
Report

by

Matthias Wess and Axel Jantsch

DNN Implementations Data Set

February 5, 2019, Vienna, Austria



2

Copyright (C) 2019 Matthias Wess and Axel Jantsch

If you �nd this work useful, please cite it using the following BIBTEX entry:

@TechReport{wess2019,

author = {Matthias Wess and Axel Jantsch},

title = {DNN Implementations Data Set},

institution = {TU Wien},

year = {2019},

month = {January},

address = {Gusshausstrasse 27--29 / 384, 1040 Wien, Austria}

}

Contact us:

matthias.wess@student.tuwien.ac.at

axel.jantsch@tuwien.ac.at

This report is licensed under the following license: Attribution 4.0 International (CC BY 4.0)

You are free to:

1. Share — Copy and redistribute the material in any medium or format

2. Adapt — Remix, transform, and build upon the material for any purpose, even commercially.

This license is acceptable for Free Cultural Works.

The licensor cannot revoke these freedoms as long as you follow the license terms.

The entire license text is available at: https://creativecommons.org/licenses/by/4.0/legalcode

https://creativecommons.org/licenses/by/4.0/legalcode


3

DNN Implementations and their Characteristics

Figure 1 shows power, latency, throughput, accuracy and energy e�ciency characteristics of Deep Neural Network

(DNN) based object detection algorithms implemented on di�erent platforms, namely Field Programmable Gate Arrays

(FPGAs), Graphic Processing Units (GPUs) and mobile Graphic Processing Units (mGPUs). All implementations have

been evaluated with the ImageNet dataset. The �gures are either from publications in the period 2016-2018 or from

Nvidia and Xilinx websites accessed in 2018, as listed in the references below.

Table 1 allows to identify the references for each data point of the plots in �gure 1, as the entries in the table constitute

the coordinates in the plots. For instance, the �rst table entry, Jiao et al. 2017, with a power consumption of 2.3W

and a latency of 9.41ms identi�es in the top left latency-power plot of �gure 1 as the leftmost +, right on the Pareto

curve.
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Figure 1: DNN implementations evaluated with the ImageNet dataset as reported in recent publications from 2016-2018

and the Xilinx and Nvidia websites accessed in 2018.

It is remarkable that the implementations vary 2 orders of magnitude in power consumption, 3 orders in throughput

as measured in images per second, over 2 orders of magnitude in latency per image, and over 2 orders of magnitude in

energy e�ciency. Moreover, the achieved accuracy for the top 5 predictions is between 73% and 92%.

GPU based implementations have the highest power consumption and also the highest throughput, even though some

GPU based solutions exhibit high power consumption but only moderate performance. Both GPU and mGPU based
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implementations have relatively narrow range in the power consumption but vary quite a bit with respect to the other

metrics. In contrast, FPGA based solutions stretch over larger regions in all metrics considered in Figure 1.

The �gures display a Pareto curve that connects the Pareto optimal points. Most of the Pareto optimal solutions are

FPGA based (64%), indicating their �exibility facilitating customization for particular objectives and applications, by

using arbitrary bitwidth and architectures optimized for speci�c network structures.

Accuracy Plots

The plots in �gure 2 set the achieved accuracy in relation to power consumption, latency and throughput. None of these

parameters are strongly correlated to accuracy which seem to suggest, that the solutions of our dataset ave not been

subject to a trade-o� among those parameters. Higher accuracy has not been achieved at the expense of higher latency,

lower throughput or higher power. However, the drawn Pareto curve still seems to suggest that such a trade-o� may

exist, but the solutions in our dataset simply have not explored this trade-o�. consumption.
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Figure 2: Plots relating accuracy to power, energy e�ciency, latency and throughput.
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Power Plots

The plots in �gure 3 set the power consumption in relation to accuracy, latency, energy e�ciency and throughput.
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Figure 3: Plots relating power consumption to energy e�ciency, latency, throughput, and accuracy.

Energy E�ciency Plots

The plots in �gure 4 set the energy e�ciency (images/Joule) in relation to accuracy, latency, power consumption and

throughput.

The correlation in the throughput/energy e�ciency plot as suggested by the plot at the lower left of �gure 4, is a

bit unexpected. The higher the throughput the higher the energy e�ciency. However, there is no correlation with

latency.
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Figure 4: Plots relating energy e�ciency, measured in images/Joule, to power consumption, latency, throughput, and

accuracy.
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Throughput Plots

The plots in �gure 5 set the throughput in relation to accuracy, latency, energy e�ciency and power consumption.
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Figure 5: Plots relating throughput, measured in images/sec, to power consumption, energy e�ciency, latency, and

accuracy.
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Latency Plots

The plots in �gure 6 set the latency in relation to power consumption, accuracy, energy e�ciency and throughput.
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Figure 6: Plots relating latency to energy e�ciency, power consumption, throughput, and accuracy.
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Table of References

Table 1: Database

Title Network Type Power (W) Latency (ms) Img./sec Img./J TOP5 (%)

Jiao et al. 2017 DoReFa-Net FPGA 2.3 9.41 106.0 46.90 73.1

Lu et al. 2017 VGG-16 FPGA 23.6 336.33 95.1 4.03 90.0

Qiu et al. 2016 VGG-16 FPGA 9.6 224.60 4.5 0.46 86.7

H. Li et al. 2016 AlexNet FPGA 30.2 71.61 391.0 12.95 80.1

Ma et al. 2018 VGG-16 FPGA 21.2 47.97 20.8 0.98 90.0

Ma et al. 2018 ResNet-50 FPGA 21.2 12.70 78.7 3.71 92.2

Podili, Zhang, and Prasanna 2017 VGG-16 FPGA 8.0 142.30 7.0 0.87 88.1

Yu et al. 2017 VGG-16 FPGA 20.0 42.11 47.5 2.37 90.0

Guo, Sui, Qiu, Yu, et al. 2018 VGG-16 FPGA 3.5 364.00 2.7 0.78 88.1

Venieris and Bouganis 2016 VGG-16 FPGA 5.0 249.38 4.0 0.80 90.0

Gokhale et al. 2017 GoogLeNet FPGA 9.5 27.55 36.3 3.81 89.0

Gokhale et al. 2017 ResNet-50 FPGA 9.6 17.70 56.5 5.88 92.2

Gokhale et al. 2017 AlexNet FPGA 9.5 100.30 1276.2 134.62 80.1

Guo, Sui, Qiu, Yao, et al. 2018 VGG-16 FPGA 3.0 519.00 3.9 1.28 90.0

Guo, Sui, Qiu, Yao, et al. 2018 VGG-16 FPGA 12.0 105.06 19.0 1.59 90.0

Kathail 2017 GoogLeNet FPGA 4.5 6.40 156.3 34.72 89.0

Guo, Sui, Qiu, Yu, et al. 2018 VGG-16 mGPU 10.0 96.50 10.4 1.04 88.5

Behrends et al. 2015 AlexNet mGPU 5.1 14.93 67.0 13.14 80.1

Behrends et al. 2015 AlexNet mGPU 5.7 496.12 258.0 45.26 80.1

Franklin 2017 AlexNet mGPU 5.6 5.62 178.0 31.79 80.1

Franklin 2017 AlexNet mGPU 5.6 276.46 463.0 82.68 80.1

Behrends et al. 2015 GoogLeNet mGPU 4.0 30.30 33.0 8.25 89.0

Behrends et al. 2015 GoogLeNet mGPU 5.8 853.33 75.0 12.93 89.0

Franklin 2017 GoogLeNet mGPU 4.8 7.25 138.0 28.75 89.0

Franklin 2017 GoogLeNet mGPU 5.9 653.06 196.0 33.22 89.0

charlyng 2018 VGG-16 mGPU 6.0 104.40 9.6 1.60 90.0

Behrends et al. 2015 AlexNet GPU 164.0 2.47 405.0 2.47 80.1

Behrends et al. 2015 AlexNet GPU 227.0 39.80 3216.0 14.17 80.1

charlyng 2018 VGG-16 GPU 225.0 11.98 83.5 0.37 90.0

Behrends et al. 2015 GoogLeNet GPU 119.0 7.25 138.0 1.16 89.0

Behrends et al. 2015 GoogLeNet GPU 225.0 148.32 863.0 3.84 89.0

Johnson 2018 ResNet-50 GPU 225.0 35.03 456.8 2.03 92.2

Rachakonda 2018 GoogLeNet NPU 1.0 108.95 9.2 9.18 89.0
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