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Abstract Neglecting inertial and viscosity effects in the bulk flow is a common assumption in the analysis
of separation processes in suspensions under the action of gravity or centrifugal and Coriolis forces. While
there is a number of examples of particular solutions, the general form of the basic equations for three space
dimensions, together with the appropriate boundary and initial conditions, is still uncertain and, with regard to
certain aspects, even controversial. An essential point is a proper choice of the variables. Here it is proposed to
introduce the mass density of the mixture, the mean mass velocity of the mixture and the total volume flux as a
set of dependent variables. After some manipulations, a complete set of basic equations is obtained. It consists
of two continuity equations, a generalized drift-flux relation, and two linearly independent components of a
vector equation describing the total body force as irrotational. Then, by eliminating the mean mass velocity of
the mixture from the set of unknowns, a generalized kinematic-wave equation is derived. It describes kinematic
waves that are embedded in a bulk flow that may be one-, two- or three-dimensional. Concerning boundary
conditions at solid walls, one has to ascertain whether the total body force at the wall points into the suspension
or out of it. In the former case, a thin boundary layer of clear liquid is formed at the wall, whereas in the latter
case a thin sediment layer may either stick at the wall or slide along it. Each of those three possibilities leads
to a particular boundary condition for the bulk flow in terms of the dependent variables. In addition, initial
conditions and kinematic shock relations are briefly discussed. Finally, the application of the kinematic-wave
theory to the settling process in rotating tubes is outlined.

1 Introduction

The process of solid particles settling slowly due to gravity in a liquid-filled vessel with vertical walls is not
as simple as it might appear at first glance. Even if the particles are spherical and uniform in both size and
material, there is a variety of physical phenomena that affect the process. To be mentioned, above all, are
the mutual hindering of the suspended particles and the counter flow of the liquid in case of an impermeable
bottom of the vessel. In a truly pioneering paper, Kynch [1] took those effects into account and developed a
theory that is now known as kinematic-wave theory [2–5]. In its original version, the kinematic-wave theory
was based on one space coordinate and time as independent variables. Strictly speaking, that implies vessels
of constant cross section, but gravity settling in vessels with varying cross sections has been analyzed in a
one-dimensional approximation [6]. Retaining one spatial coordinate, it is also possible to describe particle
separation due to centrifugal forces in cylindrical centrifuges [7–10]. Remarkably, the radial dependence of
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both the centrifugal force and the cross section can lead to kinematic shock waves with unusual properties
[6–8]; cf. also [11].

As early as 1920, it was already observed by themedical doctor Boycott [12] that gravity settling of particles
in a tube of constant cross section is enhanced if the axis of the tube is inclined to the vertical. This effect,
which is now named after Boycott, is due to the buoyancy-driven flow of clear liquid in a thin layer attached
to the downward facing wall of a tube or vessel. It took, however, more than 60years until a kinematic-wave
theory became available that is able to cope with the Boycott effect [13]. It required, of course, a generalization
to more than one spatial coordinate. The Boycott effect occurs also in centrifuges with compartments [14,15]
and in rotating buckets [16]; cf. also the survey articles [17,18] and the monograph [19]. Generalizations to
more than one spatial coordinate are also required to account for viscosity effects in the bulk flow [20], or to
describe enhanced settling in centrifuges [21].

In course of further generalizations of the kinematic-wave theory of suspensions, a variety of problems of
practical interest has been considered. To be mentioned are, among others, sedimentation of particles with two
or more different sizes [22–29] and the associated experiments [24,30,31]; sedimentation and centrifugation of
flocculated suspensions [32–35]; accounting for consolidation processes [36,37] with associated experiments
[38,39]; and accounting for the flow of suspension into the vessel and out from it (e.g., thickeners under start-up
conditions) [40]. With regard to the aim of the present analysis, as described below, it may be of interest to
note that wall effects, like the Boycott effect as well as deposition of particles at the sidewalls or gliding of
particles along the sidewalls, are not taken into account in the one-dimensional, unified analysis of batch and
continuous thickening in vessels with varying cross section given in [34]. For applying the kinematic-wave
theory to applications, there is the problem of determining the parameters for given materials; Refs. [41–43]
provide answers. For reviews of the development of that particular branch of fluid mechanics, the reader is
referred to [44,45].

The generalizations of the kinematic-wave theory of suspensions, as briefly described above, have received
favorable attention in the scientific community; see, for instance, the monograph [19]. However, criticism
can also be found in the literature. Two points appear to merit serious consideration. The first one concerns
the general theory for more than one space coordinate. Irrespective of the good agreement of the theoret-
ical predictions with measurements [24,46,47], it was argued from a mathematical point of view that the
set of equations would be incomplete in the case of more than one space coordinate [37,48–50]. A second
criticism concerns the one-dimensional approximation that was applied in [8] to describe, among others, the
settling process in tube centrifuges. Despite of the experimental support provided by [51–54] to the predic-
tions based on the one-dimensional approximation, it is pointed out by M. Ungarish [55–57] that the parti-
cles, under the action of centrifugal forces, move strictly radially to hit the tube wall no matter how slender
the tube may be, thereby violating the assumptions of one-dimensional flow. Ungarish’s criticism seems to
concern a rather special problem, but it raises the fundamental question of justification of one-dimensional
flow approximations; cf. the monograph [2], which is devoted entirely to one-dimensional two-phase
flow.

In viewof the discussion and, in particular, the criticism concerning the kinematic-wave theory of separation
processes in suspensions, it is thought that it may be of some interest to present, inwhat follows, a reformulation
of the general theory given in [58] with the following aims:

– accounting for the criticism concerning the one-dimensional flow approximation following the ideas pre-
sented in [59,60];

– justification of neglecting the Coriolis force in the momentum equation of the mixture, while retaining it
in the drift-flux relation, as proposed in [14,16];

– obtaining explicit equations (rather than the implicit relations given in [58]) for the unknown quantities
in order to make the theory immediately applicable to particular problems. This may also foster various
applications, e.g., pharmaceutical ones [61–63].

2 Equations of motion

We consider unsteady flow of an incompressible mixture of a fluid (subscript 1) and solid particles of uniform
shape and size (subscript 2). The independent variables are time t and three spatial coordinates. For the
dependent variables cf. below. The set of fundamental equations then consists of two continuity equations and
two momentum equations.
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2.1 Continuity equations

A common set of continuity equations consists of mass conservation equations of fluid and particle phases,
respectively. For the present purpose it is more convenient, however, to use an equivalent set of continuity
equations, consisting of the volumeandmass balances, respectively, of the incompressiblemixturewith variable
mass density, ρm. The volume balance of the mixture simply reads

∇ · �j = 0, (2.1)

where �j is the total volume flux (i.e., the volumetric flow rate per unit area) of the mixture. In terms of the
volume fluxes (fictitious velocities) �j1 and �j2 of the fluid and particle phases, respectively, the total volume
flux becomes

�j = �j1 + �j2. (2.2)

As the second continuity equation, the mass balance of the mixture is written as

∂ρm

∂t
+ ∇ · (ρm �vm) = 0, (2.3)

where �vm is the mean mass velocity of the mixture.
For later use, the following relationships between the variables can easily be derived:

�j = (1 − α) �v1 + α�v2; (2.4)

ρm = (1 − α) ρ1 + αρ2; (2.5)

ρm �vm = (1 − α) ρ1�v1 + αρ2�v2, (2.6)

where α is the volume fraction of the particles (often also addressed as “particle concentration”), ρ1 and ρ2 are
the mass densities of the pure liquid and the particle material, respectively, while the velocities of the liquid
and solid phases are denoted by �v1 and �v2, respectively.

2.2 Momentum equation of the mixture

2.2.1 Pressure gradient in the mixture

If inertial and viscosity terms are negligibly small, the momentum equation of the mixture reduces to

∇ p = ρm �bm, (2.7)

where p denotes the pressure and �bm the body force per unit mass of the mixture. Neglecting inertial and
viscosity terms in the momentum equation of the mixture is common practice in the theory of gravity settling
and centrifugation. In case of gravity settling, power products of Reynolds number and Grashof number have
to satisfy certain conditions [13], while in case of centrifugal settling the Ekman number and the Rossby
number play analogous roles [15]. It should be mentioned, however, that inertial effects have been considered
by Schaflinger [18,46,47], while the effects of viscosity on the bulk flow have been taken into account in
the framework of kinematic-wave analysis by Smek [20]. Ekman layers have also been discussed [18]. With
regard to viscosity effects in a more general context cf. [37].

In a frame of reference rotating with constant angular velocity �ω , the gravity, centrifugal and Coriolis
forces, respectively, contribute the following terms to �bm:

�bm = �g + ω2�r − 2 �ω × �vm, (2.8)

where �g is the acceleration of gravity, and �r is the radial distance from the axis of rotation (not the position
vector).
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2.2.2 The role of the Coriolis force in the mixture momentum equation

As mentioned in the Introduction, it is of interest under what conditions the Coriolis force should be neglected
in the momentum equation of the mixture.

Eliminating the pressure gradient by applying the curl operator to the momentum Eq. (2.7) gives

∇×(ρm �bm) = 0, (2.9)

i.e., the particles are distributed in the suspension during the settling process such that the volumetric body
force is irrotational [58]. With �bm according to (2.8), (2.9) gives

(�g + ω2�r) × (∇ρm) − �C = 0, (2.10)

where �C is the curl of the Coriolis force per unit volume of the mixture, i.e.,

�C = − 2∇ × [�ω × (ρm �vm)]. (2.11)

Using well-known identities for the curl of a vector product [64], (2.10) with (2.11) may be rewritten as
(�g + ω2�r) × (∇ρm) + 2[ �ω ∇ · (ρm �vm) − ( �ω · ∇) (ρm �vm)] = 0, (2.12)

where the term in brackets is due to the Coriolis force. Provided the Coriolis force is not neglected, the term
∇ · (ρm �vm) in (2.12) can be replaced by −∂ρm/∂t by means of the continuity Eq. (2.3) to obtain

2 �ω∂ρm

∂t
= (�g + ω2�r) × (∇ρm) − 2 ( �ω · ∇) (ρm �vm) . (2.13)

(2.13) indicates that the time scale is 1/ω, with ω = |�ω|, provided the Coriolis force is not neglected. This,
however, would imply that ∂ �vm/∂t and �ω × �vm are of the same order of magnitude. Thus, neglecting inertial
terms while retaining the Coriolis force term in the momentum equation of the mixture is inconsistent.

In conclusion, the Coriolis force term in themomentum equation of themixture is neglected inwhat follows,
i.e., (2.8) is reduced to �bm=�b with

�b= �g + ω2�r , (2.14)

where the subscriptm has been dropped in order to avoid confusion with the full body force according to (2.8).

2.2.3 Mixture density and concentration gradients

Replacing �bm by �b in (2.7) and applying the curl operator gives

∇×(ρm �b) = 0. (2.15)

Note that in (2.15), as in any irrotational vector field, only two components are independent of each other, i.e.,
one component is superfluous. It follows from (2.14) that ∇×�b = 0. Thus, (2.15) can be written as

�b × ∇ρm = 0, (2.16)

or

�b × ∇α = 0, (2.17)

i.e., the gradient of the particle concentration must either vanish or be parallel to the mass body force. Intro-
ducing unit vectors �eb and �en in the direction of the body force �b and normal to it, respectively, one obtains
the following relations for later use.

∇α = ∂α

∂s
�eb; (2.18)

�en · ∇α = ∂α

∂n
= 0, (2.19)

where ∂α/∂s and ∂α/∂n are the derivatives ofα in the direction of the body force �b and normal to it, respectively.
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2.3 Momentum equation of the relative motion

2.3.1 Force balance

In general, the kinematic-wave theory of sedimentation is based on neglecting inertial effects on the particle
motion, i.e., assume quasi-steady creeping flow [2]. The conditions for justifying that assumption are briefly
discussed below, based on (2.21). Thus, the momentum equation of the relative motion reduces to the force
balance for a particle in the mixture, which has the mass density ρm. The following forces contribute to the
force balance.

– The body force per volume of particle, which is ρ2 �bp, with
�bp = �g + ω2�r − 2 �ω × �v2. (2.20)

On the right-hand side of (2.20) there are the contributions of gravity, centrifugal force and Coriolis force,
in this order.

– The buoyancy force per volume of particle. To determine the buoyancy force, the pressure gradient in the
mixture, ∇ p, is taken from (2.7) with (2.8). This implies that the contribution of the Coriolis force to the
pressure gradient in the mixture is taken into account in the buoyancy, the reason being that the Coriolis
force is not negligible in the drift-flux relation under certain conditions, cf. below.

– The drag force. For creepingmotion, it is proportional to the drift velocity (relative velocity), �v21 = �v2−�v1.
Added mass and Basset force (associated with time-dependent motion) are neglected; cf. [19], p. 28. The effect
of Taylor columns is also discarded; cf. [65].

The force balance may then be written as the following generalized drift-flux relation:

�v21/τ = ε�b − 2 �ω × (�v21 + ε�v2), (2.21)

with �b according to (2.14) and the density ratio ε defined as

ε = (ρ2 − ρ1)/ρ1. (2.22)

In accordance with common sedimentation or centrifugation processes, it will be assumed in what follows that
the particles are specifically heavier than the liquid, i.e., ε > 0. Most relationships of the present analysis can
easily be adjusted for the opposite case. Following [58], the time τ has been introduced in (2.21) such that
−�v21/τ represents the drag force of the particle per mass of displaced fluid, i.e., −�v21/τ = �FD/Vpρ1(1− α),
with drag force �FD and particle volume Vp. The time τ characterizes velocity relaxation. In particular, it can
easily be shown that the start-up time of a particle, i.e., the time it takes for a particle to reach its terminal
velocity from rest, is of the order of τ . Thus, the quasi-steady flow approximation is justified if τ � L/|�v21|,
or, in view of (2.21) with (2.14), τ 2 � L/ε(g + ω2L), where L is a characteristic length of the (rotating)
vessel.

2.3.2 Drift-flux relation

Since the drag force of a particle in the particle swarm depends on the concentration α (“hindered settling”),
one may write

τ = τ0 fτ (α), (2.23)

where τ0 is the (translational) relaxation time of a single particle, e.g., τ0 = d2p�1/18μ1 according to Stoke’s
drag law for a spherical particle of diameter dp in a fluid with viscosity μ1. For non-spherical particles, the
translational relaxation time depends on direction, and additional rotational relaxation times may be important,
cf. the survey article [66].

The function fτ (α) is to be determined from experiments (e.g., [2,46,47]) or suspension theory (e.g., [67]).
The popular Richardson and Zaki correlation [68] gives

fτ (α) = (1 − α)n−1 (n = const. > 1). (2.24)

Good agreement with experimental data has been obtained with n = 4.7 [46,47].
It follows from (2.21) that the contribution of the Coriolis force to the drift velocity is of the order of τω.

This leads to the following distinction:
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• If τω � 1, the Coriolis force term can be neglected not only in the momentum equation of the mixture,
but also in the drift-flux relation. Using τ ∼ τ0 = d2p�1/18μ1 according to Stoke’s law and introducing

the Taylor number Ta = ωd2p�1/18μ1, one obtains the condition Ta � 1, which was already discussed in
[9]. Note, however, that τω � 1 is not a sufficient condition for neglecting the inertial terms, as ε can be
very large for heavy particles.

• If τω = O(1), the Coriolis force has to be taken into account in the drift-flux relation.
Note also that accounting for the Coriolis force in the drift-flux relation is essential for describing the

Boycott effect in cylindrical centrifuges with radial compartments [14].
Furthermore, it follows from (2.21) with (2.14) that the ratio of the inertial terms and the body force term

in the momentum equation of the mixture is of the order of

v221/L|�bm| = O(ε2τ 2ω2). (2.25)

On the other hand, the ratio of the Coriolis force term and the centrifugal force term in the momentum equation
of the mixture, (2.7) with (2.8), is of the order of

|�vm| /ωL = O(|�v21|/ωL) = O(ετω). (2.26)

Thus, neglecting the inertial terms and, consequently, the Coriolis term in the momentum equation of the
mixture, while retaining the Coriolis term in the drift-flux relation, is justified only if the density difference
between particles and fluid is sufficiently small to satisfy the relation

ε � 1. (2.27)

This condition has been obtained previously for particular cases; cf. the survey [18].
In separation processes, the drift velocity, �v21, is of the same order of magnitude as the velocity of the

particle phase, �v2. This is true for one-dimensional as well as for two- or three-dimensional flows, see [2,6,8]
and [13–15], respectively. Thus, the term ε�v2 can be dropped in (2.21) under the condition (2.27), to obtain
the following vector equation for �v21:

�v21/τ + 2 �ω × �v21 = ε�b. (2.28)

The solution of (2.28) can be found as follows. Take the vector product of (2.28) and �ω, eliminate the vector
product �ω × �v21 in that equation with the help of (2.28), use the identity �ω × ( �ω × �v21) = ( �ω · �v21) �ω −ω2�v21,
and eliminate the scalar product �ω · �v21 with the help of the equation obtained from the scalar product of (2.28)
and �ω. The result is

�v21 = ετ

1 + (2τω)2
[�b + 2τ(�b×�ω) + 4τ 2(�g · �ω) �ω]. (2.29)

(2.29) is a generalized drift-flux relation in explicit form. It is much more convenient for applications than the
implicit version (2.21) already given in [58]. If the Coriolis force can be neglected, i.e., for τω � 1, (2.29)
reduces to

�v21 = ετ �b. (2.30)

In this case, it is not necessary that ε � 1, as (2.27) was used only for simplifying the Coriolis term in (2.21).

2.4 Complete set of basic equations

With the help of (2.4)–(2.6), �v21 may be expressed in terms of the dependent variables ρm, �vm and �j . Then
(2.29) becomes

�vm − �j = τ

1 + (2τω)2
(ρm − ρ1)(ρ2 − ρm)

ρ1ρm
[�b + 2τ(�b × �ω) + 4τ 2(�g · �ω) �ω]. (2.31)

The complete set of basic equations for the unknowns ρm, �vm and �j now consists of the continuity Eqs. (2.1)
and (2.3), the drift-flux relation (2.31), and the condition of irrotational body force, (2.15). Since only two
components of the vector equation (2.15) are independent of each other, the set of equations comprises 7 scalar
equations for 7 scalar unknowns. Which equation of the three components of (2.15) is dropped will depend on
the particular problem and, perhaps, on the preferences of the researcher.

There are, however, certain special solutions of the set of basic equations that are associated with a non-
uniqueness of the solution for �j , i.e., the bulk flow. This problem will be addressed below; cf. Sect. 3.2.
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3 Kinematic waves

3.1 Generalized kinematic-wave equation

The set of equations given above might be convenient for numerical solutions, but for analytical solutions and
a better understanding of the settling process, a further analysis is desirable. The basic idea is to eliminate
�vm from the set of unknowns. This can be accomplished either by rather cumbersome manipulations with the
equations given above or—more directly—by considering the mass balance of the particle phase, i.e.,

∂α

∂t
+ ∇ · �j2 = 0 (3.1)

instead of the mass balance of the mixture, (2.3). With

�j2 = α �j + α(1 − α)�v21, (3.2)

�v21 according to the drift-flux relation (2.29), (�b × �ω) · ∇α = 0 according to (2.17), ∇ · �r = 2 according to
the definition of �r , and ∇ · �j = 0 according to the continuity EQ. (2.1), the mass balance (3.1) gives

∂α

∂t
+

[ �j + f
′
1 (α) �b + f

′
2 (α) (�g · �ω) �ω

]
· ∇α = −2ω2 f1 (α) , (3.3)

with

f1 (α) = [εα (1 − α) τ ] /[1 + (2τω)2]; f2 (α) = 4τ 2 f1 (α) (3.4)

and τ = τ (α) according to (2.23). If τω � 1, i.e., in the case of negligibly small Coriolis force, the third
term in the brackets on the left-hand side of (3.3) and the term (2τω)2 in (3.4) can be dropped to simplify the
equations.

The inhomogeneous partial differential Eq. (3.3) is of the general form that was discussed in [58] without
providing details. According to (3.3), the concentration field is coupled with the bulk flow via the term �j · ∇α.
Since ∇α is parallel to the body force �b as indicated by (2.18), (3.3) can be written as

∂α

∂t
+ w

∂α

∂s
= −2ω2 f1 (α) , (3.5)

with

w = jb + f
′
1 (α) |�b| + f

′
2 (α) (�g · �ω)2 /|�b|, (3.6)

where jb is the component of �j in the direction of �b. (3.5) is a generalized kinematic-wave equation. It shows
that the settling process is governed by one-dimensional kinematic waves that propagate along the lines of
the body force �b with velocity w. The waves are embedded in a bulk flow �j that may be one-, two- or three-
dimensional. Since �b does not contain the Coriolis force, cf. (2.14), the direction of the propagation of the
kinematic waves is independent of the Coriolis force, whereas the third term on the right-hand side of (3.6)
gives a contribution of the Coriolis force to the wave propagation velocity.

3.2 Complete set of kinematic-wave equations

The generalized kinematic-wave Eq. (3.5) is to be supplemented by (2.1) and (2.17) to obtain a complete set
of equations for the unknowns α and �j . Since only two components of the vector Eq. (2.17) are independent
of each other, the set of equations consists of 4 scalar equations for 4 scalar unknowns. There is, however, a
problem with certain solutions, as previous investigations, e.g., [13], have shown. In particular, if α is assumed
to be a function of time only, (2.17) is trivially satisfied and the term containing �j in (3.3) vanishes. This allows
to integrate (3.3) to obtain α independent of �j , and only the scalar continuity Eq. (2.1) remains for determining
the unknown vector field �j . To deal with that problem, an approach has been proposed in [13] for the case of
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gravity settling that may be generalized as follows. Instead of directly using (2.17), the derivative of (3.5) in
any direction normal to the body force �b is taken. Observing (2.19), one obtains

∂w

∂n

∂α

∂s
= 0. (3.7)

In view of (3.7), two cases have to be distinguished. First, it is assumed that α varies in space, i.e., ∂α/∂s �= 0.
It follows from (3.7) that w has to satisfy the relation

∂w

∂n
= 0, (3.8)

i.e., the wave velocity may vary in the direction of the body force �b, but not normal to it. Writing (3.8) for two
main normals n(1) and n(2), gives two auxiliary conditions that, together with the kinematic-wave Eq. (3.5)
and the continuity Eq. (2.1), provide a complete set of equations for the unknowns α and �J . The second case
is less straightforward to deal with. If α is a function of time only, say α = ᾱ(t), one obtains ∂α/∂s = 0, and
(3.7) is satisfied trivially. In this case, a solution that is stable with respect to small perturbations of ᾱ(t) is
sought. Thus, if α = ᾱ (t)+γα′(t, s) with γ as a small parameter, it is required that w = w̄ +γw′ as γ → 0.
Taking into account that ∂ᾱ/∂s = 0, whereas ∂α′/∂s �= 0, (3.7) gives ∂w̄/∂n = 0, which is in accord with
(3.8). Thus, the condition (3.8) is applied in both cases.

As mentioned above, the Coriolis force affects only the magnitude of the propagation velocity of the
kinematic waves, not the direction of the propagation. However, the drift velocity vector contains a term
orthogonal to �b, cf. (2.29). Via the boundary conditions, as given below, the Coriolis force may then give rise
to a bulk and particle flow normal to the direction of the wave propagation.

4 Boundary conditions

In previous work, various boundary conditions have been applied as required by particular applications. A
review, together with a few new results, was presented in [58]. In what follows, a more systematic account of
the boundary conditions for two- and three-dimensional flow will be given. With regard to details, the reader
will be referred to previous publications.

The orientation of a wall with respect to the body force is characterized by the scalar product (�b · �n), where

�n is the unit normal vector, pointing from the wall into the suspension. The special case
(�b · �n

)
= 0 , i.e., the

wall parallel to the body force, has been considered extensively in the past; cf. the Introduction. With viscosity
being neglected for the bulk flow of the mixture, such a wall does not affect the flow. This special case is

of little interest here. Another special case is a wall normal to the body force, i.e.,
(�b · �n

)
= ±|�b|. Typical

examples are the top and the bottom, respectively, of a vessel in gravity settling, or the inner and outer walls,
respectively, of a centrifuge with negligible gravity force. Those walls, too, are part of practically all classical
applications of kinematic-wave theory to separation processes. Two types of walls that are of particular interest
for the present investigation remain.

4.1 Wall type I: 0 <
(�b · �n

)
< |�b|

The body force points from the wall into the suspension. This leads to a layer of clear liquid at the wall.
Provided ε > 0, cf. the discussion following (2.22), the mass density of the suspension is larger than the mass
density of the liquid. Thus, buoyancy causes the clear liquid in the wall layer to flow in the direction opposite
to the body force, giving rise to enhanced separation of particles and liquid (Boycott effect). If the Reynolds
number of the bulk flow is sufficiently large, the wall layer of clear liquid is very thin, and the flow velocity in
the wall layer is rather large. For details, in particular for an analysis of the flow in the wall layer, see [13] and
the references given in the survey article [58]. Experimental verification can be found in [46,47] for gravity
settling and in [14] for centrifugal separation. It may be worth mentioning that in a low Reynolds number
regime, where the kinematic-wave theory is not applicable, entrainment of particles into the wall layer has to
be considered as a possibility [69].



On basic equations and kinematic-wave theory 787

To keep the wall layer of clear liquid free from particles, the normal component of the volume flux of
particles, j (n)

2 , has to vanish at the interface between liquid and suspension. Since the wall layer is very thin,
the boundary condition for the bulk flow can be prescribed at the wall rather than at the interface. This gives
the boundary condition

ρ1 j
(n) − ρmv(n)

m = 0 at the wall (type I) (4.1)

or

j (n) + (1 − α)v
(n)
21 = 0 at the wall (type I), (4.2)

where the superscript(n) refers to the component in the direction of the wall normal vector �n.

4.2 Wall type II: − |�b| <
(�b · �n

)
< 0

The body force in the suspension points toward the wall, and sediment forms at the wall. Then two possibilities
are to be considered [59].

IIa: Sediment deposited at the wall

In general, the pressure gradient is too small to give rise to a volume flux of liquid in the sediment that would be
comparable to the volume flux in the bulk of the suspension. Darcy’s law can be applied to provide estimates,
if required. Thus, the bulk flow has to satisfy the boundary condition

j (ns) = 0 at the surfaceof the sediment, (4.3)

where the superscript(ns) refers to the component normal to the surface of the sediment. In case the concentration
in the bulk flow is small, the sediment layer will be thin in comparison with the characteristic length of the
vessel or centrifuge, and the boundary condition can be prescribed at the wall in a first approximation.

Solutions for gravity settling with boundary condition (4.3) for particles being deposited at the sidewalls
have been given in [13,59]. Concerning centrifugal settling, work is under progress [70].

IIb: Sediment moves along the wall

Driven by the tangential component of the body force, the sediment may move along the wall. A quantitative
description of themotionof a sediment at awall is quite difficult [71–76], and there are stillmanyopenquestions.
The following problemsmaybe of relevance, but are beyond the scope of the present investigation: resuspension
of particles [77,78] and related processes [79]; shear-inducedmigration of particles in concentrated suspensions
[73–75]; not a sharp interface [80] and shear-induced corrugation of interfaces [81]; wall slip (depending on
surface properties and particle material) [82–89]; stick-slip events [90]. For the present investigation, it is only
of importance how the motion of the sediment affects the bulk flow, as this is what controls the settling time
and the concentration in the suspension during the settling process. The details of the flow of the sediment are
of lesser interest.

Applying the kinematic-wave theory to the bulk flow of the suspension requires that the thickness of the
sediment layer at the wall, δ, is much smaller than the characteristic length of the vessel or centrifuge, L;
i.e., δ/L � 1. In addition, a small thickness of the sediment layer leads to an essential simplification of the
equations that govern the transport of the sediment. According to the mass (volume) balance of the moving
sediment, the total volume flux into the sediment layer, i.e., j (n), has to be balanced by the rate of change of
the volume flow of sediment in tangential direction and the rate of change of the layer thickness, ∂δ/∂t . Since
the characteristic time scale of the process is L/| �j |, the order of magnitude of the rate of change of the layer
thickness is ∂δ/∂t ∼ |�j |δ/L . Thus, ∂δ/∂t is negligible in the mass balance of the moving sediment layer and
the process can be considered as quasi-steady, if δ/L � 1.

To determine the conditions for the validity of the assumption δ/L � 1, the following estimates of the
orders ofmagnitude are provided.With j (n) ∼ |�j |, the volume balance of themoving sediment for quasi-steady
flow shows that

δ/L ∼ |�j |/ j̄c, (4.4)
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with j̄c as a characteristic averaged volume flux of the sediment layer. In the layer, the body force is to be
balanced by inertial terms, i.e.,

j̄2c /L ∼ |�b|, (4.5)

and/or by viscosity effects, i.e.,

μc j̄c/ρcδ
2 ∼ |�b|, (4.6)

where μc and ρc are the viscosity and the mass density, respectively, of the concentrated suspension of
mean particle concentration ᾱc. Buoyancy forces due to the hydrostatic pressure gradient in the bulk of the
suspension are discarded on the ground that they do not affect the order of magnitude of j̄c, as long as the
particle concentration in the bulk is not very close to the concentration in the sediment.With | �j | ∼ �v21 ∼ ετ |�b|,
cf. (2.29), (4.4) with (4.5) and (4.6) gives

δ/L ∼ ετ(|�b|/L)
1/2

(4.7)

and

δ/L ∼ (ετμc/ρcL
2)

1/3
, (4.8)

respectively. The larger one of these two expressions for δ/L must be much smaller than 1 in order to justify
the assumption δ/L � 1.

Provided the layer of moving sediment is very thin, the bulk flow is affected only via boundary conditions
that are associated with the entrainment from the bulk flow into the wall layer. Leaving the details of the
sediment transport to future investigations, only an approximate formulation of the boundary conditions is
given here. Thus, following [59], it is assumed that the cross-sectional mean value of the particle concentration
in the wall layer, ᾱc, is a constant that is known either from experiments or an analysis of the wall layer motion.
This assumption resembles the common assumption of a known particle concentration in the sediment at the
bottom of the vessel or the outer wall of the centrifuge.

Furthermore, it is quite natural to assume that the drift flux (or relative velocity) in the sediment moving
along the wall is negligible. As in IIa, Darcy’s law can be applied to provide estimates, if required. Then the
ratio of the particle and liquid flow rates, respectively, in the moving sediment layer is ᾱc/(1− ᾱc), leading to
the boundary condition

j (n)
2 /j (n)

1 = ᾱc/(1 − ᾱc) at thewall (type II, sliding sediment), (4.9)

or, with (3.2),

α[ j (n) + (1 − α) v
(n)
21 ]

(1 − α)[ j (n) − αv
(n)
21 ]

= ᾱc

1 − ᾱc
at thewall (type II, sliding sediment). (4.10)

The boundary condition (4.9) was already given in [59], where the effect of sediment motion on kinematic-
wave propagation was investigated, apparently for the first time, for the case of gravity settling.

5 Initial conditions and instabilities

It has been noted first in [13] for the particular case of gravity settling that the initial condition for the total
flux �j cannot be prescribed independently of the initial particle concentration, α0. In the present, more general
formulation, it ought to be taken into account that (3.8) is independent of time, and, therefore, has to be satisfied
also in the initial state. Substituting for w according to (3.6) gives a condition for jb in terms of α0.

At high Reynolds numbers, inertial effects may cause various deviations from the initial conditions that
would be proper for a kinematic-wave theory. Those deviations may—or may not—have noticeable effects on
the separation process. As a particularly striking phenomenon, an initial vortex was observed in [16]. However,
for applying the kinematic-wave theory to problems with more than one spatial coordinate, it is reassuring that
experiments have confirmed the theoretical predictions for gravity settling [24,46,47] as well as for centrifugal
separation [14–16,18].

At low Reynolds numbers, instabilities that lead to fluctuations have been observed [91,92], in particular in
sedimentation of polydisperse suspensions [93] and in a stratified ambient [94].An analysis of those phenomena
in the framework of kinematic-wave theory seems to be lacking, but is beyond the scope of the present paper.
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6 Kinematic shock relations

According to (3.6) the propagation velocity of the kinematic waves depends on the particle concentration α.
It is well known [2,3] that this may lead to wave steepening up to a discontinuity in the concentration, which
is then called a kinematic shock wave. Kinematic shock waves separate the suspension, on one side, from the
clear liquid on top of the vessel or at the inner wall of the centrifuge and, on the other side, from the sediment
at the bottom of the vessel or at the outer wall of the centrifuge. Under certain conditions, kinematic shock
waves can also occur within the suspension [6,8,13].

Since kinematic shock waves are a classical topic, we refrain here from reviewing the details. It is supposed
to suffice to discuss a few points that are of particular interest for the separation processes with more than one
spatial coordinate.

First, conservation of momentum flux across the kinematic shock, with inertial effects and friction in the
bulk flow being neglected, requires that the pressure is continuous at the shock. Since ρm is discontinuous at
the shock, it follows from (2.7) that the shock front is orthogonal to the body force [13,58]. The latter is given
by (2.14), as the Coriolis force term has to be dropped in the momentum equation of the mixture.

Secondly, the propagation speed W of the kinematic shock wave is to be determined, in the classical way,
from the continuity of the normal component of the total volume flux, j (n), together with the conservation of
particulate volume, requiring (αW − j (n)

2 ) to be continuous across the shock. For �j2 , (3.2) is available. The
normal component of the relative velocity can be written as v

(n)
21 = (�v21 · �b)/|�b|, with �b according to (2.14).

Inserting (2.29) for the relative velocity eventually gives

W = j (n) + 1

α̂ − α
{[ f1(α̂) − f1 (α)]|�b| + [ f2(α̂) − f2 (α)] (�g · �ω)2 /|�b|}, (6.1)

where α and α̂ are the values of the particle concentration in front and behind the shock wave, respectively,
with the functions f1 and f2 as given in (3.4). Note that in the limit of very weak shocks, i.e., (α̂ − α) → 0,
(6.1) for the shock velocity reduces to (3.6) for the wave velocity, as required by the theory of kinematic waves.

In the classical kinematic-wave analyses of settling processes with only one spatial coordinate, e.g., [1,6,8],
the shock relation (6.1) is considerably simplified for the kinematic shock waves that separate the suspension
from the clear liquid and the sediment, respectively. First, the total volume flux �j vanishes. Secondly, both the
clear liquid and the sediment are at rest. However, this is not always true for more than one spatial coordinate.
In case of the Boycott effect, clear liquid flows along the sidewall into the bulk of the clear liquid. Similarly,
when sediment slides along a sidewall, particles are transported into the sediment at the bottom of the vessel or
at the outer wall of the centrifuge. In both cases, mass conservation requires that there is a non-vanishing total
volume flux at certain kinematic shock waves; cf. [13] and [14–16,18] for the Boycott effect in gravity and
centrifugal settling, respectively, whereas the effects of sediment transport are taken into account in [59,60,70].
As was already observed in [13], the kinematic-wave analysis is not applicable within the region of clear liquid
at the top of the vessel when the Boycott effect takes place. This might cast doubts on the validity of the results
of the kinematic-wave analysis, which are, however, verified by a variety of experiments, e.g., [24,46,47] for
gravity settling and [14–16,18] for centrifugal settling. The case of sediment transport along the sidewalls is
even more challenging for the analysis. In particular, it is not a priory clear how the mass balance ought to be
satisfied at the kinematic shock that separates the sediment at the bottom of the vessel or at the outer wall of
the centrifuge from the bulk of the suspension. In [59] it was assumed that the particles are at rest at the surface
of the sediment at the bottom of the vessel. However, it may be more consistent with the basic assumptions of
the kinematic-wave theory to follow the well-established analysis of the Boycott effect [13] and assume that
the total bulk flow �j vanishes in the sediment at the bottom of the vessel or at the outer wall of the centrifuge.
Certainly, theoretical investigations that are more detailed and supported by experiments are desirable, though
for small initial particle concentrations the particles sliding along the sidewalls have only a small effect on the
motion of the sediment at the bottom of the vessel or at the outer wall of the centrifuge.

In general, a kinematic shock wave propagates with a speed that is between the wave velocities in front and
behind the shock wave, respectively. However, in a kinematic-wave analysis of centrifuges, wave fronts were
found that run ahead of the shock wave instead of into it [6,8]. In order not to contradict stability requirements,
the wave fronts, in this case, emerge from the shock wave with equal propagation velocity.

The appearance of kinematic shock waves as discontinuities is, of course, a consequence of the basic
assumptions of the kinematic-wave theory. By accounting for inertial and other effects, an internal structure
of kinematic shocks is obtained. In addition, splitting of kinematic shocks and other “strange properties” have
been found [4,11,95].
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Fig. 1 Concentration zones in a tube centrifuge: A—clear liquid; B—suspension; D—sediment. Radial arrows indicate direction
of body force. [60]

7 Application to tube centrifuges

As outlined in the Introduction, dealing with M. Ungarish’s criticism of applying the approximation of one-
dimensional flow to tube centrifuges [55–57] was one of the motivations for the present work. As a result,
means are now available for comparing the different approaches. It is hoped that this may shed some new
light on the applicability of the approximations under discussion. The related problem for gravity settling was
already considered in [59].

Consider a long tube with constant, rectangular cross section, rotating about an axis that is normal to the
tube center line and parallel to two of the four tube walls, addressed as sidewalls in what follows; cf. Figure 1
[60,70]. The kinematic-wave theory presented in the previous sections is applied. Since viscosity in the bulk
flow is neglected, the tube walls normal to the sidewalls are of no relevance for the bulk flow, which, therefore,
may be considered as two-dimensional. In accordance with Ungarish’s work [55,56], the Coriolis force is also
neglected; cf., however, the discussion in Sect. 2.3.2.

Of course, it is convenient to introduce cylindrical coordinates r, ϕ, z, with the z−axis coinciding with the
axis of rotation. Vector components are indicated by subscripts. The kinematic-wave Eq. (3.5) then becomes

∂α

∂t
+ w

∂α

∂r
= −2ω2 f1 (α) , (7.1)

with

w = jr + ω2r f
′
1 (α) , (7.2)

f1 (α) = εα (1 − α) τ(α) (7.3)

according to (3.6) and (3.4). From (2.19) and (3.8) it follows that neither the particle concentration nor the
total bulk flow depend on the azimuthal coordinate, i.e.,

α = α (t, r) ; jr = jr (t, r) . (7.4)

Thus, the continuity Eq. (2.1) can be integrated immediately to obtain

jϕ = −ϕ
∂ (r jr )

∂r
+ c(t, r), (7.5)

with c(t, r) as a free function to be determined from the boundary conditions. In case of a symmetric channel,
c(t, r) vanishes identically.

The kinematic-wave Eq. (7.1) can be solved by the method of characteristics. Transforming (7.1) from the
polar coordinate system (t, r, ϕ) to the characteristics coordinate system (t̃, ζ, ϕ) with

t = t̃; ∂r

∂ t̃
= w, (7.6)

one obtains

∂α

∂ t̃
= −2ω2 f1 (α) (7.7)
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and

t = t̃ = − 1

2ω2

∫ α

α0

dᾱ

f1 (ᾱ)
+ 
(ζ, ϕ), (7.8)

in agreement with the solution given in [8] for the cylindrical centrifuge. The initial concentration α0 has been
chosen as the lower boundary of the integral. The free function 
(ζ, ϕ) is to be determined from boundary
conditions and/or jump conditions at kinematic shocks; cf. Sects. 4 and 6 above. It was already shown in
[8] that, depending on the value of the initial concentration, several types of settling processes have to be
distinguished. In particular, centered kinematic waves and/or kinematic shock waves within the suspension
may occur. In addition, sediment sliding along the sidewalls gives rise to a bulk flow �j , which affects the
solution via the wave velocity w according to (7.2) and via the shock velocity W according to (6.1). The
latter effect was studied, apparently for the first time, in [59], yet for the somewhat simpler problem of gravity
settling.

As far as other approaches are concerned, it ought to be noted that the bulk flow is taken into account
neither in the one-dimensional flow approximation [8] nor in Ungarish’s analysis [55,56]. Nevertheless, both
approaches may lead to results that resemble the experimental findings [51–54] under certain conditions. Since
the one-dimensional flow approximation [8] is based on cross-sectional averages of the particle concentration,
the sliding of particles along the sidewalls may have a favorable effect on the comparison with experimental
results, though the bulk concentration is not correctly predicted. Resuspension of the particles after settling
at the sidewalls might also contribute to a better agreement of the experiments with the one-dimensional flow
approximation, as noted in [56]. Ungarish’s analysis [55,56], however, is restricted to very small values of the
initial concentration α0. For sufficiently small values of the initial concentration there are only two kinematic
shock waves, one of them separating the suspension from the purified liquid, the other one separating the
suspension from the sediment at the bottom of the tube. The separation process is terminated when the two
kinematic shock waves meet at a certain time ts . Since, for reasons of mass conservation, the bulk flow cannot
vanish at both shocks at the same time, the sliding of particles along the sidewalls will affect the settling process
even in this simplest case. However, the effect can be expected to be small for very small initial concentrations.
Details of the analysis, which is quite elaborate for geometric reasons, will be provided in [70]. Solutions in
closed form can be obtained for a tube rotating sufficiently far from the axis to satisfy the condition b/ri � 1.
Quantitative comparisons with the one-dimensional approximation [8], on the one hand, and with Ungarish’s
analysis [55,56] on the other hand, will also be given in [70].

8 Conclusions

The generalized drift-flux model leads to a complete set of equations that is substantially simpler than the
full set of basic equations of two-phase flow. Thus, the criticism expressed in [37,48–50] does not appear to
be justified. Misleading remarks in previous papers on the subject [13,58] may have been a source of that
criticism.

For reasons of self-consistency of the generalized drift-flux model, the Coriolis force must be dropped in
the momentum equation of the mixture. Furthermore, accounting for the Coriolis force in the drift-flux relation
is justified only for small mass density differences between the liquid and the particle material.

The explicit form of the generalized drift-flux equation given in the present paper allowed deriving a
generalized kinematic-wave equation for the particle concentration, with an explicit relation for the wave
propagation speed. In accord with previous, more restricted investigations [9,13–16,18,58,59] it shows that
the two-dimensional or three-dimensional settling process can be identified as a quasi-one-dimensional concen-
tration wave that is embedded in a two-dimensional or three-dimensional incompressible flow of the mixture.
This allows solving the generalized kinematic-wave equation by the method of characteristics. Depending
on the orientation of the sidewalls with respect to the body force, the boundary conditions at the sidewalls
account for the appearance of thin layers of clear liquid and of sediment that may be deposited at the wall or
be transported along the wall. Mass conservation may then give rise to a bulk flow, which affects the settling
process via the kinematic-wave velocity and/or via the kinematic shock relations.

Although it was one of the aims of the present paper to clarify controversial points, some open questions
remain subject to further investigations. Among others, a more detailed analysis of the coupling of sediment
transport and bulk flow should lead to a better understanding of the rather complex processes. Concerning the
particular problem of tube centrifuges, viscosity may affect the bulk flow in long tubes to such an extent that
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the basic assumptions of the kinematic-wave theory are violated. An analysis similar to [69] may be promising
in that case.
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