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Abstract. We discuss a new concept of definitizability of a normal op-
erator on Krein spaces. For this new concept we develop a functional
calculus φ �→ φ(N) which is the proper analogue of φ �→ ∫ φ dE in the
Hilbert space situation.
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1. Introduction

A bounded linear operator N on a Krein space (K, [., .]) is normal, if N
commutes with its Krein space adjoint N+. If we write a bounded linear
N as A + iB with the selfadjoint real part A := Re N := N+N+

2 and the
selfadjoint imaginary part B := Im N := N−N+

2i , then N is normal if and
only if AB = BA. In [4] we called a normal N definitizable whenever A
and B were both definitizable in the classical sense, i.e. there exist so-called
definitizing polynomials p(z), q(z) ∈ R[z]\{0} such that [p(A)x, x] ≥ 0 and
[q(B)x, x] ≥ 0 for all x ∈ K.

For such definitizable operators in [4] we could build a functional calcu-
lus in analogy to the functional calculus φ �→ ∫ φ dE mapping the ∗-algebra of
bounded and measurable functions on σ(N) to B(H) in the Hilbert
space case. The functional calculus in [4] can also be seen as a generalization
of Heinz Langers spectral theorem on definitizable selfadjoint operators on
Krein spaces; see [5,6]. Unfortunately, there are unsatisfactory phenomenons
with this concept of definitizability in [4]. For example, it is not clear, whether
for a bijective, normal definitizable N also N−1 definitizable.

In the present paper we choose a more general concept of definitiz-
ability. We shall say that a normal N on a Krein space K is definitizable if
[p(A,B)u, u] ≥ 0 for all u ∈ K for some, so-called definitizing, p ∈ C[x, y]\{0}
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with real coefficients. Then we study the ideal I generated by all definitizing
polynomials with real coefficients in C[x, y], and assume that I is large in the
sense that it is zero-dimensional, i.e. dimC[x, y]/I < ∞. By the way, if N is
definitizable in the sense of [4], then I is always zero-dimensional.

Using results from algebraic geometry, under the assumption that I is
zero-dimensional, the variety V (I) = {a ∈ C

2 : f(a) = 0 for all f ∈ I} is a
finite set. We split this subset of C2 up as

V (I) = (V (I) ∩ R
2)∪̇(V (I)\R2),

and interpret VR(I) := V (I) ∩ R
2 in the following as a subset of C by con-

sidering the first entry of an element of R2 as the real and the second entry
as the imaginary part.

Due to the ascending chain condition the ideal I is generated by finitely
many real definitizing polynomials p1, . . . , pm. With the help of the positive
semidefinite scalar products [pj(A,B)., .], j =1, . . . ,m, and

∑m
k=1[pk(A,B)., .]

we construct Hilbert spaces Hj , j = 1, . . . , m, and H together with bounded
and injective Tj : Hj → K and T : H → K. We consider the ∗-algebra
homomorphisms Θj : (TjT

+
j )′ → (T+

j Tj)′, C �→ (Tj × Tj)−1(C) and Θ :
(TT+)′ → (T+T )′, C �→ (T × T )−1(C) as studied in [5],

Here Tj×Tj : Hj×Hj → K×K maps the pair (x; y) to the pair (Tjx;Tjy)
and T × T : H × H → K × K maps (x; y) to (Tx;Ty). By (TjT

+
j )′, (TT+)′ ⊆

B(K) and (T+
j Tj)′ ⊆ B(Hj), (T+T )′ ⊆ B(H) we denote the commutant of

the respective operators.
The proper family FN of functions suitable for the aimed functional

calculus are functions defined on

(σ(Θ(N)) ∪ VR(I)) ∪̇(V (I)\R2).

Moreover, the functions φ ∈ FN assume values in C on σ(Θ(N))\VR(I) and
values in certain finite dimensional ∗-algebras A(z) at z ∈ VR(I) and B((ξ, η))
at (ξ, η) ∈ V (I)\R2. On σ(Θ(N))\VR(I) we assume φ to be bounded and
measurable. Finally, φ ∈ FN satisfies a growth regularity condition at all
w points from VR(I) which are not isolated in σ(Θ(N)) ∪ VR(I). Vaguely
speaking, this growth regularity condition means that around w the function
φ admits an approximation by a Taylor polynomial, which is determined by
φ(w) ∈ A(w). Any polynomial s ∈ C[x, y] can be seen as a function sN ∈ FN

in a natural way.
For each φ ∈ FN we will see that there exist p ∈ C[x, y] and bounded,

measurable f1, . . . , fm : σ(Θ(N)) ∪ VR(I) → C with fj(z) = 0 for z ∈ VR(I)
such that

φ(z) = pN (z) +
∑

j

fj(z) (pj)N (z) (1.1)

for all z ∈ σ(Θ(N)) ∪ VR(I), and that φ((ξ, η)) = pN ((ξ, η)) for all (ξ, η) ∈
V (I)\R2. Defining (E denotes the spectral measure of Θ(N))

φ(N) := p(A,B) +
m∑

k=1

Tk

(∫

σ(Θk(N))

fk dEk

)

T+
k ,
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we show that this operator does not depend on the actual decomposition (1.1)
and that φ �→ φ(N) is indeed a ∗-homomorphism satisfying φ(N) = s(A,B)
for φ = sN .

2. Multiple Embeddings

In the present section (K, [., .]) will be a Krein space and (H, (., .)), (Hj , (., .)),
j = 1, . . . ,m, will denote Hilbert spaces. Moreover, let T : H → K, Tj : Hj →
K and Rj : Hj → H bounded, linear and injective mappings such that
TRj = Tj . By T+ : K → H and T+

j : K → Hj we denote the respective Krein
space adjoints.

If D is an operator on a Krein space, then we shall denote by D′ the
commutant of D, i.e. the algebra of all operators commuting with D. For a
selfadjoint D this commutant is a ∗-algebra with respect to forming adjoint
operators.

For j = 1, . . . , m we shall denote by Θj : (TjT
+
j )′ (⊆ B(K)) → (T+

j Tj)′

(⊆ B(Hj)), and by Θ : (TT+)′ (⊆ B(K)) → (T+T )′ (⊆ B(H)) the ∗-algebra
homomorphisms mapping the identity operator to the identity operator as in
Theorem 5.8 from [5] corresponding to the mappings Tj and T :

Θj(Cj) = (Tj × Tj)−1(Cj) = T−1
j CjTj , Cj ∈ (TjT

+
j )′,

Θ(C) = (T × T )−1(C) = T−1CT, C ∈ (TT+)′. (2.1)

We can apply Theorem 5.8 in [5] also to the bounded linear, injective Rj :
Hj → H, and denote the corresponding ∗-algebra homomorphisms by Γj :
(RjR

∗
j )

′ (⊆ B(H)) → (R∗
jRj)′ (⊆ B(Hj)):

Γj(D) = (Rj × Rj)−1(D) = R−1
j DRj , D ∈ (RjR

∗
j )

′.

For the following note that due to (ranT+)[⊥] = ker T = {0} the range of
T+ is dense in H.

Lemma 2.1. For j = 1, . . . ,m we have Θ((TjT
+
j )′ ∩ (TT+)′) ⊆ (RjR

∗
j )

′ ∩
(T+T )′, where in fact

Θ(C)RjR
∗
j = RjΘj(C)R∗

j = RjR
∗
jΘ(C), C ∈ (TjT

+
j )′ ∩ (TT+)′. (2.2)

Moreover,
Θj(C) = (Γj ◦ Θ)(C), C ∈ (TjT

+
j )′ ∩ (TT+)′. (2.3)

Proof. According to Theorem 5.8 in [5] we have Θj(C)T+
j = T+

j C and
Θ(C)T+ = T+C for C ∈ (TjT

+
j )′ ∩ (TT+)′. Therefore,

T (RjΘj(C)R∗
j )T+ = TjΘj(C)T+

j = TjT
+
j C

= TRjR
∗
jT

+C = T (RjR
∗
jΘ(C) )T+.

Because of ker T = {0} and by the density of ranT+ we have RjΘj(C)R∗
j =

RjR
∗
jΘ(C). Applying this equation to C+ and taking adjoints yields RjΘj(C)

R∗
j = Θ(C)RjR

∗
j . In particular, Θ(C) ∈ (RjR

∗
j )

′. Therefore, we can apply Γj

to Θ(C) and get
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(Γj ◦ Θ)(C) = R−1
j T−1CTRj = T−1

j CTj = Θj(C). �

For the following Corollary 2.3 note that by (2.3) and by the fact that Γj

is a ∗-algebra homomorphism mapping the identity operator to the identity
operator, for j = 1, . . . , m we have

σ(Θ(C)) ⊇ σ(Θj(C)) for all C ∈ (TjT
+
j )′ ∩ (TT+)′. (2.4)

Remark 2.2. We would also like to make some clarifications regarding to
the integrals over spectral measures. If E is a spectral measure on a Hilbert
space H defined on the Borel subsets of C such that E(C\K) = 0 for some
measurable subset K ⊆ C and if h : dom h → C is a Borel measurable
function with a Borel measurable dom h ⊆ C such that K ⊆ dom h and
such that h is bounded on K, then (x; y) �→ ∫

dom h
h d(Ex, y) is bounded

sesquilinear form on H. Hence,
∫

h dE :=
∫

dom h

h dE

is a well defined bounded operator on H. Clearly,
∫

h dE =
∫

K
h dE. If E

is the spectral measure for a bounded normal operator L on H, then this
considerations apply for each measurable superset K of σ(L). ♦

Corollary 2.3. For j ∈ {1, . . . , m} let N ∈ B(K) be normal, i.e. NN+ =
N+N , such that N ∈ (TjT

+
j )′ ∩ (TT+)′. Then Θ(N) is a normal operator

on the Hilbert space H, and Θj(N) is a normal operator on the Hilbert space
Hj. Denoting by E (Ej) the spectral measure of Θ(N) (Θj(N)), we have
E(Δ) ∈ (RjR

∗
j )

′ ∩ (T+T )′ and

Γj(E(Δ)) = Ej(Δ),

for all Borel subsets Δ of C, and Ej(Δ) ∈ (R∗
jRj)′ ∩ (T+

j Tj)′.
Moreover,

∫
h dE ∈ (RjR

∗
j )

′ ∩ (T+T )′ and

Γj

(∫
h dE

)

=
∫

h dEj

for any bounded and measurable h : σ(Θ(N)) → C, and
∫

h dEj ∈ (R∗
jRj)′ ∩

(T+
j Tj)′.

Proof. The normality of Θ(N) and Θj(N) is clear, since Θ and Θj are ∗-
homomorphisms. From Lemma 2.1 we know that Θ(N) ∈ (RjR

∗
j )

′ ∩ (T+T )′.
According to the well known properties of Θ(N)’s spectral measure we obtain
E(Δ) ∈ (RjR

∗
j )

′ ∩ (T+T )′ and, in turn,
∫

h dE ∈ (RjR
∗
j )

′ ∩ (T+T )′. In
particular, Γj can be applied to E(Δ) and

∫
h dE. Similarly, Θj(N) ∈ (T+

j Tj)′

implies Ej(Δ),
∫

h dEj ∈ (T+
j Tj)′ for a bounded and measurable h.

Recall from Theorem 5.8 in [5] that Γj(D)R∗
jx = R∗

jD for D ∈ (RjR
∗
j )

′.
Hence, for x ∈ H and y ∈ Hj we have

(Γj(E(Δ))R∗
jx, y) = (R∗

jE(Δ)x, y) = (E(Δ)x,Rjy)
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and, in turn,
∫

C

s(z, z̄) d(Γj(E)R∗
jx, y) =

∫

C

s(z, z̄) d(Ex,Rjy)

= (s(Θ(N),Θ(N)∗)x,Rjy)
= (R∗

js(Θ(N),Θ(N)∗)x, y)

= (Γj (s(Θ(N),Θ(N)∗)) R∗
jx, y)

for any s ∈ C[z, w]. By (2.3) and the fact, that Γj is a ∗-homomorphism, we
have Γj(s(Θ(N),Θ(N)∗)) = s(Θj(N),Θj(N)∗). Consequently,

∫

C

s(z, z̄) d(Γj(E)R∗
jx, y) =

∫

C

s(z, z̄) d(EjR
∗
jx, y).

Since E(C\K) = 0 and Ej(C\K) = 0 for a certain compact K ⊆ C and since
the set of all s(z, z̄), s ∈ C[z, w], is densely contained in C(K), we obtain
from the uniqueness assertion in the Riesz Representation Theorem

(Γj(E(Δ))R∗
jx, y) = (Ej(Δ)R∗

jx, y) for all x ∈ H, y ∈ Hj ,

for all Borel subsets Δ of C. Due to the density of ranR∗
j in Hj we even

have (Γj(E(Δ))v, y) = (Ej(Δ)v, y) for all y, v ∈ Hj , and in turn Γj(E(Δ)) =
Ej(Δ). Since Γj maps into (R∗

jRj)′, we have Ej(Δ) ∈ (R∗
jRj)′. This yields∫

h dEj ∈ (R∗
jRj)′ for any bounded and measurable h.

If h : σ(Θ(N)) → C is bounded and measurable, then by (2.4) also its
restriction to σ(Θj(N)) = σ((Γj ◦ Θ)(N)) is bounded and measurable. Due
to Ej(Δ)R∗

j = Γj(E(Δ))R∗
j = R∗

jE(Δ), for x ∈ H and y ∈ Hj we have

(Γj

(∫
h dE

)

R∗
jx, y) =

(

R∗
j

(∫
h dE

)

x, y

)

=
((∫

h dE

)

x,Rjy

)

=
∫

h d(Ex,Rjy) =
∫

h d(EjR
∗
jx, y)

=
((∫

h dEj

)

R∗
jx, y

)

.

The density of ranR∗
j yields Γj

(∫
h dE
)

=
∫

h dEj . �

Recall from Lemma 5.11 in [5] the mappings (j = 1, . . . ,m)

Ξj : B(Hj) → B(K), Ξj(Dj) = TjDjT
+
j ,

Ξ : B(H) → B(K), Ξ(D) = TDT+. (2.5)

By (j = 1, . . . , m)

Λj : B(Hj) → B(H), Λj(Dj) = RjDjR
∗
j ,

we shall denote the corresponding mappings outgoing from the mappings
Rj : Hj → H. Due to Tj = TRj we have Ξj = Ξ ◦ Λj .
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According to Lemma 5.11 in [5], (Λj◦Γj)(D) = DRjR
∗
j for D ∈ (RjR

∗
j )

′.
Hence, using the notation from Corollary 2.3,

Ξj

(∫
h dEj

)

= Ξ
(

(Λj ◦ Γj)
(∫

h dE

))

= Ξ
(

RjR
∗
j

∫
h dE

)

. (2.6)

Lemma 2.4. Assume that for j ∈ {1, . . . , m} the operator TjT
+
j commutes

with TT+ on K. Then the operators RjR
∗
j , T

+T commute on H and R∗
jRj ,

T+
j Tj commute on Hj. Moreover,

Θ(TjT
+
j ) = RjR

∗
jT

+T = T+TRjR
∗
j . (2.7)

Proof. If TjT
+
j and TT+ commute on K, then

T (T+TRjR
∗
j )T+ = TT+TjT

+
j = TjT

+
j TT+ = T (RjR

∗
jT

+T )T+.

Employing T ’s injectivity and the density of ranT+, we see that RjR
∗
j and

T+T commute. From this we derive

T+
j TjR

∗
jRj = R∗

j (T
+TRjR

∗
j )Rj = R∗

j (RjR
∗
jT

+T )Rj = R∗
jRjT

+
j Tj .

(2.7) follows from

T−1TjT
+
j T = T−1TRjR

∗
jT

+T = RjR
∗
jT

+T. �

3. Definitizability

In [4] we said that a normal N ∈ B(K) is definitizable, if its real part A :=
N+N+

2 and its imaginary part B := N−N∗
2i are definitizable in the sense

that there exist polynomials p, q ∈ R[z]\{0} such that [p(A)v, v] ≥ 0 and
[q(B)v, v] ≥ 0 for all v ∈ K. In the present note we will relax this condition.

Definition 3.1. For a normal N ∈ B(K) we call p ∈ C[x, y]\{0} a definitizing
polynomial for N , if

[p(A,B)v, v] ≥ 0 for all v ∈ K. (3.1)

where A = N+N+

2 and B = N−N+

2i . If such a definitizing p ∈ C[x, y]\{0}
exists, then we call N definitizable normal. ♦

Clearly, we could also write p as a polynomial of the variables N and
N+. Because of A = A+ and B = B+, writing p as a polynomial of the
variables A and B, has some notational advantages.

Remark 3.2. According to (3.1) the operator p(A,B) ∈ B(K) must be selfad-
joint; i.e. p(A,B)+ = p#(A,B), where p#(x, y) = p(x, y). Hence, q := p+p#

2
is real, i.e. q ∈ R[x, y]\{0}, and satisfies q(A,B) = p(A,B). Thus, we can
assume that a definitizing polynomial is real. ♦

In the present section we assume that pj(x, y) ∈ R[x, y]\{0}, j = 1, . . . , m,
are real, definitizing polynomial for N .
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Proposition 3.3. With the above assumptions and notation there exist Hilbert
spaces (H, (., .)), (Hj , (., .)), j = 1, . . . ,m, and bounded linear and injective
operators T : H → K, Tj : Hj → K, such that

TjT
+
j = pj(A,B), and TT+ =

m∑

k=1

TkT+
k =

m∑

k=1

pk(A,B). (3.2)

Proof. Let (Hj , (., .)) be the Hilbert space completion of K/ ker pj(A,B) with
respect to [pj(A,B)., .] and let Tj : Hj → K be the adjoint of the factor
mapping x �→ x + ker pj(A,B) of K into Hj . Since T+

j has dense range, Tj

must be injective. Similarly, let (H, (., .)) be the Hilbert space completion
of K/(ker

∑m
k=1 pk(A,B)) with respect to [

(∑m
k=1 pk(A,B)

)
., .] and let T :

H → K be the injective adjoint of the factor mapping of K into H.
Finally, (3.2) follows from [TT+x, y] = (T+x, T+y) = (x, y) =

[
(∑m

k=1 pk(A,B)
)
x, y] and [TjT

+
j x, y] = (T+

j x, T+
j y) = (x, y) = [pj(A,B)x, y]

for all x, y ∈ K. �

Since for x ∈ K and j ∈ {1, . . . , m} we have

(T+x, T+x) = [TT+x, x] =
m∑

k=1

[TkT+
k x, x] =

m∑

k=1

(T+
k x, T+

k x) ≥ (T+
j x, T+

j x),

one easily concludes that T+x �→ T+
j x constitutes a well-defined, contractive

linear mapping from ranT+ onto ranT+
j . By (ranT+)⊥ = ker T = {0} and

(ran T+
j )⊥ = ker Tj = {0} these ranges are dense in the Hilbert spaces H and

Hj . Hence, there is a unique bounded linear continuation of T+x �→ T+
j x to

H, which has dense range in Hj .
Denoting by Rj the adjoint mapping of this continuation, we clearly

have Tj = TRj and kerRj ⊆ ker Tj = {0}. From (3.2) we conclude

T ( IH )T+ = TT+ =
m∑

k=1

TRkR+
k T+ = T

(
m∑

k=1

RkR+
k

)

T+.

ker T = {0} and the density of ranT+ yield
∑m

k=1 RkR∗
k = IH.

Lemma 3.4. With the above notations and assumptions for j = 1, . . . ,m
there exist injective contractions Rj : Hj → H such that Tj = TRj and∑m

k=1 RkR∗
k = IH. Moreover, we have

{N,N+}′ = {A,B}′ ⊆
⋂

k=1,...,m

(TkT+
k )′ ⊆ (TT+)′ (3.3)

for all j ∈ {1, . . . , m}. Finally,

pj(Θ(A),Θ(B)) = RjR
∗
j

(
m∑

k=1

pk(Θ(A),Θ(B))

)

=

(
m∑

k=1

pk(Θ(A),Θ(B))

)

RjR
∗
j ,

(3.4)
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and for any u ∈ C[x, y]

pj(A,B)u(A,B) = Ξj (u(Θj(A),Θj(B)))

= Ξ
(
RjR

∗
j u(Θ(A),Θ(B))

)
,

(3.5)

where Θ : (TT+)′ (⊆ B(K)) → (T+T )′ (⊆ B(H)) is as in (2.1) and Ξ :
B(H) → B(K) as in (2.5).

Proof. The first part was shown above, and (3.3) is clear from Proposition 3.3.
From (2.7)—Lemma 2.4 can be applied since by (3.2) the operators

TjT
+
j all commute with TT+—and Theorem 5.8 in [5] we get

pj(Θ(A),Θ(B)) = Θ(pj(A,B)) = Θ(TjT
+
j ) = RjR

∗
j T+T = RjR

∗
j Θ(TT+)

= RjR
∗
j Θ

(
m∑

k=1

pk(A,B)

)

= RjR
∗
j

(
m∑

k=1

pk(Θ(A),Θ(B))

)

,

where RjR
∗
j commutes with T+T =

∑m
k=1 pk(Θ(A),Θ(B)) by Lemma 2.4.

Finally, (3.5) follows from (see Lemma 5.11 in [5])

pj(A,B)u(A,B) = Ξj (Θj(u(A,B))) = (Ξ ◦ Λj ◦ Γj) (Θ(u(A,B)))

= Ξ
(
RjR

∗
j u(Θ(A),Θ(B))

)
. �

By (3.3) we can apply Corollary 2.3 in the present situation. In partic-
ular, Θ(N) is a normal operator on the Hilbert space H. Property (3.1) for
p = pj , j = 1, . . . ,m, imply certain spectral properties of Θ(N).

Lemma 3.5. With the above assumptions and notation for j ∈ {1, . . . , m} we
have

{z ∈ C : |pj(Re z, Im z)| > ‖RjR
∗
j‖ · |

m∑

k=1

pk(Re z, Im z)|} ⊆ ρ(Θ(N)).

In particular, the zeros of z �→ ∑m
k=1 pk(Re z, Im z) in C are contained in

ρ(Θ(N)) ∪ {z ∈ C : pj(Re z, Im z) = 0 for all j = 1, . . . ,m}.
Proof. Let n ∈ N and set

Δn :=

{

z ∈ C : |pj(Re z, Im z)|2 >
1
n

+ ‖RjR
∗
j‖2 · |

m∑

k=1

pk(Re z, Im z)|2
}

.

For x ∈ E(Δn)(H), where E denotes Θ(N)’s spectral measure, we then have

‖pj(Θ(A),Θ(B))x‖2 =
∫

Δn

|pj(Re ζ, Im ζ)|2 d(E(ζ)x, x)

≥
∫

Δn

1
n

d(E(ζ)x, x) + ‖RjR
∗
j‖2

∫

Δn
∣
∣
∣
∣
∣

m∑

k=1

pk(Re ζ, Im ζ)

∣
∣
∣
∣
∣

2

d(E(ζ)x, x)

≥ 1
n

‖x‖2 + ‖RjR
∗
j

(
m∑

k=1

pk(Θ(A),Θ(B))

)

x‖2.
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By (3.4) this inequality can only hold for x = 0. Since Δn is open, by the
Spectral Theorem for normal operators on Hilbert spaces we have Δn ⊆
ρ(Θ(N)). The asserted inclusion now follows from
{

z ∈ C : |pj(Re z, Im z)| > ‖RjR
∗
j‖ ·
∣
∣
∣
∣
∣

m∑

k=1

pk(Re z, Im z)

∣
∣
∣
∣
∣

}

=
⋃

n∈N

Δn. �

In the following let I be the ideal 〈p1, . . . , pm〉 generated by the real
definitizing polynomials p1, . . . , pm in the ring C[x, y]. The variety V (I) is the
set of all common zeros a = (a1, a2) ∈ C

2 of all p ∈ I. Clearly, V (I) coincides
with the set of all a ∈ C

2 such that p1(a1, a2) = · · · = pm(a1, a2) = 0. Denote
by VR(I) the set of all a ∈ R

2, which belong to V (I). It is convenient for our
purposes, to consider VR(I) as a subset of C:

VR(I) := {z ∈ C : f(Re z, Im z) = 0 for all f ∈ I}
= {z ∈ C : pk(Re z, Im z) = 0 for all k ∈ {1, . . . , m}}. (3.6)

Corollary 3.6. Let E denote the spectral measure of Θ(N). Then we have

RjR
∗
j E(C\VR(I)) = E(C\VR(I))RjR

∗
j

=
∫

C\VR(I)

pj(Re z, Im z)
∑m

k=1 pk(Re z, Im z)
dE(z).

Proof. First note that the integral on the right hand side exists as a bounded
operator, because by Lemma 3.5 we have |pj(Re z, Im z)| ≤ ‖RjR

∗
j‖ ·

|∑m
k=1 pk(Re z, Im z)| for z ∈ σ(Θ(N)). The first equality is known from

Corollary 2.3.
Concerning the second equality, note that both sides vanish on the range

of E(VR(I)). Its orthogonal complement Q := ranE(C\VR(I)) is invariant
under

∫ ( m∑

k=1

pk(Re z, Im z)

)

dE(z) =
m∑

k=1

pk(Θ(A),Θ(B)).

By Lemma 3.5 the restriction of this operator to Q is injective, and hence, has
dense range in Q. If x belongs to this dense range, i.e. x =

(∑m
k=1 pk(Θ(A),

Θ(B))
)
y with y ∈ Q, then
∫

C\VR(I)

pj(Re z, Im z)
∑m

k=1 pk(Re z, Im z)
dE(z)x

=
∫

C\VR(I)

pj(Re z, Im z) dE(z)y

= pj(Θ(A),Θ(B))y = RjR
∗
j

(
m∑

k=1

pk(Θ(A),Θ(B))

)

y

= RjR
∗
jx.

By a density argument the second asserted equality of the present corollary
holds true on Q and in turn on H. �
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Remark 3.7. In Proposition 3.3 the case that pj(A,B) = 0 for some j, or
even for all j, is not excluded, and yields Hj = {0}, Tj = 0 and Rj = 0 (in
Lemma 3.4), or even H = {0} and T = 0. Also the remaining results hold
true, if we interpret ρ(R) as C and σ(R) as ∅ for the only possible linear
operator R = (0 �→ 0) on the vector space {0}. ♦

4. An Abstract Functional Calculus

In this section let K be again a Krein space and let N ∈ B(K) be a definitiz-
able normal operator. Let I be the ideal in C[x, y], which is generated by all
real definitizing polynomials. In order to increase readability, from now on
we often write p(z) short for p(Re z, Im z) if p ∈ C[x, y] and z ∈ C.

By the ascending chain condition for the ring C[x, y] (see for example [2],
Theorem 7, Chap. 2, Sect. 5) I is generated by finitely many real definitizing
polynomials p1, . . . , pm, i.e. I = 〈p1, . . . , pm〉. In fact, if I would not be
generated by finitely many real definitizing polynomials, then, in contrast
to the ascending chain condition, we could find a sequence (pn)n∈N of such
polynomials with pn+1 �∈ 〈p1, . . . , pn〉 for all n ∈ N.

Using these polynomials p1, . . . , pm, for j = 1, . . . ,m we define the
spaces Hj ,H, the operators Tj , Rj , T , and the spectral measures Ej and E
of Θj(N) and Θ(N), respectively, as in the previous sections, where Θj ,Θ is
defined in (2.1). Accordingly we define Ξj and Ξ as in (2.5).

Lemma 4.1. For any bounded and measurable f : σ(Θ(N)) → C and j ∈
{1, . . . ,m} we have

Ξj

(∫
f dEj

)

= Ξ

(∫

σ(Θ(N))\VR(I)

f
pj∑m
l=1 pl

dE

+RjR
∗
j

∫

σ(Θ(N))∩VR(I)

f dE

)

.

Proof. By (2.6) the left hand side coincides with

Ξ

(

RjR
∗
j

∫

σ(Θ(N))\VR(I)

f dE + RjR
∗
j

∫

σ(Θ(N))∩VR(I)

f dE

)

.

As
∫

σ(Θ(N))\VR(I)
f dE = E(C\VR(I))

∫
σ(Θ(N))\VR(I)

f dE Corollary 3.6 proves
the asserted equality. �
Lemma 4.2. Let f, g : σ(Θ(N)) → C be bounded and measurable, and let
r ∈ C[x, y]. For j, k ∈ {1, . . . , m} we then have

r(A,B) Ξj

(∫
f dEj

)

= Ξj

(∫
f dEj

)

r(A,B) = Ξj

(∫
rf dEj

)

, (4.1)

and

Ξj

(∫
f dEj

)

Ξk

(∫
g dEk

)

= Ξ
(∫

fg
pjpk∑m
l=1 pl

dE

)

(4.2)

= Ξj

(∫
fg pk dEj

)

= Ξk

(∫
fg pj dEk

)

.
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Proof. By Lemma 5.11 in [5] we have

r(A,B) Ξj(D) = Ξj(Θ(r(A,B))D) = Ξj(r(Θj(A),Θj(B))D),
Ξj(D)r(A,B) = Ξj (D Θj(r(A,B))) = Ξj (D r(Θj(A),Θj(B)))

for D ∈ (T+T )′. For D =
∫

f dEj this implies (4.1).
According to (2.6) the expression in (4.2) coincides with

Ξ
(

RjR
∗
j

∫
f dE

)

Ξ
(

RkR∗
k

∫
g dE

)

.

By Lemma 5.11 and Theorem 5.8 in [5], we also know that Ξ(D1)Ξ(D2) =
Ξ(T+TD1D2) = Ξ(Θ(TT+)D1D2), where (see Propositions 3.3 and (3.6))

Θ(TT+) =

m∑

l=1

pl(Θ(A), Θ(B)) =

∫ m∑

l=1

pl dE =

((∫ m∑

l=1

pl dE

)

E(C\VR(I))

)

.

Therefore, by Corollary 3.6 and by the fact, that E(C\VR(I)) commutes with∫
σ(Θ(N))

f dE, (4.2) can be written as

Ξ

((∫ m∑

l=1

pl dE

)(∫
pj∑m
l=1 pl

dE

)(∫
f dE

)(∫
pk∑m
l=1 pl

dE

)(∫
g dE

))

= Ξ

(∫
fg

pjpk∑m
l=1 pl

dE

)

.

The remaining equalities follow from Lemma 4.1 since the respective inte-
grands vanish on VR(I). �

Lemma 4.3. For any bounded and measurable f : σ(Θ(N)) → C and j ∈
{1, . . . ,m} the operator Ξj

(∫
f dEj

)
belongs to {N,N+}′′.

Proof. Take C ∈ {N,N+}′ = {A,B}′ ⊆ ⋂j=1,...,m(TjT
+
j )′; see (3.3). From

Lemma 5.11 in [5] we conclude

C Ξj

(∫
f dEj

)

= Ξj

(

Θj(C)(
∫

f dEj)
)

.

Since Θj is a homomorphism, Θj(C) commutes with Θj(N) and, in turn,
with
∫

σ(Θj(N))
f dEj . Hence, employing Lemma 5.11 in [5] once more, the

above expression coincides with

Ξj

((∫
f dEj

)

Θj(C)
)

= Ξj

(∫
f dEj

)

C. �

In order to have a better picture of what is going on, the tupel (r, f1, . . . ,
fm) appearing in the subsequent definition should be imagined as the function
r+p1 ·f1+ . . . pm ·fm with a special behaviour at the points σ(Θ(N))∩VR(I).

Definition 4.4. Denoting by B
(
σ(Θ(N))

)
the ∗-algebra of complex valued,

bounded and measurable functions on σ(Θ(N)), for (r, f1, . . . , fm) ∈ R :=
C[x, y] × B

(
σ(Θ(N))

)× · · · × B
(
σ(Θ(N))

)
we set

Ψ(r, f1, . . . , fm) := r(A,B) +
m∑

k=1

Ξk

(∫
fk dEk

)

.
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By N we denote the set of all (r, f1, . . . , fm) ∈ R such that

r +
m∑

k=1

fkpk = 0 on σ(Θ(N))\VR(I)

and such that there exist u1, . . . , um ∈ C[x, y] with r =
∑m

k=1 ukpk and
(fj + uj)(z) = 0 for j = 1, . . . ,m, z ∈ VR(I) ∩ σ(Θ(N)). ♦
Remark 4.5. Obviously, Ψ is linear. From Ξj(D∗) = Ξj(D)+ we easily de-
duce Ψ(r#, f1, . . . , fm) = Ψ(r, f1, . . . , fm)∗. Moreover, N constitutes a linear
subspace of R invariant under .# : (r, f1, . . . , fm) �→ (r#, f1, . . . , fm). ♦
Lemma 4.6. If (r, f1, . . . , fm) ∈ N , then Ψ(r, f1, . . . , fm) = 0.

Proof. Due to (3.5) r =
∑m

k=1 ukpk implies

r(A,B) =
m∑

k=1

pk(A,B)uk(A,B) =
m∑

k=1

Ξk (uk(Θk(A),Θk(B))) .

From this and Lemma 4.1 we obtain

Ψ(r, f1, . . . , fm) =
m∑

k=1

Ξk

(∫
(fk + uk) dEk

)

=

Ξ

⎛

⎜
⎝

∫

σ(Θ(N))\VR(I)

m∑

k=1

fkpk + ukpk∑m
l=1 pl

dE +
m∑

k=1

RkR∗
k

∫

σ(Θ(N))∩VR(I)

(fk + uk) dE

⎞

⎟
⎠ ,

which by the definition of N equals to 0. �
Lemma 4.7. For (r, f1, . . . , fm), (s, g1, . . . , gm) ∈ R have

Ψ(r, f1, . . . ,fm)Ψ(s, g1, . . . , gm)

= Ψ

(

rs, rg1 + sf1 + f1

m∑

k=1

gkpk, . . . , rgm + sfm + fm

m∑

k=1

gkpk

)

= Ψ

(

rs, rg1 + sf1+g1

m∑

k=1

fkpk, . . . , rgm + sfm + gm

m∑

k=1

fkpk

)

.

Proof. By Lemma 4.2 we have

Ψ(r, f1, . . . , fm)Ψ(s, g1, . . . , gm) = r(A,B) s(A,B)

+
m∑

k=1

r(A,B) Ξk

(∫
gk dEk

)

+
m∑

j=1

Ξj

(∫
fj dEj

)

s(A,B)

+
m∑

j,k=1

Ξj

(∫
fj dEj

)

Ξk

(∫
gk dEk

)

= (rs)(A,B) +
m∑

k=1

Ξk

(∫
rgk dEk

)

+
m∑

j=1

Ξj

(∫
sfj dEj

)

+
m∑

j=1

Ξj

(
m∑

k=1

∫
fjgk pk dEj

)

,
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where this last term can also be written as
m∑

j=1

Ξj

(
m∑

k=1

∫
fkgj pk dEj

)

. �

We provide R with a multiplication:

(r, f1, . . . , fm) · (s, g1, . . . , gm) :=
⎛

⎝rs, rg1 + sf1 + f1

m∑

j=1

gjpj , · · · , rgm + sfm + fm

m∑

j=1

gjpj

⎞

⎠. (4.3)

Remark 4.8. Obviously, · is bilinear and compatible with .# as defined in
Remark 4.5. It is elementary to check its associativity.

Moreover, for (r, f1, . . . , fm) ∈ N and (s, g1, . . . , gm) ∈ R we have

rs +
m∑

j=1

pj

(

rgj + sfj + fj

m∑

k=1

gkpk

)

=

⎛

⎝r +
m∑

j=1

fjpj

⎞

⎠

(

s +
m∑

k=1

gkpk

)

= 0

on C\VR(I). For the corresponding u1, . . . , um ∈ C[x, y] with r =
∑m

j=1 ujpj

and (fj + uj)(z) = 0 for all z ∈ VR(I) we have rs =
∑m

j=1(ujs)pj and

rgj + sfj + fj

m∑

k=1

gkpk + ujs = rgj + fj

m∑

k=1

gkpk = 0

on VR(I) since r and the pj vanish there. Hence, N is a right ideal. Similarly,
one shows that it is also a left ideal. Finally, the commutator

(r, f1, . . . , fm) · (s, g1, . . . , gm) − (s, g1, . . . , gm) · (r, f1, . . . , fm) =
⎛

⎝0,
m∑

j=1

(f1gj − g1fj)pj , . . . ,
m∑

j=1

(fmgj − gmfj)pj

⎞

⎠

belongs to N . Consequently, R/N is a commutative ∗-algebra. ♦
Gathering the previous results we obtain the final result of the present

section.

Theorem 4.9. Ψ/N : (r, f1, . . . , fm) + N �→ Ψ(r, f1, . . . , fm) is a well-defined
∗-homomorphism from R/N into {N,N+}′′ ⊆ B(K).

5. Algebra of Zero-Dimensional Ideals

By the Noether–Lasker Theorem (see for example [2], Theorem 7, Chap. 4,
Sect. 7) any ideal I in C[x, y] admits a minimal primary decomposition

I = Q1 ∩ · · · ∩ Ql, (5.1)

Qj being a primary ideal means that fg ∈ Qj implies f ∈ Qj or gk ∈ Qj for
some k ∈ N, and minimal means that Qj �⊇ ⋂i�=j Qi for all j = 1, . . . , l, and
Pj �= Pi for i �= j, where Pj denotes the radical

√
Qj := {f ∈ C[x, y] : fk ∈ Qj for some k ∈ N}.
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For an ideal I in C[x, y] such a decomposition is in general not unique. Nev-
ertheless, the First Uniqueness Theorem on minimal primary decompositions
states that the number l ∈ N and the radicals P1, . . . , Pl are uniquely deter-
mined by I; see for example [1], Theorem 8.55 on page 362. Moreover, the
Second Uniqueness Theorem on minimal primary decompositions says that
if Q′

1 ∩ · · · ∩ Q′
l = I = Q1 ∩ · · · ∩ Ql are minimal primary decompositions

ordered such that Pj =
√

Qj =
√

Q′
j for j = 1, . . . , l and if Pk is minimal in

{P1, . . . , Pl} with respect to ⊆, then Q′
k = Qk; see for example [1], Theorem

8.56 on page 364.
Assume now that I is a zero-dimensional ideal in C[x, y], i.e.

dimC[x, y]/I < ∞.

For necessary and sufficient conditions see for example [1], Theorem 6.54 and
Corollary 6.56 on pages 274 and 275 and [3], pages 39 and 40. Let (5.1) be
a minimal primary decomposition. Then any Qj , and in turn Pj ⊇ Qj , is
also zero-dimensional. In particular, C[x, y]/Pj is a finite integral domain,
and hence, a field. In turn, the radicals P1, . . . , Pl of Q1, . . . , Ql are maximal
ideals. By [2], Theorem 11, Chap. 4, Sect. 5, this means that the Pj are
generated by x−ax,j , y−ay,j , i.e. Pj = 〈x−ax,j , y−ay,j〉, for pairwise distinct
aj = (ax,j , ay,j) ∈ C

2. Consequently, any Pk is minimal in {P1, . . . , Pl}, and
by what was said above, (5.1) is the unique minimal primary decomposition
of I.

By Hilbert’s Nullstellensatz (see for example [2], Theorem 2, Chap. 4,
Sect. 1) the set V (Qj) of common zeros in C

2 of all f ∈ Qj coincides with
V (Pj) = {aj}. By [2], Theorem 7, Chap. 4, Sect. 3, we also have

V (I) = V (Q1) ∪ · · · ∪ V (Ql) = {a1, . . . , al}.

Since V (Qj + Qi) = V (Qj) ∩ V (Qi) = {aj} ∩ {ai} = ∅ (see [2], Theorem
4, Chap. 4, Sect. 3) for i �= j, the weak Nullstellensatz (see for example
[2], Theorem 1, Chap. 4, Sect. 1) yields Qj + Qi = C[x, y]. By the Chinese
Remainder Theorem the mapping

θ :

⎧
⎨

⎩

C[x, y]/I → (C[x, y]/Q1) × · · · × (C[x, y]/Ql),

x + I �→ (x + Q1, . . . , x + Ql)
(5.2)

constitutes an isomorphism. Moreover,

I = Q1 ∩ · · · ∩ Ql = Q1 · . . . · Ql. (5.3)

Remark 5.1.
1. Since the ring C[x, y]/Qj is finite dimensional, its invertible elements

f + Qj are exactly those, for which fg ∈ Qj implies g ∈ Qj . Qj being
primary this is equivalent to f �∈ Pj . Hence, f + Qj is invertible in
C[x, y]/Qj if and only if f(aj) �= 0.

2. As
√

Qj = Pj we have (x − ax,j)m, (y − ay,j)n ∈ Qj for sufficiently
large m,n ∈ N. Therefore, the ideal Pj · Qj contains (x − ax,j)m+1 and
(y −ay,j)n+1. Thus, Pj ·Qj is also zero-dimensional and

√
Pj · Qj = Pj .

♦
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Definition 5.2. For a ∈ V (I) we set by Q(a) := Qj and P (a) := Pj , where j
is such that a = aj . By dx(a) (dy(a)) we denote the smallest natural number
m (n) such that (x − ax)m ∈ Q(a) ((y − ay)n ∈ Q(a)). Moreover, we set

A(a) := C[x, y]/(P (a) · Q(a)) and B(a) := C[x, y]/Q(a).

for a ∈ V (I). ♦

Since P (a) · Q(a) and Q(a) are ideals with finite codimension satisfy-
ing P (a) · Q(a) ⊆ Q(a),A(a) and B(a) are finite dimensional algebras with
dim A(a) ≥ dim B(a).

Remark 5.3. Assume that I is invariant under .#, where f#(x, y) := f(x̄, ȳ).
This is for sure the case if I is generated by real polynomial p1, . . . , pm. Then
V (I) ⊆ C

2 is invariant under (z, w) �→ (z, w)# := (z̄, w̄). Moreover, it is
elementary to check that with Q also Q# is a primary ideal. Hence, with
I = Q1 ∩ · · · ∩ Ql also I = I# = Q#

1 ∩ · · · ∩ Q#
l is a minimal primary

decomposition. By the uniqueness of the minimal primary decomposition for
our zero dimensional ideal I one has Q(a)# = Q(a#) for all a ∈ V (I).

Consequently, f �→ f# induces a conjugate linear bijection from A(a)
(B(a)) onto A(a#) (B(a#)). ♦

For the following note that if we conversely start with primary and
zero-dimensional ideals Q1, . . . , Ql with

√
Qi �= √Qj for i �= j, then I :=

Q1∩· · ·∩Ql is also zero-dimensional, and by the above mentioned uniqueness
statement, Q1 ∩· · ·∩Ql is indeed the unique minimal primary decomposition
of I.

Proposition 5.4. Let I be a zero-dimensional ideal in C[x, y] which is gener-
ated by p1, . . . , pm, and let I =

⋂
a∈V (I) Q(a) be its unique primary decom-

position. Assume that W is a subset of V (I). Then

J :=
⋂

a∈V (I)\W

Q(a) ∩
⋂

a∈W

(P (a) · Q(a))

is also a zero-dimensional ideal satisfying J ⊆ I. The mapping

ψ :

⎧
⎪⎪⎨

⎪⎪⎩

C[x, y]/J → �

a∈V (I)\W

(C[x, y]/Q(a)) × �

a∈W
(C[x, y]/(P (a) · Q(a))) ,

x + J �→
(
(x + Q(a))a∈V (I)\W ,

(
x + (P (a) · Q(a))

)
a∈W

)

is an isomorphism, and any p ∈ J can be written in the form p =
∑

j ujpj,
where uj(a) = 0 for all a ∈ W .

Proof. We already mentioned that P (a) · Q(a) is zero-dimensional with√
P (a) · Q(a) = P (a) and that the intersection J =

⋂
a∈V (I)\W Q(a) ∩

⋂
a∈W P (a)·Q(a) is the unique primary decomposition of the zero-dimensional

J . The isomorphism property of ψ is a special case of the corresponding fact
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concerning θ; see (5.2). We also have

J =
∏

a∈V (I)\W

Q(a) ·
∏

a∈W

P (a) · Q(a) =
∏

a∈V (I)

Q(a) ·
∏

a∈W

P (a)

= I ·
∏

a∈W

P (a) =

〈

p1 ·
∏

a∈W

P (a), . . . , pm ·
∏

a∈W

P (a)

〉

.

This means that any p ∈ J has a representation p =
∑

j ujpj with uj ∈∏
a∈W P (a) =

⋂
a∈W P (a). Hence, uj(a) = 0 for all a ∈ W . �

Example 5.5. Assume that I is generated by two polynomial p1, p2 ∈ C[x, y]
such that p1 only depend on x and p2 only depends on y. The set V (I) of
common zeros of I, or equivalently of p1 and p2, in C

2 then consists of all
points of the form (z, w), where z ∈ C is a zero of p1 and w ∈ C is a zero
of p2, i.e. V (I) = p−1

1 {0} × p−1
2 {0}. For z ∈ p−1

1 {0} by d1(z) we denote
p1’s multiplicity of the zero z, and for w ∈ p−1

2 {0} by d2(w) we denote p2’s
multiplicity of the zero w.

Given p ∈ C[x, y] we can apply polynomial division in one variable twice,
once with respect to x and once with respect to y, on order to see that

p(x, y) = p1(x) · u(x, y) + p2(y) · v(x, y) + q(x, y)

with u, v, q ∈ C[x, y] such that the degree of q, seen as a polynomial on x, is
less then the degree of p1, and such that the degree of q, seen as a polynomial
on y, is less then the degree of p2; see Lemma 4.8 in [4]. Hence, I is zero-
dimensional. Moreover, writing p1(x) and p2(y) as products of linear factors,
it follows that p ∈ I if and only if

p ∈ 〈(x − z)d1(z), (y − w)d2(w)〉 =: Q((z, w)), (5.4)

for all z ∈ p1
−1{0}, w ∈ p2

−1{0}. Since Q((z, w)) is a primary ideal in C[x, y],

I =
⋂

(z,w)∈p−1
1 {0}×p−1

2 {0}
Q((z, w))

is the minimal primary decomposition of I. For the respective radicals we
have P ((z, w)) = 〈x − z, y − w〉. Moreover, P ((z, w)) · Q((z, w)) coincides
with

〈(x − z)d1(z)+1, (x − z)d1(z)(y − w), (x − z)(y − w)d2(w), (y − w)d2(w)+1〉.
Therefore, A((z, w)) = C[x, y]/

(
P ((z, w)) · Q((z, w))

)
is isomorphic to

Ad1(z),d2(w) and B((z, w)) = C[x, y]/Q((z, w)) is isomorphic to Bd1(z),d2(w)

as introduced in Definition 4.1, [4]. ♦

6. Function Classes

In the present section we make the same assumptions and use the same nota-
tion as in Sect. 4. In addition, we assume that the ideal I generated by all real
definitizing polynomials is zero-dimensional. We fix real, definitizing polyno-
mials p1, . . . , pm which generate I. For the zero-dimensional I we apply the
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same notation as in the previous section. The variety V (I) = {a1, . . . , al} ⊆
C

2 of common zeros of all f ∈ I will be split up as

V (I) = (V (I) ∩ R
2)

︸ ︷︷ ︸
=VR(I)

∪̇ (V (I)\R2),

where we consider VR(I) as a subset of C; see (3.6).

Definition 6.1. By MN we denote the set of functions φ defined on

(σ(Θ(N)) ∪ VR(I))
︸ ︷︷ ︸

⊆C

∪̇ (V (I)\R2)
︸ ︷︷ ︸

⊆C2

with φ(z) ∈ C for z ∈ σ(Θ(N))\VR(I), φ(z) ∈ A(z) for z ∈ VR(I), and
φ(z) ∈ B(z) for z ∈ V (I)\R2.

We provide MN pointwise with scalar multiplication, addition and mul-
tiplication. We also define a conjugate linear involution .# on MN by

φ#(z) := φ(z) for z ∈ σ(Θ(N))\VR(I),
φ#(z) := φ(z)# for z ∈ VR(I)
φ#(ξ, η) := φ(ξ̄, η̄)# for (ξ, η) ∈ V (I)\R2. ♦

With the operations introduced above MN is a commutative ∗-algebra
as can be verified in a straight forward manner; see Remark 5.3.

Definition 6.2. Let f : dom f → C be a function with dom f ⊆ C
2 such that

τ
(
σ(Θ(N))∪VR(I)

) ⊆ dom f , where τ : C → C
2, (x+iy) �→ (x, y), such that

f ◦ τ is sufficiently smooth – more exactly, at least dx(z) + dy(z) − 1 times
continuously differentiable – on a sufficiently small open neighbourhood z for
each z ∈ VR(I), and such that f is holomorphic on an open neighbourhood
of V (I)\R2 (⊆ C

2).
Then f can be considered as an element fN of MN by setting fN (z) :=

f ◦ τ(z) for z ∈ σ(Θ(N))\VR(I), by

fN (z) :=
∑

(k,l)∈J(z)

1
k!l!

∂k+l

∂ak∂bl
f ◦ τ(a + ib)|a+ib=z

·(x − Re z)k(y − Im z)l + (P (z) · Q(z)) ∈ A(z)

for z ∈ VR(I), where

J(z) = ({0, . . . , dx(z) − 1} × {0, . . . , dy(z) − 1}) ∪ {(dx(z), 0), (0, dy(z))},



478 M. Kaltenbäck IEOT

and by

fN (ξ, η) :=
dx(ξ,η)−1∑

k=0

dy(ξ,η)−1∑

l=0

1
k!l!

∂k+l

∂zk∂wl
f(z, w)|(z,w)=(ξ,η)

·(x − ξ)k(y − η)l + Q((ξ, η)) ∈ B((ξ, η)),

for (ξ, η) ∈ V (I)\R2. ♦

Remark 6.3. By the Leibniz rule f �→ fN is compatible with multiplication.
Obviously, it is also compatible with addition and scalar multiplication. If we
define for a function f as in Definition 6.2 the function f# by f#(z, w) =
f(z̄, w̄), (z, w) ∈ dom f , then we also have (f#)N = (fN )#. ♦

Remark 6.4. A special type of functions f as in Definition 6.2 are polynomials
in two variables, i.e. f ∈ C[x, y]. Since for z ∈ VR(I) and (k, l) �∈ J(z) we
have (x − Re z)k(y − Im z)l ∈ P (z) · Q(z),

fN (z) = f + (P (z) · Q(z)) ∈ A(z).

Similarly, fN (ξ, η) = f + Q((ξ, η)) ∈ B((ξ, η)) for (ξ, η) ∈ V (I)\R2.
In particular, for f = 1 the element fN (z) is the multiplicative unite in

A(z) or B(z) for all z ∈ (σ(Θ(N)) ∪ VR(I)
)∪̇(V (I)\R2). ♦

For the following recall for example from [2], Theorem 4, Chap. 2, Sect.
5, that any ideal in C[x, y] always has a finite number of generators.

Definition 6.5. For any w ∈ σ(Θ(N)) ∩ VR(I) such that w is not isolated
in σ(Θ(N)) let h1, . . . , hn be generators of the ideal Q(w). For a sufficiently
small neighbourhood U(w) of w let χQ(w) : U(w)\{w} → [0,+∞) be

χQ(w)(z) := max
j=1,...,n

|hj(z)|,

where hj(z), as usually, stands for hj(Re z, Im z). ♦

Remark 6.6. Since w is a common zero of all h ∈ Q(w), we have χQ(w)(z) → 0
for z → w. Moreover, for any h ∈ Q(w) the fact, that h1, . . . , hn are generators
of Q(w), yields h(z) = O(χQ(w)(z)) as z → w. This is particularly true for
h ∈ I.

Moreover, if χ′
Q(w) is defined in a similar manner starting with genera-

tors h′
1, . . . , h

′
n′ , then χ′

Q(w)(z) = O(χQ(w))(z) and χQ(w)(z) = O(χ′
Q(w))(z)

as z → w. Hence, as far as it concerns the order of growth towards w, the
expression χQ(w) does not depend on the actually chosen generators.

Finally, for h ∈ Q(w) the polynomial

gh(x, y) := h(x, y) ·
∏

a∈V (I),a�=(Re w,Im w)

(x − ax)εx(a)(y − ay)εy(a)

belongs to I, where εx(a) = dx(a), εy(a) = 0 or εx(a) = 0, εy(a) = dy(a)
depending on whether ay = Im w or ay �= Imw; see Definition 5.2. Since I
is generated by p1, . . . , pm, we have gh(z) = O(maxj=1,...,m |pj(z)|) and, in
turn, h(z) = O(maxj=1,...,m |pj(z)|) as z → w. Applying this to h = hj , we
obtain χQ(w)(z) = O(maxj=1,...,m |pj(z)|). Hence, as far as it concerns the
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order of growth towards w, the expression χQ(w) could also be defined as
maxj=1,...,m |pj(z)|. ♦

Definition 6.7. We denote by FN the set of all elements φ ∈ MN such that
z �→ φ(z) is Borel measurable and bounded on σ(Θ(N))\VR(I), and such
that for each w ∈ σ(Θ(N)) ∩ VR(I), which is not isolated in σ(Θ(N)),

φ(z) − φ(w)|x=Re z,y=Im z = O(χQ(w)(z)) (6.1)

as σ(Θ(N))\VR(I) � z → w. ♦

Note that in (6.1) φ(w) ∈ A(w) is a coset p(x, y) + (P (w) · Q(w)) from
C[x, y]/(P (w) · Q(w)), and φ(w)|x=Re z,y=Im z stands for any representative
of this coset φ(w) considered as a function of z. In (6.1) it does not matter
what representative we take since q = O(χQ(w)) as z → w for any q ∈ Q(w),
and hence, for any q ∈ (P (w) · Q(w)).

Remark 6.8. Assume that our zero-dimensional ideal I is generated by two
definitizing polynomials p1 ∈ R[x], p2 ∈ R[y] as in Example 5.5. For w ∈
VR(I), i.e. (Re w, Im w) ∈ V (I), we conclude from (5.4) in Example 5.5 that

χQ(w)(z) := max(|(Re z − Re w)d1(Re w)|, |(Im z − Im w)d2(Im w)|).
Therefore, in this case the function class FN here coincides exactly with the
function class FN introduced in Definition 4.11, [4]. ♦

Example 6.9. For (ξ, η) ∈ V (I)\R2 and a ∈ B((ξ, η)) the function aδ(ξ,η) ∈
MN , which assumes the value a at (ξ, η) and the value zero on the rest of(
σ(Θ(N)) ∪ VR(I)

)∪̇(V (I)\R2), trivially belongs to FN .
Correspondingly, aδw ∈ FN for a ∈ A(w) with a w ∈ VR(I), which is

an isolated point of σ(Θ(N)) ∪ VR(I). ♦

Remark 6.10. Let h be defined on an open subset D of R2 with values in C.
Moreover, assume that for given m,n ∈ N the function h is m + n − 1 times
continuously differentiable. Finally, fix w ∈ D.

The well-known Taylor Approximation Theorem from multidimensional
calculus then yields

h(z) =
m+n−2∑

j=0

∑

k,l∈N0
k+l=j

1
k!l!

∂jh

∂xk∂yl
(w)Re(z − w)k Im(z − w)l + O(|z − w|m+n−1)

as z → w. Since

|z − w|m+n−1 ≤ 2m+n−1 max(|Re(z − w)|m+n−1, | Im(z − w)|m+n−1)

= O(max(|Re(z − w)|m, | Im(z − w)|n)),

and since Re(z − w)k Im(z − w)l = O(max(|Re(z − w)|m, | Im(z − w)|n)) for
k ≥ m or l ≥ n, we also have

h(z) =
m−1∑

k=0

n−1∑

l=0

1
k!l!

∂k+lh

∂xk∂yl
(w)Re(z − w)k Im(z − w)l

+O(max(|Re(z − w)|m, | Im(z − w)|n)). ♦
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Lemma 6.11. Let f : dom f (⊆ C
2) → C be a function with the properties

mentioned in Definition 6.2. Then fN belongs to FN .

Proof. For a w ∈ σ(Θ(N)) ∩ VR(I), which is not isolated in σ(Θ(N)), and
z ∈ σ(Θ(N))\VR(I) sufficiently near at w by Remark 6.10 the expression

fN (z) − fN (w)|x=Re z,y=Im z

= f(Re z, Im z) −
∑

(k,l)∈J(w)

1
k!l!

∂k+lf

∂xk∂yl
(Re w, Im w)

·(Re z − Re w)k(Im z − Im w)l

is a O(max(|Re(z−w)|dx(w), | Im(z−w)|dy(w))), and therefore a O(χQ(w)(z))
as z → w. Consequently fN ∈ FN . �

Lemma 6.12. If φ ∈ FN is such that φ(z) is invertible in C,A(z),B(z),
respectively, for all z ∈ (σ(Θ(N)) ∪ VR(I)

)∪̇(V (I)\R2) and such that 0 ∈ C

does not belong to the closure of φ
(
σ(Θ(N))\VR(I)

)
, then φ−1 : z �→ φ(z)−1

also belongs to FN .

Proof. By the first assumption φ−1 is a well-defined object belonging to MN .
Clearly, with φ also z �→ φ(z)−1 = 1

φ(z) is measurable on σ(Θ(N))\VR(I). By
the second assumption of the present lemma z �→ φ(z)−1 = 1

φ(z) is bounded
on this set.

It remains to verify (6.1) for φ−1 at each w ∈ σ(Θ(N)) ∩ VR(I), which
is not isolated in σ(Θ(N). To do so, first note that due to φ(w)’s invertibility
for z ∈ σ(Θ(N))\VR(I) sufficiently near at w we have φ(w)|x=Re z,y=Im z =
p(z) �= 0, where p(x, y) is a representative of φ(w). Now calculate

φ−1(z) − φ(w)−1|x=Re z,y=Im z (6.2)

=
1

φ(z)
− 1

φ(w)|x=Re z,y=Im z
(6.3)

+
1

φ(w)|x=Re z,y=Im z
− φ(w)−1|x=Re z,y=Im z. (6.4)

The expression in (6.3) can be written as

− 1
φ(z) · φ(w)|x=Re z,y=Im z

· (φ(z) − φ(w)|x=Re z,y=Im z) .

Here 1
φ(z) is bounded by assumption. The assumed invertibility of φ(w) im-

plies φ(w)|x=Re w,y=Im w �= 0. Hence, 1
φ(w)|x=Re z,y=Im z

is bounded for z in a
certain neighbourhood of w. From φ ∈ FN we then conclude that (6.3) is a
O(χQ(w)(z)) as z → w.

The expression in (6.4) can be rewritten as

− 1
φ(w)|x=Re z,y=Im z

· (φ(w)|x=Re z,y=Im z · φ(w)−1|x=Re z,y=Im z − 1
)
.

The product in the brackets is a representative of φ(w) ·φ(w)−1 = 1+(P (w) ·
Q(w)) ∈ A(w). Hence, (6.4) equals to 1

φ(w)|x=Re z,y=Im z
q(Re z, Im z) for a q ∈
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(P (w) · Q(w)), and is therefore a O(χQ(w)(z)) as z → w. Altogether (6.2) is
a O(χQ(w)(z)) as z → w. Thus, φ−1 ∈ FN . �

7. Functional Calculus for Zero-Dimensional I
For the following recall from Remark 6.4 that for p ∈ C[x, y] the function
pN ∈ FN is defined in Definition 6.2.

Lemma 7.1. For each φ ∈ FN there exists p ∈ C[x, y] and complex valued
f1, . . . , fm ∈ B(σ(Θ(N)) ∪ VR(I)) with fj(z) = 0 for z ∈ VR(I) such that

φ(z) = pN (z) +
∑

j

fj(z) (pj)N (z)

for all z ∈ σ(Θ(N)) ∪ VR(I), and that φ((ξ, η)) = pN ((ξ, η)) for all (ξ, η) ∈
V (I)\R2.

Proof. We apply Proposition 5.4 to W = VR(I). The fact, that ψ is an
isomorphism, then yields the existence of a polynomial p ∈ C[x, y] such that
p + (P (w) · Q(w)) = φ(w) for all w ∈ VR(I) and such that p + Q((ξ, η)) =
φ((ξ, η)) for all (ξ, η) ∈ V (I)\R2.

By Remark 6.4 we have φ(w) = p + (P (w) · Q(w)) = pN (w) ∈ A(w)
for w ∈ VR(I). For (ξ, η) ∈ V (I)\R2 we have φ((ξ, η)) = p + Q((ξ, η)) =
pN ((ξ, η)) ∈ B((ξ, η)).

For j = 1, . . . ,m we set fj(z) := φ(z)−p(z)∑
k pk(z) if z ∈ σ(Θ(N))\VR(I) (see

Lemma 3.5), and fj(z) = 0 if z ∈ VR(I). On σ(Θ(N)) ∪ VR(I) we then have

φ(z) = pN (z) +
∑

j

fj(z) (pj)N (z).

It remains to verify that the functions fj are measurable and bounded on
σ(Θ(N))\VR(I). The measurability easily follows from the definition of fj

and the measurability of φ on this set. Since there are only finitely many
points in VR(I), the measurability of fj on σ(Θ(N)) ∪ VR(I) follows.

Concerning boundedness, note that by Lemma 6.11 φ − pN belongs to
FN . Since any representative (φ−pN )(w)|x=Re z,y=Im z of (φ−pN )(w) ∈ A(w)
belongs to P (w) · Q(w) ⊆ Q(w), we have (φ − pN )(z) = O(χQ(w)(z)) as
z → w for any w ∈ σ(Θ(N)) ∩ VR(I) which is not isolated on σ(Θ(N)). By
Remark 6.6 and Lemma 3.5 we have χQ(w)(z) = O(

∑
k pk(z)) as z → w for

z ∈ σ(Θ(N))\VR(I). Therefore,

fj(z) =
φ(z) − p(z)
∑

k pk(z)
= O(1) as z → w

for z ∈ σ(Θ(N))\VR(I). �

Definition 7.2. Let Δ be the set of all pairs (φ; (p, f1|σ(Θ(N)), . . . , fm|σ(Θ(N))))
such that all assertions from Lemma 7.1 hold true for φ and (p, f1, . . . , fm).♦
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Remark 7.3. It is straight forward to check that Δ is a linear subspace of
FN ×
(
C[x, y]×B

(
σ(Θ(N))

)×· · ·×B
(
σ(Θ(N))

))
, i.e. Δ is a linear relations.

Moreover, it is easy to check that with (φ; (p, f1|σ(Θ(N)), . . . , fm|σ(Θ(N)))) also
(φ#; (p#, f1|σ(Θ(N)), . . . , fm|σ(Θ(N)))) belongs to Δ; see Remark 4.5. ♦

Δ is also compatible with multiplication as will be shown next.

Lemma 7.4. If both, (φ; (p, f1|σ(Θ(N)), . . . , fm|σ(Θ(N)))) and
(ψ; (q, g1|σ(Θ(N)), . . . , gm|σ(Θ(N)))), belong to Δ, then also the pair
(φ · ψ; (r, h1|σ(Θ(N)), . . . , hm|σ(Θ(N)))) belongs to Δ, where (see (4.3))

(r, h1|σ(Θ(N)), . . . , hm|σ(Θ(N)))
= (p, f1|σ(Θ(N)), . . . , fm|σ(Θ(N)))(q, g1|σ(Θ(N)), . . . , gm|σ(Θ(N))).

Proof. On σ(Θ(N)) ∪ VR(I) we have

φ(z) = pN (z) +
∑

j

fj(z)(pj)N (z) and ψ(z) = qN (z) +
∑

j

gj(z)(pj)N (z).

Moreover, fj(z) = 0 = gj for z ∈ VR(I), and

φ((ξ, η)) = pN ((ξ, η)), ψ((ξ, η)) = qN ((ξ, η)) for all (ξ, η) ∈ V (I)\R2.

Since p �→ pN is compatible with multiplication, r = p · q satisfies (φ ·
ψ)((ξ, η)) = rN ((ξ, η)) for all (ξ, η) ∈ V (I)\R2. Clearly, hj = pgj + qfj +
fj

∑m
k=1 gkpk vanishes on VR(I). For z ∈ σ(Θ(N)) ∪ VR(I) we have

φ(z)ψ(z) = pN (z) qN (z) +
∑

j

(

pN (z)gj(z) + qN (z)fj(z)

+fj(z)
∑

k

gk(z)(pk)N (z)

)

(pj)N (z),

which, for z ∈ VR(I), coincides with rN (z) = rN (z) +
∑

j hj(z)(pj)N (z). For
z ∈ σ(Θ(N))\VR(I) the above equation can be written as

φ(z)ψ(z) = r(z) +
∑

j

(

p(z)gj(z) + q(z)fj(z) + fj(z)
∑

k

gk(z)pk(z)

)

pj(z)

= rN (z) +
∑

j

hj(z) (pj)N (z). �

We are going to determine the multivalued part mul Δ of Δ.

Lemma 7.5. Let p ∈ C[x, y] and f1, . . . , fm ∈ B(σ(Θ(N)) ∪ VR(I)) with
fj(z) = 0 for z ∈ VR(I) be such that

0 = pN (z) +
∑

j

fj(z)(pj)N (z)

on σ(Θ(N)) ∪ VR(I) and that pN ((ξ, η)) = 0 for all (ξ, η) ∈ V (I)\R2. Then
(p, f1|σ(Θ(N)), . . . , fm|σ(Θ(N))) belongs to the ideal N in R as defined in Def-
inition 4.4.
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Proof. Clearly, p +
∑m

j=1 fjpj = 0 on σ(Θ(N))\VR(I). According to Re-
mark 6.4 we have p + (P (w) · Q(w)) = 0 ∈ A(w) for all w ∈ VR(I) and
p + Q((ξ, η)) = 0 ∈ B((ξ, η)) for all (ξ, η) ∈ V (I)\R2. Hence, p belongs to

⋂

(ξ,η)∈V (I)\R2

Q((ξ, η)) ∩
⋂

w∈VR(I)

(P (w) · Q(w)).

By Proposition 5.4 we therefore have p =
∑

j ujpj with uj(w) = 0 for all
w ∈ VR(I). We see that (fj + uj)(z) = 0 for all z ∈ VR(I) ∩ σ(Θ(N)). Thus,
(p, f1|σ(Θ(N)), . . . , fm|σ(Θ(N))) ∈ N . �

Since by Lemma 4.6 mul Δ ⊆ N ⊆ ker Ψ, the composition ΨΔ is a
well-defined linear mapping from FN into B(K).

Definition 7.6. For φ ∈ FN we set φ(N) := (ΨΔ)(φ). ♦

By Theorem 4.9, Lemma 7.4 and Remark 7.3 the following result can
be formulated.

Theorem 7.7. φ �→ φ(N) constitutes a ∗-homomorphism from FN into {N,
N∗}′′ ⊆ B(K). It satisfies pN (N) = p(A,B) for all p ∈ C[x, y].

Proof. The final assertion is clear because of (pN ; (p, 0, . . . , 0)) ∈ Δ. �

8. Spectral Properties of the Functional Calculus

For w ∈ VR(I) we will need the following notation. By πw : A(w) → B(w)
we denote the mapping

πw (f + (P (w) · Q(w))) = f + Q(w).

Lemma 8.1. If φ ∈ FN vanishes everywhere except at a fixed w ∈ VR(I) and
if πwφ(w) = 0, then

φ(N) = Ψ(0; g1, . . . , gm)

for g1, . . . , gm ∈ B (σ(Θ(N))) which vanish on (σ(Θ(N)) ∪ VR(I))\{w}.
Proof. Let p ∈ C[x, y] and f1, . . . , fm ∈ B(σ(Θ(N)) ∪ VR(I)) with fj(z) = 0
for z ∈ VR(I) such that

φ(z) = pN (z) +
∑

j

fj(z) (pj)N (z)

for all z ∈ σ(Θ(N)) ∪ VR(I), and that pN ((ξ, η)) = φ((ξ, η)) = 0 for all
(ξ, η) ∈ V (I)\R2. The latter fact just means p ∈ Q((ξ, η)). From 0 = φ(z) =
pN (z)+

∑
j fj(z) (pj)N (z) for z ∈ VR(I)\{w} we infer p ∈ (P (z)·Q(z)). From

πwφ(w) = 0 we obtain p ∈ Q(w).
By Proposition 5.4 we have p =

∑
j ujpj , where uj(z) = 0 for all

z ∈ VR(I)\{w}. We define gj to be zero on (σ(Θ(N)) ∪ VR(I)) \{w} and
set gj(w) = uj(w). The difference

(p; f1|σ(Θ(N)), . . . , fm|σ(Θ(N))) − (0; g1, . . . , gm)
= (p; f1|σ(Θ(N)) − δw(.)u1(w), . . . , fm|σ(Θ(N)) − δw(.)um(w))
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satisfies p+
∑

j(fj(z)− δw(z)uj(w))pj(z) = φ(z) = 0 for z ∈ σ(Θ(N))\VR(I)
and fj(z) − δw(z)uj(w) + uj(z) = 0 for all z ∈ VR(I) ∩ σ(Θ(N)). It therefore
belongs to the ideal N of R. Thus,

φ(N) = Ψ(p; f1|σ(Θ(N)), . . . , fm|σ(Θ(N))) = Ψ(0; g1, . . . , gm). �

Corollary 8.2. Assume that the spectral measure E of Θ(N) satisfies E{w} =
0 for a fixed w ∈ VR(I), which surely happens if w �∈ σ(Θ(N)). Then φ(N) =
ψ(N) for all φ, ψ that coincide on

(
(σ(Θ(N))∪VR(I))\{w})∪̇(V (I)\R2) and

that satisfy πwφ(w) = πwψ(w). Here πw : A(w) → B(w) is defined by πw

(
f +

(P (w) · Q(w))
)

= f + Q(w).

Proof. By Lemma 8.1 there exist g1, . . . , gm ∈ B
(
σ(Θ(N))

)
, which vanish on

(σ(Θ(N)) ∪ VR(I))\{w}, such that

φ(N) − ψ(N) = Ψ(0; g1, . . . , gm) =
m∑

k=1

Ξk

(∫

σ(Θk(N))

gk dEk

)

According to Lemma 4.1 together with our assumption E{w} = 0, this op-
erator vanishes. �

Remark 8.3. For ζ ∈ V (I)\R2 or a ζ ∈ VR(I), which is isolated in σ(Θ(N))∪
VR(I), we saw in Example 6.9 that aδζ ∈ FN . If a is the unite e in B(ζ) or in
A(ζ), i.e. the coset 1 + Q(ζ) for ζ ∈ V (I)\R2 or the coset 1 + (P (ζ) · Q(ζ))
for ζ ∈ VR(I), then (eδζ) · (eδζ) = (eδζ) together with the multiplicativity of
φ �→ φ(N) show that (eδζ)(N) is a projection. It is a kind of Riesz projection
corresponding to ζ.

We set ξ := Re ζ, η := Im ζ if ζ ∈ VR(I) and (ξ, η) := ζ if ζ ∈ V (I)\R2.
For λ ∈ C\{ξ + iη} and for s(z, w) := z + iw − λ we then have sN · (eδζ) =(
sN (ζ)
)
δζ . As s(ξ, η) �= 0, sN (ζ) does not belong to P (ζ) ⊇ Q(ζ). Therefore,

it is invertible in B(ζ) or in A(ζ). For its inverse b we obtain

sN · (eδζ) · (bδζ) = eδζ .

From sN (N) = N − λ we derive that (N |ran(eδζ)(N) − λ)−1 = (bδζ)
(N)|ran(eδζ)(N) on ran(eδζ)(N). In particular, σ(N |ran(eδζ)(N)) ⊆ {ξ + iη}. ♦

Lemma 8.4. If φ ∈ FN vanishes on

(σ(Θ(N)) ∪ (VR(I) ∩ σ(N))) ∪̇{(α, β) ∈ V (I)\R2 : α + iβ, ᾱ + iβ̄ ∈ σ(N)
}

,

then φ(N) = 0.

Proof. Since any w ∈ VR(I)\σ(N) is isolated in σ(Θ(N)) ∪ VR(I), we saw in
Remark 8.3 that for

ζ ∈ (VR(I)\σ(N))
︸ ︷︷ ︸

=:Z1

∪̇ {(α, β) ∈ V (I)\R2 : α + iβ ∈ ρ(N)}
︸ ︷︷ ︸

=:Z2

the expression (eδζ)(N) is a bounded projection commuting with N . Hence,
(eδζ)(N) also commutes with (N − (ξ + iη))−1, where ξ := Re ζ, η := Im ζ if
ζ ∈ Z1 and (ξ, η) := ζ if ζ ∈ Z2.
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Consequently, N |ran(eδζ)(N) − (ξ + iη) is invertible on ran(eδζ)(N), i.e.
ξ + iη �∈ σ(N |ran(eδζ)(N)). In Remark 8.3 we saw σ(N |ran(eδζ)(N)) ⊆ {ξ + iη}.
Hence, σ(N |ran(eδζ)(N)) = ∅, which is impossible for ran(eδζ)(N) �= {0}.
Thus, (eδζ)(N) = 0.

For (ξ, η) ∈ Z3 := {(α, β) ∈ V (I)\R2 : ᾱ + iβ̄ ∈ ρ(N)} one has (ξ̄, η̄) ∈
Z2. Hence,

0 = (eδ(ξ̄,η̄))(N)∗ = (e#δ(ξ,η))(N) = (eδ(ξ,η))(N).

Since, by our assumption, φ is supported on Z1 ∪ Z2 ∪ Z3, we obtain

φ(N) =

⎛

⎝
∑

ζ∈Z1∪Z2∪Z3

φ(ζ)δζ

⎞

⎠ (N) =
∑

ζ∈Z1∪Z2∪Z3

φ(ζ)(eδζ)(N) = 0. �

As a consequence of Lemma 8.4 for φ ∈ FN the operator φ(N) only
depends on φ’s values on

(σ(Θ(N)) ∪ (VR(I) ∩ σ(N)))
∪̇ {(α, β) ∈ V (I)\R2 : α + iβ, ᾱ + iβ̄ ∈ σ(N)}. (8.1)

Thus, we can, and will from now on, re-define the function class FN for our
functional calculus so that the elements φ of FN are functions on this set with
values in C,A(z) or B(z), such that z �→ φ(z) is measurable and bounded on
σ(Θ(N))\VR(I) and such that (6.1) holds true for every w ∈ σ(Θ(N))∩VR(I)
which is not isolated in σ(Θ(N)).

Lemma 8.5. If φ ∈ FN is such that φ(z) is invertible in C,A(z) or B(z),
respectively, for all z in (8.1), and such that 0 does not belong to the closure
of φ
(
σ(Θ(N))\VR(I)

)
, then φ(N) is a boundedly invertible operator on K

with φ−1(N) as its inverse.

Proof. We think of φ as a function on
(
σ(Θ(N)) ∪ VR(I)

)∪̇(V (I)\R2) by
setting φ(z) = e for all z not belonging to (8.1). Then all assumptions of
Lemma 6.12 are satisfied. Hence φ−1 ∈ FN , and we conclude from Theo-
rem 7.7 and Remark 6.4 that

φ−1(N)φ(N) = φ(N)φ−1(N) = (φ · φ−1)(N) = 1N (N) = IK. �

Corollary 8.6. σ(N) equals to

σ(Θ(N)) ∪ (VR(I) ∩ σ(N))
∪{α + iβ : (α, β) ∈ V (I)\R2, α + iβ, ᾱ + iβ̄ ∈ σ(N)}. (8.2)

In particular, σ(N)\σ(Θ(N)) is finite.

Proof. Since Θ is a homomorphism, we have σ(Θ(N)) ⊆ σ(N). Hence, (8.2)
is contained in σ(N). For the converse, consider the polynomial s(z, w) =
z + iw − λ for a λ not belonging to (8.2). We conclude that for any

ζ ∈ (VR(I) ∩ σ(N)) ∪ {(α, β) ∈ V (I)\R2 : α + iβ, ᾱ + iβ̄ ∈ σ(N)}
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the polynomial s does not belong to P (ζ) ⊇ Q(ζ). Hence, sN (ζ) is invertible
A(ζ) or B(ζ). Clearly, sN (ζ) �= 0 for ζ ∈ σ(Θ(N))\VR(I). Finally, 0 does not
belong to the closure of

sN (σ(Θ(N))\VR(I)) = s(σ(Θ(N))\VR(I)) ⊆ σ(Θ(N)) − λ.

Applying Lemma 8.5, we see that sN (N) = (N − λ) is invertible. �

Remark 8.7. We set Kr := VR(I) ∩ σ(N),

Z :=
{
(α, β) ∈ V (I)\R2 : α + iβ, ᾱ + iβ̄ ∈ σ(N)

}
,

and Ki := {α + iβ : (α, β) ∈ Z}. Using Corollary 8.6 we could re-define once
more the functions φ ∈ FN as functions φ on σ(N) such that
1. φ is complex valued, bounded and measurable on σ(N)\(Kr ∪ Ki),
2. φ(ζ) ∈ A(ζ) for ζ ∈ Kr\Ki,
3. φ(ζ) ∈�(α,β)∈Z,α+iβ=ζ A(ζ) for ζ ∈ Ki\Kr,
4. φ(ζ) ∈ A(ζ) ×�(α,β)∈Z,α+iβ=ζ A(ζ) for ζ ∈ Kr ∩ Ki;
5. for a w ∈ Kr, which is not isolated in σ(N), we have

φ(z) − p(Re z, Im z) = O(χQ(w)(z)) as σ(N)\(Kr ∪ Ki) � z → w,

where p is a representative of φ(w) for w ∈ Kr\Ki and p is a represen-
tative of the first entry of φ(w) for w ∈ Kr ∩ Ki. ♦

9. Special Cases of Definitizable Operators

Unitary and selfadjoint operators are special cases of normal operators on
Hilbert spaces as well as on Krein spaces. We will show how some well-known
facts on definitizable selfadjoint or unitary operators on a Krein space K can
easily be obtain from the previously obtained results.

9.1. Selfadjoint Definitizable Operators

An operator N ∈ B(K) is by definition selfadjoint if N = N+. Obviously,
N ∈ B(K) is selfadjoint if and only if N is normal and satisfies p(A,B) = 0,
where A = N+N+

2 , B = N−N+

2i and p(x, y) = y.
Therefore, according to Definition 3.1 any selfadjoint operator on a

Krein space is definitizable normal, and the ideal I generated by all real
definitizing polynomials contains p(x, y) = y. Since the ideal generated by
p(x, y) = y is not zero-dimensional, the zero-dimensionality of I implies the
existence of at least one real definitizing polynomial of the form

y · s(x, y) + t(x) with s ∈ C[x, y], t ∈ C[x]\{0}. (9.1)

Proposition 9.1. The ideal I is zero-dimensional if and only if there exists a
t ∈ R[x]\{0} such that [t(A)u, u] ≥ 0, u ∈ K, i.e. N = A is definitizable in
the classical sense; see [5].

Proof. Any r ∈ C[x, y] can we written as r(x, y) = y · sr(x, y) + tr(x) with
unique sr ∈ C[x, y], tr ∈ C[x]. Hence, r ∈ I if and only if tr ∈ I. The set
of Ix := {tr : r ∈ I} forms an ideal in C[x]. If Ix is the zero ideal, then
I = y · C[x, y] is not zero-dimensional.
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If Ix �= {0}, then, applying the polynomial division, we see that dim
C[x]/Ix < ∞. This also implies the zero-dimensionality of I. If r(x, y) is a
real definitizing polynomial as in (9.1), then

[t(A)u, u] = [r(A,B)u, u] ≥ 0, u ∈ K,

i.e. t(x) is a definitizing polynomial. Finally, r shares the property to be real
with t. �

Assume that N ∈ B(K) is selfadjoint and that the ideal I generated
by all real definitizing polynomials is zero-dimensional. Consequently, we can
apply the functional calculus developed in Section 7. Since p(x, y) = y belongs
to I, we conclude that

a = (ax, ay) ∈ V (I) implies ay = p(a) = 0.

Hence, the elements of VR(I) are contained in R, and (ξ, η) ∈ V (I)\R2 yields
η = 0. Moreover, with N also Θ(N) is selfadjoint in the Hilbert space H; see
Proposition 3.3 and (2.1). In particular, σ(Θ(N)) ⊆ R. From Corollary 8.6
we derive that σ(N) is contained in R up to finitely many points which are
located in C\R symmetric with respect to R.

9.2. Unitary Definitizable Operators

An operator N ∈ B(K) is by definition unitary if N+N = NN+ = IK.
Obviously, N ∈ B(K) is unitary if and only if N is normal and satisfies
p(A,B) = 0, where A = N+N+

2 , B = N−N+

2i and

p(x, y) = (x + iy)(x − iy) − 1 = x2 + y2 − 1.

Therefore, according to Definition 3.1 any unitary operator on a Krein
space is definitizable normal, and the ideal I generated by all real defini-
tizing polynomials always contains p(x, y). Since the ideal generated by p
is not zero-dimensional, the zero-dimensionality of I implies the existence a
definitizing polynomial different from p.

Remark 9.2. If, for example, there exists a polynomial a ∈ C[z]\{0} such that
[a(N)u, u] ≥ 0, u ∈ K, then the ideal J generated by a (as a polynomial
in C[z, w]) and b(z, w) = zw − 1 in C[z, w] is zero-dimensional. Indeed, it is
easy to see that the set V (J ) of common zeros of a and b is finite, which
by [3], page 39, implies zero-dimensionality. Since c(z, w) �→ c(x + iy, x − iy)
constitutes an isomorphism from C[z, w] onto C[x, y], also the ideal generated
by a(x+iy) and p(x, y) in C[x, y] is zero-dimensional. Hence, the same is true
for I, and we can apply the functional calculus developed Section 7. ♦

Assume that N ∈ B(K) is unitary and that the ideal I generated by all
real definitizing polynomials is zero-dimensional. Consequently, we can apply
the functional calculus developed in Section 7. From p ∈ I we conclude that

a ∈ V (I) implies p(a) = 0.

Hence, the elements of VR(I) are contained in T, and (ξ, η) ∈ V (I)\R2 yields

(ξ + iη)(ξ̄ + iη̄) = ξ2 + η2 = 1.
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Moreover, with N also Θ(N) is unitary in the Hilbert space H; see Proposi-
tion 3.3 and (2.1). In particular, σ(Θ(N)) ⊆ T. From Corollary 8.6 we derive
that σ(N) is contained in T up to finitely many points which are located in
C\T symmetric with respect to T.

10. Transformations of Definitizable Normal Operators

In this final section we examine, whether basic transformations, such as
αN,N + βIK, N−1 with α, β ∈ C, α �= 0, of definitizable normal operators
N are again definitizable, and how the corresponding ideals I behave.

For β ∈ C it is easy to see that p(x, y) is a real definitizing polynomial
for N if and only if the polynomial p(x − Re β, y − Im β) in C[x, y] is real
definitizing for N + βIK. Since r(x, y) �→ r(x − Re β, y − Im β) is a ring
automorphism on C[x, y], the respective ideals I, corresponding to N and
N + βIK, are zero-dimensional, or not, at the same time.

Similarly, p(x, y) is a real definitizing polynomial for N if and only if
the polynomial p(xRe 1/α − y Im 1/α, x Im 1/α + y Re 1/α) in C[x, y] is real
definitizing for αN . Also r(x, y) �→ r(xRe 1/α−y Im 1/α, x Im 1/α+y Re 1/α)
is a ring automorphism on C[x, y]. Hence, the ideal I corresponding to N
is zero-dimensional if and only if the ideal I corresponding to αN is zero-
dimensional.

For the inverse N−1 the situation is more complicated. We formulate
two results that we will need. The first assertion is straight forward to verify.
We omit its proof.

Lemma 10.1. The mapping Φ : p(x, y) �→ p( z+w
2 , z−w

2i ) from C[x, y] to C[z, w]
is an isomorphism, where p is real, i.e. p(x̄, ȳ) = p(x, y), if and only if
Φ(p)(z, w) = Φ(p)(w̄, z̄).

Obviously, for a normal N = A + iB and p(x, y) ∈ C[x, y] we have

p(A,B) = Φ(p)(N,N+). (10.1)

For a polynomial q ∈ C[z, w]\{0} let d(q) be the maximum of the z-
degree of q and the w-degree of q. Moreover, we set

�(q)(z, w) := (zw)d(q)q

(
1
z
,

1
w

)

∈ C[z, w].

Lemma 10.2. If I = 〈q1, . . . , qm〉 is zero-dimensional with polynomials q1, . . . ,

qm such that qj(z, w) = qj(w̄, z̄), then the ideal 〈�(q1), . . . , �(rm)〉 is also
zero-dimensional.

Proof. Let (ζ, η) ∈ V (�(q1), . . . , �(rm)). For ζ �= 0 �= η we conclude qj( 1
ζ , 1

η )
= 0, j = 1, . . . ,m, and in turn (ζ, η) ∈ {(z, w) ∈ (C\{0})2 : ( 1

z , 1
w ) ∈ V (I)}.

Assume that η = 0 and ζ �= 0. If qj(z, w) =
∑d(qj)

k,l=0 bk,lz
kwl, then

qj(z, w) = qj(w̄, z̄) yields bk,l = b̄l,k, and we have �(qj)(z, w) =
∑d(qj)

k,l=0
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bd(qj)−k,d(qj)−lz
kwl. According to the choice of d(qj) and by bk,l = b̄l,k the

polynomial

ρj(z) := �(qj)(z, 0) =
d(qj)∑

k=0

bd(qj)−k,d(qj)z
k

is non-zero and satisfies ρj(ζ) = 0, i.e. (ζ, η) ∈ ρ−1
j ({0}) × {0}.

From qj(z, w) = qj(w̄, z̄) we conclude ρj(w̄) = �(qj)(0, w). Hence, ζ = 0
and η �= 0 yields (ζ, η) ∈ {0} × ρ−1

j ({0}).
In any case (ζ, η) is contained in

{(0, 0)} ∪
{

(z, w) ∈ (C\{0})2 :
(

1
z
,

1
w

)

∈ V (I)
}

∪
⎛

⎝
⋂

j=1,...,m

ρ−1
j ({0}) × {0}

⎞

⎠ ∪
⎛

⎝
⋂

j=1,...,m

{0} × ρ−1
j ({0})

⎞

⎠ .

Consequently, V (�(q1), . . . , �(rm)) is finite, and in turn 〈�(q1), . . . , �(rm)〉
is zero-dimensional; see [3], page 39. �

Proposition 10.3. Let N be normal and bijective on the Krein space K. If
p(x, y) is real definitizing for N , then Φ−1

(
�
(
Φ(p)
))

is definitizing for N−1.
Moreover, if the ideal I generated by all real definitizing p(x, y) for N is zero-
dimensional, then also the ideal generated by all real definitizing polynomials
for N−1 is zero-dimensional.

Proof. Let p(x, y) be real definitizing for N . By Lemma 10.1 we have
Φ(p)(z, w) = Φ(p)(w̄, z̄), and in turn �(Φ(p))(z, w) = �(Φ(p))(w̄, z̄). Writing
Φ(p)(z, w) =

∑d(Φ(p))
k,l=0 bk,lz

kwl, we obtain

�(Φ(p))(z, w) =
d(Φ(p))∑

k,l=0

bd(Φ(p))−k,d(Φ(p))−l z
kwl.

For u ∈ K by (10.1) we have

[Φ−1 (� (Φ(p))) (ReN−1, Im N−1)u, u]

=
[
�(Φ(p))(N−1, N−+)u, u

]

=

⎡

⎣
d(Φ(p))∑

k,l=0

bd(Φ(p))−k,d(Φ(p))−l(N−1)k(N−+)lu, u

⎤

⎦

=
[
Φ(p)(N,N+) (N−1)d(Φ(p))u, (N−1)d(Φ(p)) u

]

=
[
p(A,B) (N−1)d(Φ(p))u, (N−1)d(Φ(p)) u

]
≥ 0.

Hence, Φ−1
(
� (Φ(p))

)
is real definitizing for N−1. Finally, if I is zero-

dimensional and generated by real definitizing p1, . . . , pm, then Φ(I)=〈Φ(p1),
. . . ,Φ(pm)〉 is zero-dimensional in C[z, w]. According to Lemma 10.2 〈�(Φ
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(p1)
)
, . . . , �

(
Φ(pm)

)〉, and hence also 〈Φ−1
(
�
(
Φ(p1)
))

, . . . ,Φ−1
(
�
(
Φ

(pm)
))〉 is zero-dimensional. Since its generators are real definitizing for N−1

also the ideal generated by all real definitizing polynomials for N−1 is zero-
dimensional. �
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