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Abstract Correlation coefficients are most popular in statistical practice for mea-
suring pairwise variable associations. Compositional data, carrying only relative
information, require a different treatment in correlation analysis. For identifying the
association between two compositional parts in terms of their dominance with respect
to the other parts in the composition, symmetric balances are constructed, which cap-
ture all relative information in the form of aggregated logratios of both compositional
parts of interest. The resulting coordinates have the form of logratios of individual
parts to a (weighted) “average representative” of the other parts, and thus, they clearly
indicate how the respective parts dominate in the composition on average. The balances
form orthonormal coordinates, and thus, the standard correlation measures relying on
the Euclidean geometry can be used to measure the association. Simulation studies
provide deeper insight into the proposed approach, and allow for comparisons with
alternative measures. An application from geochemistry (Kola moss) indicates that
correlations based on symmetric balances serve as a sensitive tool to reveal underly-
ing geochemical processes.
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1 Introduction

Compositional data are characterized by observations on compositional parts that con-
tribute to some whole. Typical examples are the number of votes for political parties
in a regional election with a given population or concentrations of chemical elements
in some material with defined weight. An analysis of the associations between the
compositional parts (political parties and chemical elements) based on the underly-
ing data is often a first step to understand the multivariate data structure. However,
applying correlation analysis to compositional data can lead to the so-called spurious
correlations. The problem of spurious correlations dates back to the seminal paper by
Pearson (1897), where difficulties obtained by applying the standard correlation anal-
ysis to data with a constant sum constraint are described. There was a long way with
one important milestone, Chayes (1960) to realize that any such reasonable measure
cannot be based on the original compositional parts, but rather on (log) ratios form-
ing the only relevant information in compositions (Aitchison 1986). In the following
years, it turned out that compositional data are not restricted entirely to observations
with a constant sum constraint (such as proportions or percentages), but the con-
cept covers all observations carrying relative information, with a possibility of being
expressed with any prescribed sum constraint without altering the ratios between the
parts (Pawlowsky-Glahn et al. 2015). The specific principles of compositional data
(scale invariance, permutation invariance, and subcompositional coherence) induce
the Aitchison geometry (Pawlowsky-Glahn and Egozcue 2001) with the Euclidean
vector space structure that enables to express compositions in proper logratio coordi-
nates and continue with statistical processing using the standardmultivariate statistical
tools.

Aitchison (1986) proposed to change completely the point of view on associa-
tion between compositional parts by introducing the variation matrix. Accordingly,
the association between two parts, expressed by the variance of the corresponding
logratio, is stronger when the ratio between them tends to be constant. Although
this concept turned out to be successful in a range of applications during the last 30
years (Pawlowsky-Glahn and Buccianti 2011), there are still certain limitations of the
approach that inhibits its wider acceptance by the geochemical community (Filzmoser
et al. 2010; Reimann et al. 2012). They result mainly from the lack of possibilities of
distinguishing positive and negative association, an essential feature in case of the cor-
relation coefficient. To get an impression about such a behavior between geochemical
variables, many researchers in the field tend to return back to improper preprocessing
tools, such as the log transformation that violates the scale invariance principle of
compositional data.

This paper proposes to measure the strength of association between compositional
parts through the correlation coefficient between a particular choice of orthonormal
coordinates with respect to the Aitchison geometry. The orthonormal coordinates are
based on logratios, formed always by a part of interest and the remaining variables,
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aggregated in terms of a weighted geometric mean. The resulting coordinates are
simply logratios of individual parts to a (weighted) “average representative” of the
other parts, and thus, they clearly indicate how the respective parts dominate in the
composition on average. Methodologically, it follows the idea of having logratio coor-
dinates that express all relative information about the parts of interest (Filzmoser et al.
2009). Two such coordinates need to be constructed simultaneously in a coordinate
system, each corresponding to one of the parts. After a brief review of recent possi-
bilities concerning the association between compositional parts in the next section,
these coordinates are derived in Sect. 3. A detailed discussion of the new correlation
measure together with some possible alternatives is provided in Sect. 4. Sections 5 and
6 employ a geochemical data set in simulations and comparisons to provide deeper
insight into the properties of the proposed association measure. Section 7 concludes
and provides some outlook.

2 Measures of Compositional Association

2.1 Correlation Analysis for Compositional Data

The most popular way of measuring association (relation) between variables in prac-
tice is using a correlation measure. Nevertheless, its application on compositional
data is not so straightforward. Recall that a D-part composition is represented as a
vector x = (x1, . . . , xD)′, where all components are positive real numbers that carry
only relative information (Aitchison 1986; Pawlowsky-Glahn et al. 2015). This means
that only the ratios between the parts are informative and they form the basis of
a reasonable (statistical) processing. Moreover, one should follow the principles of
compositional data (Egozcue 2009) to have a guarantee of a reliable analysis. Par-
ticularly, the representation of a compositional vector with any sum of components
(proportions, percentages, mg/kg,…) should yield the same results according to the
scale invariance principle. These essential assumptions constitute the source of the
problems to apply the standard correlation analysis on compositional data.

Consider compositional data with a fixed prescribed constant sum constraint (the
case of proportions) that still occur sometimes in the literature. In this case, correlation
analysis is also influenced by the presence of negative bias in the covariance structure.
It is represented by the relations

cov(xi , x1) + · · · + cov(xi , xi−1) + cov(xi , xi+1) + cov(xi , xD) = −var(xi ), (1)

for i = 1, . . . , D, that make the interpretation of the correlation coefficient meaning-
less (its value cannot freely vary between −1 and 1). Consequently, the correlation
between parts of a composition with D parts can be completely in contradiction with
the correlation resulting from a subcomposition containing d parts, d ≤ D, and an
illustrative example is described in Korhoňová et al. (2009). The problem is that the
standard approach, when interpreting the correlation between two compositional parts,
does not reflect the fact that the whole has changed when coming from the full com-
position to a subcomposition. On the other hand, this is intentionally recognized and
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taken into account with the approach proposed in this paper. In general, correlation
analysis provides an illustration of the fact that a standard statistical analysis of the
original compositional data (that are driven by the Aitchison geometry) cannot be
recommended in general.

The Euclidean vector space structure of the Aitchison geometry enables to get
a coordinate representation of compositions in the real space, where the standard
statistical methods can be applied. The resulting centered logratio (clr) coefficients
(Aitchison 1986) and isometric logratio (ilr) coordinates (Egozcue et al. 2003), which
seem to be recently themost popular in practice, correspond to coordinateswith respect
to a generating system and an orthonormal basis, respectively.

Accordingly, the clr coefficients are defined as

y = (y1, . . . , yD)′ =
(
ln

x1
D
√∏D

i=1 xi

, . . . , ln
xD

D
√∏D

i=1 xi

)′
, (2)

imposing the zero sum constraint of the new variables, y1 +· · ·+ yD = 0. Although it
seems to be attractive to assign each single original compositional part to a clr coeffi-
cient (and then even continue with correlation analysis), this effort has no geometrical
background and should be avoided. Particularly, similar relations as those in Eq. (3)

cov(yi , y1) + · · · + cov(yi , yi−1) + cov(yi , yi+1) + cov(yi , yD) = −var(yi ), (3)

for i = 1, . . . , D that show a distortion of the covariance structure, support the argu-
mentation.

Following general theoretical assumptions (Eaton 1983), correlation analysis of
compositional data in the usual sense is only meaningful in logratio coordinates with
respect to a basis, preferably to an orthonormal one, that guarantees isometry between
the Aitchison geometry and the real space. Nevertheless, the vector of ilr coordinates
has D − 1 elements, and it is not possible to assign a coordinate to each part in an
univocal manner. Searching for interpretable orthonormal (ilr) coordinates led to the
concept of balances (Egozcue and Pawlowsky-Glahn 2005) as coordinates with a spe-
cific interpretation in terms of balances between groups of compositional parts. These
new coordinates are constructed using a procedure called sequential binary partition-
ing (SBP), where the original parts are separated sequentially into non-overlapping
groups of parts (Egozcue and Pawlowsky-Glahn 2005). Although correlation analysis
of balances is now possible, the interpretation is not straightforward without a deeper
prior (expert) knowledge of how the SBP should be constructed. A recent discussion
on the issue from the perspective of geochemical mapping can be found in McKinley
et al. (2016).

Consequently, an alternative approach was introduced coming from the idea of hav-
ing “automated” coordinates that would better stress the role of single compositional
parts (Filzmoser et al. 2009; Fišerová and Hron 2011). A particular form of SBP leads
to coordinates
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z = (z1, . . . , zD−1)
′, zi =

√
D − i

D − i + 1
ln

xi
D−i
√∏D

j=i+1 x j
, (4)

i = 1, . . . , D − 1. It is obvious that the balance z1, being proportional to y1, contains
all the relative information of the part x1 with respect to the remaining parts of the
composition, since this part is not contained in any other coordinate of Eq. (4). The
variable z1 can be interpreted in terms of dominance of x1 to the other parts, represented
by their geometric mean, and thus to their average behavior. Up to a constant, z1 is
equal to one centered logratio coordinate (Aitchison 1986), being still popular with
some statistical applications (Pawlowsky-Glahn et al. 2015). Unfortunately, the same
interpretation in sense of explaining all relative information cannot be assigned to z2
and x2, because this balance already does not contain the first part. Nevertheless, a
good candidate for the correlation between relative contributions of x1 and x2 in a
given composition would be a symmetrical form of z1 and z2 because of the exclusive
position of the parts of interest (x1, x2) in the respective coordinates. This task will be
further developed in Sect. 3. Obviously, the role of x1 and x2 can also be interchanged,
and a similar construction for different parts can be obtained by permuting the parts
in Eq. (4). Without loss of generality, just the case of x1 and x2 will be considered in
the following.

2.2 Variation Matrix as a Measure of Stability

Amain tool of measuring compositional association between two compositional parts
has been the variation matrix as a measure of stability (Aitchison 1986). The variation
matrix of a D-part composition is a symmetric matrix of order D, defined as

T = [ti j ] =
[
var

(
ln

xi
x j

)]
, i, j = 1, . . . , D, (5)

with zero diagonal elements. When the elements of T are close to 0, the ratio of xi/x j
is nearly constant, thus the two parts xi and x j are almost proportional. On the contrary,
high variability of the logratio indicates very different ratios of two parts among all
the observations.

The logratios in Eq. (5) can also be rescaled according to Eq. (4), so that they
correspond, up to orientation, to the normed coordinate of the two-part composition
(xi , x j )′. The resulting normalized variation matrix (Pawlowsky-Glahn et al. 2015) is
defined as

T∗ = [t∗i j ] =
[
var

( 1√
2
ln

xi
x j

)]
, i, j = 1, . . . , D, (6)

where t∗i j stands for the usual (sample) variance of the normalized logratio of parts i

and j (balance). Subsequently, the relation betweenT andT∗ is given asT = 1
2T

∗. The
measure of variability could be normalized to the range (0,1] as τi j = exp(−var(t∗i j ))
for 1 ≤ i, j ≤ D, i �= j (Buccianti and Pawlowsky-Glahn 2005; Filzmoser et al.
2010). The proportionality coefficient τi j tends to 0 as the variability of the logratio
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increases, and conversely, smaller variabilities deliver τi j approaching 1. However,
this is still just a proper scaling of the elements of the variation matrix and not a
correlation measure in the common sense. Particularly, the concept of proportionality
does not allow to think in terms of positive and negative association, as it is known
from the correlation coefficient.

The above considerations lead to an alternative normalization of the elements of
the variation matrix using the total variance measure (Pawlowsky-Glahn and Egozcue
2001); the resulting matrix is used to reveal, whether the corresponding pair of parts
is less proportional than the logratio variance that would be observed in a com-
plete non-proportional composition (Egozcue et al. 2013). For testing the elements
of the variation matrix (indirectly through a regression model), it was recommended
in Egozcue et al. (2013) to consider the following two balances

zv1(i, j) = 1√
2
ln

xi
x j

, zv2(i, j) =
√
2(D − 2)√

D
ln

xi x j
D−2

√∏
k �={i, j} xk

,

accompanied by the complementary D−3 orthonormal coordinates. The first balance
corresponds to an element of the normalized variation matrix, and the latter one links
this logratio (capturing relative information on the subcomposition (xi , x j )′) with
the remaining parts in the given composition. Nevertheless, the interpretation of the
elements of the variation matrix themselves has not been further enhanced using these
approaches.

3 Constructing Symmetric Balances

All the introduced approaches to measuring association between compositional parts
are based, directly or indirectly, on working with orthonormal coordinates. However,
constructing interpretable balanceswith SBP for correlation analysis needs some expe-
rience or even some prior expertise. It is also important to note that the normalized
variation matrix considers only associations between two parts of a given composition
through their respective logratios. Although this is relevant when the amounts (mass,
matter, and volume) that gave rise to the ratios are of primary interest, one should
be aware that any part in the compositional vector can be by definition dependent on
ratios with all other parts in the composition. This fact should be taken into account
for considering any reasonable (preferably orthonormal) coordinates that would allow
for a correlation analysis between relative contributions conveyed by both parts. As
mentioned in the previous section, one possible setting of coordinates would be Eq.
(4). Nevertheless, it is necessary to symmetrize with respect to parts x1 and x2.

Accordingly, two coordinate systems z and z∗ resulting from the permutation of the
parts in Eq. (4) are consideredwith a special focus on the role of x1 and x2, respectively.
It is obvious that the first two coordinates from each system, Eqs. (7) and (8), fully
describe the subcomposition (x1, x2)′ within the given composition
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z1 =
√

D − 1

D
ln

x1
D−1

√∏D
i=2 xi

, z2 =
√

D − 2

D − 1
ln

x2
D−2

√∏D
i=3 xi

, (7)

z∗1 =
√

D − 1

D
ln

x2
D−1

√
x1

∏D
i=3 xi

, z∗2 =
√

D − 2

D − 1
ln

x1
D−2

√∏D
i=3 xi

. (8)

It is now possible to build matrices of clr representations of orthonormal basis vectors
corresponding to the first two balances of z and z∗ (Egozcue et al. 2003) as

Vz
D×2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
D−1
D 0

− 1
D−1

√
D−1
D

√
D−2
D−1

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1

...
...

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Vz∗
D×2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
D−1

√
D−1
D

√
D−2
D−1√

D−1
D 0

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1

...
...

− 1
D−1

√
D−1
D − 1

D−2

√
D−2
D−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Vz∗ results from a permutation of the first two rows of Vz. Consequently, the
first two balances of z and z∗ are related through an orthogonal transformation as

z∗ = Vz
′Vz∗z, (9)

where the orthogonal matrix Vz
′Vz∗ has the form:

Vz
′Vz∗ =

⎛
⎝ − 1

D−1

√
D−2
D

D
D−1√

D−2
D

D
D−1

1
D−1

⎞
⎠ . (10)

Note that both matrices Vz and Vz∗ are closely connected to the respective coor-
dinates. Namely, their columns v1 = (v11, . . . , vD1)

′, v2 = (v12, . . . , vD2)
′ and

v∗
1 = (v∗

11, . . . , v
∗
D1)

′, v∗
2 = (v∗

12, . . . , v
∗
D2)

′ with zero sums of their elements rep-
resent logcontrast coefficients of z1, z2, and z∗1, z∗2, respectively (Aitchison 1986)
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z1 =
D∑
i=1

vi1 ln xi , z2 =
D∑
i=1

vi2 ln xi , z∗1 =
D∑
i=1

v∗
i1 ln xi , z∗2 =

D∑
i=1

v∗
i2 ln xi .

Because of the roles of the above-mentioned coordinates with respect to the single
parts x1 and x2, one can construct new symmetric balances capturing their relative
contributions expressed through logratios to other parts in the composition. Let x1
be the first part of interest; the case of x2 can be processed accordingly. Based on
the basic geometry, a symmetric coordinate zs1 capturing relative information about
x1 corresponds to an angle bisector of v1 and v∗

2. Similarly, the coordinate zs2 (that
stands for x2) would correspond to an angle bisector of v2 and v∗

1. Figure 1 provides
an illustration.

Particularly, the new symmetric orthonormal coordinate is computed using the
respective logcontrast coefficients as

zs1 = 1

‖v1 + v∗
2‖

(v1 + v∗
2)

′ ln x. (11)

The sum of v1 and v∗
2 results in a vector with elements

v1 + v∗
2 =

(
D − 1 + √

D(D − 2)√
D(D − 1)

,− 1√
D(D − 1)

,

−
√
D − 2 + √

D√
D(D − 1)(D − 2)

, . . . ,−
√
D − 2 + √

D√
D(D − 1)(D − 2)

)′
,

and norm

‖v1 + v∗
2‖ =

√
2 · (D − 1 + √

D(D − 2))

D − 1
. (12)

Fig. 1 Graphical illustration of
the symmetric balances

z1

z2

z2
*

z1
*

z1
s

z2
s

123



Math Geosci (2017) 49:777–796 785

Subsequently, logcontrast coefficients of the symmetric coordinate zs1 are given as

v1 + v∗
2

‖v1 + v∗
2‖

=
(√

D − 1 + √
D(D − 2)√

2D
,− 1√

2D(D − 1 + √
D(D − 2))

,

−
√
D − 2 + √

D√
2D(D − 2)(D − 1 + √

D(D − 2))
, . . . ,

−
√
D − 2 + √

D√
2D(D − 2)(D − 1 + √

D(D − 2))

)′
,

followed by the resulting coordinate

zs1 =
√

D − 1 + √
D(D − 2)

2D
ln

x1

x
1

D−1+√
D(D−2)

2

(
x3x4 · · · xD

) √
D−2+√

D√
D−2(D−1+√

D(D−2))

.

(13)
The same procedure is applied to the coordinates z∗1 and z2, describing information

about the compositional part x2, in order to obtain the second symmetric coordinate
zs2. Thus

zs2 =
√

D − 1 + √
D(D − 2)

2D
ln

x2

x
1

D−1+√
D(D−2)

1

(
x3x4 · · · xD

) √
D−2+√

D√
D−2(D−1+√

D(D−2))

.

(14)
From the above construction, it is clear that zs1, z

s
2, z3, . . . , zD−1, or alternatively

zs1, z
s
2, z

∗
3, . . . , z

∗
D−1, form orthonormal coordinates of the composition x. The inter-

pretation of the resulting symmetric balances is indeed as expected, and they both
capture dominance of x1 and x2, respectively, with respect to the other components
in a symmetric manner. Although the coefficients in the denominator of Eqs. (13)
and (14) seem to be quite complicated, one does not need to take care about them in
practice, because they result just from the normalization needed to achieve orthonor-
mality of the coordinates. More important is the powering of x2 in zs1 (and x1 in zs2)
that is different for the remaining parts, which reflects the compromise resulting from
symmetrizing the input coordinates, Eqs. (7) and (8). Nevertheless, it is visible that
the ratio of both powers

1
D−1+√

D(D−2)√
D−2+√

D√
D−2(D−1+√

D(D−2))

=
√
D − 2√

D − 2 + √
D

(Fig. 2) is stabilized quite soon with an increasing number of parts to approximately
1/2 in favor of the remaining parts. Finally, with an increasing number of parts, the
effect of having one part in the denominator of the logratio with different power than
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Fig. 2 Ratio between weights in symmetric balances

for the other parts is clearly suppressed. As a consequence, zs1 and z
s
2 tend to approach

(up to a scaling constant) the respective clr coordinates y1 and y2 as D → ∞.

4 Correlation Analysis with Symmetric Balances

The symmetric balances, as constructed in the previous section, allow to perform cor-
relation analysis between coordinates which express one part of interest with respect to
the other parts in the composition. For this purpose, the Pearson correlation coefficient
can be taken

ρ(zs1, z
s
2) = cov(zs1, z

s
2)√

var(zs1)var(z
s
2)

, (15)

or any other alternative correlation measure. The interpretation in the sense of posi-
tive and negative association (known from the correlation coefficient) is possible and
statistical inference, such as significance testing, can be performed as usual. It is just
important to emphasize that it is not a correlation between the original components, but
between coordinates assigned to them. They can be interpreted in terms of dominance
of both parts to the average behavior of the rest as described in detail above. Hence, the
remaining parts can influence the value of the correlation coefficient as well, which
fully corresponds to the relative nature of compositional data. As a consequence, a
positive correlation coefficient would mean that dominances of the two amounts over
the respective “average representatives” of the other parts increase simultaneously and
vice versa for negative correlation; a zero coefficient would mean that dominances of
these two amounts are controlled by uncorrelated processes. Of course, part x1 is
contained in zs2 and, conversely, x2 in zs1. Accordingly, it is interesting to see, what
happens if ratios with x1 uniformly increase by a constant behavior of the other parts
(and their ratios). From the construction of both coordinates, while zs1 increases, zs2
slightly decreases (x1 is contained with reduced power in its denominator), resulting
in negative correlation. This reminds to the case of correlation between two original
parts, but now in a geometrically reasonable manner with orthonormal coordinates.
Moreover, it is also a kind of logical result: if the dominance of one part (here x1)
increases, the dominance of another one (x2) must necessarily decrease. Nevertheless,
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the effect for the latter part cannot be the same: x1 is just one out of D − 1 parts to
which the dominance of x2 is related.

Similarly, the correlation for any other pair of parts in x can be calculated by
permuting the parts in Eqs. (13) and (14).

By summarizing all corresponding correlation coefficients in one matrix, the com-
positional correlation matrix RC (x) of dimension D × D is obtained. It is symmetric
with unit diagonal as the standard correlation matrix. Moreover, any scaling and shift-
ing in the compositional sense, which mean by perturbing x with a non-random
composition b = (b1, . . . , bD)′ and powering with a real constant a to get a com-
position a 
 x ⊕ b = (xa1b1, . . . , x

a
DbD) (up to an arbitrary scaling constant), yield

the same result, RC (a 
 x ⊕ b) = RC (x) (Pawlowsky-Glahn et al. 2015). Although
by experiments with data sets, also some further interesting properties (such as pos-
itive definiteness) were indicated, it is crucial to realize that the elements of RC (x)
are formed using D(D − 1)/2 different coordinate systems that should be taken into
account by processing it as a whole (e.g., by computing principal components).

Constructing symmetric balances seems to be themost relevant way how to perform
correlation analysis between relative contributions of compositional parts. Neverthe-
less, the formof the coordinates z and z∗ inspires to consider also other possibilities that
will be briefly mentioned. The first option consists in taking correlation coefficients
between the coordinates, Eqs. (7) and (8), respectively

ρ(z1, z2) = cov(z1, z2)√
var(z1)var(z2)

, ρ(z∗1, z∗2) = cov(z∗1, z∗2)√
var(z∗1)var(z∗2)

, (16)

and then compute their average as follows

ρave(z, z∗) = ρ(z1, z2) + ρ(z∗1, z∗2)
2

. (17)

Another idea to construct a correlation coefficient with similar interpretation as for the
symmetric balances follows the approach from linear discriminant analysis (Johnson
and Wichern 2007) based on calculating the so-called pooled covariance matrix from

�z =
(

var(z1) cov(z1, z2)
cov(z2, z1) var(z2)

)
and �z∗ =

(
var(z∗1) cov(z∗1, z∗2)

cov(z∗2, z∗1) var(z∗2)

)
. (18)

The pooled covariance matrix represents here an average of the covariance matrices
�z and �z∗

�p(z, z∗) = �z + �z∗

2
=

(
�p11 �p12
�p21 �p22

)
, (19)

and the elements are taken to get the resulting correlation coefficient:

ρpool(z, z∗) = �p12√
�p11�p22

. (20)
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The next section will be devoted to thorough simulation studies to investigate,
whether one would benefit from employing these alternative approaches in addition
to the main proposal formed by correlation analysis of symmetric balances.

5 Simulation Studies

The main aim of the following simulation studies is to investigate the properties of the
different correlation coefficients as introduced in the previous section and to compare
alsowith some other approaches that are used in the literature. In this section, randomly
generated data and data obtained from the moss layer in the Kola Project (Reimann
et al. 1998) are used. These data are available in the R package mvoutlier as data
set moss (R Development Core Team 2015), and they contain concentrations of 31
chemical elements in more than 600 moss samples.

5.1 Simulation 1: Uniform Distribution Inside a Sphere

Data sets are generated randomly from a uniform distribution inside a unit sphere
of dimension d = D − 1. These data are already expressed in coordinates, and by
construction, all pairwise correlations are 0. The data are transformed to the origi-
nal space using the inverse mapping to isometric logratio coordinates (Egozcue et al.
2003), with constant row sum 1. Without loss of generality, the interest here is in the
association between the first two compositional parts. For each considered correlation
measure, bootstrap confidence intervals (CIs) are constructed, using B = 1000 boot-
strap samples of each particular data set. For each bootstrap sample, the respective
correlation measure is applied. The 95% bootstrap CI is then defined as the interval
given by the lower bound as the quantile 0.025 and the upper bound as the quantile
0.975 of the B correlations. For a particular dimension d and sample size n, in total
N = 1000, samples were randomly drawn, and the averages of the lower and upper
interval bounds are computed. The length of the resulting interval is reported in Fig. 3,
where simulated data with different sample sizes (n ∈ {10, 50, 100, 500}) and dimen-
sions (d ∈ {4(5)34}) have been used. Figure 4 presents the resulting coverages of the
CIs. The coverage is computed as the number of intervals containing the true underly-
ing correlation 0, divided by N . The coverage is close to 0.95 in most cases, except for
the correlations based on clr coefficients and log-transformed data, and here in partic-
ular for smaller numbers of parts. The reason for the considerably smaller coverage
is the negative bias for these correlations. In these cases, also the average lengths of
the CIs are smaller, but still the CIs are useless. The CIs for the correlation based on
pooled covariances are shorter in low dimension compared to correlations for symmet-
ric balances and for balances describing the two parts of interest, with the drawback
that the pooled covariances are not directly resulting from an orthonormal basis. Thus,
from this study one would conclude that proposals Eqs. (15) and (16), and thus also
Eq. (17), are performing equally and well, but symmetric balances are more adequate
from an interpretation point of view.

In addition, proportionality coefficients were computed for these simulated data,
but confidence intervals were not considered, since they would be meaningless.
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numbers of independent parts D, summarized as boxplots

Figure 5 shows all 1000 results as boxplots for all different combinations of sam-
ple size and dimension. As it can be expected, sample size leads to a high variability
of the proportionality coefficients. An interesting finding is, however, that the propor-
tionality coefficients are close to 0 for a small number of parts, but they get quite high
if the number of parts increases. For example, for D = 34 and n = 500, the median
value for this coefficient is higher than 0.4. This raises doubts whether the proportion-
ality coefficient as such is useful for judging the dependency between compositional
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parts, even though it clearly has a different construction and interpretation than the
previous (correlation) measures.

5.2 Simulation 2: Dependence on the Number of Parts

This simulation setting is based on the Kola moss data, and compares the different
approaches for correlation analysis for a varying number of parts involved in the com-
putation of the correlation coefficients. k parts (4 ≤ k ≤ 30) are randomly selected,
and the correlation between the first two parts is computed (in the sense of the above
proposals); the parts are always the same for the different correlation measures. For
each fixed k, the random selection is done 10,000 times, resulting in 10,000 corre-
lation values for each method. When comparing two methods, the outcomes of all
results are compared for fixed k in terms of the Pearson correlation. A value close to 1
would indicate approximately the same outcome of both methods. The left panels in
Fig. 6 show these pairwise comparisons of the approach based on symmetric balances
with the other correlation measures, where the considered number of parts is on the
horizontal axes, and the resulting correlations between the point clouds of the 10,000
outcomes on the vertical axes. The right panels show again pairwise comparisons of
correlation measures, but this time, the maximum difference of the 10,000 results is
computed.

It can be seen that the relation between correlations of symmetric balances and
average correlations or correlations based on the pooled covariance matrix, respec-
tively, are very close regardless of the number of parts, with some few exceptions for
lower numbers of parts in the compositional data set (Fig. 6a, b). This is plausible
given the way how they are constructed. In addition, the proposals given in Eq. (16)
show a very similar behavior (plots not presented here).

Finally, the symmetric balances approach is also compared to correlations derived
from the respective clr variables (Fig. 6c) and correlations from log-transformed vari-
ables (Fig. 6d). It can be seen that with increasing number of parts, the resulting
correlation structure from clr variables gets more and more similar to the correlation
structure from symmetric balances. This is because also the negative bias in case of
clr-based correlations gets smaller with increasing dimension. The difference in the
correlation structure from log-transformed data is large in all presented cases, resulting
from working in a non-appropriate geometry.

The advantage of symmetric balances is that they provide orthonormal coordinates,
where reasonable statistical inference concerning their association can be performed.
Even though clr coefficients can lead to similar correlations in certain cases, one
does not obtain orthonormal coordinates, with possible consequences on statistical
inference.

6 Example

As in the previous section, the Kola moss data set is used to compare different asso-
ciation measures. The resulting pairwise correlation coefficients are presented by the
so-called heatmaps, Fig. 7, where the resulting correlations are simply color coded.
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(a) Comparison of correlations between symmetric balances and average
correlation coefficient
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(b) Comparison of correlations between symmetric balances and pooled
covariance matrix approach
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(c) Comparison of correlations between symmetric balances and clr
coefficients
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(d) Comparison of correlations between symmetric balances and
log-transformed data
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Fig. 6 Pairwise comparisons of different correlation measures based on 10,000 random selections of data
sets with k parts (4 ≤ k ≤ 30); left Pearson correlations of the resulting point clouds; right maximum
difference between all results
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Fig. 7 Heatmaps of correlations for the moss data set based on the variation matrix coefficients (a), log-
transformed data (b), symmetric balances (c), and clr coefficients (d)

In addition, the variables are grouped to identify patterns in the matrix of pairwise
correlations. Figure 7 compares the heatmaps for associations based on the varia-
tion matrix coefficients (upper left), and further correlations for log-transformed data
(upper right), for symmetric balances (lower left), and for clr coefficients (lower right).
Due to the individual grouping in each heatmap, the order of the rows and columns
within the plots changes and makes a direct comparison difficult. However, in this
representation, one can clearly see the difference in patterns. The variation matrix
approach leads to a very different structure due to the non-negative association mea-
sures. In addition, the heatmap for log-transformed data, still very commonly applied
in geochemistry, reveals a different structure compared to that for symmetric balances.
In particular, only few negative correlations, but mainly positive ones are obtained.
Finally, the heatmaps for symmetric balances and for clr coefficients are very similar.
This is to be expected from the simulation results, Fig. 6c, since for larger numbers of
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parts, the two approaches for computing correlations get very similar. A much larger
difference can be expected when investigating a subcomposition.

The heatmap for the correlations based on symmetric balances shows in the upper
right plant nutrients (or, more precisely, their dominances with respect to other parts of
the composition), with the major plant nutrients K, P, and S, and minor plant nutrients
Zn, Mn, Rb (probably uptaken with K), Ca, and Mg. All these elements belong to
the main plant nutrients. Interestingly, Hg, Ba, Pb, and Tl are in the same cluster;
except of Ba, all these elements are toxic, and one can conclude that the plants play
an important role in their geochemical behavior. The elements Ci, Co, and Ni, in the
lower left, are the three main elements for emission. Further elements As, Fe, Cr,
Ag, Bi, and V are also emitted and thus related to the the three elements. Along the
diagonal, there is a cluster consisting of Th, U, Al, and Si, which may indicate dust,
and the group B, Na, and Sr is related to sea spray. In the lower left corner, a block
of negative correlations is identified: dominance of plant nutrients in the composition
occurs with a subordination of emitting metals, and vice versa. In addition, the dust
elements are negatively related to the plant nutrients.

When investigating the heatmap for the log-transformed data, some similarities to
the symmetric balances outcome can be discovered: Cu, Ni, and Co are also highly
correlated, and also As joins this group. However, several other elements would still be
interpreted as highly correlated with this group, including Th, U, Al, and Si. It would
thus not be possible to identify these elements as an own group, as in the heatmap
for symmetric balances, related to a different process (dust). In addition, the plant
nutrients are not as clearly separated as in the symmetric balance approach. Overall,
it can be concluded that correlations based on symmetric balances are much more
sensitive and useful to reveal underlying processes.

In this example, it is also obvious that the heatmap for associations based on the
variation matrix coefficients (upper left) is not only different because of the lack of
negative correlations, but also much less useful for identifying groups of elements. A
close inspection reveals similar structures as identified in the heatmap for symmetric
balances, but they are much more difficult to find.

A direct comparison of the heatmaps above is difficult, since the parts are reordered
in each individual plot. Figure 8 endeavors a better comparison of the outcomes by
sorting the parts according to the heatmap for the symmetric balances. Moreover, the
color scheme has been modified: the median of the resulting correlations is colored in
white, red tones are used for values higher than the median, and blue tones for values
lower than the median. This might still somehow be inappropriate for the variation
matrix coefficients, where “negative” associations cannot be expressed appropriately.
However, it is interesting to see that there are still major differences in the structure of
the heatmaps for symmetric balances compared to correlations from log-transformed
data. As it was already observed in the simulation experiments, the distribution of the
variation matrix coefficients is shifted upwards, and it is hard to judge if a value of,
say, 0.5 already indicates a strong relation or not.
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Fig. 8 Heatmaps of correlations for the moss data set based on the variation matrix coefficients (a), log-
transformed data (b), symmetric balances (c), and clr coefficients (d). The parts are ordered according to
the results for the symmetric balances. The color scheme starts with white at the median

7 Discussion

Correlation analysis of the original compositional parts fails to provide interpretable
results if a fixed constant sum constraint is employed. This is due to the relative nature
of compositions represented particularly by scale invariance, and it leads to a negative
bias of the correlation structure. The only safe way to perform correlation analysis of
compositional data is to express them in orthonormal logratio coordinates. Although
sequential binary partitioning and the resulting balances can be very useful when
prior knowledge about geochemical processes in the data is available, automated,
and interpretable orthonormal coordinates that capture relative information, about
single compositional parts can help to reveal hidden geochemical patterns when such
information is not available.
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For the purpose of interpretable correlation analysis in orthonormal logratio coor-
dinates, the so-called symmetric balances were introduced using a special choice of
balance coordinates. They allow to treat two compositional parts in a symmetric way
in one coordinate system and to compute the correlation coefficient. Although the
symmetric balances cannot be simply identified with the original compositional parts,
because they capture just relative contributions of the parts within a given composition,
it seems to be the first successful attempt to have correlation analysis of compositional
data interpretable in terms of dominance of a pair of compositional parts. Particularly,
the possibility of analyzing negative and positive associations as often required in
practice (and not available using the variation matrix approach) can help to eliminate
inappropriate data processing, for instance, using the popular (but scale dependent)
log-transformation. Moreover, one should be aware that also other parts are naturally
involved into the correlation between two given components by constructing symmet-
ric balances. Nevertheless, it follows closely the definition of compositional data that
none of the parts can be analyzed without considering relations (ratios) to the other
parts. This, however, has the consequence that measurement errors in some parts may
affect the resulting correlation coefficients of symmetric balances A possible way out
seems to be appropriateweighting of the parts according to their relevance, as proposed
recently in Egozcue and Pawlowsky-Glahn (2015) and Filzmoser and Hron (2015).
This will be further investigated in subsequent work.

Correlation coefficients can be seen as summarizing the information of the variable
relations shown in scatter plots. The concept of symmetric balances allows to have an
appropriate graphical representation of two compositional parts in terms of orthonor-
mal coordinates. This can serve as a new way of investigating pairwise relations. An
overview of all pairwise relations can be provided by a heatmap. In an application to
the Kola moss data set, this allowed to clearly reveal processes underlying the data.

Finally, here only the Pearson correlation was used to measure association.
Clearly, one can also employ alternative correlation estimators, such as the Spear-
man correlation for identifying non-linear relations or robust correlation estimators
for downweighting the influence of outlying observations.

Acknowledgements Open access funding provided by TUWien (TUW). The paper was supported by the
Grant COST Action CRoNoS IC1408 and by the K-project DEXHELPP through COMET—Competence
Centers for Excellent Technologies, supported by BMVIT, BMWFI, and the province Vienna. The COMET
program is administrated by FFG. The authors are grateful to Dr. Clemens Reimann from the Geological
Survey of Norway (NGU) for fruitful discussions and to the Associate Editor and two anonymous referees
for valuable comments which helped to improve the quality of the paper considerably.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London
Buccianti A, Pawlowsky-Glahn V (2005) New perspectives on water chemistry and compositional data

analysis. Math Geol 37(7):703–727

123

http://creativecommons.org/licenses/by/4.0/


796 Math Geosci (2017) 49:777–796

Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65(12):4185–4193
Eaton M (1983) Multivariate statistics. A vector space approach. Wiley, New York
Egozcue J (2009) Reply to “On the Harker variation diagrams; . . .” by J.A. Cortés. Math Geosci 41(7):829–

834
Egozcue J, Pawlowsky-Glahn V (2015) Proceedings of the 6th international workshop on compositional

data analysis. In: Thió-Henestrosa S, Martín Ferníndez J (eds) Changing the reference measure in the
simplex and its weighting effects, University of Girona, Girona, pp 1–10

Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis.
Math Geol 37:795–828

Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transfor-
mations for compositional data analysis. Math Geol 35:279–300

Egozcue JJ, Lovell D, Pawlowsky-GlahnV (2013) Testing compositional association. In: HronK, Filzmoser
P, Templ M (eds) Proceedings of the 5th International Workshop on Compositional Data Analysis.
Vorau, Austria

Filzmoser P, Hron K (2015) Robust coordinates for compositional data using weighted balances. In: Nord-
hausen K, Taskinen S (eds) Modern nonparametric. Robust and multivariate Methods. Springer,
Heidelberg

Filzmoser P, Hron K, Reimann C (2009) Univariate statistical analysis of environmental (compositional)
data: problems and possibilities. Sci Total Environ 407:6100–6108

Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional)
data. Sci Total Environ 408(19):4230–4238

Fišerová E, Hron K (2011) On interpretation of orthonormal coordinates for compositional data. Math
Geosci 43:455–468

Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Prentice Hall, Engle-
wood
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