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A B S T R A C T

A fully automated on-site device (SAMP-FIL) that enables water sampling with simultaneous filtration and
effective cleaning procedures of the device's components was developed and field-tested. The SAMP-FIL was
custom-built using commercially available components and was controlled by a RaspberryPi single-board
computer operating open-source software. SAMP-FIL was designed for sample pre-treatment with minimal
sample alteration to meet the requirements of on-site measurement devices that cannot handle coarse
suspended solids within the measurement procedure or cycle. A highly effective cleaning procedure provides
a fresh and minimally altered sample for the connected measurement device. The construction and
programmed software facilitates the use of SAMP-FIL for different connected measurement devices. The
SAMP-FIL sample pretreatment was tested for over one year for rapid and on-site enzymatic activity (beta-D-
glucuronidase, GLUC) determination (BACTcontrol) in sediment-laden stream water. The formerly used
proprietary sampling set-up was assumed to lead to significant damping of the measurement signal due to
its susceptibility to clogging, debris accumulation and bio-film accumulation. The implementation of SAMP-FIL
considerably increased the error-free running time and measurement accuracy of BACTcontrol devices. This
paper describes how low-cost microcomputers, such as the RaspberryPi, can be used by operators to
substantially improve established measuring systems via effective sampling devices. Furthermore, the results
of this study highlight the importance of adequate sample pretreatment for the quality of on-site measurements.

1. Introduction

On-site monitoring of chemo-physical and bio-chemical parameters
in surface waters are currently standard procedures in various fields,
such as hydrology, limnology and civil engineering. Although techno-
logical progress and scientific questions have advanced on-site mon-
itoring of water resources to higher temporal and spatial resolutions,
measurement systems are still technically challenged by common
environmental factors, such as suspended solid concentrations.
Emerging parameters to be monitored on-site (e.g., enzymatic activity)
require measurement devices with complex construction design, in-
cluding valves and hoses with diminutive apertures [16,23,26,27,32].
The effect of suspended organic and inorganic matter on the accuracy
of measurement results and the device running time of such methods

are particularly high in stream draining catchments susceptible to soil
erosion (e.g., agricultural catchments). In such cases, sample pretreat-
ment becomes an unavoidable component of the procedure [27] to
meet the technical requirements of the measuring devices and prevent
valves or tubing from clogging. The required sample pretreatment
procedure includes filtering of the natural water sample and filling a
vessel from which the connected instruments draw the sample for the
intended measurement. As manufacturers may have limited insight
and comprehension into the determining factors of specific monitoring
locations, proprietary solutions occasionally do not meet the specific
demands necessary to enable the optimal operation of the respective
measurement instruments. Pre-assembled and commercially available
modules for filtration, which allow back flushing and filter cleaning in
combination with adequate pumping, can be used for on-site sample
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pretreatment. These modules are often limited in terms of sampling
volume and filter size or have a fixed filter mesh width and thus have
strong constraints regarding the conversion of the set-up for other
purposes (e.g., connection to another measurement instrument).
Furthermore, such modules may provide considerable inside surfaces
and cavities for debris and bio-film accumulation, leading to potential
adulteration of the measurement signal.

Several types of low-cost microcomputers (e.g., Arduino,
RaspberryPi) were released during the last decade and are currently
often used within a wide user area of the open-source community
[1,14,18,22,29]. The possibility to connect and control peripheral
devices (e.g., sensors, relays) due to embedded ports (e.g., USB) or
general-purpose input/output (GPIO) and the ability to operate self-
programmed scripts (e.g., Python) have great potential within the field
of environmental science, particularly regarding measurement engi-
neering and monitoring. Recent studies have described the application
of low-cost single-board computers for implementation in monitoring
systems, e.g., as a strategic interface or data-logger [14,24,28,30,31].
However, there is a lack of scientific literature describing the selection
and assembly of hardware and software in a comprehensive manner to
enable the reader to reproduce the same or similar set-ups.

The authors of this paper describe how a robust and effective
RaspberryPi controlled autosampler for sample pretreatment, neces-
sary for the on-site enzymatic activity determination in surface water,
was developed in a step-by-step manner. Instructions from open-
source platforms (e.g., www.raspberrypi.org/forums [20]) have been
adapted to this special demand, and the construction was designed
following the authors operating experience of automated on-site
enzymatic activity determination in surface water.

The main objective was to construct a programmable sample
pretreatment set-up that has an insignificant impact on the natural
water sample and is resistant against in-device debris and bio-film
accumulation. The hardware components and programmed software
are selected and constructed in a manner that easily enables the
connection of the SAMP-FIL to another on-site instrument by mod-
ification of the sample volume, filter size and operation cycles. A 16-
month field campaign was conducted to test the constructed device
(SAMP-FIL) in terms of its robustness for continuous long-term
automated operation, its impact on measurement accuracy, and the
running time of the connected instruments (BACTcontrol).

2. Material and methods

On-site detection of enzymatic activities has been suggested as a
rapid surrogate for the monitoring of microbiological pollution in water
resources [5,9,10,12]. Due to the potential short measuring intervals,
this method has high potential as a near-real-time water quality
monitoring tool and can contribute important information for identify-
ing faecal contamination. To understand the dynamics and transport
processes of faecal-associated contamination in stream water, two
devices (BACTcontrol, MicroLAN, Netherlands) for the automated
and rapid determination of enzymatic activity (beta-D-glucuronidase)
were operated for stream water monitoring at the catchment outlet
since 2012. During the measurement process, the sample mixed with
specific assay reagents generated an increasing fluorescence signal that
reflected the level of enzymatic activity, which was monitored over
time. The construction design and sampling and measurement proce-
dures of the BACTcontrol devices have been described in detail by
[23,32]. Although the measurement principle yielded consistent long-
term data from automated on-site operation in ground water monitor-
ing [23], the use of these instruments for surface water monitoring is a
technical challenge due to the high suspended solid concentrations
during event run off conditions. Outages of BACTcontrol devices due to
technical failure or service are substantially higher when operated in
surface water monitoring compared to ground water monitoring
[23,27]. To establish long-term on-site operation, in this case, sample
pretreatment (filtration through 100 μm) was an unavoidable step [27].
The BACTcontrol instruments conducted measurements every three
hours and were housed in an air-conditioned measurement station
situated at the brookside, one meter above the water level.

The proprietary sample pretreatment set-up (Fig. 1A) was based on
a submersible pump that was placed in the stream and constantly
pumping water with a flow rate of 1.5 l/min through a flow-through
housing with a 100 μm filter into a 10 l sample container. The sample
container was equipped with an overflow, enabling a constant flow-
through and complete exchange of the pre-treated water within less
than 7 min. The dimensions and flow-through rates were designed to
enable sedimentation of fine material ( < 100 μm) within the container.
The BACTcontrol devices obtained the required sample volume
(100 ml) for the GLUC measurements from this sample container
every 180 min (Fig. 1A). The filter cartridge and hoses had to be
manually cleaned on a biweekly basis. The components of this set-up
were designed for long-term usage and proved technically robust, with
failure-free running times up to 12 months. Nevertheless, evaluation of

Fig. 1. Schematic of the basic sample pretreatment set-ups and fundamental components of the outdoor monitoring station (OMS). A: The proprietary set-up with the constantly
operated submersible pump located in the stream, filter (cartridge enclosed in housing) and sedimentation container. B: Set-up with SAMP-FIL, where the filter cartridge is located in
the stream and sample water is provided to the BACTcontrol devices by SAMP-FIL in coordination with their measurement intervals.

P. Stadler et al. Talanta 162 (2017) 390–397

391



the continuously measured GLUC signal showed that a majority of
GLUC measurements were delayed up to several hours from the
hydrological parameters monitored in parallel, such as the stream
discharge and turbidity. In particular, during event runoff conditions,
the GLUC activity is assumed to be strongly correlated with discharge
and turbidity, as these parameters indicate the potential input and
transport of surface-associated faecal pollution in the stream.
Furthermore, the monitored peaks of GLUC activity appeared to be
significantly damped in many cases. The described phenomena
occurred despite regular cleaning of the filter cartridge and hoses,
indicating that substantial parts of the inner surfaces of the compo-
nents (e.g., pump, fittings, tubing) are not accessible for the on-site and
manual cleaning procedure and that the constant water flow led to bio-
film growth, deposition of debris and sintering, causing the retention
and delayed release of beta-D-glucuronidase-producing organisms (e.g.,
E. coli) into the measuring device.

2.1. Test site

The Hydrological Open Air Laboratory (HOAL, [2,3]) in
Petzenkirchen (Lower Austria) is operated and maintained by the
Institute for Land and Water Management Research (Federal Agency
for Water Management, Austria) and the Vienna Doctoral Programme
of Water Resource Systems (Center for Water Resource Systems,
Vienna University of Technology, Austria). The catchment is 0.66 km²
in area and is drained by a 620 m stream. Twelve point discharges
contribute to the discharge of the stream. These include tile drains,
springs and surface tributaries (Exner-Kittridge et al., [33]). The mean
annual precipitation is 823 mm/yr (1990–2014). The land use of the
catchment area is dominated by agriculture, consisting of 83% arable
land, 7% grassland, 7% forested area, and 3% paved surface. The
hydrogeology is characterized by porous and fissured aquifers consist-
ing of clay, marl and sand. Soils show medium to limited infiltration
capacities. The annual sediment erosion is approximately 1 t/ha (Eder
et al., [35]). The monitored stream shows high discharge dynamics
(minimum discharge 2014: 0.5 l/s, maximum discharge 2014: 73 l/s)

with rapid reactions during rain events. The turbidity in the monitored
stream is highly event-linked, as rain events promptly cause an
increase of suspended solids (TSS) in the stream water. Maximum
TSS concentrations of over 3 g/l were recorded during the test period
in July 2014 and January 2015. Depending on the hydrologic condition
of the catchment, the stream water turbidity is a diverging combination
of eroded sediment flushed into the stream by surface runoff and re-
suspended riverbed sediment (Eder et al., [34]). The main source of
faecal contamination of ground and surface water is swine manure
applied periodically to the fields.

2.2. Design and construction

To overcome the problem of suboptimal sample pretreatment, a
compact and robust auto sampler (SAMP-FIL) that samples and
provides a filtered water sample scheduled to the measurement
intervals of the connected BACTcontrol devices was constructed
(Fig. 1B). The objective was to conduct the sampling and filtering
procedure as quickly as possible to minimize the retention time and
adulteration of the sampled water. The flow-through rates were kept
high to achieve turbulent pipe-flow to minimize debris and bio-film
accumulation within the device. Flushing out the complete equipment
with pressurized air enabled filter cleaning and allowed the equipment
to dry while idle. To schedule the time sequence of the array of required
components, a RasperryPi single-board computer was chosen because
the guidance support by the on-line community is high, it allows on-
device programming and it has been reported to be robust for
numerous long-term operations [13]. All components of the SAMP-
FIL are mounted within a casing of manageable size, where the
sampling tubing with the filter, outlet and BACTcontrol devices are
connected (Fig. 2).

2.3. Hardware

The SAMP-FIL (Fig. 2) was housed in a commercial compact steel
enclosure (Rittal, AE 1034.5, width: 300 mm, height: 400 mm, depth:

Fig. 2. Construction plan of the SAMP-FIL hardware. Core components are installed on a detachable mounting plate (right). The IP66 casing houses this plate and the power units.
Connections for the sample-in tubing, sample-out tubing, pressurized air tubing and main power are made on the casing. Sample tubing from the connected devices (BACTcontrol) is
similarly linked via push-in fittings through the casing.
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210 mm) with protection category IP 66. The sampling was conducted
using a rotary diaphragm pump (Charles Austen, RD5 DC, suction
pump, flow rate: 5 l/min, empty lift: 8 m, DC: 24 V). Sample inlets and
outlets as well as pressurized air inlets were controlled by an array
(Fig. 3) of two fluid control valves (SMC Pneumatics, VX 232, 2-port
solenoid valve, normally closed, nominal diameter: 8 mm, DC: 24 V)
and one air control valve (SMC Pneumatics, VX 220, 2-port solenoid
valve, normally closed, nominal diameter: 6 mm, DC: 24 V).

Both fluid- and air control values operate on DC 24 V. Pressurized
air (2 bar) was delivered from a compressor (Jun Air, 6–15) and used
to clean the auto-sampler and achieve dry conditions during idle.
Pressurized air was also used for the automated cleaning of in situ
probes (s::can spectrolyser and Nadler ion-sensitive probe) at the same
monitoring station. The sample tubing extended from the SAMP-FIL
into the stream. A commercial filter cartridge (Acqua SAN, cartridge
size: 1 in., stainless steel mesh) with a pore size of 100 μm was
mounted at the end of this tubing (Figs. 2 and 3). All fluid and air
tubings are polyurethane (PU) hoses (fluid: SMC Pneumatis, TU 1065,
outer diameter: 10 mm, inner diameter: 6.5 mm, air: SMC Pneumatis,
TU 0604, outer diameter: 6 mm, inner diameter: 4 mm). The tubing
was connected with the filter, valves, pump and sample vessel via one-
touch (push-in) fittings (SMC Pneumatics, KQ 2).

For each operation cycle, a filtered sample was delivered into the
sample vessel (volume: 500 ml, material: HDPE, format: square). The
required sample volume (100 ml) was taken from this sample vessel for
on-site GLUC measurement by the BACTcontrol devices.

Operation of the aforementioned components (all sourced DC 24 V)
was controlled by a relay board (SainSmart, 8-channel DC 5 V relay
module, high current relay: AC 250 V, 10 A or DC 30 V, 10 A, driver
current: 15–20 mA, indication of relay output status: LED), which was
triggered by the RaspberryPi (Raspberry Pi 1 model B, DC 5 V) via
GPIO (general purpose input/output) pins. The RaspberryPi has no
default real-time clock (RTC) and retrieves the system time from a
network time protocol (NTP) server (time server) whenever it is
connected to the Internet. When operated off-line, in cases of power
outages (e.g., due to thunderstorms), the RTC is required such that the
RaspberryPi reboots with the correct system time after it is reconnected
to power. Therefore, a peripheral RTC (DS 1307 RTC) was connected to
the RaspberryPi via GPIO to access an accurate and current system

time during off-line operation (as described in: [21]).
The RaspberryPi and relay board (both sourced by DC 5 V) are

connected (Fig. 3) to a 5 V commercial power supply unit (2 A). All
other components operate on DC 24 V (Fig. 3) and are connected to an
adequate commercial power supply unit (6 A). Both 5 V and 24 V
power supply units are affiliated with AC 230 V main power connec-
tions (Fig. 3).

The BACTcontrol devices and SAMP-FIL were mounted in an air-
conditioned, weatherproof outdoor monitoring station (OMS, Fig. 1).
The option to mount the SAMP-FIL within the OMS was chosen as the
least elaborate from a technical perspective because the length of the
tubing was kept minimal and frost-proof housing was assured.

In addition to the robustness of the components, the main focus
was set on a design enabling highly turbulent sample-water flow within
the tubing and valves to reduce debris, bio-film and sinter deposition
on the inner surface of the equipment. The flow rate of the high-
performance pump (5 l/min) and the chosen inner diameter of the fluid
tubing (6.5 mm) theoretically enabled at straight intercepts of the
tubing a flow velocity (v) of 2.5 m/s, with a Reynolds number (Re) of
over 12,500. A flow velocity of 1.7 m/s and a Reynolds number over
10,500 were calculated for the inside of the fluid valves (cylindrical
aperture with a nominal diameter of 8 mm). Although this is an
estimation and friction due to specific material roughness, bent tubing
sections and intersections between components is neglected, highly
turbulent flow behaviour within the tubing and valves can still be
assumed [17]. Calculations were made for a water temperature of
10 °C, which is close to the annual mean stream water temperature of
10.3 °C, using the following equations [17]:

v Q
πD

= 4
² (1)

Re DVρ=
μ (2)

where Q is the volumetric flow rate, D is the pipe diameter, ρ is the
density of the fluid and μ is the dynamic viscosity.

Fig. 3. Schematic diagram of the current lines, tubing and core components of the SAMP-FIL. Fluid tubing is marked in blue, pressurized air tubing is marked in pink and the sample-in
tubing of the connected BACtcontrol devices is marked in green. Dashed red and black lines indicate 5 V cables, and solid red and black lines indicate 24 V cables. Brown and purple lines
show 230 V main power connections.
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2.4. Software

The operating system (OS) of choice was the Linux-based Raspbian,
which was installed using the “New Out Of The Box Software” package
[15] on the RaspberryPi's secure digital memory (SD) card. The
Raspbian image includes an integrated developer environment (IDE)
used for Python programming (IDLE). Four GPIO pins of the
RaspberryPi board are used as output to trigger the corresponding
relay on the relay-board and are controlled by an executable Python
script. The core features of the script are a file-type access to the GPIOs
(no additional libraries and packages are required) and the Python
time.sleep command, which suspends execution for a given number of
seconds. This allows for coding a simple time-sequenced state machine
that iteratively activates the peripheral devices for a certain time, as
specified in the script, with the time.sleep command. Following this,
the script schedules all necessary operations for one complete sampling
cycle. Cron was used to schedule the sampling cycle to the measure-
ments of the connected BACTcontrol devices (fixed measurement
interval of 180 min). Cron is a software-tool to configure scheduled
tasks using the system time on Unix systems, e.g., to schedule
executable scripts to run at a fixed interval. The programmed Python
script was set to be executed by Cron shortly before each BACTcontrol
measurement starts. To keep track of the working steps conducted by
SAMP-FIL, the Python logging module is used within the script. Thus,
each programmed operation was logged together with a timestamp in a
text file, allowing potential failures to be traced and aligned to
erroneous BACTcontrol measurements.

2.5. Function

Each sampling cycle of the SAMP-FIL includes seven steps
(Table 1). During the “CLEANING” step, the pump, “sample-in” fluid
valve, “sample-out” fluid valve and pressurized air valve are activated.
All equipment, including the filter cartridge, tubing, fluid valves, pump
and sample vessel, are flushed through by pressurized air (Table 1).
During the “FLUSHING” step, the valve for pressurized air is closed
and all of the equipment is flushed through with recent sample water
(Table 1). The “SAMPLING” step enables the filling of the sample
vessel by closing the “sample-out” valve while keeping the pump and
“sample-in” fluid valve activated (Table 1). During the “READY” step,
the pump is deactivated, all valves stay closed and the sampled water
remains in the sample vessel from where it is retrieved by the
BACTcontrol devices (Table 1). When the abstraction of the water
sample by the BACTcontrol devices is completed, the “sample-out”
valve is opened to empty the sample vessel (Table 1). After draining the
sample vessel, the “sample-out” valve stays open, and the “sample-in”
valve, pump and pressurized air valve are activated (Table 1); this
“CLEANING” step is identical to step 1 (Table 1), i.e., the residuals of
the sample water are flushed out from the tubing, pump, valves and
sample vessel, and the filter mesh is cleaned. After these six steps, the
SAMP-FIL goes into “IDLE” mode, where no peripherals are activated,
and the equipment remains dry (Table 1). This sequence of steps
assures the residence of sample water within the device only when it is

required and enhances long-term and continuous operation before and
after each sampling cycle as the SAMP-FIL is flushed completely by
pressurized air to prevent the filter cartridge from clogging, and any
residual water is discarded from the previous cycle.

2.6. Field test

A field test with 3 phases was conducted to test the influence of
proprietary sample-pretreatment and SAMP-FIL on the on-site mea-
sured GLUC activity. During “Phase 1” (23 March 2014 to 23 April
2014), both devices for on-site GLUC measurements (BACTcontrol 01
and BACTcontrol 02) were connected to the proprietary sample
pretreatment. During “Phase 2” (27 July 2014 to 19 August 2014),
the BACTcontrol 01 was connected to the SAMP-FIL, whereas
BACTcontrol 02 remained connected to the proprietary sample-pre-
treatment. In “Phase 3” (13 September 2014 to 13 October 2014), both
BACTcontrol devices were connected to the SAMP-FIL.

To test the technical capability of the SAMP-FIL for long-term on-
site operation, it was continuously operated since the installation in
July 2014 for 16 months until November 2015.

2.7. Reference analyses

Several studies described the attachment of faecal indicator bacteria
to suspended particulate matter in aquatic habitats [4,6,7,11,25].
Enzymatic activity has been reported to be linked to fractions of
suspended particulates in stream water [8,9]. As sample pre-filtration
is an unavoidable step for automated GLUC measurements in sedi-
ment-laden waters, the authors tested the impact of a 100 μm filter on
GLUC measurements and performed culture-based E. coli analyses.
Grab samples were taken from the stream during different catchment
conditions, i.e., regarding the hydrologic state and microbiological
impact. One portion of each sample was filtered through a 100 μm filter
(as mounted in the SAMP-FIL), whereas the other portion remained
unaltered. Both portions were analyzed for GLUC activity and E. coli.
GLUC activity measurements were performed with a ColiMinder
laboratory measurement device. Although the units of the on-site and
laboratory GLUC measurements are different, both ColiMinder (la-
boratory) and BACTcontrol (on-site) provide the same target-para-
meter, namely, the determination of beta-D-glucuronidase activity in
waters [27]. Both constructions for GLUC determination yield results
with an average one-to-one ratio between mMFU/100 ml (ColiMinder)
and pmol/min/100 ml (BACTcontrol) [27]. The E. coli analyses were
conducted using the Colilert18 method (ISO 9308-2:2012, MPN/
100 ml).

3. Results

3.1. Field test

Phase 1: Measurements recorded by BACTcontrol devices con-
nected to the proprietary pretreatment set-up showed significant
damping and delay of the GLUC signals (Fig. 4). These effects were

Table 1
Scheduled sequences for one complete operation cycle of SAMP-FIL.

Sequence No. task function Status pump Status valve-1 Status valve-2 Status valve-3
(relay 1) (relay 3) (relay 2) (relay 4)

1 Cleaning Pressurized airflow through the complete system active active active active
2 Flushing Flushing the system with recent sample water active inactive active active
3 Sampling Filling of sample vessel active inactive active inactive
4 Ready Connected devices abstract sample inactive inactive inactive inactive
5 Emptying Emptying of sample-vessel inactive inactive inactive active
6 Cleaning Pressurized airflow through the complete system active active active active
7 Idle All components remain dry until next cycle inactive inactive inactive inactive
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particularly pronounced during runoff events, when stream para-
meters, such as discharge and suspended sediment, showed a rapid
response to changes in hydrologic conditions, whereas the response of
GLUC signals was either delayed (for several hours) from that of
parallel monitored stream parameters or appeared considerably
damped (Fig. 4). Linear regression analysis of measurement data
showed consistency between both BACTcontrol devices, with an R2 of
0.72 and a slope of 1.24. Measurements with negative GLUC values
(Fig. 4) indicate malfunction of the BACTcontrol 02 device due to
clogged reagent dosing or a contaminated fluorescence measurement
window, presumably conditioned by insufficient sample pretreatment.

Phase 2: Damping and delay of GLUC signals due to the proprietary
pretreatment set-up indicated during “Phase 1” were disclosed in
“Phase 2”, in which BACTcontrol 01 was connected to the SAMP-FIL
and BACTcontrol 02 retrieved sample water from the proprietary set-
up (Fig. 5). Several precipitation events occurred during the test period,
causing a potential input of faecal-associated contamination into the
stream. BACTcontrol 01 recorded a significant peak of GLUC activity
for each of these events, whereas BACTcontrol 02 showed a damped
delayed response or even no response (Fig. 5). A linear regression
coefficient R2 of 0.15 was found between the measurement results of
BACTcontrol 01 and BACTcontrol 02. The regression slope of 0.16
(Fig. 5) demonstrates the higher sensitivity of the device connected to
SAMP-FIL (BACTcontrol 01).

Phase 3: Connection of both the BACTcontrol apparatuses to
SAMP-FIL resulted in highly consistent measurements between

BACTcontrol 01 and BACTcontrol 02 and prompted responses of
GLUC signals to changes in hydrologic conditions (Fig. 6). A linear
correlation coefficient R2 of 0.94 was found between GLUC values
gathered with BACTcontrol 01 and BACTcontrol 02. Both sets of GLUC
signals are highly comparable regarding timing and range (Fig. 6). A
regression slope of 0.74 indicates an offset between both devices (on
average, BACTcontrol 01 yielded higher results than BACTcontrol 02
by 2.2 pmol/min/100 ml). For the first time since the installation of
BACTcontrol devices at the monitoring location in 2012, diurnal
fluctuations of GLUC activity (Fig. 6) in stream water during dry
weather periods were captured by the BACTcontrol devices [27].

3.1.1. Continuous long-term operation
The SAMP-FIL was continuously operated from July 2014 to

November 2015 (16 months). No technical failures of mechanical
and electronic components occurred during this period. The coded
script was autonomously continued after sporadic power outages (e.g.,
due to thunder storms). The error of the installed RTC of ± 1 min per
month was maintained and corrected approximately every 3 months
on-site by accessing the RaspberryPi via remote desktop. The filter
cartridge remained unclogged but was preventively changed after 6
months of operation. No crucial sediment or bio-film accumulation
within the tubing and sample vessel could be detected by visual
inspection after the test period. The SAMP-FIL was preventatively
flushed with decalcifying and disinfecting cleaning solution after the
test period before on-going operation continued.

Fig. 4. GLUC signals of BACTcontrol 01 (red) and BACTcontrol 02 (green) (both connected to proprietary sample pretreatment), discharge (black line) and TSS (dashed line) at the
stream monitoring location during test phase 1. The linear regression analysis of BACTcontrol data for the same time period is shown on the right. The occurrences of GLUC signal
damping (*) and delay (**) are highlighted with asterisks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. GLUC signals of BACTcontrol 01 (red, connected to the SAMP-FIL) and BACTcontrol 02 (green, connected to the proprietary sample pretreatment), discharge (black line) and
TSS (dashed line) at the stream monitoring location during test phase 2. Linear regression analysis of BACTcontrol data for the same time period is shown on the right and indicates the
higher sensitivity of BACTcontrol 01 connected to SAMP-FIL. The occurrences of GLUC signal (BACTcontrol 02) damping (*), delay (**) and no response (***) are highlighted with
asterisks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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After the installation of SAMP-FIL, the GLUC measurements of the
connected BACTcontrol devices achieved their highest quality in terms
of consistency and sensitivity. The capability for long-term operation of
BACTcontrol apparatuses in this technically challenging habitat in-
creased as error-free running time and service intervals of up to 6
months were achieved.

3.2. Impact of sample pretreatment on GLUC activity and E. coli
concentrations

Laboratory measurements of GLUC activity and culture-based E.
coli analyses did not indicate a systematic influence of the 100 μm filter
on the measured signals (Fig. 7). Consequently, it is assumed that the
chosen pore size does not adulterate on-site GLUC measurements.

3.3. Discussion and perspective

Low-cost equipment that allows the assembly of affordable equip-
ment to be used as data loggers, sensors or accessory units will likely
become of increased importance within various fields of today's
environmental research, such as hydro-meteorological monitoring.
Available inexpensive equipment has the potential to promote research
and science into new fields and scales: To overcome the dearth of
meteorological monitoring stations in the sub-Saharan Africa, Van de
Giesen et al. [30] described the extensive installation of multitudinous
monitoring stations based on new cost-effective technologies. The use
of open-source technologies for the construction of low-cost laboratory
equipment was delineated and discussed by [19].

The authors are aware that the capability of the used single-board
computer was not fully exploited with the task described in this study.
Nevertheless, the RaspberryPi proved to be the ideal choice for the
intended purpose due to its robustness, usability, and low price
(RaspberryPi 2 B: < 35€). This allowed resources to be used for the
purchase of professional high-performance components (e.g., pumps,
valves, casing, and tubing), resulting in failure-free on-site operation in
a technically challenging habitat for 16 months (and on-going).

This work demonstrated that researchers can develop an effective
device, controlled by a low-cost single-board computer, with a basic
working knowledge in electronics but no background in electrical
engineering or information technology (IT). The planning and con-
struction of SAMP-FIL was exclusively conducted within the Vienna
Doctoral Programme on Water Resource Systems (TU Wien).

The experimental results obtained during the various test phases
demonstrated the relevance of best possible sample pretreatment with
regard to minimal sample adulteration and the prevention of device
fouling. This study quantitatively demonstrates how inadequate pre-
treatment procedures result in falsified and biased on-site measure-
ments.

The SAMP-FIL version described in this paper is a prototype.
Further endeavours will focus on the on-line connection of the SAMP-
FIL, in particular, linking the SAMP-FIL to BACTcontrol to trigger
SAMP-FIL activities by the connected measurement device.
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