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Abstract. C-clones are polymorphism sets of so-called clausal relations, a
special type of relations on a finite domain, which first appeared in con-
nection with constraint satisfaction problems in work by Creignou et al.
from 2008. We completely describe the relationship regarding set inclu-
sion between maximal C-clones and maximal clones. As a main result we
obtain that for every maximal C-clone there exists exactly one maximal
clone in which it is contained. A precise description of this unique maxi-
mal clone, as well as a corresponding completeness criterion for C-clones
is given.
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1. Introduction

Clones are sets of operations on a fixed domain that are closed under compo-
sition and contain all projections. The clones on a finite set D are precisely
the Galois closed sets of operations ([7], translated in [5,6], independently [9])
with respect to the well-known Galois connection PolD − InvD induced by the
relation “an operation f preserves a relation �” (see also [10,11]). In other
words, every clone F on D can be described by F = PolD Q for some set Q of
relations (cf. Section 2 for the notation).

In this paper, which is mainly based on [4], we continue the investigations
from [2] and [16] concerning clones on a finite set D described by relations
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The research of M. Behrisch was partially supported by the Austrian Science Fund (FWF)
under Grant I836-N23 and partially by the OeAD KONTAKT Project CZ 04/2017 “Ordered
structures for non-classical logics”; the one of E. Vargas-Garćıa partially by CONACYT
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from a special set C RD. They are named clausal relations and were originally
introduced in [8]. A clausal relation is the set of all tuples over D satisfying
disjunctions of inequalities of the form x ≥ d and x ≤ d, where x, d belong to
the finite set D = {0, 1, . . . , n − 1}.

We are interested in understanding the structure of clones that are de-
termined by sets of clausal relations, so-called C-clones. Their lattice has been
delineated completely in Theorem 2.14 of [16] for the case that |D| = 2. When
|D| ≥ 3, the structure and even the cardinality of this lattice is largely un-
known. In this paper we study the co-atoms in the lattice of all C-clones,
the maximal C-clones, for an arbitrary finite set D. Since every clone on D
either equals OD (the set of all finitary operations on D) or is contained
in some maximal clone (co-atom of the lattice of all clones) (see, e.g., [12,
Hauptsatz 3.1.5, p. 80; Vollständigkeitskriterium 5.1.6, p. 123] or [15, Propo-
sition 1.15, p. 27]), our aim is to investigate which maximal C-clones are con-
tained in which maximal clones. We achieve a complete description in Theo-
rem 8.2 and thereby answer the question that was left open in the pre-print [3].

Using Rosenberg’s theorem (see Theorem 2.4 below), all maximal clones
on D can be classified into six types. In [3] it was already established that a
few of them, e.g., centralisers of prime permutations, polymorphism sets of an
affine, of a central relation of arity at least three or of an h-regular relation, do
not contain any maximal C-clone. We shall see that this phenomenon extends
to maximal clones of monotone functions with regard to some bounded partial
order whenever |D| ≥ 3.

To our surprise, it turns out that every maximal C-clone is contained
in a unique maximal clone, either given as polymorphism set of a non-trivial
equivalence relation or a unary or binary central relation (vide infra for a
definition of such relations). The respective details can be seen from our main
result, Theorem 8.2. As a corollary we also deduce a new completeness criterion
for C-clones.

We start by introducing our notation, recalling some fundamental facts
about the Galois theory for clones, the characterisation of maximal clones
and C-clones, respectively, and providing two basic lemmas in Section 2. After
that we recollect the relevant results from the pre-print [3]. Then we devote one
section each to examine possible inclusions of maximal C-clones in maximal
clones of the form PolD �, where � is a non-trivial unary relation, a bounded
partial order relation, a non-trivial equivalence relation or an at least binary
central relation. Finally, in Section 8, we deduce our main theorem from the
previous results.

2. Main notions and preliminaries

Throughout the text, D will denote the finite non-empty set {0, . . . , n − 1}
(n > 0) and N = {0, 1, 2, . . . } the set of natural numbers. Put N+ := N \ {0}.
Moreover, if f : A → B is a function, we write im(f) := {f(x) | x ∈ A} for its
image.
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Let m ∈ N+. An m-ary relation � on D is a subset of the m-fold Cartesian
product Dm. By R(m)

D := P(Dm) we refer to the set of all m-ary relations on
D and by RD :=

⋃
m∈N+

R(m)
D to the set of all finitary relations on the set D.

Furthermore, for a binary relation � ⊆ D2 we denote its inverse relation by
�−1 := {(y, x) | (x, y) ∈ �}.

We want to study clones that are determined by sets of clausal relations.
Even though, for almost all results, we shall need only binary clausal rela-
tions, we define them here in full generality (the publication [8] allowed the
parameters p and q to be chosen in N such that p + q > 0; for compatibility
with [2,16,17] we are slightly more restrictive here, by additionally requiring
that p · q > 0).

Definition 2.1. Let p, q ∈ N+. For given parameters a = (a1, . . . , ap) ∈ Dp and
b = (b1, . . . , bq) ∈ Dq, the clausal relation Ra

b of arity p + q is the set of all
tuples (x1, . . . , xp, y1, . . . , yq) ∈ Dp+q satisfying

(x1 ≥ a1) ∨ · · · ∨ (xp ≥ ap) ∨ (y1 ≤ b1) ∨ · · · ∨ (yq ≤ bq).

In this expression ≤ denotes the canonical linear order on D and ≥ its dual.

For k ∈ N+ we denote by O(k)
D := {f | f : Dk → D} the set of all k-ary

operations on D and by OD :=
⋃

k∈N+
O(k)

D the set of all finitary operations
on D.

Next, we consider a Galois connection between sets of operations and
relations that is based on the so-called preservation relation. It is the most
important tool for our investigations.

Definition 2.2. Let m, k ∈ N+. We say that a k-ary operation f ∈ O(k)
D pre-

serves an m-ary relation � ∈ R(m)
D , denoted by f � �, if whenever

r1 = (a11, . . . , am1) ∈ �, . . . , rk = (a1k, . . . , amk) ∈ �,

it follows that also f applied to these tuples belongs to �, i.e.,

f ◦ (r1, . . . , rk) := (f(a11, . . . , a1k), . . . , f(am1, . . . , amk)) ∈ �.

Given F ⊆ OD, we denote by InvD F the set of all relations that are
invariant for all operations f ∈ F , i.e., InvD F := {� ∈ RD | ∀f ∈ F : f � �}.
Similarly, for a set Q ⊆ RD of relations, PolD Q := {f ∈ F | ∀� ∈ Q : f � �}
denotes the set of polymorphisms of Q. Furthermore, for k ∈ N+ we abbreviate
Pol(k)D Q := O(k)

D ∩PolD Q. Usually, we shall write PolD � for PolD{�}, � ∈ RD

and InvD f for InvD{f}, f ∈ OD. The operators PolD and InvD define the
Galois connection PolD − InvD.

On a finite set D the Galois closed sets of relations [7,5,6,9] with re-
spect to PolD − InvD are exactly the so-called relational clones. These can be
characterised as those sets of finitary relations on D that are closed under
primitive positively definable relations, i.e., those arising as interpretations of
first order formulæ where only predicate symbols corresponding to relations
from Q, falsity, variable identifications, finite conjunctions and finite existential
quantification are allowed. For a set Q ⊆ RD of relations, we denote by [Q]RD
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the closure of Q with regard to such formulæ, which equals the least relational
clone generated by Q, i.e., by the above, we have [Q]RD

= InvD PolD Q.
A relation � ∈ RD is called trivial if it is preserved by every function,

i.e., if PolD � = OD, or equivalently � ∈ InvD OD. The set of trivial relations
InvD OD can be characterised to contain precisely all so-called diagonal rela-
tions (see, e.g., [11, 3.2 Definitions (R0), p. 25] or [1, p. 5] for a definition),
which are generalisations of the binary diagonal relations Δ = {(x, x) | x ∈ D}
and ∇ = D × D.

A set F ⊆ OD of operations is called a C-clone if F = PolD Q for some
set Q of clausal relations. All C-clones on D, ordered by set inclusion, form a
complete lattice, whose co-atoms are called maximal C-clones.

From [17] we have a description of all maximal C-clones on finite sets as
polymorphism sets of clausal relations R(a)

(b) = {(x, y) ∈ D2 | x ≥ a ∨ y ≤ b}.

Theorem 2.3 [17]. Let M ⊆ OD be a C-clone. M is maximal if and only if
there are elements a ∈ D \ {0} and b ∈ D \ {n − 1} such that M = PolD R(a)

(b) .

Likewise, the following characterisation of maximal clones on finite sets
is well known.

Theorem 2.4 [13,14]. A clone F ⊆ OD is maximal if and only if it is of the
form PolD �, where � is a non-trivial relation belonging to one of the following
classes:
(1) The set of all partial orders with least and greatest element.
(2) The set of all graphs of prime permutations.
(3) The set of all non-trivial equivalence relations, Eq(D) \ {Δ,∇}.
(4) The set of all affine relations with respect to some elementary Abelian

p-group on D for some prime p.
(5) The set of all central relations of arity h (1 ≤ h < |D|).
(6) The set of all h-regular relations (3 ≤ h ≤ |D|).

For some sorts of relations from Theorem 2.4 we give a brief explanation.
If s ∈ Sym(D) is a permutation, by its graph we mean the binary relation

graph s := {(x, s(x)) | x ∈ D}. The permutation is called prime if, for some
prime p, it has only cycles of length p. In particular such a function s cannot
have cycles of length one, i.e., it has to be fixed point free.

For a prime p a group G = 〈G; +,−, o〉 is called an elementary Abelian
p-group, if G is a commutative group and satisfies the law x + · · · + x ≈ o
where the variable symbol x occurs p times in the sum. The latter means that
every element in G \ {o} has order p. If G is finite, then, by the fundamental
theorem of finitely generated Abelian groups, G must be isomorphic to a finite
direct power of the cyclic group of order p, so in particular the cardinality of
G must be a power of p.

For any (not necessarily commutative) group G = 〈G; +,−, o〉, we define
the corresponding affine relation �G := {(x, y, u, v) ∈ G4 | x + y = u + v}. In
case G is Abelian, �G is given by permuting the middle two variables of the
graph of the Maľcev operation (x, y, u) �→ x − y + u, hence its name.
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If h ∈ N≥3 let ιh := {(a1, . . . , ah) ∈ {0, . . . , h − 1}h | h > |{a1, . . . , ah}|}.
An h-ary relation � ∈ R(h)

D is h-regular, if there exists an integer m ≥ 1 and a
surjection ϕ : D → {0, . . . , h − 1}m such that

� =
{

(a1, . . . , ah) ∈ Dh
∣
∣ ∀j ∈ {1, . . . , m} : ((ϕ(a1))j , . . . , (ϕ(ah))j) ∈ ιh

}
.

A central relation is a totally symmetric, totally reflexive relation having
a central element and not being a diagonal relation. Total symmetry means
closure under all permutations of entries of tuples; total reflexivity requires
that every tuple having two identical entries has to belong to the relation. An
element c ∈ D is central for � if any tuple containing c as an entry is a member
of �.

The only unary diagonal relations are ∅ and D, the binary ones are Δ
and D × D. Therefore, unary central relations are precisely all proper subsets
∅ � � � D. Binary central relations can be described as follows. Note that for
binary relations the notions of total symmetry and total reflexivity coincide
with ordinary symmetry and reflexivity, respectively. For c ∈ D define the
relations �c := Δ∪({c}×D)∪(D×{c}) and Ac :=

{
(x, y) ∈ D2 \ �c

∣
∣ x < y

}
={

(x, y) ∈ (D \ {c})2
∣
∣ x < y

}
. For every subset Sc � Ac we have a binary

central relation �c,Sc
:= �c ∪ Sc ∪ S−1

c , and it is easy to see that all of them
arise in this way. Note that for n = |D| = 3 we always have Sc = ∅ as Ac

contains only one pair.
Supposing |D| ≥ 3, the goal of the following sections is to understand

completely, for which parameters a ∈ D \ {0}, b ∈ D \ {n − 1} and which
relations � from Theorem 2.4 we have the inclusion PolD R(a)

(b) ⊆ PolD �.

To do this, we may want to use unary functions f ∈ Pol(1)D R(a)
(b) \PolD �

as witnesses for PolD R(a)
(b) �⊆ PolD �, where PolD � is a maximal clone. The

following lemma gives a simple sufficient condition for functions f ∈ O(1)
A to

preserve R(a)
(b) .

Lemma 2.5. For a, b ∈ D and every f ∈ O(1)
D such that im(f) ⊆ {0, . . . , b} or

dually im(f) ⊆ {a, . . . , n − 1}, we always have f ∈ PolD R(a)
(b) .

Proof. If im(f) ⊆ {0, . . . , b}, then we have f(y) ≤ b for all (x, y) ∈ R(a)
(b) and so

f � R(a)
(b) . If im(f) ⊆ {a, . . . , n − 1}, then likewise f(x) ≥ a for all (x, y) ∈ R(a)

(b)

and also f � R(a)
(b) . �

When constructing unary functions f ∈ Pol(1)D R(a)
(b) \PolD � as witnesses

for non-inclusions PolD R(a)
(b) �⊆ PolD �, where PolD � is a maximal clone, it is

helpful to know how much choice we have for f . We cannot achieve a converse
to Lemma 2.5, but the following result seems to be as good as we can get in
this respect.

Lemma 2.6. For a, b ∈ D and every f ∈ Pol(1)D R(a)
(b) the following conditions

hold:
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(a) f � {0, . . . , b} or im(f) ⊆ {a, . . . , n − 1}.
(b) f � {a, . . . , n − 1} or im(f) ⊆ {0, . . . , b}.
(c) f � {a, . . . , n − 1} or f � {0, . . . , b}.

Proof. Statement (c) follows from (a) as the condition im(f) ⊆ {a, . . . , n − 1}
implies f � {a, . . . , n − 1}. The proof of statement (b) is dual to that of (a),
so we only deal with the latter one. If f �� {0, . . . , b}, then there exists some
y ≤ b such that f(y) > b. This means we have (x, y) ∈ R(a)

(b) for all x ∈ D. Since

f � R(a)
(b) , we obtain (f(x), f(y)) ∈ R(a)

(b) , i.e., f(x) ≥ a due to f(y) > b. �

3. Selfdual and quasilinear functions, and such preserving
central or h-regular relations

In this section we recall from [3] that PolD R(a)
(b) �⊆ PolD � whenever � is the

graph of a prime permutation, an affine relation or an at least ternary central
or h-regular relation.

In this regard, we begin with the case of selfdual functions. For a unary
operation s ∈ O(1)

D the clone PolD graph s contains all functions f ∈ OD that
commute with s, i.e., where s : 〈D; f〉 → 〈D; f〉 is an endomorphism. For
permutations s ∈ Sym(D) this condition can be expressed as the equality
f(x) = s−1(f(s ◦ x)) for all x ∈ Dar f , whence functions f ∈ PolD graph s are
called s-selfdual.

Lemma 3.1. If s ∈ Sym(D) is a permutation without fixed points, then for all
p, q ∈ N+ and a ∈ Dp, b ∈ Dq, we have ca1 ∈ (PolD Ra

b) \ (PolD graph s), in
which ca1 denotes the unary constant with value a1. Thus, in particular, no
maximal C-clone PolD R(a)

(b) is a subset of PolD graph s.

Since prime permutations cannot have fixed points, this result applies in
particular to maximal clones in the second case of Theorem 2.4.

Proof. It is clear that ca1 ∈ PolD Ra
b. Moreover, by the above characterisation,

ca1 is s-selfdual if and only if a1 = ca1(x) = s−1(ca1(s(x))) = s−1(a1) holds
(for all x ∈ D), that is, if a1 is fixed by s. Thus, by assumption, we have
ca1 /∈ PolD graph s. �

To deal with affine and at least ternary central and h-regular relations,
we need the following observation.

Lemma 3.2. For all a, b ∈ D we have {∨D,∧D} ⊆ PolD R(a)
(b) , where ∨D,∧D

denote the binary maximum and minimum relating to ≤D, respectively.

Proof. Let (x1, y1), (x2, y2) ∈ R(a)
(b) . If x1 ∨D x2 ≥ a we are done. Otherwise, we

have x1, x2 ≤ x1 ∨D x2 < a, so y1, y2 ≤ b, whence y1 ∨D y2 ≤ b. The argument
for ∧D is dual. �

Central and h-regular relations share the common properties of total
symmetry and total reflexivity; hence they can be dealt with in one lemma.
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Lemma 3.3. For any m ∈ N≥3 and any totally reflexive non-full m-ary relation
� ∈ R(m)

D , we have ∨D,∧D /∈ PolD �.

Proof. Since � is non-full, we have � � Dm, and hence there exists some tuple
x := (x1, . . . , xm) ∈ Dm \ �. By total reflexivity, the entries x1, . . . , xm are
pairwise distinct. Choose the unique i ∈ {1, . . . , m} such that xi is the least el-
ement among x1, . . . , xm with respect to ≤D and pick indices j, � ∈ {1, . . . , m}
such that |{i, j, �}| = 3. This is possible due to m ≥ 3. Define y, z ∈ Dm by
yk := xi for k = j and yk := xk else; zk := xk for k = j and zk := xi else. It
follows yk ∨D zk = xk for all 1 ≤ k ≤ m, so ∨D ◦ (y, z) = x /∈ �. This proves
∨D ��� due to yj = xi = yi, zi = xi = z� and total reflexivity of �. For ∧D one
chooses 1 ≤ i ≤ m such that xi is largest among x1, . . . , xm. �
Corollary 3.4. If h ∈ N≥3 and � � Dh is a central or an h-regular relation,
then the clone PolD � does not contain any maximal C-clone.

Proof. By Theorem 2.3 maximal C-clones have the form PolD R(a)
(b) for certain

a, b ∈ D. By definition, central relations are totally reflexive, and it is not
hard to see that the same also holds for h-regular relations. Using Lemmas 3.2
and 3.3, we have ∨D ∈ (PolD R(a)

(b) ) \ (PolD �), so PolD R(a)
(b) �⊆ PolD �. �

It remains to discuss the case of affine relations. In fact, for any elemen-
tary Abelian p-group G = 〈G; +,−, o〉 the clone PolG �G contains precisely all
quasilinear (sometimes affine linear) maps with regard to the canonical affine
space induced by G over the field GF(p). Such clones never contain maxi-
mal C-clones as the following lemma proves, even under slightly more general
assumptions.

Lemma 3.5. For a finite set D, a group G on D = {0, . . . , n − 1} and any two
elements a ∈ D \ {0} and b ∈ D \ {n − 1}, the inclusion PolD R(a)

(b) ⊆ PolD �G
always fails.

Proof. Let G = 〈D; +,−, o〉 be any group and let �G ∈ R(4)
D be the associated

affine relation, that is to say, �G := {(x, y, u, v) ∈ D4 | x + y = u + v}. From
Lemma 3.2 we can infer that ∨D ∈ PolD R(a)

(b) , however, we shall demonstrate
below that ∨D /∈ PolD �G, which makes an inclusion impossible.

Indeed, it is obvious that (0,−0, 1,−1), (1, 0, 1, 0) ∈ �G. If the maximum
operation preserved �G, we would get, due to 0 being the least element with
respect to ≤, that (1,−0, 1,−1) = (0 ∨D 1,−0 ∨D 0, 1 ∨D 1,−1 ∨D 0) ∈ �G.
By definition of �G this would imply 1 + (−0) = 1 + (−1) = o, i.e., 1 = 0, an
evident contradiction. �

In the next section, we will attack possible inclusions PolD R(a)
(b) ⊆ M for

maximal clones M = PolD � given by non-trivial unary relations ∅ � � � D.

4. Non-trivial unary relations

The following lemma gives sufficient conditions for binary operations to belong
to a given maximal C-clone.
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Lemma 4.1. Let a, b ∈ D and suppose f ∈ O(2)
D satisfies f(x, y) ≤ b for all

pairs (x, y) ∈ D2 where x ≤ b or y ≤ b, and f(x, y) ≥ a for all (x, y) ∈ D2

where x, y ≥ a. Then f ∈ PolD R(a)
(b) .

Dually, if f(x, y) ≥ a for all (x, y) ∈ D2 such that x ≥ a or y ≥ a, and
f(x, y) ≤ b for those pairs (x, y) ∈ D2 where x, y ≤ b, then f ∈ PolD R(a)

(b) , too.

Proof. Let (x1, y1), (x2, y2) ∈ R(a)
(b) . If f(y1, y2) ≤ b, then (f(x1, x2), f(y1, y2))

belongs to R(a)
(b) and we are done. Else, by the assumption on f we must have

y1, y2 > b, which implies x1, x2 ≥ a due to (x1, y1), (x2, y2) ∈ R(a)
(b) . Therefore,

f(x1, x2) ≥ a, which implies again (f(x1, x2), f(y1, y2)) ∈ R(a)
(b) . This proves

that f ∈ PolD R(a)
(b) . The proof of the second claim is by dualisation. �

We can use this type of functions to witness non-inclusions of maximal
C-clones in maximal clones given by a non-trivial unary relation � whenever
there exists some x ∈ � respecting b < x < a.

Corollary 4.2. Consider a, b ∈ D and suppose � � D contains an element
x ∈ � such that b < x < a. Every binary function f ∈ O(2)

D satisfying one
of the conditions from Lemma 4.1 and mapping f(x, x) = y where y ∈ D \ �

fulfils f ∈ Pol(2)D R(a)
(b) \PolD �. Such functions actually exist, whence we have

PolD R(a)
(b) �⊆ PolD �.

Proof. As f ∈ O(2)
D fulfils the conditions of Lemma 4.1, we get f ∈ PolD R(a)

(b) ;
further, the assumption f(x, x) = y where x ∈ � and y /∈ � ensures f /∈ PolD �.

For the existence of such operations, verify that the following function is
well-defined due to b < x < a: we put f(u, v) := a if u, v ≥ a, f(x, x) := y /∈ �
and f(u, v) := 0 ≤ b everywhere else. So f satisfies the first condition from
Lemma 4.1. �

In the next step we derive a necessary condition concerning the form of
the unary relation � that has to hold if PolD R(a)

(b) ⊆ PolD �.

Lemma 4.3. For a, b ∈ D and a non-empty unary relation ∅ � � ⊆ D, the
inclusion PolD R(a)

(b) ⊆ PolD � implies {0, . . . , b} ∪ {a, . . . , n − 1} ⊆ �.

Proof. If there existed some x ≤ b such that x /∈ �, then the unary constant
operation cx with value x would belong to PolD R(a)

(b) \PolD � in contradiction

to the assumption PolD R(a)
(b) ⊆ PolD �. For x ≥ a not belonging to � we use a

similar argument. �

As a partial converse the next result establishes a sufficient condition for
an inclusion of a maximal C-clone in a maximal clone given by a non-trivial
unary relation.
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Lemma 4.4. Let a, b ∈ D such that a > b. Then we have

R(a)
(b) ∩(

R(a)
(b)

)−1 = {0, . . . , b}2 ∪ {a, . . . , n − 1}2 and
{

x ∈ D
∣
∣
∣ (x, x) ∈ R(a)

(b) ∩(
R(a)

(b)

)−1
}

= {0, . . . , b} ∪ {a, . . . , n − 1},

whence PolD R(a)
(b) ⊆ PolD{0, . . . , b} ∪ {a, . . . , n − 1}.

Proof. The second equality stated in the lemma will follow by variable iden-
tification from R(a)

(b) ∩(
R(a)

(b)

)−1 = {0, . . . , b}2 ∪ {a, . . . , n − 1}2. In this equality

the inclusion “⊇” is evident, so let us now consider (x, y) ∈ R(a)
(b) � (y, x). If

x ≥ a > b, then (y, x) ∈ R(a)
(b) implies y ≥ a, thus, (x, y) ∈ {a, . . . , n − 1}2.

Otherwise, we have x < a, such that y ≤ b < a due to (x, y) ∈ R(a)
(b) . So it

follows x ≤ b as y < a and (y, x) ∈ R(a)
(b) . Hence, (x, y) ∈ {0, . . . , b}2.

The second equality above implies {0, . . . , b}∪{a, . . . , n−1} ∈
[
R(a)

(b)

]

RD

,

and thus, PolD({0, . . . , b} ∪ {a, . . . , n − 1}) ⊇ PolD
[
R(a)

(b)

]

RD

= PolD R(a)
(b) . �

The following lemma solves the task for non-trivial unary relations.

Lemma 4.5. Let a, b ∈ D and ∅ � � � D be a unary non-trivial relation. Then
PolD R(a)

(b) ⊆ PolD � holds if and only if � = {0, . . . , b} ∪ {a, . . . , n − 1} and
a − b ≥ 2.

Proof. If � = {0, . . . , b} ∪ {a, . . . , n − 1} and a − b ≥ 2 > 0, then Lemma 4.4
implies the inclusion PolD R(a)

(b) ⊆ PolD �. Conversely, if we assume this condi-
tion, then Lemma 4.3 entails {0, . . . , b} ∪ {a, . . . , n − 1} ⊆ �. If this inclusion
were proper, then there would exist some x ∈ � such that x �≤ b and x �≥ a, i.e.,
b < x < a. Since � � D, Corollary 4.2 yields a contradiction to the assumption
PolD R(a)

(b) ⊆ PolD �. Therefore, we have {0, . . . , b} ∪ {a, . . . , n − 1} = �. More-
over, supposing a − b ≤ 1 would imply � = D, violating our assumption. �

5. The case of bounded order relations

A bounded (partial) order relation is an order relation having both, a largest
(top) element �, and a least (bottom) element ⊥. If � ⊆ D2 is an order
relation on D, considered to be clear from the context, and a, b ∈ D are any
two elements, we occasionally use the notation [a, b] := {x ∈ D | a � x � b}
and call it the interval from a to b. Clearly, if a �� b, then [a, b] = ∅.

In the first step we construct binary functions witnessing non-inclusions
of certain maximal C-clones in maximal clones described by non-trivial binary
reflexive relations.

Lemma 5.1. Assume that a − b ≥ 2. Any g ∈ O(2)
D satisfying g(x, y) ≤ b

whenever y ≤ b and g(x, y) ≥ a for all (x, y) ∈ D2 where y ≥ a, preserves R(a)
(b) .
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Moreover, let � � D2 be reflexive, (x, y) ∈ �\Δ, (u, v) ∈ D2\�, b < z < a,
and suppose, in addition to the above, that g(x, z) = u and g(y, z) = v. Then
we have g ∈ PolD R(a)

(b) \PolD �.

Proof. First, we check that g ∈ PolD R(a)
(b) . Namely, if (x1, y1), (x2, y2) ∈ R(a)

(b)

and x2 ≥ a, then g(x1, x2) ≥ a. Otherwise, we have x2 < a and y2 ≤ b, which
implies g(y1, y2) ≤ b. In both cases we have (g(x1, x2), g(y1, y2)) ∈ R(a)

(b) .
Furthermore, we have (x, y), (z, z) ∈ �, but (g(x, z), g(y, z)) = (u, v) /∈ �,

proving g �� �. �

If a−b ≥ 2, the many requirements on the binary function in the previous
lemma are actually satisfiable.

Corollary 5.2. For all a, b ∈ D such that a−b ≥ 2 and every non-trivial binary
reflexive relation Δ � � � D2, we have Pol(2)D R(a)

(b) �⊆ PolD �.

Proof. Since a − b ≥ 2, functions g fulfilling the assumptions of Lemma 5.1
are indeed constructible. Choosing pairs (x, y) ∈ � \ Δ and (u, v) ∈ D2 \ �, we
may, for instance, define g(w, z) := 0 ≤ b for z ≤ b, g(w, z) := n − 1 ≥ a for
z ≥ a, g(w, z) := u for b < z < a and w = x, and g(w, z) := v else, i.e., for
all (w, z) ∈ D2 satisfying b < z < a and w �= x. Since y �= x, this ensures that
g(y, z) = v for all b < z < a, and thus g fulfils the conditions of Lemma 5.1. �

So the preceding result shows that inclusions PolD R(a)
(b) ⊆ PolD � are

impossible whenever a − b ≥ 2 and � is a non-trivial equivalence, bounded
order relation or binary central relation. In order to exclude more inclusions,
we shall use the following trivial observation.

Lemma 5.3. If for a, b ∈ D an operation f ∈ O(1)
D preserves {0, . . . , b} and

{a, . . . , n−1}, then f �R(a)
(b) . In particular this follows, if a ≤ b and f preserves

the sets {x ∈ D | x < a}, {x ∈ D | a ≤ x ≤ b} and {x ∈ D | b < x}.
Proof. If (x, y) ∈ R(a)

(b) and x ≥ a, then f(x) ≥ a, otherwise, x < a and

y ≤ b, whence f(y) ≤ b. In both cases we have (f(x), f(y)) ∈ R(a)
(b) . The

additional remark follows since for a ≤ b the union of the first two mentioned
sets is {0, . . . , b}, the union of the last two sets is {a, . . . , n − 1}, and invariant
relations of unary operations are closed under arbitrary unions of relations of
identical arity. �

In Proposition 5.5 we shall use transpositions that preserve the subsets
{0, . . . , b} and {a, . . . , n − 1} from Lemma 5.3. However, first, we shall deal
with a few exceptional cases. They are actually variations of one case up to
different dualisations, but we list all of them explicitly here.

Lemma 5.4. Let n ≥ 3, a, b ∈ D and � ⊆ D2 be a bounded order relation with
least element ⊥ and greatest element �. If
(a) 0 = ⊥ < 1 = a = b = �, or
(b) 0 = ⊥ < 1 = a, n − 2 = b < n − 1 = �, or
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(c) n − 1 = ⊥ > n − 2 = b, 1 = a > 0 = �, or
(d) n − 1 = ⊥ > n − 2 = b = a = �, or
(e) a = ⊥ = b = 1 > 0 = �, or
(f) a = ⊥ = b = n − 2 < n − 1 = �,

then there exists some f ∈ Pol(1)D R(a)
(b) \PolD �, whence PolD R(a)

(b) ⊆ PolD � is
impossible.

Proof. In each case one can explicitly define a unary operation f ∈ O(1)
D not

preserving � but satisfying f ∈ PolD R(a)
(b) upon application of Lemma 2.5. It is

possible to use the same function in (a) and (e), and in (d) and (f), respectively.
Moreover, the arguments for statements (a) and (d), and for (b) and (c) are
very similar, so we choose to present only two of the cases. A complete proof
can be found in [4].

(b): Define f ∈ O(1)
D by f(n − 1) := 0 and f(x) := x for x ∈ D \ {n − 1}.

Since im(f) = D \ {n − 1} = {0, . . . , b}, we get f � R(a)
(b) . Also 1 � � = n − 1

and 1 < n − 1 due to n ≥ 3, so supposing 1 = f(1) � f(n − 1) = 0 = ⊥ would
imply the contradiction 1 = ⊥ = 0. Hence, f �� �.

(d): Define f ∈ O(1)
D by f(n−1) := n−2 and f(x) := x for x ∈ D\{n−1}.

As n ≥ 3, there is some x ∈ D \ {n − 1, n − 2}. We have n − 1 = ⊥ � x, but
assuming � = n − 2 = f(n − 1) � f(x) = x would certainly imply the
contradiction x = � = n − 2, wherefore f �� �. Moreover, the image of f

equals D \ {n − 1} = {0, . . . , b}, which ensures that f ∈ PolD R(a)
(b) . �

In Corollary 5.2 we excluded inclusions PolD R(a)
(b) ⊆ PolD � for bounded

orders �, whenever a, b ∈ D satisfy a − b ≥ 2. In the previous lemma, a few
special cases were considered. Now we deal with the rest using transpositions
fulfilling the criterion from Lemma 5.3.

Proposition 5.5. Let n ≥ 3 and � ⊆ D2 be a bounded order relation on D with
bottom element ⊥ and top �. There do not exist parameters a, b ∈ D such that
PolD R(a)

(b) ⊆ PolD �.

Proof. Corollary 5.2 excludes inclusions for a−b ≥ 2. For the remainder of the
proof let us suppose a−b ≤ 1, i.e., a ≤ b+1. We shall exhibit unary operations
(mostly transpositions) that obviously do not preserve �, but preserve R(a)

(b)

(usually due to Lemma 5.3). For this we distinguish three cases regarding ⊥.
First assume ⊥ < a. If there exists x < a such that x �= ⊥, then we use the
transposition (x,⊥). Else all x < a satisfy x = ⊥, i.e., ⊥ = 0 < a = 1. In
this case we have � �= ⊥ = 0, so � ≥ 1 = a. First consider the situation that
� ≤ b. If there exists some x ∈ [a, b] \ {�}, we use the transposition (x,�).
Otherwise, [a, b] ⊆ {�}, thus 1 = a = � = b and 0 = ⊥, which is handled by
Lemma 5.4(a). The complementary case is that � > b. If there exists x > b
such that x �= �, then we can use (x,�), else every x > b equals �, and so we
have � = n − 1 > b = n − 2 together with a = 1 > 0 = ⊥. This is dealt with
in Lemma 5.4(b).
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The second main case is when a ≤ ⊥ ≤ b. If there is some a ≤ x ≤ b such
that x �= ⊥, then we use (x,⊥). Otherwise, [a, b] ⊆ {⊥}, and so a = ⊥ = b.
Due to n ≥ 3, we have again � �= ⊥ = a = b. Let us consider the situation
� < a. If there exists some x < a, x �= �, then we may use (x,�), else every
x < a equals �, so � = 0 < a = 1 = b = ⊥. This possibility is treated in
Lemma 5.4(e). The opposite situation is that � > a = b. If there exists some
x > b, x �= �, then we use (x,�), otherwise every x > b equals �, and so
� = n − 1 > b = n − 2 = a = ⊥, which is solved in case (f) of Lemma 5.4.

Third, let us deal with the possibility that ⊥ > b. If there exists some
x > b, x �= ⊥, then we can use the transposition (x,⊥). Otherwise, every x > b
equals ⊥, so ⊥ = n − 1 > b = n − 2. Due to n ≥ 3, we have � �= ⊥ = n − 1,
i.e., � ≤ n− 2 = b. The first subcase is that � < a. If there exists some x < a,
x �= �, we use the transposition (x,�). Else, all x < a satisfy x = �, so we
obtain � = 0 < a = 1, b = n−2 < ⊥ = n−1, which is treated in Lemma 5.4(c).
The remaining subcase is that a ≤ � ≤ b. If there exists some a ≤ x ≤ b,
x �= �, we use (x,�), else [a, b] ⊆ {�}, so a = � = b = n − 2 < n − 1 = ⊥,
which has been dealt with in Lemma 5.4(d).

So in the case that a − b ≤ 1, we have always found a transposition or
a unary operation as constructed in Lemma 5.4 that preserves R(a)

(b) , but does

not preserve the order �. Therefore, we have PolD R(a)
(b) �⊆ PolD �. �

6. The case of non-trivialequivalence relations

Throughout this section, we shall employ the notation EqD for the set of
all equivalence relations on D. It is our aim to show that maximal C-clones
PolD R(a)

(b) are contained in a maximal clone given by a non-trivial equivalence
relation if and only if a = b+1. In this case the equivalence relation is uniquely
determined.

As our first result, we provide a simple sufficient condition for an inclusion
in a maximal clone described by an equivalence relation.

Lemma 6.1. Let a, b ∈ D satisfy a = b + 1 and θ ∈ Eq D be the equivalence
relation on D having the partition D/θ = {{0, . . . , b}, {a, . . . , n − 1}}. Then
we have θ = R(a)

(b) ∩(
R(a)

(b)

)−1 ∈
[
R(a)

(b)

]

RD

, and so PolD R(a)
(b) ⊆ PolD θ holds.

Proof. For all (x, y) ∈ D2 we have (x, y) ∈ θ if and only if x, y ≤ b or x, y ≥ a,
that is, exactly if (x, y) ∈ {0, . . . , b}2 ∪ {a, . . . , n − 1}2 = R(a)

(b) ∩(
R(a)

(b)

)−1 (see
Lemma 4.4). �

In the remainder of this section we shall prove that the situation described
in Lemma 6.1 is the only one, where a maximal C-clone can be contained in a
maximal clone given by a non-trivial equivalence relation.

As a first step, we establish a few necessary conditions.
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Lemma 6.2. Let a, b ∈ D and θ ∈ Eq D \ {Δ,∇} be a non-trivial equivalence
relation such that PolD R(a)

(b) ⊆ PolD θ. Then the following conditions are ful-
filled:
(a) 0 < a ≤ b + 1 ≤ n − 1.
(b) For every set I ∈ {{0, . . . , a − 1}, {a, . . . , b}, {b + 1, . . . , n − 1}} we have

∀x, y ∈ I : (x, y) /∈ θ =⇒ |[x]θ| = 1 = |[y]θ|.
(c) For all x, y, z ∈ D where (x, y) ∈ θ \ Δ, we have the implication

((x, z ≥ a) ∨ (x, z ≤ b) ∨ (y, z ≥ a) ∨ (y, z ≤ b)) =⇒ (x, z) ∈ θ.

(d) ∀x ≤ b∀y ≥ a : (x, y) ∈ θ =⇒ b ≥ x = y ≥ a.
(e) ∀a ≤ x ≤ b : [x]θ = {x}.
(f) ∀x < a : [x]θ ⊆ {0, . . . , a − 1}.
(g) ∀y > b : [y]θ ⊆ {b + 1, . . . , n − 1}.
(h) If [0]θ �= {0, . . . , a − 1}, then we have a − 1 > 0, b + 1 < n − 1, [x]θ = {x}

for all x ≤ b, and [n − 1]θ = {b + 1, . . . , n − 1}.
(i) If [n − 1]θ �= {b + 1, . . . , n − 1}, then we have a − 1 > 0, b + 1 < n − 1,

[y]θ = {y} for all y ≥ a, and [0]θ = {0, . . . , a − 1}.
Proof. (a): If a = 0, or b > n − 2, i.e., b = n − 1, then we would have a
trivial clausal relation R(a)

(b) = D2, and so PolD R(a)
(b) = OD would make the

inclusion PolD R(a)
(b) ⊆ PolD θ impossible. Moreover, if we had a − b > 1, then

Corollary 5.2 would imply the contradiction PolD R(a)
(b) �⊆ PolD θ. Therefore, it

follows 0 �= a ≤ b + 1 ≤ n − 1.
(b): Suppose, for a contradiction, that there exists a set

I ∈ S := {{0, . . . , a − 1}, {a, . . . , b}, {b + 1, . . . , n − 1}}
and x, y ∈ I such that the stated implication fails. So we have (x, y) /∈ θ,
and since this assumption is symmetric, no generality is lost in assuming that
|[x]θ| > 1. Let z ∈ [x]θ \ {x}, and define f ∈ O(1)

D by f(x) := y and f(u) = u
for u �= x. Obviously, (z, x) ∈ θ, but (f(z), f(x)) = (z, y) /∈ θ, as otherwise
(x, z) ∈ θ and transitivity would imply (x, y) ∈ θ. Thus, f �� θ. Moreover,
as x, y ∈ I, we have f ∈ PolD S, which implies that f � R(a)

(b) by Lemma 5.3

and statement (a). This contradicts the inclusion PolD R(a)
(b) ⊆ PolD θ since

f ∈ PolD R(a)
(b) \PolD θ. Thus, our initial assumption was false and the claim

holds.
(c): Let x, y, z ∈ D where (x, y) ∈ θ and x �= y. Moreover, the assumption

of the implication is that we can find w ∈ {x, y} such that w, z ≥ a or w, z ≤ b.
We define f ∈ O(1)

D by f(w) := w and f(u) := z for u �= w. Clearly, we have
im(f) = {w, z}, so at least one of the conditions im(f) ⊆ {a, . . . , n − 1}
and im(f) ⊆ {0, . . . , b} must hold. This implies f ∈ PolD R(a)

(b) ⊆ PolD θ by
Lemma 2.5 and the assumption of this lemma. So we get (f(x), f(y)) ∈ θ from
(x, y) ∈ θ. If w = x, this means (x, z) ∈ θ. Else, if w = y, we obtain (z, y) ∈ θ,
which together with (x, y) ∈ θ yields (x, z) ∈ θ.
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(d): Let us assume, for a contradiction, that there exists x ≤ b and y ≥ a,
where the stated implication fails, i.e., where (x, y) ∈ θ, but x �= y. Now for
every z ≥ a, statement (c) implies (x, z) ∈ θ, so {a, . . . , n − 1} ⊆ [x]θ. Any
other element z ∈ D satisfies z < a ≤ b+1 by item (a), i.e., z ≤ b. Then again
statement (c) implies (x, z) ∈ θ. In conclusion, we have D ⊆ [x]θ, which means
θ = ∇. As this was excluded beforehand, the claim holds.

(e): Let us consider any x ∈ D where a ≤ x ≤ b. For y ∈ [x]θ such that
y ≥ a, we get y = x by item (d). Any other y ∈ [x]θ satisfies y < a ≤ b + 1
by (a), i.e., y ≤ b. Again, statement (d), with roles of x and y interchanged,
yields y = x.

(f): Let x < a ≤ b + 1 (by (a)), then x ≤ b. If there existed some y ∈ [x]θ
such that y ≥ a, then statement (d) would imply a > x = y ≥ a. This
contradiction proves [x]θ ⊆ {0, . . . , a − 1}.

(g): The proof is dual to that of statement (f), using again (a) and (d).
(h): Let [0]θ �= {0, . . . , a − 1}. As (a) and (f) imply [0]θ ⊆ {0, . . . , a − 1},

there must exist some x < a such that x /∈ [0]θ. In particular, x �= 0, so
0 < x ≤ a − 1 yields 0 < a − 1. Since (x, 0) /∈ θ, we get |[0]θ| = 1 from (b). So
every 0 < z < a satisfies (0, z) /∈ θ, whence (b) yields |[z]θ| = 1. Together with
statement (e) we can infer [z]θ = {z} for all z ≤ b. Since θ �= Δ by assumption,
we cannot only have singleton equivalence classes for all other y > b. Thus,
there must be some y > b where |[y]θ| > 1. If there were also some z > b such
that (z, y) /∈ θ, then again (b) would imply the contradiction |[y]θ| = 1. Hence,
for all z > b we have z ∈ [y]θ, i.e., {b+1, . . . , n− 1} ⊆ [y]θ ⊆ {b+1, . . . , n− 1}
by (g). This means that [y]θ = {b + 1, . . . , n − 1} = [n − 1]θ, and, because
|[y]θ| ≥ 2, we also get that b + 1 < n − 1.

(i): The proof of this statement works dually to the preceding one. �

We have gathered now enough prerequisites to prove the following result.

Proposition 6.3. Let a, b ∈ D and θ ∈ Eq D\{Δ,∇} be a non-trivial equivalence
relation. Then we have

PolD R(a)
(b) ⊆ PolD θ ⇐⇒ a = b + 1 and D/θ = {{0, . . . , b}, {a, . . . , n − 1}}.

Proof. The implication “⇐=” is stated in Lemma 6.1. Conversely, let us as-
sume that PolD R(a)

(b) ⊆ PolD θ. For the remainder of the proof we can sup-

pose 0 < a ≤ b + 1 ≤ n − 1 due to Lemma 6.2 (a). We define f ∈ O(2)
D by

f(b + 1, 0) := 0, f(x, y) := a if x, y > b and f(x, y) := b else. If x ≤ b or y ≤ b,
then f(x, y) �= a, so f(x, y) ≤ b. Moreover, if x, y ≥ a, then either x, y > b
and f(x, y) = a, or else x, y ≥ a > 0 and a ≤ x ≤ b or a ≤ y ≤ b, whence
f(x, y) = b ≥ a. Therefore, the conditions of Lemma 4.1 are fulfilled, and so
f ∈ PolD R(a)

(b) .
Now, we want to prove that [0]θ = {0, . . . , a − 1}. If this were false, then

by Lemma 6.2 (h) we would get a − 1 > 0, b + 1 < n − 1, [x]θ = {x} for every
x ≤ b and [n − 1]θ = {b + 1, . . . , n − 1}. Therefore, (b + 1, n − 1), (0, 0) ∈ θ,
but since n− 1 �= b+1, we obtain (f(b+1, 0), f(n− 1, 0)) = (0, b) /∈ θ because
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b /∈ [0]θ = {0}. Hence, f /∈ PolD θ, in contradiction to the assumed inclusion
PolD R(a)

(b) ⊆ PolD θ.
Consequently, we get [0]θ = {0, . . . , a − 1}, and dually, one can demon-

strate that [n − 1]θ = {b + 1, . . . , n − 1}. If we can show a = b + 1, we shall be
done. As we already know a ≤ b + 1, we only have to exclude a < b + 1, i.e.,
a ≤ b. So, in order to obtain a contradiction, we suppose b ≥ a. Then we have
b /∈ [0]θ = {0, . . . , a−1}, i.e., (0, b) /∈ θ. If b+1 < n−1, we could use the same
arguments as in the previous paragraph to prove that f ∈ PolD R(a)

(b) \PolD θ.
Hence, we must have b+1 = n−1, and so [y]θ = {y} holds for all y ≥ a (recall
Lemma 6.2(e)). Since [0]θ = {0, . . . , a − 1}, it follows a − 1 > 0 due to θ �= Δ.
In this case we can use the dual version of f to get a contradiction: define
g ∈ O(2)

D by g(a − 1, n − 1) := n − 1, g(x, y) := b if x, y < a, and g(x, y) := a

else. This function preserves R(a)
(b) since the conditions of Lemma 4.1 are met:

if x ≥ a or y ≥ a, then g(x, y) �= b, so g(x, y) ≥ a. If x, y ≤ b, then y < n − 1,
so g(x, y) �= n − 1. So either x, y < a, whence g(x, y) = b, or a ≤ x ≤ b or
a ≤ y ≤ b such that we get g(x, y) = a ≤ b. Thus, g � R(a)

(b) . We finish by
demonstrating that g �� θ. Indeed, (0, a − 1), (n − 1, n − 1) ∈ θ, but due to
a ≤ b < n−1, we have a /∈ {n−1} = [n−1]θ. So we obtain that g �� θ because
(g(0, n − 1), g(a − 1, n − 1)) = (a, n − 1) /∈ θ.

This contradicts PolD R(a)
(b) ⊆ PolD θ; thus a > b follows, that is, by the

above we have a = b + 1. �

7. The case of central relations

Inclusions PolD R(a)
(b) ⊆ PolD � for at least ternary non-trivial central relations �

have already been excluded in Corollary 3.4. Moreover, unary central relations
have been studied in Section 4. So further in this section, we shall only consider
binary central relations �. These are reflexive in the usual sense, i.e., Δ ⊆ �,
and hence, we can apply Corollary 5.2, which states PolD R(a)

(b) �⊆ PolD � for
a − b ≥ 2 and non-trivial �. Next, we prove the same for a − b = 1.

Lemma 7.1. Let a ∈ D \ {0}, b ∈ D \ {n − 1} be such that a − b ≤ 1, and
consider a non-trivial binary central relation � � D2 having a central element
c ∈ D satisfying c < a or c > b. Then one can construct a binary function
f ∈ Pol(2)D R(a)

(b) \PolD �.

Proof. If c < a then choose d > b, e.g., d = n − 1; else, if c > b, then choose
d < a, e.g., d = 0. Moreover, let (u, v) ∈ D2 \ �. We shall consider three cases,
(1) that u, v ≤ b, (2) u, v ≥ a, which is not disjoint from the previous case, and
(3) that neither (1) nor (2) holds. In case (3) no generality is lost in assuming
u < a ≤ b + 1, i.e., u ≤ b, otherwise one can just swap u and v due to �
being symmetric. Since we are not in case (1), we cannot have v ≤ b, hence
v > b ≥ a− 1, i.e., v ≥ a. So (3) means u ≤ b and v ≥ a. In this case we define
z := c. For (1) we choose z ∈ {c, d} such that z < a, implying z ≤ a − 1 ≤ b,
and in case (2) we pick z ∈ {c, d} such that z > b, i.e., z ≥ b + 1 ≥ a. We
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define now an operation f ∈ O(2)
D . In case (1) we put f(x, y) := min(x, y) if

x, y ≥ a, f(x, y) := v if (x, y) = (c, z), and f(x, y) := u else. In case (2) we set
f(x, y) := max(x, y) if x, y ≤ b, f(x, y) := v if (x, y) = (c, z), and f(x, y) := u
else. Provided that c < a in (3), put f(x, y) := max(x, y) if x, y ≤ b and
(x, y) �= (c, z), f(x, y) := u if (x, y) = (c, z)(= (c, c)), and f(x, y) := v else.
Otherwise, if c > b in case (3), we define f(x, y) := min(x, y) if x, y ≥ a and
(x, y) �= (c, z), f(x, y) := v if (x, y) = (c, z)(= (c, c)), and f(x, y) := u else.
It is not hard to check that always the function f is well-defined and that
f ∈ PolD R(a)

(b) by Lemma 4.1. Since � is reflexive and c is a central element, we
have (c, d), (z, z) ∈ �. However, (f(c, z), f(d, z)) = (u, v) /∈ � for case (3) and
c < a, and otherwise we have (f(c, z), f(d, z)) = (v, u) /∈ � by symmetry of �.
This shows that f /∈ PolD �. �

Corollary 7.2. Let a, b ∈ D such that a − b = 1 and � � D2 be any non-trivial
binary central relation, then there exists a function f ∈ Pol(2)D R(a)

(b) \PolD �.

Proof. Clearly a − b = 1 implies a = b + 1 ≥ 1 > 0 and b = a − 1 < a ≤ n − 1.
Moreover, � must have a central element c ∈ D. We either have c < a or
c ≥ a = b + 1 > b. In both cases, Lemma 7.1 yields the result. �

The following lemma states conditions for an inclusion.

Lemma 7.3. Let a, b ∈ D such that 0 < a ≤ b < n − 1. Then we have
[
R(a)

(b)

]

RD

� R(a)
(b) ∩(

R(a)
(b)

)−1 = {0, . . . , b}2 ∪ {a, . . . , n − 1}2 =: σa,b,

and σa,b ⊆ D2 \ {(0, n − 1), (n − 1, 0)} is a non-trivial binary central relation
having any c ∈ {a, . . . , b} as a central element. Moreover, we have the inclusion
PolD R(a)

(b) ⊆ PolD σa,b.

Proof. First, we demonstrate that σa,b is a non-trivial binary central relation.
It is clear that σa,b is symmetric as a union of symmetric relations. Moreover,
σa,b is reflexive: for all x ∈ D with x ≤ b we have (x, x) ∈ {0, . . . , b}2 ⊆ σa,b,
and for x > b ≥ a we have (x, x) ∈ {a, . . . , n − 1}2 ⊆ σa,b. Now consider any
a ≤ c ≤ b (such elements exist due to a ≤ b); we show that it is central for σa,b.
For x ≤ c the pairs (x, c) and (c, x) belong to {0, . . . , b}2 ⊆ σa,b; otherwise, we
have x > c ≥ a, and (x, c) and (c, x) lie in {a, . . . , n−1}2 ⊆ σa,b. Furthermore,
as 0 < a and n − 1 > b, we have (0, n − 1) /∈ σa,b and (n − 1, 0) /∈ σa,b.

The inclusion σa,b ⊆ R(a)
(b) ∩(

R(a)
(b)

)−1 is straightforward. For the converse,

suppose that (x, y) ∈ R(a)
(b) � (y, x), which means (x ≥ a or y ≤ b) and (y ≥ a

or x ≤ b). If x, y ≥ a or x, y ≤ b, then clearly (x, y) ∈ σa,b. Otherwise, we have
a ≤ x ≤ b or a ≤ y ≤ b. In the first case, we can have y ≥ a or y < a ≤ b, and
always it follows (x, y) ∈ σa,b. The second case can be treated dually.

The inclusion we have just demonstrated implies that σa,b ∈
[
R(a)

(b)

]

RD

,

hence PolD R(a)
(b) = PolD

[
R(a)

(b)

]

RD

⊆ PolD σa,b. �
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Lemma 7.4. Let a, b ∈ D such that a ≤ b and x1, x2 < a, y1, y2 > b. Then
we have f ∈ Pol(1)D R(a)

(b) for f ∈ O(1)
D defined by f(x1) := x2, f(y1) := y2 and

f(z) := z for z ∈ D \ {x1, y1}.
Proof. First, the function f ∈ O(1)

D is well-defined due to x1 < a ≤ b < y1.
Since x1, x2 < a ≤ b and y1 > b, it is evident that f � {0, . . . , b}. Similarly, we
obtain f � {a, . . . , n − 1}. Using Lemma 5.3, we can infer f ∈ PolD R(a)

(b) . �

With these lemmas at hand, we can prove the following characterisation.

Proposition 7.5. Let a, b ∈ D, σa,b ⊆ D2 be defined as in Lemma 7.3 and
� � D2 be a non-trivial binary central relation. Then we have

PolD R(a)
(b) ⊆ PolD � ⇐⇒ 0 < a ≤ b < n − 1 and � = σa,b.

Proof. The implication “⇐=” holds by Lemma 7.3. Conversely, suppose that
PolD R(a)

(b) ⊆ PolD � is true. Then a �= 0 and b �= n − 1, as otherwise R(a)
(b) = D2

and then PolD R(a)
(b) = OD, which is not contained in any maximal clone.

Moreover, as � is reflexive and non-trivial, Corollaries 5.2 and 7.2 allow us to
infer that a ≤ b. It remains to show that � = σa,b.

First, let us consider the inclusion σa,b ⊆ �. For this let d ∈ D be a central
element of �. If d < a or d > b, then this would violate the assumed inclusion
PolD R(a)

(b) ⊆ PolD � due to Lemma 7.1. Hence, we have a ≤ d ≤ b. For any pair

(x, y) ∈ {0, . . . , b}2 ∪ {a, . . . , n − 1}2 we can define a unary function f ∈ O(1)
D

by f(0) := x and f(z) := y if z ∈ D \ {0}. Obviously, we have im(f) = {x, y},
such that im(f) ⊆ {0, . . . , b} or im(f) ⊆ {a, . . . , n−1}. Thus using Lemma 2.5
we obtain f ∈ PolD R(a)

(b) ⊆ PolD �, and therefore (x, y) = (f(0), f(d)) ∈ �

since d ≥ a > 0 was a central element of �. This demonstrates that � contains
{0, . . . , b}2 ∪ {a, . . . , n − 1}2, which equals σa,b.

To prove that � ⊆ σa,b we rule out that
(
D2 \ R(a)

(b)

) ∩ � �= ∅. Namely, if

there were some (x1, y1) ∈ (
D2 \ R(a)

(b)

) ∩ �, then for any (x2, y2) ∈ D2 \ R(a)
(b) ,

we could use the function f ∈ PolD R(a)
(b) ⊆ PolD � constructed in Lemma 7.4

to show that (x2, y2) = (f(x1), f(y1)) ∈ �. This would mean D2 \ R(a)
(b) ⊆ �,

and, by symmetry of �, would imply D2 \ (
R(a)

(b)

)−1 ⊆ �. Hence, we would have

the inclusion D2 \ σa,b = D2 \
(
R(a)

(b) ∩(
R(a)

(b)

)−1
)

⊆ �. Together with σa,b ⊆ �,

we would get � = D2, in contradiction to � being non-trivial.
Therefore,

(
D2 \R(a)

(b)

)∩� is empty, which means � ⊆ R(a)
(b) . By symmetry

of � this implies � = �−1 ⊆ (
R(a)

(b)

)−1, and so � ⊆ R(a)
(b) ∩(

R(a)
(b)

)−1 = σa,b. �

8. Theorem statement

Before we come to our main result, let us observe the following relationship
concerning maximal C-clones.
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Lemma 8.1. For any choice of parameters a ∈ D \ {0} and b ∈ D \ {n − 1},

we have PolD R(a)
(b) � PolD R(a)

(b) ∩(
R(a)

(b)

)−1.

Proof. Let us abbreviate σ := R(a)
(b) ∩(

R(a)
(b)

)−1. It is clear that σ ∈
[
R(a)

(b)

]

RD

,

whence PolD σ ⊇ PolD
[
R(a)

(b)

]

RD

= PolD R(a)
(b) . To prove that this inclusion is

strict, we construct a unary function f ∈ PolD σ\PolD R(a)
(b) . In case that a ≤ b

we define f by f(x) := n − 1 for x < a, f(x) := x for a ≤ x ≤ b and f(x) := 0
for x > b. Since (f(n − 1), f(0)) = (0, n − 1) /∈ R(a)

(b) , we have f � �R(a)
(b) . In

case that a > b we let f(x) := n − 1 for x ≤ b, f(x) := x for b < x < a and
f(x) := 0 for x ≥ a. Again, we have (f(a), f(b)) = (0, n − 1) /∈ R(a)

(b) , which

shows f ��R(a)
(b) .

Next, we prove for a ≤ b that (f(x), f(y)) ∈ R(a)
(b) whenever (x, y) ∈ σ.

By symmetry of σ this implies f � σ. Namely, if (x, y) ∈ σ and f(y) > b, then
f(y) �= 0, so y ≤ b. Assuming y ≥ a would yield b < f(y) = y ≤ b, whose
absurdity entails y < a. Then (y, x) ∈ R(a)

(b) implies x ≤ b, and thus either
f(x) = x ≥ a if x ≥ a, or f(x) = n − 1 ≥ a if x < a. Therefore, in any case,
we have f(y) ≤ b or f(x) ≥ a, meaning (f(x), f(y)) ∈ R(a)

(b) .
For a > b, the argument is even simpler: if (x, y) ∈ σ and f(x) < a, then

f(x) �= n − 1, so x > b. Since (y, x) ∈ R(a)
(b) , we get y ≥ a, so f(y) = 0 ≤ b. �

We can now combine the previously proven results to obtain the following
theorem, giving a complete description of the relationship between maximal
clones and maximal clausal clones.

Theorem 8.2. For every maximal C-clone PolD R(a)
(b) on D = {0, . . . , n − 1},

where n ∈ N, and a ∈ D \ {0} and b ∈ D \ {n − 1}, there exists precisely one
maximal clone M such that PolD R(a)

(b) ⊆ M .
More precisely, we have that

• PolD R(1)
(0) = PolD ≤2 for n = 2;

• for n ≥ 3 the following proper inclusions hold:
– PolD R(a)

(b) � PolD � if a − b > 1, where � is the unary non-trivial
relation {0, . . . , b} ∪ {a, . . . , n − 1};

– PolD R(a)
(b) � PolD θ if a − b = 1, where θ is the equivalence relation

on D given by the partition D/θ = {{0, . . . , b}, {a, . . . , n − 1}}; and
– PolD R(a)

(b) � PolD σa,b if a − b < 1 where σa,b denotes the binary
central relation {0, . . . , b}2 ∪ {a, . . . , n − 1}2.

Proof. Summarising results from Section 3, inclusions PolD R(a)
(b) ⊆ PolD � are

impossible whenever � is the graph of a prime permutation (Lemma 3.1), an
affine relation corresponding to an elementary Abelian p-group (Lemma 3.5),
an at least ternary (non-trivial) central or h-regular relation (Corollary 3.4),
or a bounded partial order relation for n ≥ 3 (Proposition 5.5). So from the
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types of relations listed in Theorem 2.4 only non-trivial equivalence relations,
bounded partial order relations for n = 2 and unary and binary central rela-
tions remain.

Lemma 4.5 and Propositions 6.3 and 7.5 confirm the inclusions claimed
in the theorem for n ≥ 3. We only have to prove that each maximal C-clone
is not contained in any other maximal clone. For instance, if a − b = 1, then
Proposition 7.5 and Lemma 4.5 show that PolD R(a)

(b) is not contained in PolD �

for any non-trivial unary or binary central relation �. Moreover, by Proposi-
tion 6.3, an inclusion PolD R(a)

(b) ⊆ PolD θ, where θ is a non-trivial equivalence
relation, implies that θ is exactly the equivalence stated in the theorem. For
the cases a − b ≷ 1 analogous arguments prove that PolD R(a)

(b) is a subset of a
unique maximal clone.

If the inclusions for n ≥ 3 were improper, then PolD R(a)
(b) would be a

maximal clone in each of the three cases. Hence, from Lemma 8.1 we would
get PolD R(a)

(b) � PolD σ = OD where σ := R(a)
(b) ∩(

R(a)
(b)

)−1. Thus, σ ∈ InvD OD

would have to be a binary diagonal relation. Since (a, a) ∈ σ but (0, n−1) /∈ σ,
this would mean σ = Δ. However, Lemmas 4.4 and 7.3 prove that Δ = σ equals
{0, . . . , b}2 ∪ {a, . . . , n − 1}2, which thus implies b = 0 and a = n − 1. This in
turn gives that Δ = σ = {0}2 ∪ {n − 1}2 = {(0, 0), (n − 1, n − 1)}, i.e., n ≤ 2.

The statements concerning |D| = n = 2 have been established already
in [16, Theorem 2.14] (see also [3, Theorem 6]): the clone of monotone Boolean
functions is the only maximal C-clone on a two-element domain. �

From the previous theorem, we can derive a completeness criterion for
clones on finite sets described by clausal relations. This will require the follow-
ing additional lemma.

Lemma 8.3. Let n ∈ N, D = {0, . . . , n − 1} and Q ⊆ C RD be a set of clausal
relations. If PolD Q � OD, then there exists a maximal C-clone PolD R(a)

(b)

(where a ∈ D \ {0}, b ∈ D \ {n − 1}) such that PolD Q ⊆ PolD R(a)
(b) .

Proof. If every Ra
b ∈ Q contains a 0 among {a1, . . . , ap} or n−1 ∈ {b1, . . . , bq},

then PolD Q = OD, so the premise of the implication is not fulfilled. This is
in particular the case for n ≤ 1, so let us further consider n ≥ 2 and suppose
that there exists some Ra

b ∈ Q where a ∈ (D \{0})p and b ∈ (D \{n−1})q. It
follows that PolD Q ⊆ PolD{Ra

b}. By Lemma 6.1.3 of [17] we have the inclusion
PolD{Ra

b} ⊆ PolD
{
R(a)

(b)

}
for the parameters a = min{a1, . . . , ap} > 0 and

b = max{b1, . . . , bq} < n − 1. By Theorem 2.3, PolD R(a)
(b) is indeed a maximal

C-clone; by the above, it is a superclone of PolD Q. �
Corollary 8.4. Let for n ≥ 3 and D = {0, . . . , n − 1} a set Q ⊆ C RD of
clausal relations be given. Put F := PolD Q. If for each 0 ≤ b < n − 1 there
is some f ∈ F such that f �� θb, where θb is the equivalence relation belonging
to the non-trivial partition D/θb = {{0, . . . , b}, {b + 1, . . . , n − 1}}, and for
each 0 < a ≤ b < n − 1 there is some f ∈ F such that f does not preserve
{0, . . . , b}2 ∪ {a, . . . , n − 1}2, and for each pair (b, k) such that 0 ≤ b ≤ n − 3
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and 2 ≤ k ≤ n − 1 − b we have f �� {0, . . . , b} ∪ {b + k, . . . , n − 1} for some
f ∈ F ; then F = PolD Q = OD.

Proof. By the assumptions and Theorem 8.2, we have F �⊆ PolD R(a)
(b) for all

parameters a ∈ D \ {0}, b ∈ D \ {n − 1}. Therefore, the C-clone F is not
contained in any maximal C-clone. Using Lemma 8.3, we can conclude that
PolD Q = F must be the full C-clone OD. �
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[3] Behrisch, M., Vargas-Garćıa, E.: On the relationship of maximal C-clones and
maximal clones. Preprint MATH-AL-01-2014, TU Dresden, Institut für Algebra
(2014). http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-131431
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[10] Pöschel, R.: Concrete representation of algebraic structures and a general Galois
theory. In: Contributions to General Algebra (Proceedings of the Klagenfurt
Conference, Klagenfurt, 1978), pp. 249–272. Heyn, Klagenfurt (1979)
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