strong tendency ( as 

sumpt ions ( V  . 3  ) are not exact i n  practical cases ) .  

Append ix I I I  contains a REPORT file of MODEL , illustrat ing the above de 

s cribed peculiarities . 

It is quite interest ing to note that discrepancies in x disappear not only 

in the process of relat ive or ientation but in the process of model connect 

ion , as we ll . Such errors influence , however , the values of Y an d Z via 

distort ing the hori zontal parallax . Th is can be seen in the second and 

third rows of ( 1 . 2  2 ) ,  and very apparently , in Appendix I I I  . 

The conclus ion s of this appendix are meaningful for the of block 

adj ustment of models . When ( V . 4 )  is valid , observat ion e quat ions 

wr itten for the block adj ustment in X have to be given a high we ight . In 

other words , ( V .  4 )  j ustifies a we i ghting in favour of strip continuity . 

( V . 4 )  is val id when measurements of points belonging to one and the same 

photograph are checked and averaged before entering the process of relat ive 

or ientat ion . Thi s  requirement is fulfilled in program PHOTO . 

in 

Different iat ing the second row of ( 1  . 24 )  : 

8 
x 1

dY "' - ( - ( dy ' +dy" ) - _x__ ( dx '  -dx" ) )  

where 

p
xo 

2 t o p
xo 

t o 

y = 
y '  + y"t 0 

2 

APPEND I X  VI 

( V I  . 1  ) 

( 1 . 2 )  , ( 1 . 2  1 )  , and ( IV . 2  2 )  yield expres s ion s for dx  , dy  , dx  , and 

dy" : 0 
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1 2 
dx ' =  ) d  ' - y ' dK ' t c c 

I 2
dy ' = ( c+ y_:___ )dw ' t c 

XII I I  
dx" =  w" - (  c+ 

0 c 

1  + X 1 dK 1 
c 
1 1 2x

--) d 1 1 -y1 1dK 1 1
C c 

p y"x"y" XOdy" = ( c+  "+x"dK"+  dv " 
0 C C C XO 

For the triple overlap zone in fig . 1 . 2  we can assume : 

x ' "' p ; x" "' 0 ;  XII I '°' -p 

( VI .  2 )  

( V I  . 3 ) 

where p corre sponds to some typical value of the horizontal parallax . With 
( VI . 3  ) one can wright expressions for the right side of mode l S ' S" and 
for the left s ide of model S " S " '  . The difference of these is the full ex

press ion for dis crepanc ie s 6Y in passpoints . It contains , however , parts 

wh ich become absorbed in connect ing the mode ls by ( 1  . 2 3 )  . Excluding these 
con stant and linear terms , we gain : 

6Y =-Y2 (  dw'"  dw ' +  ( dK '"  2dK " +  dK ' )  ) a Z 2 B 
( VI  . 4 )  

where the index "a" stands for "a symmetric" . Tak ing into account that 

and 
dw " ' -dw ' = ( dw" ' -dw" ) + ( dw " -dw '  ) =6w ' +6w" 

dK 1 1  1 -2dK 1 1+dK 1 = ( dK 1 1  1 -dK 1 1  ) - (  dK 1 1 -dK 1 ) =6K 1 1 -6K 1  

( V I  . 4 )  can be re-wr itten in another form : 

Y __ -Y2 ( 1- 6w ' +6w" 1
a Z 2 + B ( 6K "-6K ' ) )  

Z-discrepanc ies in passpoints 

Different iating the third row in ( 1  . 24 ) :  

dZ = 
B cx 

2pxo 

( dx ' -dx" ) t 0 

( V I  . 5  ) 

( VI .  4 1  ) 

APPEND I X  V I I  

( VI I  . 1  ) 

( V  I I  . 1  ) is an expre ss  ion of the well known hyperbolic paraboloid , With 
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( VI .  2 )  and ( V  I .  3 )  , and excluding constant and linear terms , an expre s s ion 

for 6Z discrepancies in passpoints can be wr itten : 

6Z = YZ (  ( dw" ' -dw ' )  +  ( dtc: " '  - 2dK " +dK ' ) )Z B ( V  I I  . 2  ) 

Tak ing into account ( VI .  5 )  : 

( V I  I . 2 1  ) 

APPEND I X  V I I I  

Derivat ion of for the case of indirect observat ions 

v 
Ax = 1 + v = l ( VI I I  , l ) 

v 
v = 1 - 1 = Ax - 1 

The solution of the corresponding normal equation 

system : 

x = ( A
T

Q A )  
- l

A
T

Q l 

v = ( A ( A
T 

Q -
l 

A )  -
l 

A
T

Q- 1
- I  ) l  11 11 

Q = ( A ( A
T

Q -
l 

A )  -
l 

A
T

Q
- 1

- I  ) Q  ( A ( A
T

Q 
l

A )  -
l

A
T

Q- 1
-I ) 

T 
vv 11 11 11 11 11 

= Q
ll 

- AQ
XX

A
T 

Taking into account ( VI I I  . 1  ) : 

2
Proving that a0 

1 -T -= - v Wv 
n 

T
Gn= AQ

xx 
A 

Notations : Q = diag Q
vv 

-- 1 

( VI I I  . 2 )  

( VI I I  . 3  ) 

APPENDIX IX  



E [vTE TE 

-T- Tv v = v w v 

= ( Ax-l ) TW ( Ax-1 ) 

= xTATWAx-lTWAx-xTATWl+lTWl 

= xTATWAx-2 xTATWl+lTWl 
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as xTAT= lT+ Tv : 

= xTATWAx-2 ( 1T+vT )Wl + lTWl 

= xTATWAx - lTWl - 2vTWl 

as vTl = vT( Ax-v ) = ( xTAT-lT ) Ax-vTv 

2 _ - 1 
W = cr E

0 

T T T T T= x A Ax - l Ax - v v = -v v 

( IX . 1 ) 

( IX . 2 )  

( IX . 3 )  

( I X . 4 )  

where E denote s the corresponding variance-covariance matrix taken for 
diagonal . 

On the basis  of ( IX .  3 )  , ( IX . 4 ) ,  and ( I X , 5 )  : 

- lj = E [l -l - E[xTATE°- lAj 
as for symmetric R 

= E r(  llTE 
- l  - E Gr (  AxxTATf- l  

with l = l + v = Ax : 

= tr( E [111 E- 1
) -tr ( E lT] f- 1 ) 

as E M  = EMM+µMµ : 

( I X . 5 )  

Tx Rx 



T  vj 

r:-T  E lv 
J 

[ - 1
E v L 

..,

Ax = l+v = l 

l = Ax - v 

Aµ x 
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( IX . 6 )  with ( IX . 7  ) ,  ( IX . 8  ) ,  and ( I  X . 6 )  ; 

T T tr ( ( Aµ µ A x x 

( I  X . 5 )  with ( I  X .  10 )  : 

2= na
0 

which y ields the expre ss ion sought : 

and , when 

2a
0 

2 1 -T-a = - v v o n 

Q1/ I :  
1 1 

1-T - 1- 1 T-2 -2 = 2v Qllv = - v W WW vn 

where Qff = I - T+ A . Q  A .
l. xx l. 

Q+ = I - A Q+ A:i xx l. 

( IX . 6 )  

( I  X ,  7 )  

( IX .  8 )  

( IX .  9 )  

tr( I )  = n ( I  X .  10 )  

( IX . 11 )  

( IX . 12 )  

APPENDIX X 

+Both Qff and Q are counted for a group of k points , w ith k<r ( r  - the re  
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dundancy ) .  A .  indicates the corresponding ob servat ion equat ions ( k  rows
l +within A )  . Qff and Q are k x k matrices .  

+ ( ATA )  - 1Qxx = 

Qxx = ( ATA A:A . ) -l 
l l 

The difference of inverses of ( X . 1 )  and ( X . 2 )  : 

T= A . A .
l l 

( X .  1 ) 

( X . 2 )  

+ TMult ip lying from the left by AiQxx ' and from the right by QxxAi : 

- T t T - T + TA . Q  A .  - A . Q  A .  = ( A . Q  A .  ) ( A . Q  A .  ) 
l xx l l xx l l xx l l xx l 

Adding the un it matrix to both sides , and rearranging : 

- T + T - T + TI = I +  A . Q  A . - A . Q  A .  - ( A  . Q A .  ) (  A . Q A .  ) 
l xx l l xx l l xx l l xx l 

I = ( I  + A . Q   A: ) ( I  - A . Q+ A: )
l xx l l xx l 

Mult iplying by ( I-A . Q+ A: ) -l yields the sought expre ssion ( this inverse 
l xx l 

generally exists because k<r )  : 

or 

- TI + A . Q  A .
l xx l 

( X . 3 ) 

( X . 4 )  
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