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Abstract Media content in large repositories usually exhibits multiple groups of
strongly varying sizes. Media of potential interest often form notably smaller groups.
Such media groups differ so much from the remaining data that it may be worthy to
look at them in more detail. In contrast, media with popular content appear in larger
groups. Identifying groups of varying sizes is addressed by clustering of imbalanced
data. Clustering highly imbalancedmedia groups is additionally challenged by the high
dimensionality of the underlying features. In this paper, we present the imbalanced
clustering (IClust) algorithm designed to reveal group structures in high-dimensional
media data. IClust employs an existing clustering method in order to find an initial
set of a large number of potentially highly pure clusters which are then successively
merged. Themain advantage of IClust is that the number of clusters does not have to be
pre-specified and that no specific assumptions about the cluster or data characteristics
need to be made. Experiments on real-world media data demonstrate that in compar-
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ison to existing methods, IClust is able to better identify media groups, especially
groups of small sizes.

Keywords Clustering · Imbalanced data · High-dimensional data · Media data · LOF

Mathematics Subject Classification 62H30

1 Introduction

Nowadays, large media repositories, such as YouTube1 and Vimeo,2 are facing contin-
uous additions of new, unknown material. Media, such as videos, sounds, and images,
are straightforward to capture and share due to recent developments and advances
of existing technologies. The processing and analysis of large amounts of unknown
material is very challenging when trying to understand media content and when there
is no prior knowledge available. Additionally, media of potential interest can easily
get lost in the mass of available data. In this context, interestingness is a data-driven
concept describing content which is that much different from the remaining data and,
therefore, it is potentially worthy to look at inmore detail. As any other data collection,
media data commonly exhibits multiple groups. The underlying groups of media have
strongly varying sizes, and therefore such a data set is considered as highly imbal-
anced. While larger groups represent a common type of media (e.g. video recordings
of a popular music band), very small groups (even a size of one) commonly indi-
cate atypical content and, thus, potential interesting material (e.g. video recordings of
a non-famous street musician). The task of identifying small groups is additionally
challenged by the characteristics of multimedia content. Media data are commonly
represented by means of high-dimensional features. Conventional clustering methods
based on traditional model assumptions usually fail in such a situation (Kriegel et al.
2009). Therefore, the focus of this paper is on developing a cluster algorithm which
addresses two core challenges: (1) clustering in a high-dimensional data space and
(2) clustering imbalanced data with special attention on mining small groups.

Detecting clusters in high-dimensional space is commonly addressed by subspace
or projected clustering algorithms which search for clusters in a subset of dimensions.
Therefore, such methods are suitable for high-dimensional data where there is a large
proportion of noise variables. However, these methods usually require for a parameter
specification (Parsons et al. 2004) which may be problematic, especially for media
data where no prior knowledge is available. On the contrary, if the number of noise
variables is not too high, model-based clustering methods (Fraley and Raftery 2000)
or density-based algorithms (Kriegel et al. 2011) could still achieve promising results.
Nevertheless, density-based approaches might be more appropriate for media data.
Such methods commonly do not rely on any prior knowledge (e.g. number of clusters,
shapes of clusters, and distribution of clustered points), whichmight be very beneficial
when clustering media data.

1 http://www.youtube.com.
2 http://www.vimeo.com.
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Clustering imbalanced data, where group sizes are very different, causes additional
challenges. Even though the research area of imbalanced clustering is not recent, there
are still open issues which need to be addressed in the development of new methods
(Krawczyk 2016). A very first problem addressed by Krawczyk (2016), which usually
occurs in centroid-based methods, is the so-called uniform effect. This means that
a clustering algorithm generates clusters of similar sizes. Some observations from
larger groups are mixed with those from smaller groups. In order to prevent the effect,
Krawczyk (2016) proposed a hybridization of centroid-based and density-based meth-
ods. Another proposal can be found in literature (Wang and Chen 2014; Qian and
Saligrama 2014). However, most approaches assume prior knowledge of the number
of clusters in order to handle varying levels of imbalanced data. Finally, Krawczyk
(2016) pointed out on the potential of discovering very small groups which could be
useful for further analysis. Indeed, media collection is a good example of imbalanced
data where small groups are of potential interest.

In this paper, we propose IClust, an algorithm which is able to identify data groups
of potentially strongly varying sizes. The procedure first employs an existing method
which is forced to produce a large initial set of potentially pure clusters. Subsequently,
clusters are successively merged using two merging conditions based on the outlier
detection method—local outlier factor (LOF) (Breunig et al. 2000). The algorithm
stops when two merging conditions are not satisfied and, therefore, the final number
of clusters does not need to be pre-specified. This is an advantage over most existing
methods. Moreover, the proposed approach detects clusters of strongly varying sizes
without any specific assumptions about the cluster or data characteristics, which is
very important for clustering media data.

The remainder of this paper is organized as follows. Section 2 motivates the design
of the proposed algorithm and describes it in detail. In Sect. 3, we select optimal
parameters for the proposed algorithm, and results on real-world media data sets are
presented in Sect. 4. Section 5 concludes the paper.

2 Proposed clustering algorithm

The idea for our algorithm originates in the need to efficiently detect small groups in
media data, containing potentially interesting information. Small groups can easily get
lost in a large media collection exhibiting groups of strongly varying sizes. In order to
identify highly imbalanced groups, we employ the local outlier factor (LOF) (Breunig
et al. 2000), which was originally designed to reveal outliers deviating from clusters.

2.1 Background on local outlier factor (LOF)

Preliminary experiments indicated that LOF is a highly effective approach for the
identification of very small groups in media data as outliers in comparison to other
existing approaches. In general, LOF determines the degree of outlyingness of an
observation. The degree reflects to which extent an observation is isolated from its
predefined number of the nearest observations. Let X = (x1, . . . , xn)

� ∈ R
p be a data

set of n observations from the Euclidean space of p dimensions. The LOF score for
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each observation xi , i = 1, . . . , n, is defined according to Breunig et al. (2000) as:

L O Fq(xi ) = 1

Nq(xi )

∑

x∈Nq (xi )

lrdq(x)
lrdq(xi )

, (1)

where Nq(xi ) denotes the local neighborhood for xi defined by its q nearest observa-
tions, i.e. neighbors, and lrdq(xi ) corresponds to so-called local (reachability) density
of xi . The local density of xi reflects how distant xi is with respect to its q nearest
neighbors on average, taking into account the distances of its neighbors to their near-
est observations, see Breunig et al. (2000) for more details. In general, if xi belongs
to a cluster, i.e. xi is surrounded by or close enough to its neighbors x ∈ Nq(xi ),
the local density of xi is similar to the local densities of its neighbors. As a conse-
quence, L O Fq(xi ) achieves a value of approximately 1. In contrast, an observation xi

deviating from a cluster has considerably different local densities than its neighbors
since xi is highly isolated from its neighbors. Therefore, such an observation receives
L O Fq(xi ) >> 1 and can thus be declared as outlier.

In addition to the ability of LOF to detect outliers based on large LOF scores, the
LOF approach exhibits several properties which might be very useful in clustering
imbalanced data. First, LOF considers both distances between observations and local
densities of observations, and, therefore, it is suitable for the contaminated data with
the clusters of varying sizes and densities (Hasan et al. 2009). Second, the decision of
declaring a point as an outlier seems to be insensitive to the choice of the predefined
number of neighbors necessary for calculating LOF scores (Hasan et al. 2009). Next,
LOF does not rely on any specific assumptions on the cluster characteristics (Breunig
et al. 2000), which is particularly important for high-dimensional media data where
such assumptions could not be verified. Finally, Zimek et al. (2012) demonstrated
that LOF achieves promising results if the number of informative variables in the
high-dimensional data is not too low. We expect that media data also contain many
informative variables, while, for example, for gene expression data this might not
necessarily be the case.

Despite the mentioned advantages of LOF and the fact that the method is capable
of detecting very small groups in media data as outliers, we still need to adjust the
usage of LOF in order to recover a whole group structure in imbalanced media data.

2.2 Naive approaches

A naive idea of incorporating LOF would be to remove the detected outliers from the
data, and to use existing cluster methods for clustering the larger groups. However,
this leads to difficulties since the resulting group sizes might still be very different and
because many clustering algorithms assume a certain shape of the clusters. Another
idea would be a recursive identification of the clusters, by starting to build the first
cluster in the most dense and compact region. In the following, LOF can be used to
decide which points are still members of this cluster, and which point is too far away
(outlier) in order to form a new cluster. However, this decision can become unreliable
as illustrated in Fig. 1. Suppose that there are two groups C1 and C2 with different
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Fig. 1 Example of a data set with two groups of different sizes and densities, C1 andC2 (left); the correctly
identified group C1 as a cluster K with its next closest point x from group C2 displayed in black color
(middle); a wrong assignment of x to K due to a LOF-based decision (right)

sizes and densities (left picture). Assume that the first cluster K has been constructed
and it needs to be decided whether or not observation x still belongs to cluster K
(middle picture). If the neighborhood size used to compute the LOF score is not small
enough, the point x would be assigned to cluster K because of the different point
densities of the underlying clusters (right picture). Using a very small neighborhood
size instead would again be unreliable because the decision would be based on too
little information. Therefore, for being able to identify groups of very small sizes,
even of size one, we need to modify the concept, which leads to the proposed IClust
approach.

2.3 The IClust algorithm

The proposed algorithm is conducted in two steps. In the first step of IClust, we
identify a large number of initial clusters by employing an existing clustering method.
We suggest to take a simple existing method which allows to control the number of
clusters, e.g. k-means. The large number of initial clusters leads to potentially highly
pure regions of comparable densities of clustered points. In the second step, we merge
clusters by employing the LOF approach. In each merging step it is investigated if
two closest clusters share the same local densities; if this is the case, the clusters
are merged. This avoids the wrong assignment as indicated in Fig. 1. The algorithm
iteratively tries to merge the next two closest clusters until there are no clusters to be
merged. We give a detailed description of each step in the following sections.

2.3.1 Identifying the initial set of clusters

In the first step, the data set is split into an initial set of clusters by applying an
existing clustering algorithm to subdivide the underlying data set into a large number
of clusters. Although such a partitioning leads to over-clustering of the data, it allows
for the detectionof (highly) pure clusters.Wepropose to use such a clustering algorithm
that is less computationally demanding and requires for the number of clusters only
in order to enable to control the number of initial clusters and not to be influenced by
a wrong choice of parameters which is usually data-dependent, e.g. k-means.
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Fig. 2 The effect of k-means applied on a 2D imbalanced data set. Imbalanced data set with three groups
(left), k-means with three clusters (middle) and k-means with six clusters (right)

The number of initial clusters kinit needs to be set large enough (larger than the true
underlying number of clusters) in order to increase the probability of obtaining highly
pure clusters. However, the value of kinit should not be too large to have a sufficient
number of observations, i.e. information, in most clusters for the merging procedure.
There are several possibilities for the determination of the number of initial clusters.
For example, Bloisi and Iocchi (2008) suggest to partition the data into n/4 clusters.
In Sect. 3 we investigate different selection strategies for kinit and their influence on
the clustering solution.

We will experiment with several well-known clustering methods to identify the
optimal choice for a starting clustering algorithm in Sect. 3. We consider two par-
titioning methods, k-means (Hartigan and Wong 1979)3 and Partitioning around
Medoids (Kaufman and Rousseeuw 1990),4 two hierarchical methods, complete
linkage and Ward’s method (Murtagh and Legendre 2014),5 and the model-based
clustering method Mclust (MC)6 (Fraley and Raftery 2000). All methods have certain
drawbacks in terms of generating specifically shaped clusters and they suffer from
the so-called uniform effect. By incorporating these methods in the first step we can
enhance their performance in a highly imbalanced scenario. A large number of clusters
generated by these methods avoids the uniform effect. Furthermore, over-clustering
can prevent from being affected by the assumption about the shapes of clusters.

To illustrate both aspects, we apply k-means on an imbalanced data set.We consider
a simple 2D data set with three groups of different sizes as shown in Fig. 2 (left).
Applying k-means with the true number of clusters, i.e. k = 3, results in the wrong
assignment of observations from the large group to the smaller groups, see Fig. 2
(middle), because k-means tends to produce spherically shaped clusters. In contrast,
k-means with a larger number of clusters, e.g. k = 6, results in a solution as shown in
Fig. 2 (right), where the smaller groups are correctly detected and the large group is
split into four small but pure clusters. Therefore, in the next step, we aim at merging

3 k-means is implemented in R package stats (R Core Team 2016).
4 PAM is implemented in the R package cluster (Maechler et al. 2015).
5 Complete linkage and Ward’s method are implemented in the R package cluster (Maechler et al.
2015).
6 The R code is available in mclust (Fraley et al. 2012).
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small clusters that likely belong to the same group while keeping well-isolated and,
thus, potentially correctly detected small groups.

2.3.2 Merging procedure

The aim of the second step is to iteratively merge clusters that are close to each other
and share the same local densities. The underlying assumption is that such clusters
contain observations from the same group. In order to consider both distances and
local densities, we propose to investigate if a point from one cluster can be considered
as part of a second cluster and vice versa by employing the LOF. The purpose of
investigating two clusters twice is to avoid that a cluster of low density is merged
with a cluster of high density, as discussed at the beginning of this section. Therefore,
we introduce the two merging conditions which need to be satisfied to merge the two
closest clusters.

Let X = (x1, . . . , xn)
� be a data set of n observations and {K j | j = 1, . . . , kinit}

the initial set of clusters, where K j = {xi j |i j ∈ I j } contains observations from the
index set I j = {1 j , 2 j , . . . , |K j | j }. The merging procedure starts by finding the two
closest clusters, Kl and Km , based on the minimum distance between each pair of
observations coming from different clusters (single linkage approach). In addition,
the two closest points, xo ∈ Kl and xp ∈ Km , are identified such that

d
(
xo, xp

) = min
xil ∈Kl ,xim ∈Km

d
(
xil , xim

)
. (2)

Subsequently, we investigate whether or not the two clusters should be merged.
For illustration, we consider the simple example in Fig. 3 (left) showing two clusters

Kl and Km with the corresponding closest points xo ∈ Kl and xp ∈ Km . Figure 3
(middle) shows the idea of investigatingwhether or not xp can be part of Kl considering
that the neighborhood is defined by three closest neighbors, denoted as q = 3. The
plot particularly indicates that xp is close to its three neighbors from Kl , which are
located in the circle around xp. In addition, it seems that the observations located
in the neighborhood (displayed as circles) form a compact region of similar local

xo

xp

Kl

Km

xo

xp

Kl

Km

xo

xp

Kl

Km

Fig. 3 Illustration of the proposed merging procedure for two clusters Kl and Km with the corresponding
closest points xo ∈ Kl , xp ∈ Km (left). The neighborhood of xp with its three nearest neighbors is displayed
as circles. xp is close to its three neighbors (from Kl ) located in the circle around xp (middle). xo is highly
isolated from its three neighbors (from Km ) located in the circle around xo (right)
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densities. As a result, the LOF score of xp should be approximately 1. In such a case,
we conclude that xp can be considered as part of the second cluster Kl .

Formally, we calculate the LOF score for observations from Kl and the point xp

according to Eq. (1) for a predefined range of the number of nearest neighbors q,
determined by the maximal number of nearest neighbors qmax:

L O Fq(xi ), i ∈ {Il ∪ p}, q = 1, 2, . . . , qmax, (3)

This results in several values of the LOF score for each observation depending on
the range of q. The reason for considering different choices of q is to obtain more
information about the local densities with respect to various sizes of the neighborhood.
Subsequently, we calculate a representative value, lof (xi ):

lo f (xi ) = 1

|q|
∑

q

L O Fq(xi ) i ∈ {Il ∪ p}, q = 1, 2, . . . , qmax, (4)

where |q| denotes the number of different choices of q. We provide an empirical study
on the proper choice of q in Sect. 3. For now, suppose that q is given. The value of
lof (xi ) describes the average similarity between the local density of an observation
xi and the local densities of its neighbors. In addition, lof (xi ) has similar properties
as the LOF score since it is a linear combination of the original scores. The higher
the value of lof (xp), the more different are the local densities of xp with respect to
neighbors from Kl , and the more likely xp is an outlier with respect to Kl , i.e. xp

cannot be a part of Kl . In order to decide if the compared local densities are similar,
i.e. xp can be part of Kl , it is necessary to determine how large lof (xp) still can be
to consider xp as part of Kl . The most convenient option would be to decide on the
basis of the resulting LOF scores. Therefore, we estimate a critical value cv p from the
values of L O Fq(xi ), where i ∈ {Il ∪ p} and q = 1, 2, . . . , qmax . There are several
possibilities for the determination of the critical value, such as using the arithmetic
mean and standard deviation or robust versions thereof. The optimal strategy for the
estimation of the critical value is presented in Sect. 3. For now, we assume that cv p

is given and we test if the first merging condition, lof (xp) < cv p, holds. If the first
condition is fulfilled, we consider the compared local densities similar and apply the
same comparison on xo with respect to Km , i.e. we investigate if xo can be considered
as part of the opposite cluster Km .

Figure 3 (right) shows that xo is considerably isolated from its three closest neigh-
bors from Km and that the observations do not build any compact region. In such a
case we can conclude that there are huge differences in the local densities. Therefore,
L O Fq(xo) � 1 which indicates that xo can not be considered as a part of the second
cluster Km . Formally, we calculate the LOF score for the observations from Km and
the point xo for the predefined range q = 1, 2, . . . , qmax . The critical value cvo is esti-
mated in the same way as cv p. Subsequently, we test if the second merging condition,
lof (xo) < cvo, is satisfied. If this condition is not fulfilled, the two clusters, Km and
Kl , are not merged and the next two closest clusters are investigated. The merging
procedure stops if the two conditions are not satisfied for any pair of clusters.
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Fig. 4 The merging procedure successively merges clusters that are close to each other and share the same
distribution. The final solution indicates that the detected clusters correspond to the actual group structure

The proposed IClust algorithm exhibits several advantages. First, the number of
final clusters does not need to be pre-specified due to the employed merging pro-
cedure. Second, the proposed procedure makes no assumptions about the cluster
characteristics. The local densities are estimated in a non-parametric way follow-
ing the definition of LOF. Finally, IClust detects clusters of partly strongly varying
sizes. By using an existing clustering algorithm with a large number of clusters, we
avoid the so-called uniform effect. For illustration, we consider the 2D imbalanced
data set and apply k-means with k = 6 to generate an initial set of clusters as in our
first example in Fig. 2 (right). Figure 4 shows each merging of the two next closest
clusters. The final result indicates that both smaller and larger groups are correctly
detected.

3 Selection of parameters

In this section, we investigate different strategies for the parameter selection. The
IClust algorithm requires for four input parameters: (1) the critical value, cvo (cv p),
(2) the range of the nearest neighbors, q, (3) the number of initial clusters, kinit , and
(4) the starting clustering algorithm. While the first two parameters are employed in
the merging procedure, the last two parameters are used to partition the data set into
an initial set of clusters. Since two parameters depend on each other, we always fix
one parameter to investigate the second one and vice versa. The optimal parameter
setting is chosen based on thorough empirical experiments employing the audio data
set.

The audio data set consists of 4780 observations which is a collection of 12 different
audio sounds. Each observation is represented by a feature vector of 679 dimensions.
The extracted features capture a wide range of audio properties and operate in the
temporal and frequency domains, i.e. the data include features such as zero crossings,
amplitude, brightness, features from the MPEG7 standard, perceptional features, and
various cepstral coefficients. In our experiments we randomly sample observations
from the original groups to create imbalanced data sets. The variables of each con-
structed data set are normalized to mean 0 and standard deviation 1.
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3.1 Critical value

The first experiment investigates different strategies for the estimation of the critical
values, cvo and cv p, employed in themerging procedure. The critical values determine
whether or not two clusters should be merged. Both critical values are estimated in
the same way, therefore, let cv be a general estimation of the critical value. The value
of cv is supposed to be automatically derived from the LOF scores calculated for the
observations from two clusters. We consider several possibilities for the estimation of
cv including arithmetic mean, mean(), empirical standard deviation, std(), and robust
versions, such as the median, median() and the median absolute deviation, mad():

cv1 = median
q,i

(L O Fq(xi )) + 2 mad
q,i

(L O Fq(xi )) (5)

cv2 = mean
q,i

(L O Fq(xi )) + 2 std
q,i

(L O Fq(xi )) (6)

cv3 = median
i

(lo f (xi )) + 2 mad
i

(lo f (xi )) (7)

cv4 = mean
i

(lo f (xi )) + 2 std
i

(lo f (xi )), (8)

where i is either from the index set {Il ∪ p} for the first merging condition or from
{Im ∪ o} for the second merging condition. The range for the number of nearest
neighbors determined byqmax is fixed tomin(|{Il∪p}|−1, 5) andmin(|{Im∪o}|−1, 5),
respectively.

Since cv determines whether or not two clusters should be merged, we investigate
two situations. We first simulate the situation when two clusters should not be merged,
i.e. the underlying observations are from two different groups. The second situation
considers two clusters containing observations from the same group and, therefore, the
two clusters are supposed to be merged. For this experiment we employ observations
from the audio data. We randomly sample two clusters either from two different audio
groups or from the same audio group. The sampled clusters are of varying sizes of 30,
25, 20, 15, 10, 5, 3, 1. We investigate each possible pairwise combination thereof and
perform 10 replications for each combination. The percentage of correct decisions is
considered as a performance indicator for the different strategies for the estimation of
the critical value, cv.

The results of this experiment are presented in Fig. 5. For all strategies, the per-
centage of correct decisions is higher when the two investigated clusters are sampled
from the same group, see the right (white) boxplot for each strategy, in comparison to
the situation when the clusters are sampled from different groups, see the left (gray)
boxplot for each strategy. In general, the robustly estimated critical values, i.e. cv1 and
cv3, outperform their standard counterparts. Since there is no clear difference between
the two robust strategies, we select cv1 as the estimation of the critical values for all
our following experiments.

3.2 Number of nearest neighbors

The aim of the second experiment is to determine the optimal range for the number of
nearest neighbors, q = 1, 2, . . . , qmax , considered in themerging procedure.We inves-
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Fig. 5 Comparison of different strategies for the estimation of the critical value cv. For each cv two
boxplots are displayed. The left (gray) boxplot represents the results when two clusters are sampled from
two different groups and the right (white) boxplot when the two clusters are sampled from the same group
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Fig. 6 Comparison of different maximal numbers of nearest neighbors, qmax . Two boxplots are shown for
each qmax . The left (gray) boxplot represents the results when two clusters are sampled from two different
groups and the right (white) boxplot when the two clusters are sampled from the same group

tigate three options for the maximal number of nearest neighbors, qmax = 5, 10, 15.
We employ the same clusters as in the previous experiment and the percentage of
correct decisions as an indicator for the optimal choice of qmax .

Figure 6 summarizes the results of the experiment. In general, all choices of qmax

lead to a high percentage of correct decisions and no clear difference can be observed.
As a result, we choose qmax = 5 for all our following experiments for computational
reasons.

3.3 Number of initial clusters

The goal of this experiment is to identify the best strategy for the selection of the
number of initial clusters, kinit , employed in the first step of the proposed IClust algo-
rithm. The parameter is used to partition a given data set into a number of potentially
highly pure clusters which are successively merged in the second step of IClust. In
general, kinit is supposed to be larger than the actual number of groups in the data set.
The actual number of groups is usually not known in advance and the only available
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Table 1 Overview of employed evaluation measures with corresponding abbreviations (abbr.)

Evaluation measure Abbr. Weighted evaluation measure Abbr.

Purity P F-measure—big groups wFb

F-measure F Precision—big groups wPrb

V-measure V Recall—big groups wReb

Homogeneity H F-measure—small groups wFs

Completeness C Precision—small groups wPrs

Recall—small groups wRes

information about the data set is the sample size, n. Therefore, we determine kinit as
a function of n. One possible approach is to set kinit to be linear dependent on n, e.g.
kinit = n/4. However, if the size of a data set is very large, the parameter kinit will get
considerably high which will notably increase the computational effort of the merging
procedure. In addition, a large kinit value leads to a small size of the initial clusters
which might affect the efficiency of the merging procedure.

We investigate various options for kinit to be non-linearly dependent on n, kinit =
5 log(n), 10 log(n), 15 log(n). This experiment is again based on 10 replications of an
imbalanced data set sampled from audio data. In each replication, we randomly select
7 audio groups with 3 bigger groups of the size: 100, 75, 50, and 4 smaller groups of
the size: 4, 3, 2, 1, resulting in 235 observations in total. We used Ward’s hierarchical
clustering algorithm to obtain the initial set of clusters.

In order to assess the influence of the different settings for kinit on the final clus-
tering solution, we select several well-known evaluation measures: Purity (Zhao and
Karypis 2002), F-measure (Larsen and Aone 1999) combining the concepts of pre-
cision and recall, and V-measure (Rosenberg and Hirschberg 2007) incorporating
homogeneity and completeness scores. Such measures evaluate a clustering solu-
tion as a whole and do not reflect the ability of a clustering method to correctly
detect small groups. For this reason, we also employ weighted measures which can
assess the performance of a clustering method in terms of detecting small and big
groups separately. Table 1 contains all employed measures, more details about the
measures are provided in the supplementary material. All measures range between
zero and one with higher values indicating a good clustering result and lower values
corresponding to a poor clustering solution. Additionally, we provide two reference
values representing potential extremes. The first value corresponds to a clustering
solution when all detected clusters are of size one, while the second value corre-
sponds to a clustering solution when all observations are assigned to a single cluster.
We report the results before and after applying the merging procedure to demon-
strate the performance of the IClust approach in comparison to the initial clustering
solution.

Figure 7 depicts the results of the experiments using the conventional clustering
evaluation measures. In general, IClust always improves the initial clustering solution
indicated by the notable raise of the F-measure (F) and the V-measure (V ) which is
directly influenced by the completeness (C) of the corresponding clustering solution.
Additionally, the scores for P and H show that the purity and homogeneity of the
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Fig. 7 Comparison of the clustering results for different numbers of initial clusters, kinit , using purity (P),
V-measure (V ), homogeneity (H ), completeness (C), F-measure (F), and number (#) of clusters. For each
kinit two boxplots are displayed. The results of the final clusterings correspond to the left (gray) boxplot and
the results of the initial clusterings to the right (white) boxplot. The lines indicate two extreme clustering
solutions. Solid lines: all clusters are of size one. Dashed lines: all observations are assigned to a single
cluster

initial clusters are comparable to those of the final clusters. In general, a low number
of initial clusters, kinit = 5 log(n), leads to a high completeness (C) but also to a lower
homogeneity (H ) of the final clusters, i.e. final clusters partly consists of observations
from different groups. On the opposite, a higher number of initial clusters, kinit =
15 log(n), results in purer clusters (see P and H ). Additionally, V,C , and F are only
slightly lower than for kinit = 10 log(n). This may indicate that kinit = 10 log(n) is
the proper choice. To further explore the influence of the different settings for kinit ,
we additionally consider the weighted clustering evaluation measures.

Figure 8 summarizes the results of the weighted evaluation measures. The high
scores for wPrb indicate highly pure clusters containing observations from bigger
groups independently of kinit . However, the corresponding recall (wReb) decreases
with an increasing number of initial clusters which reveals that bigger groups are
represented by several clusters in the final clustering solution. This indicates that there
are not enough observations in most initial clusters leading to difficulties for a proper
merging. As a result, a high number of initial cluster, kinit = 15 log(n), results in a
lower F-measure (wFb) in comparison to the extreme situation all observations build a
single final cluster. With respect to small clusters, with an increasing number of initial
clusters the precision, wPrs , increases while the recall, wRes , decreases slightly. A
too low number of initial clusters, such as kinit = 5 log(n), results in a poor clustering
solution indicated by the lower median ofwFs in comparison to the potential extreme
situation with all final clusters of size one. Therefore, we set kinit = 10 log(n) for all
our following experiments.
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Fig. 8 Comparison of the clustering solutions for different numbers of initial clusters, kinit , using the
weighted measures for F-measure (wF), precision (wPr ), and recall (wRe) with respect to small (s ) and
big (b) clusters. For each kinit two boxplots are displayed. The results of the final clusterings correspond to
the left (gray) boxplot and the results of the initial clusterings to the right (white) boxplot. The lines indicate
two extreme clustering solutions. Solid lines: all clusters are of size one. Dashed lines: all observations are
assigned to a single cluster

3.4 Initial clustering algorithm

The last experiment focuses on the selection of the starting clustering algorithm
employed in the first step of IClust to partition the provided data set into a number
of initial clusters. For this evaluation we consider the following clustering methods
(see Sect. 2.3.1): k-means (KM), partitioning around medoids (PAM), Mclust (MC),
and a hierarchical clustering with Ward’s criterion (W) and complete linkage (CL).
The experiment is again based on 10 replications of an imbalanced data set randomly
sampled from the audio data. The employed data sets are identical to the data sets in
the previous experiment.

Figure 9 presents the results using the conventional clustering evaluation measures.
In general, the proposed IClust algorithm improves the initial clustering solution inde-
pendently of the employed starting clustering method. This seems to confirm our
assumption that IClust can enhance the performance of methods suffering from the
uniform effect. The high scores for purity (P) and homogeneity (H ) indicate the IClust
results in highly pure clusters. Although the F measure indicates slightly better clus-
tering results for PAM than for its counterparts, overall, the results do not show any
clear differences across the employed starting clustering algorithms.

Figure 10 summarizes the results using the weighted clustering evaluation mea-
sures. The high precision scores (wPrb) indicate that clusters containing observations
from bigger groups are highly pure. However, the lower recall (wReb) and, in follow-
ing, the lower F-measure (wFb) show that bigger groups are commonly partitioned

123



Clustering of imbalanced high-dimensional media data 275

P V H

C F # of clusters

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

20

40

KM PAM W CL MC KM PAM W CL MC KM PAM W CL MC

KM PAM W CL MC KM PAM W CL MC KM PAM W CL MC

initial clustering algorithm

va
lu

es

Fig. 9 Comparison of the performance of different initial clustering algorithms, k-means (KM), PAM,
Mclust (MC), and a hierarchical clustering with Ward’s criterion (W) and complete linkage (CL) using the
conventional clustering evaluation measures: purity (P), V-measure (V ), homogeneity (H ), completeness
(C), F-measure (F), and number (#) of clusters. Two boxplots are shown for each algorithm. The results of
the final clusterings correspond to the left (gray) boxplot and the results of the initial clusterings to the right
(white) boxplot. The lines indicate two extreme clustering solutions. Solid lines: all clusters are of size one.
Dashed lines: all observations are assigned to a single cluster

into multiple clusters. The PAM clustering method slightly outperforms the other
employed methods in terms ofwFb. However,wFs indicates that PAM cannot reveal
smaller groups since the median is below the value representing the extreme clustering
result with all final clusters of size one. Similarly, complete linkage (CL) and k-means
(KM) achieve a wFs close to the extreme clustering solution. Both methods generate
clusters containing observations from more than a single group. Therefore, the preci-
sion with respect to smaller groups (wPrs) achieves low scores and directly influences
the F-measure (wFs). Ward’s method (W) and Mclust (M) better facilitate the detec-
tion of small groups in terms of wFs . For all our following experiments we select
Ward’s method (W) as the starting clustering approach since it is less computationally
demanding than the Mclust (MC) algorithm.

4 Experimental comparison

In this section, we compare the proposed IClust approach to several clusteringmethods
on four real-media data sets. In our comparison, we considered several existing, well-
established clustering methods: affinity propagation (AP)7 (Frey and Dueck 2007),
Mclust (MC) (Fraley and Raftery 2000), and x-means (XM)8 (Ishioka 2000). We

7 The R implementation is available in apcluster (Bodenhofer et al. 2011).
8 The R implementation is available at http://www.rd.dnc.ac.jp/~tunenori/src/xmeans.prog.
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Fig. 10 Comparison of the performance of different initial clustering algorithms, k-means (KM), PAM,
Mclust (MC), and a hierarchical clusteringwithWard’s criterion (W) and complete linkage (CL) respectively
using the weighted measures for F-measure (wF), precision (wPr ), and recall (wRe) with respect to small
(s ) and big (b) clusters. Two boxplots are shown for each algorithm. The results of the final clusterings
correspond to he left (gray) boxplot and the results of the initial clusterings to the right (white) boxplot.
The lines indicate two extreme clustering solutions. Solid lines: all clusters are of size one. Dashed lines:
all observations are assigned to a single cluster

restrict the selection of compared methods to parameter-free approaches to ensure
that a clustering solution is not affected by a wrong choice of parameters since a
parameter setting commonly depends on the nature of the underlying data. The empir-
ical simulation study in Sect. 3 indicated that theWard’s algorithm (W) seems to be an
optimal initial clustering approach. Therefore, we also include the method in our final
comparison. The number of clusters for the W method is taken as the true number of
groups (WT) and it is also estimated using three clustering indices9: Davies–Bouldin
(WDB), gap statistic (WG), and Silhouette (WS) (Rousseeuw 1987). In order to have
a fair comparison, the upper boundary of a predefined range of the number of clusters
is set to the same number of initial clusters employed in IClust, i.e. 10 log(n). Note
that the same upper boundary is considered for Mclust (MC) which estimates the
optimal number of clusters based on the largest BIC value. IClust is employed with
the previously determined settings, cv = cv1, q = 1, 2, . . . , 5, kinit = 10 log(n), and
Ward’s hierarchical clustering as the initial clustering approach.

In addition to audio data, we employ three media data sets publicly available in UCI
machine learning repository,10 see Table 2. For each media set we randomly select
observations from the original groups to construct a similar imbalanced data sets. The
ratios between group sizes are kept the same among the constructed datasets, but the

9 All clustering indices are implemented in the R package clusterSim (Walesiak and Dudek 2015).
10 UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/.
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Table 2 Overview of the employed real-world data sets in terms of number of observations (n), dimen-
sionality (p), and number (#) of groups

n × p × #groups Group size

Min Max

Audio 4780 × 679 × 12 102 2164

Human activity recognition 10,299 × 561 × 6 1406 1944

Pen-based recognition 10,992 × 16 × 10 1055 1144

Statlog landsat satellite 6435 × 36 × 6 626 1533

sizes of the groups are different. The idea behind this setup is to see whether or not the
comparedmethods are affected by different amounts of information, i.e. the number of
observations, in the groups. All experiments are based on 10 replications. We report
the results using five clustering evaluation measures: V-measure (V ), homogeneity
(H ), completeness (C), as well as the weighted F-measures with respect to big and
small clusters (wFb and wFs). The supplementary material includes the complete
evaluation results including the measures omitted in this section.

4.1 Comparison on the audio data

We first construct 10 imbalanced data sets from the high-dimensional audio data. Each
setting includes 10 groups with 3 bigger groups of the sizes: 100, 75, 50, and 7 smaller
groups of the sizes: 4, 3, 3, 2, 2, 1, 1, resulting in 241 observations in total.

Figure 11 indicates poor performance of some centroid-based approaches, such as
x-means (XM) and theWard’smethodwith silhouette width (WS), in clustering highly
imbalanced media (audio) groups. The methods detect a lower number of clusters than
the actual number of groups (cp.WT approach) leading to low homogeneity (H ). High
values wFb indicate that the methods can reasonably reveal bigger groups but low
wFs show difficulties regarding the detection of smaller groups. Similarly, the Mclust
(MC) cannot reveal small audio groups indicated by the lowest wFs . In contrast,
highwFb indicate appropriate handling of bigger groups. The performance of Ward’s
method with the true number of groups (WT) seems to be also affected by the presence
of strongly varying group sizes. Even though the method still generates homogeneous
clusters (see H ), slightly lowwFs indicate difficulties in identifying very small groups.
Although WDB achieves the highest homogeneity (H ) and weighted F-measure with
respect to smaller groups (wFs), the underlying clustering solutions are suboptimal
due to the high number of final clusters leading to the lowest completeness (C) and
consequently low V-measure (V ). Surprisingly, Ward’s method with the Gap statistic
(WG) appears to reasonably detect both smaller and larger audio groups (seewFs and
wFb).

The proposed IClust approach outperformsWG in terms of revealing smaller groups
(see wFs). In addition, IClust is capable of finding bigger groups as well (see wFb)
in comparison to methods achieving high homogeneity (H ), such as WG and Affinity
Propagation (AP).
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Fig. 11 Clustering results on the audio data set in terms of V-measure (V ), homogeneity (H ), completeness
(C), the weighted F-measures wFb and wFs with respect to big and small groups respectively, and the
number (#) of detected clusters

4.2 Comparison on the pen-based recognition data

The second experiment employs 10 imbalanced data sets constructed from the pen-
based recognition data. Each setting contains 10 groups with 3 bigger groups of the
sizes: 1000, 750, 500, and 7 smaller groups of the sizes: 40, 30, 30, 20, 20, 10, 10,
resulting in a total sample size of 2380.

Figure 12 shows thatWard’s method with the silhouette width (WS) and the Davis–
Bouldin index (WDB) seem to have troubles to reveal small groups indicated by low
wFs . Moreover, the methods produced a considerably lower number of clusters lead-
ing to low homogeneity (H ) scores. Although themodel-basedMCand x-means (XM)
generate to some extent homogeneous clusters (see H ), low wFb as well as low wFs

demonstrate that themethods completely fail in detecting the consideredmedia groups.
As expected, the proposed IClustmethod appears to identify both smaller and bigger

groups indicated by highwFs andwFb. Although IClust produces a larger number of
clusters than the true number of groups leading to low completeness (C), the methods
outperform the remaining approach (i.e. WT, AP and WG) in terms of the V-measure
(V ).

4.3 Comparison on the human activity recognition data

The next comparison is applied on 10 imbalanced data sets randomly sampled from
the human activity recognition data. Each setting consists of 6 groups with 3 bigger
groups of the sizes: 200, 150, 100, and 3 smaller groups of the sizes: 8, 6, 4, resulting
in a total sample size of 468.
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Fig. 12 Clustering results on the pen-based recognition data set in terms of V-measure (V ), homogeneity
(H ), completeness (C), the weighted F-measures wFb and wFs with respect to big and small groups
respectively, and the number (#) of detected clusters

Figure 13 shows that Ward’s method with Silhouette Width (WS) and Davies–
Bouldin (WDB) index have again difficulties in clustering imbalanced media groups
as in the previous experiment. Similarly, the performance of x-means (XM) and the
model-based MC appears to be violated by strongly varying group sizes indicated by
low homogeneity (H ). The performance of Ward’s method (WT) seems to be also
affected like in case of audio data indicated by low wFs .

The proposed IClust algorithm is slightly worse than the best performing methods,
such as AP andWG, in terms of generating homogeneous clusters (see H ). The meth-
ods also detectmore clusters than the true number of groups (cp.WTapproach) leading
to low completeness (C) and the V-measure (V ). All three methods demonstrate the
best performance regarding the detection of small groups (see wFs).

4.4 Comparison on the satellite data

The last experiment compares the employed methods on 10 imbalanced data sets
randomly generated from the satellite data. For each setting we sample 6 groups with
3 bigger groups of the sizes: 300, 225, 150, and 3 smaller groups of the sizes: 12, 9,
3, resulting in 669 observations in total.

Figure 14 shows that identifying media groups is again challenging for WS, WDB
and MC indicated by low homogeneity (H ). The detection of small groups is more
problematic than revealing larger groups (see wFs versus wFb) for these methods.
Surprisingly, x-means (XM) generates highly homogeneous clusters. However, this
is caused by over-clustering the considered media data sets leading to the lowest
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Fig. 13 Clustering results on the human activity recognition data set in terms of V-measure (V ), homo-
geneity (H ), completeness (C), the weighted measureswFb andwFs with respect to big and small groups
respectively, and the number (#) of detected clusters

completeness (C) and thus low V-measure (V ). The low homogeneity (H ) scores for
WT demonstrate that a prior knowledge about the actual number of groups does not
necessarily lead to a correct clustering solution in a highly imbalanced scenario.

The proposed IClust algorithm outperforms affinity propagation (AP) and the
Ward’s method with the Gap statistic (WG) with respect to handling bigger clus-
ters in terms of wFb. Regarding the detection of smaller groups, IClust demonstrates
comparable performance (see wFs).

5 Discussion and conclusions

We summarize our main findings based on the quality of the compared methods in
terms of the weighted F-measures (wFb and wFs). Unlike conventional clustering
evaluationmeasures, the weighted F-measures allow to inspect the ability of clustering
methods to identify big and small groups.

Figure 15 shows the obtained results in terms of the median performance of wFb

and wFs achieved during the previously performed experiments. Overall, there is no
clear dependence between the performance of the methods and the sizes of employed
data sets. However, the results indicate a dependency between identifying bigger and
smaller groups. Themethods capable of identifying big groups, such asWS andWDB,
show considerably weaker ability to detect small groups. This supports the fact that
centroid-based methods as well as validity indexes might not be suitable for clustering
imbalanced high-dimensional data. Similarly, themodel-basedMC demonstrates poor
performance in terms of finding smaller groups. On the opposite, affinity propagation
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Fig. 14 Clustering results on the satellite data set in terms of V-measure (V ), homogeneity (H ), complete-
ness (C), the weighted measures wFb and wFs with respect to big and small groups respectively, and the
number (#) of detected clusters

(AP), which does not assume any specific cluster characteristics, appears to be among
the best performing methods in terms of revealing small groups (see dark shades of
gray in Fig. 15, right). However, the method turns out to poorly detect bigger groups
(see light shades of gray in Fig. 15, left).

In contrast to all investigated method, the proposed IClust approach shows the best
performance in terms of finding small groups and, in addition, the method can still
reasonably identify bigger groups (see dark shades of gray in Fig. 15, left).

Although any real-world data set exhibits a multiple group structure, it may be
difficult to determine, whether or not the groups are of different sizes if there is no
prior knowledge available. This leads to the question if the proposed IClust algorithm
can identify groups of approximately the same sizes (balanced data setting). For this
reason, we perform an additional experiment on the balanced pen-based recognition
data set which was used to evaluate various clustering methods for high-dimensional
data (Müller et al. 2009). Müller et al. (2009) considered 10 groups of similar sizes
resulting in a total size of 7494. Table 3 presents the performance of the compared
methods in terms of the conventional evaluation measures. Although IClust shows
slightly worse performance than the best performing XM, MC, AP, and WG in terms
of purity (P) and homogeneity (H ), the proposed method partitions the data set into
a lower number of clusters. This is indicated by higher completeness (C) as well as
higher V-measure (V ). In addition, the F-measure suggests that IClust may also be
used to reveal a group structure in a balanced data setting.

The proposed method also has limitations. First, IClust takes four input parameters.
Although we provided a thorough empirical study to select optimal parameters, the
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Fig. 15 Summary of all employed experiments in terms of the weighted F-measures wFb (left) and wFs

(right) with respect to big and small groups. Dark shades of gray indicate good performance and light shades
of gray indicate poor performance

Table 3 Clustering quality of the compared methods on the balanced pen-based recognition data set with
respect to purity (P), V-measure (V ), homogeneity (H ), completeness (C), F-measure (F), and the number
(#) of clusters

P V H C F # of clusters

XM 0.916 0.653 0.881 0.518 0.496 79

MC 0.937 0.670 0.930 0.523 0.428 72

AP 0.981 0.615 0.971 0.450 0.218 165

WS 0.795 0.767 0.774 0.760 0.757 12

WG 0.970 0.700 0.959 0.551 0.422 67

WDB 0.626 0.693 0.635 0.763 0.663 8

WT 0.750 0.759 0.739 0.780 0.736 10

IClust 0.823 0.769 0.862 0.693 0.673 35

parameter setting may be tuned for other data sets. Second, IClust tends to generate
a larger number of clusters than the actual number of groups in the data. This might
be due to the estimation of critical values employed in the merging procedure. A
possible solution for improvement could be either to adjust the critical values to the
size of the clusters which are merged during the procedure or to incorporate different
robust counterparts to arithmetic mean and standard deviation. Despite the mentioned
limitations, the proposed IClust algorithm exhibits also some advantages over existing
methods. IClust does not require a pre-specification of the number of final clusters.
This algorithm also does not assume any specific cluster and data characteristics.
Moreover, the experiments demonstrated that the choice of parameters seems to be
reasonable in both imbalanced and balanced scenarios. This indicates that IClust is a
useful clustering method for media data, and it is a promising method also for other
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application domains. The R implementation of the algorithm is also freely available
at https://github.com/brodsa/IClust.

Acknowledgements This work has been partly funded by the Vienna Science and Technology Fund
(WWTF) through Project ICT12-010 and by the K-Project DEXHELPP through COMET—Competence
Centers for Excellent Technologies, supported byBMVIT, BMWFWand the provinceVienna. TheCOMET
program is administrated by FFG (Grant No. 843550). The authors would like to thank anonymous referees
for their constructive comments that improved the quality of the manuscript. Open access funding provided
by TU Wien (TUW).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bloisi DD, Iocchi L (2008) Rek-means: a k-means based clustering algorithm. In: Gasteratos A, Vincze M,
Tsotsos JK (eds) International conference on computer vision systems (ICVS). Springer, pp 109–118

Bodenhofer U, Kothmeier A, Hochreiter S (2011) APCluster: an R package for affinity propagation clus-
tering. Bioinformatics 27:2463–2464

Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) LOF: identifying density-based local outliers. In: Chen
W, Naughton JF, Bernstein PA (eds) ACM SIGMOD international conference on management of data
(ICMD), pp 93–104

Fraley C, Raftery AE (2000) Model-based clustering, discriminant analysis, and density estimation. J Am
Stat Assoc 97:611–631

Fraley C, Raftery AE, Murphy TB, Scrucca L (2012) mclust version 4 for R: Normal mixture modeling
for model-based clustering, classification, and density estimation, vol 597. University of Washington.
https://cran.rproject.org/web/packages/mclust/

Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315(5814):972–976
Hartigan JA, Wong MA (1979) A K -means clustering algorithm. Appl Stat 28:100–108
HasanMA,ChaojiV, SalemS,ZakiMJ (2009)Robust partitional clustering byoutlier and density insensitive

seeding. Pattern Recogn Lett 30(11):994–1002
Ishioka T (2000) Extended k-means with an efficient estimation of the number of clusters. In: Leung K-

S, Chan L-W, Meng H (eds) International conference on intelligent data engineering and automated
learning, data mining, financial engineering, and intelligent agents (IDEAL), pp 17–22

Kaufman L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New
York

Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Prog Artif Intell
21(9):1–12

Kriegel H, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering,
pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1–58

Kriegel H, Kröger P, Sander J, Zimek A (2011) Density-based clustering. WIREs Data Min Knowl Discov
1(3):231–240

Larsen B, Aone C (1999) Fast and effective text mining using linear-time document clustering. In: Fayyad
UM, Chaudhuri S, Madigan D (eds) ACM SIGKDD international conference on knowledge discovery
and data mining (KDD), pp 16–22

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2015) Cluster: cluster analysis basics and
extensions. R package version 2.0.3. https://cran.r-project.org/web/packages/cluster/

Müller E, Günnemann S, Assent I, Seidl T (2009) Evaluating clustering in subspace projections of high
dimensional data. Proc VLDB Endow (PVLDB) 2(1):1270–1281

Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms
implement Ward’s criterion? J Classif 31(3):274–295

Parsons L, Haque E, Liu H (2004) Subspace clustering for high dimensional data: a review. SIGKDDExplor
Newsl 6(1):90–105

123

https://github.com/brodsa/IClust
http://creativecommons.org/licenses/by/4.0/
https://cran.rproject.org/web/packages/mclust/
https://cran.r-project.org/web/packages/cluster/


284 Š. Brodinová et al.

Qian J, Saligrama V (2014) Spectral clustering with imbalanced data. In: IEEE international conference on
acoustics, speech and signal processing (ICASSP), pp 3057–3061

R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna. https://www.R-project.org/

Rosenberg A, Hirschberg J (2007) V-measure: a conditional entropy-based external cluster evaluation
measure. In: Eisner J (ed) Joint conference on empirical methods in natural language processing and
computational natural language learning (EMNLP-CoNLL), pp 410–420

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J
Comput Appl Math 20:53–65

Walesiak M, Dudek A (2015) ClusterSim: searching for optimal clustering procedure for a data set. R
package version 0.44-2. https://CRAN.R-project.org/package=clusterSim

Wang Y, Chen L (2014) Multi-exemplar based clustering for imbalanced data. In: International conference
on control automation robotics and vision (ICARCV), pp 1068–1073

Zhao Y, Karypis G (2002) Criterion functions for document clustering: experiments and analysis. Tech rep,
University of Minnesota

Zimek A, Schubert E, Kriegel HP (2012) A survey on unsupervised outlier detection in high-dimensional
numerical data. Stat Anal Data Min 5(5):363–387

123

https://www.R-project.org/
https://CRAN.R-project.org/package=clusterSim

	Clustering of imbalanced high-dimensional media data
	Abstract
	1 Introduction
	2 Proposed clustering algorithm
	2.1 Background on local outlier factor (LOF)
	2.2 Naive approaches
	2.3 The IClust algorithm
	2.3.1 Identifying the initial set of clusters
	2.3.2 Merging procedure


	3 Selection of parameters
	3.1 Critical value
	3.2 Number of nearest neighbors
	3.3 Number of initial clusters
	3.4 Initial clustering algorithm

	4 Experimental comparison
	4.1 Comparison on the audio data
	4.2 Comparison on the pen-based recognition data
	4.3 Comparison on the human activity recognition data
	4.4 Comparison on the satellite data

	5 Discussion and conclusions
	Acknowledgements
	References




