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Abstract Chloride ingress into concrete is a major cause for material degradation, such as
cracking due to corrosion-induced steel reinforcement expansion. Corresponding transport
processes encompass diffusion, convection, and migration, and their mathematical quantifi-
cation as a function of the concrete composition remains an unrevealed enigma. Approaching
the problem step by step, we here concentrate on the diffusivity of cement paste, and how
it follows from the microstructural features of the material and from the chloride diffusivity
in the capillary pore spaces. For this purpose, we employ advanced self-consistent homog-
enization theory as recently used for permeability upscaling, based on the resolution of the
pore space as pore channels being oriented in all space directions, resulting in a quite com-
pact analytical relation between porosity, pore diffusivity, and the overall diffusivity of the
cement paste. This relation is supported by experiments and reconfirms the pivotal role that
layered water most probably plays for the reduction of the pore diffusivity, with respect to
the diffusivity found under the chemical condition of a bulk solution.
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GRAD Gradient operator on the macroscopic observation scale of cement paste
log Natural logarithm
sin Sine function∫

f (x) dx Integration of function f with respect to variable x
∂ f/∂x Partial differentiation of function f with respect to variable x
· First-order tensor contraction

Latin symbols

Apore Localization tensor for the concentration gradient of chloride ions in the pore
space

c Microscopic concentration of chloride ions
C Macroscopic concentration of chloride ions
D Characteristic length of heterogeneities within a representative volume element
dbulk Chloride diffusion coefficient in bulk solution
dpore Chloride diffusion coefficient in the pore fluid, when considering isotropic pore

diffusivity
d longpore Longitudinal chloride diffusion coefficient in the pore fluid, when considering

anisotropic pore diffusivity
d transpore Transverse chloride diffusion coefficient in the pore fluid, when considering

anisotropic pore diffusivity
dpore Isotropic chloride diffusivity tensor in the pore fluid
danisopore Anisotropic chloride diffusivity tensor in the pore fluid

dsolid Chloride diffusivity tensor in the solid phase

Dexp
paste Experimentally obtained diffusion coefficient of chloride ions in cement paste

Dhom
paste Homogenized diffusion coefficient of chloride ions in cement paste, when con-

sidering cylindrical pores with isotropic diffusivity
Dhom,sph
paste Homogenized diffusion coefficient of chloride ions in cement paste, when con-

sidering spherical pores with isotropic diffusivity
Dhom,aniso
paste Homogenized diffusion coefficient of chloride ions in cement paste, when con-

sidering cylindrical pores with anisotropic diffusivity
Dhom
paste Homogenized diffusivity tensor of chloride ions in cement paste, when consider-

ing cylindrical pores with isotropic diffusivity
ex , ey, ez Unit base vectors of Cartesian coordinate system
er , eϑ , eϕ Unit base vectors of spherical coordinate system
fair Volume fraction of air pores
fcem Volume fraction of cement clinker
fhyd Volume fraction of hydration products
fpore Volume fraction of pore space
fwater Volume fraction of water
j Index representing a specific data point
j Microscopic diffusive flux vector of chloride ions
jpore Microscopic diffusive flux vector of chloride ions in the pore space
Jpaste Macroscopic diffusive flux vector of chloride ions
lpore Length of single pore
� Characteristic length of representative volume element
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LC Characteristic length of physical quantities related to a representative volume
element

LS Characteristic length of a solid or structure made up by the material defined by a
representative volume element

n Number of experimental data points
Ppore Hill tensor related to the pore space
Psolid Hill tensor related to the solid phase
r Radial coordinate of spherical coordinate system
R2 Coefficient of determination
RVE Representative volume element
s Standard deviation of the (dpore,i/d∗

pore,i )-population
tn−1,α/2 t-value
VRVE Volume of representative volume element
∂VRVE Surface of representative volume element
w/c Initial water-to-cement mass ratio
(w/c)cur Water-to-cement mass ratio after curing
x Position vector
x̄ Mean value of the (dpore,i/d∗

pore,i )-population
zα/2 z-value
1 Second-order unit tensor

Greek letters

α Statistical significance level
ϑ Euler angle
ξ Degree of cement hydration
μ Expected value
μlow Lower bound of the expected value
μup Upper bound of the expected value
σup Upper bound for the standard deviation
ϕ Euler angle
χ2
n−1,α χ2-value

1 Introduction

Ingress of chloride ions into steel-reinforced concrete structures is an important factor for
initiating corrosion of the embedded steel bars (Glass and Buenfeld 1997). The presence of
chloride ions in concrete structures is thus considered amajor threat to their durability (Stewart
and Rosowsky 1998). The underlying transport processes comprise diffusion, migration, and
convection (Glasser et al. 2008), and their interplay turns out as complex, so that studying
these processes individually is generally considered as a suitable scientific approach. In this
context, the chloride diffusivity of concrete in particular, and of cementitious materials in
general, is a (so far only partially resolved) topic of great scientific interest. Here, the key
challenge lies in the fact that this diffusivity is not constant, but depends on the composition
of the material (governed by the chosen mixture, standardly expressed in terms of the initial
water-to-cement mass ratio and the initial aggregate-to-cement mass ratio), of its maturity
(quantified by the so-called degree of hydration), as well as of microcracks occurring at the
interfaces between aggregate grains (referred to as “bond cracks”) or connecting different
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aggregate grains (referred to as “matrix cracks”), as shown in (Wong et al. 2009; Wu et al.
2015).

Striving for understanding this composition dependence, numerous experimental cam-
paigns provided valuable insights, and the latter were often condensed into (more or less
appropriate) simplified empirical relations (Page and Ngala 1997; Oh and Jang 2004; Sun
et al. 2011b). Importantly, the majority of such diffusion tests have been carried out on
cement paste specimens (concrete is regarded as composite consisting of cement paste and
aggregates—in the present paper, we focus on the chloride diffusivity of cement paste as
well. This focus on cement paste implies that the aforementioned microcracks, potentially
exerting a substantial influence on the macroscopic diffusivity of mortar or concrete, can be
neglected subsequently.

From a more fundamental viewpoint, it is natural to explore the microstructural sources
whichdrive the overall diffusive properties of cement paste, and to derive correspondingmath-
ematical functions taking into account the relevant information available at the microlevel. In
this context, repeated inclusion of infinitely small solid spheres into a repeatedly homogenized
diffusive medium, as is customarily done in the so-called differential schemes (Dormieux
and Lemarchand 2001), proposes that the isotropic diffusivity of cement paste depends on
the (capillary) fluid volume fraction to the power of 1.5, times the chloride diffusivity of
the pore solution. This allows for translating experimental data obtained from cement paste
specimens with different mixtures into one “universal” chloride diffusivity of the cement
paste pore solution, dpore = 1.07 × 10−10 m2/s (Pivonka et al. 2004). Interestingly, this
value for dpore is about 15 times smaller than the chloride diffusivity of a bulk solution,
dbulk = 1.61 × 10−9 m2/s (Robinson and Stokes 1959). This is probably due to the charged
pore surfaces causing water structuring, which, in turn, leads to a reduction of the solution’s
diffusivity. The aforementioned diffusivity difference in bulk versus electrically influenced
solutions was subsequently confirmed by additional studies (Zheng and Zhou 2008; Zheng
et al. 2009a, 2010; Liu et al. 2012), and the aforementioned chloride diffusivity of the cement
paste solution turned out to be an appropriate input for various simulations dealing with the
durability of concrete, see, e.g., (Liu et al. 2013; Du et al. 2014). Alternatively, still consider-
ing spherical morphological features, concrete diffusivity upscaling was achieved by means
of the so-calledMaxwell effective medium approach, for studying the effects of entrapped air
pores (Wong et al. 2011) and interphases (Lutz and Zimmerman 2015) on the macroscopic
diffusivity.

However, cement paste actually exhibits clearly non-spherical microstructural features.
Explicit consideration of the latter has allowed for substantial improvements of microstruc-
tural models for the mechanics of cement paste and concrete (Sanahuja et al. 2007; Pichler
et al. 2009a; Pichler and Hellmich 2011). The same is true for a micromechanical model of
gypsum which considers the physically active (solid) parts of the microstructure as infinitely
many non-spherical phases (Sanahuja et al. 2010), while the physically non-active (fluid)
parts were considered, for simplicity, as spheres. This gypsum model was shown to predict
homogenized elastic properties as precisely as corresponding full 3D Finite Element simu-
lations (Meille and Garboczi 2001). Thus, the question arises whether the upscaling-based
estimate of the chloride diffusivity of the cement paste pore solution can be as well improved
when considering a more realistic microstructural representation of cement paste. This moti-
vates us to adapt, in the present paper, the aforementioned homogenization approach based
on infinitely many non-spherical phases, for diffusivity upscaling. In particular, we address
(i) whether such a more sophisticated and physically profound approach would replicate
the experimental data in a more suitable way than the classical differential method-based
approach, and (ii) whether and how the corresponding estimate of the chloride diffusiv-
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ity in the cement paste pore solution changes with respect to its differential method-based
counterpart.

For this purpose, we first present the model representation of cement paste, considering
the concepts of scale separation and random homogenization (see Sect. 2). Then, a new self-
consistent homogenization scheme for estimating the chloride diffusivity in cement paste is
derived (see Sect. 3), and the chloride diffusivity in the cement paste pore solution is assessed
(see Sect. 4). After a comprehensive discussion (see Sect. 5), a brief summary and outlook
concludes the paper (see Sect. 6).

2 Representative Volume Element for Diffusive Transport in Cement Paste

We here introduce a representative volume element (RVE) fulfilling the standard “separation
of scales”-requirement needed for random homogenization methods or continuummicrome-
chanics (Zaoui 2002; Drugan and Willis 1996; Dormieux and Kondo 2005). Inside the RVE,
microscopic ionic fluxes j fulfill the mass conservation law (Dormieux and Lemarchand
2001)

∀x ∈ VRVE : div j(x) = 0, (1)

with the position vector x labeling points within the RVE and at its boundary. Equation (1)
can be transformed into the so-called weak form, analogous to the principle of virtual power
in mechanics, see, e.g., (Germain 1973; Kuhl et al. 2004; Zienkiewicz et al. 2005; Maugin
2013), through multiplication with an arbitrary test function c(x), and integration over the
domain of the RVE, yielding

∫

VRVE

c(x)[div j(x)] dV =
∫

VRVE

j(x) · grad c(x) dV

=
∫

VRVE

div [j(x)c(x)] dV

=
∫

∂VRVE

[j(x)c(x) · n(x)] dS,

(2)

whereby use of Eq. (1) was made, and with ∂VRVE denoting the boundary of the RVE. It is
suitable to assign, to the test function, the nature of a “virtual concentration”; namely when
defining boundary conditions for the RVE. Following (Dormieux and Lemarchand 2001), we
prescribe “microscopic” concentrations at the boundary of the RVE of cement paste, which
are compatible with a homogeneous “macroscopic” concentration gradient GRADC ; this
reads mathematically as

∀x ∈ ∂VRVE : c(x) = GRADC · x. (3)

Using Eq. (3) in Eq. (2) yields

123



500 N. Damrongwiriyanupap et al.

∫

VRVE

j(x) · grad c(x) dV =
∫

∂VRVE

[j(x)c(x) · n(x)] dS

=
∫

∂VRVE

(GRADC · x)[j(x) · n(x)] dS

= GRADC ·
∫

∂VRVE

[x ⊗ j(x)] · n(x) dS (4)

= GRADC ·
∫

VRVE

div [x ⊗ j(x)] dV

= GRADC ·
∫

VRVE

j(x) dV .

Equation (4) readily suggests to introduce a macroscopic ionic flux Jpaste in the format
∫

VRVE

j(x) · grad c(x) dV = VRVEJpaste · GRADC, (5)

which implies the following average rule for the ionic fluxes:

Jpaste = 1

VRVE

∫

VRVE

j(x) dV . (6)

As the microstructure within the RVE is, as a rule, never known in minute detail, it is
represented in the simplest possible (while still sufficiently complex) way, by means of
homogeneous subdomainswithin theRVE, called “material phases.” In the present case, these
phases are characterized by quantitative properties, namely volume fractions and (chloride)
diffusivities: One (spherical) solid phase with volume fraction (1− fpore) exhibits negligible
diffusivity (dsolid ≈ 0), while infinitely many, arbitrarily oriented (elongated) cylindrical
pore phases fill the remaining volume (with volume fraction fpore) and exhibit the (chloride)
diffusivity of the pore fluid, dpore, see Fig. 1. Specification of Eq. (6) for this morphology
yields

Jpaste = fpore

2π∫

ϕ=0

π∫

ϑ=0

jpore(ϑ, ϕ)
sin ϑ

4π
dϑ dϕ, (7)

with jpore(ϑ, ϕ) denoting the ionic flow characterizing the cylindrical pore phase oriented in
(ϑ, ϕ)-direction according to Fig. 2. Notably, Eq. (7) considers that no fluxes occur in the
solid phase, see also (Dormieux and Lemarchand 2001). Transport in the pores is governed
by Fick’s first law of diffusion, reading in a phase-specific format as

jpore(ϑ, ϕ) = −dpore(ϑ, ϕ) · (grad c)pore(ϑ, ϕ), (8)

whereby the phase-specific diffusivity tensor always exhibits the same eigenvalues, and
eigendirections which are alignedwith the pore directions. This tensor relates the orientation-
specific ionic flux to the concentration gradient by which it is driven, i.e., to the orientation-
specific concentration gradient (grad c)pore(ϑ, ϕ).
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(a)

(b) (c)

D
∀x ∈ ∂VRVE : c(x) =GRADC ·x

Dhom
pasteDhom

paste

dporedsolid

(spherical) solid phase

(cylindrical) pore phase

“average” polycrystal matrix

(GRADC)∞

Fig. 1 2D illustration of the 3D micromechanical representation of cement paste: a polycrystal-type arrange-
ment of (spherical) solid and (cylindrical) pore phases, with indication of the characteristic lengths of
heterogeneities, D , and of the RVE, �,D � �, whereas � is significantly smaller than the characteristic
lengths of physical quantities related to the RVE, LC, and of a solid or structure made up by the material
defined by the RVE,LS, � � {LC,LS}; b and c show the matrix-inclusion problems used for the derivation
of localization tensor Apore, see Sect. 3

3 Homogenization of Macroscopic Diffusion Behavior:
Porosity–Diffusivity Relations

Due to the linearities of both the considered transport law and the mass conservation law,
a linear macro-to-micro “downscaling” relation can be established for the concentration
gradients,

(grad c)pore (ϑ, ϕ) = Apore(ϑ, ϕ) · GRADC, (9)

with Apore as the second-order “downscaling” or localization tensor (alternatively also
referred to as concentration tensor) related to the concentration gradient of chloride ions
encountered in the pore space; such localization tensors have been originally defined for
linear elasticity (Zaoui 1997, 2002), and later also for pressure gradients driving Darcy-type
fluid flow (Dormieux and Kondo 2004, 2005). Derivation of Apore has been dealt with in
great detail in (Abdalrahman et al. 2015), based on Eshelby’s famous inhomogeneity problem
(Eshelby 1957), see also the work of Dormieux and Kondo (2005), eventually yielding

Apore(ϑ, ϕ) =
[
1 + Ppore(ϑ, ϕ) ·

(
dpore − Dhom

paste1
)]−1 ·

{

(1 − fpore)
[
1 − Psolid · Dhom

paste1
]−1

+ fpore

2π∫

ϕ=0

π∫

ϑ=0

[

1 + Ppore(ϑ, ϕ) ·
(
dpore − Dhom

paste1
) ]−1 sin ϑ

4π
dϑ dϕ

}−1

,

(10)
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Fig. 2 Cylindrical pore space inclusion oriented along vector er , and inclined by the Euler angles ϑ and ϕ,
with respect to the reference base frame defined through the unit vectors e1, e2, and e3; the local base frame,
defined by unit vectors er , eϑ , and eϕ , is attached to the cylindrical inclusion

where Dhom
paste is the homogenized macroscopic diffusion coefficient of chloride ions in

cement paste. Furthermore, Ppore and Psolid, respectively, denote the so-called Hill or mor-
phology tensors accounting for the shape of an ellipsoidal inhomogeneity of diffusivities
dpore and dsolid = dsolid1, respectively, embedded in a fictitious matrix with diffusivity
Dhom
paste = Dhom

paste1. Given the micromechanical representation chosen for cement paste, see
Sect. 2, the Hill tensors follow as (Dormieux et al. 2006; Abdalrahman et al. 2015)

Ppore(ϑ, ϕ) = 1

2Dhom
paste

⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦

er ,eϑ ,eϕ

, (11)

representing a cylindrical shape with its orientation defined through angles ϑ and ϕ, and

Psolid = 1

3Dhom
paste

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, (12)

representing a spherical shape. The tensor components of Ppore need to be transformed from
the (er , eϕ, eϕ)-base to the (e1, e2, e3)-base, through the standard transformation laws for
second-order tensors (Salençon2001).Psolid, in turn, is an isotropic tensor, and its components
remain unchanged upon any component transformation.

Using Eq. (9) in Eq. (7) yields

Jpaste = −
{

fpore

2π∫

ϕ=0

π∫

ϑ=0

dpore(ϑ, ϕ) · Apore(ϑ, ϕ)
sin ϑ

4π
dϑ dϕ

}

· GRADC. (13)

Inserting the macroscopic ionic flux according to Eq. (13) into Fick’s first law at the macro-
scopic observation scale,

Jpaste = −Dhom
paste · GRADC, (14)
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(a) (b)

Fig. 3 Parametric study showing a how the macroscopic chloride diffusion coefficient Dhom
paste is governed by

the cement paste porosity fpore, and the microscopic (pore-scale) chloride diffusion coefficient dpore, based
on evaluation of Eq. (16); and b the porosity-dependent ratio of Dhom

paste to dpore, comparing the self-consistent
homogenization scheme resulting in Eq. (16), on the differential homogenization scheme by Dormieux and
Lemarchand (2001), and on the self-consistent bispherical model of Hashin (1968)

gives, by comparing Eqs. (13) and (14), finally access to the macroscopic diffusivity tensor
Dhom
paste:

Dhom
paste = fpore

2π∫

ϕ=0

π∫

ϑ=0

dpore(ϑ, ϕ) · Apore(ϑ, ϕ)
sin ϑ

4π
dϑ dϕ = Dhom

paste1. (15)

For simplicity, we now choose to assume isotropic chloride diffusivity in the pore space,
thus dpore(ϑ, ϕ) = dpore1. Then, insertion of Eqs. (11) and (12) into Eq. (10), and insertion
of the corresponding result into Eq. (15), allows us to derive a quadratic equation that can be
straightforwardly solved for Dhom

paste:

Dhom
paste = dpore

2( fpore + 9)

[

3
(
33 f 2pore − 26 fpore + 9

)0.5 + 17 fpore − 9

]

. (16)

Themicro–macro relation given by Eq. (16) reveals the homogenized diffusivity of cement
paste as a function of pore diffusivity and porosity, Dhom

paste = F( fpore, dpore), see Fig. 3(a).
Dividing both sides of Eq. (16) by dpore readily yields a dimensionless format of this micro–
macro relation, reading as Dhom

paste/dpore = F ( fpore), see Fig. 3(b). Comparing the latter ratio
to the classical results of Dormieux and Lemarchand (2001), who considered a differential
homogenization scheme, yielding Dhom

paste/dpore = f 1.5pore, and of Hashin (1968), who consid-
ered a self-consistent homogenization scheme based on a bispherical morphology, yielding
Dhom
paste/dpore = 2 fpore/(3− fpore) shows that due to the revised morphology, our model leads

to significantly lower homogenized cement paste diffusivities at low porosities.

4 Upscaling Theory-Guided Re-evaluation of Diffusion Experiments:
Access to Chloride Diffusivity at the Capillary Pore Level

As direct experimental determination of dpore is out of reach (due to the small pore scales, in
comparison with standard diffusivity testing devices), we will check whether many different
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diffusivity tests at the level of cement paste, with different porosities fpore, deliver, via
Eq. (16), the same (or at least) similar values for the pore diffusivity. Such diffusivity tests
are, as a rule, not directly characterized by the porosity fpore, but rather given in term of
the initial water-to-cement mass ratio (w/c), at which the cement paste was produced, see
Table 1. According to the famous Powers–Acker model (Powers and Brownyard 1948; Acker
2001), the water-to-cement ratio relates to the volume fractions of cement paste constituents
“cement clinker” (cem), “water,” “hydrates” (hyd), and “air,” via (Pichler et al. 2009a)

fcem(ξ) = 20(1 − ξ)

20 + 63(w/c)
≥ 0, (17)

fwater(ξ) = 63 [(w/c) − 0.42ξ ]

20 + 63(w/c)
≥ 0, (18)

fhyd(ξ) = 43.15ξ

20 + 63(w/c)
, (19)

fair(ξ) = 3.31ξ

20 + 63(w/c)
, (20)

with fcem(ξ)+ fwater(ξ)+ fhyd(ξ)+ fair(ξ) = 1within anRVEof cement paste. In Eqs. (17)–
(20), ξ denotes the degree of hydration, fcem the volume fraction of unhydrated cement, fwater
the volume fraction ofwater, fhyd the volume fraction of hydrates, and fair the volume fraction
of air pores. Note that in the presently chosen model representation of cement paste, see
Fig. 1, no distinction is made between hydrates and unhydrated cement grains; instead, both
are considered as non-diffusible, and thus “merged” to one solid phase. Furthermore, since
the considered experimental works, see Table 1, exclusively comprise classical diffusion or
migration cell tests, in the course of which the cement paste sample is tested after the relevant
pore spaces became water-saturated, also no distinction is required between water and air
phase; they can be merged to one pore phase. As regards the cement paste mixture, an initial
water-to-cementmass ratio smaller than 0.42 usually leads to incomplete hydration of cement
paste; thus, a certain portion of unhydrated cement remains. However, all pastes considered
here were cured in water for time periods of at least 4 weeks, which implies sufficient
additional water supply beyond that accounted for in the initial water-to-cement ratio, so
that eventually the entire cement clinker became hydrated (Pivonka et al. 2004). In order
to consider this situation when computing the pore space volume fractions, we follow the
strategy proposed by Pivonka et al. (2004) and introduce the water-to-cement mass ratio after
curing, (w/c)cur, being identical to the initial water-to-cement mass ratio for (w/c) ≥ 0.42,
and amounting to 0.42 for pastes with (w/c) < 0.42. In addition, the aforementioned curing
times also propose consideration of completed hydration, ξ = 1. Then, the volume fraction
of the chloride diffusion-enabling pore space reads as

fpore(ξ = 1) = fwater(ξ = 1) + fair(ξ = 1) = 29.77 + 63(w/c)cur
20 + 63(w/c)cur

, (21)

see the fifth column of Table 1.
Equation (16) allows us to find, for each data pair fpore and Dexp

paste, one corresponding
value for dpore, see the last column of Table 1. Such obtained pore diffusivity values are
indeed well clustered around their mean value d̄pore = 1.476 × 10−10 m2/s, with a standard
deviation of 5.049 × 10−11 m2/s.

It is also interesting to check the statistical relevance of the identified mean pore diffu-
sivity value in combination with the upscaling model of Sect. 3, in comparison with the
porosity–diffusivity relations given through the experimental values documented in Table 1,
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Fig. 4 Comparison of model-predicted and experimentally determined chloride diffusion coefficients in
cement paste: experimental data, see Table 1, versus model predictions provided by Eq. (16), considering
the pore diffusivities given in Eqs. (28) and (29) as well as the porosities listed in Table 1

as illustrated by different (triangle-, square-, and diamond-shaped) symbols in Fig. 4. For this
purpose, we derive, from the statistical sample of pore diffusivities of Table 1, a complete
statistical population of such values, and then take the 5 and 95% quantiles of this popula-
tion for estimating upper and lower bounds for paste-related porosity–diffusivity relations.
In more detail, we adapt the procedure proposed by König et al. (1998) in the context of
the compressive strength of concrete, and refined by Pichler et al. (2005) for the impact of
rock boulders onto gravel: Considering that the chloride diffusivities can take only positive
values, the log-normal distribution appears as particularly relevant to capture the type of
scattering observed with dpore. That implies that the logarithms of the macroscopic diffusion
coefficients, back-computed by means of Eq. (16) from whatever experimental realization
of a diffusion test on cement paste, make up a normally distributed statistical population.
Through taking the logarithms of the values given in Table 1, we obtain one statistical sam-
ple of the aforementioned statistical population. The elements of this sample are denoted as
log(dpore,i/d∗

pore,i ), where i is an index, dpore,i is the i th back-analyzed pore-scale diffusion

coefficient, and d∗
pore is a normalization quantity, d∗

pore = 1m2/s, included to yield dimen-
sionless arguments for the logarithmic function. The sample is characterized by a mean value
x̄ and standard deviation s, according to

x̄ = 1

n

n∑

i=1

log

(
dpore,i
d∗
pore,i

)

= −22.663, (22)

and

s =
√√
√
√ 1

n − 1

n∑

i=1

[

log

(
dpore,i
d∗
pore,i

)

− x̄

]2

= 0.323, (23)

where n = 38 is the number of back-analyzed pore-scale diffusion coefficients. According
to a famous result published by William Sealy Gosset alias “Student” (Student 1908), the
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normalized differences between the mean values of any sample taken from a statistical popu-
lation and the mean of the population itself follow a Student t-distribution of degree (n− 1),
see, e.g., (Bortz 1999). This allows one to estimate upper and lower bounds of the statisti-
cal populations from the one known mean value of one sample taken from the population,
according to

μlow = x̄ − (tn−1,1−α/2)s√
n

≤ μ ≤ μup = x̄ + (tn−1,1−α/2)s√
n

, (24)

where tn−1,1−α/2 is the so-called t-value, cutting an area equal to 1− α/2 of the Student’s t-
distribution with n−1 degrees of freedom, and α is the significance level, i.e., corresponding
to (1 − α)-confidence interval. Considering the sample size n = 38 and the significance
level α = 5%, one obtains tn−1,1−α/2 = 2.026. Then, Eq. (24) allows us to calculate μlow =
−22.767 andμlow = −22.556.Theupper boundof the respective standard deviationσ, σup, is
based on a one-sided confidence interval, following a standard engineering statistics approach
(NIST 2012)

σup =
√

(n − 1)s2

χ2
n−1,α

, σ ≤ σup, (25)

where χ2
n−1,α is the χ2-value that cuts an area equal to the significance level α of the Chi-

squared distribution with n − 1 degrees of freedom (Bortz 1999). For n = 38 and α = 5%,
one obtains χ2

n−1,α = 24.1; thus, Eq. (25) delivers σup = 0.400. Finally, we use the estimates
for the characteristics of the normally distributed statistical population, namely the upper and
lower bounds for the mean value μup and μlow according to Eq. (24) as well as the upper
bound for the standard deviation, σup according to Eq. (25), in order to obtain estimates for
5%- and the 95%-quantiles of the statistical population; i.e., we insert the aforementioned
estimates in the standard definitions of quantiles, yielding

log

(
dpore,i
d∗
pore,i

)

5%

= μlow − z0.025σup, (26)

log

(
dpore,i
d∗
pore,i

)

95%

= μup + z0.025σup, (27)

where zα/2 is the z-value that cuts an area equal to (1 − α) of the standardized normal
distribution. Evaluating Eqs. (26) and (27) for α = 5%, thus for z0.025 = 1.645, yields
log(dpore,i/d∗

pore,i )5% = −23.427 and log(dpore,i/d∗
pore,i )95% = −21.898. Eventually, we

can calculate the median of the dpore,i -population, (dpore)50%, its 5%-quantile, (dpore)5%, and
its 95%-quantile, (dpore)95%:

(dpore)50% = 1.438 × 10−10 m2/s,

(dpore)5% = 6.698 × 10−11 m2/s,

(dpore)95% = 3.088 × 10−10 m2/s.

(28)

A graphical representation of these results, see Fig. 4, shows that all but one experimental
data point are located within the bounds defined by the 5%-quantile and the 95%-quantile of
the dpore,i -population. The respective outlier, however, is located within the bounds defined
by the 2%-quantile and the 98%-quantile of the dpore,i -population, calculated analogously as
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paste, as a function of the the hydration degree ξ , computed for different water-to-cement ratios

demonstrated above:

(dpore)2% = 5.391 × 10−11 m2/s,

(dpore)98% = 3.837 × 10−10 m2/s.
(29)

In addition to this satisfactory bounding characteristics, the trend predicted by the homog-
enization model of Sect. 3 fed with the median of the pore diffusivity, (dpore)50% =
1.438 × 10−10 m2/s, describes the actual, experimentally given porosity–diffusivity trend
remarkably well, as underlined by a coefficient of determination of R2 = 0.913.

Finally, it is further instructive to assess the dependence of the macroscopic diffusivity of
cement paste on the underlying cement paste mixture, quantified based on the initial water-
to-cement ratiow/c, and on the hydration degree ξ . For this purpose, we evaluate Eq. (18) for
various water-to-cement ratios ranging from 0.2 to 0.7, in order to get access to the mixture-
and hydration degree-dependent pore space volume fraction fpore = fwater. Equation (16)
then allows us to study how the diffusivity of cement paste changes over its service life, for
different cement paste mixtures, see Fig. 5.

5 Discussion

The herein presented homogenization approach starts at a local level where the physics is
quite well understood, namely the diffusion of chloride ions in the pore space of cement paste,
following Fick’s law; we upscale this behavior to the level of cement paste where we again
retrieve a Fick-type diffusion behavior. Such a mode of (physically reasonable) upscaling
has been repeatedly described in the open literature, see, e.g., (Hashin 1968; Dormieux
and Lemarchand 2001; Boutin and Geindreau 2010 and Patel et al. 2016). Thus, we would
qualify our approach as a typical “micromechanics strategy.” Concerning the “structural,”
“layered,” or “glassy” water phase, it has been shown by the landmark molecular dynamics
studies of Ichikawa et al. (2000, 2002) that the changes in physics due to the “structuring”
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or “layering” of water molecules express themselves simply in a different, namely reduced,
pore diffusivity, which, however, may still enter the upscaling strategy related to further
above. From a more general viewpoint, we wish to remark that it is well known that the
structure of water changes in the immediate vicinity of charged surfaces (such as the surfaces
of hydrates), resulting in some kind of layering effect (Pollack 2001, 2013). Such kind of
water domains are imagined to be glassy, or of ice-type (“liquid crystalline”) nature, and
are alternatively referred to as “surface zone” (Henniker 1949) or “exclusion zone” (Pollack
2013). Layered water exhibits physical properties that vary significantly from the properties
of bulk water. For example, as shown by molecular dynamics studies, water layering leads
to increased viscosity and reduced diffusivity (Ichikawa et al. 2000, 2002). The thickness
of layered water can amount up to a few millimeters (Zheng et al. 2006, 2009b; Pollack
2013; Florea et al. 2014). This suggests that the pores pervading cement paste are entirely
and homogeneously filled with layered water (instead of bulk water). In our model, this
implies that the (chloride) diffusion coefficient of the pore fluid is, throughout the entire
pore space, reduced with respect to the (chloride) diffusion coefficient in bulk water. At
the same time, we are aware that there exist other propositions (Bertolini et al. 2004; Yang
2013) which limit the characteristic length scale of water molecule mobility restriction to
several tens of nanometers; rather than to micrometers or even to millimeters. However,
latest experiments and simulations on pore size distributions in concrete (Huang et al. 2015)
reveal that typically 80% of the pore space found in very mature cement paste is made up
by pores with characteristic lineal dimensions of less than 20 nanometers. This renders the
aforementioned propositions (Bertolini et al. 2004; Yang 2013) as not necessarily at odds
with our proposition of approximately homogeneous properties throughout the channel-like
pore phases introduced in the herein-presented modeling approach. Furthermore, while we
presently analyze, based on our “micromechanical” transport model, only one layered water
diffusivity value allowing for the prediction of various diffusivity values at the cement paste
level, we understand that this approach may be further refined in the future, by performing
molecular dynamics studies targeting explicitly at the diffusivity determination of cement
paste pore fluid. This is, however, beyond the scope of the present manuscript. We also wish
to remark that our upscaling situation is different from that encountered when upscaling, by
means of the asymptotic expansion technique, the Navier–Stokes equation to a permeability
equation—then, the structure of the governing equations indeed changes upon scale transition,
see, e.g., (Auriault and Lewandowska 1997; Auriault 2002; Boutin and Geindreau 2010).

The aforementioned molecular dynamics studies (Ichikawa et al. 2000, 2002) are partic-
ularly insightful, as they reveal that for a geomaterial which is somewhat similar to cement
paste, i.e., clay, the diffusivity decreases from bulk to pore solution by a factor of 7; from
dbulk = 1.61 × 10−9 m2/s to dIchikawapore = 2.3 × 10−10 m2/s. Our new prediction for the pore

solution diffusivity, d̄pore = 1.476× 10−10 m2/s (being separated from the bulk solution dif-
fusivity by factor 10.91) is considerably closer to molecular dynamics-derived pore solution
diffusivity than the one reported in Sect. 1 of this paper, dPivonkapore = 1.07×10−10 m2/s (being
separated from the bulk solution diffusivity by factor 15). In other words, the difference
between micromechanics- and molecular dynamics-based pore solution diffusivity could
be reduced by ≈32%. This confirms that the more realistic representation of cement paste
according to Fig. 1 indeed leads to a more precise prediction of the cement paste diffusivity.

In view of the actual ordering of water molecules at the sub-nanometer scale of the
“structured” or “layered”water phase, our concept involving an isotropic pore diffusivitymay
appear as bold approximation. Strictly speaking, the aforementionedmolecular configuration
would result in direction-dependent movement possibilities for the ions. In order to study the
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implications of the isotropic pore diffusivity modeling followed so far, we now extend our
analysis to a transversely isotropic pore diffusivity tensor reading as

danisopore =
⎡

⎣
d longpore 0 0
0 d transpore 0
0 0 d transpore

⎤

⎦

er ,eϑ ,eϕ

, (30)

where d longpore relates to the diffusivity in the pore direction and d transpore denotes the diffusivity
orthogonal to it. Using this format for dpore in the expression for the homogenized diffusivity
tensor, i.e., Eq. (15), yields the following homogenized cement paste diffusivity:

Dhom,aniso
paste = 1

2(9 + fpore)

{

2d longpore fpore − 9d transpore + 15d transpore fpore

+
[

8d longpored
trans
pore fpore(9 + fpore) +

(
2d longpore fpore + 3d transpore (5 fpore−3)

)2]0.5
}

.

(31)

For the sake of demonstration, we have performed the back-calculation of the pore-scale
diffusivity according to Eq. (31), by means of an evolution algorithm (Schwefel 1977),
aiming at minimization of 1 − R2, R2 being the coefficient of determination related to
the deviation between the model predictions according to Eq. (31) and the experimental
data according to Table 1. Such an optimization yields d longpore = 1.470 × 10−10 m2/s and
d transpore = 0.806× 10−10 m2/s, with the maximized coefficient of determination amounting to

R2 = 0.9117. It is now instructive to compare the performance of themodel-predicted cement
paste diffusivity based on anisotropic pore diffusivity behavior, to the one based on isotropic
pore diffusivity behavior; for the latter, we evaluate Eq. (16),with dpore = 1.476×10−10 m2/s,
see Fig. 6. It turns out that the performances of the two modeling options are very similar.
Themost apparent difference is that an anisotropic pore-scale diffusivity consistently leads to
lower homogenized diffusivities on the cement paste scale. However, this difference becomes
relevant only for high-porosity cement pastes, i.e., for fpore significantly larger than 0.3. Since
only one experimental data point is available for fpore = 0.387, and experimental data for
cement paste porosities higher than that are not available to us, it appears that the true benefits
of using an anisotropic pore-scale diffusivity tensor are yet to be unveiled. For the time being,
we consider prescribing in our model an isotropic pore-scale diffusivity as reasonable model
assumption because then the pore-scale diffusion coefficient can be simply back-calculated
from the experimental data, not requiring the use of amore expensive optimization algorithm.

We may also mention that our approach is fully consistent with the current state of the art
in the mathematical modeling of concrete: In fact, our microheterogeneous formulation rests
on the famous hydration model of Powers and Brownyard (1948) and Acker (2001), which
has not only provided the basis for numerous, experimentally validated, micromechanical
descriptions (Hellmich and Mang 2005; Sanahuja et al. 2007; Pichler et al. 2009b; Scheiner
and Hellmich 2009), but has also been kind of corroborated by very recent statistical physics
approaches (Ioannidou et al. 2016). In the aforementioned micromechanics approaches, an
RVE of cement paste is either composed of water pores, air pores, hydrates, and unhy-
drated cement (clinker) grains (Hellmich and Mang 2005; Pichler et al. 2009b; Scheiner and
Hellmich 2009), or of clinker grains embedded into a hydrate foammatrix, whereby the latter
is, at a smaller scale, resolved into hydrates, water pores, and air pores; i.e., a hierarchical
system of two RVEs is used to represent cement paste (Pichler and Hellmich 2011; Pichler
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et al. 2013). Presently, our transport modeling approach somewhat follows the material phase
description of Hellmich and Mang (2005), Pichler et al. (2009b) and Scheiner and Hellmich
(2009), involving only one RVE representing the composite material cement paste. Actually,
we additionally merge, on the one hand, the water and air pore phases into one phase called
“capillary porosity” (this merging results from the experimental conditions realized in stan-
dard diffusion tests), and on the other hand, the hydrate and clinker phases aremerged as well,
into one “solid phase” (given their non-diffusible nature as compared to that of the pores).
This concept, involving only one RVE, seems to be particularly well suited for the present
situation where we restrict our investigations to fully hydrated cement pastes. In this case,
no unhydrated cement clinker is left, and even the aforementioned two-scale formulations
degenerate into a one-scale formulation. Still, it is interesting to find out up to which extent
our homogenization scheme improves similar earlier developments, such as the differential
homogenization scheme of Dormieux and Lemarchand (2001), which has been applied to
cement paste diffusivity by Pivonka et al. (2004), and the “self-consistent bispherical model”
of Hashin (1968). An analysis as described in Sect. 3 was performed for both alternative
homogenization schemes. While the homogenization approach presented in Sect. 4 yields
a pore-scale chloride diffusivity separated from the chloride diffusivity in bulk solution by
factor 10.91, the homogenization schemes of Dormieux and Lemarchand (2001) and Hashin
(1968), respectively, yield pore-scale chloride diffusivities separated from the chloride diffu-
sivity in bulk solution by factors 13.16 and 24.16, respectively. Considering that themolecular
dynamics studies of Ichikawa et al. (2000, 2002) suggest that this factor amounts to 7, we
conclude that our model yields significantly more accurate results than previous models. All
these homogenization approaches may be qualified as “Fickian diffusion,” delivering dif-
fusivity quantities which relate concentration gradients to molar fluxes. Limitations of such
approaches have been extensively discussed, and it is of interest to review these limitations in
the context of our work: Non-Fickian diffusion induces significant, non-negligible deforma-
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tions in the respective porous material, because of which the mathematical description of the
diffusion process needs to be extended (as compared to the classical Fick’s law), in order to
take into account the interaction between deformation-induced stresses and Brownianmotion
(Ferreira et al. 2015). This is, however, not the case in the problem studied here. Another
limitation of the Fickian description related to heterogeneity is: The homogenized diffusivity
needs to be defined on an RVE already fulfilling the separation of scales requirement between
micro-heterogeneity and RVE size, on the one hand, and between RVE size and size of the
structural geometry or loading, on the other hand. In cases where this requirement is vio-
lated (Neuman and Tartakovsky 2009; Fourar and Radilla 2009), non-Fickian descriptions
are needed.

From the viewpoint of classical self-consistentmodeling (Hershey 1954;Hill 1965), itmay
seem surprising that our approach does not exhibit a percolation threshold, i.e., a minimum
porosity needed to allow for ionic transport. This owes to the elongated shape of the cylindrical
pores, ensuring a connected, and thus diffusion-enabling network even for arbitrarily small
porosities. This changes if the pore space is considered to be of non-cylindrical shape. For
example, evaluating our homogenization scheme for spherical pores yields a cement paste
diffusivity of

Dhom,sph
paste =

⎧
⎨

⎩

dpore
2

(
3 fpore − 1

)
for fpore ≥ 1

3

0 for fpore < 1
3 ,

(32)

indicating a percolation threshold of fpore = 1
3 , belowwhich no ionic transport is possible. As

discussed in (Pichler et al. 2009a), cylindrical pores imply the lower bound for the diffusivity-
related percolation threshold of cement paste, while spherical pores imply the respective
upper bound, see also Fig. 7 for a graphical comparison of Dhom

paste according to Eq. (16)

and Dhom,sph
paste as defined above; prescribing oblate or prolate spheroids (with finite aspect

ratios) as pore shapes would imply percolation thresholds somewhere between 0 ≤ fpore ≤
1
3 . In the present case, we focus on fully hydrated cement paste, with fpore ≥ 0.071. As
demonstrated in experimental studies, see Table 1, such cement paste porosities always imply
a connected network of capillary pores enabling diffusive transport of species dissolved in
the pore solution. Thus, for the consideration of cement paste diffusivities, any percolation
thresholds not being close to fpore = 0 make very limited sense.

It is also interesting to discriminate our approach from the popular “effective medium
approaches.” The latter go back to the seminal work of Maxwell Garnett (Garnett 1904)
and have been adapted to diffusivity upscaling by Burganos and Sotirchos (1987). However,
quoting from (Levy and Stroud 1997), effective medium approaches are “useful when one
of the components can be considered as a host in which inclusions of the other components
are embedded.” This implies that the effective medium theory is probably not useful for
estimating the diffusivity of cement paste, at least not when considering the morphology
according to Fig. 1. In contrast, the effective medium theory is indeed useful for estimation
of concrete, see, e.g., (Oh and Jang 2004), which is, however, beyond the scope of this paper.

6 Summary and Outlook

Recent developments in continuum homogenization theories extended to infinitely many
material phases related to all orientations in Euclidean space (Fritsch et al. 2009, 2013;
Abdalrahman et al. 2015) could be successfully applied to diffusivity upscaling. The corre-
sponding results allow for improved representation of water-to-cement ratio-dependent and
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any percolation threshold, while the latter features percolation at fpore = 1
3

hydration-dependent diffusivity of cement paste. This provides a novel, both experimentally
and theoretically improved foundation which may support large-scale simulations concern-
ing durability of concrete structures, see, e.g., the approaches presented by Schrefler and
Pesavento (2004), Gawin et al. (2006).

Future model developments may include extension of the homogenization scheme from
the cement paste to the concrete level. For this purpose, additional interface phenomena,
possibly occurring between the cement matrix and the aggregate grains (van Breugel et al.
2004) may deserve particular attention. Another interesting extension of the present model
could relate to the case of unsaturated pores. This could be done based on the very interesting
recent suggestion (Yang et al. 2016) of covering an Eshelby inclusion representing the solid
phase by a liquid layer. This extension should be readily applicable to the Eshelby problem
of Fig. 1b; together with the introduction of a new Eshelby problem related to the empty pore
spaces, i.e., to a gaseous phase.
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