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abstract. We survey the current state of the art of general tech-
niques, as well as specific software systems for solving tasks in ab-
stract argumentation frameworks, structured argumentation frame-
works, and approaches for visualizing and analysing argumentation.
Furthermore, we discuss challenges and promising techniques such as
parallel processing and approximation approaches. Finally, we ad-
dress the issue of evaluating software systems empirically with links
to the International Competition on Computational Models of Argu-
mentation.

1 Introduction

Compared to related areas such as argumentation theory [van Eemeren et
al., 2014], research conducted in the formal argumentation community seeks
formal accounts of argumentation with explicit links to knowledge repre-
sentation and reasoning, and artificial intelligence [Brachman and Levesque,
2004; Russell and Norvig, 2003]. An important feature for these accounts is
computability, i. e., the possibility to provide algorithmic methods to solve
problems.

In this paper, we survey general computational techniques and concrete
implementations for solving problems related to formal argumentation. We
distinguish between: (1) Approaches to abstract argumentation frameworks,
(2) Approaches to structured argumentation frameworks (such as ASPIC+
and DeLP), and (3) Other approaches, including semi-formal systems related
to visualization of argumentation processes or exchange of arguments on the
web.

Between them, the most active research direction within the formal argu-
mentation community1 is devoted to the first category—algorithms and sys-
tems for abstract argumentation frameworks—reviewed in Section 2. The

1Approaches in the third category are also addressed by other research communities
such as human-computer-interaction and web science.

This manuscript was published in IfCoLoG (ISBN 978-1-84890-253-4) and in the Handbook of Formal
Argumentation (ISBN 978-1-84890-275-6).



2 Federico Cerutti, Sarah A. Gaggl, Matthias Thimm, Johannes P. Wallner

relevant computational problems and their (high) computational complex-
ity have been studied in e. g. [Dunne and Wooldridge, 2009]. Here, we focus
on the algorithmic issues and techniques to handle the high computational
complexity of some of those problems. The development of implementations
has accelerated recently, also due to the foundation of the International
Competition on Computational Models of Argumentation (ICCMA):2 be-
sides discussing general techniques we will also survey concrete systems.

We will also look at techniques and systems solving problems for struc-
tured approaches to formal argumentation. Due to the multitude of different
approaches to structured argumentation, computational techniques and al-
gorithms are usually tailored towards specific approaches. We will discuss
them in Section 3.

In order to complement our survey we will also have a brief look at other
systems that incorporate some kind of (semi-)formal argumentation such as
argument schemes and argumentation technologies (or debating technolo-
gies) which are popular in many other fields besides the formal argumen-
tation community. In contrast to the perspective of artificial intelligence
and knowledge representation usually taken by researchers in the formal
argumentation community, the focus of the systems in this third category
is on human-computer interaction and supporting critical thinking. We will
discuss these systems in Section 4, concluding the survey part of this paper.

In Section 5 we will look beyond the current state of the art of algorithms
and systems and current challenges for the development of systems, such
as parallelization and approximation algorithms, focusing on abstract and
structured argumentation approaches. A recent effort to promote the devel-
opment of systems for solving argumentation tasks is the ICCMA: the first
instance of the competition took place in 2015 [Thimm et al., 2016]. We
will discuss this competition and general methods for empirically evaluating
systems in Section 6.

2 Abstract Argumentation Implementations

In this section we will give an overview of implementations for abstract Ar-
gumentation Frameworks (AFs) following the approach from Dung [Dung,
1995] and give an overview of existing systems for Dung’s framework as well
as for some related formalisms.

One can divide the implementations for abstract AFs into two categories:
the reduction-based approach and the direct approach. The former one re-
duces the problem at hand into another formalism to exploit existing solvers
from the other formalism. We will discuss this method and the dedicated

2http://argumentationcompetition.org (on 27/04/2017).
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implementations in the following subsection. The other possibility is to de-
sign algorithms to directly solve the problem. This implementation method
will be presented in Subsection 2.2. For a more detailed discussion on im-
plementation methods for AFs we refer to [Charwat et al., 2015].

Before we go into details on the different approaches we briefly introduce
the background on abstract argumentation [Dung, 1995] and the notation
we will use in this section. For comprehensive surveys on argumentation
semantics the interested reader is referred to [Baroni et al., 2011a].

Definition 2.1 An argumentation framework (AF ) is a pair AF = 〈Ar , att〉,
where Ar is a finite set of arguments and att ⊆ Ar × Ar is the attack re-
lation. The pair 〈a, b〉 ∈ Ar means that a attacks b. A set S ⊆ Ar of
arguments attacks b (in AF ), if there is an a ∈ S, such that 〈a, b〉 ∈ att.
An argument a ∈ Ar is defended by S ⊆ Ar (in AF ) iff, for each b ∈ Ar,
it holds that, if 〈b, a〉 ∈ att, then S attacks b (in AF ). Given a set S ⊆ Ar,
S+ = {a ∈ Ar | 〈b, a〉 ∈ att , b ∈ S}, and S− = {a ∈ Ar | 〈a, b〉 ∈ att , b ∈
S}.

The inherent conflicts between the arguments are solved by selecting
subsets of arguments, where a semantics σ assigns a collection of sets of
arguments to an argumentation framework AF . The basic requirement for
all semantics is that none of the selected arguments attack each other3.

Definition 2.2 Let AF = 〈Ar , att〉 be an AF. A set S ⊆ Ar is said to be
conflict-free (in AF ), if there are no a, b ∈ S, such that 〈a, b〉 ∈ att. We
denote the collection of sets which are conflict-free (in AF ) by cf (F ).

Definition 2.3 Let AF = 〈Ar , att〉 be an AF, then S ∈ cf (AF ) is

• a stable extension, i. e. S ∈ EST (AF ), if each a ∈ Ar \ S is attacked
by S in AF ;

• an admissible extension, i. e. S ∈ EAD(AF ), if each a ∈ S is defended
by S;

• a preferred extension, i. e. S ∈ EPR(AF ), if S ∈ EAD(AF ) and for
each T ∈ EAD(AF ), S 6⊂ T ;

• a complete extension, i. e. S ∈ ECO(AF ), if S ∈ EAD(AF ) and for
each a ∈ Ar defended by S it holds that a ∈ S;

3We concentrate here on the basic Dung-style argumentation framework, and do not
consider approaches like value-based argumentation frameworks (VAFs) [Bench-Capon,
2003] or inconsistency tolerant semantics [Dunne et al., 2009] (where this requirement
does not hold), as our main focus is on implementation methods.
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• the grounded extension (of AF ), i. e. the unique set S = EGR(AF ), if
S ∈ ECO(AF ) and for each T ∈ ECO(AF ), T 6⊂ S.

The typical problems of interest in abstract argumentation are the following
decision problems for given AF = 〈Ar , att〉, a semantics σ, a ∈ Ar and
S ⊆ Ar :

• Verification Verσ: is S ∈ Eσ(AF )?

• Credulous acceptance Credσ: is a contained in at least one σ extension
of AF?

• Skeptical acceptance Skeptσ: is a contained in every σ extension of
AF?

• Non-emptiness Exists¬∅σ : is there any S ∈ Eσ(AF ) for which S 6= ∅?

Computational complexity of decision problems on AFs is well-studied. For
an overview see e. g. [Dunne and Wooldridge, 2009].

2.1 Reduction-based Implementations

Reduction-based implementations are a very common approach as one ben-
efits from very sophisticated solvers developed and improved by several
communities. The underlying idea is to exploit existing efficient software
which has originally been developed for other purposes. To this end, one
has to formalize the reasoning problems within other formalisms such as
constraint-satisfaction problems (CSP) [Rossi et al., 2006], propositional
logic [Biere et al., 2009] or answer-set programming (ASP) [Brewka et al.,
2011]. The general methodology of the reduction-based approach is to re-
duce the problem at hand to the target formalism, run the solver (of the
target formalism) and interpret the output as the solutions of the original
problem, as depicted in Figure 1.

2.1.1 SAT-based Approach

Reductions to SAT have been first advocated in [Dunne and Bench-Capon,
2002] and [Dunne and Bench-Capon, 2003] and then further developed
by Besnard and Doutre [Besnard and Doutre, 2004], and later extended
by means of quantified propositional logic [Arieli and Caminada, 2013;
Egly and Woltran, 2006]. Several prominent systems use reductions to SAT,
such as Cegartix [Dvořák et al., 2014] and {j}ArgSemSAT [Cerutti et
al., 2014c; Cerutti et al., 2016b; Cerutti et al., 2017] that both rely on
iterative calls to SAT solvers for argumentation semantics of high complex-
ity (i. e. being located on the second level of the polynomial hierarchy).
Further SAT-based systems include prefMaxSAT [Vallati et al., 2015;
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Figure 1. Reduction-based approach.

Faber et al., 2016], which uses the MaxSAT approach for the computation of
preferred semantics; the LabSATSolver [Beierle et al., 2015], which uses
propositional formulas based on labellings and, for the subset maximiza-
tion task, the PrefSat Algorithm [Cerutti et al., 2014a] that then become
{j}ArgSemSAT. The system CoQuiAAS [Lagniez et al., 2015], which
also uses SAT encodings for some semantics, will be explained in Subsec-
tion 2.1.2, as the maximization task necessary for instance for preferred
semantics is performed by means of constraint programming.

Background. Let us consider a set of propositional variables (or atoms)
P and the connectives ∧,∨,→ and ¬, denoting respectively the logical con-
junction, disjunction, material implication and negation. The constants >
and ⊥ denote respectively true and false. In addition, we consider quantified
Boolean formulae (QBF) with the universal quantifier ∀ and the existential
quantifier ∃ (both over atoms), that is, given a formula φ, then Qpφ is
a QBF, with Q ∈ {∀,∃} and p ∈ P. Q{p1, . . . , pn}φ is a shorthand for
Qp1 · · ·Qpnφ. A propositional variable p in a QBF φ is free if it does not
occur within the scope of a quantifier Qp and bound otherwise. If φ con-
tains no free variable, then φ is said to be closed and otherwise open. We
will write φ[p/ψ] to denote the result of uniformly substituting each free
occurrence of p with ψ in formula φ.

An interpretation I ⊆ P defines for each propositional variable a truth
assignment where p ∈ I indicates that p evaluates to true while p /∈ I
indicates that p evaluates to false. This generalizes to arbitrary formulae
in the standard way: Given a formula φ and an interpretation I, then φ
evaluates to true under I (i. e., I satisfies φ) if one of the following holds
(with p ∈ P).

• φ = p and p ∈ I
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• φ = ¬p and p 6∈ I

• φ = ψ1 ∧ ψ2 and both ψ1 and ψ2 evaluate to true under I

• φ = ψ1 ∨ ψ2 and one of ψ1 and ψ2 evaluates to true under I

• φ = ψ1 → ψ2 and ψ1 evaluates to false or ψ2 evaluates to true under
I

• φ = ∃pψ and one of ψ[p/>] and ψ[p/⊥] evaluates to true under I

• φ = ∀pψ and both ψ[p/>] and ψ[p/⊥] evaluate to true under I.

If an interpretation I satisfies a formula φ, denoted by I |= φ, we say
that I is a model of φ.

Reductions to propositional logic. The first reduction-based approach
[Besnard and Doutre, 2004; Egly and Woltran, 2006] we consider here uses
propositional logic formulae (without quantifiers) to encode the problem of
finding admissible sets. Given an AF AF = 〈Ar , att〉, for each argument
a ∈ Ar a propositional variable va is used. Then, S ⊆ Ar is an extension
under semantics σ iff {va | a ∈ S} |= φ, with φ being a propositional formula
that evaluates AF AF under semantics σ (below we will present in detail
how to translate AFs into formulae). Formally, the correspondence between
sets of extensions and models of a propositional formula can be defined as
follows.

Definition 2.4 Let T ⊆ 2Ar be a collection of sets of arguments and let
I ⊆ 2P be a collection of interpretations. We say that T and I correspond
to each other, in symbols T ∼= I, if

1. for each S ∈ T , there exists an I ∈ I, such that {a | va ∈ I, a ∈ Ar} =
S;

2. for each I ∈ I, there exists an S ∈ T , such that {a | va ∈ I, a ∈ Ar} =
S; and

3. |T | = |I|.

Given an AF AF = 〈Ar , att〉, the following formula can be used to solve
the enumeration problem of admissible semantics.

admAr ,att :=
∧
a∈Ar

(
(va →

∧
〈b,a〉∈att

¬vb) ∧ (va →
∧

〈b,a〉∈att

(
∨

〈c,b〉∈att

vc))
)(1)
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Figure 2. Example argumentation framework.

Note that an empty conjunction is treated as >, whereas the empty dis-
junction is treated as ⊥.

The models of admAr ,att now correspond to the admissible sets of AF ,
i. e., we have EAD(AF ) ∼= {M | M |= admAr ,att}. The first conjunction
in (1) ensures that the resulting set of arguments is conflict-free, that is,
whenever we accept an argument a (i. e., va evaluates to true under a model),
all its attackers cannot be accepted. The second conjunct expresses the
defense of arguments by stating that, if we accept a, then for each attacker
b, some defender c must be accepted as well.

Example 2.5 Let AF = 〈Ar , att〉 be an AF with Ar = {a, b, c, d, e} and
att = {〈a, b〉, 〈b, c〉, 〈c, b〉, 〈d, c〉, 〈d, e〉, 〈e, e〉} as depicted in Figure 2. The
corresponding propositional formula admAr ,att is as follows.

admAr ,att ≡(va → >)∧
(vb → (¬va ∧ ¬vc))∧
(vc → (¬vb ∧ ¬vd))∧
(vd → >)∧
(ve → (¬vd ∧ ¬ve))∧
(va → >)∧
(vb → (⊥ ∧ (vb ∨ vd)))∧
(vc → ((va ∨ vc) ∧ ⊥))∧
(vd → >)∧
(ve → (⊥ ∧ vd))

It is easy to see that I = {I1, I2, I3, I4} represents the set of models of
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admAr ,att , where

I1 = {va 7→ ⊥, vb 7→ ⊥, vc 7→ ⊥, vd 7→ ⊥, ve 7→ ⊥},
I2 = {va 7→ >, vb 7→ ⊥, vc 7→ ⊥, vd 7→ ⊥, ve 7→ ⊥},
I3 = {va 7→ ⊥, vb 7→ ⊥, vc 7→ ⊥, vd 7→ >, ve 7→ ⊥},
I4 = {va 7→ >, vb 7→ ⊥, vc 7→ ⊥, vd 7→ >, ve 7→ ⊥}.

As T = {S1, S2, S3, S4}, with S1 = {}, S2 = {a}, S3 = {d} and S4 = {a, d},
is the set of all admissible sets of AF we clearly have the correspondence
I ∼= T as desired.

Reductions to quantified Boolean formulas. For problems beyond NP
we require a more expressive formalism than propositional logic. For this
purpose we consider QBFs. In the following we will show how to reduce a
given AF into a QBF such that the models of the QBF correspond to the
preferred extensions of the AF [Egly and Woltran, 2006].

In order to realize the maximality check for preferred semantics we need
to be able to compare two sets of atoms w.r.t. set inclusion. Consider the
formula

Ar < Ar ′ :=
∧
a∈Ar

(va → va′) ∧ ¬
∧

a′∈Ar ′

(va′ → va),

where Ar ′ = {a′ | a ∈ Ar}. This formula ensures that any model M |=
(Ar < Ar ′) satisfies {a ∈ Ar | va ∈ M} ⊂ {a ∈ Ar | va′ ∈ M}. Now
we can state the QBF prf Ar ,att for preferred extensions. Let the quantified

variables be Ar ′v = {va′ | a′ ∈ Ar ′} and att ′ = {〈a′, b′〉 | 〈a, b〉 ∈ att}. Then

prf Ar ,att := admAr ,att ∧ ¬∃Ar ′v((Ar < Ar ′) ∧ admAr ′,att′) .(2)

Thus, for any AF AF = 〈Ar , att〉 an interpretation I is a model of prf Ar ,att

iff it satisfies the formula for admissible sets and there exists no “bigger”
interpretation I ′ that also satisfies the the corresponding formula for admis-
sible sets.

Example 2.5 (continued) There, I4 is the only interpretation which
satisfies the QBF prf Ar ,att and the corresponding set S4 is the only preferred
extension of AF .

Similar approaches have been proposed by Arieli and Caminada in [Arieli
and Caminada, 2013] and for Abstract Dialectical Frameworks by Diller et
al. in QADF [Diller et al., 2015].
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Iterative application of SAT solvers. The final approach we outline
here is based on the idea of iteratively searching for models of propositional
formulae and has been instantiated in the systems {j}ArgSemSAT [Cerutti
et al., 2014a; Cerutti et al., 2014c; Cerutti et al., 2016b] and Cegartix [Dvořák
et al., 2014; Dvořák et al., 2014]. The idea is to use an algorithm which
iteratively constructs formulae and searches for models of these formulae. A
new formula is generated based on the model of the previous one (or based
on the fact that the previous formula is unsatisfiable). At some point the
algorithm reaches a final decision and terminates.

The iterative approach is suitable when the problem to be solved cannot
be decided in general—under standard complexity theoretic assumptions—
by the satisfiability of a single propositional formula, constructible in poly-
nomial time without quantifiers. This is, for instance, the case with skepti-
cal acceptance under preferred semantics, where the corresponding decision
problem is ΠP

2 -complete. Instead of reducing the problem to a single QBF
formula, the solving task is delegated to the iterative scheme of an algorithm
querying a SAT solver multiple times.

The algorithms for preferred semantics work roughly as follows. To com-
pute preferred extensions we traverse the search space of a computationally
simpler semantics. For instance, we can iteratively search for admissible
sets or complete extensions and iteratively extend them until we reach a
maximal set, which is a preferred extension. By generating a new candidate
for an admissible set or a complete extension, which is not contained in an
already visited preferred extension, we can enumerate all preferred exten-
sions in this manner. This allows answering both credulous and skeptical
reasoning problems as well.

For deciding e. g. skeptical acceptance of an argument under preferred
semantics one requires, in the worst case, an exponential number of calls to
the SAT solver—under standard complexity-theoretic assumptions. How-
ever, the actual number of SAT calls in the iterative SAT scheme depends
on the number of preferred extensions of the given AF, see [Dvořák et al.,
2014].

In the following, we sketch the Cegartix approach from [Dvořák et al.,
2014] for skeptical acceptance of an argument under preferred semantics.
The algorithm returns YES if a is skeptically accepted, NO otherwise. To
do so we try to construct a preferred extension which does not contain a. If
this is possible we know that a is not skeptically accepted under preferred
semantics, otherwise the algorithm returns YES.

1) Check if there is an interpretation I satisfying the formula φ (initially
φ = admAr ,att ∧ ¬va). If such an interpretation I exists, go to Step
2. Otherwise there is no admissible set which does not contain a, and
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the algorithm returns YES.

2) Try to add new arguments to I by updating it (as long as possible)
with interpretations satisfying the formula

admAr ,att ∧ ¬va ∧ (
∧

a∈Ar ,va∈I
va) ∧ (

∨
a∈Ar ,va 6∈I

va).

3) For the maximized interpretation I, check if it is possible to add the
argument a to it by checking for models of the formula

φ′ = admAr ,att ∧ (
∧

a∈Ar ,va∈I
va) ∧ (

∨
a∈Ar ,va 6∈I

va).

If there is an interpretation I ′ satisfying φ′, there is a preferred ex-
tension which contains a. Otherwise, there is a preferred extension,
namely the one represented by the interpretation I, which does not
contain the argument a. In this case the algorithm outputs NO and
terminates.

4) The algorithm continues with the search for a different preferred ex-
tension which does not contain the arguments of I by modifying the
formula φ as follows:

φ′ = φ ∧ (
∨

a∈Ar ,va 6∈I

va).

Go to Step 1.

Example 2.5 (continued) Let us exemplify the algorithm of Cegartix
on our AF from Example 2.5, where we want to decide skeptical acceptance
of the argument d. We know that there are four interpretations satisfying
the formula for admissible sets and only I1 and I2 satisfy the formula φ =
admAr ,att ∧ ¬vd of Step 1. Let us continue with I = I1 which represents
the admissible set S1 = {}. In Step 2, we update I by setting va to >.
Remember, we cannot set vd to > as φ contains the clause ¬vd. In Step
3 we check if there is an I ′ satisfying the formula φ′ = admAr ,att ∧ va ∧
(vb ∨ vc ∨ vd ∨ ve). Indeed I ′ = {va 7→ >, vb 7→ ⊥, vc 7→ ⊥, vd 7→ >, ve 7→
⊥} is a model of φ′, thus we constructed a preferred extensions, namely
S = {a, d} containing the argument a. In Step 4 we update our formula
to φ = admAr ,att ∧ ¬vd ∧ (vb ∨ vc ∨ vd ∨ ve) and go to Step 1. In the next
iteration, we check the new formula φ for models, but as φ is not satisfiable
the algorithm outputs YES and terminates.
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One can use a modified version of the above algorithm to enumerate
all preferred extensions. More concretely, one can add the obtained pre-
ferred extension from Step 2 to the output-set and then update the for-
mula as in Step 4, while omitting Step 3. Further, the conjunct contain-
ing a negated variable for the queried argument must be removed. The
PrefSat approach [Cerutti et al., 2014a] as implemented in the system
{j}ArgSemSAT [Cerutti et al., 2014c; Cerutti et al., 2016b] uses this
method to compute all preferred labellings.

2.1.2 Reductions to Constraint Satisfaction Problems

In the following we introduce reductions to another target formalism, namely
Constraint Satisfaction Problems (CSPs) [Rossi et al., 2006], which allow
to solve combinatorial search problems. Reductions to CSP have been ad-
dressed by Amgoud and Devred [Amgoud and Devred, 2011] and Bistarelli,
Pirolandi, and Santini [Bistarelli et al., 2009; Bistarelli and Santini, 2010;
Bistarelli and Santini, 2011; Bistarelli and Santini, 2012b; Bistarelli and
Santini, 2012a]; the latter works led to the development of the ConArg
system. Further systems based on CSP are CoQuiAAS [Lagniez et al.,
2015] and ASGL [Sprotte, 2015]. The approach of CSP is inherently re-
lated to propositional logic reductions as introduced in Subsection 2.1.1,
see also [Walsh, 2000] for a formal analysis of the relation between the two
approaches.

A CSP can generally be described by a triple (X,D,C), where X =
{x1, . . . , xn} is the set of variables, D = {D1, . . . , Dn} is a set of finite do-
mains for the variables and C = {c1, . . . , cm} a set of constraints. Each
constraint ci is a pair (hi, Hi) where hi = (xi1, . . . , xik) is a k-tuple of vari-
ables and Hi is a k-ary relation over D. In particular, Hi is a subset of all
possible variable values representing the allowed combinations of simultane-
ous values for the variables in hi. An assignment v is a mapping that assigns
to every variable xi ∈ X an element v(xi) ∈ Di. An assignment v satisfies
a constraint ((xi1, . . . , xik), Hi) ∈ C iff (v(xi1), . . . , v(xik)) ∈ Hi. Finally,
a solution is an assignment v to all variables such that all constraints are
satisfied, denoted by (v(x1), . . . , v(xn)).

Finding a valid assignment of a CSP is in general NP-complete. Never-
theless, several programming libraries support constraint programming, like
ECLiPSe,4 SWI Prolog,5 Gecode,6 JaCoP,7 Choco,8 Turtle9 (just to men-

4http://eclipseclp.org/ (on 27/04/2017).
5http://www.swi-prolog.org/ (on 27/04/2017).
6http://www.gecode.org/ (on 27/04/2017).
7https://github.com/radsz/jacop (on 27/04/2017).
8http://www.choco-solver.org/ (on 27/04/2017).
9https://github.com/timfel/turtle (on 27/04/2017).
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tion some of them) and allow for efficient implementations of CSPs. These
constraint programming solvers make use of techniques like backtracking
and local search.

Given an AF AF = 〈Ar , att〉, the associated CSP (X,D,C) is specified
as X = Ar and for each ai ∈ X, Di = {0, 1}. The constraints are formu-
lated depending on the specific semantics σ. For example, solutions that
correspond to conflict-free sets can be obtained by defining a constraint
for each pair of arguments a and b with 〈a, b〉 ∈ att , where the two vari-
ables may not be set to 1 at the same time. Here, the constraint is of the
form ((a, b), ((0, 0), (0, 1), (1, 0))) which is equivalent to the cases when the
propositional formula (a→ ¬b) evaluates to true.

In the following, we will use the notation from [Amgoud and Devred,
2011], because it reflects the similarities between the CSP approach and the
reductions to propositional logic as outlined above.

For admissible semantics we get the following constraints.

CAD =
{

(a→
∧

b:〈b,a〉∈att

¬b) ∧ (a→
∧

b:〈b,a〉∈att

(
∨

c:〈c,b〉∈att

c))
∣∣∣ a ∈ Ar

}
(3)

The first part ensures conflict-free sets and the second part encodes the
defense of arguments. Then, for an AF AF = 〈Ar , att〉 and its associated
admissible CSP (X,D,CAD), (v(x1), . . . , v(xn)) is a solution of the CSP iff
the set {xj , . . . , xk} s.t. v(xi) = 1 is an admissible set in AF .

Example 2.5 (continued) For our AF we obtain the following admissible
CSP (X,D,CAD). X = A, for each ai ∈ X we have Di = {0, 1} and

CAD = {(a→ >) ∧ (a→ >), (b→ ¬a ∧ ¬c) ∧ (b→ ⊥∧ d),

(c→ ¬b ∧ ¬d) ∧ (c→ (a ∨ c) ∧ ⊥), (d→ >) ∧ (d→ >),

(e→ ¬d ∧ ¬e) ∧ (e→ ⊥∨ d)}.

This CSP has the following solutions: (0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 0, 0, 1, 0),
(1, 0, 0, 1, 0) which correspond to the admissible sets of AF , namely {}, {a}, {d}
and {a, d}.

Most CSP solvers do not support subset maximization. Thus, for pre-
ferred semantics, Bistarelli and Santini [2012a] propose an approach that
iteratively computes admissible/complete extensions and adds constraints
to exclude certain sets, such that one finally obtains the preferred exten-
sions.

Reductions to Weighted Partial Max-SAT. This approach has been
implemented in CoQuiAAS [Lagniez et al., 2015] and in prefMaxSAT [Val-
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lati et al., 2015; Faber et al., 2016] and is particularly tailored to maximiza-
tion problems as needed to compute preferred semantics. A Weighted Par-
tial Max-SAT problem is a problem which maximizes the sum of weights as-
sociated to constraints, where the term partial means that some constraints
have an infinite weight, which means they need to be satisfied. The sys-
tem CoQuiAAS uses a SAT-Solver but the problem of Weighted Partial
Max-SAT is more related to Constraint Programming, therefore we discuss
this approach in this section, but of course it is also closely related to the
previous section.

The computation of preferred extensions in [Lagniez et al., 2015] is based
on complete extensions which are obtained as follows. For an AF AF =
〈Ar , att〉 and for each a ∈ Ar we use a boolean variable va.

compAr ,att :=∧
a∈Ar

(
va → (

∧
b∈Ar :〈b,a〉∈att

¬vb) ∧ (va ↔ (
∧

b∈Ar :〈b,a〉∈att

∨
c∈Ar :〈c,b〉∈att

vc))
)

The models of compAr ,att correspond to the complete extensions of AF , i. e.,
we have ECO(F ) ∼= {M |M |= compAr ,att}. Then, the maximal models of
compAr ,att correspond to the preferred extensions of AF . To obtain these
one uses the concept of a maximal satisfiable subset (MSS). For a set of
formulas F the set of formulas S ⊆ F is a MSS iff S is satisfiable and for
each c ∈ F \ S, S ∪ {c} is unsatisfiable.

Now, the computation of preferred extension reduces to the computation
of MSSs of the sets of weighted formulas

prf Ar ,att = {(compAr ,att ,+∞), (a1, 1), . . . , (an, 1)}

where a1, . . . , an ∈ Ar .

2.1.3 Reductions to Answer Set Programming

The use of logic programming to solve abstract argumentation problems
has been initiated by several authors (the survey article by Toni and Ser-
got [Toni and Sergot, 2011] provides a good overview), including the ap-
proach proposed by Nieves et al. [Nieves et al., 2008], where the program
is re-computed for every input instance; Wakaki and Nitta [Wakaki and
Nitta, 2008], who use labelling-based semantics; and the approach by Egly
et al. [Egly et al., 2010a], which follows extension-based semantics. Here,
we focus on the latter—the ASPARTIX approach— [Egly et al., 2010a;
Dvořák et al., 2013a; Gaggl et al., 2015], which relies on a query-based
implementation where the argumentation framework to be evaluated is pro-
vided as an input database. From this point of view, the SAT or CSP
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methods can be seen as a compiler-like approach to abstract argumenta-
tion, while the ASP method acts like an interpreter.

A large collection of such ASP queries is provided by the ASPARTIX-D
and ASPARTIX-V systems. Furthermore, the DIAMOND system [Ell-
mauthaler and Strass, 2014] for Abstract Dialectical Frameworks (ADFs), as
well as the GERD system [Dvořák et al., 2015] for extended argumentation
frameworks (EAFs) are based on ASP. In the following, we first give a brief
introduction to ASP. We then present how the computation of admissible
sets can be encoded in ASP. In order to obtain preferred extensions, it is
necessary to check for subset-maximality of admissible sets. We will give
pointers to the literature on several approaches for the subset-maximality
check and refer to [Charwat et al., 2015] for a detailed discussion.

Background. Let us consider disjunctive logic program under the answer-
set semantics [Gelfond and Lifschitz, 1991].10 We fix a countable set U of
(domain) elements, also called constants, and suppose a total order < over
the domain elements. An atom is an expression p(t1, . . . , tn), where p is a
predicate of arity n ≥ 0 and each ti is either a variable or an element from
U . An atom is ground if it is free of variables. BU denotes the set of all
ground atoms over U .

A (disjunctive) rule r with n ≥ 0, m ≥ k ≥ 0, n+m > 0 is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm

where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for default nega-
tion. An atom a is a positive literal, while not a is a default-negated literal.
The head of r is the set H(r) = {a1, . . . , an} and the body of r is B(r) =
B+(r) ∪B−(r) with B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A
rule r is normal if n ≤ 1 and a constraint if n = 0. A rule r is safe if each
variable in H(r) occurs in B+(r). A rule r is ground if no variable occurs
in r. A fact is a ground rule with a single literal in the head and with an
empty body. An (input) database is a set of facts. A program is a finite
set of safe disjunctive rules. For a program π and an input database D, we
often write π(D) instead of D∪π. If each rule in a program is normal (resp.
ground), we call the program normal (resp. ground).

For any program π, let Uπ be the set of all constants appearing in π.
Gr(π) is the set of rules rτ obtained by applying, to each rule r ∈ π, all
possible substitutions τ from the variables in r to elements of Uπ. An
interpretation I ⊆ BU satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I and B−(r)∩ I = ∅. I satisfies a ground program π, if each r ∈ π
is satisfied by I. A non-ground rule r (resp. a program π) is satisfied by an

10For further background, see [Eiter et al., 1997; Brewka et al., 2011].
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interpretation I iff I satisfies all groundings of r (resp. Gr(π)). I ⊆ BU is an
answer set of π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz
reduct πI = {H(r) ← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. For a program
π, we denote the set of its answer sets by AS(π).

Reduction to ASP. We now provide fixed queries for admissible sets
in such a way that an argumentation framework AF is given as an input
database F̂ and the answer sets of the program πe(F̂ ) are in a certain one-
to-one correspondence with the respective extensions, where e ∈ {AD,PR}.
For an AF AF = 〈Ar , att〉, we define

F̂ = { arg(a) | a ∈ Ar} ∪ {att(a, b) | 〈a, b〉 ∈ att }.

We have to guess candidates for the selected type of extensions and then
check whether a guessed candidate satisfies the corresponding conditions,
where default negation is an appropriate concept to formulate such a guess
within a query. In what follows, we use unary predicates in(·) and out(·) to
perform a guess for a set S ⊆ Ar , where in(a) means a ∈ S.

Similar to Definition 2.4, we define the subsequent notion of correspon-
dence which is relevant for our purposes.

Definition 2.6 Let T ⊆ 2U be a collection of sets of domain elements and
let I ⊆ 2BU be a collection of sets of ground atoms. We say that T and I
correspond to each other, in symbols T ∼= I, iff

1. for each S ∈ T , there exists an I ∈ I, such that {a | in(a) ∈ I} = S;

2. for each I ∈ I, there exists an S ∈ T , such that {a | in(a) ∈ I} = S;
and

3. |T | = |I|.

Let AF = 〈Ar , att〉 be an argumentation framework. The following pro-

gram fragment guesses, when augmented by F̂ , any subset S ⊆ A and then
checks whether the guess is conflict-free in AF :

πcf = { in(X)← not out(X), arg(X);

out(X)← not in(X), arg(X);

← in(X), in(Y ), att(X,Y ) }.

The program module πAD for the admissibility test is as follows:

πAD = πcf ∪ { defeated(X)← in(Y ), att(Y,X);

← in(X), att(Y,X),not defeated(Y ) }.
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For each conflict-free set one computes the arguments defeated by the set via
the predicate defeated/1. The constraint then rules out those sets where
an argument in the guessed set is attacked by an argument which is not
defeated by the set, thus there is an argument in the conflict-free set which
is not defended.

For any AF AF = 〈Ar , att〉, the admissible sets of AF correspond to the

answer sets of πAD augmented by F̂ , i. e. EAD(AF ) ∼= AS(πAD(F̂ )).
For semantics beyond NP we need to make use of disjunction in the logic

program. There are several different ways how to encode these semantics.
The first approach was to use the so called saturation encodings as pointed
out in [Egly et al., 2010a] which are part of ASPARTIX. Other encod-
ings also incorporated in ASPARTIX are the metasp encodings [Dvořák
et al., 2013a], and the recently proposed encodings based on conditional
disjunction which make use of a particular property of preferred semantics
as shown in [Gaggl et al., 2015].

2.2 Direct Implementations

A direct implementation refers to a dedicated algorithm for a reasoning
problem of a specific semantics. The advantage is that direct implemen-
tations directly incorporate some problem-specific shortcuts, which is often
not possible—or it leads to limited improvement—in the case of reduction-
based implementations.

2.2.1 Labelling-based Algorithms

Many direct implementations are based on an alternative characterization
for semantics using certain labelling functions for arguments [Verheij, 1996b;
Doutre and Mengin, 2001; Modgil and Caminada, 2009; Nofal et al., 2014b;
Nofal et al., 2014a; Verheij, 2007]. A labelling usually assigns each argu-
ment one of the following labels Λ = {in, out, undec}, which stand for
accepted, rejected and undecided arguments. A labelling is a total function
Lab : Ar → Λ. In the following we write x(Lab) for {a ∈ Ar | Lab(a) =
x}. For instance, in(Lab) is the set of all in-labeled arguments. Some-
times we will also represent a labelling Lab as the triple 〈in(Lab), out(Lab),
undec(Lab)〉.

One advantage of labellings is that the label of one argument has an
immediate consequence to its neighbours. For example, if an argument a
is labeled with in, all arguments attacked by a will be labeled with out.
Such labelling-based algorithms have been materialized in several systems,
see Table 1.

Enumeration. Several labelling-based algorithms to enumerate all exten-
sions for various semantics have been proposed. For instance, the algo-
rithm in [Nofal et al., 2014a] makes use of five labels, namely Λ = {in,
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out, must out, blank, undec}, where the additional label blank denotes the
not yet labeled arguments and must out is assigned to arguments that at-
tack in-labeled arguments. Initially all arguments are labeled with blank.
Then, the algorithm selects an a ∈ blank(Lab) which is labeled with in in
the left branch and undec in the right branch of the search tree. Every time
an argument a is labeled with in all arguments attacked by it are labeled
out and all remaining arguments which attack a are labeled with must out.
These steps are repeated until there are no arguments left to be labeled.
The algorithm stores a preferred extension in one branch if each argument
has one of the labels in, out and undec and the in-labeled arguments are
not a subset of a previously stored preferred extension. Then, the algorithm
backtracks to try to find all preferred extensions.

For the selection of the next argument to be labeled out from blank(Lab)
the following heuristics are used.

• Don’t pick an argument a to label it in iff there is a b ∈ {a}− such
that Lab(b) 6= out and there is no c ∈ {b}− with Lab(c) = blank.

• Don’t pick an argument a to label it undec iff each b ∈ {a}− is either
labeled with out or must out.

• First select those blank-labeled argument to be labeled in which are
not attacked at all or all its attacker are labeled with out or must out.

• Otherwise, select a blank-labeled argument to be labeled in which
attacks the most not out-labeled arguments.

Here we have only considered the case of preferred semantics, but for
most of the semantics labelling-based algorithms have been proposed in the
literature: algorithms for grounded and stable semantics are given in [Mod-
gil and Caminada, 2009]; algorithms for semi-stable and stage semantics
can be found in [Caminada, 2007; Caminada, 2010; Modgil and Cami-
nada, 2009]. Recently [Nofal, 2013] studied improved algorithms for enu-
merating grounded, complete, stable, semi-stable, stage and ideal seman-
tics. Labelling-based Algorithms are implemented in the ArguLab [Pod-
laszewski et al., 2011] system as well as in the ArgTools [Nofal et al.,
2012].

Decision Procedures. In the following we will exemplify the use of la-
bellings in an algorithm dedicated to credulous reasoning with preferred
semantics, following the work of [Verheij, 2007], which is implemented in
the CompArg system. In credulous reasoning one is only interested if
a particular argument is accepted in at least one extension, thus we try
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to produce a witness (or counter-example) for this argument, instead of
computing all extensions.

The algorithm starts with labelling the queried argument with in and all
the other arguments with undec. Then, it iterates the following two steps.
Firstly, it checks whether the set of in-labeled arguments is conflict-free and
if so label all arguments attacking them with out. Otherwise terminate the
branch of the algorithm. Secondly, for each argument a which is labeled
out but not attacked by an argument labelled in, it picks an undec labeled
attacker b of a and label it with in. In case there are several such arguments,
it starts a new branch of the algorithm for each choice. If no such argument
exists it terminates the branch. It stops a branch as soon as no more changes
to labellings are made. In that case, it has reached an admissible labelling
acting as proof for the credulous acceptance of the queried argument.

Consider the AF of Example 2.5 and the argument c. In the first step we
obtain the following intermediate labelling

Lab1 = 〈{c}, {}, {a, b, d, e}〉.

As in(Lab1) is conflict-free, we label all arguments attacking c with out:

Lab2 = 〈{c}, {b, d}, {a, e}〉.

Next we need to make arguments b and d legally out by labelling at least one
of their attacker with in. In case of b this is already fulfilled as c is labeled
with in. However, the argument d has no attacker, so the algorithm stops.
We could not construct an admissible labelling for accepting the argument
c, thus it is not credulously accepted under preferred semantics.

2.2.2 Dynamic Programming-based Approaches

We briefly mention the dynamic programming-based approach, which is
defined on tree decompositions of argumentation frameworks. Many argu-
mentation problems have been shown to be solvable in linear time for AFs
of bounded tree-width [Dunne, 2007; Dvořák et al., 2012c; Courcelle, 1989].

First introduced in [Dvořák et al., 2012b], this approach especially aims
at the development of efficient algorithms that turn complexity-theoretic re-
sults into practice. The algorithms from [Dvořák et al., 2012b] are capable
of solving credulous and skeptical reasoning problems under admissible and
preferred semantics. Later, this approach was extended to work with stable
and complete semantics [Charwat, 2012]. Further fixed-parameter tractabil-
ity results were obtained for AFs with bounded clique-width [Dvořák et al.,
2010] and in the work on backdoor sets for argumentation [Dvořák et al.,
2012a]. Negative results for other graph parameters like bounded cycle-
rank, directed path-width, and Kelly-width can be found in [Dvořák et al.,
2012b].



Foundations of Implementations for Formal Argumentation 19
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Figure 3. Dynamic-programming approach based on tree-decompositions.

Systems implemented towards this approach are dynPARTIX [Char-
wat, 2012; Dvořák et al., 2013b] as well as the D-FLAT system [Bliem,
2012; Bliem et al., 2012]. D-FLAT is a general-purpose system that is
capable of solving problems from multiple domains. The methodology un-
derlying both systems is to build a tree-decomposition of a framework and
then run a dynamic programming algorithm on the tree-decomposition to
obtain the extensions of the desired semantics, as depicted in Figure 3. For
an extensive discussion of the approach we refer to [Charwat et al., 2015].

2.3 Summary

In this section we discussed the two main approaches to implement abstract
argumentation frameworks, namely the reduction-based and the direct im-
plementation approach. Systems which implement the reduction-based ap-
proach are very popular, as they benefit from highly sophisticated solvers.
One can say that they delegate the difficult part of the design of an efficient
algorithm to the solvers of the target formalism. This might be the reason
why so many solvers make use of this approach (see Table 1). On the other
side the direct implementations can incorporate shortcuts if specific proper-
ties for certain structures in AFs are known, and in particular when it comes
to the reasoning problems of skeptical and credulous acceptance, these al-
gorithms can benefit from them. Many direct implementation algorithms
make use of labellings. Table 1 summarizes all systems.

3 Structured Argumentation Implementations

This section gives an overview of algorithmic approaches to structured argu-
mentation [Besnard et al., 2014] and their respective systems. In contrast to
abstract argumentation where arguments are interpreted as abstract enti-
ties and only logical relationships between arguments are taken into account,
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{j}ArgSemSAT Yes SAT [Cerutti et al., 2014c;
Cerutti et al., 2016b;
Cerutti et al., 2017]

ArgTools Yes Labellings [Nofal et al., 2014b]

ArguLab Yes Labellings [Podlaszewski et al.,
2011]

ASGL Yes CSP [Sprotte, 2015]

ASPARTIX-D Yes ASP, SAT [Egly et al., 2010a;
Gaggl and Manthey,
2015]

ASPARTIX-V Yes ASP [Gaggl et al., 2015]

ASSA Yes Matrices [Hadjisoteriou, 2015]

Carneades Yes Labellings [Gordon et al., 2007]

Cegartix Yes SAT [Dvořák et al., 2014]

CompArg Yes Labellings [Verheij, 2007]

ConArg Yes CSP [Bistarelli et al., 2015]

CoQuiAAS Yes SAT [Lagniez et al., 2015]

DIAMOND Yes ASP [Ellmauthaler and
Strass, 2014]

Dungell Yes Haskell [van Gijzel and
Nilsson, 2013]

EqArgSolver Yes Equations,
Labellings

[Rodrigues, 2016]

GERD Yes ASP [Dvořák et al., 2015]

GRIS Yes Equations,
Labellings

[Gabbay and
Rodrigues, 2015]

LabSATSolver Yes SAT,
Labellings

[Beierle et al., 2015]

LamatzSolver Yes [Lamatz, 2015]

prefMaxSAT Yes SAT [Vallati et al., 2015;
Faber et al., 2016]

ProGraph Yes [Groza and Groza,
2015]

QADF Yes QBF,
Labellings

[Diller et al., 2015]

ZJU-ARG Yes Labellings [Liao et al., 2013]

Table 1. Summary of abstract argumentation implementations.
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structured argumentation considers an argument’s internal structure for sev-
eral aspects including evaluation. Within formal argumentation, formalisms
for structured argumentation assume a formalized knowledge base, often in
a logical or rule-based form, from which arguments and their relations are
constructed. Conceptually, formalisms for structured argumentation often
follow the steps of the so-called argumentation process or argumentation
pipeline (see e. g. [Dung, 1995, Sections 4 and 5] and [Caminada and Am-
goud, 2007, Section 2]):

1. argument construction;

2. determining conflicts among arguments;

3. evaluation of acceptability of arguments; and

4. drawing conclusions.

Argument construction typically refers to the task of building arguments
composed of a claim and a derivation of that claim (e. g. a proof tree) from
the given knowledge base. Moreover, conflicts need to be recorded, e. g.,
when claims of two arguments are contradictory, or when the derivation of
an argument’s claim contradicts with the claim of another argument. Eval-
uation of acceptability refers to formal means of finding acceptable argu-
ments, and finally conclusions can be drawn from the acceptable arguments.

From a computational point of view, all of the steps of the process taken
individually can be quite computationally expensive: for instance even con-
struction of single arguments may be computationally complex (NP-hard in
cases); a large number of arguments may be constructed; finding conflicts
can be non-trivial; and evaluation of acceptability has in general a high
complexity, as in the case of abstract argumentation.

Several algorithmic approaches have been proposed, which result in a
quite heterogeneous and evolving field comprising of many different solu-
tions. In the following we highlight properties that distinguish algorithms
for structured argumentation from each other.

Reasoning on structural or abstract representation. The first aspect
that distinguishes algorithms and systems for structured argumentation is
that they may deviate from the conceptual argumentation process. In par-
ticular, the approaches can be roughly categorized whether they perform

• (query-based) structural reasoning; or

• reasoning on an abstract representation.
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Figure 4. Argumentation process from a computational point of view

The latter classification encompasses algorithms that explicitly construct
an abstract representation, e. g. an AF, and perform reasoning solely on
that representation. Algorithms following the other approach construct no
such representation, but combine argument construction, conflict discovery,
and argument evaluation in possibly interleaving steps and take structured
information from the input knowledge base into consideration in possibly
every step.

Algorithms that perform structural reasoning are typically query-based,
i. e., decide acceptability of a certain claim, and construct arguments for
and counterarguments against the queried claim from the knowledge base. A
structural approach can restrict argument construction more easily than the
abstract approach, in particular for query-based reasoning, since structural
information can be used to determine which arguments have an effect on
the query or the currently processed argument.

On the other hand, the abstract approach first “compiles” the structured
knowledge base and subsequently all reasoning can be performed on the
abstraction. In some cases “full” knowledge of all arguments occurring in
the abstract representation is required to perform reasoning, e. g. for stable
semantics. Conceptually, the abstract approach follows more closely the
argumentation process. We illustrate structural and abstract approaches to
algorithms for structured argumentation in Figure 4. In this figure trian-
gles are arguments with internal structure and round vertices are abstract
arguments.

Dedicated and reduction-based approaches. Similarly as for approach-
es to implement abstract argumentation, we can distinguish between di-
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rect or dedicated approaches and reduction-based approaches to implement
structured argumentation. An approach is reduction-based if the input is
translated to a problem of another target formalism with available solvers
for that problem. Direct algorithms solve the problem at hand with a
domain-specific dedicated algorithm. Direct algorithms have the benefit
of incorporating domain-specific properties and optimizations more easily.
On the other hand, reduction approaches can re-use off-the-shelf solvers.
Reduction-based approaches for structured argumentation typically incor-
porate all involved tasks, i.e., argument construction, conflict evaluation,
and deciding acceptability of arguments. When constructing an abstract
representation, approaches to structured argumentation can also be hybrid
systems, i.e., providing a direct or reduction-based approach for construct-
ing the abstraction, and providing another for abstract reasoning. Usual tar-
get systems for reduction-based approaches are Prolog systems, solvers for
Boolean satisfiability (SAT) and related formalisms, and solvers for answer-
set programming (ASP) [Brewka et al., 2011]. We also call an algorithm or
system reduction-based if it incorporates a translation of subproblems to a
target language with available solvers.

Considered Approaches. In the following we overview concrete algo-
rithmic approaches to structured argumentation, introducing them with
examples and discussing the main computational problems, properties of
interest from a computational point of view, and algorithms and systems
proposed to solve the problem.11 We focus on implemented algorithms
for abstract rule-based argumentation (in particular concrete instantiations
of the general ASPIC+ formalism) [Prakken, 2010; Modgil and Prakken,
2014], assumption-based argumentation (ABA) [Bondarenko et al., 1997;
Toni, 2014], argumentation based on logic programming, in particular based
on defeasible logic programs (DeLPs) [Garćıa and Simari, 2004; Garćıa and
Simari, 2014], argumentation based on classical logic [Besnard and Hunter,
2008], and Carneades [Gordon et al., 2007]. Complementing information
can be found in a review of implementations for defeasible reasoning [Bryant
and Krause, 2008], in particular sections 4.2.7, 4.3.1, 4.3.2, 4.3.3, and 4.3.4;
in the review for argumentation for the social web [Schneider et al., 2013];
and in the overview on research in argumentation systems given by [Simari,
2011].

11Tools presented and referenced within the following subsections sometimes do not
solve the same reasoning tasks proposed for a formalism. We refer the reader to the
references for each algorithm and tool for the exact problem definitions that are solved.
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rules arguments
p→ b A1 : p
b⇒ f A2 : A1 → b

p→ f A3 : A1 → f
A4 : A2 ⇒ f

p

b
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A3
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A4 A3

Figure 5. Tweety example knowledge base in ASPIC+ (left) with axiom p,
structure of corresponding arguments (middle), and AF (right).

3.1 Abstract Rule-Based Argumentation

In this section we focus on systems for abstract rule-based argumenta-
tion, in particular concrete instantiations of the ASPIC+ [Prakken, 2010;
Modgil and Prakken, 2014] formalism. We begin with a brief introduction
to a concrete instantiation of ASPIC+ following notation of [Modgil and
Prakken, 2014]. Input in this formalism is a knowledge base consisting of
several components, central among them are (ordinary) premises and ax-
ioms, defeasible and strict rules, and preferential information. Semantics are
specified via a translation to an abstract argumentation framework. Argu-
ments are constructed by chaining premises or axioms with rules. Conflicts
among arguments are defined via so-called undercuts, rebuts, and under-
mining among arguments, all respecting the preferential information.

We illustrate the concepts in a toy example knowledge base in Figure 5.

Example 3.1 Figure 5 shows two strict rules (with a simple arrow →) and
one defeasible rule (using a double-lined arrow ⇒), and assuming p (Tweety
is a penguin) to be an axiom, one can infer the four arguments shown in the
figure, namely by a strict rule that Tweety is a bird (b), that birds normally
fly (via a defeasible rule inferring f), and that penguins do not fly (via a
strict rule inferring f ; note that overlining indicates contrariness). The
structure of the arguments is visualized in the middle of Figure 5 where
we also see the only conflict in this example, namely that argument A3

attacks A4 via rebut (contradictory conclusions). On the right of Figure 5
the abstract AF is shown.

Computational problems for abstract rule-based argumentation include
argument construction, conflict discovery, and semantic evaluation. These
problems may be tackled in an intertwined way, for instance interleaving
construction and evaluation or following more closely the argumentation
process step-by-step and thus firstly constructing the abstract argumenta-
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tion framework and then proceeding by semantical evaluation.
As a rough and general outline for algorithms based on structural rea-

soning, given a potential conclusion (e. g. Tweety can fly in example Fig-
ure 5), arguments can be constructed via backward chaining using rules until
premises or axioms are found. For instance, argument A4 can be constructed
from conclusion f and back-chaining of two rules until axiom p is reached.
Counterarguments can be found in a similar manner by back-chaining from
conclusions of arguments that would attack the arguments constructed so
far. The so constructed arguments, i. e., arguments in favor of the queried
claim and the counterarguments, corresponds to a game-theoretic approach
to compute acceptability of the given query (and one of its argument in
favor) under the specified semantics. For instance, one can conclude that
A3 is contained in an admissible set {A3}.

We begin our survey of systems for abstract rule-based argumentation
with the TOAST system12 [Snaith and Reed, 2012]. TOAST directly fol-
lows the steps of the argumentation pipeline by constructing an abstract
AF from given input knowledge base and delegates the reasoning tasks to
a dedicated AF reasoner, namely the Dung-O-Matic web service [Snaith
et al., 2010]. As an example, given the input in Figure 5 (left) the sys-
tem would return a semantical evaluation of the AF shown on the right
of that figure. The TOAST and Dung-O-Matic system together provide
a system supporting axioms, premises, assumptions, and preferential infor-
mation (last link and weakest link principles, see also [Modgil and Prakken,
2014]), rules, and a user-specified contrariness relation. The system further
supports reasoning on the resulting AF under grounded, preferred, semi-
stable, and stable semantics. TOAST is available as both a Java-based
web service and web form.

Next we overview contributions to systems for abstract rule-based ar-
gumentation by Vreeswijk, which influenced subsequent successor systems.
These systems follow query-based structural reasoning. Vreeswijk’s works
for argumentation systems are well summarized in the survey of [Bryant
and Krause, 2008, Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4]. A system that re-
sulted from Vreeswijk’s PhD thesis [Vreeswijk, 1993], IACAS (InterActive
Argumentation System), was written in LISP and is one of the earliest im-
plementations of structured argumentation that is capable of handling input
with strict and defeasible rules. This system allows for argument generation
for or against a queried claim, and concluding its acceptability taking all the
arguments into consideration. Vreeswijk’s argumentation system (AS) is a
Ruby-based implementation that handles strict and defeasible rules and tries
to construct an admissible set containing an argument that concludes the

12http://www.arg.dundee.ac.uk/toast/ (on 27/04/2017).
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queried claim. Two systems based on Vreeswijk’s AS have been developed,
namely the ASPIC Inference Engine and Argue tuProlog [Bryant et
al., 2006].

The ASPIC Inference Engine is available from the ASPIC resources
at the Cancer Research UK’s Advanced Computation Laboratory.13 It pro-
vides both a web-based front-end and a Java-based system that implement
query-based structural reasoning under grounded and (credulous) admis-
sible semantics. The Java-based implementation offers a graphical user-
interface.

A reduction approach to the language of Prolog is used in Argue tuProlog
and the system is presented in [Bryant et al., 2006]. The reduction utilizes
a game-theoretic approach for implementing ASPIC, similarly as the previ-
ous approaches. In contrast to reduction approaches for other formalisms,
Argue tuProlog reduces the input to several Prolog queries, i. e., every
query for an argument for each player is instantiated as a separate Prolog
call and thus the dialogue can be terminated at any time.

We conclude this section with Wietske Visser’s Epistemic and Practical
Reasoner (EPR)14 [Visser, 2008] which is a direct Java-based implemen-
tation that implements query-based reasoning under grounded semantics,
(credulous) admissible semantics, and e-p semantics [Prakken, 2006]. The
system provides a graphical user-interface, and is documented in detail in
Wietske Visser’s master’s thesis [Visser, 2008].

3.2 Assumption based argumentation

In assumption-based argumentation (ABA) [Bondarenko et al., 1997; Toni,
2014], arguments and conflicts are drawn from three main components: a
knowledge base, a set of assumptions, and a contrariness relation. We il-
lustrate these concepts in Figure 6. On the left of Figure 6 we see an ABA
framework, with four rules, the set of assumptions A containing a and e, and
the contrariness relation relating the two assumptions to be contrary to f
and d respectively (denoted via a = f and e = d). Arguments (in squares)
and conflicts (with solid arrows) that can be drawn from this framework
are shown on the right of the figure. These arguments correspond to proof
trees of claims. More concretely, the arguments’ structure is based on the
rules with the conclusion shown on the top of the squares and attacks take
place based on assumptions and their contraries. For instance, the argu-
ment with f as the conclusion attacks the argument with conclusion b, since
this argument requires the assumption a which is the contrary of f (a = f).
Arguments without assumptions are not attacked, e. g. argument with con-

13http://aspic.cossac.org (on 27/04/2017).
14http://www.wietskevisser.nl/research/epr/ (on 27/04/2017).
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Figure 6. ABA framework (left) and its corresponding arguments and at-
tacks (right)

clusion c.

Semantics of ABA can be defined via extensions as sets of arguments
or, equivalently, as sets of assumptions. For instance, in the example in
Figure 6 the set of arguments with claims for c, f , and e (that in this instance
uniquely determine the corresponding arguments) is an admissible extension
of the ABA framework (no attacks between these arguments are present and
all attackers from outside are counterattacked). The corresponding set of
assumptions is {e}.

A typical reasoning task for ABA frameworks is to check whether an
argument for a given claim is contained in an extension under a specified
semantics. The computational complexity for reasoning with an abstract
ABA formalism has been investigated in [Bondarenko et al., 1997]. In [Bon-
darenko et al., 1997] decision problems for credulous and skeptical accep-
tance are studied and the complexity ranges from polynomial-time decidable
to completeness for ΣP4 , a class on the fourth level of the polynomial hier-
archy.

Common to several algorithms for computing acceptability of a given
claim under a specified semantics in a given ABA framework are so-called
dispute derivations [Craven and Toni, 2016; Dung et al., 2006; Dung et
al., 2007; Gaertner and Toni, 2007b; Gaertner and Toni, 2008; Toni, 2013].
Intuitively, dispute derivations can be seen as a game-theoretic construc-
tive proof of acceptability of the given claim by constructing (part of) the
argument in favor of the claim as well as constructing (parts of) its counter-
arguments and their counterarguments. Dispute derivations were proposed
for grounded, admissible, and ideal semantics, called respectively GB, AB,
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and IB15 dispute derivations [Dung et al., 2007], which are an advance-
ment of the proof trees proposed in [Dung et al., 2006]. In [Gaertner and
Toni, 2007b; Gaertner and Toni, 2008] structured dispute derivations were
proposed that explicitly compute the dialectical structure hidden in dispute
derivations, e. g., computing the attack structure explicitly. A parametrized
version of dispute derivations was proposed in [Toni, 2013] that have a richer
output incorporating both equivalent views of semantics of ABA, namely
the view of extensions as sets of arguments and sets of assumptions.

In this paper we illustrate concepts of dispute derivations by showing
GB-dispute derivations [Dung et al., 2007]. In Figure 7 we see on the left
a representation of a simple ABA framework with assumptions A = {b, c}
and a rule that infers a without assumptions. The grounded extension of
this ABA framework contains the arguments for c and a, which are uniquely
determined in this particular framework. A GB-dispute derivation is a se-
quence of quadruples (Pi, Oi, Ai, Ci) with integer i denoting the sequence
or step. The ingredients for a step are the sentences or nodes for proponent
(Pi) and opponent (Oi), the assumptions for defense of the queried claim
(Ai) and assumptions for the opponent, so-called culprits (Ci). The com-
ponent Pi is a set of sentences and both Ai and Ci are sets of assumptions.
The second component of the quadruple, Oi, is a set of sets containing sen-
tences. For querying acceptability for a claim α we initialize with P0 = {α},
A0 = α∩A, and empty O0 and C0, where A is the set of assumptions in the
ABA framework. We next illustrate the basics of GB-dispute derivations
by recalling the corresponding sequences from [Dung et al., 2007], where we
assume a selection function f that selects at each step either an element in
Pi or in Oi and in the latter case an element of the set selected. For a given
ABA framework and a selection function f , a GB-dispute derivation of a
defense set D for sentence α is a finite sequence of quadruples

(P0, O0, A0, C0), . . . , (Pi, Oi, Ai, Ci), . . . , (Pn, On, An, Cn)

with P0 = {α}, A0 = α ∩ A, and empty O0 and C0; Pn = On = ∅ and
An = D; and for every 0 ≤ i < n and X = f(Pi, Oi, Ai, Ci) the selected
element s. t.

1. if X ∈ Pi then

(a) if X ∈ A then

Pi+1 = Pi \X, Ai+1 = Ai,
Ci+1 = Ci, Oi+1 = Oi ∪ {{X}}

15Here, the “B” stands for belief.
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c b >

a

i Pi Oi Ai Ci selected

0 {c} ∅ {c} ∅ −
1 ∅ {{b}} {c} ∅ c
2 {a} ∅ {c} {b} {b}, b
3 {>} ∅ {c} {b} a

Figure 7. ABA with A = {b, c}, b = a, c = b, and rule a ← (left); GB-
dispute derivation for c (right)

(b) else (there exists a rule X ← R with body R s.t. Ci ∩R = ∅)
Pi+1 = (Pi \X) ∪R, Ai+1 = Ai ∪ (A ∩R),
Ci+1 = Ci, Oi+1 = Oi

2. else (T ∈ Oi is selected with X ∈ T )

(a) if X ∈ A then

Pi+1 = Pi ∪ {X}, Ai+1 = Ai ∪ ({X} ∩A),
Ci+1 = Ci ∪ {X}, Oi+1 = Oi \ {T}

(b) else

Pi+1 = Pi, Ai+1 = Ai,
Ci+1 = Ci, Oi+1 = (Oi \ {T})∪

{T \ {X} ∪R | X ← R ∈ R}

with R the set of rules of the given ABA framework. In Figure 7 we see on
the right a sequence of a GB-dispute derivation. Briefly put, in each step in
the sequence we select either an element of proponent or opponent, which
in turn can either be assumptions or non-assumptions. Depending on the
choice, different updates to the step have to be applied. For instance, if we
choose an assumption of the proponent, then we remove that assumption
from the sentence the proponent holds and add the contrary to the opponent
who may construct an argument in favor of the contrary. We can note that
each step in the sequence individually is straightforward to compute, how-
ever computation relies heavily on the selection function (also on selecting
a rule in one case), which is discussed in more detail e. g. in [Gaertner and
Toni, 2007b; Craven and Toni, 2016], which also highlights design choices
for an algorithm based in dispute derivations.

Several systems have been developed implementing algorithms based
on variants of dispute derivations. Current state of the art of dispute-
derivation-based algorithms and systems for ABA are query-based and rea-
son on the structural level and generally do not construct the full abstract
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representation to perform reasoning. Interestingly, most implementations,
that build upon dispute derivations, rely on a reduction to Prolog with one
exceptions sxdd [Craven et al., 2012], which is an implementation in C++.

The system CaSAPI,16 which stands for “Credulous and Sceptical Ar-
gumentation: Prolog Implementation”, is, as the name suggests, an imple-
mentation for ABA in Prolog. In version 2.0 [Gaertner and Toni, 2007a],
CaSAPI implements GB, AB, and IB dispute derivations to perform query-
based structural reasoning. Further, in versions 3.0 [Gaertner and Toni,
2007b] and 4.3 [Gaertner and Toni, 2008; Dung et al., 2007] structured dis-
pute derivations are employed. Nowadays, CaSAPI acts as a precursor
system for more recent systems.

Several tools with refined dispute derivations and reduction to Prolog
have been proposed and implemented to perform query-based structural
reasoning for ABA.17 In the tool proxdd [Toni, 2013] the parametrized
versions of dispute derivations are used. Graph-based versions of dispute
derivations have been applied in the systems grapharg [Craven et al., 2013]

and its follow-up system abagraph [Craven and Toni, 2016]. These tools
include graphical visualization.

Recently, two systems for ABA were developed which are not based on
dispute derivations: ABAplus18 and the system from [Lehtonen et al.,
2017], which we call here ABAToAF. Both of these systems compute
semantics of ABA frameworks via an AF reasoner, ASPARTIX [Egly et al.,
2010a], on an abstract representation of the ABA framework.

The system ABAplus implements ABA+ [Cyras and Toni, 2016a], an
extension of ABA with preferences. More concretely, this system provides
computations for flat ABA+ frameworks satisfying the axiom of weak con-
traposition [Cyras and Toni, 2016b] (this class subsumes flat ABA frame-
works). The system ABAplus is capable of enumeration of extensions
(as sets of assumptions together with their conclusions) under grounded,
complete, preferred, stable, and ideal semantics. In contrast to systems de-
scribed above, ABAplus constructs an abstract AF to reason on the ABA,
with arguments being sets of assumptions, with the AF being solved via en-
codings of ASPARTIX. The system ABAplus generates arguments, using
Python, based on (i) sets of assumptions that deduce contraries of assump-
tions and (ii) singleton sets of assumptions. Both the ABA+ framework and
the enumerated extensions are visualized in a web frontend.

The other system for ABA that relies on an AF reasoner, ABAToAF,

16http://www.doc.ic.ac.uk/~ft/CaSAPI/ (on 27/04/2017).
17Available at http://www.doc.ic.ac.uk/~rac101/proarg/ (on 27/04/2017).
18Web front end available at http://www-abaplus.doc.ic.ac.uk/ (on 27/04/2017) and

stand-alone version at https://github.com/zb95/2016-ABAPlus/ (on 27/04/2017).
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constructs arguments and attacks, similarly to ABAplus, based on sets of
assumptions and derived sentences. Argument construction, implemented
in Java 8, approximates here the restriction to generate arguments only
for those sets of assumptions where at least one sentence can be derived
from such a set, but not any proper subset. The system ABAToAF solves
credulous (under admissible and stable semantics) and skeptical (under sta-
ble semantics) acceptance queries via calling an ASP solver on modified
ASPARTIX encodings on the constructed AF.

Empirical evaluations of systems for ABA have been carried out for
sxdd [Craven et al., 2012], grapharg [Craven et al., 2013], abagraph [Craven
and Toni, 2016], and ABAToAF [Lehtonen et al., 2017].

The work of [Craven and Toni, 2016], based on preliminary research
of [Craven et al., 2013], improves on several computational aspects of dispute
derivations by altering the arguments’ tree-structure to general graphs and
introducing graphical dispute derivations (graph-DDs). In addition to tackle
certain circularity questions for computation, in [Craven and Toni, 2016]

an improvement for the problems of so-called flabbiness and bloatedness is
provided. Briefly put, flabbiness refers to the potential shortcoming that the
same sentence or claim is proved in several different ways, and bloatedness
talks about deriving a claim in multiple ways in different arguments in
an extension. That is, the former talks about computation of claims for
individual arguments and the latter talks about computation of extension-
based acceptability questions incorporating redundancy. In [Craven and
Toni, 2016] graph-DDs are proposed for admissible and grounded semantics.

3.3 Argumentation based on logic programming

In this section we focus on algorithms and systems for argumentation based
on logic programming, in particular defeasible logic programming [Garćıa
and Simari, 2004; Garćıa and Simari, 2014].A defeasible logic program
(DeLP) consists of strict (←) and defeasible (�) rules as illustrated in
Figure 8. Arguments in a DeLP are composed of a claim (a literal) and
a set of defeasible rules. Acceptance of arguments is decided via a di-
alectical tree, see Figure 8 (right) for an example which includes an ar-
gument (A, a) that argues for literal a with set of rules A, arguments
(B1,∼b) and (B2,∼b) that argue for (strongly) negated b, and argument
(E,∼e) that argues for (strongly) negated e. Argument (B2,∼b) defeats
(A, a) because the former contradicts a subargument of the latter (ar-
guing for b). Such a dialectical tree is then marked conceptually in a
bottom-up manner with undefeated U and defeated D , i. e., leaves are
undefeated and arguments are defeated if at least one child node is un-
defeated. Arguments are undefeated if all its children are defeated. Im-
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A B1 B2 E

a� b ∼b� d ∼b� e ∼e← g
b� c d← e� f g ←
c← f ←

(A, a)D

(B1,∼b)U (B2,∼b)D

(E,∼e)U

Figure 8. DeLP knowledge base (left) and dialectical tree (right)

portant for determining conflicts are preference relations which can either
be given as input or derived via specificity, see [Garćıa and Simari, 2004;
Stolzenburg et al., 2003] for details. In our example, the argument (A, a)
is not warranted, simply because it is defeated by (B1,∼b). If the rules
used in argument (B1,∼b) would be removed from the input DeLP, then
argument (A, a) would be warranted.

Complexity of decision problems in DeLP has been studied in [Cecchi et
al., 2006], showing complexity results for problems of deciding whether a
given structure is an argument in a given DeLP (polynomial-time decidable),
existence of arguments (a problem in NP), and further results regarding data
complexity.

Algorithms for DeLP, which are based on dialectical trees, inherently
solve query-based structural reasoning and check whether the queried claim
is acceptable or warranted in a dialectical tree. Regarding enhancements
for algorithms for computing acceptance of DeLPs, as stated in the survey
of [Bryant and Krause, 2008], three concepts have been proposed to opti-
mize efficiency for deciding acceptance in DeLPs: (i) pruning of dialectical
trees [Chesñevar et al., 2000], (ii) using pre-compiled arguments in a dialec-
tical database [Capobianco et al., 2004], and (iii) using parallelism [Garćıa
and Simari, 2000]. We briefly illustrate these concepts and also refer the
reader to the survey [Bryant and Krause, 2008] which includes a section on
DeLP (Section 4.2.7).

For pruning of dialectical trees, as can be seen in the example dialectical
tree of Figure 8, we do not need to consider all arguments in the tree to
determine the dialectical status of the root argument. In particular, since
argument (B1,∼b) is undefeated, it is immediate that the top argument in
this case is defeated. Therefore the right subtree is not relevant for conclud-
ing the overall result. Details on general pruning procedures for DeLP can
be found in [Chesñevar et al., 2000], in particular how to “choose” the most
promising argumentation line (path from root to a leaf in a dialectical tree)
that determines an answer to the acceptability question as soon as possible.
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In [Capobianco et al., 2004] for speeding up algorithms for ODeLP, a pre-
compiled so-called dialectical database is suggested. Briefly put, potential
arguments and defeats from the initial knowledge base are pre-compiled. In
this way queries can incorporate first look-ups in the pre-compiled dialectical
database.

For exploiting parallelism, in [Garćıa and Simari, 2000] it is suggested to
parallelize computation for (i) finding several arguments for the same con-
clusion, (ii) discovering several defeaters for an argument, and (iii) finding
several argumentation lines.

For concrete systems, DeLP reasoning has been implemented in Pro-
log accessible via the DeLP client,19 and in the general-purpose libraries
of Tweety20 [Thimm, 2014]. In Tweety both the algorithm outlined
in [Garćıa and Simari, 2004] for marking a dialectial tree and a translation
to an AF have been implemented (the latter does not preserve the dialecti-
cal semantics of DeLP and only interprets the arguments and counterargu-
ment relationship within an abstract framework). Tweety also provides a
web-interface for DeLP. Also, an abstract machine called JAM (justification
abstract machine) [Garćıa, 1997] has been designed for DeLP. Furthermore,
a reduction to ASP is given in [Thimm and Kern-Isberner, 2008].

Two further notable reduction-based approaches for extensions of DeLP
have been proposed and implemented.21 Possibilistic DeLP (P-DeLP) ex-
tends DeLP rules by attaching levels of strength. In [Alsinet et al., 2010]

a recursive semantics for P-DeLP has been proposed, the corresponding
framework is called RP-DeLP. An ASP-based approach to compute queries
for RP-DeLP, i. e., to decide if a literal is warranted in the framework, is
presented and experimentally evaluated in [Alsinet et al., 2012], which is
based on results and complexity bounds of [Alsinet et al., 2011]. We call
the corresponding system ASP-RP-DeLP. A reduction-based approach
to SAT for multiple outputs of R-DeLP, we call the system SAT-R-DeLP,
has been presented in [Alsinet et al., 2013] and also experimentally evalu-
ated in that paper. The SAT approach is based on results of [Alsinet et al.,
2011].

3.4 Argumentation based on classical logic

In argumentation based on classical logic, or deductive argumentation, argu-
ments and conflicts are generated from a (classical) logic knowledge base [Besnard
and Hunter, 2008]. A knowledge base is here a set of formulas and argu-
ments are pairs (S,C) of support S and claim C. The first component is

19Web interface available at http://lidia.cs.uns.edu.ar/delp_client/ (on
27/04/2017).

20http://tweetyproject.org (on 27/04/2017).
21Available via web-front-end at http://arinf.udl.cat/rp-delp (on 27/04/2017).
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{a, a→ b,¬b}

{¬b,¬b→ ¬a, a}

(b)

knowledge base
a

a→ b
¬b

¬b→ ¬a

(a)

({a, a→ b}, b)

({¬b},¬(a ∧ (a→ b)))

({¬b→ ¬a, a}, b)

(c)

Figure 9. Knowledge base for deductive argumentation (a), inconsistent
subsets of that knowledge base (b), and argument tree based on the incon-
sistent subsets as constructed by compilation-based approach (c)

a consistent, minimal (w.r.t. ⊆) subset of the knowledge base that entails
the claim, which in turn is a formula. Arguments can be compared w.r.t.
conservativeness, i. e., (S,C) is more conservative than (S′, C ′) iff S ⊆ S′

and C ′ |= C. Several notions of conflicts among arguments have been stud-
ied [Gorogiannis and Hunter, 2011]. We illustrate here the notion of (canon-
ical) undercuts. Argument (S,C) undercuts (S′, C ′) if C = ¬(φ1 ∧ · · · ∧φn)
with {φ1, . . . , φn} ⊆ S′. Canonical undercuts incorporate notions of max-
imal conservativeness and canonical enumeration of formulas, i. e., the se-
quence of formulas φi in the conjunction C does not matter. In Figure 9
we see on the left (a) a knowledge base and on the right (c) three argu-
ments where the middle one is a canonical undercut of the top one and the
bottom one a canonical undercut of the middle one. Note that in contrast
to other structured approaches to argumentation, the arrows in formulas
in this section denote logical (material) implication, i. e., within formulas
a → b is logically equivalent to ¬a ← ¬b and ¬a ∨ b. A further important
notion is that of (complete) argument trees. A given argument is the root
of an argument tree, for each node its children are its canonical undercuts,
and the support of no node is a subset of the union of supports of all its
ancestor nodes.

Computational complexity is in general very high for deductive argumen-
tation [Parsons et al., 2003; Hirsch and Gorogiannis, 2010; Wooldridge et
al., 2006; Creignou et al., 2011], as can be intuitively explained from the
definitions which incorporate both minimality and entailment properties.22

Complexity of finding individual arguments has been analyzed in [Parsons et

22Another explanation for complexity of deductive argumentation is to consider its
connection to (propositional) abduction, see [Besnard and Hunter, 2014, Section 7.4].
Complexity of propositional abduction is analyzed in [Eiter and Gottlob, 1995], with
problems complete for ΣP

2 a class that is presumably more complex than the class NP.
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al., 2003], decisions problems concerning instantiation of argument graphs
with classical logic in [Wooldridge et al., 2006], and finding argument trees
in [Hirsch and Gorogiannis, 2010]. Complexity for problems for deductive
argumentation based on propositional logic can reach up to PSPACE.

Proposed algorithms and systems for deductive argumentation are based
on minimal unsatisfiable subsets (MUSes) of formulas [Besnard and Hunter,
2006; Besnard et al., 2010], connection graphs [Efstathiou and Hunter, 2011;
Efstathiou and Hunter, 2008], reductions to QBF [Besnard et al., 2009] and
ASP [Charwat et al., 2012], so-called “contours” [Hunter, 2006b] and ap-
proximate arguments [Hunter, 2006a]. Algorithms that utilize contours, ap-
proximate arguments, and one MUS-based approach [Besnard and Hunter,
2006] are also discussed in detail in the book [Besnard and Hunter, 2008].

We begin with our algorithmic overview with two MUS-based approaches.
The first one [Besnard and Hunter, 2006] falls into the general scheme of
knowledge compilation [Darwiche and Marquis, 2002] where a given input is
compiled into a structure to which one can pose queries that are computa-
tionally easier to compute on that structure compared to the original input.
For deductive argumentation, the input knowledge base is compiled into a
graph consisting of minimal inconsistent subsets of the knowledge base as
the vertices and edges between non-disjoint subsets.

In Figure 9 we see in the middle (b) the compiled graph from knowledge
base in the left (a). Given an argument, say ({a, a → b}, b) (top right of
Figure 9) one can construct an argument tree for this argument using the
inconsistent subsets. Note that the support {a, a → b} of this argument is
contained in a MUS. The remainder of that MUS (¬b) then is the support
for a canonical undercut of the argument, since both parts of the MUS,
{a, a → b} and {¬b}, each entail a negated conjoined subset of the other,
e. g. {¬b} entails ¬(a∧(a→ b)). Using this line of reasoning recursively, one
can construct all counterarguments and in turn the argument tree (shown
on the right of Figure 9). For details on the algorithm see [Besnard and
Hunter, 2006]. The compilation-based approach has been implemented in
the Tweety libraries [Thimm, 2014] which can be configured to use different
MUS solvers, for instance MARCO [Liffiton et al., 2016] or MIMUS [McA-
reavey et al., 2014].

Another approach using MUSes [Besnard et al., 2010] directly constructs
arguments and counterarguments with a MUS solver, without an “offline”
compilation beforehand. The idea underlying argument construction of [Besnard
et al., 2010] is that (S,C) is an argument iff S∪{¬C} is a MUS of the knowl-
edge base together with ¬C. Conditions of minimality and entailment for
argument (S,C) follow from the fact that if S ∪ {¬C} is a MUS, then S
is consistent and entails C and S′ with S′ ⊂ S does not entail C. The
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algorithms for argument construction and argument tree generation pro-
posed in [Besnard et al., 2010], BA and BT, follow this line of reasoning
and directly incorporate algorithmic issues like construction of formulas in
conjunctive normal form. Algorithm BA has been implemented with the
MUS solver HYCAM [Grégoire et al., 2009] and experimentally evaluated
in [Besnard et al., 2010].

A different approach for generating argument trees for a given claim is
proposed in [Efstathiou and Hunter, 2011], building on earlier work in [Ef-
stathiou and Hunter, 2008] which utilizes connection graphs. Connection
graphs consist of clauses as vertices and edges between clauses with comple-
mentary literals. Briefly put, for a given claim one can reduce the connection
graph in such a way that, if non-empty, a support for the claim is contained
in the reduced connection graph. In [Efstathiou and Hunter, 2011] this idea
is used to construct argument trees. The approach has been implemented
in Java in the tool JArgue and experimentally evaluated.

Reduction-based approaches are given in [Besnard et al., 2009; Charwat
et al., 2012]. The former is a reduction to QBF and the latter to ASP. The
latter has been implemented in the system called vispartix23 within the
tool ARVis [Ambroz et al., 2013] for visualizing relations between answer-
sets of an ASP encoding. In vispartix an AF is generated from a given
knowledge base and pre-specified set of claims, and conflicts are constructed
as specified in [Gorogiannis and Hunter, 2011], thus partially deviating from
other works in this section. The construction process is done via two ASP
calls, the first constructing the arguments and the second constructing the
attacks. In a final step the AF is visualized. Semantics can be computed
via tools developed for AFs.

Algorithms following the concept of contours [Hunter, 2006b] are based
on the idea of providing boundaries of what is provable in a knowledge
base. Briefly put, an upper (lower) contour stores for a given formula which
subsets of the knowledge base entail (do not entail) the formula. Finally,
algorithms for approximate arguments [Hunter, 2006a] are based on the idea
of relaxing one of the conditions for arguments (consistency, entailment, or
minimality).

3.5 Carneades

Carneades [Gordon and Walton, 2016; Gordon et al., 2007] is both a formal
model of argument structure and evaluation, and a system24 implementing
the model. Evaluation of acceptance incorporates proof standards [Freeman
and Farley, 1996], argument strength, and several ingredients available to a

23http://www.dbai.tuwien.ac.at/proj/argumentation/vispartix/ (on 27/04/2017).
24https://carneades.github.io/ (on 27/04/2017).
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Figure 10. Example Carneades argument graph

user. We illustrate briefly some of the capabilities of Carneades in a simple
example25 in Figure 10 and refer the reader for more details on the language
and acceptability definitions to the literature [Gordon and Walton, 2016].
On the right part of Figure 10 there are six statements, i. e., that an object
looks like a snake or a rope, and whether the object moved when jumped over
or prodded. Issue nodes connect contradictory statements. Two arguments
are formed (a1 and a2), which build on their premises (right of the figure) to
conclude (left of the figure) that the seen object is indeed a snake or a rope.
Let us assume that the object indeed looks like a snake and a rope (e.g. due
to poor illumination), but neither did the object move when prodded with
a stick nor when jumped over (e. g. by an adventurous person). In this case
we conclude that the object is indeed a rope and not a snake (all premises
of argument a2 are given but only one for a1).

The system Carneades (currently in version 4.2), features collaborative
argument construction, argument visualization, and argument evaluation
both for the structured arguments like we have seen in Figure 10 and also
for Dung’s AFs under grounded, complete, preferred, and stable semantics.
Construction of structured arguments relies partially on internal calls to
Prolog, and evaluation in the Carneades system can be classified as struc-

25Example taken from http://carneades.github.io/ (on 27/04/2017). Variants of
this example are discussed in [Walton et al., 2014].
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tural reasoning, since explicit abstract representation in the form of an AF is
not utilized. Carneades is also available as a web-service and front-end [Gor-
don, 2012; Gordon, 2013], and includes a detailed manual.

3.6 Further implementations

Here we give pointers to related algorithms and implementations for struc-
tured argumentation that fall outside the previous sections.

In addition to other approaches to structured argumentation, Tweety [Thimm,
2014] features an implementation to structured argumentation as proposed
in [Thimm and Garćıa, 2010]. Further, Wyner et al’s [Wyner et al., 2013]

approach to instantiate rule-based knowledge bases with strict and defeasi-
ble rules as AFs has been encoded in ASP26 [Strass, 2014].

A translational approach27 to implement structured argumentation for-
malisms has been proposed in [van Gijzel and Nilsson, 2014] using Haskell
as the programming language to capture definitions of these formalisms as
directly as possible inside the programming language. For instance, in [van
Gijzel and Nilsson, 2014] it is shown how to utilize this approach to translate
Carneades to AFs: we call the corresponding system CarneadesToDung.

3.7 Summary

In this section we have given an overview of several algorithmic approaches
to structured argumentation and their respective systems. Formalisms de-
veloped for structured argumentation and their implementations draw a
quite heterogeneous picture. In particular, algorithms and systems range
from query evaluation on the given structure to reasoning on an abstract
representation where structural information is abstracted away. In Table 2
we see a summary of the presented approaches that have implementations
and how they can be classified. Systems implementing structural reasoning
typically solve queries in the form of deciding acceptance of a given claim
and constructing arguments for this claim and counterarguments against
the claim in a recursive fashion. Abstract reasoning involves construction
of an abstract representation, i. e., an AF, and performing reasoning on this
representation resulting typically in sets of extensions. For reduction-based
approaches, the column “language” refers to the target formalism of the
approach. These systems typically also include parsers or compilers writ-
ten in an imperative language that translate or reduce the given input to
the formalism. In this table, ASP stands for answer-set programming, SAT
for satisfiability solvers, and MUS for solvers capable of solving problems
related to minimal unsatisfiable subsets of formulas.

26Main ASP encoding available under http://sourceforge.net/p/diamond-adf/code/
ci/master/tree/lib/theorybase.lp (on 27/04/2017).

27http://www.cs.nott.ac.uk/~bmv/COMMA/ (on 27/04/2017).
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The Tweety libraries [Thimm, 2014] implement several reasoning tasks
from multiple formalisms for structured argumentation. We name the re-
spective approaches in parenthesis for Tweety. We note that not all tools
mentioned in Table 2 provide reasoning support themselves, i. e., some tools
focus on argument construction and delegate evaluation to other systems.
The tools BA [Besnard et al., 2010] and vispartix [Charwat et al., 2012]

handle argument construction for deductive argumentation without evalu-
ation, in particular, BA generates arguments and vispartix an AF. One
of Tweety’s algorithms translates a given DeLP to an AF and leaves the
choice for an AF reasoner to the user. CarneadesToDung [van Gijzel and
Nilsson, 2014] translates input as specified in the Carneades model to a Dung
AF. TOAST [Snaith and Reed, 2012] incorporates Dung-O-Matic [Snaith
et al., 2010] for evaluation.

4 Other Implementation Approaches

This paper would not be complete without a description of implemented
systems that provide a general purpose gateway to formal structures of ar-
gumentation. They are, for instance, systems supporting text annotation
for producing corpora that can be exploited by argument mining algorithms
as well as systems for supporting critical thinking by the means of formal
models of argumentation thus reusing elements discussed in previous sec-
tions. Our aim here is to summarize the most notable examples with some
guidance for the reader interested in using—or reusing—existing implemen-
tations.

In particular, we analyse 34 promising implementations chosen among
those that are active projects. Since it is beyond the scope of this paper
to provide a comprehensive description for each of those, we briefly review
them in Section 4.1. Moreover, there are four additional projects that,
although they appear to have been discontinued, have been relevant from
an academic perspective, and we believe they should be mentioned in order
to provide the reader with a complete background. Those are reviewed in
Section 4.2, while in Section 4.3 we provide a comparative analysis of the
active projects. Finally, the excellent review of Schneider et al. [Schneider
et al., 2013] mentions other interesting projects—mostly online platforms—
that are briefly discussed in Section 4.4, even if they do not implement any
evident formal model of argumentation.

4.1 Active Projects

The following 34 systems are representative among active projects incorpo-
rating some argumentation techniques.
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ASPIC+

TOAST Yes Java Yes

ASPIC Inference Engine Yes Java Yes

EPR Yes Java Yes

Argue tuProlog Yes Prolog Yes

ABA

CaSAPI Yes Prolog Yes

proxdd Yes Prolog Yes

abagraph Yes Prolog Yes

grapharg Yes Prolog Yes

ABAplus Yes ASP Yes

ABAToAF Yes ASP Yes

DeLP

DeLP client Yes Prolog Yes

Tweety (DeLP) Yes Java Yes

Tweety (DeLP to AF) Yes Java Yes

ASP-RP-DeLP Yes ASP Yes

SAT-R-DeLP Yes SAT Yes

Deductive

JArgue Yes Java Yes

Tweety (deductive) Yes Java/MUS Yes

vispartix Yes ASP Yes

BA Yes MUS

Carneades

Carneades Yes Prolog Yes

CarneadesToDung Haskell Yes

Table 2. Summary table for structured implementations.
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AGORA [Hoffmann, 2005; Hoffmann, 2007] is a Computer-Supported
Collaborative Argument Visualization (CSCAV) tool. An argument is de-
fined here as a set of statements—claim and one or more reasons—where
the reasons jointly provide support for the claim, or are at least meant to
support the claim.

AIFdb [Lawrence et al., 2012b] is a database solution for the Argument
Web thus implementing the AIF model of arguments [Bex et al., 2013;
Rahwan et al., 2011; Chesñevar et al., 2006]. AIFdb offers an array of web
service interfaces allowing a wide range of software to interact with the
same argument data. Various dataset are available as part of the Argument
Corpora [Reed, 2013].

AnalysisWall [Bex et al., 2013] is a collaborative workspace, a touchscreen
measuring 11 feet by 7 feet, located at the University of Dundee.

Arg&Dec [Aurisicchio et al., 2015] is a web application for collabora-
tive decision-making, encompassing the quantitative argumentation-based
framework QuAD, and its decision matrix model, assisting their comparison
through automated transformation.

ArgTeach [Dauphin and Schulz, 2014] is an interactive tutor that facili-
tates the learning of different labelling semantics in abstract argumentation.
It now exists both as a standalone desktop application and as a web appli-
cation.28

ArgTrust [Tang et al., 2012] relates the grounds of an argument to the
agent that supplied the information, and can be used as the basis to compute
acceptability statuses of arguments that take trust into account.

ArgueApply [Pührer, 2017] is a Java app for mobile phones, with a graph-
ical interface, that lets users put forward arguments, and positive or nega-
tive links between arguments, in a fragment of the GRAPPA [Brewka and
Woltran, 2014] language.29

ArgMed [Hunter and Williams, 2012; Williams et al., 2015] is a project
investigating the use of computational argumentation for analysing and ag-
gregating clinical evidence for making recommendations. In addition to the
theoretical framework, it also has a public website.30

ArguMed [Verheij, 1998] introduces ARGUE!, based on the logical sys-
tem CUMULA that abstractly models defeasible argumentation [Verheij,
1996a]. The development of ARGUE! was soon followed by the ArguMed
family [Verheij, 2003a] based on the DefLog system [Verheij, 2003b], where

28http://www-argteach.doc.ic.ac.uk/ (on 27/04/2017).
29http://www.informatik.uni-leipzig.de/~puehrer/ArgueApply/ (on 27/04/2017).
30http://www0.cs.ucl.ac.uk/staff/a.hunter/projects/argmed/ (on 27/04/2017).
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dialectical arguments consist of statements that can have two types of con-
nections between them: a statement can support another, or a statement
can attack another. Dialectical arguments can be evaluated with respect to
a set of prima facie justified assumptions.

Argument Blogging [Bex et al., 2014] allows users to construct debate
and discussions across blogs, linking existing and new online resources to
form distributed, structured conversations. Arguments and counterargu-
ments can be posed by giving opinions on one’s own blog and replying to
other bloggers’ posts. The resulting argument structure is connected to the
Argument Web [Bex et al., 2013], in which argumentative structures are
made semantically explicit and machine-processable.

Argunet [Schneider et al., 2007] is a desktop tool coupled with an open
source federation system for sharing argument maps.

Arvina [Bex and Reed, 2012; Lawrence et al., 2012a] is a dialogical support
system that allows for the structured execution of a reasoning process by im-
plementing dialogue protocols and then allowing users to play the dialogue
game against virtual agents and against each other in an instant-messaging
environment.

ASPARTIXWeb [Egly et al., 2010b] is a web-based interface to the AS-
PARTIX system for computing extensions for various semantics of abstract
argumentation.31

bCisive is a professional argument mapping and critical thinking support
system.32

CISpaces [Toniolo et al., 2014; Toniolo et al., 2015] is an agent-based tool
to help intelligence analysts in acquiring, evaluating, and interpreting infor-
mation in collaboration. Agents assist analysts in reasoning with different
types of evidence to identify what happened and why, what is credible, and
how to obtain further evidence. Argument schemes lie at the heart of the
tool, and sensemaking agents assist analysts in structuring evidence and
identifying plausible hypotheses. A crowdsourcing agent is used to reason
about structured information explicitly obtained from groups of contribu-
tors, and provenance is used to assess the credibility of hypotheses based
on the origin of the supporting information.

Cohere/Compendium [De Liddo and Buckingham Shum, 2010; Shum,
2008] is an open source software for sensemaking using argumentation maps
and annotation.

31http://rull.dbai.tuwien.ac.at:8080/ASPARTIX/index.faces (on 27/04/2017).
32https://www.bcisiveonline.com/ (on 27/04/2017).
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ConargWeb is a web-based interface to the Conarg system for computing
extensions of Dung’s argumentation frameworks.33

CoPe it! [Tzagarakis et al., 2009] is a tool to support synchronous and
asynchronous argumentative collaboration in a Web environment. It in-
troduces the notion of incremental formalization of argumentative collabo-
ration. The tool permits a stepwise evolution of the argumentation space,
through which formalization is not imposed by the system but is at the user’s
control. By permitting the users to formalize the discussion as the collab-
oration proceeds, more advanced services can be made available. Once the
collaboration has been formalized to a certain point, CoPe it! can exhibit
an active behavior facilitating the decision making process.

D-BAS [Krauthoff et al., 2016] is a web and dialogue-based system to facil-
itate online argumentation, with the aim to guide users through statements,
their pro-arguments and counterarguments, and adding new arguments as
well as conflicts between these arguments.34

Debategraph [Macintosh, 2009] is a collaborative debate visualisation
tool.

GERD [Dvořák et al., 2015] is a web-based interface of an ASP-based sys-
tem for enumerating extensions of various semantics of the framework from
[Modgil, 2009], which extends Dung’s abstract argumentation framework
with preferences among arguments.35

Gorgias [Kakas and Moraitis, 2003] is a general argumentation framework
that combines preference reasoning and abduction. It can form the basis
for reasoning about adaptable preference policies in the face of incomplete
information from dynamic and evolving environments [Kakas et al., 1994].

Gorgias-B [Spanoudakis et al., 2016] supports the development of appli-
cations of argumentation under Gorgias. Gorgias-B guides the developer
to structure their knowledge at several levels. The first level serves for
enumerating the possible decisions and arguments that can support these
options under some conditions, while each higher level serves for resolving
conflicts at the previous level by taking into account default or contextual
knowledge.

Grafix [Cayrol et al., 2014] is a graphical tool for handling abstract argu-
mentation frameworks and bipolar frameworks. Grafix allows editing and
drawing of argumentation graphs (or sets of graphs), and the execution of
some “predefined treatments” (called “server treatments”) on the current

33http://www.dmi.unipg.it/conarg/ (on 27/04/2017).
34https://dbas.cs.uni-duesseldorf.de/ (on 27/04/2017).
35http://gerd.dbai.tuwien.ac.at/index.php (on 27/04/2017).
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graph(s), such as, e. g., computing various acceptability semantics, or com-
puting the strength of arguments.

GrappaVis is a Java graphical tool to specify GRAPPA [Brewka and
Woltran, 2014] and ADF [Brewka et al., 2013] frameworks, evaluate them,
and visualize the results of the evaluation. In particular, GRAPPA is a
general semantical framework for assigning a precise meaning to graphi-
cal models of arguments or labelled argument graphs, which makes them
suitable for automatic evaluation. GRAPPA rests on the notion of explicit
acceptance conditions, as discussed in ADF [Brewka et al., 2013].36

MARFs (Markov Argumentation Random Fields) [Tang et al., 2016] is a
system combining elements of formal argumentation theory and probabilis-
tic graphical models. In doing so it provides a principled technique for the
merger of probabilistic graphical models and non-monotonic reasoning.

Opinion Space [Faridani et al., 2010] is an online interface incorporating
ideas from deliberative polling, dimensionality reduction, and collaborative
filtering that allows participants to visualize and navigate through a diver-
sity of comments.

OVA+ [Janier et al., 2014] provides a drag-and-drop interface for analysing
textual arguments. It is designed to work with web pages It is available as
a web interface and does not require a local installation. It also natively
handles AIF structures, and supports real-time collaborative analysis.

Parmenides [Cartwright and Atkinson, 2008; Cartwright et al., 2009;
Cartwright and Atikinson, 2009] is primarily a forum by which government
bodies can present policy proposals to the public so that users can submit
their opinions on the justification presented for a particular policy. Within
Parmenides, the justification for action is structured to exploit a specific
representation of persuasive argument based on the use of argumentation
schemes and critical questions.

PIRIKA (PIlot for the RIght Knowledge and Argument) [Oomidou et
al., 2014] is an argument-based communication tool for humans and agents,
which supplements current communication systems such as Twitter. It al-
lows for asynchronous argumentation for anyone, anytime, anywhere on any
issues, as well as synchronous argumentation and stand-alone argumenta-
tion.

Quaestio-it [Evripidou and Toni, 2014] is based on a framework for mod-
elling and analysing social discussions. It offers debating infrastructure for
opinion exchanges between users and providing support for extracting in-
telligent answers to user-posed questions.

36http://www.dbai.tuwien.ac.at/proj/adf/grappavis/ (on 27/04/2017).
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Rationale is a professional argument mapping and critical thinking sup-
port system.37

Reason [Introne, 2009] is a platform for supporting group decisions by
leveraging the argumentative structure of deliberative conversation to drive
a decision support algorithm. The platform uses argument visualization to
mediate the collaborators’ conversation.

Truthmapping is a professional, collaborative argument mapping tool.38

4.2 Discontinued Projects

In addition to the 34 systems discussed in Section 4.1, we briefly mention
the following four as well. Although discontinued at the time of writing,
those works have significantly impacted the research field and are still in-
spirational.

Avicenna [Rahwan et al., 2011] is an OWL-based argumentation system
that consists of three main tiers: the data tier, the middle tier, and the client
tier. The argumentation ontology is stored in the form of RDF statements
(triples) in the back-end database, which constitutes the data tier. The
middle tier is responsible for reasoning based on description logics and the
interface to the web, through which applications in the client tier connect.

Dispute Finder [Ennals et al., 2010] is a browser extension that alerts a
user when information they read online is disputed by a source that they
might trust. Dispute Finder examines the text on the page that the user is
browsing and highlights any phrases that resemble known disputed claims.
If a user clicks on a highlighted phrase then Dispute Finder shows her a list
of articles that support other points of view.

SEAS [Lowrance et al., 2008] is a collaborative, semi-automatic approach
to evidential reasoning that uses template-based structured argumentation.
Graphical depictions of arguments readily convey lines of reasoning, from
evidence through to conclusions, making it easy to compare and contrast
alternative lines of reasoning.

Trellis [Chklovski et al., 2003] allows users to add their observations, view-
points, and conclusions as they analyze information by making semantic
annotations to documents and other on-line resources. Users can associate
specific claims with particular locations in documents used as “sources” for
analysis, and then structure these statements into an argument detailing
pros and cons on a certain issue.

37http://rationale.austhink.com/ (on 27/04/2017).
38https://www.truthmapping.com/ (on 27/04/2017).
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4.3 Comparative Analysis

To provide a concise overview over the active systems discussed in Sec-
tion 4.1, we identified seven features that characterize the commonalities
and differences among those systems, namely whether a system

(F1) is able to handle some form of structured argumentation;

(F2) gives the ability to manipulate arguments;

(F3) is collaborative;

(F4) enables a dialogue between different parties involved in its usage; and,
in particular, if it

(F5) enables a dialogue based on speech acts;

(F6) includes a reasoner based on Dung’s theory of abstract argumentation;
or if it

(F7) includes a reasoner not based on Dung’s theory of abstract argumen-
tation.

It is evident that F5 is a specific case of F4: if a system offers speech
acts, by definition it also offers a dialogue system. Moreover, F6 and F7
only apparently are mutually exclusive: indeed, a system can offer multiple
choices of reasoners—the case of CISpaces—or it can encompass Dung’s
theory of abstract argumentation as a special case—e. g. MARFs.

Table 3 provides a comparative overview of the 34 active projects from
Section 4.1 with respect to the seven features identified. This list of features
is clearly far from being complete or unquestionable. However, it is sufficient
for describing a large variety of possible usages of the systems.

Indeed, if a system supports F1 and F6, it is evident that it can be
used in the conventional meaning of structured argumentation and perhaps
it implements a specific approach for structured argumentation [Besnard et
al., 2014]. This is, for instance, the case of OVA+, which allows to represent
and reason about ASPIC+ knowledge bases. Moreover, since OVA+ also
possesses the feature F2, it is evident that it can be used interactively; and
since it possesses F3 as well, it can used in a distributed fashion.

It is worth noticing that there is only one system exhibiting all the seven
features, CISpaces, which is unfortunately not (yet) available as an open-
source implementation. Differently from OVA, CISpaces implements a sub-
set of ASPIC, notably the ability to express only defeasible rules, and it
follows a customised methodology for handling preferences, similar to AS-
PIC+ but using AFRA [Baroni et al., 2011b] as the meta-representation
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F1 F2 F3 F4 F5 F6 F7

AGORA Yes Yes Yes

AIFdb Yes Yes Yes

AnalysisWall Yes Yes Yes Yes

Arg&Dec Yes Yes Yes Yes

ArgTeach Yes

ArgTrust Yes Yes Yes

ArgueApply Yes Yes Yes Yes Yes

ArgMed Yes Yes Yes

ArguMed Yes Yes Yes

Argument Blogging Yes Yes Yes

Argunet Yes Yes Yes

Arvina Yes Yes Yes Yes

ASPARTIXWeb Yes

bCisive Yes Yes

CISpaces Yes Yes Yes Yes Yes Yes Yes

Cohere/Compendium Yes Yes Yes

ConargWeb Yes Yes

CoPe it! Yes Yes Yes

D-BAS Yes Yes Yes

Debategraph Yes Yes Yes Yes

GERD Yes Yes

Grafix Yes Yes

GrappaVis Yes Yes Yes

Gorgias Yes Yes Yes

Gorgias-B Yes Yes

MARFs Yes Yes Yes

Opinion Space Yes

OVA+ Yes Yes Yes Yes Yes

Parmenides Yes Yes

PIRIKA Yes Yes Yes

Quaestio-it Yes Yes Yes Yes Yes

Rationale Yes Yes

Reason Yes Yes Yes

Truthmapping Yes Yes Yes Yes

Table 3. Comparative overview of systems (discontinued systems are omit-
ted) using some form of formal argumentation. F1: structured argumenta-
tion; F2: argument manipulation; F3: collaborative; F4: enables dialogues,
F5: based on speech acts; F6: Dung’s reasoner, or F7: non-Dung’s reasoner.
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system. However, it also encompasses both the ability to use an evolution
of ArgTrust as a web-service, as well as models of probabilistic reasoning
based on [Li et al., 2012].

To conclude this analysis, it is worth showing the chronological evolution
of all 38 systems reviewed in this survey, depicted in Figure 11. It is evident
that 2014 has been the most prolific year, as also testified by the significant
number (19) of demo submissions to COMMA 2014.

4.4 Projects for Informal Argumentation

Following the review of Schneider et al. [2013], there are further systems
worth mentioning that make use of “informal” argumentation techniques.
Indeed, they tend to be closer to user experience and they generally have
a low entry barrier. At the same time, they do not offer much support
for structuring arguments in a formal fashion, nor automated reasoning
capabilities.

There is a large number of social networking debating systems such as
Arguehow,39 Climate CoLab [Gürkan et al., 2010], ConsiderIt [Kriplean
et al., 2011], ConvinceMe,40, CreateDebate,41 Debate.org,42 Debatepidia,43

Debatewise,44 Hypernews,45 and LivingVote.46 Further systems worth men-
tioning are, e. g., Belvedere,47 an open-source critical thinking support sys-
tem; the Cabanac’s annotation system48 for investigating social validation of
arguments in comments; and DiscourseDB,49 that is used to collaboratively
collect policy-related commentary.

5 Challenges

In this section we discuss current challenges in devising and implementing
algorithms for solving problems related to formal argumentation. In par-
ticular, for abstract argumentation problems we discuss parallel algorithms
(Section 5.1), approximation algorithms (Section 5.2), and dynamic selec-
tion of algorithms depending on graph features (Section 5.3). We also have
a brief look at advanced techniques and the related challenges for some
structured argumentation approaches (Section 5.4).

39http://arguehow.com/ (on 27/04/2017).
40http://hamschank.com/convinceme/index.html (on 27/04/2017).
41http://www.createdebate.com/ (on 27/04/2017).
42http://debate.org (on 27/04/2017).
43http://www.debatepedia.com/ (on 27/04/2017).
44http://debatewise.org/ (on 27/04/2017).
45http://sourceforge.net/projects/hypernews/ (on 27/04/2017).
46http://www.livingvote.org/ (on 27/04/2017).
47http://belvedere.sourceforge.net/ (on 27/04/2017).
48http://www.irit.fr/~Guillaume.Cabanac/expe/ (on 27/04/2017).
49http://www.discoursedb.org/ (on 27/04/2017).
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2017 • ArgueApply

2016 • D-BAS
Gorgias-B
GrappaVis
MARFs

2015 • Arg&Dec
GERD

2014 • ArgTeach
Argument Blogging
CISpaces
ConargWeb
Grafix
OVA+
PIRIKA
Quaestio-it

2013 • AnalysisWall
bCisive
Rationale

2012 • AIFdb
ArgMed
Arvina

2011 • ArgTrust
Avicenna (discontinued)

2010 • ASPARTIXWeb
Opinion Space
Dispute Finder (discontinued)

2009 • CoPe it!
Debategraph
Reason

2008 • Cohere/Compendium
Parmenides
SEAS (discontinued)

2007 • Argunet

2005 • AGORA

2004 • Truthmapping

2003 • ArguMed
Gorgias
Trellis (discontinued)

1998 • ARGUE! (then ArguMed in
2003)

Figure 11. History of systems from Section 4, both active and discontinued.
The year refers to the first tracked publication or to the first time the system
appears online.
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5.1 Parallelization

Reasoning tasks related to computational models of argumentation in gen-
eral, and abstract argumentation in particular, are usually hard from the
perspective of computational complexity, cf. e. g. [Dunne and Wooldridge,
2009]. In order to make systems applicable to real-world scenarios, spe-
cific measures have to be taken in order to overcome the NP-complexity
barrier—or even higher. One such measure is to use parallelization. Modern
computing systems usually provide many CPU cores that allow for multiple
threads to be executed in parallel. Moreover, grid- or cluster-based systems
collect the computational capacity of many single machines and provide an
abstraction with access to many computing cores. In order to exploit the
computational power of such parallel systems, algorithms have to be devised
that allow for the decomposition of complex problems, independent solving
of the individual sub-problems, and an effective aggregation of the partial
results into a global solution. While not every computational problem allows
for such a parallelization—or at least does not allow for parallelization with
a significant gain in performance—parallelization has been applied to many
NP-complete (or harder) problems in the past with some success, most no-
tably to the problem SAT [Hölldobler et al., 2011] allowing for considerable
speed-ups on certain subclasses of instances.

For abstract argumentation, a natural feature to exploit for devising par-
allel algorithms is SCC-recursiveness [Baroni et al., 2005]. A semantics is
SCC-recursive if the problem of enumerating the extensions for the graph as
a whole can be be decomposed in computing the extensions of its strongly
connected components50 (SCC). Once SCCs have been identified, extensions
can be computed on each SCC separately and the resulting sub-extensions
can be joined in order to obtain the extensions of the whole graph paying
attention to the inter-dependencies among different SCCs.51 This basic ap-
proach is followed by the algorithm presented in [Cerutti et al., 2015], which
itself is an enhancement to the previously published algorithm from [Cerutti
et al., 2014e].

The approach for parallelizing the computation of extensions in abstract
argumentation outlined in [Cerutti et al., 2015] is effective as long as the
number of SCCs is “relatively” large in comparison to the size of the ar-
gumentation framework. Computing the SCCs of a graph can be done in
polynomial time (see e. g. Tarjan’s algorithm [Tarjan, 1972]) and, thus, the
computational overhead of decomposing the problem is negligible in com-

50A subgraph of a directed graph is a strongly connected component, if there is a
directed path from every vertex to each vertex and the subgraph is maximal.

51Other decomposition methods might take advantages of I/O-multipoles [Baroni et
al., 2014], but no approaches have been yet proposed.
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parison to the computational effort of computing extensions, which is, as
discussed before, often NP-hard or harder, depending on the chosen seman-
tics. The computational effort required for the aggregation step is highly
dependent on the actual instance of the problem and may be exponential
in the worst case, as a sub-graph may possess an exponential number of
extensions [Baumann and Strass, 2014] that need to be aggregated. How-
ever, for “reasonable” instances, this step is also negligible in comparison to
the effort of computing extensions. As the empirical evaluation in [Cerutti
et al., 2015] suggests, exploiting SCC-recursiveness for parallelization may
yield a speedup (up to 280%) when increasing the number of cores from 1
to 4.

Another approach to parallelization is not based on decomposing a prob-
lem into sub-problems, but on parallel execution of different algorithms for
the whole problem. For many computationally hard problems there is usu-
ally a limited number of algorithms that can solve “most” of the instances
in reasonable time, and the core problem is to determine which algorithm
should be selected to solve a particular instance. This problem is called
the Algorithm selection problem and will be discussed in more detail in
Section 5.3. It is worth noticing that [Vallati et al., 2017] proposes a first
parallel algorithm selection approach. A straightforward solution to this
problem is to devise a meta-algorithm that runs several algorithms on the
original problem in parallel. As soon as the first algorithm terminates, the
meta-algorithm terminates as well and the result of the meta-algorithm is
the result of this algorithm. This approach, also called variant-based parallel
computation, has been implemented in [Craven et al., 2012] for the prob-
lem of deciding acceptance of arguments in assumption-based argumentation
(ABA)52 and has been applied in the medical domain. More specifically,
the approach of [Craven et al., 2012] is based on discussion games and dif-
ferent algorithms for solving acceptance use different expansion strategies
in advancing the game.

The two approaches from above are complementary in the way how par-
allelization is realized. While the first approach uses a single algorithm
and decomposes the problem instance into a parallel execution, the sec-
ond approach uses multiple algorithms on the whole problem. Of course,
combinations of the paradigms are imaginable.

5.2 Approximation Techniques

Parallelization offers an approach to overcome complexity barriers while
maintaining soundness and completeness. A different and also often ap-

52 While ABA is actually an approach to structured argumentation, we discuss it here
as it is the only known parallel approach to structured argumentation.



52 Federico Cerutti, Sarah A. Gaggl, Matthias Thimm, Johannes P. Wallner

plied approach is to give up soundness and/or completeness and devise
approximation algorithms, see e. g. [Vazirani, 2002; Cormen et al., 2009].
Roughly, an approximation algorithm is not expected to solve the problem
correctly but only within a certain margin of error. On the other hand,
an approximation algorithm is expected to be more efficient than a correct
algorithm.

In general, an algorithm A is said to be an ε-approximation algorithm
for an optimization problem P (with ε > 0), if for every instance the output
of A is in the interval [(1− ε)C, (1 + ε)C], where C is the optimal solution,
and ε thus represents the relative error in the approximation. Usually, one
is interested in polynomial-time ε-approximation algorithms with ε being as
small as possible. In case the algorithm returns more refined solutions—
i. e. it decreases the ε-approximation further—if provided with additional
runtime, it belongs to the class of anytime algorithms.

Approximation techniques for problems of abstract argumentation have
not been investigated in-depth yet, with only very few exceptions. For ex-
ample, the equational approach to abstract argumentation [Gabbay, 2012;
Gabbay and Rodriguez, 2014] views an argumentation framework as a gen-
erator of equations for value assignments V such that V (X) = 1 indicates
that X is in; V (X) = 0 indicates that X is out; and V (X) ∈ (0, 1) that X
is undecided. In [Gabbay and Rodriguez, 2014] the authors introduce an
iteration schema for computing complete extensions, starting from an arbi-
trary assignment V0 and then, by use of a specific update rule, generating
a sequence of assignments V0, V1, . . .. In [Gabbay and Rodriguez, 2014] it
is shown that this sequence will eventually converge and form a complete
extension. This algorithm can therefore be interpreted as an anytime algo-
rithm for computing complete extensions, but a thorough analysis of this
algorithm in terms of approximation quality has not been done yet.

In the area of probabilistic abstract argumentation [Li et al., 2012; Thimm,
2012; Hunter, 2014], which is concerned with combining abstract argumen-
tation frameworks with probabilistic reasoning, approximation techniques
from probabilistic reasoning have been applied to overcome the additional
complexity necessary to deal with quantitative uncertainty [Hadoux et al.,
2015; Li et al., 2012]. As probabilistic abstract argumentation is a topic
that will be covered in later volumes of this handbook, we omit discussing
these techniques here.

In summary, approximation techniques for computational models of ar-
guments are still underdeveloped, but may gain attention in the near future.
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5.3 Algorithm Selection

In Section 5.1 we already discussed the variant-based parallel computation
approach of [Craven et al., 2012] which is a specific solution for solving
the Algorithm Selection problem by running different algorithms for the
same problem in parallel. If parallelization is not possible for devising an
algorithm, another solution is given by the algorithm portfolio approach
[Rice, 1976; Leyton-Brown et al., 2003; Xu et al., 2008]. A portfolio is
a meta-algorithm that has access to several specific algorithms for solving
the same problem. When presented with a problem instance, the meta-
algorithm selects one of those specific algorithms. In the case of dynamic
portfolios, the meta-algorithm first extracts some features of the problem
instance and then selects an algorithm that has, in a preprocessing step,
proven to be the best algorithm for instances with the given features. This
approach has been proven quite successful in solving many hard problems,
such as SAT [Xu et al., 2008].

The crucial step in developing a dynamic portfolio algorithm is to define
which features are relevant both to assess the quality of the algorithms in the
preprocessing step and to select the appropriate algorithm during runtime.
Furthermore, it is important that the overhead introduced for computing
features of the problem instance during runtime is “reasonably” small. In
[Vallati et al., 2014b; Cerutti et al., 2014b] the authors presented 50 features
of abstract argumentation frameworks and derived empirical performance
models (EPMs) to determine the “best” implementation for enumerating
preferred extensions, given CPU-time as evaluation criterion and a limited
set of solvers. The features considered there were basic graph theory-based
measures such as size of the graph, average degree of arguments, flow hierar-
chy, and so on. The two EPMs presented in [Cerutti et al., 2014b] show an
overall accuracy of 80% (classification) and, depending on the implementa-
tion, the ability to predict quite accurately the runtime required by a solver
to enumerate the preferred extensions (regression). Unsurprisingly, the set
of most informative features—according to a greedy forward search-based
on the Correlation-based Feature Selection attribute evaluator [Hall, 1998]

and with respect to the experimental setting used by the authors—includes
the density of the argumentation graph, as well as number of SCCs and the
size of the maximum SCC. When the computed EPMs have been applied to
the problem of algorithm selection, both of them perform significantly well:
in 78% of cases (resp. 75%) the classification-based EPM (the regression-
based EPM) selects the best implementation. In most of the cases, 83%,
both EPMS select the same algorithm, which is the correct one in 82% of
cases.

Complete static and dynamic portfolios have been proposed in [Cerutti
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et al., 2016d], and parallel portfolios are proposed and discussed in [Vallati
et al., 2017]. However, it is still unclear whether there may be better fea-
tures to use for the selection problem or whether a combination of different
techniques discussed in this section may yield improved performance. In
[Brochenin et al., 2015], abstract solvers [Nieuwenhuis et al., 2006] are used
as a formal machinery to formally specify different algorithms addressing
extension-enumeration problems. By using these formalizations, algorithms
could be combined and extended to more effective algorithms. Hence, using
this machinery to also include the concepts discussed in this section may be
a fruitful endeavor.

5.4 Advanced Techniques for Structured Argumentation

In structured argumentation, further computational problems than argu-
ment evaluation may occur. Many approaches to structured argumentation
consider a knowledge base formalized in some logical formalism, and then
derive arguments and conflicts between them on top of that, cf. Figure 4.
Therefore, additional computational effort is required to construct argu-
ments and to discover the conflict relationship between them. In general,
computational approaches to structured argumentation can be categorized
in two classes: those that use abstract argumentation frameworks as the
underlying argument evaluation mechanism and those that provide propri-
etary evaluation mechanisms.

For the class of approaches providing proprietary evaluation mechanisms—
such as Defeasible Logic Programming and earlier versions of Deductive
Argumentation—the processes of argument construction, defeat discovery,
and argument evaluation are usually intertwined, but each step still imposes
some challenges.53

For argument construction, an important issue is relevance of arguments.
In particular, for approaches building on classical logics—such as Deductive
Argumentation—the number of arguments that can be derived from knowl-
edge base may be potentially infinite. Given a specific query to the knowl-
edge base, usually only those arguments are constructed that are relevant to
the query and possess a certain normal form (in Deductive Argumentation
these are the maximally conservative undercuts). In [Besnard and Hunter,
2006] an effective method for constructing both arguments and the defeat
relation for a certain query is presented. This method relies on a prepro-
cessing step that generates a so-called compilation from a knowledge base,
which is an undirected graph with vertices being the minimal inconsistent

53For those approaches relying on abstract argumentation for argument evaluation,
similar sophisticated techniques as outlined in this and the previous sections apply, but
will not be discussed separately.
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subsets of the knowledge base and two vertices are connected if they have
a non-empty intersection. Given a specific query, a traversal algorithm al-
lows the complete construction of an argument tree from this compilation.
Considering only approximate arguments [Hunter, 2006a]—e. g. arguments
which are not necessarily minimal—also allows to gain efficiency by trading-
off completeness or soundness (to some extent).

Another advanced technique for structured argumentation is pruning of
dialectical trees in, e. g., Defeasible Logic Programming [Chesñevar et al.,
2000; Chesñevar and Simari, 2007; Rotstein et al., 2011]. This technique
also offers a solution to refrain from considering all arguments for evaluating
a query. This is realized by only expanding the dialectical tree so far until
the evaluation status of the query is decided. For example, if an argument
possesses multiple attackers, and it can already be decided that the first
attacker is ultimately accepted and defeats the argument, then there is no
need to evaluate the acceptance status of the remaining attackers as it can
already be decided that the argument under consideration is not acceptable.
Yet another approach to address the very same issue is to evaluate different
argumentation lines in a dialectical tree in parallel [Garćıa and Simari, 2000].

6 Evaluation of Implementations

While theoretical approaches to computational models of argumentation
are usually analytically evaluated using rationality postulates or compari-
son of behavior on toy examples—see e. g. [Gorogiannis and Hunter, 2011;
Caminada and Amgoud, 2005; Amgoud, 2014]—the evaluation of algorithms
and implementations focuses on the three aspects of correctness, perfor-
mance, and usability. The correctness of algorithms and implementations
is usually shown in an analytical way and involves showing that the al-
gorithmic representation corresponds to the formal definition, e. g. that the
result of performing an algorithm indeed returns the grounded extension of a
given abstract argumentation framework. In order to evaluate an algorithm
with respect to performance, one usually conducts an analytical runtime
or complexity analysis. For the performance evaluation of implementations
an empirical evaluation on either artificial or real-world benchmarks and
runtime measurement on the corresponding computational problems is es-
sential for obtaining a comparative analysis of different approaches. Finally,
in order to evaluate the usability of implementations, user studies have to
be performed.

For the remainder of this section, we will focus on the problem of em-
pirical performance evaluation of implementations of computational models
of argumentation. In particular, we will focus on evaluations of imple-
mentations that solve problems for abstract argumentation frameworks, cf.
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Section 2. Those problems are an important aspect of any evaluation of im-
plementations as well, as they provide clear formalizations of what are the
expected outcomes of computational tasks. Another important aspect of
such evaluations is the identification of suitable benchmarks, i. e. abstract
argumentation graphs, that can be used to compare the performance of
different implementations, which we discuss in Section 6.1. We discuss ex-
isting comparative analyses, in particular the International Competition on
Computational Models of Argumentation (ICCMA),54 in Section 6.2.

6.1 Benchmark Examples

A crucial issue in setting up an evaluation of an implementation of ab-
stract argumentation problems is the identification of argument graphs
that are used as benchmark examples. Ideally, real-world applications
would provide these kind of benchmark graphs in order to test imple-
mentations on actually existing problems. Unfortunately, the availabil-
ity of real-world benchmarks for argumentation problems is quite limited,
some few exceptions are [Cabrio et al., 2013; Cabrio and Villata, 2014b;
Cabrio and Villata, 2014a] and AIFdb.55 Moreover, these benchmarks are
tailored towards problems of argument mining [Wells, 2014] and their rep-
resentation as abstract argumentation frameworks usually lead to topolog-
ically simple graphs, such as cycle-free graphs, which are unsuitable for
comparing abstract argumentation solvers: all classical semantics coincide
with grounded semantics on cycle-free graphs [Dung, 1995]. In order to com-
pare solvers for—among others—preferred and stable semantics, artificially-
generated argumentation graphs have been used so far.

Generating graphs for testing computational approaches or hypotheses
on physical or social phenomena has already some tradition in network the-
ory [Erdös and Rényi, 1959; Albert and Barabási, 2002; III et al., 2012;
Tabourier et al., 2011; Barabasi and Albert, 1999]. However, it is ques-
tionable whether these graph models are suitable to model argumentation
problems. For instance, the Barabási-Albert model [Barabasi and Albert,
1999] generates networks based on preferential attachment. The concept
preferential attachment refers to the tendency of nodes that have already
many connections to other nodes, to receive even more connections in the
evolution of the network: an example of this phenomenon is the saying “the
rich get richer, while the poor get poorer.” To the best of our knowledge,
there is no evidence that real-world argumentation adheres to this concept.
Another concept from network theory often (indirectly) implemented in
graph models is that of triangle closure, i. e., the tendency of nodes directly

54http://argumentationcompetition.org (on 27/04/2017).
55http://corpora.aifdb.org (on 27/04/2017).
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connecting to the neighbors of its neighbors (as in the saying “the friend of
my friend is also my friend”). This concept is hardly applicable to argu-
mentation graphs as this would imply that defense (an argument attacking
the attacker of another argument) tends also to be a direct attack (the first
argument attacking the argument it also defends).

Graph models from network theory also usually generate undirected graphs.
Adapting a model to generate directed edges is of course trivial, but it is
questionable whether the resulting graphs have any interpretation with re-
spect to the original intention of the model.

Finally, from the perspective of challenging benchmarks for abstract ar-
gumentation, the graphs generated by such models are usually also not
adequate. Initial experiments for ICCMA’15 [Thimm et al., 2016] (see also
below and the next section) suggest that those generated graphs usually
contain an empty or a very small grounded extensions, usually no stable
extensions (also due to the triangle closure property), and very few and
small complete and preferred extensions. The latter observation is due
to the fact that these graph models aim at modeling the “small world”
property of many real-world graphs.56 This leads to many arguments di-
rectly or indirectly being in conflict with each other. However, these mod-
els have been used for benchmark generation in earlier evaluations of im-
plementations of abstract argumentation solvers [Bistarelli et al., 2013;
Bistarelli et al., 2014].

In order to provide challenging benchmarks, ICCMA’15 used proprietary
graph generators, each addressing different aspects of computationally hard
graphs for specific semantics. For example, the StableGenerator aims at
generating graphs with many stable extensions, and thus also many com-
plete and preferred extensions. Graphs generated by this generator pose
substantial combinatorial challenges for solvers addressing the computa-
tional tasks of determining (skeptical or credulous) acceptance of arguments
and of enumerating extensions. For a given number of arguments, this
generator first identifies a subset of these arguments to form an acyclic
subgraph which will contain the grounded extension. Afterwards, another
subset of arguments is randomly selected and attacks are randomly added
from some arguments within this set to all arguments outside the set (ex-
cept to the arguments identified in the first step). This process is repeated
until a number of desired stable extensions is reached. The source code for

56This property basically states that there are always “relatively short” paths from
any node to every other node [Watts and Strogatz, 1998], provided that the network is
connected and not too complete. For example the theory of “six degrees of separation”
suggests that in the social network of the known world the longest shortest path between
any two persons is six.
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this and other generators can be found in the source code repository57 of
probo [Cerutti et al., 2014f], the benchmark suite used to run the competi-
tion. Another general tool for generating argumentation frameworks from
a set given graph features is given by AFBenchGen58 [Cerutti et al., 2014d;
Cerutti et al., 2016a].

6.2 Comparative Analysis

The first systematic evaluations of implementations of abstract argumen-
tation solvers have been conducted in [Bistarelli et al., 2013; Bistarelli et
al., 2014]. In these evaluations a small number of implementations have
been evaluated with respect to runtime on graphs generated by different
graph models from social networking theory such as the Barabási-Albert
model (see above). A similar performance evaluation is provided in [Vallati
et al., 2014a; Cerutti et al., 2016d]. In addition, in [Cerutti et al., 2016c]

the authors discuss the effect of solver and instances configuration on per-
formance.

A large-scale and systematic comparison of different implementations of
computational models of argumentation is offered by the International Com-
petition on Computational Models of Argumentation (ICCMA)59, which has
already been mentioned before and is an international event established in
2014. The first instance of the competition took place in 2015 and focused
on comparing implementations for various decision and enumeration prob-
lems in abstract argumentation.

The competition in 2015 received 18 solvers from research groups in Aus-
tria, China, Cyprus, Finland, France, Germany, Italy, Romania, and UK. It
was conducted using the benchmark framework probo [Cerutti et al., 2014f],
which provides the possibility to run the instances on the individual solvers,
verify the results, measure the runtime, and log the results accordingly. The
software probo is written in Java and requires the implementation of a sim-
ple command line interface from the participating solvers.60 All benchmark
graphs—generated using proprietary generation algorithms, see previous
section—were made available in two file formats. The trivial graph for-
mat61 (TGF) is a simple representation of a directed graph which simply
lists all appearing vertices and edges. The Aspartix format (APX) [Egly
et al., 2008] is an abstract argumentation-specific format which represents

57http://sourceforge.net/p/probo/code/HEAD/tree/trunk/src/net/sf/probo/

generators/ (on 27/04/2017).
58https://sourceforge.net/projects/afbenchgen/ (on 27/04/2017).
59http://argumentationcompetition.org (on 27/04/2017).
60See http://argumentationcompetition.org/2015/iccma15notes_v3.pdf (on

27/04/2017) for the formal interface description.
61http://en.wikipedia.org/wiki/Trivial_Graph_Format (on 27/04/2017).
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an argumentation framework as facts in a logic programming-like way. In
order to verify the answers of solvers, the solutions for all instances were
computed in advance using the Tweety libraries for logical aspects of arti-
ficial intelligence and knowledge representation62 [Thimm, 2014]. Tweety
contains näıve algorithms for all considered semantics that implement the
formal definitions of all semantics in a straightforward manner and thus pro-
vides verified reference implementations for all considered problems. Besides
serving as the benchmark framework for executing the competition, probo
also contains several abstract classes and interfaces for solver specification
that can be used by participants in order to easily comply with the solver
interface specification.

The competition in 2015 evaluated the runtime performance of the solvers
for four different semantics and four different computational tasks, yielding
a total of 16 tracks. Among the best solvers throughout all tracks were
CoQuiAAS, ArgSemSAT, and LabSATSolver (see also Section 2). For de-
tailed performance comparisons and current competitions see the webpage
of ICCMA.63

7 Discussion

In this paper we discussed (1) approaches for addressing reasoning problems
in abstract argumentation frameworks; (2) approaches for handling struc-
tured argumentation frameworks; and (3) other approaches that might be
relevant to the argumentation community although they do not belong to
the previous two classes.

As per approaches for abstract argumentation frameworks, it is beyond
doubt that currently the majority of proposals adopt a reduction-based
approach (Section 2.1), thus relying on SAT-solvers, or CSP-solvers, or
ASP-solvers. However, we have covered the few direct implementations
as discussed in Section 2.2.

Coming to approaches for structured argumentation frameworks, we con-
sidered the four large families developed in some 20 years of studies, viz. (in
alphabetical order) ABA, ASPIC+, Deductive argumentation, and DeLP.
We also considered the case of Carneades, which is both a formal model of
argument structure and evaluation, and a system implementing the model.

Then, we reviewed 34 implemented systems that provide a general pur-
pose gateway to formal structures of argumentation. They can be systems
for producing corpora that can be exploited by argument mining algorithms
as well as system for supporting critical thinking by the means of formal
models of argumentation.

62http://tweetyproject.org (on 27/04/2017).
63http://argumentationcompetition.org (on 27/04/2017).
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This touches one of the main topic of discussion still open in the commu-
nity, namely applying machine learning techniques for automatic argument
elicitation from natural language text, or argument mining, see [Budzyn-
ska et al., 2014; Wells, 2014]. This is a fast growing research field, but at
the same time, it encompasses a large variety of topics, from mining legal
arguments, to mining tweets, and it is unlikely to have a one-size-fits-all
approach. At the same time, this is an extremely young research field and
best practices did not yet emerge in the community.

While we did not devote space to argument mining techniques, we in-
stead discussed what are the main challenges we envisage for implementa-
tion of formal argumentation, as well as what are sensible ways for com-
paring different implementations. In particular, we reviewed (Section 5)
the few approaches for making systems applicable to real-world scenarios,
and thus overcoming the NP-complexity barrier, namely parallelization and
approximation techniques. Moreover, machine learning techniques might
also play an important role in selecting the right solver for a specific prob-
lem. There are, indeed, some embryonic approaches for automatic algo-
rithm selection on the basis of abstract argumentation frameworks features.
However, most—if not all—of the reviewed approaches consider abstract
argumentation frameworks only.

This leads us to the last element of discussion we touched in this pa-
per (Section 6), namely how to compare different systems by the means of
benchmarks and competitions. Although the community already made a
move in the context of abstract argumentation, with the first edition of the
International Competition of Computational Models of Argumentation, we
still have a long way ahead for addressing questions related to structured
argumentation. Comparative studies on different formalisms, i. e. [Schulz
and Caminada, 2015] and [Heyninck and Straßer, 2016], might shed some
light on common grounds, thus allowing for a fair comparison.
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[Chesñevar et al., 2006] Carlos Iván Chesñevar, Jarred McGinnis, Sanjay Modgil, Iyad
Rahwan, Chris Reed, Guillermo R. Simari, Matthew South, Gerard A. W. Vreeswijk,
and Steven Willmot. Towards an argument interchange format. The Knowledge
Engineering Review, 21(04):293, 2006.

[Chklovski et al., 2003] Timothy Chklovski, Yolanda Gil, Varun Ratnakar, and John
Lee. Trellis: Supporting decision making via argumentation in the semantic web.
In Katia Sycara and John Mylopoulos, editors, Proceedings of the 2nd International
Semantic Web Conference (ISWC 2003). Citeseer, 2003.



Foundations of Implementations for Formal Argumentation 67

[Cormen et al., 2009] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2009.

[Courcelle, 1989] B Courcelle. The monadic second-order logic of graphs, II: infinite
graphs of bounded width. Math. Systems Theory, 21:187–221, 1989.

[Craven and Toni, 2016] Robert Craven and Francesca Toni. Argument graphs and
assumption-based argumentation. Artificial Intelligence, 233:1–59, 2016.

[Craven et al., 2012] Robert Craven, Francesca Toni, Cristian Cadar, Adrian Hadad,
and Matthew Williams. Efficient argumentation for medical decision-making. In Ger-
hard Brewka, Thomas Eiter, and Sheila A. McIlraith, editors, Proceedings of the 13th
International Conference on Principles of Knowledge Representation and Reasoning
(KR 2012). AAAI Press, 2012.

[Craven et al., 2013] Robert Craven, Francesca Toni, and Matthew Williams. Graph-
based dispute derivations in assumption-based argumentation. In Elizabeth Black,
Sanjay Modgil, and Nir Oren, editors, Proceedings of the 2nd International Workshop
on Theory and Applications of Formal Argumentation (TAFA 2013), Revised Selected
papers, volume 8306 of Lecture Notes in Computer Science, pages 46–62. Springer,
2013.

[Creignou et al., 2011] Nadia Creignou, Johannes Schmidt, Michael Thomas, and Stefan
Woltran. Complexity of logic-based argumentation in post’s framework. Argument &
Computation, 2(2-3):107–129, 2011.

[Cyras and Toni, 2016a] Kristijonas Cyras and Francesca Toni. ABA+: assumption-
based argumentation with preferences. In James P. Delgrande and Frank Wolter,
editors, 15th International Conference on Principles of Knowledge Representation
and Reasoning (KR2016), pages 553–556. AAAI Press, 2016.

[Cyras and Toni, 2016b] Kristijonas Cyras and Francesca Toni. ABA+: assumption-
based argumentation with preferences. CoRR, abs/1610.03024, 2016.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre Marquis. A knowledge com-
pilation map. Journal of Artificial Intelligence Research, 17:229–264, 2002.

[Dauphin and Schulz, 2014] Jeremie Dauphin and Claudia Schulz. Arg Teach - A Learn-
ing Tool for Argumentation Theory. In Proceedings of the 26th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2014), pages 776–783. IEEE
Computer Society, 2014.

[De Liddo and Buckingham Shum, 2010] Anna De Liddo and Simon Buckingham Shum.
Cohere: A prototype for contested collective intelligence. In Anna De Liddo, Si-

mon Buckingham Shum, Gregorio Convertino, Ágnes Sándor, and Mark Klein, editors,
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logic programming: An argumentative approach. TPLP, 4(1-2):95–138, 2004.
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