
Model Checking Parameterised Multi-Token
Systems via the Composition Method?

Benjamin Aminof1 and Sasha Rubin2

1TU Wien, Austria and 2UNINA, Italy

Abstract. We study the model checking problem of parameterised sys-
tems with an arbitrary number of processes, on arbitrary network-graphs,
communicating using multiple multi-valued tokens, and specifications
from indexed-branching temporal logic. We prove a composition theo-
rem, in the spirit of Feferman-Vaught (1959) and Shelah (1979), and a
finiteness theorem, and use these to decide the model checking prob-
lem. Our results assume two constraints on the process templates, one of
which is the standard fairness assumption introduced in the cornerstone
paper of Emerson and Namjoshi (1995). We prove that lifting any of
these constraints results in undecidability. The importance of our work
is three-fold: i) it demonstrates that the composition method can be
fruitfully applied to model checking complex parameterised systems; ii)
it identifies the most powerful model, to date, of parameterised systems
for which model checking indexed branching-time specifications is decid-
able; iii) it tightly marks the borders of decidability of this model.

1 Introduction

Many concurrent systems consist of identical processes running in parallel, such
as peer-to-peer systems, sensor networks, multi-agent systems, etc. [14,27,29].
Model checking is a successful technique for establishing correctness of such
systems: model a system as the product transition system PG, where P is a
transition system representing the process, and G is a network-graph describ-
ing the communication lines [9]. If the number of processes is not known, or
too large for model-checking tools, it is appropriate to express correctness as a
parameterised model checking (PMC) problem: decide if a given temporal logic
specification holds irrespective of the number of processes [8,22]. That is, for a
fixed infinite set G of network-graphs (e.g., G may be the set of all ring network-
graphs), decide, given process P and specification ϕ if PG |= ϕ for all G ∈ G. Not
surprisingly, PMC is a hard problem, i.e., even for a given P, PMC consists of
model-checking infinitely many systems; in other words, it can be thought of as
model checking infinite-state systems [15,23]. It quickly becomes undecidable [8],
even if the participating processes are finite-state [32], and even if they do not

? Benjamin Aminof is supported by the Vienna Science and Technology Fund
(WWTF) through grant ICT12-059. Sasha Rubin is a Marie Curie fellow of the
Istituto Nazionale di Alta Matematica.

1

communicate with each other at all [25]. Thus, much work has focused on prov-
ing decidability for restricted systems, i.e., by limiting both the communication
mechanism and the specification logic [20,17,13,1,2,3,10,6,7].

We consider specifications in indexed branching temporal logic without the
“next-time” operator X (formulas without X are stuttering-insensitive, and are
thus natural for specifying asynchronous concurrent systems [18]). More specif-
ically, we use formulas of prenex indexed-CTL∗d\X (CTL∗ without X in which
there at most d ∈ N nested path quantifiers). These are formulas of the form
∀x1∃x2 · · · ∀xkφ where the variables xi vary over processes, and φ is a CTL∗d\X
formula where atomic propositions are paired with the index variables xi [30].
This specification language allows one to express many natural properties, e.g.
mutual-exclusion. Non-prenex temporal logic is so powerful that its parame-
terised model checking is undecidable already for indexed LTL\X specifications,
even for non-communicating processes [25]. We consider systems with an arbi-
trary number of processes, on arbitrary network-graphs, communicating using
multiple multi-valued tokens. Such systems arise in various contexts: multiple
tokens are a means to resolve conflicts over multiple shared resources such as in
the drinking philosophers problem [12], they can represent mobile finite-state
agents [29,4,5], and tokens are used in self-stabilisation algorithms [24]. We
further allow the edges of the network-graph to carry directions, called local
port-numberings, along which the processes may send and receive tokens. Such
network-graphs are typical in the distributed computing literature, for instance
in mobile finite-state agents, e.g., [14,27,26]. Note that even slightly more pow-
erful communication primitives such as pairwise-rendezvous have undecidable
PMC for expressive logics such as prenex indexed CTL∗\X [3].

The Compositional Method for Parameterised Model-Checking. Com-
position theorems, pioneered in the seminal work of Feferman and Vaught [21]
and Shelah [31], are tools that reduce reasoning about compound structures to
reasoning about their component parts. Unfortunately, composition theorems for
product systems are not easy to come by [28]. Nonetheless, we successfully ap-
ply the composition method to multi-token systems and prenex indexed-CTL∗d\X
specification languages. Our composition result (Theorem 3) states, roughly, that
if two processes X,Y are bisimilar, and if two network-graphs G,H with k visible
vertices ḡ, h̄ (i.e., vertices that formulas can talk about) are CTL∗d\X-equivalent,
then the product systems XG,YH with visible processes at ḡ, h̄ are CTL∗d\X-
equivalent. We complement this with a finiteness result (Theorem 5) that states,
roughly, that for every d, k ∈ N, there are only finitely many CTL∗d\X-types of
network-graphs G with k visible vertices (even though, over all graphs, there
are infinitely many logically inequivalent CTL∗d\X formulas, already for d = 1).
Combining the composition and finiteness we reduce reasoning about PG for all
G ∈ G to reasoning about finitely many G ∈ G, and thus decide the PMC.

Our systems employ two fairness conditions: the standard assumption (intro-
duced in [18]) that processes that make infinitely many transitions must make
infinitely many token passing transitions; and the assumption that from every
state from which a process can send (resp. receive) a token, it can also reach a

2

state in which it can send (resp. receive) the token in any other given direction
and value. We show that if either of the fairness conditions is removed PMC
becomes undecidable; furthermore, it remains undecidable even if other very re-
strictive assumptions are added. It is notable that until now it was not known
if the standard fairness assumption was necessary for decidability. Thus, our
results answer this question in the affirmative. Due to space constraints, some
proofs are only sketched or omitted.

2 Definitions

A labeled transition system (LTS) is a tuple 〈AP, Σ,Q,Q0, δ, λ〉 where AP is a
finite set of atomic propositions (also called atoms), Σ is a finite set of actions,
Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ ⊆ Q × Σ × Q is a
transition relation, and λ : Q → 2AP is a labeling function. We write q

σ→ q′ if
(q, σ, q′) ∈ δ, and write q → q′ if (q, σ, q′) ∈ δ for some σ ∈ Σ. An LTS is total if
for every q ∈ Q there exists q′ ∈ Q such that q → q′. A transition system (TS) is
a tuple 〈AP, Q,Q0, δ, λ〉 like an LTS, except that δ ⊆ Q×Q. A path of an LTS is
a finite string q0q1 . . . qn ∈ Q+ or an infinite string q0q1 . . . ∈ Qω such that qi →
qi+1 for all i. An edge-path of an LTS is a (finite or infinite) sequence of transitions
(q0, σ0, q1)(q1, σ1, q2) . . . of δ. Every edge-path (q0, σ0, q1)(q1, σ1, q2) . . . induces
the path q0q1q2 A path is simple if no vertex repeats, and it is a simple cycle
if the (only) two equal vertices are the first and last. An edge-path is simple (resp.
simple cycle) if the induced path is. A run of an LTS is a maximal path starting
in an initial state. An LTS can be translated into a TS by simply removing the
actions from transitions. We will implicitly use this translation.

System Model. Informally, a token-passing system is an LTS obtained by tak-
ing some finite edge-labeled graph (called a topology or network-graph), placing
one process at each of its vertices, and having all processes execute the same
code (given in the form of a finite-state process template). Processes synchronize
by sending one of finitely many tokens along the edges of the topology, which
are labeled with a send direction, a receive direction, and a token-value.1 In the
most general model, processes can choose the direction to send the token, from
which direction to receive a token, and the value of the token. In case there is
more than one possible recipient for a token, one is chosen nondeterministically

In what follows, we use a finite non-empty set of token values Σval, finite
disjoint non-empty sets Σsnd of send directions and Σrcv of receive directions,
and an integer T > 0 (the number of tokens in the system). Since these data are
usually fixed, we do not mention them if they are clear from the context.

Process Template. Fix a countable set AP of atomic propositions for use by
all process templates. We assume that AP also contains, for every integer i ≥ 0,
the special proposition toki. A process template (w.r.t. T ∈ N, Σval, Σsnd, Σrcv) is

1 The direction-labels on the edges (also called a local orientation) represent network
port numbers [14,27]. All of our results also hold for the case that each edge has a
single direction-label that combines send and receive directions, e.g., “clockwise”.

3

a total LTS P = 〈APpr, Σpr, Q,Q0, δ, λ〉 such that: (i) APpr ⊂ AP is a finite set
containing toki for 0 ≤ i ≤ T ; (ii) for every q ∈ Q there is exactly one i such that
toki ∈ λ(q) (and we say that q has i tokens); (ii) Σpr = {int}∪[(Σsnd∪Σrcv)×Σval];
(iv) Q0 = {ιT , ι0} where ιT has T tokens, and ι0 has 0 tokens; (v) For every

transition q
σ→ q′: if σ ∈ Σsnd ×Σval then ∃i > 0 such that q has i tokens and q′

has (i− 1) tokens; if σ ∈ Σrcv ×Σval then ∃i < T such that q has i tokens and q′

has (i+ 1) tokens; and if σ = int then q and q′ have the same number of tokens.

Notation. We say that the initial states of two templates X,Y are bisimilar
if, writing ιZ0 , ι

Z
T for the initial states of template Z, we have that ιXε ∼ ιYε for

ε ∈ {0, T}, where ∼ is a bisimulation relation between X and Y. The elements
of Q are called local states and the transitions in δ are called local transitions. A
transition (q, σ, q′) is called a local send transition if σ ∈ Σsnd×Σval; it is called a
local receive transition if σ ∈ Σrcv×Σval; and it is called a local internal transition
if σ = int. The local send/receive transitions are collectively known as local token-
passing transitions. A local state q for which there exists a local send-transition
(resp. receive-transition) (q, (d,m), q′) is called ready to send (resp. receive) in
direction d and value m; it is also called ready to send (resp. receive) in direction
d, ready to send (resp. receive) value m, or simply ready to send (resp. receive).

Fairness Notions. A template P is fair if every infinite path q1q2 · · · in P
satisfies that for infinitely many i the transition from qi to qi+1 is a local to-
ken passing transition [18]. Other restrictions that we consider involve treating
different directions and/or different token values in an unbiased way, and thus
“fairly”. Formally, a state q of P having i tokens that is ready to send (resp.
receive) is called an i-sending (resp. i-receiving) state. A path in P is an i-path
if it only mentions states having i tokens. A template P is direction/value-fair if
for every d ∈ Σrcv, e ∈ Σsnd and m ∈ Σval, for every i-receiving (resp. i-sending)
state q there is a finite i-path from q ending in a state that is ready to receive
(resp. send) in direction d (resp. from direction e) and value m. We denote by
PFDV the set of fair and direction/value-fair process-templates; and by PFD the
set of fair, direction-fair, and valueless (i.e., with |Σval| = 1) process templates.
As noted in the introduction, the undecidability results (Section 4) show that the
limitations of PFDV are, in a strong sense, minimal limitations one can impose
and still obtain a decidable parameterized model checking problem.

Topology/Network-Graph. An LTS G = 〈∅, Σsnd ×Σrcv, V, {init}, E, λ〉 is
called a topology (w.r.t. Σsnd, Σrcv) where: (i) V = [n] for some n ∈ N is a
set of vertices, also called process indices; (ii) init ∈ V is an initial vertex; (iii)
E ⊆ V × (Σsnd×Σrcv)×V is called an edge relation, (iv) and λ is assumed to be
the constant function λ(v) = ∅. We usually abbreviate and write G = 〈V,E, init〉,
or G = 〈VG, EG, initG〉 if we need to disambiguate. The underlying graph of G
has vertex set V and edge relation {(v, w) : ∃d, e.(v, (d, e), w) ∈ E} ⊆ V × V .
We assume that the underlying graph is irreflexive (i.e., it has no edge of the
form (v, v)), contains no vertices without outgoing edges, and that every vertex
v ∈ V is reachable from the initial vertex init. These are natural assumptions
since paths in the topology represent the paths along which the tokens can move.

4

Parameterized Topology G. Let G denote a countable set of topologies. For
example, the set of all pipelines, or the set of all rings.

1start 2 3 4
+

−
+

−
+

−
Fig. 1: example pipeline topology: + signifies a (sndE, rcvW) label, and − (sndW, rcvE).

Token-Passing System. Given a process template P = 〈APpr, Σpr, Q,Q0, δ, λ〉
and a topology G = 〈V,E, init〉, we define the token-passing system (or TPS for
short) to be the LTS PG = 〈APsys, Σsys, S, S0, ∆,Λ〉 . Informally, the system PG

can be thought of as the interleaving parallel composition of P overG. The tokens
start with process init. Time is discrete: at each step either exactly one process
makes a local internal transition; or exactly two processes, say at vertices v, w,
simultaneously make local token-passing transitions as the process at v sends
a token in direction d with value m, and the one at w receives the token from
direction e with value m. Such a transition can occur only if (v, (d, e), w) ∈ E.

Formally: (1) APsys := APpr × V is the set of indexed atomic propositions
(because it is standard notation, we sometimes write pi instead of (p, i)); (2)
Σsys := {int} ∪ (Σsnd × Σrcv × Σval) is the set of actions; (3) The set of global
states is S := QV , i.e., all functions from V to Q (informally, if s ∈ QV is a
global state then s(i) denotes the local state of the process with index i); (4)
The set of global initial states S0 consists of the unique global state s ∈ QV0 such
that s(init) = ιT , and for all i 6= init, s(i) = ι0; (5) The labeling Λ(s) ⊂ APsys

for s ∈ S is defined as follows: pi ∈ Λ(s) if and only if p ∈ λ(s(i)), for p ∈ APpr

and i ∈ V (informally, pi is true at s if and only if p is true at the corresponding
local state of the process with index i);
(6) The global transition relation ∆ ⊆ S × Σsys × S consists of global internal
transitions and global token-passing transitions (collectively called global tran-
sitions), defined as follows: (6a) The global internal transitions are elements
of the form (s, int, s′) for which there exists a process index v ∈ V such that

s(v)
int→ s′(v) is a local internal transition of P, and for all w ∈ V \ {v},

s(w) = s′(w). Such a global transition is said to involve v. (6b) The global token-
passing transitions are elements of the form (s, (d, e,m), s′) for which there exist
process indices v, w ∈ V such that: (v, (d, e), w) ∈ E; there is a local send tran-

sition s(v)
(d,m)→ s′(v) and a local receive transition s(w)

(e,m)→ s′(w) of P; and for
every u ∈ V \ {v, w}, s′(u) = s(u). Such a transition is said to have v sending in
direction d an m-valued token to w from direction e.

Observe that the definition above specifies that at the beginning all tokens
are at the initial state of the topology. This is not a real restriction since a system
which allows the tokens to start already distributed in a nondeterministic way
among multiple vertices can be simulated by adding to the topology a new initial
state that starts with all the tokens and from which they are later distributed.
One can even accommodate many fixed initial distributions by modifying the
specification formula to remove from consideration unwanted distributions.

5

For a global state s, let tokens(s) be the set of v such that s(v) has one or
more tokens. If T = 1, we define tokens(s) to be the vertex that has the token.

Specification Language. For the syntax and semantics of CTL∗ see [9]. In
this work, TL denotes a syntactic fragment of CTL∗, such as CTL∗\X (i.e., CTL∗

without the “next” operator), or the fragment CTL∗d\X of CTL∗\X in which the
nesting-depth of the path quantifiers E,A is at most d ∈ N0 (see [30]).

A partition of an infinite path π = π1π2 . . . is an infinite sequence B1, B2, . . .
of finite intervals of N such that there exist integers m1 < m2 < . . . with m1 = 1
and for all i ∈ N, Bi = [mi,mi+1 − 1]. The intervals Bi are called blocks.

Definition 1. [30] For TSs M = 〈AP, S, S0, ∆,Λ〉, M ′ = 〈AP, S′, S′0, ∆′, Λ′〉
(over the same set of atomic propositions AP), and non-negative integer d, define
relations ≡d⊆ S × S′ as follows:
(i) s ≡0 s

′ if Λ(s) = Λ′(s′); and (ii) s ≡d+1 s
′ if for every infinite path π in

M from s there exists an infinite path π′ in M ′ from s′ (and vice versa) and a
partition B1B2 . . . of π and a partition B′1B

′
2 . . . of π′ such that for every i ∈ N

and every b ∈ Bi, b′ ∈ B′i we have that πb ≡d π′b′ .

In case we need to stress the LTSs, we write ≡M,M ′

d instead of ≡d. Let M
and M ′ be TSs over the same set AP of atomic propositions. Say that M is
TL-equivalent to M ′, denoted by M ≡TL M

′, if they agree on all TL formulas,
i.e., for every TL formula ϕ over AP it holds that M |= ϕ iff M ′ |= ϕ. The next
proposition characterizes CTL∗d\X-equivalence, denoted ≡CTL∗d\X.

Proposition 1. [30] For every integer d, TS M with a single initial state s,
and TS M ′ with a single initial state s′: M ≡CTL∗d\X M

′ if and only if s ≡d s′.

Indexed Temporal Logics (ITLs) were introduced in [11,19,18] to model
specifications of systems with multiple processes. ITL formulas are built from TL
formulas by adding the ability to quantify over process indices using the universal
and existential process quantifiers ∀xcond and ∃xcond (generally written as Qx).
Accordingly, the atoms are AP × Vars, where Vars = {x, y, z, . . . } is some fixed
infinite set of index variables (we write px instead of (p, x) ∈ AP × Vars). For
example, the formula ∀x∀yx 6=y.A¬F cx ∧ cy specifies mutual exclusion, i.e., that
it is never the case that two different processes simultaneously satisfy atom c.
Syntactically, Indexed-CTL∗ formulas are formed by adding the following to the
syntax of CTL∗ formulas over atomic propositions AP×Vars: if ϕ is an indexed-
CTL∗ state (resp. path) formula then so are the formulas ∀xcond.ϕ and ∃xcond.ϕ,
where x, y ∈ Vars, and cond is Boolean combination over predicates of the form
true, (x, y) ∈ E, (y, x) ∈ E, and x = y.

Semantics. Indexed-CTL∗ formulas over variables Vars and atomic propositions
APpr are interpreted over a token-passing system PG, where P has atomic propo-
sitions APpr, and G = 〈V,E, init〉. A valuation is a function e : Vars → VG. An
x-variant of e is a valuation e′ with e′(y) = e(y) for all y ∈ Vars \ x. First we in-
ductively define what it means for valuation e to satisfy cond, written e |= cond:
e |= true (for all e); e |= x = y iff e(x) = e(y); e |= (x, y) ∈ E iff (e(x), e(y)) ∈ E;
e |= ¬cond iff e 6|= cond; e |= cond ∧ cond′ iff e |= cond and e |= cond′.

6

For a TPS PG = 〈APsys, Σsys, S, S0, ∆,Λ〉, a global state s, a state formula
ϕ, and a valuation e, define (PG, s) |= ϕ[e] inductively:

– (PG, s) |= px[e] iff pe(x) ∈ Λ(s),
– (PG, s) |= Eψ[e] iff (PG, π) |= ψ[e] for some infinite path π form s in PG,
– (PG, s) |= ∀xcond.ϕ[e] (resp. (PG, s) |= ∃xcond.ϕ[e]) iff for all (resp. for some)
x-variants e′ of e that satisfy cond, it holds that (PG, s) |= ϕ[e′],

– (PG, s) |= ϕ ∧ ϕ′[e] iff (PG, s) |= ϕ[e] and (PG, s) |= ϕ′[e], and
– (PG, s) |= ¬ϕ[e] iff it is not the case that (PG, s) |= ϕ[e].

Path formulas are interpreted similarly, but over (PG, π), where π is an infi-
nite path. An indexed CTL∗ formula is a sentence if every atom is in the scope
of a process quantifier. Let ϕ be an indexed-CTL∗ state formula. For a valua-
tion e, define PG |= ϕ[e] if (PG, s0) |= ϕ[e], where s0 is the initial state of PG.
If ϕ is also a sentence, define PG |= ϕ if for all valuations e (equivalently, for
some valuation) it holds that (PG, s0) |= ϕ[e]. Similarly, define (PG, s) |= ϕ iff
for all valuations (equivalently, for some valuation) e : Vars → VG it holds that
(PG, s) |= ϕ[e]. We use the usual shorthands, e.g., ∀x.ϕ is shorthand for ∀xtrue.ϕ.

Prenex indexed-TL is a syntactic fragment of indexed-TL in which all the
processes’ index quantifiers are at the front of the formula, e.g., prenex indexed
CTL∗\X consists of formulas of the form (Q1x1) . . . (Qkxk) ϕ where ϕ is a CTL∗\X
formula over atoms AP×{x1, . . . , xk}, and the Qixis are index quantifiers. Such
formulas with k quantifiers are called k-indexed, collectively written {∀,∃}k-TL.
The union of {∀,∃}k-TL for k ∈ N is written {∀,∃}∗-TL and called (full) prenex
indexed TL. The remainder of this paper deals with prenex indexed-CTL∗d\X.

Parameterized Model Checking Problem PMCPG(P,F). The parameter-
ized model checking (PMC) problem is to decide, given P ∈ P and ϕ ∈ F ,
whether or not for all G ∈ G, PG |= ϕ. Here P is a set of process templates, and
F is a set of ITL formulas.

Cutoffs and Decidability. A cutoff for PMCPG(P,F) is a natural number c
such that for every P ∈ P and ϕ ∈ F , if PG |= ϕ for all G ∈ G with |VG| ≤ c then
PG |= ϕ for all G ∈ G. Note: if PMCPG(P,F) has a cutoff, then it is decidable.2

3 Decidability Results

Our goal in this section is to prove that token-passing systems have decidable
PMC problem for specifications from k-indexed CTL∗d\X for fair and direction/value-
fair process templates. We begin with some definitions.

Notation. A k-tuple over VG, written ḡ, denotes a tuple (g1, . . . , gk) of elements
of VG. We write v ∈ ḡ if v = gi for some i. Given a valuation e : Vars → VG,
the relevant part of e for a CTL∗d\X formula with k free variables (w.l.o.g. called
x1, . . . xk) can be described by a k-tuple ḡ over VG (with gi = e(xi) for 1 ≤ i ≤ k).

2 Note that the existence of a cutoff only implies the existence of a decision procedure.
For instance, the statement “for every k ∈ N, PMCPG(P, {∀, ∃}k-TL) has a cutoff”
does not imply, a priori, that PMCPG(P, {∀,∃}∗-TL) is decidable.

7

The restriction PG|ḡ. Fix process template P, topology G, and nodes ḡ ∈ V kG .
Define the restriction of PG = 〈APsys, S, S0, ∆,Λ〉 onto ḡ, written PG|ḡ, as the
LTS (AP@, S, S0, ∆, L) over atomic propositions AP@ = {p@i : p ∈ APpr, i ∈ [k]},
where for all s ∈ S the labeling L(s) is defined as follows: L(s) := {p@i : pgi ∈
Λ(s), i ∈ [k]}. Informally, PG|ḡ is the LTS PG with a modified labeling that, for
every gi ∈ ḡ, replaces the indexed atom pgi by the atom p@i (i.e., process indices
are replaced by their positions in ḡ); all other atoms are removed. Intuitively,
p@i means that the atom p ∈ APpr holds in the process with index (i.e., at the
vertex) gi. Note that PG and PG|ḡ only differ in their labelling. It is not hard to
see that given a k-indexed formula θ := Q1x1 . . . Qkxk. ϕ, the truth value of ϕ
in PG, with respect to a valuation for x1, . . . xk described by a k-tuple ḡ, can be
deduced by reasoning instead on PG|ḡ (since for this evaluation ϕ only “sees”
the atomic propositions of processes in vertices in ḡ).

The valuation TS GJḡK. The idea is to annotate the topology G by atoms
that allow logical formulae to talk about the movement of tokens in and out of
vertices in ḡ. In order to capture the directions involved in such movements, we
insert new nodes in the middle of any edge of G that is incident with a vertex in
ḡ. Thus, GJḡK is a TS formed as follows: i) the atoms true at v are the positions
that v appears in ḡ, if any; ii) split each edge labeled (d, e) involving (one or
two) vertices from ḡ by inserting a state whose atoms label the directions to or
from the vertices from ḡ that are involved; iii) remove all edge labels.

Formally, let G = 〈V,E, init〉 be a topology, and let ḡ be a k-tuple over V .
Define the valuation TS GJḡK as the TS 〈AP, Q,Q0, δ, λ〉 where

– AP = [k] ∪Σsnd ∪Σrcv,
– Q = V ∪ {[v, d, e, w] | (v, (d, e), w) ∈ E and either v ∈ ḡ or w ∈ ḡ},
– Q0 = {init},
– δ ⊂ Q × Q is the union of {(v, v′) : ∃d, e.(v, (d, e), v′) ∈ E, v 6∈ ḡ ∧ v′ 6∈ ḡ}

and {(v, [v, d, e, w]) : [v, d, e, w] ∈ Q} and {([v, d, e, w], w) : [v, d, e, w] ∈ Q}.
– λ(v) := {i ∈ [k] : v = gi} (for v ∈ V); and λ([v, d, e, w]) is {d} if v ∈ ḡ, w 6∈ ḡ,

is {e} if w ∈ ḡ, v 6∈ ḡ, and is {d, e} if v ∈ ḡ, w ∈ ḡ.

Since Σsnd and Σrcv are disjoint, the label of (v, d, e, w) determines which of v
and w is in ḡ. A valuation TS GJḡK with |ḡ| = k is called a k-valuation TS. Every
edge-path ξ ∈ G naturally induces a path map(ξ) in GJḡK. Observe that map(ξ)
starts in a node of VG, and if ξ is finite also ends in a node of VG. Formally:
map((v, σ, v′)) is defined to be vv′ if v 6∈ ḡ and v′ 6∈ ḡ, and v · [v, σ, v′] · v′
otherwise; and map(ξ · (v, σ, v′)) is defined to be map(ξ) · v′ if v 6∈ ḡ and v′ 6∈ ḡ,
and is map(ξ)·[v, σ, v′]·v′, otherwise. Note that for a path ρ in GJḡK that begins in
a node of VG (and, if ρ is finite, also ends in VG), the set map−1(ρ) is non-empty.

We can now define the Composition and Finiteness properties.

– Composition Property for 〈TL,P,G〉: For every k ∈ N, processes X,Y ∈ P,
topologies G,H ∈ G, and k-tuples ḡ ∈ V kG , h̄ ∈ V kH : if GJḡK ≡TL HJh̄K and the
initial states of X and Y are bisimilar, then XG|ḡ ≡TL YH |h̄.

In words, the composition property states that if the initial states of X and
Y are bisimilar then one can deduce the logical equivalence of the restrictions
XG|ḡ,YH |h̄ from the logical equivalence of the valuation TSs GJḡK, HJh̄K.

8

– Finiteness Property for 〈TL,G〉: For every k ∈ N, the set M := {GJḡK : G ∈
G, ḡ ∈ V kG} has only finitely many ≡TL equivalence classes.

Later in this section we will prove the Composition and Finiteness prop-
erties with TL = CTL∗d\X (for fixed d ∈ N), P = PFD. Note that if instead of
using valuation TSs one uses arbitrary TSs then the finiteness property does
not hold even for TL = CTL∗1\X.3 Thus, the proof of the finiteness property for
CTL∗d\X must, and does, exploit properties of valuation TSs; in particular, the
fact that the number of atoms is bounded and no atom is true in more than one
state of GJḡK in every path between two vertices in ḡ.

We now state the main theorem of this section.

Theorem 1. PMCPG(PFDV, {∀,∃}k-CTL∗d\X) is decidable for every parameterised
topology G and every d, k ∈ N.

The proof is in two steps. First, one removes the token values by encoding
them in the directions. Thus, in the statement of Theorem 1, we may replace
PFDV by PFD. In step two, we show that (for every G, k, d) the PMC problem
has a cutoff using the composition method, following the recipe from [2]:

Theorem 2. If 〈TL,P,G〉 has the composition property and 〈TL,G〉 has the
finiteness property, then for all k ∈ N, PMCPG(P, {∀,∃}k-TL) has a cutoff.

Proof (sketch). The truth value of a {∀,∃}k-TL formula θ := Q1x1 . . . Qkxk. ϕ in
a system PG is a Boolean combination of the truth values of the (non-indexed)
TL formula ϕ, resulting from different valuations of the variables x1, . . . , xk. By
the composition property, two different topologies G,H, with corresponding
valuations ḡ, h̄, that yield TL-equivalent valuation TSs will admit the same truth
values of ϕ in PG, PH . By the finiteness property, all the valuation TSs fall
into finitely many TL-equivalence classes. Hence, given G, evaluating θ in PG

amounts to evaluating a Boolean function (that depends only on G,Q1, . . . Qk)
over finitely many variables (one variable for each representative valuation TS);
and evaluating θ with respect to G amounts to evaluating a set of such functions
(all using the same variables). Since there are only finitely many Boolean func-
tions over a finite set of variables we obtain a cutoff.4 ut

3.1 The Composition Theorem

Theorem 3 (Composition). For all d, k ∈ N, topologies G,H, processes X,Y ∈
PFD, ḡ ∈ V kG and h̄ ∈ V kH : if GJḡK ≡CTL∗d\X HJh̄K and the initial states of X and

Y are bisimilar, then XG|ḡ ≡CTL∗d\X YH |h̄.

3 Indeed, there are infinitely many CTL∗1\X formulas that are pairwise logically-
inequivalent. E.g., every finite word over {0, 1} can be represented as an LTS, which
itself can be axiomatised by a CTL∗1\X formula that uses the U operator.

4 The existence of a cutoff is independent of whether G is computable. However, de-
ciding whether a given number is a cutoff may not be easy. Consider for example
the limited setting of [2]: there exists a computable G and a fixed P such that it is
impossible, given k, d ∈ N (even fixing d = 1), to compute a cutoff [2]. Nonetheless,
by [3], in the same setting (and we believe that also in our broader setting) one can
compute a cutoff for many natural parameterized topologies G.

9

Proof (sketch). The proof has the following outline. Let s0 and s′0 be the initial
states of XG|ḡ and YH |h̄, respectively. By Proposition 1, it is enough to show
that if the assumption of the theorem holds then s0 ≡d s′0. This is done by
induction on d. For stating the inductive hypothesis we first need the following
definition: given a system PG, a function β : [T] → tokens(s) that maps token
numbers to vertices in G is a token assignment at s if, for every v ∈ tokens(s), the
number of tokens mapped to v is equal to the number of tokens at v according

to s, i.e., (tok|β
−1(v)|, v) ∈ Λ(s), where Λ is the labelling of PG.

The dth Inductive Hypothesis. For every global state s of XG|ḡ and global
state s′ of YH |h̄, conclude that s ≡d s′ if the following two conditions hold:
1. s(gi) ∼ s′(hi) for all i ∈ [k], and
2. there exists a token assignment β at s, and there exists a token assignment

β′ at s′, such that for all i ∈ [T] we have that β(i) ≡d β′(i).
The first condition says that s and s′ assign bisimilar states to matching

processes in ḡ and h̄; the second condition says that s and s′ have their tokens

in nodes of G,H (respectively) that are equivalent according to ≡GJḡK,HJh̄K
d . The

theorem follows by showing that s0, s
′
0 satisfy these assumptions.

For the induction base, observe that (by the first assumption in the inductive
hypothesis) s and s′ assign bisimilar local states to matching processes in ḡ, h̄
and thus, s, s′ have the same labelling and are indistinguishable by a CTL∗0\X
formula; now apply Proposition 1.

The main work in proving the inductive step is to satisfy the second condition
in the definition of ≡d (Definition 1). This requires that, for every path π in
XG|ḡ starting in s, one can find a (d − 1)-matching path π′ in YH |h̄ starting
at s′ (and vice versa). Note that since our setup is symmetric we can ignore the
“vice-versa” and only find π′ given π. We construct π′ using the general scheme
graphically depicted in Figure 2.

XG|ḡ 3 π π′ ∈ YH |h̄

GJḡK 3 ρt ρ′t ∈ HJh̄K

project

equivalent

lift

Fig. 2: Proving the Composition property via Definition 1.

First, given π, we assign to each token a unique number from 1 through T .
This allows us to track the movements of individual tokens in G (according to the
token-passing transitions of π) which we arbitrarily assume obey the following
rule: all processes start in the initial vertex, and during a global token-passing
transition, the smallest numbered token that the sending process has is the one
being sent. Using this rule, for i ∈ N and t ∈ [T] we can define the function
tokeni : [T]→ VG such that tokeni(t) is the vertex in which the token numbered
t is located in the global state πi. However, in order to construct π′ so that it
mimics π, we also need to know the directions the tokens take when entering
and leaving nodes (which is information that is not explicitly present in π). The
reason this is needed is that processes in XG|ḡ can change state based on the

10

direction a token is sent to or received from (this is possible even if the process
is direction-fair). To solve this, we arbitrarily choose some edge-path ξ in XG|ḡ
that induces π — being an edge-path, ξ contains the directions as part of each
edge. As it turns out, we only need to know the directions of token-passing
transitions affecting processes in ḡ. These are the send (resp. receive) directions
of edges in G that start (resp. end) in a state in ḡ, and are captured by the extra
nodes added to G to construct GJḡK. Thus, for each t ∈ [T] we obtain from ξ a
path ρt in GJḡK that records the movement of token t along π.

For t ∈ [T], by the assumption in the inductive hypothesis, β(t) ≡d β′(t).
Apply Definition 1 to the path ρt (that starts in β(t)) of GJḡK to get a (d− 1)-
matching path ρ′t that starts in β′(t) of HJh̄K. The paths ρ′1, . . . , ρT will serve
as the paths of tokens’ movements for the path π′.

We construct π′ by mimicking the transitions of π: an internal transition in
YH |h̄ that involves a process gi ∈ ḡ is mimicked by a bisimilar internal transition
using hi; and a token passing transition5 of the token number t (for t ∈ [T]) is
mimicked as follows: we take the portion w of ρt this transition corresponds to,
match it to a portion w′ of ρ′t (using the partitioning of ρt and ρ′t into matching
blocks), and then push the token t along an edge-path in H that induces w′.

The following lemma says that this last “pushing” step is possible.

Lemma.6 Let P ∈ PFD, let p, q be states of P, and let G be a topology.
Let ρ = (v1, (d1, e1), v2)(v2, (d2, e2), v3) . . . (vm−1, (dm−1, em−1), vm) be an edge-
path that is a simple path (or a simple cycle) in G, and let s be a state of PG

with v1 ∈ tokens(s). There exists a finite edge-path α = (f0, σ0, f1)(f1, σ1, f2) . . .
(fh−1, σh−1, fh) in PG, with f0 = s, such that:
1. α has m−1 token-passing transitions and in the ith token-passing transition

vi sends a token in direction di to vi+1 from direction ei (for 0 ≤ i < m);
2. If vertex x ∈ VG is not on the path ρ, then no transition of α involves x.

This lemma makes crucial use of the fact that P is fair and direction-fair.
Fairness ensures that tokens can always be made to flow in and out of a process,
and direction-fairness ensures that tokens can always flow in any given direction.
Indeed, the lemma is not true without both assumptions which is the main reason
that without them the composition theorem does not hold and, as we show in
Section 4, the PMC problem becomes undecidable. ut

3.2 Finiteness property for CTL∗
d\X

Our aim in this section is to prove the Finiteness property for CTL∗d\X. We
begin by recursively defining, given positive integers k, d and a k-valuation TS
GJḡK = 〈AP, Q, {init}, δ, λ〉, a marking function Ξkd . This function associates with
each vertex v ∈ Q a k+1-dimensional vector Ξkd (v) whose ith coordinate Ξkd (v)[i]
is a set of strings over the alphabet ∪u∈Q{Ξkd−1(u)}. The marking function Ξkd
will help us later in defining the CTL∗d\X-character of a valuation TS, which
succinctly captures the CTL∗d\X-equivalence class of this valuation TS.

5 Fortunately, we only have to mimic such transitions that cross blocks in ρt.
6 The full version of this lemma contains two more conclusions.

11

Notation. The positions of a string v is the set {1, . . . , |v|} if v is finite, and
N otherwise. A string w is ultimately constant if |w| = ∞ and wi = wj for all
j ≥ i, for some i. Recall that the destuttering of a string is formed by removing
identical consecutive letters. Define a mapping posv : [|v|] → [|v|] as follows:
posv(1) = 1 and; for i > 1, posv(i) := posv(i − 1) if vi−1 = vi, and otherwise
posv(i) := posv(i−1)+1. Intuitively, posv maps a position i of the string v to its
corresponding position in destut(v). Note that the image of posv is of the form
[L] for some L ≤ |v|. Formally, destut(v) is the string w of length L such that
for all i ≤ L, wi = vmin{j:posv(j)=i}. Thus, vi = wposv(i) for all i ≤ L.

The Marking Ξkd . Fix k, d ∈ N, topology G, and k-tuple ḡ over VG. Let GJḡK
be 〈AP, Q,Q0, δ, λ〉. For every vertex v ∈ Q, let v be the set of maximal paths
in G starting in v that have no intermediate nodes in ḡ. Formally, a (finite or
infinite) path π = π1π2 . . . is in v iff: π1 = v and, for all 1 < i < |π| we have
πi 6∈ ḡ and, if π is finite then |π| ≥ 2 and π|π| ∈ ḡ. We write v 0 := {π ∈
v | |π| = ∞} for the infinite paths in v ; also, for every i ∈ [k], we write
v i := {π ∈ v | π|π| = gi} for the set of paths in v that end in gi.

In the definition below, for a (finite or infinite) path π, we write Ξkd−1(π) :=

Ξkd−1(π1)Ξkd−1(π2) . . . for the concatenation of the d− 1 markings of the nodes

of π. We define the marking Ξkd of a node inductively (on d) as follows: Ξk0 (v) :=
λ(v) and, for d > 0,Ξkd (v) is the vector (Ξkd (v)[0], . . . , Ξkd (v)[k]), whereΞkd (v)[i] :=
∪π∈v 0{destut(Ξkd−1(π)} if i = 0; and Ξkd (v)[i] := ∪π∈v i{destut(Ξkd−1(π′)) |
π′ = π1 . . . π|π|−1}, for 1 ≤ i ≤ k. That is, for d = 0, the marking Ξkd (v) is

the label λ(v); and for d > 1 the marking Ξkd (v) is a vector of sets of strings,
where the ith coordinate of the vector contains the set of strings obtained by
de-stuttering the Ξkd−1 markings of the nodes of paths in v (excluding the last
node if i > 0) that end in gi (if i > 0), or never visit any node in ḡ (if i = 0).
Observe that, for every 0 ≤ i ≤ k and every d > 0, the marking Ξkd (v)[i] is a set
of strings over the alphabet7 ∪u∈Q{Ξkd−1(u)}, and that all strings in Ξkd (v)[i]

start with the letter Ξkd−1(v).

Since, for all 0 ≤ i ≤ k and d > 0, all strings in Ξkd (v)[i] start with the letter
Ξkd−1(v), and since Ξkd (v)[i] = ∅ iff v i = ∅, we get the following lemma:

Lemma 1. For every d > 0, if v, u are nodes (of possibly different k-valuation
TSs) such that Ξkd (v) = Ξkd (u), then for all 0 < j ≤ d we have that Ξkj (v) =

Ξkj (u). If, in addition, v 6= ∅ then also Ξk0 (v) = Ξk0 (u).

The CTL∗d\X-character of a valuation TS. Given a k-valuation TS GJḡK =
〈AP, Q, {init}, δ, λ〉, the CTL∗d\X-character of GJḡK is defined as the following
vector (

〈
λ(init), Ξkd (init)

〉
,
〈
λ(g1), Ξkd (g1)

〉
, . . . ,

〈
λ(gk), Ξkd (gk)

〉
) of the pairs of

labels and Ξkd markings of the initial state and the states in ḡ.
The following theorem relates the CTL∗d\X-character of a valuation TS and

its CTL∗d\X-equivalence class.

Theorem 4. For every k, d ∈ N, if GJḡK, HJh̄K are two k-valuation TSs with
the same CTL∗d\X-character, then GJḡK ≡CTL∗d\X HJh̄K.

7 Here, the empty set ∅ is a letter in 2[k], not to be confused with the empty string ε.

12

Our next goal is to prove that there are (for given k, d ∈ N) only finitely
many CTL∗d\X-characters for all k-valuation TSs. We do this by showing that
(for fixed alphabets Σsnd, Σrcv) for all k, d, all k-valuation TSs GJḡK, and all
v ∈ G, we have that Ξkd (v) ranges over finitely many values. This is clearly true
for d = 0. For d > 0, we prove this by defining a finite poset Υ kd , which depends
only on k and d, and showing that Ξkd (v) ∈ Υ kd . We begin by defining a relation
� between sets of strings.

Definition of �. For sets of strings X,Y ⊆ (Σ+ ∪Σω), define X � Y if for all
x ∈ X there exists y ∈ Y such that x is a (not necessarily proper) suffix of y.

It is easy to verify that the relation � is reflexive and transitive, but that it
may not be antisymmetric (consider for example X = {b, ab} and Y = {ab}).

Lemma 2. Given a k-valuation TS GJḡK, and a path π1 . . . πt in it satisfying
πl 6∈ ḡ for all 1 < l ≤ t, we have that: Ξkd (πj)[i] � Ξkd (πh)[i] for every 0 ≤ i ≤ k,
and d > 0, and 1 ≤ h < j ≤ t.

We claim that the relation � is antisymmetric when restricted to the domain
consisting of sets of strings Z such that: (i) all strings in Z start with the
same letter first(Z) (i.e., there exists first(Z) ∈ Σ such that for all w ∈ Z,
w1 = first(Z)); (ii) in every string in Z the letter first(Z) appears only once
(i.e., for all w ∈ Z, i > 1 implies wi 6= first(Z)). Given an alphabet Σ, let

PΣ ⊂ 2Σ
+∪Σω

denote the set of all sets of strings Z (over Σ) satisfying the
above two conditions. We have:

Lemma 3. (PΣ ,�) is a partially ordered set.

Definition of (Υ kd ,�d). The definition is by induction on d: for d = 0 we have
Υ k0 := 2AP (recall that AP = [k] ∪ Σsnd ∪ Σrcv); and �0 is the transitive closure
of the relation obtained by having, for every X ∈ 2[k], every d ∈ Σsnd, and every
e ∈ Σrcv, that: {d} �0 X, {d, e} �0 X, ∅ �0 {d}, and {e} �0 ∅. For d > 0,
let: Υ kd = {X ∈ (PΥk

d−1
)k+1 | w ∈ X[i] implies wj+1 ≺d−1 wj for all 0 ≤ i ≤

k and 1 ≤ j < |w|} and take �d to be the point-wise ordering of vectors, i.e.,
X ≺d Y iff X[i] � Y [i] for every 0 ≤ i ≤ k, where � is the ordering defined
earlier for sets of strings. Intuitively, X ∈ Υ kd iff every coordinate of X contains
strings over the alphabet Υ kd−1 that all start with the same letter and are all

strictly decreasing chains of the poset (Υ kd−1,�d−1). Observe that if Υ kd−1 is a
finite set then there are finitely many strictly decreasing chains (each of finite
length) in (Υ kd−1,�d−1), implying that Υ kd is also finite. Since Υ k0 is finite, we can

conclude, for every d ≥ 0, that Υ kd is a finite set of finite strings.
The following lemma states that for fixed k, d (recall that we assume fixed

alphabets Σsnd, Σrcv) the domain of Ξkd is contained in Υ kd (and is thus finite).
Note that this also implies that even though the strings in Ξkd (v)[0] are obtained
by de-stuttering markings of infinite paths in v 0 they are all finite strings.

Lemma 4. For all k, d, if v is a vertex of a k-valuation TS then Ξkd (v) ∈ Υ kd .

We conclude with the finiteness theorem for CTL∗d\X.

13

Theorem 5 (Finiteness). For every k, d ∈ N, the set {GJḡK : G is a topology,
ḡ ∈ V kG} has only finitely many ≡CTL∗d\X equivalence classes.

Proof. The theorem follows immediately from the fact that the CTL∗d\X-character
of a valuation TS is a finite vector, Lemma 4, and Theorem 4.

4 Undecidability

The positive decidability results appearing in Section 3 are the strongest one can
hope for. Indeed, we prove that if one drops any of the restrictions that were
imposed on the process template, namely of fairness and direction/value-fairness,
then PMC becomes undecidable. Furthermore, these undecidability results hold
even if multiple other strong restrictions are put instead (such as having a single
token, having no values, having one send or one receive direction, etc.)

Our proofs reduce the non-halting problem for counter-machines (CMs) to
the PMC problem. The basic encoding uses one process (called the controller)
to orchestrate the simulation and store the line number of the CM, and many
memory processes, each having one bit for each counter. The main difficulty
we face, compared to other reductions that follow this basic encoding (e.g.,
in [32,18,20,2]), is how to make sure that the controller’s commands are exe-
cuted by the memory processes given that the restrictions imposed in the theo-
rems prevent the controller from communicating its commands to the memory
processes. The reader is referred to the Appendix for the proofs.

Theorem 6. Let PDV denote the set of process templates that are direction/value-
fair but not necessarily fair. There exists G such that PMCPG(PDV, {∀}5-LTL\X)
is undecidable, even if one limits the processes to have a single valueless token
(i.e. T = 1 and |Σval| = 1), and with a single receive direction (i.e., |Σrcv| = 1).
The same holds replacing “receive” by “send”; furthermore, G is computable.

A template P is receive-direction fair if for every i-sending state q and for
every d ∈ Σrcv, there is a finite i-path from q ending in a state that is ready to
receive in direction d; it is send-direction fair if the previous condition holds with
“send(ing)” replacing “receive(ing)” and Σsnd replacing Σrcv; it is direction-fair
if it is both receive- and send-direction fair. A template P is value-fair if for
every i-receiving (resp. i-sending) state q, and for every token-value m ∈ Σval,
there is a finite i-path from q ending in a state that is ready to receive (resp.
send) value m. It is important to note that a template that is both direction-fair
and value-fair is not, in general, direction/value-fair. The difference is that while
the former can correlate values with directions, the latter cannot. For example,
it may be that from every state it can only receive/send in direction a if the
value of the token is 0, and receive/send in direction b only if the token value is
1. This kind of behaviour is not allowed if the template is direction/value-fair.

Theorem 7. Let PF be the set of process templates that are fair but not nec-
essarily direction/value-fair. There exists G such that PMCPG(PF, {∀}5-LTL\X)
is undecidable, even for direction fair and value fair templates with |Σrcv| = 1;
furthermore, G is computable.

14

5 Discussion

The literature contains PMC decidability results of token-passing systems with a
single token [18,13,16,2,3], and with multiple tokens [16,22].8 However, the results
on multiple tokens (and their proofs) only apply to linear-time specifications, and
only to ring or clique network-graphs. In contrast, our results apply to branching-
time specifications and to general network-graphs.

The proof of our decidability result follows the framework outlined in [2]
(inspired by [13,18]) which suggests combining composition and finiteness results
to obtain decidability of parameterised model checking.9 Rabinovich [28] also
uses the composition method for solving PMC. He considers the PMC problem
for propositional modal logic assuming the parameterized network-graphs G have
a decidable monadic-second order validity problem. While the systems in [28]
are very general, the specification language, i.e., modal logic, is orthogonal to
ours (e.g., it can not express liveness properties).

To the best of our knowledge, [28,2] are the only other works that use com-
position to establish decidability of PMC of distributed systems. While proving
composition and finiteness may not be easy, we find the methodology to be el-
egant and powerful. Indeed, in all of these cases, no other method is known
(e.g., automata, tableaux) for proving decidability. We leave for future work the
intriguing problem of applying this methodology to other problems.

References

1. P.A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso. On the
verification of timed ad hoc networks. In FORMATS, pages 256–270. Springer,
2011.

2. B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking
of token-passing systems. In VMCAI, pages 262–281. Springer, 2014.

3. B. Aminof, T. Kotek, F. Spegni, S. Rubin, and H. Veith. Parameterized model
checking of rendezvous systems. In CONCUR, pages 109–124, 2014.

4. B. Aminof, A. Murano, S. Rubin, and F. Zuleger. Verification of asynchronous
mobile-robots in partially-known environments. In PRIMA, 2015. To appear.

5. B. Aminof, A. Murano, S. Rubin, and Florian Zuleger. Automatic verification of
multi-agent systems in parameterised grid-environments. In Intl. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016), 2016.

6. B. Aminof, S. Rubin, F. Spegni, and F. Zuleger. Liveness of parameterized timed
networks. In M. Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann, editors,
ICALP, volume 9135 of LNCS, pages 375–387. Springer, 2015.

7. B. Aminof, S. Rubin, and F. Zuleger. On the expressive power of communication
primitives in parameterised systems. In M. Davis, A. Fehnker, A. McIver, and
A. Voronkov, editors, LPAR, volume 9450 of LNCS, pages 313–328. Springer, 2015.

8. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters, pages 307–309, 1986.

8 Communication in [22] is by rendezvous, powerful enough to express token-passing.
9 Moreover, our work inherits from [13,2] the non-uniformity of the decision problem.

We leave for future work the problem of calculating explicit cutoffs for concrete
classes of network-graphs, as was done in [3].

15

9. C. Baier and J-P. Katoen. Principles of model checking. MIT Press, 2008.
10. R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Wid-

der. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory. M&C, 2015.

11. M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite state processes. Inf. Comput., pages 13–31, April 1989.

12. K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans. on
Programming Languages and Systems (TOPLAS), 6(4):632–646, 1984.

13. E. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decompo-
sition. In CONCUR 2004, pages 276–291, 2004.

14. S. Das. Mobile agents in distributed computing: Network exploration. Bull.
EATCS, pages 54–69, 2013.

15. S. Demri and D. Poitrenaud. Verification of infinite-state systems. In S. Haddad,
F. Kordon, L. Pautet, and L. Petrucci, editors, Models and Analysis in Distributed
Systems, chapter 8, pages 221–269. John Wiley, 2011.

16. E. A. Emerson and Vineet Kahlon. Parameterized model checking of ring-based
message passing systems. In CSL, pages 325–339. Springer, 2004.

17. E.A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS, pages
361–370. IEEE, 2003.

18. E.A. Emerson and K.S. Namjoshi. Reasoning about rings. In POPL, pages 85–94,
1995. Journal version: Int. J. Found. Comp. Sci., 14 (4), 2003.

19. E.A. Emerson and A. Sistla. Symmetry and model checking. In CAV, pages 463–
478, 1993.

20. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
LICS, pages 352–359. IEEE, 1999.

21. S. Feferman and R.L. Vaught. The first-order properties of algebraic systems.
Fund. Math., 47:57–103, 1959.

22. S. German and A. Sistla. Reasoning about systems with many processes. JACM,
39(3):675–735, 1992.

23. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Combination methods for
satisfiability and model-checking of infinite-state systems. In F. Pfenning, editor,
Automated Deduction – CADE-21, pages 362–378, 2007.

24. T. Herman. Probabilistic self-stabilization. Inf. Process. Lett., 35(2):63–67, 1990.
25. A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder. Counter attack on

byzantine generals: Parameterized model checking of fault-tolerant distributed al-
gorithms. CoRR, 2012.

26. A. Kosowski. Time and Space-Efficient Algorithms for Mobile Agents in an Anony-
mous Network. Habilitation, U. Sciences et Technologies - Bordeaux I, 2013.

27. E. Kranakis, D. Krizanc, and S. Rajsbaum. Computing with mobile agents in
distributed networks. In S. Rajasekaran and J. Reif, editors, Handbook of Parallel
Computing: Models, Algorithms, and Applications. CRC Press, 2007.

28. A. Rabinovich. On compositionality and its limitations. ACM Trans. Comput.
Logic, 8(1), 2007.

29. S. Rubin. Parameterised verification of autonomous mobile-agents in static but
unknown environments. In AAMAS, pages 199–208, 2015.

30. S. Shamir, O. Kupferman, and E. Shamir. Branching-depth hierarchies. ENTCS,
39(1):65 – 78, 2003.

31. S. Shelah. The monadic theory of order. Ann. of Math., pages 379–419, 1975.
32. I. Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett.,

28(4):213–214, 1988.

16

	Model Checking Parameterised Multi-Token Systems via the Composition Method

