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Abstract We present R2U2, a novel framework for runtime monitoring of security proper-
ties and diagnosing of security threats on-board Unmanned Aerial Systems (UAS). R2U2,
implemented in FPGA hardware, is a real-time, Realizable, Responsive, Unobtrusive
Unit for runtime systemanalysis, now including security threat detection. R2U2 is designed to
continuously monitor inputs from on-board components such as the GPS, the ground control
station, other sensor readings, actuator outputs, and flight software status. By simultaneously
monitoring and performing statistical reasoning, attack patterns and post-attack discrepan-
cies in the UAS behavior can be detected. R2U2 uses runtime observer pairs for Linear and
Metric Temporal Logics for property monitoring and Bayesian networks for diagnosis of
system health during runtime. We discuss the design and implementation that now enables
R2U2 to handle security threats and present simulation results of several attack scenarios on
the NASA DragonEye UAS.
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1 Introduction

Unmanned Aerial Systems (UAS) will soon become ubiquitous. From toy quadcopters, to
industrial aircraft for delivery, to utility craft for crop dusting, to police and fire fleets for
public safety, to drones for military operations, UAS vary widely in terms of weight, size, and
complexity. Although the hardware technology has significantly advanced in the past years,
there are still considerable issues to be solved before this wide range of UAS can be shown
to operate safely, particularly when autonomy is required. Perhaps the biggest concern is the
integration of UAS into the National Air Space (NAS), where they have to seamlessly blend
into the crowded skies and obey Air Traffic Control commands without endangering other
aircraft or lives and property on the ground [6].

A related topic, which has been vastly neglected so far, is security [36]. All sensors and
software set up to ensure UAS safety are useless if a malicious attack can cause the UAS
to crash, be abducted, or cause severe damage or loss of life. Often, live video feeds from
military UAS are not encrypted, so people on the ground, with only minimal and off-the-
shelf components, could see the same images as the remote UAS operator [50]. In 2011, Iran
allegedly abducted a CIA drone by jamming its command link and spoofing its GPS. Instead
of returning to the CIA base, the UAS was directed to land in Iranian territory [8]. Even large
research UAS worth millions of dollars are controlled via unencrypted RF connections; most
UAS communicate over a large number of possible channels [14], relying on the assumption
that “one would have to know the frequencies” to send and receive data.

There are multiple reasons for these gaping security holes: most UAS flight computers are
extremely weak with respect to computing power. Thus, on-board encryption is not possible,
especially for larger data volumes as produced, for example, by on-board cameras. Another
reason is that a lot of UAS technology stems from the Hobby RC area, where security is of
low concern. Finally, security aspects have only played a minor role in FAA regulation to
date [11].

On a UAS, there are multiple attack surfaces: the communication link, sensor jamming or
spoofing, exploitation of software-related issues, and physical attacks like catching a UAS in
a net. While on-going work, e.g., the DARPA HACMs project [10], is demonstrating consid-
erable success at designing secure UAS software systems that thwart insecure interactions
by design, a UAS must necessarily sense and interact with its environment on some level
to enable effective operation. Even with secure-by-design software running on-board, such
interactions must be monitored and analyzed during runtime to ensure system-level correct
operation. Therefore, in this paper, we focus on the detection of communication, sensor,
and software-related security threats, but do not elaborate on attack prevention or possible
mitigation strategies. Though design-time verification and validation activities can secure a
number of attack surfaces, an actual attack will, most likely, happen while the UAS is in
the air. We therefore propose the use of dynamic monitoring, threat detection, and security
diagnosis.

In order to minimize impact on the flight software and the usually weak flight computer,
R2U2 is implemented on dedicated FPGA hardware. This no-overhead implementation is
designed to uphold the FAA requirements of Realizability and Unobtrusiveness.
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Previously, we developed our on-board monitoring and diagnosis framework R2U2 for
system health management of hardware-only components and developed implementations
to detect hardware failures [12,42,46]. We defined and proved correct our FPGA temporal
logic observer encodings [42] and our Bayesian network (BN) encodings [12], which com-
prise R2U2’s underlying health model. We also envisioned a compositional building-block
framework for integrationwith other diagnosis technologies that also analyzed software com-
ponents [46]; in a preliminary version of this work [44] and in this paper, we follow up on that
idea by providing the first implementation of R2U2 that includes software components, via
monitoring software variable values passed over the system bus. Here we focus on new types
of patterns related to on-board security whereas our previous work explored safety-related
aspects of system health management. Specifically, we recognize that some off-nominal
behaviors, when analyzed as individual events, may be either innocuous or indicative of a
problem, but we can configure R2U2 to recognize patterns of possibly off-nominal events
followed by some delayed behaviors that, taken as a whole, indicate a security problem.

Here, we extend R2U2 to enable the dynamic monitoring of the flight software via the
the communication stream, along with sensor values, for indications of a malicious attack
on the autopilot and, even more importantly, to be able to quickly and reliably detect post-
attack behavior of the UAS. We add sophisticated signal processing blocks to the R2U2
framework, including, for example, moving average, or Fast Fourier Transformation, which
can be applied directly to the incoming data stream of the monitored system. These filters
are a major benefit towards bridging the gap between theoretical examples and real-world
applications where signals are often very noisy. The temporal and probabilistic health models
and their FPGA implementations are suited for fast detection and diagnosis of attacks and
post-attack behavior. The separate FPGA implementation of a security extension to R2U2
described in this paper is highly resilient to attacks, being an isolated hardware entity and
programmed using VHDL.

Our contributions include:

– extending R2U2 in a couple of ways for better enabling on-board, real-time detection of
attack scenarios and post-attack behavior

– extending R2U2 from monitoring of safety properties of hardware [12,42] to inte-
grating hardware and software bus traffic monitoring for security threats

– adding more sophisticated signal processing blocks to the R2U2 framework, such as
FFT and moving average, that broaden its reasoning capabilities

– detection of attack patterns rather than component failures;
– ensuring monitoring and reasoning are isolated from in-flight attacks; our FPGA imple-

mentation provides a platform for secure and independent monitoring and diagnosis that
is not re-programmable in-flight by attackers;

– demonstrating R2U2 via case studies on a real NASA DragonEye UAS; and
– implementing a novel extension of R2U2 that we release to enable others to reproduce

and build upon our work: http://temporallogic.org/research/RV15.html.

The rest of this paper is structured as follows. Section 2 provides background information
on our UAS platform, the open-source flight software, and the R2U2 framework. Section 3
is devoted to our approach of using temporal logic observers and BN diagnostic reasoning
for detection of security threats and post-attack UAS behavior. In Sect. 4, we will illustrate
our approach with several small case studies on attacks through the ground control station
(GCS), attempts to hijack a UAS through an attacker GCS, and GPS spoofing. Finally, Sect. 5
discusses future work and concludes.
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1.1 Related work

Existing fault diagnosis techniques can also be used to detect cyber attacks, since they can
be regarded as faults in the system [23]. There exist a number of tools and approaches
(both commercial and open) for fault detection, diagnosis, and recovery that are used in the
aerospace industry. FACT1 is a research project to develop modeling approaches and real-
time, embeddable fault-diagnostic algorithms for system health management applications.
They use temporal failure propagation graph models, whereas R2U2 uses temporal logic
specifications in combination with probabilistic Bayesian reasoning. FACT has a “certifia-
bility” constraint similar to our Unobtrusiveness property that states that a monitor should
not create a need for re-certification of the system under test. SamIam2 and Hugin Expert 3

Bayesian Networks are well known for fault detection, diagnosis, and decision making. They
offer reasoning capabilities using probabilistic models. Due to their computationally intense
algorithms they have not been used extensively for health management. In R2U2, however,
we use the SamIam tool for the graphical modeling of our Bayesian Network models. In
Runtime Verification with Particle Filtering [19] the authors use dynamic Bayesian networks
to model the program, the program monitor, their interaction, and their observations. They
provide a method to control the tradeoff between uncertainty and overhead. In R2U2, we
currently do not consider gaps although they could occur due to unsuccessful transmissions
from the system under test to the R2U2 monitors.

NASA projects uses three model-based diagnosis tools for on-board analysis of related
system platforms. TEAMS-RT4 is a real-time embedded diagnostics and reasoning tool based
on models with specified cause-effect dependencies. It is targeted toward integrated health
management (IHM) applications. TEAMS-RT is executed as a process on the target device,
whereas R2U2 is executed on dedicated FPGA hardware in order to minimize overhead on
the system under test. HyDE5 is a model-based tool written in C++ to diagnose discrete faults
in stochastic hybrid systems. Similar to R2U2, it uses probabilistic reasoning for diagnosis.
Livingstone26 is a software system written in C++ for diagnosis and recovery that uses
artificial intelligence. It analyzes the system’s state and recommends commands or repair
actions. Similar to R2U2, it uses an external GUI to support model creation. Livingstone2
provides a real-time interface to provide sensor readings to the monitoring system, which is
similar to what we achieve using R2U2’s preprocessing.

Software monitoring techniques can also be specialized for reasoning about real-time
avionics. Copilot [37] is a domain-specific language tailored to generating C monitors in
constant time and constant space based on a Haskell specification. It is designed to perform
real-time monitoring on distributed safety-critical systems. Compared to R2U2, Copilot does
not have reasoning capabilities, which we require in order to perform attack detection based
on probabilistic models.

Several previous works have utilized on-board FPGAs as a performable platform for run-
time verification of past-time speciications. BusMOP [30,35] uses a non-intrusive approach
for runtime monitoring similar to R2U2 by means of passive instrumentation on a commu-
nication bus. The tool can automatically generate monitors that are executed on an FPGA,

1 http://www.isis.vanderbilt.edu/projects/FACT.
2 http://reasoning.cs.ucla.edu/samiam/.
3 http://www.hugin.com/.
4 https://www.teamqsi.com/products/teams-rt/.
5 http://ti.arc.nasa.gov/tech/dash/diagnostics-and-prognostics/hyde-diagnostics/.
6 http://ti.arc.nasa.gov/opensource/projects/livingstone2/.
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thereby achieving zero runtime overhead. Compared to R2U2, it is limited to the past-time
fragment of LTL but supports extended regular expressions as well. Heffernan et al. [13]
present an on-chip, real-time runtime verification tool that supports past-time LTL specifica-
tions, whereas R2U2 also supports future-time specifications, which can be more natural to
humans [26]. Similar to R2U2, they implement the monitor on a System-on-Chip FPGA. The
system under test is executed on the same chip, whereas for R2U2we use a separate hardware
platform dedicated exclusively for monitoring. They follow a non-invasive approach where
they do not require additional instrumentation. This is achieved by tapping into the memory
bus of the system under test and extracting the events from the observed memory read and
write transactions. Todman et al. [53] present an approach for in-circuit monitoring of designs
implemented in reconfigurable hardware. Their monitors can be evaluated at the execution
speed of the system under test. Their implementation is tailored to high-speed in-circuit
applications where the system under test has to be executed on the same FPGA. This is not
an option for a system like a UAS that consists of multiple hardware components and usu-
ally a flight computer running the control algorithms in software. Also, compared to R2U2,
their monitors must be added to the design during compile time. However, they argue that
they are working on a partly reconfigurable architecture, where they can change parts of the
design, while others continue to execute. Their implementation supports past-time temporal
logic specifications. Selyunin et al. [48] use IBM’s brain-inspired TrueNorth spiking neuron
model for runtime monitoring. The model is capable of performing a variety of deterministic
or stochastic tasks, such as Boolean/arithmetic operations, filtering, or convolution similar
to R2U2’s signal processing blocks. The model’s parameters can be configured to recog-
nize MTL operators. They translate the monitors from a C++ description into synthesizable
HDL code using High-Level Synthesis (HLS) from Xilinx. Compared to R2U2, changes in
the specification require a re-synthesis of the FPGA implementation. Although they support
future-time MTL specifications by translating them into equisatisfiable past-time formulas,
their implementation violates our responsiveness requirement, since the evaluation of such
a formula is delayed by the size of the formula.

P2V [24] is a PSL toVerilog compiler that generatedmonitors from assertions inserted into
the target system. Any changes in these assertions require a re-synthesis and re-programming
of the FPGA.

There are also several FPGA-based approaches that reason about signal temporal logic
(STL) specifications. Jaksic et al. [16] present algorithms for generating hardware runtime
monitors implemented in FPGAs. Unlike R2U2, changes of the specification require re-
synthesizing the FPGA implementation. They use STL assertions that allow the specification
of complex timing relations between digital and analog events. Compared to our MTL speci-
fications, their STL specifications consider dense time. From an application point of view, the
signals we intend to monitor are usually sampled to discrete time signals with an appropriate
sampling frequency. Their STL models can consider real-valued signals, whereas our MTL
monitors require Boolean input signals. However, using our preprocessing, we can formalize
similar models. For example, instead of specifying intervals directly using STL specifica-
tions, our preprocessing can “Booleanize” intervals on real-valued signals using thresholds
before we analyze them in our MTL specifications. Hence, assuming an appropriate sam-
pling frequency, it is possible with R2U2 to specify similar models in many cases, as for
example, the “stabilizability property” from [26]. In [49] the authors generate STL monitors
from a SystemC implementation. Their monitors can either be used in high-level simulations,
or synthesized to FPGA monitors, which can be deployed and run within the same FPGA
as the design under test. Hence, their monitors are non-compliant with our unobtrusiveness
requirement since they alter the system under test, potentially requiring a re-certification.
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Similar to R2U2, their FPGA-based monitors can monitor operations in real time. However,
their approach is focused on developing monitors that can be integrated in different phases
of the electronic chip development cycle. In R2U2 we focus on monitoring complete sys-
tems like UAS, consisting of several subsystems. Donze et al. [9] present work related to
our signal processing in the frequency domain. They contribute a specification formalism
called time-frequency logic (TFL) for real-valued signal properties in the frequency domain
of real-valued signals. To that end, they extend STL to include operators that calculate the
Short-Time Fourier Transformed (STFT) coefficients for a parameterizable frequency of an
arbitrary input signal. Since the STL semantics are defined relative to dense-time signals, they
define their extension in the continuous domain. R2U2 follows a more practical approach
where we compute a finite set of frequencies using the Fast Fourier Transform (FFT) algo-
rithm. We do not define a new formalism, but use an arbitrary configuration specific to our
tool. Their monitoring machinery, however, works in a similar way to ours: the raw input sig-
nals are preprocessed in order to obtain the spectral signals of interest. The resulting signals
can then be used similarly to all other input signals in STL (or MTL in our case).

Some security-monitoring frameworks have also been adapted for running on-board UAS.
TeStID [2], ORCHIDS [33], and MONID [32] are intrusion detection systems that use tem-
poral logic to specify attack patterns. These security-monitoring frameworks are targeted at
IT systems and infrastructure. Kim et al. [21] analyze the vulnerabilities of UAS to cyber
attacks. Their work focuses on the identification of possible attack surfaces and an analy-
sis of the post-attack behaviors. Similar to this paper, they identify, for example, malicious
parameters on the control loops, denial of service attacks between the GCS and the UAS, as
well as spoofing attacks on the sensors, as potential attack surfaces of a UAS. They conduct
numerical analysis to study the post-attack behavior of the UAS. They propose a theoretic
system architecture robust to cyber attacks, by adding additional layers of encryption and
authentication, and by augmenting a cybersecurity monitoring component called a supervi-
sor. The supervisor’s role is to detect and isolate abnormal or malicious activity within the
autopilot system. They rely on the assumption that the behavior of the UAS would change
as a result of an attack in such a way that their supervisor can detect it. R2U2, on the other
hand, tries to use patterns that correlate information from different subsystems in order to
detect unknown attacks, similar to intrusion detection systems for IT infrastructures. Com-
pared to R2U2, their architecture is a theoretic approach; they do not provide any information
on an implementation. Kwon et al. [23] discuss security for cyber-physical systems against
deception attacks. They propose an approach that can determine the vulnerability level of a
CPS and derive conditions that allow an attack to deceive a monitoring system. Similar to
our work, they consider both the sensor components and the control units of the CPS, and
demonstrate the approach by simulating a deception attack on the navigation system of a
UAS. Javaid et al. [17] also analyze cybersecurity threats for UAS. They simulate the effects
of attacks that usually end in a crash, focusing on identifying different existing attack surfaces
and vulnerabilities rather than focusing on runtime detection or post-attack analysis.

2 Background

Although our approach can be used for multiple types of UAS, for this paper, we consider a
simple and small UAS platform, the NASA DragonEye (Fig. 1a). With a wingspan of 1.1m
it is small, but shares many commonalities with larger and more complex UAS. Figure 1b
shows a high-level, generic UAS architecture: the UAS is controlled by an on-board flight
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Fig. 1 a Photo of NASA DragonEye. b High level system architecture of a small UAS

computer running the flight software (FSW). It receives measurements from various sensors,
like barometric pressure and airspeed, GPS, compass readings, and readings from the inertial
measurement unit (IMU). Based upon this information and a flight plan, the FSW calculates
the necessary adjustments of the actuators: elevator, rudder, ailerons, throttle. A ground
control station (GCS) computer transmits commands and flight plans to theUAS, and receives
and displays UAS telemetry information. This link, however, has a very low bandwidth and
is not reliable. For fully autonomous missions, there is no link between the UAS and the
GCS.

2.1 Flight software

Our example system uses the open-source FSW “APM:Plane” [3], which does not contain
any security features like command or data encryption for theGCS-UAS link per default. This
architecture allows us to easily carry out white-box experiments and to study the relationship
between attacks and post-attack behavior.

Despite its simplicity, we selected this FSW because it very closely resembles the archi-
tecture of both similarly small and larger, more complex UAS. Even large commercial and
military UAS do not have encrypted command links, or their encryption is rather weak and
can easily be compromised [50]. Therefore, we assume in this paper that the command link
is an attack surface.

2.2 R2U2

Developed to continuously monitor system and safety properties of a UAS in flight, our real-
timeR2U2 (Realizable,Responsive, andUnobtrusiveUnit) has been implemented on an
FPGA (Field Programmable Gate Array) [12]. Hierarchical and modular models within this
framework are defined using Metric Temporal Logic (MTL) [22] and mission-time Linear
Temporal Logic (LTL) [42] for expressing temporal properties and Bayesian networks (BN)
for probabilistic and diagnostic reasoning. An extension of the framework to incorporate
Prognostics Models is described in [45]. In the following, we give a high-level overview over
the R2U2 framework and its FPGA implementation. For details on temporal reasoning, its
implementation, and semantics the reader is referred to [12,42,47].

2.2.1 Temporal logic observers

LTL and MTL formulas consist of propositional variables, the logic operators ∧, ∨, ¬,
or →, and temporal operators to express temporal relationships between events. For LTL
formulas p, q , we have �p (Always p), ♦p (Eventually p), X p (NextTime p), pU q
(pUntil q), and pRq (pReleases q). Their formal definition and concise semantics is
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p,qq qq q

Fig. 2 Pictorial representation of LTL temporal operators and MTL operators

given in [42]. On an informal level, given Boolean variables p, q , the temporal operators
have the following meaning (see also Fig. 2):

Always p (�p) means that p must be true at all times along the timeline.
Eventually p (♦p) means that pmust be true at some time, either now or in the future.
NextTime p (X p) means that p must be true in the next time step; in this paper a time
step is a tick of the system clock aboard the UAS.
p Until q (pU q) signifies that either q is true now, at the current time, or else p is true
now and p will remain true consistently until a future time when q must be true. Note
that q must be true sometime; p cannot simply be true forever.
p Releases q (pR q) signifies that either both p and q are true now or q is true now
and remains true unless there comes a time in the future when p is also true, i.e., p∧q is
true. Note that in this case there is no requirement that p will ever become true; q could
simply be true forever. The Release operator is often thought of as a “button push”
operator: pushing button p triggers event ¬q .

ForMTL, each of the temporal operators are accompanied by upper and lower time bounds
that express the time period during which the operator must hold. Specifically, MTL includes
the operators�[i, j] p,♦[i, j] p, pU[i, j] q , and pR[i, j] q , where the temporal operator applies
over the interval between time i and time j , inclusive (Fig. 2).

Additionally, we use a mission bounded variant of LTL [42] where these time bounds are
implied to be the start and end of the mission of a UAS. Throughout this paper, time steps
refer to ticks of the system clock. So, a time bound of [0, 7] would designate the time bound
between 0 and 7 ticks of the system clock from now. Note that this bound is relative to “now”
so that continuously monitoring a formula ♦[0,7] p would produce true at every time step t
for which p holds anytime between 0 and 7 time steps after t , and false otherwise.

For the purpose of real-time dynamic monitoring, R2U2 provides two kinds of observers:
asynchronous observers and synchronous observers. Each formula is encoded twice: once
as an asynchronous observer and once as a synchronous observer. Asynchronous observers
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directly follow the LTL semantics and provide a precise valuation of the formula (True or
False) as early as the result can be determined, together with valuation time, which is the
time for which that result is known. An example output from an asynchronous observer is
(True, 1). If the True/False valuation of the formula cannot be completed at the current
time, the observer returns ( , ) designating output is delayed until a later time. This output
repeats until there is enough information to complete the valuation of the formula. For some
specification ϕ for each clock tick an asynchronous observer may resolve ϕ for clock ticks
prior to the current time n if the information required for this resolution was not available
until n. For example, for the formula �[2,6] p in Fig. 2 the asynchronous observer would
return, at time t = 6, the value True with valuation time t = 0.

In order to provide time-triggered real-time information about the currently-known val-
uation of a formula, we also utilize synchronous observers [42], which can have values of
False, True, or Maybe, and which produce results at each time step. For our previous
example �[2,6] p, a synchronous observer would, for time t = 1, report False. For time
steps between t = 2 and t = 5 it would report Maybe, because at that point in time, the
formula cannot be decided yet, but there is still the possibility that it may become True.
Pairing an asynchronous observer with a synchronous observer for observing a future-time
property enables us to simultaneously be precise, enable intermediate decisions about for-
mula valuations when we don’t have complete information to determine whether it will pass
or fail, and utilize the time-triggered synchronous observer results as event triggers for other
system operations. (We do also allow past-time formulas; these are encoded once because
formula valuation can always be completed immediately for the current time since we have
already seen all of the data required to evaluate the formula.)

2.2.2 Bayesian networks for health models

In many situations, temporal logic monitoring might find several violations of security and
safety properties. For example, a certain system state might have been caused by an attack or
by a bad sensor; we can use the combination of property violations to determine the current
situation. In order to be able to disambiguate the root causes, the R2U2 framework uses
Bayesian networks (BN) for diagnostic reasoning. BNs are directed acyclic graphs, where
each node represents a statistical variable. They are well-established in the area of diagnostic
and health management (e.g., [29,34]). Conditional dependencies between the different sta-
tistical variables are represented by directed edges; local conditional probabilities are stored
in the Conditional Probability Table (CPT) of each node [12,43,47]. R2U2 evaluates poste-
rior probabilities, which reflect the most likely root causes at each time step. Note that we
do not use dynamic BNs, which are capable of reasoning about time, because all temporal
aspects are being dealt with by the efficient temporal observers described above. Our deci-
sion allows us to maintain a clear separation between temporal and probabilistic aspects in a
health model and to use efficient algorithms for each of these aspects.

For our health models, we are using BNs of a general structure as shown in Fig. 3.
Outputs of the temporal observers or discrete sensor signals are clamped to the “sensor” and
“command” nodes of the Bayesian network as observable. In this paper, the nodes are shaded
and their names start with “S_.” Since sensors can fail, they have (unobservable) health nodes
(“H_S” in Fig. 3) attached. As priors, these health nodes can contain information on how
reliable the sensor component is, e.g., by using a Mean Time To Failure (MTTF) metric. In
contrast to sensor nodes, command nodes “C” are used to convey modes or inputs, that are
assumed to be true, to the BN.
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Fig. 3 Prototypical structure of a
BN for health management
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Unobservable nodes U may describe the behavior of the system or component as it is
defined; they are influenced by the sensors or other behavior information. Often, such nodes
are used to define a mode or state of the system. For example, it is likely that the UAS
is climbing if the altimeter sensor says “altitude increasing.” Such (desired) behavior can
also be affected by faults, so behavior nodes have health nodes attached. For modeling
details see [43]. In our health management system, we, at each time step, calculate the
posterior probabilities of the BN’s health nodes, given the sensor and command values e
as evidence. The probability Pr(H_S = good|e) gives an indication of the status of the
sensor or component. Reasoning in real-time avionics applications requires aligning resource
consumption of diagnostic computations with tight resource bounds [31]. We are therefore
using a representation of BNs that is based upon arithmetic circuits (AC). These are directed
acyclic graphs where leaf nodes represent indicators λ and parameters θ while all other nodes
represent addition and multiplication operators. Figure 4 shows the AC for our simple BN
in Fig. 3. Posterior marginals are calculated by first executing a bottom-up pass with the
λ indicators clamped to the evidence, followed by a top-down path over the AC. Except
for a final division, only floating point additions and multiplications are used, making the
reasoning efficient and resource-bounded. Thus, AC reasoning provides predictable real-time
performance [7,29] because bounding the resources and operations required enables reliable
predictions about the real-time performance of each such calculation.

2.3 FPGA implementation

R2U2 is implemented in FPGA hardware to provide an independent component for the mon-
itoring of the UAS flight hardware (Fig. 1b). Figure 5a shows the high level architecture.
Signals from the flight computer and communication buses are transmitted to the R2U2
monitoring device that continuously monitors these signals using signal processing, tempo-
ral logic observers and Bayesian networks. The current instantiation is implemented on an
Adapteva Parallella Board [1], which is a credit-card sized, low-cost platform, featuring a
Xilinx Zynq xc7z010 or xc7z020 FPGA (Fig. 5b). R2U2 can also utilize the platform’s ARM
A9 processing system and a 16 or 64 core coprocessor if additional computation power is
required. For instance, filters, or mathematical operations on signals can also be performed
in software.

An onboard Ubuntu Linux installation facilitates interfacing, debugging, and logging of
the monitoring data.

2.4 Data extraction from the UAS

The R2U2 approach uses passive instrumentation by tapping into the UAS’s communication
buses similarly to BusMOP [30,35], Heffernan et al. [13], or Reinbacher et al. [41]. Most
peripherals of the UAS are connected to the flight computer using a standard protocol over
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Fig. 4 BN representation as arithmetic circuit (from [12])

a b c

Fig. 5 a High-level architecture of R2U2. b Adapteva Parallella: our R2U2 hardware platform. c Main FPGA
architecture
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Fig. 6 Low overhead flight
software instrumentation

some attached wires. For example, the GPS receiver is connected to the flight computer using
a UART connection. Tapping into such an electrical signal can be achieved using an electrical
decoupling technique by means of an opto-isolator circuit. Such a non-intrusive approach
for generating data traces is required to avoid re-certification of the FSW. The Zynq System-
on-Chip FPGA on the Parallella board offers various interfaces like, for example, I2C, SPI,
or a dual 12-bit on-chip analog-to-digital converter that support monitoring signals from
different sources. Many of the test flights we performed for this paper were performed using
software-in-the-loop simulations. Therefore, we did not monitor those signals electrically.
Instead, we monitored internal FSW signals and forwarded them using a UART interface.

The NASA DragonEye FSW uses a scheduler that supports multiple tasks with priority
assignments. Instrumentation of existing tasks or interrupt service routines (ISR) can add
overhead, alter the tasks’ timing behavior, and even lead to violations of their associated
worst case execution times. Therefore, we create a dedicated R2U2 monitoring task with the
lowest priority in order to avoid interference with the normal operation of the FSW (Fig. 6).

The R2U2 task collects the data from the FSW and transmits it via a non-blocking UART
transmission to the R2U2 hardware platform. A CRC32 checksum is used for every trans-
mission in order to ensure data integrity. The task does not perform any calculations since all
necessary calculations are performed directly by the signal processing unit on the dedicated
R2U2 hardware platform. Thus, the computation overhead on the flight computer caused by
R2U2 is minimized.

Since the R2U2 task runs at the lowest priority, the transmission might be skipped or
interrupted. Unsuccessful transmissions are reported at later R2U2 task executions. The
R2U2 framework on the receiver side expects a periodic transmission from the FSW. Thus,
delayed or missing transmissions are detected and logged. That way, the framework detects
even a starvation of the R2U2 task. Since this instrumentation approach is tailored to low
computation overhead it is currently not capable of determining the cause of such a problem.
This would require a more intrusive approach as, for example, instrumenting the scheduler,
or instrumenting higher priority tasks.

An alternative approach appears in [52], where the authors use Hidden Markov Models
(HMM) to calculate the probability of a (non-probabilistic) temporal property being satisfied
using an execution trace that contains gaps. A missing transmission can be seen as such a
gap in the received event sequence. A statistical model of the monitored system can then
be used to fill these gaps in order to calculate the probability of a property being satisfied.
In [4] the authors take it a step further by combining the runtime verification with state
estimation, and with overhead control. Monitoring events are enabled and disabled for each
monitor as needed, in order to maintain the overhead at a specified target level. Based on
probabilistic models they predict the likelihood of a property violation and allocate a larger
fraction of the target overhead to the respective (critical)monitor instances in order to increase
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Fig. 7 R2U2 software tool chain. Adopted from [12]

the probability of violation detection. However, we have designed R2U2 to be modular and
extensible to a variety of avionics systems by reporting only the known valuations of our
temporal specifications, separately from any probabilistic estimations. In this way, R2U2 is
adaptable to aid different estimation algorithms for diagnostics and prognostics, e.g., with
varying levels of conservatism.

2.5 Tool chain

Our system health models are constructed based upon information extracted from system
requirements, sensor schematics, and specifications of expected behaviors, which are usually
written in natural language. Details will be presented in the following sections. Our software
tool chain takes temporal logic specifications, signal processing definitions and parameters,
as well as the Bayesian network, compiles each part of the model suitable for FPGA and/or
software execution, and produces a binary configuration file. Figure 7 shows the necessary
steps for the processing of temporal and BN specifications.

2.6 Scalability

The Xilinx Zynq xc7z020 FPGA offers 53,200 LUTs and 106,400 registers. The Parallella
board has a default resource consumption of 3,732 slice registers and 3,117 slice lookup
tables due to the interface to an onboard Epiphany coprocessor. The additional resource
consumption for the R2U2 design can be controlled by instantiating an arbitrary number of
parallel hardware-based Bayesian network computing blocks (algorithm discussed in [40,
47]). We instantiate a single Runtime Verification (RV-Unit) within the FPGA, although this
unit can also be parallelized as we discussed in [39]. The implementation in this paper uses
128 input signals, though this number could be extended for other implementations. The
limits depend on the bandwidth of the UART transmission to the FPGA.

data-bandwidth-required = number-of-inputs · size-of-inputs · sampling-frequency (1)

As can be seen in Eq. 1, the maximum number of inputs depends on the size of the inputs, the
sampling frequency, and the bandwidth of the interface. For the case studies in this paper we
use a bandwidth of 115.2 kbps and a sampling frequency of 5Hz. Thus, the bandwidth enables
to transmit amaximumof 2,090Bytes (16,720 binary signals) within a single evaluation cycle
(provided that a stop-bit, a start-bit, and a parity-bit is used).

Table 1 and Fig. 8 illustrate the maximum design operation frequency and the resource
consumption within the FPGA in terms of the used slice registers and the slice lookup
tables (LUT) depending on different numbers of parallel Bayesian computing blocks. These
numbers are independent of the size and structure of the health models.
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Table 1 R2U2 FPGA resource usage with hardware-based Bayesian reasoning

# Computing blocks # Slice registersa # Slice lookup tablesb Maximum design
frequency [MHz]

0 6,971 7,240 100.583

1 12,076 10,009 86.022

2 14,287 11,187 87.009

3 16,469 12,564 86.438

4 20,829 15,288 86.994

10 31,737 21,971 86.133

20 53,559 34,381 –

a 106,400 slice registers are available on the Xilinx Zynq XC7Z020
b 53,200 slice lookup tables are available on the Xilinx Zynq XC7Z020

Fig. 8 R2U2 FPGA slice register/lookup table usage

Table 2 R2U2 FPGA resource usage with/without hardware-based atomic checker

Atomic checker # Computing blocks # Slice registers # Slice lookup tables

Software based 1 12,076 10,009

FPGA based 1 43,504 45,046

A significant improvement in the FPGA resource consumption can be achieved by mov-
ing the hardware-based atomic proposition checkers into software. Table 2 compares the
resource consumption of a design with software-based, and FPGA-based atomic checkers.
Both designs again use 128 binary input signals and a single Bayesian computing block.

Although allR2U2processing components are available in theFPGAconfiguration, equiv-
alent software implementations of the signal processing unit (SP-unit) and the BN reasoning
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(RR-Unit) have been used for the experiments in this paper. The R2U2 software implementa-
tions can be used for tasks where the ARM processing system offers sufficient computational
power. This offers further scalability by reducing the number of required FPGA resources
and therefore, enabling a higher number of parallel computation blocks within the FPGA.
Besides, the software implementation facilitates fast model development and testing.

This hybrid software/FPGA architecture allows a customizable configuration depending
on the given task. The maximum sampling frequency of the UAS depends on the following
properties:

– Type and number of the preprocessing modules
– Complexity and number of the temporal logic observers
– Complexity of the Bayesian reasoning network
– For eachof the above: the selected target for evaluation (e.g., FPGA,ARM-core,Epiphany

coprocessor)
– For each of the above: the number of parallel computing block instantiations
– Maximum operation frequency of the execution target
– Available resources of the execution target (e.g., registers, memory)
– Current load of the execution target
– Interface bandwidth
– Number and size of the input signals

3 Our approach to threat detection

For our approach, we consider the “system” UAS (as depicted in Fig. 1b) to be a complex
feedback system. Commands, GPS readings, and measurements of the sensors are processed
by the FSW on the flight computer to calculate new values for the actuators, and to update its
internal status. We assume that all signals to the flight computer (e.g., ground control station
commands or GPS signals) are received by on-board RF receivers. In this paper, we assume
that all malicious attacks are attempted via wireless communication during flight. 7

With our R2U2 framework, we continuously monitor inputs from ground control and GPS
and can identify many attack mechanisms and surfaces. Typical examples include denial-of-
service, sending of illegal or dangerous commands, or jamming of the GPS receiver. Because,
in most cases, information about the communication does not suffice to reliably identify an
attack scenario, additional supporting information is necessary. This will be obtained from
the analysis of post-attack behavior of the UAS. Any successful attack on the UASwill result
in some unusual and undesired behavior of the UAS.

Monitoring the system inputs and analyzing the post-attack behavior are not independent
from each other sowe have tomodel their interactionswithin ourR2U2 framework. Typically,
a certain input pattern followed by a specific behavior characterizes an attack. For example, a
strong oscillation in the aircraft movement that was triggered by an unusual GCS command
indicates an attack (or an irresponsible pilot). Similarly, transients in GPS signals followed
by subtle position movements could be telltales of a GPS spoofing attack. Figure 5 shows
how our R2U2 framework monitors the various inputs going into the UAS system (GCS
and GPS), as well as sensor/actuator signals and status of the flight software for post-attack
analysis. We next consider modeling for attacks and post-attack behavior, loosely following
[21].

7 We do not model attack scenarios via compromised flight software.
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3.1 Attack monitoring

As all attacks are initiated through the GCS or GPS inputs, we monitor the following attack
surfaces. Because of zero-day attack mechanisms, this list will always be incomplete [5].
Note that the occurrence of such a situation does not mean that an actual attack is happening;
other reasons like unusual flight conditions, transmission errors, or faulty hard- or software
might be the reason.

Ill-formatted and illegal commands should not be processed by the FSW. Such commands
could result from transmission errors or might be part of an attack. If such commands are
received repeatedly a denial-of-service attack might be happening.

Dangerous commands are properly formatted but might cause severe problems or even a
crash depending on theUASmode. For example, a “reset-FSW” command sent to theUAS
while in the air, will, most certainly, lead to a crash of the UAS because all communication
and system parameters are lost. Thus, in all likelihood, this command indicates amalicious
attack. Other dangerous commands are, for example, the setting of a gain in the control
loops during flight. However, there are situations where such a command is perfectly legal
and necessary.

Nonsensical or repeated navigation commands could point to a malicious attack. Although
new navigationwaypoints can be sent to aUASduring flight to update itsmission, repeated
sending of waypoints with identical coordinates, or weird/erroneous coordinates might
indicate an attack.

Transients in GPS signals might be signs of GPS spoofing or jamming. Because the quality
of UAS navigation strongly depends on the quality of the received GPS signals, sud-
den transients in the number of available satellites, or signal strength and noise ratios
(Jamming-to-Noise Sensing [14]) might indicate a GPS-based attack.

It should be noted that these patterns do not provide enough evidence to reliably identify an
attack. Only in correspondence with a matching post-attack behavior are we able to separate
malicious attacks from unusual, but legal command sequences. We therefore also monitor
UAS behavior.

3.2 System behavior monitoring

Our R2U2models formonitoring post-attack behavior obtain their information from theUAS
sensors, actuators, and the flight computer. In our current setting, we do not monitor those
electrical signals directly, but obtain their values from the FSW. This simplification, however,
prevents our current implementation from detecting a crash of the flight software initiated by
a malicious attack. Nevertheless, since R2U2 is executed on a dedicated hardware platform,
it can detect a reboot of the FSW, or an unusual delay of the monitored events that might be
an indication of a crash of the FSW. With our R2U2 framework we are able to monitor the
following UAS behaviors, which might (or might not be) the result of a malicious attack.

Oscillations of the aircraft around any of its axes hampers the aircraft’s performance and
can lead to disintegration of the plane and a subsequent crash. Pilot-induced oscillations
(PIO) in commercial aircraft have caused severe accidents and loss of life. In a UAS such
oscillations can be caused by issuing appropriate command sequences or by setting gains
of the control loops to bad values. Oscillations of higher frequencies can cause damage
due to vibration or can render on-board cameras inoperative.

Deviation from flight path: In the nominal case, aUASflies fromonewaypoint to the next via
a direct path. Sudden deviations from such a straight path could indicate some unplanned or
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possibly unwelcomemaneuver. The same observation holds for sudden climbs or descents
of the UAS.

Sensor Readings: Sudden changes of sensor readings or consistent drift in the same direc-
tion might also be part of a post-attack behavior. Here again, such behavior might have
been caused by, for example, a failing sensor.

Unusual software behavior like memory leaks, increased number of real-time failures, or
illegal numerical values can possibly point to an on-going malicious attack. In the case
of software, such a behavior might be a post-attack behavior or the manifestation of the
attackmechanism itself. Therefore, securitymodels involving software health are themost
complex ones.

3.3 R2U2 models

We capture the specific patterns for each of the attack and behavior observers with tempo-
ral logic and Bayesian networks. We also use these mechanisms to specify the temporal,
causal, and probabilistic relationships between them. As a high-level explanation, an attack
is detected if a behavioral pattern B is observed some time after a triggering attack A has
been monitored. Temporal constraints ensure that these events are actually correlated. So, for
example, we can express that an oscillation of the UAS (osc = true) occurs between 100 and
200 time steps after the control loop parameters have been altered (param_change = true).
The time step is determined by the sampling interval we use to sample data from the UAS,
which is 200 milliseconds (5 Hz) in our experiments. Any trace satisfying the following
formula could indicate an attack.

param_change ∧ ♦[100,200]osc

3.4 Modeling variants and patterns

The combination of signal processing, filtering, past-time and future-timeMTL, andBayesian
reasoning provides a highly expressive medium for formulating security properties. Further
generality can be achieved by grouping related indicators. For example, we can define groups
of dangerous commands, unusual repeated commands, or events:

dangerous_cmds = cmd_reset ∨ cmd_calibrate_sensor ∨ cmd_disarm . . .

unusual_cmds_airborne = cmd_get_params ∨ set_params ∨ get_waypoints . . .

unusual_cmds_periodic = cmd_nav_to ∨ cmd_mode_change ∨ invalid_packet_rcvd

This enables us to directly use these preprocessed groups in temporal formulas and feed
them into a BN, thereby supporting simple reuse of common patterns and allowing us to
create more comprehensive security models. The following example demonstrates how we
use such patterns to specify that there shall be no dangerous commands between takeoff and
landing.

�[(CMD == takeoff) → ((¬ dangerous_cmds) U landing_complete)]
3.5 Bayesian networks for security diagnosis

Most models of attack monitoring and post-attack behavior are capable of indicating that
there might have been an attack, but cannot reliably detect one as such, because the observed
patterns could have been caused by a sensor failure, for example. However, we can use the
Bayesian network (BN) reasoning engine of R2U2 to perform better probabilistic diagnosis.
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Fig. 9 Threat detection with R2U2 models. We combine signal preprocessing, temporal logic observers and
Bayesian networks for our health and security models. The BN outputs the probability of an attack for a
specific attack scenario or pattern based on the observed data stream from the UAS

For details of Bayesian R2U2 models see [47]. The results of all the temporal observers are
provided as inputs to the observable nodes (shaded in Fig. 9) of the BN. The internal structure
of the BN then determines how likely a specific attack or failure scenario is. Prior information
on how likely a certain monitor fires helps to disambiguate the diagnosis. For example, a
sudden change in measured altitude could be attributed to a failing barometric altimeter, a
failing laser altimeter, a failing GPS receiver, or a GPS spoofing attack. In order to determine
the most likely root cause, additional information about recently received commands, or the
signal strength of the GPS receiver can be used. So, transients in GPS signal strength with
otherwise healthy sensors (i.e., measured barometric and laser altitude coincide) make an
attack more likely. On the other hand, strongly diverging readings from the on-board altitude
sensors make a sensor failure more likely. With prior information added to the BN, we can,
for example, express that the laser altimeter is much more likely to fail than the barometric
altimeter or the GPS sensor. Also, GPS transients might be more likely in areas with an
overall low signal strength. Since a BN is capable of expressing, in a statistically correct way,
the interrelationships of a multitude of different signals and outputs of temporal observers,
R2U2 can provide best-possible attack diagnosis results as sketched in Fig. 9.

4 Experiments and results

Our experiments can be run either in a software-in-the-loop (SITL) simulation, the Ironbird
(processor-in-the-loop) setup, or directly on the UAS.

In our SITL setup (Fig. 10), the FSW is executed on a Desktop PC. Also, the UAS
flight behavior is simulated on the Desktop computer by the open source JSBSim [18] flight
dynamics model. All hardware components are emulated by SITL low-level drivers, which
enables us to inject the desired behavior without the risk of damaging the aircraft during a
real test flight. The operator’s GCS is connected to the simulated UAS via an open source

Fig. 10 Software-in-the-loop
(SITL) test setup. The FSW and
the flight dynamics of the UAS
are simulated on a Desktop PC;
the produced data traces are
forwarded to our R2U2
framework running on an
Adapteva Parallella Board
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MAVLink proxy [27]. We also connect a second GCS to the proxy in order to simulate the
attackers injected MAVLink packets.

Most of the experiments in this paper were executed in a software-simulation, or on our
Ironbird processor-in-the-loop setup, which consists of the original UAS flight computer
hardware components in a laboratory environment. In all configurations, the produced data
traces were forwarded via a UART transmission to the R2U2 framework running on an
Adapteva Parallella Board [1].

The health models and their parameters like, for example, thresholds, or timings for
the following case studies were created manually based on the log files of our test flights.
Hence, especially obtaining suitable values for the conditional probability tables for the
Bayesian reasoning network was time consuming and posed a great challenge. Some of the
values, especially those related to hardware components can be derived from their reliability
according to their datasheet. Other values might be obtained using analysis of statistical
data from previous flights. For the experiments in this paper, we mainly used educated
guesses based on assumptions as, for example, possible attacker behaviors. For each case
study we performed several manually designed real-time test flights that contained our attack
scenarios. Also, the test flights contained scenarios where we tried to provoke false warnings
by mimicking similar behavior caused by random or environmental conditions. We then
tried to validate and refine our models and their parameters, mainly following a trial and
error approach. In this paper we present the results of a single demonstrative test flight for
each case study. We plan to improve this time consuming approach in the future by using
some semi-automated or automated techniques based on machine learning. Besides, we plan
to develop benchmarks for the models in order to evaluate their reliability regarding false
positives and negatives.

4.1 Dangerous MAV commands

In addition to commands controlling the actual flight, the MAVLink protocol allows the
user to remotely setup and configure the aircraft. In particular, parameters that control the
feedback loops inside the FSW can be defined, as they need to be carefully adjusted to
match the flight dynamics of the given aircraft. Such commands, which substantially alter
the behavior of the UAS can, when given during flight, cause dangerous behavior of the
UAS or a potential crash. In 2000, a pilot of a Predator UAS inadvertently sent a command
“Program AV EEPROM” while the UAS was in the air. This caused all FSW parameters and
information about communication frequencies to be erased on the UAS. Communication to
the UAS could not be reestablished and the UAS crashed causing a total loss $3.7M [54]. If
parameters for the FSW control loops are set to extreme values during flight, the aircraft can
experience oscillations that could lead to disintegration of the UAS and subsequent crash.
Therefore, such commands might be welcome targets for a malicious attack.

In this experiment, we set up our R2U2 to capture and report such dangerous behavior.
Our security model consists of two parts: (a) detection that a potentially dangerous MAV
command has been issued, and (b) that a dangerous behavior (in our case, oscillation around
the pitch axis) occurs. Each of the parts seen individually does not give an indication of an
attack: MAV commands to change parameters are perfectly legal in most circumstances. On
the other hand, oscillations can be caused by turbulence, aircraft design, or the pilot (pilot-
induced-oscillations). Only the right temporal combination of both pieces of information
allows us to deduce that a malicious attack has occurred: after receiving the “set parameter”
command, a substantial and persistent oscillation must follow soon thereafter. In our model
we use the specification �(♦[0,2000]C ∧ ♦[0,2000](�[0,300]O)), where O is the occurrence of
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Fig. 11 UAS behavior after malicious setting of gain parameters

oscillations and C the event of receiving a “set parameter” command. We require that the
oscillation persists for at least 300 time steps and is separated by the command by not more
than 2000 time steps.

The eventC can be directly extracted from the stream of receivedMAV commands; oscil-
lations can be detected with the help of a Fast Fourier Transform (FFT) on the pitch, roll, or
yaw angular values. Figure 11 shows how such an attack occurs. The top panel shows the
UAS pitch as well as the points in time when a “set-parameter” command has been received
(small boxes). Caused by a malicious command (setting pitch gain extremely high) issued at
around t = 2800, a strong low-frequency up-down oscillation appears in the pitch axis. That
excessive gain is turned off at around t = 5100 and the oscillation subsides. Shortly after-
wards, at t = 5900, a malicious setting of a damping coefficient causes smaller oscillations
but at a higher frequency. This oscillation ramps up much quicker and ends with resetting
that parameter. In the second panel, two elements of the power spectrum obtained by an
FFT transform of the pitch signals are shown. The signals, which have been subjected to a
low-pass filter clearly indicate the occurrence of a low (red) and high (blue) frequency oscil-
lation. The third panel shows the actual Boolean inputs for R2U2: “set-parameter received”C
(black), “Low-frequency-oscillation” OL (red), and “high-frequency-oscillation” OH (blue).
The bottom panel shows valuations of formulas �(♦[0,2000]C ∧ ♦[0,2000](�[0,300]OL)) and
�(♦[0,500]C ∧ ♦[0,500](�[0,200]OH )) as produced by the R2U2 monitor. On the latter prop-
erty the maximal lead time of the malicious attack has been set to only 500 time steps to
reduce the number of false alarms, because the high-frequency oscillation ramps up almost
immediately. We estimate that 10 person-hours were spent writing, debugging, and revising
the two temporal logic properties used for this experiment and approximately 30 hours were
spent on experimental setup and simulation.

4.2 DoS hijack attack

Attackers continuously find new ways to break into and compromise a system. Therefore,
it is challenging to account for every possible attack scenario, since there can always be an
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Fig. 12 Signal traces (top panel), valuations of temporal formulas (middle panel), and posterior probabilities
of the health nodes (bottom panel). Puph refers to the probability for the node H_uplink to be in state “uplink
healthy.” Patt refers to the probability for the node H_attack to be in the state “under attack”

unforeseen loophole. The following experiment shows how our R2U2 framework can detect
an intrusion without the need of an explicit security model for each specific scenario. Here,
we will look at possible indicators that can be grouped into patterns as described earlier.

In our simulation we initiate a sophisticated attack to hijack the UAS by first trying to
establish a link from the attacker’s GCS to the UAS. Because the attacker has to cope with
issues like an incorrect channel, a different version of the protocol, or link encryption, a large
number of bad command packets will be received within a short time frame.

The top panel of Fig. 12 shows such a typical situation with a high number of bad packets
Pckt_bad (blue). Given the rate of bad packets Rb, we can detect such an occurrence of bad
packets by means of temporal formulas like, for example:

FBad_Pckt_Rate ≡ �[0,10](Rb = 0 ∨ (Rb ≥ 1 U[0,10]Rb = 0))
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The formula FBad_Pckt_Rate states that no more than one bad packet is received within each
time interval of length 10 time steps.

Next, an attacker could try to gather information about theUAS, e.g., by requesting aircraft
parameters or trying to download the waypoints using the MAVLink protocol.

This activity is shown in the second panel of Fig. 12 between time step 800 and 1300.
The black spikes represent unusual or dangerous commands Cu , whereas the blue spikes
represent the occurrence of commands that are unusual when called periodically Cup . This
group of commands can be legal during setup or after landing, but might indicate an ongoing
attack when received airborne. In order to detect this, we can use temporal formulas like, for
example:

FCu_airborne ≡ �((CMD == takeoff) → ( ¬ Cu) U landing_complete)

Which states that no unusual command should be received after takeoff until the UAS has
landed.

Finally, an attacker may flood the communication link in a way similar to a Denial of
Service (DoS) attack by sending continuous requests to navigate to the attacker’s coordinates,
combinedwith requestsChomeloc to set the home location of theUAS to the same coordinates.
This phase of the attacks results in a continuously high number of navigation commandsCnav

starting around t = 1400 as shown in the top panel of Fig. 12. Also, an attacker could flood the
channel with random commands in order to disrupt the operator’s attempts to regain control.
For example, an attacker could repeatedly send commands to activate the UAS’s autopilot
mode in order to disrupt switching from autopilot to manual operator control, which would
again result in a high number of unusual periodically called commands Cup .

The simulation showed that even if the attack was detected by the UAS operator, all
attempts to change the UAS to its original course would immediately be overwritten by the
attacker’s high-rate navigation commands. Due to the altered home coordinates, any attempt
of the UAS to return to the launch site would fail as well. Rather it would fly to the target
location desired by the attacker.

4.2.1 Signal preprocessing

For attack detection, we start by defining the preprocessing for the input signals Pcktbad ,
Cnav , and Cup . In this scenario, we filter the input signals by continuously calculating the
discrete convolution of the input signal with a rectangular filter window of arbitrary length
N , which is defined as N = 10 for signal Pcktbad , N = 20 for signal Cnav , and N = 40 for
signal Cup . Figure 12 shows the results Pcktbad-f and Cnav-f in the top panel, and Cup-f in
the second panel. The smoothed signals can now be used in our temporal formulas, which
in turn can simplify them. For example, the detection of a continuously high number of bad
packets can be achieved by comparing the signal Pcktbad-f to an arbitrary threshold.

4.2.2 Temporal formulas

We specify several temporal formulas in order to construct our pattern. These formulas can
either explicitly detect the occurrence of a particular command like, for example,Cu , monitor
a particular signal like, for example, Pcktbad-f , or monitor previously-defined groups like, for
example, Cup-f , Cnav-f . We define the atomic propositions for the attack pattern detection
model as follows:
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AT1 ≡ Pcktbad-f < θ1
AT2 ≡ Cu = 0
AT3 ≡ Cnav-f ≤ θ3
AT4 ≡ Cup-f ≤ θ4

where θ1 = 1.5, θ3 = 10, and θ4 = 0.3.
Next, we define our temporal formulas in the form of:

Fn ≡ �[roin−l ,roin−u ]ATn (n ∈ 1, 2, 3, 4)

where the time interval [roin−l , roin−u]determines the regionof interest (lower bound roin−l ,
upper bound roin−u) for an event to be relevant for the pattern. We chose this particular form
of the temporal formulas for the purpose of demonstration, however, R2U2 models are not
limited to this simple structure.

F1 ≡ �[0,500]AT1
F2 ≡ �[0,300]AT2
F3 ≡ �[0,300]AT3
F4 ≡ �[0,300]AT4

The formula F1 states that the filtered number of bad packets (average over 10 timestamps)
has never exceeded 1.5within the last 500 timestamps. Formula F2 states that there shall be no
unusual or dangerous commands (previously defined group unusual_cmds_airborne) within
the last 300 timestamps. Formula F3 states that the filtered number of received navigation
commands (average over 20 timestamps) has never exceeded 10 within the last 300 times-
tamps. Finally, formula F4 states that the filtered number of commands from the previously
defined group unusual_cmds_periodic (average over 40 timestamps) has never exceeded 10
within the last 300 timestamps.

The middle panel in Fig. 12 shows the results of the evaluation. The formulas F1, F2, F3,
and F4 are not reliable indicators of an ongoing attack if viewed individually. Only by
considering the overall pattern, we can calculate the probability for an ongoing attack. In
order to accomplish this, we feed the results of these formulas into a Bayesian network for
probabilistic reasoning.

4.2.3 Bayesian network for attack pattern detection

Our BN for the security model is shown in Fig. 13a, with its corresponding CPT (B). The BN
models the status of the uplink communication subsystem (nodeU_uplink), the attack pattern
(nodeU_attack_pattern1), and their correlation via nodeU_cause. We evaluate the posterior
probabilities of the health nodes H_uplink to estimate the health of the communication
subsystem, and H_attack to estimate the likelihood of an ongoing attack that matches the
pattern. The sensor nodes S_Fn are mapped to the outputs of the corresponding temporal
observers Fn that provide the evidence for the evaluation of the BN health nodes H_uplink
and H_attack. The sensor node S_F5 represents the state of the uplink signal power Sigpwr .
For this simulation, we did not include the signal power. Therefore, we set the node artificially
to the state “signal OK.” However, the effect of the node can be seen in Table 3, where we
present an interpretation of different scenarios. The results of the health estimation are shown
in the bottom panel of Fig. 12.

Initially, the probability for node H_uplink to be in state “uplink healthy” Puph is around
0.99, whereas the probability for node H_attack to be in the state “under attack” Patt is
roughly 0.03, given the evidence of the temporal logic observers. At around timestamp
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a

b

Fig. 13 a Bayesian network for attack pattern detection. b Conditional probability tables for the BN. The
prior for the health node H_attack is 0.5 (OK) and 0.5 (under attack), and for node H_uplink 0.7 (uplink
healthy) and 0.3 (uplink unhealthy)

t = 550, F1 indicates a high number of bad packets that causes a drop of Puph to around
0.74, and a slight increase of Patt to 0.08. At around t = 980, F4 indicates the occurrence
of an unusual high number of commands Cup resulting in a sudden increase of Patt (0.63),
while the health of the uplink Puph also increases (0.87). This is due to the fact that the
earlier detected high number of bad packets is likely to be related to the attack, rather then
caused by a bad uplink. This effect is increased when F2 detects the occurrence of dangerous
commands Cu at around t = 1060. At this stage, an attack is almost certain (Patt = 0.98),
while the uplink seems to be healthy (Puph = 0.96). At around t = 1280, F1 evaluates to
true again. This is because more than 500 timestamps have elapsed since the last occurrence
of bad packets. Thus, the bad packets detected in the beginning have left the region of interest
for F1 and are not considered to be related to the current events any more. This results in a
drop of Patt to 0.4 and an increase of Puph to 0.99. At t = 1400, F3 indicates a high number
of navigation commands Cnav . This causes Patt to increase again to 0.95, while the effect on
Puph is negligible. Once the events detected by F4 and F2 leave the region of interest, Patt
decreases again (t = 1510 and t = 1570).
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Table 3 Interpretation of different scenarios. (Patt and Puph are rounded)

The results show that our model is capable of detecting malicious attacks on a UAS by
means of generic specified attack pattern online. Our R2U2 model correlates these attack
patterns with the relevant UAS subsystems and their health models. This allows us to distin-
guish between random occurrences of attack indicators, subcomponent failures, or an actual
attack in a quantitative fashion.

The simulation of this DoS attack scenario showed that besides crashing the UAS inten-
tionally, there was no simple way for the UAS operator to prevent this kind of hijacking. In
particular, for autonomousmissions,where theUAS is flying outside the operator’s communi-
cation range, it is essential that the UAS is capable of detecting such an attack autonomously.
R2U2 enables such an attack detection in order to enable adequate countermeasures.

We estimate that 10 person-hours were spent writing, debugging, and revising the four
temporal logic properties and the filters used for this experiment and approximately 25 hours
were spent on experimental setup and simulation.

4.3 GPS spoofing

GPS plays a central role in the control of autonomous UAS. Typically, a flight plan for a
UAS is defined as a list of waypoints, each giving a target specified by its longitude, latitude,
and altitude. The FSW in the UAS then calculates a trajectory to reach the next waypoint
in sequence. In order to accomplish this, the UAS needs to know its own position, which it
obtains with the help of a GPS receiver. Due to limited accuracy, only GPS longitude and
latitude are used for navigation; the UAS’s current altitude is obtained using the barometric
altimeter.

For the control of UAS attitude, the UAS is equipped with inertial sensors. Accelerome-
ters measure current acceleration along each of the aircraft axes; gyros measure the angular
velocity for each axis. Integration of these sensor values yields relative positions and veloci-
ties. These data streams are produced at a very fast rate and are independent from the outside
interference but very noisy. Thus, the inertial sensors alone cannot be used for waypoint
navigation. Therefore, the FSW uses an Extended Kalman Filter (EKF) to mix the inertial
signals with the GPS position measurements. If the inertial measurements deviate too much
from the GPS position, the filter is reset to the current GPS coordinates.

Several methods for attacking the GPS-based navigation of a UAS are known, including
GPS jamming andGPS spoofing. In a jamming attack, the signals sent from theGPS satellites
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are drowned out by a powerful RF transmitter sending white noise. The UAS then cannot
receive any useful GPS signals anymore and its navigation must rely on compass and dead
reckoning. Such an attack can cause a UAS tomiss its target or to crash. Amore sophisticated
attack involves GPS spoofing. In such a scenario, an attacker gradually overpowers actual
GPS signals with counterfeit signals that have been altered to cause the UAS to incorrectly
estimate its current position. That way, the UAS can be directed into a different flight path.

This type of attack became widely known when Iran allegedly used GPS spoofing to
hijack a CIA drone and forced it to land on an Iranian airfield rather than its base [8,51].
Subsequently, researchers from the University of Texas at Austin successfully demonstrated
how a $80M yacht at sea, 8 as well as a small UAS can be directed to follow a certain pattern
due to GPS spoofing [20]. Because civil GPS signals are not encrypted it is always possible
to launch a GPS spoofing attack. For such an attack, only a computer and a commercially
available GPS transmitter is necessary.

We can employ our R2U2 framework to detect realistic GPS spoofing attacks like the
common attack scenarios described in [20]; whereas that paper discusses attack detection in
theory we demonstrate it via hardware-in-the-loop simulation on-board our IronBird UAS.
Here we focus on attack detection; techniques to avoid or mitigate GPS spoofing are beyond
the scope of this paper.

Our developed R2U2 model monitors the GPS and the inertial navigation information
online. For our experimental evaluation, we defined a UAS mission that flies, at a fixed
altitude, toward the next waypoint south-south-west of the current UAS location as shown in
Fig. 14 (blue). When spoofing occurs, the attacker modifies the GPS signal in such a way that
it tricks the UAS into believing it is still flying a direct route as expected. In reality, however,
the UAS is actually veering off to reach a target point defined by the attacker (red). A severe
and increasing discrepancy can be observed as the effect of the attack.

As the actual position (ground truth) is not available to the on-board FSW, R2U2 reasons
about relationships with alternate signals that convey similar information. The inertial navi-
gation unit produces an error or offset signal that reflects the deviation between the current
position observed by GPS and the inertial sensors. The two top panels of Fig. 15c show
these offset signal for North (EKFN ) and East (EKFE ) orientation during this mission. These
offset signals can become substantially large during the actual spoofing period, when the
GPS locations are gradually moved to the attacker’s target (starting at timestamp t = 2000).
The center panels show the output stream of the four temporal logic observers:

FNorth1 ≡ |EKFN | ≥ θN1

FNorth2 ≡ |EKFN | ≥ θN2

FEast1 ≡ |EKFN | ≥ θE1
FEast2 ≡ |EKFN | ≥ θE2

where θN1, θN2, θE1, and θE2 are arbitrary spoof detection thresholds (dashed).
Small offsets might be observed more frequently due to environmental conditions. Hence,

we use two thresholds for each signal to add robustness to our model in the sense, that a larger
offset represents a more unusual (bad) state than a smaller offset. This can help to reduce the
number of false warnings, if we assume that a higher deviation represents a higher likelihood
of an attack.

The absolute amount |EK F{N ,E}| of the values EK F{N ,E} are evaluated by R2U2’s pre-
processing.

8 http://www.ae.utexas.edu/news/623-humphreys-research-group.
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Fig. 14 DesiredUASmission: a straight trajectory south-south-west to the nextwaypoint (blue);GPS spoofing
causes the UAS to veer off to reach a target point defined by the attacker (red). (Color figure online)

a c

b

Fig. 15 a Bayesian network for diagnosis of GPS spoofing. b Conditional probability tables for selected
nodes of the network. CPT values for each direction (north, east) are the same. The prior for the health node
is (0.5, 0.5). c Set of traces that indicate GPS spoofing. Top panel shows the input signals EKFN and EKFE .
Themiddle panel shows the Boolean signals after preprocessing. Pspoof is the output of the Bayesian network
and shows the probability of a GPS spoof attack occurring
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We use a simple BN as shown in Fig. 15a in order to calculate the probability of an
attack. The node U_GPSspoof represents the unobservable state whether or not the UAS is
under attack. Each of the four sensor nodes correspond to one of the four temporal observers
(FNorth1, FNorth2, FEast1, FEast2). We use the node H_GPSspoof in order to evaluate the
likelihood of an attack based on the evidence provided by the temporal observers.

The bottom panel of Fig. 15c shows the results of the evaluation. It can be seen that a
high probability of a GPS attack is calculated during the attack. Again, these signals are not
individually absolute indicators that an attack has happened. Flying in areas with weak GPS
coverage, for example, in amountainous or urban environment, could produce similar signals.
Therefore, in our R2U2 models, we aim to take into account other observation patterns and
use a Bayesian network for probabilistic reasoning. Information supporting the hypothesis
of an attack could include prior loss of satellite locks, transients in GPS signals, or other
types of attacks. In the case of the captured CIA drone, an Iranian engineer claimed to have
jammed the drone’s communications link in order to force the drone into an autopilot mode
and then initiated the GPS spoofing attack [51].

According to Psiaki et al. [38], there are two main approaches to get a victim to lock
onto a false signal. In one scenario, an attacker provides a powerful fake signal and forces
a re-acquisition of the victim’s tracking by jamming the signal. The victim’s GPS receiver
is then likely to lock onto the stronger fake signal. The other approach is to Doppler-match
the false signals to the true signal and increase power gradually until the tracking loop of
the victim is captured. In both cases, such an attack most likely affects the power and/or the
noise of the signal. Hence, various spoofing detection methods are based on signal power
monitoring as for example, absolute power monitoring, signal-to-noise ratio (SNR or C/N0)
monitoring, or received power variations versus receiver movement [15,25,28].

Our simulations did not include an authentic spoofed SNR simulation. However, our
signal preprocessing in combination with temporal observers allow us to model and detect
such behaviors of the signals like for example, a constantly increasing signal power, or
a sudden drop of the SNR. Thus, R2U2 we plan to implement such signal power based
spoofing detection mechanisms in our future work.

We estimate that 10 person-hours were spent on model development and approximately
45 hours were spent on experimental setup and simulation.

5 Conclusion

We have extended our Realizable, Responsive, Unobtrusive Unit (R2U2) to enable
real-time monitoring and diagnosis of security threats. This includes the ability to reason
about complex and subtle threats utilizing indicators from both the UAS system and its
software. We present a novel hybrid monitoring architecture consisting of software- and
hardware-based modules where we utilize the features of a System-on-Chip FPGA. Our self-
contained, embedded implementation on-board a standard, flight-certifiable FPGA meets
stated FAA requirements and efficiently recognizes both individual attack indicators and
attack patterns, adding a new level of security checks not available in any previous work.
Case studies on-board a real NASA DragonEye UAS provide a promising proof-of-concept
of this new architecture.

The myriad directions now open for future work include considering software instrumen-
tation to enable more FSW-related compromises and doing hardware-in-the-loop simulation
experiments to detect these. We plan to extend this technology to other, more complex UAS
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and beyond, to other types of aircraft and spacecraft with different configurations and capa-
bilities. A major bottleneck of the current R2U2 is the manual labor required to develop and
test every temporal logic formula and BN; we are currently considering methods for making
this a semi-automated process to better enable future extensions.
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