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thanks go to Johannes Böhm for his efforts to bridge the gap between my quite isolated

gravity-island at TU Vienna to other groups and persons working on this topic.

My most profound thanks go to my family for their continuous support, encourage-

ment and their solidarity during so many years of study. I am especially thankful for their

understanding and the tacit acceptance of my repeated absence from family affairs.

Finally, I acknowledge the Austrian Science Fund (FWF) for their support within the

project GGOS-Atmosphere (P20902).



Abstract

Atmospheric pressure variations are one of the major sources of surface gravity perturba-

tions. The varying atmosphere introduces two disturbing forces in the gravity signal, the so

called direct effect or Newtonian attraction, where the measuring object is attracted by the

atmospheric mass itself, and secondly the indirect effect or atmospheric loading, where the

masses deform the Earths surface, what again influences the measured gravity signal due to

the slightly changes gravity field.

In satellite gravity missions such signals are referred to as aliasing. To eliminate them, the de-

termination of accurate atmospheric gravity field coefficients (AGC) is indispensable. For the

determination of AGC it is state of the art to use high resolution numerical weather models

which take into account the time-variable three-dimensional distribution of the atmospheric

mass. By subtracting the gravity spherical harmonics of the instantaneous atmosphere from

the ones of a long term mean field, the residual gravity spherical harmonic series is obtained.

It describe the deviation of the actual gravity field from the mean gravity field due to atmo-

spheric mass variations.

Ground based gravimetric measurements encounter the same difficulty of eliminating the dis-

turbing signal introduced by the atmosphere. Superconducting gravimeters are usually cor-

rected using the local air pressure, which reduces up to 90-95 % of the atmospheric signal.

However, modern superconducting gravimeters require an even better atmospheric correc-

tion if small signals are to be identified. For this task the use of three-dimensional modeling

of atmospheric mass attraction based on operational numerical weather models has shown

promising results.



Kurzfassung

Druckvariationen in der Erdatmosphäre sind eine der Hauptverursacher von Schwere-

feldänderungen an der Oberfläche. Die sich stetig ändernde Atmosphäre beeinflusst das

Schweresignal auf zweierlei Art, einerseits durch Attraktion des Messinstrumentes durch

die atmosphärischen Massen, das ist der sogenannte direkte Effekt, und durch die von den

atmosphärischen Massen induzierte Verformung der Erdoberfläche und daraus resultieren-

den Schwereänderungen, den indirekten Effekt.

In der Satellitengravimetrie werden diese kurzzeitige Signale als Aliasing bezeichnet.

Um diese zu eliminieren ist die Bestimmung von exakten atmosphärischen Schwerefeld-

Koeffizienten (AGC) unverzichtbar. Für die Bestimmung von AGC werden entsprechend

dem Stand der Technik hochauflösende numerische Wettermodelle verwendet, welche die

zeitvariable drei-dimensionale Massenverteilung innerhalb der Atmosphäre berücksichtigen.

Durch Subtraktion der Kugelflächenfunktionen der momentanen Atmosphäre von denen des

mittleren Zustands, einem lanzeitigen Mittel, werden die verbleibenden Kugelfunktionen er-

mittelt. Diese beschreiben die Abweichung des momentanen Schwerefeldes vom mittleren

Schwerefeld aufgrund atmosphärischer Massenveränderungen.

Bodenbasierte Schweremessungen begegnen denselben Schwierigkeiten bei der Eliminie-

rung des Störsignals welches durch die Atmosphäre induziert wird. Bei supraleitenden Gra-

vimetern wird die Korrektur üblicherweise über den lokalen Luftdruck ermittelt, wodurch

90-95 % des Atmosphärensignals eliminiert wird. Allerdings reicht diese Korrektur heutzu-

tage nicht mehr aus, da auf die Detektion von sehr schwachen Signalen abgezielt wird. Hier

hat die drei-dimensionale Modellierung von atmosphärischer Massenattraktion auf Basis von

numerischen Wettermodellen vielversprechende Ergebnisse gezeigt.
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Chapter 1

Introduction

1.1 Motivation

The Earth is a dynamic system where different geophysical processes interact resulting in

variations with a wide temporal and spatial range, making the study of it a complicated inter-

disciplinary task. Modeling and separating all the physical processes, including atmospheric

and oceanic circulations, redistribution of continental water, ice melting, precipitation, sea

level change, global isostatic adjustment, luni-solar tides, and plate tectonics, are a necessity

to study one specific process and further to gain deeper understanding of the evolution of

each sub-system and their interactions. In the last years one process in particular has caught

the attention of many scientists, i.e. the mass redistribution and transfer of water, as it is

crucial in understanding the evolution of our climate and the sea level. This signal is directly

linked to mass changes in the Earth system, which become visible as gravity variations and

can be measured on specific locations on the Earth surface by gravimeter or on a global

scale by satellite gravity missions.

The connection between atmospheric pressure and gravity was demonstrated first by

Warburton and Goodkind (1977) using superconducting gravimeters (SG). With the devel-

opment of the Satellite Laser Ranging (SLR) technique in the 60’s and then especially with

the long-term Lageos observations since the mid 70’s, the detection of temporal variations

of the low degrees of the spherical harmonic coefficients of the gravity field on a global

scale, especially of the geocenter, was possible. Also here the high correlation with the mass
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1.1 Motivation

redistribution in the atmosphere, ocean and continental water was confirmed. Since then the

global SG network was constantly expanded and three dedicated satellite gravity missions

where realized. The first was CHAMP (Challenging Minisatellite Payload) launched in

2000 which reached its end in September 2010. CHAMP was dedicated, besides studying

the magnetic field and the atmosphere, to derive a precise static gravity field. The second is

GRACE (Gravity Recovery and Climate Experiment), launched in 2002 and still in orbit,

designed to detect for the first time variations in the mass flux at wavelength of 300 km or

longer. At NASA it is considered to be one of the most important satellite missions in the

last decade. The most recent one is GOCE (Gravity field and steady-state Ocean Circulation

Explorer), launched in 2009, equipped with a gradiometer to detect the short wavelength of

the static gravity field, and thus allowing the determination of the global geoid with high

spatial resolution.

What the satellite gravity missions as well the SG detect, is a combined gravity signal from

all processes that can perturb the satellites orbit or the gravimeter observation respectively.

After removing non-gravitational effects, such as atmospheric drag or solar radiation

pressure, the measurements still include various tidal effects (solid Earth, ocean, atmosphere

and pole tides), non-tidal atmospheric, oceanic and hydrological variations, postglacial

rebound, ice sheet and glacier mass balance, other unmodeled processes or signals, and

noise. To obtain any individual contribution, independent knowledge in form of background

models is required to separate these signals. Additionally, as the measurement techniques

evolve and gain in accuracy, also these background models have be updated up and improved.

The dynamic atmospheric circulation is the most rapidly changing and currently the best

measured fluid within the Earths subsystems. Several agencies such as the European

Center for Medium-range Weather Forecast (ECMWF) provide Numerical Weather Models

(NWM) to reconstruct the current state of the atmosphere and project it into the future

(hours to weeks). From such models the atmospheric pressure change can be obtained

and introduced as background model for the tidal and non-tidal contribution, during the

data processing. Consequently, the unmodeled signals (e.g. from hydrology) along with

mis-modeled components in the background models are contained in the estimated gravity

12



1. Introduction

solution. Therefore accurate atmospheric pressure information is very crucial to improve the

quality of these models; any error or uncertainty left in the atmospheric correction model

will inevitably leak into and deteriorate the hydrological or other derived signals of interest.

1.2 Outline of the study

In 2009 the project ’GGOS Atmosphere’, funded by the Austrian Science

Fund (FWF), at the Institute of Geodesy and Geophysics (IGG) of TU Wien

(http://ggosatm.hg.tuwien.ac.at/) was established, with the overall goal

of determining consistent and homogeneous models for atmospheric angular momentum,

atmospheric pressure loading corrections, atmospheric gravity field coefficients (AGC), and

troposphere delays of radio signals, all based on a common data stream with predominantly

the same underlying meteorological parameters like pressure, temperature, humidity, and

wind velocity. This perfectly corresponds to one of the major objectives of the Global

Geodetic Observing System (GGOS), the flagship component of the International Associa-

tion of Geodesy (IAG): ’GGOS focuses on all aspects to ensure the consistency of geometric

and gravimetric products.’ (Drewes and Reigber, 2005). The main focus of this thesis will

therefore be the model for calculating the effect of the atmosphere on the Earth’s gravity

field, i.e. the atmospheric gravity field coefficients (AGC).

One emphasis will be the processing of the meteorological data, and the discussion on its ad-

vantages with respect to using the raw NWM data. The main difficulty when working with

meteorological data is the inconsistency of the models from different providers regarding

temporal and spatial resolution and assimilation procedures. Furtheron, the models supplied

by one provider can differ significantly and even change with time. Paying special attention

to that problem a processing strategy was developed which allows to be independent to any

changes within the NWM, especially regarding the topography. The algorithms used to gen-

erate our meteorological fields as well as the mean field of the atmosphere which is essential

for our studies will be described in detail.

Further a detailed mathematical description of the atmospheric de-aliasing model is given

13



1.3 Organization of the thesis

and evaluated. Thanks to our processing strategy for the meteorological data, we can aban-

don approximations such as the Earth as a sphere and have consistent gravity acceleration

values available. This makes it possible to use a more direct approach for the calculation of

the AGC. Internal validations using different approaches and NWM data, as well as external

with de-aliasing products provided by other centers are carried out, revealing benefits and

weaknesses concerning todays GRACE processing but also giving a heads-up for future re-

processing and missions.

The second part focuses on atmospheric correction for superconducting gravimeters (SG)

and the application of AGC as an alternative approach. The most commonly used methods

for atmospheric corrections will be introduced and compared to the performance of the AGC

on the example of two SG stations. Additionally to a ground proof of the AGC originally

developed for satellite missions, it was possible to supply an alternative product available on

a global scale making full use of the biggest advantage of NWM.

1.3 Organization of the thesis

The rest of the thesis is organized as follows: Chapter 2 introduces the basics of the theory of

the gravity field, including the determination of the Earth gravity field as well as a discussion

of the various temporal variations of gravity field.

In Chapter 3 the role of the atmosphere in the determination of the Earth gravity field will be

discussed in detail, giving an overview of the atmosphere’s structure, state of the art NWM

and the various effects of the atmosphere on gravity.

Chapter 4 provides the processing strategy used for the meteorological data as well as a

detailed mathematical description of the de-aliasing model. Its internal validation and com-

parisons with external models is also provided here.

Chapter 5 addresses the methods for atmospheric corrections used for SG and introduces the

AGC as an alternative approach. The performance of AGC will be compared and validated

in regard to the better established traditional approaches used in the SG processing.

Chapter 6 summarizes the results and the conclusions in this study, along with a discussion

and outlook.

14



Chapter 2

The gravity field of the Earth

2.1 Theory of the gravity field

The purpose of this section is to introduce the fundamentals of the potential theory, i.e.

gravity acceleration and gravity potential with their most important relationships. Also an

introduction to spherical harmonics is given. The following information can be found in

more detail in Torge (1989) and Hofmann-Wellenhof and Moritz (2005).

2.1.1 Gravity potential and gravity acceleration

According to Newton’s law of gravitation, two masses m1 and m2 separated by a distance r

attract each other with a force

~F = G
m1m2

r2
~r0 , (2.1)

where G = 6.6742 · 10−11 m3 kg−1 s−2 is the gravitational constant and ~r0 the unit vector

between mass m1 and mass m2 (Hofmann-Wellenhof and Moritz, 2005). By setting one mass

to unity and denoting the attracting mass with m, we express the force ~F exerted by the mass

m on a unit mass at location P and distance r as

~F = G
m

r2
~r0 . (2.2)

This representation of the gravitational attraction can be simplified if instead of the vector

quantity acceleration ~F the scalar quantity of the potential V is used. Especially when look-
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2.1 Theory of the gravity field

ing at the attraction of point systems and solid bodies as it is done in geodesy, calculations

can be simplified greatly.

In vector calculus, rot describes the infinitesimal rotation of a vector field. A vector field

whose rotation is equal to zero, is called irrotational or, especially fields of force, conserva-

tive. Following (Torge, 1989)

rot ~F = 0 . (2.3)

meaning the vector field created by ~F is conservative. Following the basic computational

rules for vector calculus

rot ~F = rot(gradV ) = 0 . (2.4)

meaning the rotation of a vector field vanishes if and only if there is a gradient, as it is the

case for the gravity field. Therefore a corresponding potential V for the gravitational force ~F

exists so that

~F = grad V , (2.5)

where

V =
Gm

r
. (2.6)

If additional point masses are present, it is possible to sum up the individual forces. If the

number of point masses is growing beyond all limits the sum can be replaced by the integral,

leading for a body v to

V = G

∫∫∫

v

dm

r
= G

∫∫∫

v

ρ

r
dv , (2.7)

where dm is a mass element, dv a volume element, r the distance between the mass element

and the attracted point P and ρ describes the density

ρ =
dm

dv
. (2.8)

The potential V with the unit m2 s−2 is continuous and finite and vanishes following 1/r

for r → ∞ which allows to approximate a body at large distances as a point mass. Also the

first derivatives are continuous and finite in interior and exterior space. But at points where

the density changes discontinuously, i.e. at the boundary surface or at density jumps in the

interior, the second derivatives show discontinuities. This becomes evident when looking at

16



2. The gravity field of the Earth

Poisson’s equation, which has to be satisfied by the potential V

∆V =−4πGρ , (2.9)

with

∆V =
δ 2V

δx2
+

δ 2V

δy2
+

δ 2V

δ z2
, (2.10)

where ∆ is the so called Laplace operator. In exterior space, where ρ = 0, this equation

becomes the Laplace equation:

∆V = 0 . (2.11)

2.1.2 Gravity field of the Earth

In a rotating system, such as the Earth, the total force acting on a resting mass on the Earth’s

surface is the sum of the gravitational force and the centrifugal force due to the rotation. This

quantity is called gravity vector:

~g = ~F +~Fz . (2.12)

In a rectangular coordinate system with its origin in the Earth center, its z-axis coinciding

with the rotation axis and assuming that the x-axis points to the Greenwich meridian, the

components of the centrifugal force acting on P are given by the vector of Earth rotation ~ω

and the distance p =
√

x2 + y2 to the rotation axis (see Fig. 2.1).

The vector ~Fz is given by

~Fz = ω2~p =




ω2x

ω2y

0


= grad Φ =




δΦ
δx

δΦ
δy

δΦ
δx


 . (2.13)

The corresponding centrifugal potential

function Φ is

Φ =
1

2
ω2(x2 + y2) . (2.14)

As mentioned above the gravity vector ~g is the sum of the gravitational force ~F and the

17



2.1 Theory of the gravity field

Figure 2.1: Centrifugal Force

centrifugal force ~Fz. Accordingly, the potential of gravity W is the sum of the gravitational

potential V and the centrifugal potential Φ:

W =W (x,y,z) =V +Φ = G

∫∫∫

v

ρ

r
dv +

1

2
ω2(x2 + y2) . (2.15)

Combining the Laplace equation of Φ with Poisson’s equation for V Eq.(2.9), leads to the

generalized Poisson equation for the gravity potential W :

∆W =−4πGρ +2ω2 . (2.16)

The gradient of W is the gravity vector and describes the total force acting on a unit mass.

~g = grad W =
[

δW
δx

δW
δy

δW
δ z

]
. (2.17)

The vector magnitude is called gravity and has the unit of an acceleration, and the direction

of the vector is the direction of the plumb line, see Fig. 2.2.

Additionally to the centrifugal force ~Fz another fictitious force is acting on a moving body,

the Coriolis force. It is proportional to the velocity of a moving mass within a rotating

reference system.

~Fc =−2m~ω ×~v = 2m~ω




~vnsinφ −~vucosφ

−~vesinφ

~vecosφ


 , (2.18)

with m denoting the mass of the moving object, ~ω the rotation vector and~v the velocity vector

18



2. The gravity field of the Earth

Geoid

W=W0

Figure 2.2: Equipotential surfaces and plumb lines

of the object in respect to the rotating system. In the right part of Eq. 2.18 the indexes n,e,u

indicate the direction of the velocity vector~v, i.e. north, east, up. In case of the Earth it can

be observed at clouds. As air moves from high to low pressure in the northern hemisphere,

it is deflected to the right by the Coriolis force, in the southern hemisphere to the left. It

also is the force that causes the rotation of the Foucault pendulum (Hofmann-Wellenhof and

Moritz, 2005).

The geometry of the gravity field

The gravity field can be described by surfaces of constant gravitational potential (see Fig.

2.2), i.e. equipotential surfaces or level surfaces, where

W (x,y,z) = const. (2.19)

The surface of the oceans in a first approximation is part of such an equipotential surface.

This particular surface was proposed by Carl Friedrich Gauss as the ”mathematical figure of

the Earth” and was later named geoid by the mathematician Johann Benedict Listing (Torge,

1989). Lines that intersect all equipotential surfaces orthogonally are called lines of force or

plumb lines. The tangent to such a plumb line at any point equals the gravity vector at that

point.

The differentiation of Eq. (2.17) leads to the gravity gradient tensor, also called Eötvös
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2.1 Theory of the gravity field

tensor:

grad ~g = ∆W =




WxxWxyWxz

WyxWyyWyz

WzxWzyWzz


 . (2.20)

The unit of the components is 1 Eötvös corresponding to 10−9 s−2 in SI-units. Due to

the irrotational nature of the gravity field,

rot ~g = rot grad W = 0 , (2.21)

and considering Poisson’s differential in Eq. (2.9) and the centrifugal potential Φ in Eq.

(2.14),

∆W =Wxx +Wyy +Wzz =−4πGρ +2ω2 , (2.22)

the gravity gradient tensor Eq. (2.20) contains only five independent elements. Also the

tensor is symmetric: Wxy = Wyx ,Wxz = Wzx and Wyz = Wzy. The third line of the tensor

represents the gravity gradient

grad ~g =
[
WzxWzyWzz

]
, (2.23)

which describes the changes of gravity with respect to the coordinate axes. Wzx and Wzy

are the two components of the horizontal gradient lying in a local horizontal plane and Wzz

describes the vertical gradient, respectively. The vertical component is fundamental for the

interpretation of gravity data. With Eq. (2.22) we get

Wzz =
δ 2W

δ z2
=

δg

δ z
=−(Wxx +Wyy)−4πGρ +2ω2 . (2.24)

(Wyy −Wxx) and 2 Wxy characterize the curvature of potential surfaces, i.e. how the shape of

potential surfaces differs from the shape of a sphere, Wxy and Wzy characterize how potential

surfaces are not parallel to each other (Völgyesi, 2001). The elements of the Eötvös tensor

can be measured directly in space (see Chap. 2.2.3) or derived from gravity measurements.

The torsion balance, also called torsion pendulum used for geodetic application is usually

credited to Loránd Eötvös (1848-1919) and can measure the components of the horizontal

gradient Wzx,Wzy as well as the curvature (Wyy −Wxx) and Wxy, but not the vertical gradient
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2. The gravity field of the Earth

Wzz.

2.1.3 Spherical harmonics

Given that outside the attracting masses the gravitational potential V is a harmonic function,

it is easier to handle if it is expanded into a series of spherical harmonics. Spherical

harmonics are a special solution of the Laplace’s equation; for the full derivation see

(Hofmann-Wellenhof and Moritz, 2005).

In the exterior space V can be represented as

V (r,θ ,λ ) =
GM

r

∞

∑
n=0

n

∑
m=0

(a

r

)n

Pnm(cosθ)(Cnm cosmλ +Snm sinmλ ) , (2.25)

where G is the gravitational constant and M the total mass of the Earth (solid, liquid and

gaseous portions) and a is the mean radius of the Earth. The associated Legendre functions

Pnm of degree n and order m are given for the argument t = cosθ by:

Pnm(t) = (1− t2)
m
2

dm

dtn
Pn(t) , (2.26)

with the Legendre polynomials Pn

Pn(t) = Pn0(t) =
1

2nn!

dn

dtn
(t2 −1)n . (2.27)

For the gravity field determination, fully normalized spherical harmonics Pnm are usually

used, meaning the average square of any fully normalized harmonic is unity:

Pnm(t) =

√
k(2n+1)(n−m)!

(n+m)!
Pnm(t) . (2.28)

Legendre functions multiplied by cosmλ or sinmλ are called surface spherical harmonics

and are used as in Eq. (2.25) to describe the spatial characteristics of V on a spherical surface.

The associated Legendre functions change their sign (n−m) times within the interval 0 ≤
θ ≤ π and the functions cosmλ and sinmλ do change their sign 2m times in the interval

0 ≤ λ ≤ 2π , dividing the surface at geodetic parallels and meridians into cells which are
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2.1 Theory of the gravity field

alternatingly positive and negative. For m 6= 0 they divide the sphere into a chequered pattern

and are called tesseral harmonics (Fig. 2.3b). For special cases m= 0 the spherical harmonics

do not depend on the longitude and divide the sphere into zones parallel to the equator and

are called zonal (Fig. 2.3a). If n = m, the spherical harmonics degenerate into functions

that divide the sphere into sectors following the meridians and are thus named sectoral (Fig.

2.3c).

(a) n=3 (b) n=3, m=2 (c) n=m=2

Figure 2.3: Spherical harmonics: (a) zonal, (b) tesseral, (c) sectoral

Comparing Eq. (2.25) with Eq. (2.7) it becomes clear that the spherical harmonic coefficients

Cnm and Snm in Eq. 2.25 are mass integrals of the Earth gravity field with





Cnm

Snm



=

1

(2n+1)Man

∫∫∫

Earth

rnPnm(cosθ)





cosmλ

sinmλ



dM . (2.29)

The first degree coefficients are related to the rectangular coordinates of the center of gravity,

i.e. the geocenter. Following Hofmann-Wellenhof and Moritz (2005) and Torge (1989) we

get:

C10 =
1

a2M

∫∫∫

Earth

z′dM , C11 =
1

a2M

∫∫∫

Earth

x′dM ,

S10 =
1

a2M

∫∫∫

Earth

y′dM . (2.30)

If the origin of the coordinate system coincides with the center of gravity, meaning x′,y′,z′

are equal to zero, then these coordinates and thus the degree 1 coefficients are zero. The

second degree Stokes’ coefficients (Eq.2.31) are related to the moments and products of

Inertia Ii j with respect to the axes of the reference system and thus predominantly driven by

variations in the moment of inertia tensor.
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2. The gravity field of the Earth

C20 =− 1

a2M
[I33 −

1

2
(I11 + I22)] ,

C21 =
I13

a2M
, S21 =

I23

a2M
. (2.31)

C20 can be related directly to the figure of the Earth as it describes the flattening of it and

corresponds to the dynamic form factor J2=̂−C20. C21 and S21 describe the deviation of the

instantaneous axis of rotation with respect to the polar principal axis of inertia. If these axes

coincide, the coefficients in Eq. 2.31 will be zero. C22 and S22 describe the asymmetry of the

equatorial mass in relation to the rotation axis and the torsion of the corresponding principal

axes of inertia (Hofmann-Wellenhof and Moritz, 2005; Torge, 1989).

2.2 Determination of the Earth gravity field

In this chapter the methods and instruments used for gravity field determination will be de-

scribed as well as the theory behind. The first part is dedicated to the theories of Bruns and to

Stokes’ formula, which make the determination of the geoid through gravity measurements

possible. The second part gives an insight into the practical gravity field determination using

ground- and satellite-based instruments. Whereas ground-based instruments deliver gravity

values at very high accuracies for discrete points, satellite measurements have the advantage

of global coverage. Both strategies are indispensable for a geoid determination of highest

accuracy.

2.2.1 The theories of Bruns and Stokes’ formula

The theory of Bruns is defined as the comparison of the equipotential surface W =W0 with

the equipotential ellipsoid (or sphere) with the same potential U = W0. U describes an ap-

proximation of W and can be set equal to

W =U +T , (2.32)

with T being the perturbation potential, depending in general on the irregularities of the

density of the Earth. The point P on W0 and Q on U = W0 are separated by the distance N,
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2.2 Determination of the Earth gravity field

the so called geoid undulation, positive if the geoid is above the ellipsoid, otherwise negative.

Due to the fact that U and W are equipotential surfaces of two different mass assemblies, they

seldom coincide.

reference 

Ellipsoid

U=W0

Geoid

W=W0

n n´

N
gP

P

Q

Q

g

e

Figure 2.4: Geoid and reference ellipsoid.

The gravity vector~gP =−grad W0 is defined on the geoid, the theoretical~γP =−grad U on

the ellipsoid. The difference of the two vectors is called gravity anomaly vector

∆~g =~gP −~γQ , (2.33)

the difference in magnitude gravity anomaly

∆g = gP − γQ . (2.34)

The difference in direction of the plumb lines is called gravimetric deflection of the vertical,

which has a north and south component. If both vectors are compared in P we get the gravity

disturbance vector

δg =~gP −~γP . (2.35)

Since

WP =UP +TP =UQ − γ N +TP , (2.36)

and

WP =UQ =W0 , (2.37)

we find

N =
T

γ
. (2.38)
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2. The gravity field of the Earth

This is the famous Bruns formula, linking the geoid undulation to the disturbing potential.

Taking into account the definition of the gravity anomaly (Eq. 2.34), the fundamental equa-

tion of physical geodesy, relating the measurable quantity ∆g to the unknown anomalous

potential T can be found

δT

δh
− 1

γ

δγ

δh
T +∆g = 0 . (2.39)

Since ∆g is only known on a surface, i.e. the geoid, and not throughout space, the funda-

mental equation 2.39 can only be used as a boundary condition. However, reducing all the

measured gravity values to the geoid and assuming that all masses are enclosed by the geoid,

the effect of the masses outside can be removed. For that case the anomalous potential T is

harmonic and satisfies Laplace’s equation (Eq. 2.11). If the boundary condition is written in

the form

− δT

δh
+

1

γ

δγ

δh
T = ∆g , (2.40)

where we assume that ∆g is known at every point of the geoid, the linear combination of δT
δh

and T is given on the surface. This defines the determination of T as a third boundary-value

problem of potential theory. If it can be solved for T , the geoidal height, the most impor-

tant geometric quantity in physical geodesy, can be computed by Bruns formula (Hofmann-

Wellenhof and Moritz, 2005).

By introducing a mean radius of the Earth a and a mean value of gravity γ0 Eq. 2.40 can be

rewritten as

∆g =−δT

δh
− 2

a
T . (2.41)

Outside the Earth it becomes

∆g =−δT

δh
− 2

r
T , (2.42)

expanded into a series of spherical harmonics we get

∆g =−1

r

∞

∑
n=0

(n−1)
a

r

n+1
Tn(φ ,λ ) . (2.43)

This formula allows to compute gravity anomalies ∆g from satellite based spherical harmonic

series of the external gravitational potential. By upward continuation and integration of Eq.
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2.42 we obtain Pizzetti’s formula

T (r,φ ,λ ) =
a

4π

∫∫

σ
∆g S(r,ψ)dσ , (2.44)

where S(r,ψ) is called Stokes’ function,

S(r,ψ) =
2a

l
+

a

r
−3

al

r2
− a2

r2
cosψ(5+3ln

r−acosψ + l

2r
) . (2.45)

On the geoid where r = a it becomes

T (r,φ ,λ ) =
a

2π

∫∫

σ
∆g S(r,ψ)dσ , (2.46)

with

S(r,ψ) =
1

sin(ψ/2)
−6sin

ψ

2
+1−5cosψ −3cosψ ln(sin

ψ

2
+ sin2 ψ

2
) . (2.47)

Applying Bruns’ theorem, we get

N =
a

4πγ0

∫∫

σ
∆g S(ψ)dσ . (2.48)

This formula is called the Stokes’ formula or Stokes’ integral, named after G.G. Stokes, who

published it in 1849. It is considered to be the most important formula of physical geodesy

because it allows to determine the geoid from gravity data. It shall be mentioned that in this

original form the Stokes’ integral only applies for a reference ellipsoid that has the same

potential U0 =W0 as the geoid, encloses the same mass as the Earth and has its center at the

center of mass of the Earth. The latter applies because T contains no spherical harmonic of

degree one, otherwise the term ∆gn/(n−1) would be infinite for n = 1.

2.2.2 Terrestrial gravity determination

Absolute gravimeter

The determination of the absolute gravity value with absolute gravimeters makes use of the

so called free fall method, based on the second law of Newton, stating that the acceleration
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2. The gravity field of the Earth

of a mass m is proportional to the acting force ~F . Is the falling mass within the Earth gravity

field, the acceleration of the free fall equals~g:

~F =~gm . (2.49)

Under the assumption of a constant ~g along the distance of fall, the equation of motion can

be determined by integrating twice:

z̈ = g ,

ż = gt + c0 , with c0 = v0 ,

z =
1

2
gt2 + c0t + c1 , with c1 = z0 ,

leading to:

z =
1

2
g t2 + v0 t + z0 . (2.50)

The integration constants are the initial values z0 and v0 which describe the position and

velocity of the falling mass at the time-epoch t = 0. Equation 2.50 describes the free fall as

a function of time through a parabola.

laser

reference

corner cube

interferometer

base

evacuated 

chamber

free/falling

corner cube

avalanche

photodiode

Figure 2.5: Schematics of the FG5 absolute gravimeter

The movement, thus the position of the falling mass, i.e. the corner cube, is observed at

several points through simultaneous path and time measurements z and t. With an adjustment

procedure it is then possible to determine the unknowns z0 and v0 as well as the gravity

acceleration g. The needed accuracy of the path and time measurement can be estimated
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with

dg

g
=

dz

z
−2

dt

t
. (2.51)

With a desired accuracy of dg of 10 nm s−2 for g∼= 10 m s−2, the distance of fall z = 0.2 m and

the fall time of t=0.2 s, the necessary accuracies of the path and time measurements are dz

= 0.2 nm and dt = 0.1 ns. These high requirements are ensured through laser interferometry

and atomic clocks. The FG5, one of the most widely used portable absolute gravimeters

manufactured by Micro-g LaCoste, achieves a precision of 21 nm s−2, equivalent to a 6 mm

change in elevation. Figure 2.5 shows the basic schematics of it.

For completeness also the nowadays outdated pendulum method should be mentioned, which

is based on the observation of the oscillation time of a pendulum of known length within the

gravity field (Torge, 1989). With this methods accuracies up to ±5 µ m s−2 could be reached.

Absolute gravimeters are a necessity to calibrate relative gravimeters introduced later in this

chapter.

Atom interferometer for g measurements

Atom interferometry is based on the deBroglie hypothesis (deBroglie, 1924), which states

that the coexistence of waves and particles, discovered by Einstein in 1905 in case of light

and photons, is valid for all matter. His work was supported by Einstein, confirmed by the

electron diffraction experiments of Davisson and Germer (1927), and generalized by the

work of Schrödinger (1926). But it hasn’t been possible until 1991 that interference with

whole atoms could be observed (Carnal and Mlynek, 1991). From then atom interferometry

developed into a powerful ultra precise tool for acceleration and rotation measurements, e.g.

local gravity (Peters et al, 2001) and its gradient (Snadden et al, 1998). In theory atom

interferometers have the potential to exceed the performance of the existing gravity meters

(Le Gouet et al, 2008), however up until now these experiments are mainly confined to

laboratories. But in the recent years great efforts are undertaken to develop mobile atom

interferometers which also might be used on satellite missions (Yu et al, 2006; Tino et al,

2007). Fig. 2.6 depicts the basic principle of an atom interferometer.
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Figure 2.6: Scheme of an atomic gravimeter, from Schmidt (2011).

While classical gravimeters use a macroscopic test mass (see Chap. 2.2.2) atom interfer-

ometers use an ensemble (mostly 108) of laser-cooled atoms whose change in position is

monitored by their interaction with a stationary Raman laser wave (Peters et al, 2001). Dur-

ing the fall, the atoms are subjected to three laser pulses, parallel to the direction of the free

fall (see. Fig. 2.6). The first pulse causes half of the atoms to be transferred to the other

hyperfine ground state F , thus during an interrogation time T both clouds will separate in

space. The second pulse exchanges internal and momentum states of the two clouds, act-

ing as a mirror. The third pulse recombines the atoms again. At the output the population

ratio between atoms in both hyperfine states are measured, which are related to the gravity

acceleration~g:

P|F=2〉 =
1

2
[1− cos( ~ke f f~gT 2)] , (2.52)

where ~ke f f denotes the Raman laser vector.

Starting with two atomic clouds this concept can be extended to measure the local grav-

ity gradient (Snadden et al, 1998). The difference in the resulting signal of both clouds is
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2.2 Determination of the Earth gravity field

proportional to the difference in gravity acceleration between the two clouds:

∆Φ2 −∆Φ1 = ~ke f f (~g2 − ~g1)T
2 , (2.53)

with ∆Φ being the phase difference between the two packages of each cloud after the third

pulse. Existing ground based atom interferometers reach an accuracy of ∆g=4 µGal and a

resolution of ∆g=8 µGal/
√

Hz (Mueller et al, 2008), gradiometer 4 E/
√

Hz (McGuirk et al,

2008). Alternative concepts using ultra cold atoms are also under development, but these

still have to reach the accuracy of the Raman-pulse atom interferometer.

Relative Gravimeter

When measuring relative gravity, the sensor is only able to observe directly or indirectly one

of the two fundamental acceleration quantities time or length. To solve this under-determined

problem, one of the two quantities is fixed. The gravity difference is then calculated from

the observed difference in time or length (Torge, 1989). Relative gravimeters are based on

the principle of Newton’s Spring Scale where the change in length of a coil is related to the

change in gravity

dg/g = k(dl/l)m , (2.54)

with k being the coil constant and m the mass of the test mass attached to the coil. The

simplest form of a vertically hanging spring is too imprecise to achieve satisfactory mea-

surement accuracy. To resolve for gravity in nm s−2 range, gravimeters based on the lever

spring balance were developed. The principle of such a relative gravimeter is depicted in

Fig. 2.7.

m

Figure 2.7: General lever spring balance principle

To further increase the resolution of the gravimeter by so called astatisation, Lucien LaCoste
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developed in 1942 the so called zero-length coil; it behaves as though its unweighted length

is zero. Nowadays the relative gravimeter are compact and easily transportable and reach 1

nm s−2 resolution.

Superconducting gravimeters (SG) take the idea of the coil-mass system a step further. They

consist in general of a supra conducting coil generating a magnetic field, which holds a super

conducting hollow sphere in abeyance (see Fig. 2.8). Forces acting as accelerations on this

sample mass are compensated by a control loop such that the sphere does not change its

position in space. The power needed to do so, can be directly related to the change in gravity

(Torge, 1989).

levitation coil

feedback coil

capacitive pickuptest mass

vacuum can

liquid helium

connection to 

sensors

Figure 2.8: SG principle (modified fromTorge, 1989)

The applications of observing the time varying gravity field with SGs are:

• monitoring of the solid Earth tides with high accuracy to determine the exact elastic

parametrization of the Earth,

• registration of gravity changes as part of height changes,

• registration of gravity changes in consequence of polar motion,

• detection of seismically induced self-oscillation of the Earth ,

• detection of the eigenmode of the Earth core,

• investigation of deformations of the crust due to atmospheric and oceanic loading,

and/or
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• investigation of meteorological phenomena.

SGs excel on the high resolution of the signal (< 0.1 nm/s2) and the low instrument drift

between 0 and 100 nm/s2 per year depending on the instrument. This can be related to

the low noise level, achieved through operating near absolute zero and the almost complete

shielding of the instrument against changes in temperature, pressure and magnetic fields. The

whole gravimeter resides in a tank filled with liquid Helium with a constant temperature of

4.2 K. The sensor itself is in a vacuum cylinder where the position of the sample mass, a Niob

sphere of one inch in diameter, is controlled by a capacitive bridge where a feed-back coil

is holding it in place. The coil current is proportional to the reset force and serves as signal

(Torge, 1989). The sole manufacturer of superconducting gravimeter is GWR Instruments,

founded by J. Goodkind, R. Warburton and R. Reineman.

In 1997 an international network of superconducting gravimeters (Fig. 2.9) was established

within the Global Geodynamics Project (GGP) (Crossley and Hinderer, 2009) and further

extended in 2003. During the IUGG assembly in 2007 it was decided to move to a permanent

network hosted by IAG (International Association of Geodesy) and become part of GGOS

(Global Geodetic Observing System). GGP has two main goals, first to record the Earth’s

gravity field with high accuracy at a number of stations worldwide using superconducting

gravimeters, where each site is visited at least twice per year with an absolute gravimeter

to co-determine secular changes and check calibration. The second objective is to maintain

standards for the deployment of all GWR SGs, including site, instrument, data acquisition,

and processing guidelines for SG instruments.
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Figure 2.9: Network of the GPP, status of 2010, source: GGP project homepage http:

//www.eas.slu.edu/GGP/ggphome.html

2.2.3 Satellite based gravity determination

Prior to the satellite era, when the measurements were purely terrestrial and airborne, the

Earth gravity field was known with a high accuracy only for a few regions of the world. In

large parts of the globe were virtually no gravity data. The aim of satellite based gravity field

exploration was to close these gaps.

Satellite laser ranging SLR

The Earths oblateness, i.e. the C20 coefficient, induces the largest perturbations on a satel-

lites trajectory (Reigber, 1989) and is therefore a critical component in mission design. In the

mid 1970s the international community initiated the launch of the first satellites for geodetic

purposes. These spacecrafts orbit the Earth as completely passive, free falling objects cov-

ered by laser corner cubes. A global network of stations measure the instantaneous round trip

time of ultrashort pulses of light to the satellites, hence the name of the technique: Satellite

Laser Ranging (SLR), see Fig. 2.10. This provides instantaneous range measurements of

millimeter level precision which can be accumulated to provide accurate orbits. From them

the geocentric position of an Earth satellite can be determined and thus also the geocenter

(Cheng et al, 1997). If the time series of the measurements are long enough this technique

also allows to determine the long wavelenght temporal variations in the Earths gravity field;
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especially for the low degree coefficients SLR is indispensable and it is the most precise

technique currently available to determine C20 (see Fig. 2.11).

atomic

clock

laser

telescope

Figure 2.10: Scheme of SLR: transmit/receive telescope, puls laser, atomic clock, geodetic

satellite equipped with corner cube reflectors.

Figure 2.11: Temporal variation of the C20 coefficient, in red and blue a SLR-solution, in green

GRACE (Maier et al, 2012).

Over the years a global network of ground stations was established and today the Interna-

tional Laser Ranging Service (ILRS, Pearlman et al (2002)) collects, merges, archives and

distributes SLR and Lunar Laser Ranging (LLR) observation data and their related products

. Figure 2.12 shows the location of the stations and the ground tracks for seven days of

SLR data. Here one weaknesses of this system becomes evident: the uneven distribution

of the ground stations over the globe, i.e. the dense network in Europe (more than 50 %

of the measurements are taken there) versus the vast uncovered areas over the oceans and

sparse station numbers in the southern hemisphere. Nevertheless SLR is indispensable for

measuring the low gravity field coefficients as well as for the maintenance of an accurate

International Terrestrial Reference Frame (ITRF).
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Figure 2.12: Network of SLR stations and ground tracks of seven days of geodetic SLR data,

source: ILRS.

CHAMP: Satellite-To-Satellite-Tracking in high-low mode

The orbit of a Low Earth Orbit (LEO) satellite is continuously monitored by GNSS satellites

and an on-board three-dimensional accelerometer measures the perturbing accelerations

caused by the Earth gravity field. These observables correspond to the first derivative

of the gravitational potential. This principle was realized within CHAMP (CHAllenging

Minisatellite Payload, (Reigber et al, 2002b)).

Earth

Figure 2.13: Scheme of CHAMP: one on-board 3-axis accelerometer, tracked by GNSS satel-

lites

CHAMP was a satellite mission led by the GFZ (German Research Centre for Geosciences)

for geoscientific and atmospheric research and applications, launched on 15 July 2000 and
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ended 19 September 2010. It was equipped with magnetometer, accelerometer, star sensor,

GPS receiver, laser retro reflector, and an ion drift meter, initially operated in a near polar or-

bit in 454 km above Earth surface. CHAMP was the first satellite to be able to simultaneously

generate highly precise gravity and magnetic field measurements.

Exemplarily in Fig. 2.14 the EIGEN-CHAMP03S (Reigber et al, 2004) geoid is shown,

it is a CHAMP-only gravity field model derived from CHAMP GPS satellite-to-satellite

and accelerometer data out of the period October 2000 through June 2003. The accuracy

of EIGEN-CHAMP03S is about 5 cm and 0.5 mgal in terms of geoid heights and gravity

anomalies, respectively, at 400 km half-wavelength.

Figure 2.14: EIGEN-CHAMP03S Geoid in meter, Reigber et al (2004)

The selected EIGEN-CHAMP03S solution space of the Stokes’ coefficients is complete to

degree and order 120 with an increased resolution up to maximum degree 140 for sensitive

and resonant orders. For more detailed information refer to Reigber et al (2002a, 2004).

GRACE: Satellite-To-Satellite-Tracking in low-low mode

The basic idea is that two LEO satellites equipped with three-dimensional accelerometers

are placed in the same orbit but separated by several hundred kilometers. Both satellite

orbits are monitored by GNSS and additionally the range rate between them is measured,

corresponding to differences in acceleration.
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Earth

Figure 2.15: Scheme of GRACE: twin-satellites with one on-board 3-axis accelerometer and

microwave ranging system, tracked by GNSS satellites

The GRACE (Gravity Recovery and Climate Experiment, (Tapley et al, 2004)) mission was

launched in March 2002 under the NASA Earth System Science Pathfinder (ESSP) Program,

to accurately map variations in the Earth’s gravity field over its lifetime. The GRACE mis-

sion has two identical spacecrafts flying about 220 km apart in a polar orbit 500 kilometers

above the Earth performing accurate measurements of the distance between the two satel-

lites using a microwave ranging system. GPS is used for positioning. The ranging system is

sensitive enough to detect separation changes as small as 10 µm over the distance of 220 km

between the satellites (Wahr et al, 1998).

Gravity variations that GRACE is sensitive to include: changes due to surface and deep cur-

rents in the ocean, runoff and ground water storage on land masses, exchanges between ice

sheets or glaciers and the oceans, or variations of mass within the Earth (see also Chap. 2.3).

Figure 2.16 shows the mean monthly variability of continental water storage from GRACE

data for the period 2002-2011 in terms of equivalent water height in mm.

Figure 2.16: Mean monthly variability of continental water storage (2002-2011), Güntner et al

(2012). , Reigber et al (2005)
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2.2 Determination of the Earth gravity field

GRACE provides for the first time global data that shows the variability of water storage on

monthly, seasonal to inter-annual time scales (e.g. Schmidt (2006)). Areas of large variability

include tropical and their marginal areas which are characterized by their seasonal change

of rain and dry seasons. In the rainy season the water iis stored in the soil, as ground water

but also in the flood areas along major rivers such as the Amazon or Ganges saved. Clearly

visible are also areas at high latitudes, where snow accumulates in winter and melts in the

spring and summer, resulting in large seasonal variations in water storage (Güntner et al,

2012).

GOCE: Satellite gravity gradiometry

Satellite gradiometry consists basically of the measurement of the acceleration differences

in three spatial orthogonal directions between the six test masses situated on each end of the

axes. This measurement quantity corresponds to the gradients of the gravity acceleration,

i.e. the second derivative of the gravitational potential.

Earth

Figure 2.17: Scheme of GOCE: Six on-board 3-axis accelerometers, tracked by GNSS satel-

lites

GOCE (Gravity field and steady-state Ocean Circulation Explorer, (Rummel et al, 2000))

was launched on 17 March 2009 and was the first mission of ESA’s Living Planet Program.

It is the first satellite equipped with a gradiometer and thus helps to better understand the

static gravitational field of the Earth. The missions objectives are to obtain gravity gradients

from which new global and regional models can be deduced at length scales down to 100

km with a geoid accuracy of 1-2 cm. This corresponds to gravity field anomaly accuracy of

1 mGal. Today GOCE effectively resolves the gravity field to degree 200, attenuated to 250
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2. The gravity field of the Earth

(Drinkwater et al, 2003).

Figure 2.18: First GOCE-only gravity field in meter, Pail et al (2011)

Satellite gravity gradiometry (SGG) data alone are not sufficient to accurately determine the

low-degree coefficients of the gravity field due to the noise characteristics of the gradiome-

ter. The GPS satellite-to-satellite tracking (SST) data are used to determine the precise orbit,

thus geo-locating the gravity tensor observables, and the long-wavelength part of the gravity

field, same as for CHAMP and GRACE. It was decided to implement three different grav-

ity field modeling approaches in the GOCE High level processing facility (Rummel et al,

2004): direct (DIR), time-wise (TIM) and space-wise (SPW). Approach DIR is based on

the least-squares solution of the inverse problem, i.e. it starts with an a priori gravity field

model and adds GOCE information to improve it. The partial derivatives for all parameters

to be adjusted, i.e. the spherical harmonic coefficients, are computed and normal equations

are generated by processing e.g. daily arcs. TIM considers the gravity gradient and orbit

observations as time-series measured along the orbit and computes a GOCE-only model in

a rigorous sense. In both cases large normal equation systems have to be built and solved,

leading to a high demand on CPU power (Pail et al, 2007). In contrast, SPW works pre-

dominantly in the space domain, applying least squares collocation and exploiting spatial

correlations of the gravity field (Tscherning, 2001). To diminish the dimension of the sys-

tem it is implemented as a multi-step collocation procedure iterated till convergence. An

overview of all the methods as well as further references are given in (Pail et al, 2011).
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2.3 Temporal variation of the Earth’s gravity field

Future missions

The GRACE Follow-On mission, a cooperation between the German Research Centre for

Geosciences (GFZ) and NASA, is focused on maintaining data continuity from GRACE and

is planned for launch in 2017 (Flechtner et al, 2012). To minimize the project schedule as

well as the technical and cost risk a high inheritance ’replica’ of GRACE is conceptualized,

taking into account the lessons learned from GRACE. Additionally to the microwave

ranging system a laser interferometer will be installed for an improved ranging at the nm/sec

level, which also serves as a technical demonstration of this technology for future missions

with more satellites and different orbit constellations in the time frame beyond 2020 (Gruber

et al, 2011).

As a possible successor of the GOCE mission several projects using atom interferometry

(see Chap. 2.2.2) are under consideration. Such atom interferometers make it possible to

measure the absolute acceleration value plus the complete gravity gradient tensor at very high

sensitivity, i.e. 10−17 Gal or well below 1 mE in space. Implementing such a device would

allow lower orbits and therefore a higher spatial resolution, also a broader frequency range is

observable at a higher temporal resolution leading to a higher accuracy of the measurement

(Yu et al, 2006; Tino et al, 2007).

2.3 Temporal variation of the Earth’s gravity field

This chapter gives a short overview over various effects which introduce changes in the

Earth gravity field, except the influence of the atmosphere. This will be treaded thoroughly in

Chapter 3. Temporal changes in Earth gravity can generally be divided into two classes; first,

changes in Earth rotation and Earth tides, and second, into variations caused by mass changes

in the system Earth. In 1687, Sir Isaac Newton explained for the first time ocean tides as a

result of the gravitational attraction of the sun and moon on the oceans (Newton, 1687),

1863 Lord Kelvin introduced the tidal deformation of the elastic Earth (Thomson, 1863).

The parameters describing the elasticity of the Earth as a ratio of observed and theoretical

tidal amplitudes, were introduced by Love (Love, 1909). 50 years later, in the International

Geophysical Year 1957, it was demonstrated that the amplitude ratio shows local variations,
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2. The gravity field of the Earth

Figure 2.19: Effects of mass signals on spatial and temporal determination of the geoid, from

Sneeuw et al (2005).

pointing to the inhomogeneous structure of the Earth crust (Tomaschek and Schaffernicht,

1957). But only starting from the 1960’s, after static gravimeter reached the needed accuracy,

non-tidal gravity changes could be observed.

Figure 2.19 shows different geophysical effects depending on temporal and spatial variability

of mass signals, many of them overlapping. All these phenomena can benefit greatly from

global and precise gravity observations. But to be able to separate overlapping background

signals, highly accurate background data is required as well as reliable modeling of aliasing

signals. While spatial-temporal localized effects such as volcano eruptions can be measured

best by ground based systems, satellite measurements can give a better insight into larger

and global scales.
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2.3 Temporal variation of the Earth’s gravity field

2.3.1 The gravity constant and Earth rotation

Although the Newtonian gravitational constant G = 6.6742 ·10−11 m3 kg−1 s−2 is one of the

longest known physical quantities, it is also the one we know only little about. Most other

constants of nature are determined to parts per billion, G however proves to be extremely

difficult to be measured. Therefore a large variety of values and change rates can be found in

the literature. Further on, in recent years a possible time dependency of G is under discussion.

The Earth rotation vector ~ω is not only subjected to secular changes, but also to periodic and

irregular ones leading to a variation in the centrifugal acceleration and thus to a change in

the centrifugal force (Eq. 2.13), changing gravity too. Using a spherical approximation the

radial component of the centrifugal acceleration can be given as (Torge, 1989):

zr =−ω2Rcos2ϕ (2.55)

By differentiating this equation the dependency of gravity on changes in latitude δϕ , i.e.

polar motion, and in angular velocity δω , i.e. length of day, becomes evident.

δ zr =−ω2Rsin2ϕδϕ −2ωRcos2ϕδω (2.56)

2.3.2 Gravitational tides of the solid Earth

Looking at a solid Earth and its movements around the Sun (following holds also for the

Moon and other celestial bodies), the attraction ~as = GMs/r2
s exerted by the sun and the

centrifugal acceleration az = ω2ro resulting from the rotation around the common center of

gravity, are in equilibrium in the Earth’s center of mass (with rs= distance to Sun, Ms= mass

of the sun, ro= geocentric distance to the common center of gravity, see Fig. 2.20). Further,

the centrifugal acceleration ~az forms a homogeneous field, meaning that in all locations on

the Earth is has the same magnitude and direction. The attraction ~as exerted by the sun on

the other hand is bigger on the side facing the Sun and smaller on the other side. Adding

those two vectors results in the vector of the tidal forces ~at .

The tidal potential Vt can be introduced by:

~at = ~as +~az = grad Vt (2.57)

42



2. The gravity field of the Earth
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Figure 2.20: On the left the geometry for the problem for computing the tidal force on a point

on Earth, caused by an external body M. On the right the corresponding field of forces.

Vt can be expanded into spherical harmonics (see Chap. 2.1.3), ignoring degrees n < 2 due

to the system equilibrium (Torge, 1989). For n = 2 we get:

Vt =
3

4
GMt

r2

r3
t

(cos 2 Zs +
1

3
), (2.58)

with r = geocentric distance of the attracted point and Zs= geocentric zenith angle of sun.

δVt

δ r
=

2

r
Vt =

3

2
GMt

r

r3
s

(cos 2 Zs +
1

3
) (2.59)

gives the radial component of the tidal acceleration, which is responsible for a decrease of the

Earth gravity. The maximum variations occur in zenith and nadir direction of the attracting

body and the corresponding perpendicular directions. For the moon they amount to 1.65

µms−2, for the sun to 0.76 µms−2. In general the solar tides amount to 45% of the moon

tides. Usually the tidal acceleration is not described using the zenith angle Zs, it is more

convenient to use an Earth-fixed coordinate system with ϕ and λ as geocentric latitude and

longitude and introducing the tide-generating body by its equatorial coordinates (ht = hour

angle, δt = declination). That leads from Eq.2.59 to:

δVt

δ r
=

3

2
GMt

r

r3
t

[3(sin2ϕ − 1

3
)(sin2δt −

1

3
)+ sin 2ϕsin 2δtcos ht + cos2ϕcos2δtcos 2ht ] .

(2.60)

Equation 2.60 contains various time-dependent functions which are not well suited for tidal

analysis. But fortunately the tides can be expressed as a harmonic expansions, so that the

tidal acceleration then follows a sum of time dependent cosine functions of constant fre-

quency and amplitude. Some of the most important tides can be found in Tab. 2.1. The IERS
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2.3 Temporal variation of the Earth’s gravity field

Conventions, 2003 (McCarthy and Petit, 2004) contain 62 tidal waves.

Table 2.1: Principal tidal waves

Symbol Name Period T Amplitude at ϕ =45◦, ht=0

long-periodic waves

M0 const. lunar tide ∞ h 102.9 nm s−2

S0 const. solar tide ∞ h 47.7 nm s−2

diurnal waves

O1 main diurnal lunar tide 25.82 h 310.6 nm s−2

P1 main diurnal solar tide 24.07 h 144.6 nm s−2

semi-diurnal waves

M2 main semi diurnal lunar tide 12.42 h 375.6 nm s−2

S2 main diurnal solar tide 12.00 h 174.8 nm s−2

2.3.3 Earth tides

In response to the lunisolar gravitational attraction, the solid Earth undergoes an elastic de-

formation, i.e. tidal variations of its mass distribution resulting in variations of gravity and of

the height of equipotential and solid surfaces. This direct response is called gravimetric Earth

tide or Earth body tide (Fuchs and Soffel, 1984). For a spherically symmetric, non-rotating,

elastic earth model the response to the tidal forcing field is described by Loves theory (Love,

1909).

The tidal potential Vt causes in point P a radial shift of ∆rel of the equipotential surface (see

Fig. 2.21). If the Earth were completely plastic it would now try to reach the same shape as

this equipotential surface.

But because of its rigidity it does not reach the same shape and conforms only partially to the

equipotential. This deformation causes an additional deformation potential Vd and therefore

also a further change of the equipotential surface. Vd and ∆rel are proportional to Vt (Torge,

1989). The tidal potential of the elastic Earth Vel follows as:

Vel =Vt +Vd +g∆rel =Vt(1+ k−h) (2.61)
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2. The gravity field of the Earth

Figure 2.21: Vertical shift of the solid Earth and its level surface caused by tidal potential.

with k being the first Love number (Love, 1909) and h the second, both depending on the

degree of the spherical harmonic expansion. The Love numbers h and k are dimensionless

parameters that describe the rigidity of a planetary body and the susceptibility of its shape to

change in response to a tidal potential, introduced by Augustus Edward Hough Love in 1911.

Later, in 1912, T. Shida (Shida, 1912) added a third Love number, l, which was needed to

obtain a complete overall description of the solid Earth’s response to the tides. The moon can

introduce a maximum change in the orthometric height (distance along a plumb line from a

point at the physical surface to the geoid) of about 35 cm, the sun of ca. 17 cm.

Additionally to the varying tidal deformation a permanent deformation exists, the so called

permanent tide, which is caused by the simple presence of moon and sun. Honkasalo (1964)

found that the tide-free gravity, which demands the removal of the permanent tide, does

not represent the time-average of the acceleration of the free fall, hence he restored the

permanent tide. In this way, only the truly cyclic tidal elements were removed. This approach

is called a ’mean tide’ system. But it violates the theory that called for removal of all external

masses when computing the equipotential surface of the Earth (Heikkinen, 1979). This lead

to the first IAG resolution, were it was recommend to not apply the Honkasalo correction,

meaning, the permanent tide should be removed. However, the discussion is still ongoing,

the actual IERS Conventions 2010 (Petit and Luzum, 2012) state the following:

Resolution 16 of the 18th General Assembly of the IAG (1984), recognizing the

need for the uniform treatment of tidal corrections to various geodetic quanti-

ties such as gravity and station positions,” recommended that the indirect effect

due to the permanent yielding of the Earth be not removed,” i.e. recommends
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2.3 Temporal variation of the Earth’s gravity field

No. 36 IERS Technical Note 1 General definitions and numerical standards

the use of ”zero-tide” values for quantities associated with the geopotential and

”mean-tide” values for quantities associated with station displacements. This

recommendation, however, has not been implemented in the algorithms used for

tide modeling by the geodesy community in the analysis of space geodetic data

in general. As a consequence, the station coordinates that go with such analyses

are ”conventional tide free” values.

2.3.4 Ocean loading tides

Oceanic tides cause additionally to their direct attraction due to the water masses a change

in gravity due to loading effects evoked by the mass shift and the induced vertical surface

displacement (Torge, 1989; Scherneck, 1991). For example, a high tide causes a depression

with a related increase in gravity which decreases with increasing distance from the shore.

In South-West England, vertical ground displacements due to tidal loading can range over

10 cm (Penna et al, 2008) and displacement gradients can be larger than 3 cm per 100 km,

leading to changes in gravity up several tenths of micro-gals (10−8 ms−2) in the vicinity of

the Irish Sea (Baker, 1980). The ocean tide loading on an elastic Earth can be determined

with analysis of VLBI and GPS time series (Schuh and Moehlmann, 1989; Vey et al, 2002)

or modeled using the help of ocean tide models (Egbert and Erofeeva, 2002). For the latter

a common approach uses the Green’s function formulation (Farrell, 1972), considering the

ocean load as a thin layer and expanding it into spherical harmonics (due to the strong spatial

variation up to very high degrees n=10000). In this case the perturbations of the gravitational

potential are described by the degree dependent load Love numbers h′ and k′ first determined

by Farrell (1972). The loading effect can then be calculated analogous to the Earth tides (Eq.

2.61).

2.3.5 Mass changes in the System Earth

Besides all the tidal effects there are several other sources for gravity changes within the

Earth, especially due to mass displacements near the surface. Sources can be seismic earth-

quakes or volcanic or tectonic movements leading to changes in gravity up to 104 nm s−2.
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But also man made mass displacements, for example mining, constructions and also deple-

tion of water, oil or gas, can introduce considerable gravity variations (100 nm s−2). Changes

in the ground water level can have similar impacts (Torge, 1989). All these variations occur

on different temporal and spatial scales. While earthquakes lead to a sudden and permanent

change in gravity, ground water variations introduce a periodic- or quasi-periodic variation

from days to years, the post glacial rebound, also called or glacial isostatic adjustment (as-

cent of land masses due to the elastic response of the Earth crust after the melting of the ice

sheets), on the other hand shows a secular trend covering centuries (Stacey and Davis, 1977;

Peltier, 2008).

Events that have an impact on more than 104 km are considered global, in this category fall

changes in the eccentricity of the Earth core, mass transport processes in the mantle, plate

movement but also sea level rise. The post glacial rebound is considered a regional effect,

together with tectonic processes such as mountain building. The effects in both categories

progress secularly or in a long term time span of thousands to million years. Local changes

in the range of several kilometers are related mostly to earthquakes, volcanoes and other

mass displacements on the surface like landslides but also changes in the ground water and

other hydrological variations including non-tidal effects in the ocean (e.g. El Niño). Such

effects cover time-spans from seconds to several years.
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Chapter 3

Atmospheric effects on the gravity field

of the Earth

3.1 Physical and meteorological fundamentals

The following chapters give a brief introduction to the structure and basic physical relation-

ships of the atmosphere. It is designed to provide solely the fundamental information and

equations and cannot be considered as complete.

3.1.1 Structure of the atmosphere

The atmosphere is a gaseous hull enclosing the Earth consisting of various gases, mainly ni-

trogen (78%) and oxygen (20%). The atmosphere is in hydrostatic equilibrium and subjected

to the Earth gravity. No clear upper boundary is defined, the atmosphere passes continuously

over to interplanetary space. In case of gravimetric correction the lower 60-80 km are of

interest, i.e. the troposphere, stratosphere and mesosphere, where most of the masses are

concentrated. Figure 3.1(a) and 3.1(b) show the progression of the density and virtual tem-

perature (temperature which a sample of dry air must have in order to have the same density

as a sample of moist air at the same pressure, see Eq. 3.2) at Vienna for the first 65 km using

ECMWF (see. Chap. 3.2.1) data of 01.January, 2008 00 UTC.

The lower two layers, i.e. the troposphere and stratosphere, are separated by the tropopause
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(a) (b)

Figure 3.1: a) Progression of the density with height and b) of the virtual temperature at Vienna

(48N, 16E)

which mean height and temperature changes in dependence on geographical latitude and

time of the year. At mid latitudes it lies approximately in 10 km height, but it can vary

between 6 km an 13 km depending on the temperature. In the tropics it is around 17-18 km,

beyond the polar circle in ca. 6-8 km. The source of the change in height of the layer is

due to the heating of the air during summer and the resulting ascent of the masses to larger

heights, and because of the oblateness of the Earth caused by the centrifugal force, which is

also acting on the atmosphere (Ahrens, 2005).

3.1.2 Pressure, temperature, density and height

The gas mixture air has at each point of the atmosphere a certain pressure, temperature and

density. If the ratio of the gases in the mixture is known together with two of these variables,

the remaining one can be determined with help of the general gas equation of state (Eq. 3.1),

showing the relationship between the temperature T , the pressure p and the density of a gas

ρ . The following formulae can be found in e.g. Jacobson (1999).

p = ρRLTv (3.1)
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3. Atmospheric effects on the gravity field of the Earth

with RL = 287.05 Jkg−1 K−1 being the specific gas constant for dry air. An important role

in the composition of the air has the water vapor. Its a quantity, that describes the ratio

between the total mass of the moist air and the water vapor, called the specific humidity q,

defined in Eq. 3.7. The moist air is composed of dry air and water vapor and is subject to

greater variations. For moist air with the specific humidity q the virtual temperature Tv can

be computed from the temperature T as follows

Tv = T (1+0.608 q) . (3.2)

Every moist air parcel has a temperature at which the density of the humid air is equal to the

density of the dry air. This temperature is referred to as virtual temperature. It also follows

that moist air behaves like dry air with the virtual temperature and meaning the standard

formulas established to dry air can be applied without having to consider the humidity.

As pressure we understand the force which is imposed by the air masses on a surface. Since

the air pressure can be attributed directly to the weight of the air column, it decreases with

increasing height. Thus we find the air pressure p at height z and p−dp at the height z+dz.

The Eq. 3.1 becomes the hydrostatic equation,

dp =−ρgdz , (3.3)

with g as a height-dependent acceleration of gravity. The density ρ is both height and

temperature-dependent. The elimination of the density in Eq. 3.1 with Eq. 3.3 leads to

dp

p
=− gn

RLTv
dz , (3.4)

its integration yields

p = p0 e
(− Hgn

RLTv
)
. (3.5)

Here gn = 9.80665 ms−2 is the mean gravity value on the geoid, H the height above sea level

and p0 = 1013.25 hPa the air pressure at sea level. The relationship in Eq. 3.5 is also known

as barometric formula and shows the exponential decrease in air pressure with height.

The difference between the virtual temperature Tv and the actual temperature T is generally

in the order of 1◦K. In the extreme case of 7◦K a gravitational effect of 1 nm s−2 can be
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caused, see Kroner (1997).

Inserting Eq. 3.2 in Eq. 3.1 we obtain for the density of the moist air

ρ =
p

RLTv(1+0.608q)
. (3.6)

According to the definition of specific humidity q the following relationship between the

density of water vapor and the density for humid air is established

q =
ρwater vapor

ρhumid air

=
0.622e

p−0.378e
, (3.7)

with the vapor pressure e, composed of the relative humidity r and the saturation vapor

pressure E

e =
r

100E
. (3.8)

E was defined by (Balton, 1980) at a given temperature T in ◦C as

E = 6.112e
17.67T

T+243.5 . (3.9)

The geopotential V in a certain point of the atmosphere is defined as the work that needs to

be done to move a unit mass against the gravity from the sea surface to a certain point. The

height H of the potential surface above sea level can be determined with the mean gravity gn

(Liljequist and Cehak, 2012)

H =
V

(1− k cos 2φ)gn
(3.10)

with k = 0.002637 and φ as latitude. The term in brackets takes into account the contribution

of the Earth oblateness to the gravitational acceleration. ,

3.1.3 The atmospheric pressure and its variation

The mass changes within the atmosphere, i.e. the gaseous part of the system Earth,

contribute to the total mass exchange inside the entire system. However, there is no

possibility for geodesy to separate the individual components through gravity field obser-

vations. Various authors have tried to estimate the total mass of the atmosphere evaluating
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3. Atmospheric effects on the gravity field of the Earth

different global pressure fields, using the fact that pressure reflects directly the mass of

the atmosphere (Ekholm, 1902; Trenberth and Guillemot, 1994; Trenberth and Smith, 2005).

The estimates of the authors vary significantly, starting from 5.16 · 1018 kg to 5.32 · 1018

kg. One reason for this are the different approaches used for atmospheric sciences and for

geodesy. A second reason are the different models used, and the changes within the models

themselves (Gruber et al, 2009). Most of the recent studies however, show a slight increase

in the atmospheric mass over the last decades that can be associated with an increase of water

vapor. Figure 3.2 shows a time series of the global mean surface pressure from the ECMWF

operational analysis and re-analysis data over 30 years, where the most prominent signal is

the yearly variation.
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Figure 3.2: Global mean surface pressure in hPa from ECMWF analysis (1980-2009) pressure

level data reduced to surface topography

The degree 0 coefficient of the atmospheric potential field is directly linked to the total mass

of the atmosphere. Figure 3.3 shows the time series of the mass change obtained from the

C00 atmospheric gravity coefficient of the years 1980 until 2009. The yearly signal is clearly

visible, also a linear trend can be calculated for the whole time period (red line), which

suggests an increase of the atmospheric mass of 3.26 ·1013 kg/year. But this conclusion has

to be treated with caution, because as the chosen time period changes, the trend can change

considerably too (cyan, green and blue lines).
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Figure 3.3: Global mass change of the atmosphere obtained from C00 based on ECMWF

operational analysis (1980-2009) pressure level data reduced to surface topography

Figure 3.4: Degree 1 coefficients using the thin layer approach, based on ECMWF operational

analysis (1980-2009) pressure level data reduced to surface topography, in black C10, in blue

C11 and in red S11

Figure 3.4 shows a time series of the degree 1 coefficients C10, C11 and S11 which are closely

tied to the center of mass (see Eq. (2.30)). In contrast to the mass, in this time series no

significant trend becomes evident, although other studies (Gruber et al, 2009) show changes

of the geocenter up to 2.6 mm per year in x-, 0.8 in y- and 6.7 in z-direction.

Although the change in the global mean of the atmospheric mass is small (the range for the

30 years in Fig. 3.2 is 5.5 hPa), the changes within smaller time and space scales can be of
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several tens of hPa. Such changes in the atmosphere are responsible for one of the largest

signals in the time variable gravity field (Warburton and Goodkind, 1977). Typically, the

surface pressure variations are larger in mid and high latitudes, whereas in tropical regions

they are rather small. Figure 3.5 shows the RMS pressure variability using ECMWF surface

pressure data for 2008.

Figure 3.5: RMS of ECMWF surface pressure over the year 2008

Generally atmospheric phenomena can be categorized based on their time variability. One

class consists of long term variations, such as seasonal, annual and inter-annual variations.

The global atmospheric pressure cycle (Fig. 3.2), the seasonal variation between northern

and southern hemisphere or mass transport between land and ocean such as the monsoon

fall into this category. The El Niño southern oscillation (ENSO) classifies for inter-annual

variations (McPhaden, 2002), just as the North-Atlantic Oscillation (NAO) (Hurrell and van

Loon, 1997) .

The second class contains short term variations, containing signals like the diurnal and semi-

diurnal solar tides (see Fig. 3.6(a),3.6(b)). But the most prominent variations are introduced

by (anti-) cyclones, which can reach 50-60 hPa in central Europe (Rabbel and Zschau, 1985)

within a few days, in Scandinavia even 80 hPa. But also extreme events such as hurricanes

fall into this class. At the center of a hurricane the pressure can drop by 100 hPa within

hours.
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(a) (b)

Figure 3.6: a) S1 tide at 00 UTC in hPa. b) Corresponding effect on geoid in millimeter

3.2 Meteorological analysis-models

This chapter gives an introduction in the field of atmospheric modeling and weather predic-

tion. Different approaches and types of models will be discussed, using models from the

European Centre for Medium-Range Weather Forecast (ECMWF) and the National Centers

for Environmental Prediction (NCEP).

3.2.1 Numerical weather models

The main quantity for meteorologist is the pressure, because compared to other properties,

pressure is the least variable one. For temperature or humidity, a small change in the location

can introduce a considerable error (Jacobson, 1999). Generally, there a two methods to

obtain the pressure values at a certain location, one is from in-situ measurements using

barometers, anemometers, radiosondes etc. An other one is to obtain such data from

numerical weather models (NWM). The most widely used NWM models are those from

ECMWF http://www.ecmwf.int/ and NCEP http://www.ncep.noaa.gov/.

In the beginning of the 20th Century the Norwegian physicist and meteorologist Vilhelm

Bjerknes was the first to propose to describe the dynamic processes in the atmosphere with

exact thermodynamic and hydrodynamic equations. The realization of this idea had to wait

until the mid 50’s until the first computers were developed and a network consisting of sev-

eral weather stations was established. Soon it became clear, that the modeling of atmospheric

events was far more complex and more difficult than initially anticipated. The first numer-

ical models were quite simple and based solely on elementary equations. The first global
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3. Atmospheric effects on the gravity field of the Earth

model was established in 1966 and consisted of a 300-km grid and six levels for the vertical

discretization.

Modern numerical forecast models are based on a formulation of the dynamic equations,

which are referred to as primitive equations (Grammeltvedt, 1969). These models are

designed to predict the future state of the atmosphere by modeling the dynamic and physical

processes. To integrate the dynamic equations, accurate initial conditions are required.

These are obtained from various observations, such as ground weather stations, radiosondes,

ships, aircrafts and weather satellites. Here one of the limiting factors for NWM manifests;

namely meteorological observations, especially near the ground and in the lower layers,

where the atmosphere is most variable, are not evenly distributed over the globe. Big gabs

can be found over the oceans, the polar regions and in developing countries.

The process of integrating the observations into the model analysis is called assimilation.

Within this process the observations are checked for errors and then interpolated to the

internally used grid format and combined with a first guess from previous forecasts. The

resulting grid then represents a best approximation of the true state of the atmosphere

at a given time. The variables in the models are represented by either grid or spectral

forms. Currently, most of the global operational models utilize spectral models for better

computational efficiency. Various grid models are then derived from them on global,

regional or limited-area scales.

The vertical discretization is generally realized through individual layers, implemented

as model or pressure level data. The ECMWF model level data presently consist of 91

model levels. The concept of model levels addresses the problem of discontinuities in the

atmosphere, for example mountains, by creating atmospheric levels that follow the contours

of the Earth’s surface in the lower and mid-troposphere, the so-called orography (see Chap.

3.2.2). In high altitude the effect of the orography diminishes until the layers in the upper

atmosphere become parallel to layers of constant pressure. From the model level data the

so-called pressure levels are retrieved, where the vertical discretization is implemented

within ECMWF through 25 levels instead of 91, following continuous surfaces of equal

pressure from 1000 hPa to 1 hPa, which can also lie underneath the topography. At each

level, among other parameters, the temperature, the specific humidity, and the geopotential
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3.2 Meteorological analysis-models

height are available.

Generally, besides forecast products, two kinds of analysis products are available: opera-

tional analyses and reanalysis. The assimilation method of operational analysis is constantly

evolving as time goes on. Variations of the initialization methods, physics, grid resolution,

data availability, and handling techniques will disrupt the consistency and the continuity

of the analysis. To provide a consistent dataset, many organizations established their own

project to produce the re-analyzed fields for various time spans such as the ECMWF 40-year

re-analysis (ERA40) and NCEP reanalysis. In these products, the assimilation schemes do

not change over time, but the observations will change due to the data availability over time

(e.g. no satellite data in the past).

3.2.2 Topographical effects on the surface pressure

The terrain in numerical weather models usually does not follow the ’real’ topography but

the so called model orography which is derived from digital elevation models using various

methods, such as mean orography (average of the terrain data inside a model grid box),

envelope orography (cover all but the very sharpest peaks) or silhouette orography (averages

only the tallest features in each grid box). Additionally, due to the fact that most NWM use

spherical harmonics in their internal computation, and therefore also for the representation of

the topography, the Gibbs phenomenon caused by the truncation of the spherical harmonics,

may lead to ripples in areas of rapid elevation changes. The usage of different land-sea masks

can cause further discrepancies near the coasts. Also the accuracy of the conversion from the

3D global analysis data to surface pressure is greatly affected by the complexity of the land

topography. Figure 3.7 shows the difference between ETOPO5 topography and ECMWF

orography on a 1◦ x 1◦ grid.
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3. Atmospheric effects on the gravity field of the Earth

Figure 3.7: Difference between ETOPO5 topography and ECMWF orography on a 1◦ x 1◦

grid.

Since the topography alters the flow of the atmosphere, the real topography is adjusted or

smoothed to best fit the physical model and its resolution. Sometimes, biases exist between

the real and the artificial model surface pressure, i.e., the surface pressure from the NWM

model is different from the surface pressure on the real physical Earth. Figure 3.8 shows the

surface pressure at the Conrad Observatory for January 2008 retrieved from ECMWF on the

orography in green, ECMWF reduced to Etopo5 in red, from the German weather service

DWD (Deutscher Wetter Dienst) in blue and from in-situ measurements in black.

Figure 3.8: Surface pressure at the Conrad Observatory for January 2008: in green ECMWF

on the orography, in red ECMWF reduced to Etopo5, in blue DWD and in black in-situ mea-

surements.
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3.2 Meteorological analysis-models

Although some NWM analysis products directly include the surface pressure, most of the

time these values are not suitable to be used directly, as can be concluded from Fig. 3.8.

That is one reason we choose for our study to use ETOPO5 as topography and to reference

all the quantities given by ECMWF to that surface. The exact procedure is given in Chap.

4.2.

3.2.3 The mean state of the atmosphere

For several geodetic application a clear unambiguous definition and accurate calculation of

a mean state of the atmosphere, i.e. a global reference pressure field, is essential. Examples

are the determination of the Earths surface deformation due to atmospheric pressure loading

(Rabbel and Zschau, 1985; van Dam and Wahr, 1987; Boy and Chao, 2005), precise calcu-

lation of the Earths time-variable gravity field due to atmospheric mass redistribution (Boy

et al, 2009), de-aliasing of gravity mission satellite data (Flechtner, 2007), accurate determi-

nation of the geocenter variations due to redistribution of the total Earths mass (Dong et al,

1998; Chen et al, 1999), and determination of the total atmospheric mass (Trenberth and

Smith, 2005; Gruber et al, 2009), as well as its seasonal variations (Hoinka, 2012).

In most geodetic applications so far, the reference pressure values have been usually de-

termined by averaging global surface pressure data over a certain period, e.g. 2 years of

ECMWF data (Flechtner, 2007), or 22 years of NCEP data (Petrov and Boy, 2004). As

different data periods and data providers are used, the determination of the reference pres-

sure values is ambiguous and the results may not be consistent with each other. To develop

a consistent reference pressure Plag et al (2007) proposed to transform the pressure values

obtained from the NWM from the orography onto an topography model. Following the rec-

ommendations discussed in Böhm et al (2008) a new method for the calculation of reference

pressure values has been designed in the frame of the project GGOS Atmosphere. For that

purpose it was decided to use ECMWF 40 years re-analysis (ERA-40) atmospheric monthly

mean pressure level data as the basis for determining the global reference pressure on a 0.5◦

x 0.5◦ global grid using ETOPO5 as topography. It is plotted in Fig. 3.9 and the exact

processing strategy adopted can be found in 4.2.
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3. Atmospheric effects on the gravity field of the Earth

Figure 3.9: Global Reference Pressure

3.2.4 Error estimation

In order to investigate the time-variable gravity field, atmospheric effects have to be re-

moved beforehand. Especially for satellite missions such as GRACE (Chap.2.2.3) but also

for ground measurements, the basis for that procedure are NWM, which are considered up

till now, together with all used background models, as error free. Velicogna et al (2001) com-

pared surface pressure from ECMWF and NCEP with in-situ measurements and showed that

the accuracy of the models is around 1-1.5 hPa and concluded that these models are suitable

to remove the atmospheric contribution from the GRACE estimates. In order to recover the

continental hydrological signal with an accuracy of 1 hPa or better.

However, one reason that the GRACE gravity field models have not reached their ultimate

accuracy is seen in the de-aliasing process (see Chap. 3.3.1 and 4) and the uncertainties of

the atmospheric models applied during that procedure. These findings were confirmed in

more recent studies by Zenner et al (2010), which showed that the choice of the error map of

the surface pressure can change the monthly gravity fields on a regional scale up to 1.6 mm

in terms of geoid height. Hence the error maps have to be determined carefully.

ECMWF provides 6-hourly surface pressure errors representing conservative estimates de-

rived during the modeling, taking into account meteorological phenomena but not unknown

events like sudden evolutions of unpredicted low pressure fields. Generally the ECMWF

error maps are considered to be too optimistic, being a pure outcome from weighted combi-

nation of measurements and model predictions. Another method to derive error maps, is by
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3.3 Impact of the pressure variation on the gravity field

determining the difference between ECMWF and NCEP surface pressure fields, as shown

in Fig. 3.10. Problem here are the different temporal and spatial resolutions of the models,

as well as the different background models and topographies used in the model determina-

tion. Further on, some of the errors in the models are partially correlated (Wahr et al, 1998;

Velicogna et al, 2001) Although on the present GRACE error level, these effects are too small

when looking on a global sclale as they lie below the actual GRACE error level. Nevertheless

regionally the effects are within the GRACE sensitivity and can effect GRACE results on a

significant level, thus making the determination of more accurate and realistic error values

as well as uncertainties one of the main issues to be solved for the next generation gravity

field missions (Zenner et al, 2012).

Figure 3.10: Difference between ECMWF and NCEP surface pressure on a 1◦ x 1◦ grid. NCEP

is interpolated linearly from a 2.5◦ to a 1◦ grid.

3.3 Impact of the pressure variation on the gravity field

Gravimetric measurements are influenced by variations in the density within the atmosphere

and thus the gravitational attraction of the air masses. The direct effect, i.e. the attraction of

the air masses, gives the main contribution to the changes in gravity. Additionally the Earths

crust as well as the ocean bottom (although on a much smaller scale) get elastically deformed

when subject to the loading of air masses. This again causes a shift in the mass distribution

within the crust and of the crust itself. This is a large-scale effect, also called indirect effect,

and usually acts reverse to the attraction of the atmosphere. All these effects influence space

borne as well ground based gravity measurements and have to be considered thoroughly.
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3. Atmospheric effects on the gravity field of the Earth

3.3.1 Atmospheric aliasing

Exploring the Earth gravity field requires the removal of short term mass variations in the

system Earth, including all solid, liquid and atmospheric particles. Due to the fluctuation of

those masses at various temporal and spatial scales (like high and low atmospheric pressure

systems) as well as due to a strong dependency on the sampling rate of the ground track of

the satellite, a long observation time does not guarantee that the introduced variations in the

gravity field are canceled out by the mean operator. This effect is called aliasing and is caused

by the fact that the sampling frequency is lower than the highest frequency of the signal.

Figure 3.11 shows the effect of some of these mass variations in terms of degree standard

deviations with respect to the theoretical performance of the three gravity satellite missions

CHAMP, GRACE and GOCE (see Chap. 2.2.2). Thus de-aliasing means incorporating such

instantaneous variations in the atmospheric masses with respect to a static mean state of

the atmosphere and correcting for them, either during the preprocessing of observations or

during the estimation procedure of the gravity field solution.

Figure 3.11: Gravity variation signals from different sources in terms of degree standard de-

viation, in cyan daily atmosphere, blue daily ocean, green monthly hydrology, compared to

mission sensitivities of CHAMP, GRACE and GOCE, modified from Flechtner (2007).

Among those signals, the atmosphere has the largest contribution, therefore good atmo-

spheric de-aliasing models are crucial. The mostly used way to reduce aliasing is by help of

NWM (Flechtner, 2007). Thompson et al (2004) examined the impact of the short-period,

temporal mass variation on the GRACE monthly estimate. It is found that the degree error

relative to the measurement error increases by a factor of 20, due to the atmosphere aliasing,
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3.3 Impact of the pressure variation on the gravity field

and that the de-aliasing gives the greatest reduction in aliasing errors for the coefficients in

mid-degrees and higher. It is important that the background models used in the GRACE

processing contain a reasonably accurate representation of the high frequency content in the

atmosphere, as otherwise the result will be deteriorated significantly, especially for the lower

degrees (see Fig. 3.11.

Similar conclusions can be drawn for atmospheric corrections for SG, where this matter is

even more crucial, as far smaller signals are to be detected, i.e. eigenmode of the Earth core

or its self-oscillation.

3.3.2 Atmospheric tides

As mentioned in Chap. 3.1.3, the amplitude of the barometric tides can reach several hPa

(see Fig. 3.6 for S1). These global-scale oscillations of the atmosphere are generated mainly

by the periodic heating of the atmosphere by the Sun. Zonally symmetric forcing of the

atmosphere produces the migrating tides with periods harmonic of a 24 hour day and phase

velocities that match the apparent motion of the sub-solar point. Migrating tides are the

sun-synchronous tides, propagating westwards with the apparent motion of the sun. The

non-migrating tidal components, which are much smaller than the migrating component,

show the same periods as the migrating tides but do not follow the apparent motion of the

sun. The reason behind it can lye in the topography, the land-sea contrast and other surface

interactions as well as latent heat release due to deep convection in the tropics (Lindzen,

1979). The most dominant barometric tides are diurnal (S1) and semi-diurnal (S2) tides,

with a larger amplitude for the semi-diurnal tide. The tri-diurnal tide (S3) is one order of

magnitude smaller. Figure 3.12 shows the effect of the S2 and S3 (tri-diurnal) tides on the

geoid.

In this research three-hourly pressure level data from the so-called Delayed Cut-off Data

Analysis (DCDA) from ECMWF over the time period from 2005 to 2011 with a spatial res-

olution of 1◦ was used. The cut-off time is the latest possible arrival time for meteorological

observations to be incorporated in an analysis cycle. Six-hourly and twelve-hourly analysis

cycles are combined with short-term forecasts, so that the cut-off time can be delayed. A

further characteristics is a higher temporal resolution of 3 hours that makes use of the short-

term forecasts. Using this data it is possible to consider both migrating and non migrating
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3. Atmospheric effects on the gravity field of the Earth

Figure 3.12: a) S2 and b) S3 tide at 00 UTC expressed in geoid height in millimeter.

tidal components. Furthermore, the three hourly sampling of the data permits a proper de-

termination of the S1, S2, and S3 atmospheric tides. A global gridded model of the pressure

tides was developed using the annual mean model described in Ponte and Ray (2002).

3.3.3 Atmospheric loading and the indirect effect

The indirect effect of the atmosphere on the gravity field, i.e. the elastic deformation of the

solid Earth due to atmospheric loading, is counteracting the direct effect due to the deforma-

tion towards the geocenter. In general, for small deformations the additional change in the

potential ∆V depends linearly on the potential, following Farrell (1972):

∆V ind
n = kn∆V , (3.11)

∆V tot
n = ∆V + kn∆V = (1+ kn)∆V , (3.12)

kn denote the degree dependent load Love numbers and represent the deformation behavior

based on the rheology of the Earth.

Loading introduces generally effects on a large spatial scale since the Earth’s elastic surface

deformation due to mass redistribution is mainly sensitive to large scale pressure variations

with wavelengths greater than 2000 km, corresponding to n < 10 (Boy et al, 2001). Figure

3.13 shows the indirect effect for 01.01.2008 at 00 UTC. A more detailed insight in the

processing is given in 4.3.3.

SGs of course see the indirect effect too, which only amounts up to 5% of the total atmo-

spheric signal. With growing distance from the station, the influence of the indirect effect

increases (see Fig. 3.14, (Neumeyer et al, 2004)), whereas the direct effect decreases. How
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3.4 The atmosphere and the ocean

Figure 3.13: Difference of the geoid height variation in millimeter for the thin layer approach

between the variant with and without loading for January 1, 2008, 00 UTC

this effect is dealt with in practice is explained in Chap. 5.1.6.
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Figure 3.14: Newtonian and elastic contributions of the atmosphere to gravity changes (modi-

fied from Neumeyer et al, 2004)

3.4 The atmosphere and the ocean

Generally, the ocean responds to atmospheric forcing like wind, pressure, evaporation, pre-

cipitation, and radiation from the Sun. The responses are classically divided into barotropic

and baroclinic components (Higdon, 2008). Barotropic is the depth-independent part of the

flow. In classic wind-driven ocean circulation theory, it is the flow that results from, or is

in balance with, a sea surface slope. Baroclinic is the depth-dependent part of the flow and

results from the density distribution within the ocean and tries to cancel the sea surface flow.

Commonly the barotropic motions are fast (hours to days) such as tides, although they in-
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3. Atmospheric effects on the gravity field of the Earth

clude a small baroclinic contribution. The El Niño (Hurrell and van Loon, 1997) for example

is a mainly baroclinic phenomenon with its slow motions.

Compared to the atmosphere, the time-variable mass signal of the ocean is rather small, the

RMS surface mass variability is typically only 2-3 cm (Wahr et al, 1998). Still, ocean signals

are evident in GRACE data and have to be considered and corrected. There are various ways

to model the oceanic response due to atmospheric forcing. Here only a short overview shall

be given:

• Non-inverted barometer (NIB): Atmospheric pressure variations are fully transmitted

to the sea floor and the oceanic response is the same as for the solid Earth.

• Inverted barometer (IB): Pressure variations in the atmosphere ∆p are compensated

by static variations of the sea depth and the pressure on the sea floor, ie. the ocean

bottom pressure, does not change (Dickman, 1988). In the simplest case IB assumes

approximately 1 cm change in water depth due to 1 hPa change in the atmospheric

pressure:

δhw =− ∆p

ρwg0
(3.13)

where ρw is the sea water density, g0 the Earth mean gravity acceleration, and respec-

tively δhw the change in sea depth.

However the ocean does not respond perfectly like the IB assumption, especially in the

tropics and in the southern ocean (Ponte and Gaspa, 1999), but also shallow seas or

the changing ice coverage in the Arctic pose problems. Those deficiencies are linked

to the inability of the model to consider various interactions occurring between the

atmosphere, solid Earth and the oceans (Wunsch and Stammer, 1997).

• Ocean models: They can be divided in the same classes as the oceanic responses, i.e.

barotropic and baroclinic. Barotropic ocean models assume one density for the whole

water column and are forced only by wind and pressure. Although this approach sim-

plifies the ocean to a rather plain model, it has advantages in easier parameterizations

and lesser needs in computational power. The PPHA model developed by Pacanowski,

Ponte, Hirose and Ali (Hirose et al, 2001) is such a model.

Baroclinic models on the other hand include vertical changes and also effects intro-
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3.4 The atmosphere and the ocean

duced by radiation, evaporation, and precipitation. The OMCT (Ocean Models for

Circulation and Tides), developed for studying non-linear interactions among tides

and the general circulation and used for the de-aliasing of GRACE, is an example for

such a model (Thomas, 2002; Dobslaw and Thomas, 2007).

Within this work, due to the lack of a suitable ocean model, the ocean was not considered in

any way.
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Chapter 4

Mathematical description of the

de-aliasing model for GRACE and its

validation

In order to eliminate the aliasing signals of the atmosphere the determination of accurate

Atmospheric Gravity field Coefficients (AGC) is indispensable. For the determination of

AGC it has become state of the art to use high resolution NWM, which take into account the

three-dimensional distribution of the atmospheric mass. By subtracting the gravity spherical

harmonics of the instantaneous atmosphere from the ones of the mean atmospheric field, the

residual gravity spherical harmonic series are obtained. These describe the deviation of the

actual gravity field from the mean gravity field due to atmospheric mass variations. Some

parts of the following chapter were already published in the paper Karbon et al (2011).

First a glimpse into the GRACE data analysis will be given, to provide an insight into the

various processing steps and the role of the de-aliasing in it. In the following sections the

applied data processing for the AGC determination as well as a detailed description of the

mathematical modeling is presented. The second part supplies comparisons and validations

of various models and methods.
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4.1 A glimpse into GRACE data analyses

The following explanations shall give a short insight into the GRACE data analysis to em-

phasize the role of the de-aliasing within the processing as well as when, where and how

these corrections are applied, following Gruber and Flechtner (2007). More detailed infor-

mation can be found in Schmidt (2006) and the GRACE product descriptions down loadable

for example at http://isdc.gfz-potsdam.de/.

Figure 4.1: Simplified scheme of the GRACE data analysis, modified from Gruber and Flecht-

ner (2007).

Starting point of the processing is the equation of motion which describes the orbit position

r of the satellite, where Fs comprises the disturbances acting on the satellite. This includes,

among others the static gravity field, summarized in CS
nm,S

S
nm, tidal effects, and the non-tidal

variation of the atmosphere and ocean with respect to a mean field (C
A/O
nm ,S

A/O
nm ), i.e. the

de-aliasing products. Non conservative forces like friction introduced through the rest at-

mosphere at orbital heigt or solar pressure are observed with the accelerometer (ACC) and

introduced directly as corrections. The orbit of the satellites can then be determined through

numerical integration of the equation of motion from integration of the GPS measurements.
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From these theoretical positions of both satellites the distance between both is determined.

Since all the disturbing forces are not known to their full extent, these calculated distances

differ from those measured by the K-Band Ranging System (KBR) by δd.

These differences are calculated for each step and introduced into the least squares adjust-

ment, the main part of the processing procedure. Here these residuals are referred through a

stochastic process to various unknown parameters, such as the static gravity field or calibra-

tion parameters of the accelerometer. In general, as more observations are included, more

parameters (e.g. a gravity model with larger maximum degree) can be estimated. In case

of GRACE one month was defined as standard (Watkins and Yuan, 2007; Bettadpur, 2007;

Flechtner et al, 2010) but also 10-day (Bruinsma et al, 2010) as well as weekly- (Flecht-

ner et al, 2010) and daily-solutions are available, although following different processing

strategies. The atmospheric and oceanic de-aliasing products are in general considered as

error-free, since due to the immense amount of parameters an estimate is hard to accom-

plish.

Adding the resulting residual gravity model coefficients δCS
nm and δSS

nm to the a-priori static

gravity field a monthly GRACE gravity field is obtained.

4.2 Data processing

The appleied processing of the NWM-data shall be introduced on the basis of the determi-

iation of the atmospheric mean field. As mentioned in Chap. 3.2.3 the determination of the

mean state of the atmosphere is a crucial step in the determination of time varying gravity.

The global reference pressure (GRP) is based on ECMWF 40 years re-analysis (ERA-40),

covering the years 1957 to 2001. This atmospheric monthly mean data set has a horizontal

resolution of 1◦ x 1◦ on a latitude-longitude geocentric grid and a vertical discretization of

23 pressure levels containing values for the three important parameters, i.e. geopotential Z,

specific humidity q, and temperature T (gives the virtual temperature Tv together with q see.

Eq. 3.2). To determine the GRP, the following steps are performed:

• The data points given in this 3-dimensional grid are transformed to a set of geocentric

coordinates (r84, θ , λ ) with respect to the WGS84 ellipsoid by setting the given latitude

equal to the geocentric co-latitude θ (see left sketch in Fig.4.2).
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• To convert the geopotential height Z (geopotential given by ECMWF divided by the

gravity constant of 9.80665 m/s2 defined by the World Meteorological Organization,

with a spherical Earth with radius = 6367.47 km), into an orthometric height Ho and

to determine the geocentric radius rel(θ ,λ ) for a point on a certain level and its cor-

responding gravity acceleration, a gravity model with its geoid undulation N needs to

be introduced. We used the fully normalized coefficients of the tide-free EGM96 up to

degree and order 2 for the gravity acceleration and the full set up to degree and order

360 for the geoid undulation as needed for the topography determination (see right

sketch in Fig.4.2 and Eq. 4.1). rel of each point P within the levels of the atmospheric

column as given by the NWM can be derived from

rel(θ ,λ ) = r84(θ ,λ )+Hel(θ ,λ ) = r84(θ ,λ )+Ho(θ ,λ )+N (4.1)

Figure 4.2: On the left the conversion from the sphere to the ellipsoid, on the right the deter-

mination of the ellipsoidal height, with the bold solid line depicting the ellipsoid, the dashed

one the geoid and the narrow line the topography.

• In order to get realistic values for virtual temperature and pressure at the Earths surface,

one has to interpolate the values of Tv and P from the pressure levels onto a digital

elevation model. In our case ETOPO5 is used which provides sea level heights on an

equidistant grid of ellipsoidal coordinates (with respect to WGS84) with a resolution

of 5′. Preceding the main interpolation onto the Earths surface, two intermediate steps

of interpolation have to be carried out:
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1. The orthometric heights of the meteorological data are arranged on 1◦ integer

grid nodes of geocentric coordinates. ETOPO5 orthometric heights are available

on a similar 1◦-integer grid, but referring to ellipsoidal coordinates. Thus, it is

necessary to transform the ellipsoidal (φel ,λel)-grid to its corresponding geocen-

tric (θgc,λgc)-grid and linearly interpolate the orthometric heights for the desired

geocentric coordinates (θgc,λgc) of the meteorological data.

2. This revised ETOPO5 is re-sampled at 10′ x 10′, the resolution deemed sufficient

for further purposes. To retrieve P and Tv for each of these surface points, the 1◦ x

1◦ meteorological grid is then refined towards 10′ x 10′ by bilinear interpolation

on all pressure levels for the parameters Tv and H. P stays the same for each

pressure level.

• For each surface point in the 10′ x 10′ reference pressure data, the two enclosing pres-

sure levels have to be identified (see right sketch in Fig.4.3). Then the virtual tempera-

ture is interpolated linearly and the pressure P is obtained by applying the exponential

function Eq.4.2:

Ps = Pi e (−c ∆H) , where ∆H = Hs −Hi , (4.2)

and the coefficient c

c =
ln(Pi)− ln(Pi+1)

Hi+1 −Hi
. (4.3)

The subscript s stands for ’surface’, the subscript i denotes the index for the level above

’surface’ s and the subscript i+1 denotes the index for the level below s.

The interpolation scheme given above was applied for each of the 12 months in the ERA-

40 data, covering the time span 1957 to 2001, producing 12 sets of surface pressure Ps and

surface virtual temperature Tvs. These 12 sets were subsequently averaged to get a single

data set of Ps and Tvs at 10′ -nodes with corresponding orthometric height Hs. From that

fields of block mean values with various spatial resolution were determined (0.5◦, 1◦, 1◦, 2◦,

2.5◦), see Fig. 4.3, left sketch. The fields can be downloaded at http://ggosatm.hg.

tuwien.ac.at/LOADING/REFPRES/, 3.9 shows the 1◦, 1◦ grid.
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Figure 4.3: On the left the calculation of block mean values at each level, on the right the inter-

and extrapolation scheme to the topography and calculation of the corresponding block mean

values.

An almost identical procedure as for GRP was applied to the operational analysis data

from ECMWF used for this study. These datasets are downloaded as daily rectangular,

three-dimensional 1◦ x 1◦ grids in the grib-format, containing the geopotential Z, the specific

humidity Q, and the temperature T at discrete points on 29 pressure levels and at 4 epochs

(00, 06, 12, 18 UTC). Further meta-data like time and date, spatial resolution and number of

nodes are included.

Unfortunately GRP is not suitable for the VI approach (see Chap. 4.3.2) as a degree depen-

dent 3D field is needed. For this application we use a mean field calculated from 2 years of

analysis data (2008 and 2009, processed as noted above) which shows some differences with

respect to GRP, as it can be seen in Fig. 4.4. The impact of this different definition on the

de-aliasing product will be discussed in Chap. 4.4.2.
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Figure 4.4: Difference of GRP and the mean field used for VI expressed in geoid height, in

mm.

4.3 From atmosphere to gravity

The atmosphere is nearly in hydrostatic equilibrium, which means that the change in atmo-

spheric pressure on the surface is proportional to the change of mass in the corresponding

atmospheric column, including variations in water vapor mass as well as in the dry air mass.

ρ describes the density along the column which can be expressed in terms of surface load

σ (Boy et al, 2001; Flechtner, 2007) and which is linked directly to the surface pressure

variation ∆p.

∆p = g0

∞∫

0

∆ρdr = g0∆σ , (4.4)

∆σ =
∆p

g0
, (4.5)

where g0 is the mean gravity acceleration at the Earth surface.

The atmosphere affects the Earth gravity field in two different ways: a direct attraction of

the atmospheric masses acting on the orbiting satellite and a much smaller indirect effect

introduced by the deformation of the Earth’s surface due to elastic loading. The following

sections deal exclusively with the direct effect, the indirect effect will be addressed in Sec.

4.3.3.

Due to mass redistribution in the atmosphere the potential V changes with time. This
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4.3 From atmosphere to gravity

time-dependency of atmospheric density ∆ρ can be represented in terms of time-dependent

∆Cnm and ∆Snm gravitational coefficients, taking into account Eqs. (4.4) and (4.5), as follows





∆Cnm

∆Snm



=

1

(2n+1)Man

∫∫

Earth

[ ∞∫

rs

∆ρrn+2dr
]
Pnm(cosθ)





cosmλ

sinmλ



sinθdθdλ , (4.6)

where rs is the surface radius and M the mass of the Earth, a the radius of the spherical

Earth, Pnm are the normalized Legendre polynomials, n and m stand for the degree and order

of the spherical harmonic expansion.

4.3.1 Thin layer approximation

In the simplest approach for calculating AGC the vertical extent of the atmosphere is ne-

glected and all the atmospheric masses are concentrated in a thin layer (TL) at the Earth

surface. This can be done under the assumption that most of the mass changes occur in the

lower 10 km of the atmosphere and act as variable loading effects on the solid Earth’s surface

(Boy and Chao, 2005).

Surface loads are defined as mass per surface element; therefore the density change in the

atmosphere can be expressed in terms of surface load,





∆Cnm

∆Snm



=

a2

(2n+1)M

∫∫

Earth

∆σPnm(cosθ)





cosmλ

sinmλ



dS , (4.7)

considering that the mass element dM = ρr2drsinθdθdλ = r2σ sinθdθdλ = r2σdS.

Following the definition of the surface load ∆σ in Eq. (4.5), the surface pressure ps can

be introduced, whereas a mean pressure field ps, representing a static mean state of the

atmosphere, has to be subtracted to obtain the mass variation:





∆Cnm

∆Snm



=

a2

(2n+1)Mg0

∫∫

Earth

(ps − ps)Pnm(cosθ)





cosmλ

sinmλ



dS . (4.8)

Due to our processing strategy we have access to the actual surface radius rs and the gravity

acceleration g at the surface which are used instead of the constant values a and g0.

As an example the first epoch (00 UTC) of 1 January 2008 is selected. Figure 4.5(a) on the
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left depicts the pressure variation at the surface and on the right (Fig. 4.5(b)) the correspond-

ing change in geoid height following the thin layer approach is shown.

(a) (b)

Figure 4.5: a) Pressure variation (actual-mean) in hPa at 1 January 2008, 00 UTC b) Resulting

geoid height variation following the thin layer approach in millimeter

4.3.2 3D Atmosphere

As mentioned in the introduction of this section, also the change of the center of mass of the

atmospheric column has an impact on the orbiting satellite, not only the mass change itself.

This variation of the center of mass is not addressed in the thin layer approximation but has

to be taken into account for modern satellite gravity missions such as GRACE (Flechtner,

2007; Swenson and Wahr, 2002; Velicogna et al, 2001). This deficiency can be overcome by

considering the whole vertical structure of the atmosphere by performing a vertical integra-

tion (VI) of the atmospheric masses. To do so, Numerical Weather Models which describe

the vertical structure by introducing various numbers of pressure or model levels are needed.

In order to formulate the vertical integration we start from the basic Eqs. (2.25) and (2.29),

introducing the volume element used in Eq. (4.7); for details see (Flechtner, 2007; Zenner

et al, 2010, 2011).





Cnm

Snm



=− 1

(2n+1)Man

∫∫

Earth

[ ∞∫

r

rn+2ρdr
]
Pnm(cosθ)





cosmλ

sinmλ



sinθdθdλ , (4.9)

Adopting the hydrostatic equation 3.3, where gr is the gravity acceleration at each level, we
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get:





Cnm

Snm



=− 1

(2n+1)Man

∫∫

Earth

[ 0∫

ps

rn+2

gr
dp
]
Pnm(cosθ)





cosmλ

sinmλ



sinθdθdλ . (4.10)

Again, to analyze gravity field variations caused by atmospheric effects, a quantity pV I rep-

resenting the mean state of the atmosphere, has to be subtracted from the inner integral,

leading to:





∆Cnm

∆Snm



=− 1

(2n+1)Man+2g0

∫∫

Earth

([ 0∫

ps

rn+4dp
]
−pVI

)
Pnm(cosθ)





cosmλ

sinmλ



sinθdθdλ .

(4.11)

Again the constant values a and g0 are exchanged with the actual surface radius rs and the

gravity acceleration g at the surface.

4.3.3 Indirect effect

The indirect effect of the atmosphere on the gravity field, can be included quite easily fol-

lowing the approach introduced in Chap. 3.3.3 tracing back to (Farrell, 1972), using the load

Love numbers representing the deformational behavior based on the rheology of the Earth,

∆V tot
n = ∆V + kn∆V = (1+ kn)∆V , (4.12)

leading to





∆Cnm

∆Snm



=− 1+ kn

(2n+1)Man+2g0

∫∫

Earth

([ 0∫

ps

rn+4dp
]
−pVI

)
Pnm(cosθ)





cosmλ

sinmλ



sinθdθdλ .

(4.13)

4.4 Validation and interpretation

Unfortunately the impact of the aliasing effects and other mis-modeling of the atmosphere

cannot be estimated straight forward as the true state of the atmosphere and therefore it’s

impact on gravity measurements is unknown. Thus we have to rely on comparisons, either
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using different parameterizations or background models or other de-aliasing products. In the

following we will use degree standard deviations in terms of geoid height to compare the

performance of various realizations to the GRACE RL04 performance and the one predicted

from pre-launch simulations (Kim, 2000). Release 05, available since mid 2012 is considered

to be a factor 2-3 better than RL04 in terms of noise reduction (i.e. less pronounced typical

GRACE striping artefacts) and spatial resolution, although the changes in the de-aliasing

product concern mostly the ocean component and contribute to the improvements about 10%

(personal communication Frank Flechtner, 12.03.2013). Further global plots in terms of

geoid height will be used to display differences between the AGC realizations for specific

epochs. At most times I used January 1, 2008, 00 UTC.

4.4.1 Impact of constant gravity and mean radius a

As is can be seen in the Eq. 4.8 and Eq. 4.11 a constant gravity g0 = 9.80665 m s−2 and a

mean Earth radius a = 6371 km are entered in the expression before the integral. The more

accurate way is to replace those constants with the actual surface radius rs of the Earth surface

and a latitude dependent gravity acceleration g which are obtained in the pre-processing.

The differences corresponding differences are shown in Fig. 4.6(a) and 4.6(b). Due to the

prominent north-south gradient introduced by the Earth flattening (in case of Fig. 4.6(a) the

values range between -14.2 km and +10.58 km) the detection of the smaller topographical

signals is difficult. Hence this gradient was removed. Same holds for Fig. 4.6(b) in case of

the gravity acceleration.

(a) (b)

Figure 4.6: a)Difference between the geocentric radius to the Earth surface and the radius a =

6371 km of the mean sphere. Latitude dependent gradient removed. b) Difference between the

gravity acceleration at Earth surface according to EGM96 and the mean gravity acceleration g0

= 9.80665 m s−2. Latitude dependent gradient removed.
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The impact in the resulting de-aliasing product between the variant with constant radius

and gravity acceleration and the one with longitude and latitude dependent values for the

epoch January 1, 2008, 00 UTC is shown in Fig. 4.7(a). Here signals originating from the

atmosphere itself and not from the definition of the radii and gravity acceleration are visible,

suggesting that this effect, although the radii differ up to 14 km, is to small to propagate into

the final result. As a result, the spread of the difference is only within -95 to 6 µm, thus

below the GRACE sensitivity.

(a) (b)

Figure 4.7: a) Differences of the geoid height variation between the thin layer approach with

latitude and longitude dependent radii and gravity acceleration and with constant radius a and

g0 for the epochs January 1, 2008, 00 UTC. b) Differences of the total atmosphere in terms

of geoid height between the thin layer approach with latitude and longitude dependent radii

and gravity acceleration and with constant radius a and gravity acceleration g0 for the epoch

January 1, 2008, 00 UTC. Latitude dependent gradient extracted.

To make sure no side effects are introduced by the definition of GRP (see Chap. 3.2.3) I

look at the total atmosphere and not at the variation (actual-mean); further the prominent

north south gradient introduced by the oblateness of the Earth is removed, otherwise none of

the features would be visible. The result is shown in Fig. 4.7(b), where the variation of the

remaining signal ranges between -0.55 mm to +0.65 mm (before the removal of the gradient:

-0.23 mm - +9.12 mm). The similarities to the Fig. 4.6(a) and 4.6(b) are evident, although

the effects introduced by changing the constants into varying parameters are obviously too

small to show up in the final result 4.7(a) as the effect is mostly canceled by calculating the

difference between mean and actual state of the atmosphere.

Looking at the degree standard deviation of the solution using constants with respect to the

one using above variable parameters (Fig. 4.8), the resulting difference is even below the

theoretical error level predicted for GRACE (dashed line). The black line marks the RL04

error level. We can conclude that the effects of the approximation of the Earth as a sphere
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are too small to play a role in today’s GRACE processing. Still this factor may be kept in

mind for the future. For the VI approach a similar behavior was confirmed.

Figure 4.8: Degree standard deviation in terms of geoid height for the year 2008 in meter

derived from the thin layer approach, in blue with latitude and longitude dependent radii and

gravity acceleration and in red the difference to the solution with constant radius a and constant

gravity acceleration g0. The black line marks the RL04 error level of GRACE, the dashed one

the theoretical error as obtained by pre-launch simulations.

4.4.2 Thin layer versus vertical integration and the effects of the mean

field

To evaluate the significance of the vertical structure of the atmospheric column, the spherical

harmonic series resulting from the TL approach and the ones of the VI are compared. In Fig.

4.9 the degree standard deviation of the coefficients of January 2008 up to degree 100 are

plotted, in blue the vertical integration approach, in red the corresponding difference to the

thin layer approach. The results indicate that at the RL04 error level (black solid line) the

differences between the two approaches are negligible. But if GRACE reaches the targeted

error level (dashed line), then the VI approach should be chosen.

When looking at specific epochs, here January 1, 2008 at 00 UTC (Fig.4.10(a)), the

differences become more accentuated than when looking at monthly solutions. Further,
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Figure 4.9: Degree standard deviation in terms of geoid height for the year 2008 in meter, in

blue for the VI approach, in red the corresponding difference between VI and TL. The black

line marks the RL04 error level of GRACE, the dashed one the theoretical error as obtained by

pre-launch simulations.

when comparing this plot to the one of the difference between GRP and the mean field

used for the VI approach (Fig. 4.4) the similarities in the large scale features catch the

eye, suggesting an origin in the mean field definition. This can be confirmed when looking

at Fig. 4.10(b), where the mean fields are not subtracted. Here besides the topographical

signals and the expected bias, no large scale features like the ones seen in Fig. 4.4 are visible.

(a) (b)

Figure 4.10: a) Difference between VI and TL and b) the total atmosphere calculated using VI

and TL for January 1, 2008 00 UTC expressed in geoid height in mm.

As an additional test, a surface pressure mean filed consistent with the VI mean field was

calculated using the pressure information from the years 2008 and 2009. When calculating

the difference of this new mean field and GRP in Fig. 4.11(a) and the VI mean field Fig.
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4.11(b) similar features as in Fig. 4.10(a) and 4.4 emerge (minus the VI introduced bias),

affirming the effect of the mean field definition on the AGC.

(a) (b)

Figure 4.11: a) Difference between the surface pressure mean field of 2008 and 2009 and GRP

and b) the surface pressure mean field of 2008 and 2009 and the VI mean field, expressed in

geoid height in mm.

Using the consistent mean fields for the VI and TL comparisons, the differences seen in Fig.

4.10(a) diminish significantly, see. Fig 4.12. Nevertheless calculating the difference in terms

of degree standard deviation for both approaches the picture does not change on a significant

level compared to 4.9. This leads to the conclusion that the shorter the time resolution of the

solution the larger the effect of the mean field, but in general the applied approach has at the

current error level no significant impact.

Figure 4.12: Difference between VI and TL using surface pressure mean field of 2008 and

2009 for January 1, 2008 00 UTC expressed in geoid height in mm.

Fig. 4.13 shows exemplarily the geoid height variability for the C20 coefficient for 2008, in

black for the vertical integration in blue for the thin layer approach, in red the difference.
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From this figure the conclusions from above can be confirmed, as the difference between the

C20 coefficients of both approaches lies always within ± 0.05 mm. For higher degree and

order the differences decrease rapidly.

Figure 4.13: Time variation of the C20 coefficient in geoid height for the year 2008 in millime-

ter, in black following the VI approach in blue the TL approach, in red the difference multiplied

by 10, bias removed.

4.4.3 Impact of atmospheric loading and atmospheric tides

Comparing the degree standard deviation of the TL approach including the loading effect

and the solution without loading (Fig. 4.14) the importance of considering the indirect ef-

fect becomes evident. The differences up to degree 4 lie above the RL04 error level and up

to degree 15 above the predicted error level, confirming the findings by Flechtner (2007),

who recommends to incorporate a correction as they are implemented in the official GRACE

AOD1B product. The same conclusion is drawn looking at the difference between introduc-

ing and neglecting loading in terms of geoid height variability for low degree coefficients

(Fig. 4.15), considering the aimed precision of GRACE to be a few micrometers for degree

3 to 5 (Tapley et al, 2004).
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Figure 4.14: Degree standard deviation in terms of geoid height in meter for the year 2008,

in blue for the TL approach with loading, in red the corresponding difference of VI without

loading. The black line marks the RL04 error level of GRACE, the dashed one the theoretical

error as obtained by pre-launch simulations.
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Figure 4.15: Time variations of low degree coefficients expressed in geoid height in millimeter,

difference between neglecting and including loading, in black C20, in blue C30, in red C40 and

in green C50.

When looking at the impact of atmospheric tides, a similar impact on the atmospheric de-

aliasing product can be detected (see also Chap. 3.3.2). Figure 4.16 shows the degree stan-

dard deviation of the S1, S2 and S3 tides at 00UTC for January 1st 2008 in terms of geoid

height in comparison to the error level of GRACE and the corresponding TL solution in- and

excluding tidal corrections. It shows that this correction can help significantly to improve

the low degree coefficients, so that they can meet the RL04 error level and improve the per-
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formance for all degrees of about half an order of magnitude, especially when aiming for

sub-monthly solutions (as on a monthly basis some of the effects get averaged out).

Figure 4.16: Gravity variation signals of the S1 (blue), S2 (cyan) and S3 (yellow) tides in

terms of degree standard deviation for January 1st 2008. The black line marks the RL04 error

level of GRACE, the dashed the theoretical error as obtained by pre-launch simulations. The

red line is the degree standard deviation for the TL approach without tidal correction, the black

line with tidal correction.

4.4.4 Comparison of different NWM

As mentioned in Chap. 3.2.1, the model data at ECMWF is available as pressure (PL) or

model level (ML) data. The largest difference between those two becomes evident in the

method of discretization of the vertical structure of the atmosphere. For the model level data

91 levels are introduced which reflect the density structure of the atmosphere, i.e. near the

surface the levels are closer together than in high altitudes where less mass is present. Within

the pressure level data the vertical discretization is implemented through 25 levels following

surfaces of equal pressure from 1000 hPa to 1 hPa. Whereas the model level data reaches up

to approximately 80 km, the pressure level covers around 46 km. The lowest model level, i.e.

the one nearest to the surface follows the orography used by ECMWF. The lowest pressure

level on the other hand, follows strictly the 1000 hPa isobar, ignoring the topography, so that

it can also lay underneath it, as it is the case for mountainous areas such as Austria. In Fig.

4.17(a) and 4.17(b) the progression of the pressure and the gravity acceleration above Vienna
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(48◦ N, 16◦ E) for January 1 2008, 00 UTC are plotted, in red for the model level data, in

blue for the pressure level. Although in both cases the path is almost exactly the same, the

difference in the height becomes evident.
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Figure 4.17: Progress of a) pressure and b) gravity acceleration above Vienna (48 N, 16E) for

January 1st 2008, 00 UTC; in red model level data, in blue pressure level data for January 1,

2008, 00 UTC.

To determine the influence of the data structure on the AGC results, the difference between

the solutions computed with PL and ML data is calculated and plotted in Fig. 4.18 in terms

of geoid height. To make sure nothing is canceled by averaging out or additional signals

are introduced my the mean pressure field, the total atmosphere of the specific epoch is

used instead of the difference of actual-mean. Small features over the continents appear,

suggesting a topographic influence. When comparing it to Fig. 3.7, where the difference

between ECMWF orography and ETOPO5 topography is plotted, this assumption can be

confirmed, as similar features are showing up. It shall be mentioned, that ECMWF does not

apply the same orography to model and pressure level data. When calculating the variation

(actual - mean) the remaining signal has a maximum amplitude of 0.4 mm.

When taking into account only the levels above the 46 km line, i.e. all the masses which

are included in the ML data only, one can find a very small signal with an RMS of 7.4 µm

including small topographic signals,compared to the ACG calculated by subtracting a mean

pressure field, where this signal almost vanishes completely. Hence it can be concluded,

that the dominating factor causing the differences between the two datasets is the underlying
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topography /orography, the masses above 46 km are to small to have an impact on the geoid.

Figure 4.18: Differences of the total atmosphere in geoid height between the solutions with

pressure level and model level for January 1st 2008, 00 UTC.

Looking at the degree standard deviation of the coefficients calculated for January 2008 (see

Fig. 4.19), it becomes clear that the influence of the model structure is far too small to play

a role in the current GRACE processing.

Figure 4.19: Degree standard deviation in terms of geoid height for January 2008, in blue for

pressure level data, in red the corresponding difference between pressure level and model level

data. The black line marks the RL04 error level of GRACE, the dashed on the theoretical error

as obtained by pre-launch simulations.

As mentioned in 3.2.1 the assimilation methods as well as the background models of

NWM evolve continuously. This fact can result in problems, especially if the orography
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is subject to such changes, too. The reason is the direct link between orography and

barotropic pressure, meaning that a change in the orography changes also the pres-

sure of the model levels. This can lead to jumps in the pressure of several hPa as it

happened in 1.2.2006 and 26.1.2010 when ECMWF updated the operational analysis

(L. Zenner, TU Munich, personal communication 26.09.2012; Elisa Fagiolini, GFZ

Potsdam, personal communication 27.11.2012, for details see http://www-app2.

gfz-potsdam.de/pb1/op/grace/aod_issues/issues_aod1b_rl05.html

and http://www.ecmwf.int/products/data/operational_system/

evolution/evolution_2006.html). While such jumps do not happen on a global

scale, but mainly in regions with rapid height changes and also there on very scattered areas,

this still adds a further error source to the de-aliasing process. Figure 4.20 shows the surface

pressure variation starting from 01.01.2006 00 UTC until 31.03.2010 18 UTC for a point in

the Andes (lat:112; lon:291).

This is the main reason why we decided to use pressure level data and to introduce ETOPO5

as our topography. Although the pressure level data is derived from model level data,

pressure levels are not connected directly to the orography used by model level, and by

reducing the data to our own topography we gain even further independence from the

ECMWF orography. This procedure has proven its value as no jumps introduced by changes

in the ECMWF processing strategy can be seen in our pressure level data.

Figure 4.20: Surface pressure variation starting from 01.01.2006 00 UTC until 31.03.2010 18

UTC for a point in the Andes (lat:112; lon:291), courtesy of L. Zenner.

When comparing models provided by different data centers, in this study ECMWF and
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NCEP, notable differences, especially at relatively short time scales (Velicogna et al, 2001)

and in regions with sparse meteorological data, for example, Antarctica, show up (see.

Fig.4.21(b)). NCEP and the National Center for Atmospheric Research (NCAR) have

accomplished different re-analysis projects which aim at the generation of global data sets

for a long time period for different atmospheric parameters (Kalnay et al, 1996). The

re-analysis is created with one model for the whole re-analysis period, similar to the one

used for weather forecasts. For this study surface pressure data from the NCEP/NCAR

Reanalysis I (1948-present) is used. It has a temporal coverage of 4-times daily, on 2.5◦ x

2.5◦ global grids. For the following investigations, the data was interpolated linearly to 1◦ x

1◦ grids.

Comparing the orography derived from the geopotential height given in the NCEP/NCAR

dataset with the one given by ETOPO5 and introduced into the processing of the ECMWF

data, differences up to 2.3 km appear in regions with rapid height changes such as mountains

and coast lines (Fig. 4.21(a)). This characteristic is reflected as expected also within the

difference between the surface pressures of the two datasets, as it can be seen in Fig. 4.21(b),

again January 1, 2008 at 00 UTC is chosen as example. As a mean state of the atmosphere

is needed to calculate AGC, for the NCEP/NCAR data a 2 year mean over 2007 and 2008

was calculated. Compared to GRP, it shows a similar result to Fig. 4.21(b) within a margin

of ±10 hPa. Further it has to be mentioned that the NCEP/NCAR Reanalysis I is processed

on a sphere leading to similar implications discussed in 4.4.1.

(a) (b)

Figure 4.21: a) Difference between NCEP/NCAR orography and ETOPO5 topography b) Dif-

ference between surface pressures taken from NCEP/NCAR and ECMWF on ETOPO5 for

January 1st, 00 UTC.

When looking at the pressure variation, i.e. the difference between the actual and the mean
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state of the atmosphere, both models show a good agreement within -9.7 and +13.3 hPa for

the selected epoch (Fig. 4.22), demonstrating prominent signals of topographical origin in

the Himalaya and the Rocky Mountains and smaller signals (±5 hPa). For other epochs

the differences lie characteristically between ±15 hPa, demonstrating that the results of the

first epoch of January 1st showing a remarkably good agreement between the models. This

becomes clearly visible when calculating the ACG and the difference of corresponding geoid

height as shown in Fig. 4.23, upper left plot, where the values lie between -1.7 and 2.8 mm.

Figure 4.22: Difference between the pressure variation calculated from NCEP/NCAR and

ECMWF data in hPa for January 1st, 00 UTC.

Figure 4.23: Difference between geoid height variation calculated from NCEP/NCAR and

ECMWF data using the TL approach in mm for January 1st, 00 (upper left), 06 (upper right),

12 (lower left) and 18 UTC (lower right).
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The pattern in the upper left plot of 4.23 depicting the difference at 00 UTC, strongly

suggests a tidal wave, but when looking at other epochs shown in 4.23 that assumption can

not hold up. Not only show other epochs none such pattern but also the differences are

much bigger. As for January 1st, 06 UTC the differences range between -8.09 and 6.19

mm, similar results hold for other epochs and other days, leading to the conclusion, that the

small difference (-1.68 to 2.82 mm) for the first epoch of January 1st is coincidental, as is

the pattern; or that only when both models agree fairly well the smaller signals of a possible

tidal nature become visible.

Finally, looking on the degree standard deviation of the coefficients between the two models

calculated for January 2008 in Fig. 4.24(a), it becomes clear that the influence of the model

structure is too small to play a role in the current GRACE processing. But again, when

aiming at weekly or daily solutions, this difference becomes significant (see Fig. 4.24(b)),

confirming the findings considering the NWM data structure looking at different ECMWF

products, discussed at the beginning of this section.
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Figure 4.24: Degree standard deviation in terms of geoid height in blue for the ECMWF, in

red the difference between ECMWF and NCEP/NCAR for a) January 2008 and b) the epoch

Jnauary 1st, 00 UTC, The black line marks the RL04 error level of GRACE, the dashed on the

theoretical error as obtained by pre-launch simulations.
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4. Mathematical description of the de-aliasing model for GRACE and its validation

4.4.5 Comparison of different de-aliasing products

Several centers are generating de-aliasing products for GRACE processing. The most widely

used is the AOD1B product provided by German Research Centre for Consciences (GFZ)

(Flechtner, 2007). It provides 4 datasets: atmosphere (atm), ocean (ocn), ocean bottom

pressure (oba) and a global atmosphere and ocean combination (glo). Here only the first

(atm) is of interest.

AOD1Batm is based on 6 hourly ECMWF analysis model level data on a gaussian n160 grid

which corresponds to 0.5◦. The main difference between our approach and the one used for

AOD1Batm, besides the model level data and it’s implied problematics concerning orography

and internal model changes, can be found in the calculation of VI. While we abandon the

usage of constants like mean radius of the Earth a and mean gravity acceleration g (see Eq.

4.11) in this approach they are used, leading to the same conclusions as shown in Chap. 4.4.1.

Further approximations for the mean geoid over the sphere are needed, using the potential

height at the Earth surface, i.e. orography, given by ECMWF. A tidal correction for S1 and

S2 is applied.

A second center providing de-aliasing products is CNES/GRGS (Centre National d’Etudes

Spatiales / Groupe de Recherche de Géodésie Spatiale) (Gegout, 2009). The ECMWF data

is based on operational analysis in form of spherical harmonics, truncated at T799 for the

time period used here, i.e. January 2008. In contrast to the approach used by GFZ and us,

here an up- and downward-continuation is implemented.

For the following comparisons we use AGC calculated with the VI approach and corrected

for loading and tides (S1,S2 and S3).

When looking at the degree standard deviation calculated over one month (Fig. 4.25), all

solutions show a very good agreement, i.e. the differences for most coefficients lie below

the theoretical error line, except for degree 2 for both solutions, and up to degree 8 for

AOD1Batm. But when looking at singular epochs, e.g. January 1, 2008, 00 UTC (similar

behavior confirmed for other epochs), the picture changes significantly.

93



4.4 Validation and interpretation

Figure 4.25: Degree standard deviation in terms of geoid height for January 2008, in blue

for AGC, in cyan the difference of AGC and AOD1Batm and in red AGC and CNES/GRGS.

The black line marks the RL04 error level of GRACE, the dashed one the theoretical error as

obtained by pre-launch simulations.

(a) (b)

Figure 4.26: a) Difference of AGC and GFZatm and b) AGC and CNES/GSGR for the epoch

January 1, 2008, 00 UTC.

Here the differences of both centers differ on a substantial level, as it can be seen in Fig.

4.26(a) for AOD1Batm, and in Fig. 4.26(b) for CNES/GRGS. Comparing the difference of

AOD1Batm with the difference calculated between GRP and the mean field used for VI (Fig.

4.4), some similarities can be noticed. This leads to the conclusion that the main differences

visible here, arise from the different definition of the mean field. Whereas we use a mean over

2008-2009, GFZ calculates its mean field out of 2001 and 2002. But the main contribution

can be found in the different processing method of the raw data, see Chap. 4.2. Further
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4. Mathematical description of the de-aliasing model for GRACE and its validation

some signals with topographical origin are visible, linking to the different definitions of

the orography / topography in both approaches. The differences of AGC to CNES/GRGS

are a factor 3-4 larger and of a large scale nature. No topographical signals, which are

expected to be much smaller, are therefore visible. The signal shows a similar behavior for

all epochs, strongly connected to the n=2, m=1 spherical harmonics, which are associated

with the position of the Earth’s figure axis. A different definition in AGC and CNES/GRGS

concerning this point may be a possible explanation.

Looking at the temporal variation of the C20 coefficient in Fig. 4.27, the smoothness of

the AGC series (blue) in contrast to the other de-aliasing products sticks out, meaning that

in the AGC series the sub daily variations are much smaller. But when comparing the AGC

solution without tidal correction (black) to the AOD1Batm (cyan) and CNES/GRGS (red), the

correlation is much better. The largest contribution to the sub daily variation in the AGC C20

is due to the S2 tide, see Fig 4.16, leading to the conclusion, that the applied tidal correction

works fairly well.
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Figure 4.27: C20 coefficient for January 2008, in blue AGC, in black AGC without tidal cor-

rection, cyan AOD1Batm and red CNES/GRGS.
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4.4.6 Atmosphere and gradients

As presented in Chap. 2.2.3 GOCE is equipped with a satellite gravity gradiometer (SGG),

measuring the gravity gradient (Eq. 2.20 in Chap. 2.1.2) on a global scale. Per design the

gradiometer is sensitive to the static gravity field of the Earth and has its highest accuracy

at high degree coefficients, whereas the distinct noise characteristics of the gradiometer

prohibit the precise determination of lower degree coefficients (Rummel et al, 2011).

Previous studies have demonstrated the low sensitivity of GOCE to ocean tides and to

temporal gravity field variations at the seasonal scale as well as to long wavelengths of

the gravity field, where most of the aliasing signals caused by geophysical mass variations

arise from (Jarecki et al, 2005; Han et al, 2006). In this study gravitational gradients of

the atmospheric masses are calculated using the AGC at the altitude of the GOCE satellite

h=250 km. The resulting gradients are then compared to the specifications of the GOCE

gradiometer.

The relation between the GOCE SGG observables, i.e. the gradients, and the time-variable

gravity can be expressed through the spherical harmonic functions. For example, the ex-

pressions for the diagonal components of the gravity tensor are given by (Petrovskaya and

Vershkov, 2006; Kiamehr and Eshagh, 2008):

Tzz =
GM

a3

∞

∑
n=2

n

∑
m=0

(n+1)(n+2)
(a

r

)n+3

Pnm(sinφ)(Cnm cosmλ +Snm sinmλ ) , (4.14)

Txx =
GM

a3

∞

∑
n=2

n

∑
m=0

(a

r

)n+3

Pnm(sinφ)(Cnm cosmλ +Snm sinmλ )

(anmPnm−2(sinφ)+(bnm − (n+1)(n+2))Pnm(sinφ)+(cnmPnm+2(sinφ)) ,

(4.15)

Tyy =
GM

a3

∞

∑
n=2

n

∑
m=0

(a

r

)n+3

Pnm(sinφ)(Cnm cosmλ +Snm sinmλ )

(anmPnm−2(sinφ)+(bnmPnm(sinφ))+(cnmPnm+2(sinφ)) ,

(4.16)
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4. Mathematical description of the de-aliasing model for GRACE and its validation

where GM is the gravitational constant times the mass of the Earth, a the mean radius of the

Earth, Pnm the fully normalized, associated Legendre functions of degree n and order m. r,

φ and λ are the geocentric distance, latitude and longitude, the coefficients before the Leg-

endre functions anm,bnm,cnm are numerical constants and can be found in (Petrovskaya and

Vershkov, 2006). Similar formulas exist for Txy, Txz and Tyz in the given references.

The left picture in (Fig. 4.28(a)) shows the radial gradient component T zz in Eötvös

[10−9/s2] of EGM96 (Earth Gravitational Model 1996) at the Earth surface and the right

(Fig. 4.28(b)) Tzz at the altitude of GOCE (r = a+h).

(a) (b)

Figure 4.28: a) Gradient component Tzz for EGM96 at the surface and b) at GOCE altitude in

Eötvös.

By introducing the AGC into the Eq. 4.14 - 4.16 the components of the atmospheric Eötvös-

tensor can be calculated. Fig. 4.29 shows the resulting global maps of GOCE’s highest

sensitive components Txx,Tyy,Tzz,Txz applying the AGC of January 1st, 2008, 00 UTC. Table

4.1 provides the corresponding statistical analysis, all values are given in mE [10−12/s2].
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4.4 Validation and interpretation

all values min max mean std

in mE

Txx -0.1324 0.2083 -0.0006 0.0389

Tyy -0.0172 0.0116 -0.0029 0.0037

Tzz -0.2101 0.1377 0.0035 0.0405

Txz -0.0141 0.0114 0.0001 0.0024

Table 4.1: Statistical analysis of the high sensitive gradient components using the AGC of

January 1st, 2008, 00 UTC.

Figure 4.29: Txx,Tyy,Tzz,Txz using the AGC of January 1st, 2008, 00 UTC.

The values of Txx and Tzz range between ±0.2 mE, the other 3 components are an order of

magnitude smaller. Comparing these results with the GOCE specifications (Drinkwater et al,

2003), where it is stated that gravity gradients of the high sensitive components are measured

with an accuracy of 3 mE within the measurement bandwidth of 0.5 mHz to 0.1 Hz, it can

be concluded that the atmosphere has no significant impact on the GOCE SGG observations,

confirming the findings by Abrikosov et al (2006) and Bouman et al (2008). Although is

seems unnecessary to apply atmospheric corrections to the SGG data (same holds for other

temporal signals like ocean tides) there are also arguments to favor it. The de-aliasing could
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4. Mathematical description of the de-aliasing model for GRACE and its validation

improve the stochastic behavior of the observation errors as well as of the gradiometer data

itself (Abrikosov et al, 2006). Further on the GOCE SST data needs to be corrected for

atmospheric effects, hence to be consistent, this correction should also be applied to the SGG

data. In case of the atmospheric correction the same processing strategy as for GRACE is

used (Flechtner, 2007), only the static mean field is computed from the years 2004 till 2007,

as this time window is closer to the GOCE mission (Bouman et al, 2008). In practice the

SGG temporal corrections are given as separate entries in the final gravity gradient product

to leave it to the user if this correction shall be applied or not (Gruber and Rummel, 2006).

However, using longer time spans of GOCE data (e.g. two 6-month periods), the accuracy

of the gravity field is expected to increase, whereas the measurement noise should decrease

by several orders, thus making the time varying signals more crucial (Han et al, 2006).

99





Chapter 5

Atmospheric corrections for

superconducting gravimeters

In 1977 the close relation between atmospheric pressure and gravity was demonstrated for

the first time by Warburton and Goodkind (1977) and it was demonstrated that the residual

noise of superconducting gravimeter measurements are dominated by the atmospheric pres-

sure signal. The mass-redistributions in the atmosphere cause temporal variations of their

density and therefore induce changes of the Earth gravity field up to 250 nm s−2. The direct

effect, i.e. the attraction of the air masses, is caused mainly by the attraction of the air masses

above the instrument within a radius of 50 km (Merriam, 1992). The so-called indirect effect

which usually acts reverse to the direct effect and shows a large scale impact and accounts

for up to 5% of the total effect (Neumeyer et al, 2004). To correct for these atmospheric

effects, various models were established over the past decades. An overview shall be given

here.

5.1 Conventional models and new approaches

Over thze last decades various approaches for atmospheric effects have been estabished, each

with its own strenght and weaknesses. A short overview on the most commonly used shall

be given here.
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5.1.1 Admittance models

The use of a single scalar admittance has been well established to correct the gravity signal

for atmospheric effects (Warburton and Goodkind, 1977; Torge, 1989; Crossley et al, 1995).

The standard regression model assumes that a station recording absolute or relative gravity

g [µGal] and pressure p [hPa], can be corrected following the relation

gc(t) = g(t)−α(p(t)− p0) = g(t)−α∆p(t) , (5.1)

where α is the regression coefficient and p0 a log-term mean atmosphere pressure, leading

to the pressure variation ∆p(t). Admittance factors obtained from the air pressure records

and residuals of tidal analysis usually range between -2 nm s−2 and -4 nm s−2 per hPa

(Spratt, 1982; Rabbel and Zschau, 1985; van Dam and Wahr, 1987; Merriam, 1992), in

central Europe usually lies between -3 and -4 nm s−2 per hPa.

The corrected gravity residual gc can be determined by minimizing the differences between

the observed gravity residuals g and the observed barometric pressure p in a least square fit

and solving for the real coefficient α . Minimizing |gc(t)|2 assumes that the errors in g and

the residuals in gc are uncorrelated (Crossley et al, 1995).

Following the IAG resolution Nr. 9 (see IGC (1998)) α equals -3 nm s−2 per hPa and

the long term mean p0 refers to the standard atmosphere at station height H following DIN

5450:

p0 = 1013.25

(
1− 0.0065 ·H(m)

288,15

)5.2559

. (5.2)

This simple approach is quite effective, it accounts for up to 90% of the total atmospheric

effect, and hence is widely used. But especially for monthly and seasonal periods, this

method leaves room for improvement, as a measurement of the pressure at the surface

reflects the integral effect of mass changes along the vertical atmospheric column only, ne-

glecting the spatial distribution of the masses. Furthermore, the hydrostatic assumption (Eq.

3.3)is not always justified, especially for convective processes or mass transport phenomena

(redistribution of air, water vapor, water content); also the passage of a cold front over a

gravimeter leads to a more complex behavior (Müller and Zürn, 1983). Additionally the
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5. Atmospheric corrections for superconducting gravimeters

distinction between the attraction and deformation portion of the total effect is not possible.

Thus, the single admittance concept is in many cases insufficient to remove short term air

pressure variations and precipitation effects (e.g. Meurers et al (2011)). It was also shown

by Warburton and Goodkind (1977) that at near tidal frequencies the single admittance is

not reliable.

To make better use of the local pressure several approaches have been suggested, in particular

using frequency dependent admittance (Crossley et al, 1995; Kroner and Jentzsch, 1999),

showing a good performance at short time scales.

Transforming Eq. (5.1) to the frequency domain we get:

Gc(ω) = g(ω)−α∆p(ω) , (5.3)

where α becomes a complex scalar (Crossley et al, 1995). Minimizing |Gc(ω)|2 over the

frequency range 0 < ω < ωn, where ωn is the Nyquist frequency, leads to:

α∗ =
∑[G∗(ω)∆p(ω)]

∑ |∆p(ω)|2
. (5.4)

The real and imaginary solutions of Eq. (5.4) are

αR =
∑[GR(ω)∆pR(ω)+GI(ω)∆pI(ω)]

∑ |∆p(ω)|2
, (5.5)

αI =
∑[GI(ω)∆pR(ω)−GR(ω)∆pI(ω)]

∑ |∆p(ω)|2
, (5.6)

and can be combined into the admittance amplitude α and the phase φ .

Allowing the admittance α to be additionally frequency dependent by modifying Eq. (5.1)

to

Gc(ω) = g(ω)−α(ω)∆p(ω) , (5.7)

we get the same solution like in Eqs. (5.5) and (5.6), but now the summation is over an

averaging window centered on each individual frequency. The choice of the width of the

window is crucial, especially at the ends of the frequency ranges and in vicinity of the
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5.1 Conventional models and new approaches

harmonics of the solar tides. Nevertheless no standard can be given, considering the high

dependency on the individual time series.

The operations above in the frequency domain have their equivalent in the time domain.

Transforming Eq. (5.7) back, we get

gc(t) = g(t)−α(t)∆p(t) , (5.8)

and for the admittance α(t) the coefficients hn at the data sampling interval:

α(t) = [. . .h−1,h0,h1 . . . ] . (5.9)

The Fourier Transformation of Eq. (5.9) for a simple three term filter α(t) = (h−1,h0,h1)

yields:

αR = [h0 +(h1 +h−1)cos(ω)] , and (5.10)

φ(ω) = arctan

[
(h1 −h−1 sin(ω)

αR

]
. (5.11)

5.1.2 Atmospheric Green’s functions

Another well established approach to correct for the atmospheric effect is given by Farrell

(1972) and followed by many others, including van Dam and Wahr (1987) and Boy et al

(2001), using atmospheric Green’s functions, which show in combination with a local

reduction coefficient similar results to the frequency dependent admittance with a better

performance regarding long-period components (Kroner and Jentzsch, 1999).

The direct Newtonian attraction corresponds to a direct gravitational attraction by the air

masses above the gravimeter. For a stratified atmosphere of finite thickness and a height-

dependent variation of pressure, temperature and humidity, it is defined as (Merriam, 1992):

δgNewtonian(θ ,λ , t) =
∫∫∫

Atmosphere
GS(ψ,z′)ρA(θ

′,λ ′,z′)dν ′ , (5.12)
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5. Atmospheric corrections for superconducting gravimeters

where ψ is the angular distance between the station with the spherical coordinates (θ ,λ ) and

the atmospheric volume element of density ρA with coordinates (θ ′,λ ′):

cosψ = cosθ cosθ ′+ sinθ sinθ ′ cos(λ −λ ′) . (5.13)

The Green’s function in this case is formulated as:

GS(ψ,z) =
G[a− (a+ z)cosψ]

[a2 +(a+ z)2 −2a(a+ z)cosψ]2/3
, (5.14)

where z′ is the altitude of the atmospheric volume element ρA, a the Earth radius and G the

Newtonian constant of gravitation.

Following this approach, it is necessary to estimate the density over the whole three-

dimensional atmosphere. Using numerical weather models and considering the relations

between temperature T , specific humidity q and pressure p, the atmospheric density ρA can

be written as

ρA =
p

RT (1−q+ q
ε )

=
p

RTv
, (5.15)

where ε = 0.62197 is the quotient of the universal gas constant for dry air and Tv denotes the

virtual temperature (Boy et al, 2001), see also Chap.3.1.3:

Tv = T (1−q+
q

ε
) . (5.16)

Calculating the density element ρA and performing the convolution with the Green’s

functions GS(ψ,z) for the 3D-atmosphere needs a considerable amount of computational re-

sources. Thus an approximation of the three-dimensional convolution by a two-dimensional

convolution, where only the surface pressure is needed, will be introduced.

Assuming that all the atmospheric mass is reduced to a thin layer on the Earth’s surface (see

also Chap. 4.3.1) the surface atmospheric density ρS(θ
′,λ ′) can be linked directly to the
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surface pressure variation ∆pS(θ
′,λ ′) through the mean surface gravity g0 (Boy et al, 2001):

∆pS(θ
′,λ ′) = ρS(θ

′,λ ′)g0 . (5.17)

In this case the the direct Newtonian attraction equals:

δgNewtonian(θ ,λ , t) =
∫∫

Earth

GN(ψ)∆pS(θ
′,λ ′,z′)ds′ , (5.18)

with ds′ = sinθ ′dθ ′dλ ′ as surface element.

For this model the Newtonian Green’s functions GN are defined as:

GN(ψ) =− G

g0a2

+∞

∑
n=0

nPn(cosψ) , (5.19)

with Pn being the Legendre Polynomial of degree n. A convenient way to calculate the sum

over nPn(cosψ) can be found in the Appendix 1 of (Farrell, 1972).

This model allows much shorter calculation times due to neglecting the third dimension of

the atmosphere. But also the curvature of the atmosphere is not accounted for, meaning the

relative position of the atmospheric masses above or under the local horizon are ignored.

5.1.3 Geometrical approach

Numerical weather models (NWM), describing the density distribution within the whole

atmosphere, allow a more comprehensive approach by taking into account the vertical and

horizontal expansion and permitting the separation of the direct and indirect effect. Among

others Neumeyer et al (2004), Gitlein and Timmen (2006), Sato et al (2006) and Klügel and

Wzionek (2009) used three-dimensional global weather data to determine the atmospheric

attraction by implementing attraction models based on the point mass attraction or the

potential of the air masses.

According to Newton’s law, the attraction of a volume element with respect to the station is
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5. Atmospheric corrections for superconducting gravimeters

dependent on its mass and the distance between the volume element and the station. Assum-

ing that the atmosphere represents an ideal gas and pb and pt are the pressure at the bottom

and top of each pressure layer, the density of the atmosphere ρa can be written as

ρa =
pb + pt

2RdTv
, (5.20)

with Rd the universal gas constant for dry air and Tv the virtual temperature (see Sec. 5.1.2).

The gravitational attraction of a cell with this density ρa and the volume V at the distance d

can be calculated as follows Klügel and Wzionek (2009):

δgd =
GρaV

d2
, (5.21)

with G being the gravitational constant.

d2

d1

S

M

zc

s

Figure 5.1: Geometric relations between station S and attracting mass M

According to Fig. 5.1 the distance d between the station S and the mass element M can

be obtained from the spherical distance ψ , the elevation angle γ , the Earth radius r and the

height z of the cell above ground, following:

tan(γ) =
cos(ψ/2)

(2r/z+1)sin(ψ/2)
, rmand (5.22)

d = 2r sin(ψ/2)cos(γ)+ zsin(ψ/2+ γ) . (5.23)

The gravitational attraction in Eq. (5.21) can be split up in the three components of a local

coordinate system at the station with x pointing west, y north and z upwards, like:

δgx = gd(cos(γ −ψ/2)sinα , (5.24)
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δgy = gd(cos(γ −ψ/2)cosα , (5.25)

δgz = gd(cos(γ −ψ/2) , (5.26)

where α is the azimuth of the mass point.

To model local phenomena properly it might be inadequate to use point masses, but be nec-

essary to take into account the spatial spread of the cell. In such a case the vertical attraction

of each cell has to be computed analytically. For example the attraction of a cylinder can be

calculated as (Klügel and Wzionek, 2009):

δgz = 2πGρA

(
zb − zt +

√
z2

b + r2 −
√

z2
t + r2

)
, (5.27)

where zb−zt is the height of one cylinder disc and r the radius. For other geometrical figures

see Mader (1951) and Nagy et al (2000).

5.1.4 ATMACS

ATMACS (Klügel and Wzionek, 2009) is a service providing time series of atmospheric

vertical mass attraction, computed on the basis of weather models of the German Weather

Service (DWD): the regional model COSMO-EU and the global model GME. Differently

to the approaches described above, it does not use one, but combines several approaches to

compensate for the deficiencies of the singular one and get an optimum result. Therefore

both DWD-models are nested forming a regional and a global part, whereas the regional

model is adapted around a spherical distance of 10◦ radius around the station. This one is

used for a full 3D attraction computation, whereas from the global model only the surface

pressure is used for air mass computation (2D solution). Additionally a local cylinder model

is established in the vicinity of the observation point as described in the previous section. The

attraction effect of each sub-model is calculated and the sum of the local, regional and global

contribution give then the total effect. Additionally also the loading effect is available. The

atmospheric corrections are available for 13 European SG-stations with a temporal resolution

of 6 hours and can be downloaded at atmacs.bkg.bund.de.

108



5. Atmospheric corrections for superconducting gravimeters

5.1.5 Atmospheric Gravity Coefficients for SG

In contrast to the methods introduced before, where the gravity anomaly is determined for

a specific point, i.e. station, AGC allow to determine the atmospheric gravity anomalies on

a global scale. Following Torge (1989) the gravity anomaly ∆g can be expressed using the

spherical harmonic coefficients by

∆g(r) =
GM

r2

{
∞

∑
n=2

(n−1)
(a

r

)n n

∑
m=0

Pnm(cosθ)(∆Cnm cosmλ +∆Snm sinmλ )

}
. (5.28)

As an example the pressure variation at the surface at 00 UTC of January 1, 2008 (Fig. 5.2(a))

and the corresponding gravity anomaly calculated from AGC following the VI approach (see

Chap. 4.3.2) in nm s−2 (Fig. 5.2(b)) is shown.

(a) (b)

Figure 5.2: a) Pressure variation (actual-mean) in hPa at 1 January 2008, 00 UTC. b) corre-

sponding gravity anomaly in nm s−2 .

One can notice the high correlation between the surface pressure in Fig. 5.2(a) and the

gravity anomaly in Fig. 5.2(b), which is much higher compared to the gravity potential

expressed in geoid height as seen in Fig. 4.5(b). This can be explained by the higher waiting

of the coefficients of higher degree and order, see Eq. 5.28 for the gravity anomaly and Eq.

2.25 for the gravity potential.

5.1.6 Elastic contribution

The elastic contribution of atmospheric gravity effects δg originate from the deformation

due to mass load on the crust and from the resulting redistribution of the masses within the

solid Earth. Similar to the approach used for gravity satellite missions in Chap. 4.3.3 the
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5.2 Comparison of the methods and models

load Love numbers can be used (Hinderer and Legros, 1989). Following Farrell (1972) and

Boy et al (2001) the elastic Green’s function equals to

GE(ψ) =− G

g0a2

+∞

∑
n=0

[2hn − (n+1)kn]Pn(cosψ) , (5.29)

with

δgElastic(θ ,λ ) =
∫∫

Earth

GE(ψ)∆ps(θ
′,λ ′)ds′ , (5.30)

Given that the indirect effect has an amplitude approximately ten times smaller then the direct

effect, the vertical expansion of the atmosphere can be neglected and a thin layer loading

hypothesis can be assumed. For accurate estimates of the Green’s functions the computation

of the load Love numbers up to high spherical harmonic degrees (n=9000 corresponding to

a spacial resolution of 2 km) are needed. To avoid such immense computational expanses,

tabulated values for GE(ψ) are available (see Merriam (1992)).

For both effects, indirect and direct, the introduced change in gravity δg are only functions

of the change in surface pressure ∆ps and can be summed up as

δgNewtonian+Elastic(θ ,λ ) =
∫∫

Earth

(GN(ψ)+GE(ψ))∆ps(θ
′,λ ′)ds′ . (5.31)

5.2 Comparison of the methods and models

In this chapter some of the previously discussed methods will be compared and evaluated

using the SG stations at Membach, Belgium and Conrad Observatory, Vienna as test sites.

Of special interest are the methods using NWM, i.e. ATMACS and AGC. The following

results will be published by Karbon et al (2013).

5.2.1 SG stations and data

For this study data from the SG at Conrad Observatory (CO) and Membach (MB) are used.

The Conrad Observatory is located in the Northern Calcareous Alps about 60 km Southwest

of Vienna, Austria, at approximately 1000 m above sea level. The SG GWR-C025 is

operated by ZAMG (Zentralanstalt für Meteorologie und Geodynamik) and was moved
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5. Atmospheric corrections for superconducting gravimeters

after 12 years in Vienna to the new station in November 2007 (Meurers, 2010). The Royal

Observatory of Belgium installed in August 1995 a SG GWR-C021 at the underground

geodynamic station Membach at 250 m above sea level, about 150 km East of Bruxelles

(Francis et al, 2004).

The test data set for CO covers the full year 2008, that for MB the year 2006 showing some

data gaps; both were processed by B. Meurers at University of Vienna. At every full hour

besides metadata like date and time, the following parameters are available:

• gravity anomaly at the station,

• Length of day (LOD) correction,

• Pole tide correction,

• Linear drift,

• Non linear drift,

• air pressure measured at station,

• global and regional pressure correction derived from ATMACS,

• local pressure correction obtained by applying a single admittance factor retrieved

through tidal analysis to the remaining pressure difference between ATMACS and the

pressure measured at the station, and

• gravity anomaly at the station corrected for all effects: UniVie-final.

5.2.2 Comparison of the surface pressure data

To get a first idea of the quality of models, the surface pressure values given by ECMWF

(used in AGC) and by DWD (used in ATMACS) are compared with the pressure measured

at the stations. As can be seen in Fig. 5.3 for both stations, MB and CO, the differences of

the models with respect to the measurement at the stations are in the range of a few hPa, for

CO the range of the deviation of ECMWF is 9.1 hPa with a standard deviation of 0.97 hPa

and for DWD 9.3 hPa and 1.3 hPa, respectively. For Membach both models show a better
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agreement (ECMWF: 5.3 hPa / 0.7 hPa , DWD: 5.8 hPa / 0.7 hPa), which may be related to

the smoother topography around that station.

Figure 5.3: Pressure measured at station (black) and the differences with respect to DWD (red)

and ECMWF (blue) multiplied by 10, shifted to the mean pressure, filtered with 24h averaging

window. Upper plot: Membach (MB), lower plot: Conrad Observatory (CO).

5.2.3 Comparison of different models

As introduced in 5.1.5 the approach using AGC allows to determine the atmospheric grav-

ity anomalies on a global scale. As an example the difference between the gravity anomaly

calculated from AGC following the VI approach and the traditional with a regression coeffi-

cient of -3 nm s−2 per hPa as recommended in the IAG resolution (Chap. 5.1.1) at 00 UTC

of January 1, 2008 is shown in Fig. 5.4. The values spread from -53.7 nm s−2 to 17.2 nm

s−2 with an RMS of 6.4 nm s−2 over the whole globe. Within central Europe the differences

range between -20 nm s−2 and -3 nm s−2, a significant difference.

To investigate the performance of the AGC, comparisons with other models are made. Be-

sides a simple admittance approach ATMACS (Chap. 5.1.4) as another model based on

NWM is used. Additionally the Newtonian Green’s function formalism (GN) (Chap. 5.1.2)

is applied for station CO. As a basis for the GN surface pressure fields from ECMWF with

a spatial resolution of 0.1◦ x 0.1◦ covering a circular area with a radius of 10◦ around CO

are used. The resulting atmospheric gravity corrections are then exchanged with the global

and regional portions of the atmospheric corrections given in 5.2.1 and then compared to the
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5. Atmospheric corrections for superconducting gravimeters

Figure 5.4: Difference between the corresponding gravity anomaly calculated from AGC fol-

lowing the VI approach and the single admittance factor -3nm s−2/hPa at 1 January 2008, 00

UTC.

final gravity anomaly calculated by B. Meurers, called UniVie-final.

Figure 5.5: Residuals: UniVie-final (yellow), using ATMACS (black), AGC (blue), admittance

(red) or GN (CO only, green) as atmospheric correction. Upper plot: Membach (MB), lower

plot: Conrad Observatory (CO).

When looking at the resulting residuals (measured gravity anomaly at the stations minus the

corrections) in Fig. 5.5, all approaches show good agreement, except the GN-approach used

for station CO. This can be explained by the nature of Green’s functions which are designed

to capture large scale effects, e.g. loading effects; but in the current investigation, where

small pressure anomalies should be modeled and also due to the small base area of 10◦ ra-

dius, this approach is less efficient.

Also it becomes evident that ATMACS shows a larger variability at both stations, in MB
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always except summer, at CO only except for the time span April to July. This effect can

be related to the higher pressure variability within the model used by ATMACS (Fig. 5.3).

However, based solely on the comparison of surface pressure data this argumentation cannot

be conclusive. A further relation to the topography and the precipitation is possible. As Boy

et al (2001) have shown in case of the station of Table Mountain (Boulder, Colorado), high

topographic variations around the gravimeter can have a significant effect on the Newtonian

attraction. This may also be the case for CO. Further it must be noted that AGC, GN and AT-

MACS as used in this comparison do not consider the loading effect, whereas the admittance

approach includes it indirectly, and in the solution given by UniVie-final it is also considered.

Figure 5.6: Differences of the residuals with respect to UniVie-final using ATMACS (black),

AGC (blue) or admittance (red), filtered with 12h averaging window. Upper plot: Membach

(MB), lower plot: Conrad Observatory (CO).

Looking at the differences of the various residuals with respect to the ones given by UniVie-

final in Fig. 5.6 and their statistical properties listed in Table 5.1, this higher variability

becomes even more evident. Despite all time series showing almost the same mean deviation

of -2.3 nm s−2 for MB and -6.2 nm s−2 for CO, the standard deviation of ATMACS amounts

to 6.17 nm s−2 and is almost twice as large as AGC with 3.25 nm s−2. This is similar for CO

where ATMACS shows with 10.56 nm s−2 an even higher discrepancy between its standard

deviation compared to the one using AGC with 4.81 nm s−2. The admittance approach yields

for both stations results between AGC and ATMACS with a standard deviation of 3.54 nm

s−2 for MB and 7.21 nm s−2 for CO.
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Table 5.1: Statistical properties of the differences of the various residuals with respect to the

ones given by UniVie-final in nm s−2. The first value represents Membach (MB), the second

Conrad Observatory (CO).

all values mean deviation std. deviation correlation

in nm s−2 MB / CO MB / CO MB / CO

ATMACS -2.3 / -6.2 6.17 / 10.56 0.91 / 0.69

AGC -2.3 / -6.2 3.25 / 4.81 0.98 / 0.92

GN xxx / -6.2 xxx / 20.16 xxx / 0.35

admittance -2.3 / -6.2 3.54 / 7.21 0.96 / 0.79

Interestingly, for CO also the correlation with the result of UniVie-final follows the same

pattern; AGC has the highest correlation with 0.92, the admittance approach follows with

0.79 and then ATMACS with 0.69. This result is remarkable considering UniVie-final uses

ATMACS to correct the global and regional component of the atmospheric attraction for its

final result. For MB on the other hand, no significant differences in the correlation arise (see

Table 5.1).

5.2.4 Impact of the vertical expansion of the atmosphere

Regarding the vertical distribution of air masses Klügel and Wzionek (2009) and Abe et al

(2012) showed that the 3D mass attraction acting on SG is much smaller than previously

estimated by various authors (Boy et al, 2001; Neumeyer et al, 2004). In case of AGC the

vertical distribution is taken into account by using VI as it was shown in Chap. 4.4.2 and

regarding satellite gravity missions the impact is significant. Concerning the usage of AGC

for the determination of gravity corrections for SG the difference between the TL and VI

approach is remarkably small.

Figure 5.7 shows the atmospheric gravity corrections at CO derived from the VI approach

in blue and the difference with respect to the TL approach in black, multiplied by the factor

10. The mean deviation between both approaches is 1.32 nm s−2, the standard deviation 0.5

nm s−2; for MB it is larger with 1.6 nm s−2 and 0.7 nm s−2, respectively. This confirms the

findings by Abe et al (2012) who state that the effect of the actual vertical distribution is not

obvious.

Further, in contrast to the findings by Merriam (1992), deeming the attraction effect caused

by the masses 50 km around the station to be the biggest contributor, it becomes evident, that
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Figure 5.7: Atmospheric gravity following VI (blue) and the difference with respect to TL

(black) multiplied by 10.

the AGC developed to degree and order 100, corresponding to horizontal resolution of about

200 km, are sufficient to remove the majority of the atmospheric attraction.
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Chapter 6

Summary, conclusions and outlook

Atmospheric mass is only about one millionth of the mass of the solid Earth, but it has

the largest temporal variation compared to the hydrological, cryospheric, oceanic and solid

earth signals. The amplitude of its mass variation is similar to that of the hydrological signal.

Unlike the tidal signals, the atmospheric variation has wide temporal and spatial spectra,

making the modeling of this signal and the determination of its error very complicated. On

the other side, satellite gravity missions such as GRACE provide an unprecedented accuracy

but they require for this also an accurate modeling of the atmosphere to separate other

signals of interest.

In this research the state of the art methods for correcting ground based and space borne

gravity measurements were investigated. Special attention was paid to a consistent use

of the meteorological data, especially the definition of the topography. A procedure was

developed which allows to reduce all the NWM-data to ETOPO5 and introduces background

information of the geoid to get the corresponding gravity acceleration at all points at all

levels. Further a software has been developed, calculating atmospheric gravity coefficients

for correcting atmospheric effects on gravity measurements including atmospheric loading

and atmospheric tides corrections.

As already mentioned previously it is not possible to estimate the impact of the aliasing effect

and other miss-modeling of the atmosphere straightforwardly, as the true state of the atmo-

sphere and thus its impact on the gravity measurements is unknown. Nevertheless we were

able to provide valuable insight in the processing strategies and parameterizations, although
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many of the discussed issues do not have a significant impact on todays error level. However,

it was shown, that when aiming for sub-monthly gravity field solutions and for next gener-

ation gravity missions these effects gain in importance and have to be considered thoroughly.

One big error contributor to the gravity change recovered by GRACE are the pressure errors

and uncertainties in the NWM. Several studies showed that the pressure error should nor

exaggerate 1hPa (Velicogna et al, 2001; Shengjie, 2006). Different realization of one NWM

as model and pressure level were examined and models of two different providers, ECMWF

and NCEP were compared. Looking at the discrepancies between the models, we found

that the main contributer is the underlying orography/topography of the models. Whereas

the differences between model level and pressure level of ECMWF amount to 30hPa, for

ECMWF and NCEP they can reach several hundred hPa on a daily timescale. Therefore

the topographical effect has to be taken care of when NWM adopt different terrain models.

This issue gets more important the shorter the timescale, so for monthly solutions the impact

seems negligible, where for specific epochs the differences can arise to several cm in geoid

height. By subtraction of a mean field these effects of the topography can be reduced signif-

icantly, but this does not account for changes of topography within the NWM which occur

occasionally. To get rid of these error sources we introduced ETOPO5 as our terrain model

and referenced all the meteorological data to it. Doing so we are independent of the models

definition of the topography as well as its changes.

Concerning the two different approaches, thin layer and vertical integration, we have shown

that on todays error level the difference between the two is too small to have a significant

effect. The differences have shown an amplitude of 1 mm for specific epochs, an accuracy

not yet reached by GRACE. A reason for that might be a possible compensation of the at-

mospheric structure and the gravity variations when removing the mean field.

On the other hand the impact of the definition of this mean field, i.e. of the mean state of the

atmosphere, was shown clearly. It has a definite effect on the de-aliasing product, as it could

also be confirmed by comparison of our de-aliasing product with the GRACE operational

product provided by GFZ (AOD1B). The differences here, although not significant for to-

days processing, can be traced straight back to the mean field. This underlines the necessity

of a consistent definition of a atmospheric mean field or at least a detailed description as
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to how the mean field was created. Otherwise comparisons between different products get

increasingly difficult, as the effects introduced by the mean field dominate all other possible

signals. For the CNES/GRGS de-aliasing product the differences are larger and of different

nature and could be related to a different definition of the coordinate system, although this

assumption could not be confirmed as no concrete information about the processing is avail-

able. This again stresses the necessity of a careful documentation of all introduced models

and parameters as well processing strategies.

Further it was shown that changes in the approximations of the Earth, i.e. the usage of

constants for the radius and gravity acceleration, have a negligible effect on the de-aliasing

product, as well as the approximations of the geoid used in the processing of AOD1B. For

atmospheric loading, on the other hand we were able to confirm the importance of the correc-

tion for atmospheric loading, at least for wavelengths longer than 1500 km for release 05. An

important contribution to the GRACE de-aliasing process are the atmospheric tides, where

S1 and S2 tides have an measurable effect on the lower degrees and thus their correction can

significantly improve the results. The S3 tide on the other hand has a very small impact, but

still should be corrected for if possible to help GRACE reaching its baseline performance.

Additionally a quick look at the impact of the atmospheric signals on GOCE was given and

could confirm previous findings stating that the SGG is insensitive to such signals at the

current level.

In the second part of this work we applied the AGC, originally developed for satellite

missions, to ground based gravity measurements given by superconducting gravimeters. Not

only was it possible to offer an alternative product supplying atmospheric gravity anomalies,

but also to provide a still pending ground proof of the AGC.

The computation of atmospheric gravity anomalies using operational NWM is a valuable

method to correct ground based gravity measurements. The main advantage is that NWM

allow to introduce the physical processes of mass changes in the atmosphere rather than

following an empirical fitting process as used by e.g. admittance models. This approach

is also able to account for phenomena where the attraction components do not correlate

completely with the pressure at the station. Furthermore the direct and indirect effect can be

treated separately. Unfortunately up to now all approaches using three-dimensional NWM

(e.g. ATMACS) are available only for specific SG stations which are within the coverage
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of the weather model used. We showed in this study that by using AGC this deficiency

can be overcome as they provide global coverage. Hence atmospheric corrections can be

derived easily for every position on Earth. Further, using the SG at Conrad Observatory and

Membach we were able to proove that the AGC model provides smaller residuals than the

traditional admittance approach and can also hold up to the much more complex model used

by ATMACS.

This disproves partially the theory that the largest effect on SG are due to the masses within

50 km, as the performance of the AGC with a spatial resolution of 200 km is remarkably

good. Further, neglecting the vertical expansion when calculating the AGC has a very

small effect, with standard deviations smaller than 1 nm s−2 on both stations treated in our

investigation. This also confirms more resent findings stating that the effect of the vertical

mass distribution is not big enough to be considered, allowing much simpler modeling.

We have shown that accurate atmospheric modeling is important for reducing the total errors

in GRACE gravity estimation. Improving the atmospheric modeling a as background model

for de-aliasing of the high frequency variations is expected to have significant impacts on the

GRACE gravity solution, especially over the Antarctic region. Unfortunately no real error of

the NWM as well as the de-aliasing modeling are available, thus simulations based on model

difference have to be used, which may not reflect the real error distribution. Correlation of

the data and models might lead to underestimating these errors. Here the link to SG can give

an valuable ground proof.

The NWM operational models on the other hand are continuously improving their skills

with better physical and dynamic modeling and by incorporating new satellite observations.

Monitoring the change of NWM models can reduce the artificial errors introduced by the new

data, e.g. the trends introduced by adding new satellite observations. But all these changes

in the models also lead to problems if not treated carefully, this must be kept in mind if using

the NWM operational data directly.
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