
From Structured to Abstract Argumentation:
Assumption-Based Acceptance via AF Reasoning?

Tuomo Lehtonen1, Johannes P. Wallner2, and Matti Järvisalo1

1 HIIT, Department of Computer Science, University of Helsinki, Finland
2 Institute of Information Systems, TU Wien, Austria

Abstract. We study the applicability of abstract argumentation (AF) reasoners
in efficiently answering acceptability queries over assumption-based argumenta-
tion (ABA) frameworks, one of the prevalent forms of structured argumentation.
We provide a refined algorithm for translating ABA frameworks to AFs allowing
the use of AF reasoning to answer ABA acceptability queries, covering credulous
and skeptical acceptance problems over ABAs in a seamless way under several
argumentation semantics. We empirically show that the approach is complemen-
tary with a state-of-the-art ABA reasoning system.

1 Introduction

Argumentation is today a vibrant area of modern AI research, providing formalisms for
representing and reasoning about conflicting arguments, aiming at conflict resolution
through detecting sets of non-conflicting arguments which together counter—or defend
themselves against—all counterarguments.

Several argumentation formalisms have been proposed, with different desirable prop-
erties. Perhaps the simplest formalism for argumentation are abstract argumentation
frameworks (AFs) [11]. AFs allow for representing conflicts—or attacks—between ar-
guments as directed graphs, where nodes represent abstract arguments, and edges rep-
resent attacks. Several reasoning system implementations for AF reasoning exists to-
day [18, 17, 5, 6, 24, 25], especially for central AF reasoning problems such as credu-
lous and skeptical acceptance of arguments under various AF semantics.

Another central formalism is structured argumentation [1, 3, 22, 2, 26] in which, in
contrast to abstract argumentation, the internal structure of arguments is made explicit
through derivations from more basic structures. One well-known approach to struc-
tured argumentation is assumption-based argumentation (ABA) [3, 13, 29]. In ABA ar-
guments are represented compactly as graph-based derivations [7] from a given rule-
based deductive system over sentences, starting from assumptions. A central approach
to reasoning about acceptability of arguments over ABAs are so-called dispute deriva-
tions [7, 12, 14, 20, 21, 28], implemented in various ABA reasoning systems [19–21, 14,
8, 28, 9, 7]. The abagraph system [7] supporting credulous reasoning over ABAs under
the admissible and grounded semantics represents the current state of the art.

? Work funded by Academy of Finland, grants 251170 COIN, 276412, and 284591; Research
Funds of the University of Helsinki; and the Austrian Science Fund (FWF): I2854 and P30168.

This manuscript was published as:
Tuomo Lehtonen, Johannes P. Wallner, and Matti Järvisalo. From Structured to Abstract Argumentation:
Assumption-Based Acceptance via AF Reasoning. In Alessandro Antonucci, Laurence Cholvy and Odile
Papini, editors, Proceedings of the 14th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, ECSQARU 2017, volume 10369 of Lecture Notes in Artificial Intelligence,
pages 57–68, Lugano, Switzerland, July 2017. Springer. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-61581-3_6.

While systems for reasoning over AFs and ABAs have been developed, the applica-
bility of state-of-the-art abstract argumentation reasoners for reasoning about assumption-
based argumentation frameworks has received little attention. To bridge this gap, we
study the applicability of state-of-the-art abstract argumentation reasoners in efficiently
answering acceptability queries over ABA frameworks. While theoretical work on map-
ping ABAs to AFs exists [14, 4], here we concretely implement an approach to reason-
ing about acceptance of sentences in assumption-based argumentation via translating
ABA frameworks into abstract argumentation frameworks, and thereafter using AF rea-
soning to decide acceptance of sentences. While it would be desirable to exactly com-
pute a small, yet sufficient, set of AF arguments for a given ABA, we show that restrict-
ing argument construction to only those arguments satisfying a minimality condition
in their supports, which we call relevant arguments, is computationally very demand-
ing: we prove that counting the number of such relevant arguments is #P-complete.
To overcome this obstacle, we propose an algorithm for overapproximating the set of
relevant arguments for a given ABA framework. We implement the reasoning part by
answer set programming (ASP) encodings specifically suited for the types of AFs the
translation gives rise to. We show that a prototype implementation of the approach is
complementary in terms of performance with the state-of-the-art abagraph system for
credulous acceptance in ABA. Our approach is generic in that it covers both credu-
lous and skeptical acceptance problems under several central argumentation semantics
over ABAs in a seamless way. Proofs of the main theorems are available in the paper
supplement online at https://cs.helsinki.fi/group/coreo/ecsqaru17.

2 Preliminaries

Assumption-Based Argumentation We recall definitions related to assumption-based
argumentation (ABA) [3, 29], following [10]. We assume a deductive system (L,R)
with L a formal language, i.e., a countable set of sentences, and R a set of inference
rules over L with a rule r ∈ R having the form a0 ← a1, . . . , an with ai ∈ L. We
denote the head of rule r by head(r) = {a0} and the (possibly empty) body of r by
body(r) = {a1, . . . , an}. A sentence a ∈ L is derivable from a set X ⊆ L via rules
R, denoted by X `R a, if there is a sequence of rules (r1, . . . , rn) s.t. head(rn) = a
and for each rule ri it holds that ri ∈ R and each sentence in the body of ri is derived
from rules earlier in the sequence or in X , i.e., body(ri) ⊆ X ∪

⋃
j<i head(rj). The

deductive closure for X w.r.t. rulesR is given by ThR(X) = {a | X `R a}.
An ABA framework is a tuple (L,R,A,) with (L,R) a deductive system, a set of

assumptions A ⊆ L, and a function (contrary function) mapping assumptions A to
sentences L. We focus on flat ABA frameworks where assumptions cannot be derived.
Let D = (L,R,A,) be an ABA framework. A set of assumptions ∆ ⊆ A attacks an
assumption b ∈ A in the ABA framework D if the contrary of b is derivable from ∆
in D, i.e., b ∈ ThR(∆). Further, ∆ attacks a set of assumptions ∆′ ⊆ A in the ABA
frameworkD if an assumption in∆′ is attacked by∆, i.e., ThR(∆)∩{a | a ∈ ∆′} 6= ∅.

Definition 1. LetD = (L,R,A,) be an ABA framework. Further, let∆ ⊆ A be a set
of assumptions that does not attack itself in D. Set ∆ is

– admissible in D if each set of assumptions ∆′ that attacks ∆ is attacked by ∆;
– preferred in D if ∆ is admissible and there is no admissible set of assumptions ∆′

in D with ∆ ⊂ ∆′; and
– stable in D if each a ∈ A \∆ is attacked by ∆.

We use the term σ-assumption-set to refer to an assumption set under a specific
semantics σ ∈ {adm, stb, prf }.3 Let D = (L,R,A,) be an ABA framework and σ a
semantics. A sentence s ∈ L is credulously accepted in D under semantics σ if there is
a σ-assumption-set ∆ s.t. s ∈ ThR(∆); and skeptically accepted in D under semantics
σ if it holds that s ∈ ThR(∆) for all σ-assumption-sets ∆.

ABA AF
semantics cred skept cred skept
admissible NP-c P-c NP-c trivial

stable NP-c coNP-c NP-c coNP-c
preferred NP-c Πp

2 -c NP-c Πp
2 -c

Fig. 1. Complexity of reasoning.

Complexity of reasoning of (flat) ABA
frameworks [10] is shown in Fig. 1.

Example 1. An ABA framework is shown in
Fig. 2 (left) with L = {a, b, c, d, e, f, g, h, i},
as well as the admissible, stable, and pre-
ferred assumption sets. Sentences g and h are credulously accepted under σ ∈
{adm, prf , stb}, since they can be derived from {a} and {c}. Further, i is skeptically
accepted under σ, since i is derivable from ∅.

Abstract Argumentation Frameworks An abstract argumentation framework (AF) [11]
is a pair F = (A,R), where A is a finite non-empty set of arguments and R ⊆ A×A is
the attack relation. The pair (a, b) ∈ R indicates that a attacks b. A set S ⊆ A attacks an
argument b (in F) if there is an a ∈ S s.t. (a, b) ∈ R. An argument a ∈ A is defended
(in F) by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, it holds that S attacks b.

AF semantics are defined through functions σ which assign to each AF F = (A,R)
a set σ(F) ⊆ 2A of extensions. We consider for σ the functions adm , stb, and prf .

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F) if there are
no a, b ∈ S such that (a, b) ∈ R. We denote the collection of conflict-free sets of F by
cf (F). For a conflict-free set S ∈ cf (F) it holds that

– S ∈ adm(F) iff each a ∈ S is defended by S;
– S ∈ prf (F) iff S ∈ adm(F) and @S′ ∈ adm(F) with S ⊂ S′; and
– S ∈ stb(F) iff each a ∈ A \ S is attacked by S.

We use “σ-extension” to denote an extension under a semantics σ. Let F = (A,R)
be an AF. An argument a ∈ A is credulously accepted in F under σ if there is an E
∈ σ(F) s.t. a ∈ E. An argument a is skeptically accepted in F under σ if a is contained
in every E ∈ σ(F). For complexity of AF reasoning [15] see Fig. 1.

3 We call, for reasons of uniformity and brevity, admissible sets a semantics; this is not meant to
prescribe a particular logical stance to the frameworks.

rulesR contr. ass. sets σ
d← a g ← e a = h ∅ adm

e← a, b d← g b = e {a} adm, prf , stb
f ← c h← f c = d {c} adm
e← d i← {b, c} adm, prf , stb

({a, d, e, g}, {a})

({c, f, h}, {c})

({b}, {b})

({i}, ∅)

Fig. 2. Example ABA with A = {a, b, c} (left) and the corresponding AF (right).

3 From ABA to AF

The focus of this work is on studying the applicability of abstract argumentation reason-
ing tools for reasoning about acceptance of sentences in assumption-based argumenta-
tion frameworks. Given an ABA and a credulous/skeptical query as a sentence in the
ABA, our approach to answer the query consists of the following two steps.

1. Translate the ABA framework into an AF in a way that the ABA query can be
answered by applying AF reasoning principles on the resulting AF.

2. Adjust an AF reasoning system to answer the ABA query on the AF from step 1.

In this section we adapt translations of ABA frameworks [4, 14] to AFs to suit our
goal of computational feasibility. The idea of the approach is to view subsets of the as-
sumptions, and sentences derived from these sets, as abstract arguments. The assump-
tions of such an argument are called support of the argument. A key point for this
translation, to ensure correctness, is to construct arguments so that all assumption sets
are sufficiently covered, not missing crucial parts of the ABA framework. Sentences
contained in an argument in a σ-extension of the resulting AF will be derivable in a
σ-assumption-set of the original ABA framework and vice versa, thereby aligning the
corresponding reasoning tasks of ABA frameworks and AFs.

In order to make step 2 computationally feasible, care needs to be taken in order to
ensure that the AF resulting from step 1 does not become restrictively large (in terms
of the number of arguments) in order to enable reasoning on the AF. To this end, we
consider constructing only those arguments, which we call relevant arguments, whose
support is minimal, in the sense that there is a sentence derivable from the support,
but the sentence is not derivable from any proper subset of the support. However, we
will show that the complexity of computing (exactly) the set of relevant arguments is
restrictive for practical purposes. Motivated by both the computational hardness result
and the need for restriction of the number of arguments, we then, in the subsequent
sections, propose an algorithm for over-approximating the set of relevant arguments of
a given ABA, and detail an approach to step 2 via answer set programming.

Key to the translation of ABA frameworks to AFs are the arguments for the AF,
which are viewed as pairs of a set of assumptions and sentences derived from the set
of assumptions. With the aim of focusing on relevant arguments, we generalize and
adapt the concept of support-minimality [7, Definition 4.11]. In [7] support-minimality
is defined for arguments with a single claim (derivation for a single sentence).

Definition 3. Let D = (L,R,A,) be an ABA framework. We define the set of sets of
assumptions minsupp(D) by ∆ ∈ minsupp(D) iff

⋃
∆′⊂∆ ThR(∆

′) ⊂ ThR(∆).

In words, a set of assumptions ∆ is a minimal support if there is a sentence derivable
from ∆ viaR but not from any proper subset ∆′ ⊂ ∆. Relevant arguments are defined
as pairs of a set of sentences and a minimal support.

Definition 4. Let D = (L,R,A,) be an ABA framework, L ⊆ L, and ∆ ⊆ A.
A pair (L,∆) is a relevant argument (for D) if the following two conditions hold:
(i) ∆ ∈ minsupp(D); and (ii) L = ThR(∆) \ (

⋃
∆′⊂∆ ThR(∆

′)).

In words, a pair (L,∆) is a relevant argument for a given ABA if ∆ is in minsupp(D)
(first item), and L contains those sentences that are derivable from∆ but not any proper
subset of ∆ (second item).

Example 2. Consider the ABA framework from Example 1. The sets in minsupp(D)
are {a}, {b}, {c}, and ∅. The admissible assumption set {b, c} is not in minsupp(D)
since all sentences derivable from {b, c} are derivable from {b} or {c}. For each set in
minsupp(D) there is a relevant argument, e.g., ({a, d, e, g}, {a}) is a relevant argu-
ment for the ABA framework and all sentences in {a, d, e, g} can be derived from a,
and all sentences derivable from {a} but not ∅ are contained in the first component.

Definition 5. Let D = (L,R,A,) be an ABA framework. An AF F = (A,R) corre-
sponds to the ABA D if the following two conditions hold. (i) A is the set of relevant
arguments for D; and (ii) R = {((L,∆), (L′, ∆′)) | L ∩ {x | x ∈ ∆′} 6= ∅}.

Briefly put, a corresponding AF for a given ABA framework contains the relevant
argument for each set of assumptions in minsupp(D), i.e., |A| = |minsupp(D)|, and
attacks based on the supports and the derived sentences. In Fig. 2, the corresponding
AF (right) for the ABA framework (left) is shown. In the following formal result, that
follows the spirit of [14, Theorem 2.2] and [4, Theorem 6], we show that we have a
correspondence between the ABA framework and the corresponding AF in terms of
the semantics, which allows for utilization of AF reasoners on the AF to answer ABA
queries. We define sentences(E) =

⋃
(L,∆)∈E L.

Theorem 1. Let D = (L,R,A,) be an ABA framework, ∆ ⊆ A, and σ ∈ {adm ,
stb, prf }. For an AF F = (A,R) that corresponds to D, and E ⊆ A, it holds that

– if ∆ is a σ-assumption-set of D, then E = {(L,∆′) ∈ A | ∆′ ⊆ ∆} is a σ-
extension of F , and ThR(∆) = sentences(E);

– if E is a σ-extension of F , then ∆ =
⋃

(L,∆′)∈E ∆
′ is a σ-assumption-set of D,

and ThR(∆) ⊇ sentences(E) for σ = adm , and ThR(∆) = sentences(E) for
σ ∈ {stb, prf }.

Based on this formal correspondence, we can answer credulous (skeptical) accept-
ability queries in an ABA framework as specified in the next corollary.

Corollary 1. LetD = (L,R,A,) be an ABA framework, l ∈ L, σ = {adm, stb, prf },
σ′ = {stb, prf }, and AF F = (A,R) the corresponding AF for D. It holds that

– l is credulously accepted under σ in D iff there is a credulously accepted argument
(L,∆) under σ in F with l ∈ L;

– l is skeptically accepted under σ′ in D iff for each σ′-extension E of F it holds that
l ∈ sentences(E).

Skeptical acceptance under admissible semantics for ABA frameworks is polynomial-
time decidable (Table 1), while our focus here is on the NP-hard acceptance problems.
Omitting a relevant argument in a corresponding AF can directly lead to incorrect re-
sults w.r.t. acceptance queries of the original ABA framework. For instance, considering
the corresponding AF shown in Example 2, removal of any of the relevant arguments
of this AF would lead to missing sentences in the AF which are credulously accepted
under, e.g., admissible semantics in the original ABA framework.

4 Computing Relevant Arguments

The authors of [7] conjecture that computing minimal supports may be computationally
costly. We provide a formal result backing up this conjecture: we show that counting
the number of minimal supports for a given ABA framework is intractable, in fact #P-
complete under subtractive reductions [16] often used for showing hardness for count-
ing complexity classes. (The prototypical #P-complete problem is that of counting
satisfying assignments of a Boolean formula.)

Theorem 2. For a given ABA framework, counting the number of minimal supports is
#P-complete under subtractive reductions.

To overcome this obstacle, we give an algorithm that overapproximates the set of
relevant arguments. The algorithm traverses the rules backwards towards the assump-
tions. The underlying data structure operated on is a directed graph with vertices being
both heads and bodies of rules in the ABA. There is a directed edge from a body to a
head if there is a corresponding rule, and from a head to a body if the former is con-
tained in the latter. We filter out non-derivable sentences. If the rules are acyclic, we can
straightforwardly backward chain from the sinks to create all needed arguments. For the
general (i.e. possibly cyclic) case, the presented algorithm also takes all heads of rules
that are in non-trivial strongly connected components (SCCs), i.e., non-singleton SCCs,
denoted by SCC(D), as starting points. We store (partial) arguments with a set of sets
of sentences, Arg(X) = {S1, . . . , Sn} for a head or body X , indicating that X is
derivable from any S1, . . . , Sn.

Algorithm 1 Argument Construction
Require: ABA D = (L,R,A,)
1: Compute SCC(D) //non-trivial SCCs
2: S = sinks(G) ∪ (

⋃
SCC(D) ∩ L)

3: while S 6= ∅ do
4: remove s from S
5: PROCESS-HEAD(s, ∅)
6: mark s visited

The main Algorithm 1 computes non-
trivial SCCs, stores starting points in S, and
recurses in the while loop (call by reference)
with a picked sentence and the current deriva-
tion path P (for detecting cyclic derivations;
initialized with ∅). After processing, the sen-
tence is marked, indicating that all derivations
have been exhausted. Algorithm 2, PROCESS-
HEAD, marks the head s if not in a non-trivial SCC and adds s to the derivation path
P . In case s is an assumption (or > for sentences derived from ∅), we add a new ar-
gument {s} for s. Otherwise call PROCESS-BODY(B,P) for each non-visited body B
from which s can be derived, excluding P . Afterwards, we extend arguments for the
bodies and add these arguments to Arg(s).

Algorithm 3 takes care of bodies. We mark B if it is not a non-trivial SCC or when
each element in the body is either marked or not in non-trivial SCC. To avoid cyclic
derivations we check if an element in the body is contained in path P . If not, after
adding body B to P , we call PROCESS-HEAD for each non-visited element. We collect
all possible ways of deriving body B by taking all minimal combinations of arguments
from which to directly derive each s ∈ B (SUBDERIVATIONS). Arguments with the
same support are then merged (there is at most one argument per set of assumptions)
by calling MERGE-BY-SUP.

Each constructed argument contains only sentences derivable from its set of as-
sumptions. For each ∆ ∈ minsupp(D) an argument with ∆ as its assumptions is con-

Algorithm 2 PROCESS-HEAD(s, P)

1: if s /∈
⋃
SCC(D) then mark s visited

2: P = P ∪ {s}
3: if s ∈ A ∪ {>} then
4: Arg(s) = Arg(s) ∪ {{s}}
5: else
6: for each B ∈ {body(r) | head(r) = s}
7: if B not visited then
8: PROCESS-BODY(B,P)
9: Arg(B) = {A ∪ {s} | A ∈ Arg(B)}

10: Arg(s) = Arg(s) ∪Arg(B)

11: P = P \ {s}

Algorithm 3 PROCESS-BODY(B,P)

1: if B /∈
⋃
SCC(D) then mark B visited

2: if each s′ ∈ B is marked or not in SCC
then mark B visited

3: if B ∩ P 6= ∅ then return
4: P = P ∪ {B}
5: for each s′ ∈ B
6: if s′ not visited then
7: PROCESS-HEAD(s′, P)
8: Arg(B) = SUBDERIVATIONS(B)
9: MERGE-BY-SUPP(Arg(B))

10: P = P \ {B}

structed. Our algorithm approximates the set of relevant arguments in two senses. First,
arguments with minimal support might contain more derived sentences, i.e., sentences
also derivable from subsets of their support. Secondly, we might compute arguments
with assumption sets not in minsupp(D). Correctness of the overall approach is not
affected by either approximation as long as the attacks are as specified in Definition 5.

Special Cases ABA acceptance can, in cases, be decided during the AF translation.
Assume an ABA D = (L,R,A,) and a sentence l ∈ L. For admissible and preferred
semantics it holds that if l ∈ ThR(∅), then l is both credulously and skeptically ac-
cepted; and if l /∈ ThR(A) or each (L,∆) with l ∈ L is self-attacking, then l is neither
credulously nor skeptically accepted. For stable semantics, it holds that if l ∈ ThR(∅),
then l is skeptically accepted, and credulously accepted iff D has a stable assumption
set. If l 6∈ ThR(A) or each (L,∆) with l ∈ L is self-attacking, then l is not credulously
accepted, and skeptically accepted iff D has no stable assumption set. In our approach,
existence of stable assumption sets can be checked with an AF reasoner.

5 Reasoning about ABA Acceptance on AFs

For reasoning over the AFs (step 2) obtained from our ABA-to-AF translation (step 1)
we encode the ABA acceptance problem over the AF obtained via step 1 using an-
swer set programming (ASP). Interchangeably, one could apply essentially any of the
e.g. SAT-based AF reasoning systems via similar minor modifications. We focus here
on encodings for admissible and stable semantics; other central argumentation seman-
tics can be encoded with relatively minor changes. Our encodings are similar to ones
used in the ASP-based AF reasoning system ASPARTIX [18], except for one seemingly
minor but essential difference: we represent the AF attack relation via its complement,
using the predicate natt/2 (not attack) which is true for a pair (a, b) of nodes iff a
does not attack b. This complement representation is vital as the edge relations of the
AFs obtained via step 1 are typically very dense. This is in stark contrast to typical AF
reasoning benchmark instances with relatively sparse attack relations [27].

Our encoding of the admissible semantics is

in(X) :- not out(X), arg(X). :- in(X), in(Y), not natt(X,Y).

out(X) :- not in(X), arg(X). defeated(X) :- in(Y), not natt(Y,X), arg(X).

out(X) :- arg(X), not natt(X,X). :- in(X), arg(Y), not natt(Y,X), not defeated(Y).

Further minor changes to the original ASPARTIX encoding are that we include the rule
on the lower left, and collapsed two rules to what is now here the last rule. For stable
semantics, we simply replace the last rule by :- out(X), not defeated(X).

Implementing credulous ABA queries under NP-complete semantics such as admissi-
ble, preferred, and stable on the AF side is achieved by checking if there is an extension
which includes an argument that contains the queried sentence during argument con-
struction. This is implemented with the ASP constraint :- not in(a1), ..., not in(an).
for arguments ai that contain queried sentence l, i.e., ai = (L,∆) with l ∈ L.

Implementing skeptical ABA queries for coNP-complete semantics such as stable is
achieved by checking if there is a counterexample to the query, i.e., whether there is
an extension of the AF that does not include any arguments containing the queried sen-
tence. This is implemented by constraint :- in(ai). for each argument ai that contains
the queried sentence, pruning the search space by partial instantiation. An alternative
approach to skeptical acceptance would be to enumerate all AF extensions, and check
whether each of them includes some argument that contains the queried sentence.

6 Experiments

For a first evaluation of the two-step approach to answering ABA queries via AF rea-
soning, we implemented a prototype translation (step 1) in Java 8. We compare our
approach to the recently published state-of-the-art graph-based ABA reasoning sys-
tem abagraph (http://www.doc.ic.ac.uk/~rac101/proarg/abagraph.html)
implemented in Prolog, using SICStus Prolog 4.3.3. We used the “default” search strat-
egy of abagraph. The experiments were run on 2.83-GHz Intel Xeon E5440 quad-core
machines with 32-GB RAM under Linux using a 600-second timeout and a 16-GB
memory limit per instance. As the running times of our approach, we report the com-
bined time of the translation and the ASP solver Clingo 4.5.4 [23].

As benchmarks we use the 680 ABA frameworks provided by the authors of aba-
graph [7]. A benchmark instance consists of an ABA graph and a query on whether
a given sentence in the ABA framework is credulously accepted under a specific se-
mantics (recall that abagraph supports only credulous queries under admissible and
grounded semantics). For each ABA framework, we used 10 queries per ABA. After fil-
tering out 90 duplicate queries and trivial instances wrt the special cases outlined for ad-
missible semantics in the previous section, we obtained 1466 final benchmark instances.
The benchmarks are explicitly categorized wrt whether the rules of a framework give
rise to cyclic dependencies, i.e., whether a framework is cyclic (804) or acyclic (662).

A comparison of abagraph and our approach is shown in Fig. 3 left. Here we con-
sider the credulous task of enumerating all admissible assumption sets containing the

 1

 10

 100

 1 10 100

A
F

 tr
an

sl
at

or
 +

 A
S

P
 s

ol
ve

r
ru

nt
im

e
(s

)

abagraph runtime (s)

acyclic
cyclic

x

Timeouts Uniquely solved
abagraph us abagraph us

acyclic 93 56 20 57
cyclic 394 402 86 78

Fig. 3. Left: running time comparison of abagraph and our approach on credulous reasoning under
admissible semantics. Right: numbers of timeouts and uniquely solved instances.

given query. The same task was used to evaluate abagraph in [7] and shown to outper-
form earlier state of the art. For enumeration in our approach, we used the built-in enu-
meration mode of Clingo. Fig. 3 (left) shows that our approach and that of the dedicated
abagraph approach are complementary in that there are instances on which each of the
approaches is clearly better than the other. Fig. 3 (right) corroborates this observation.
The relative performance is essentially on-par on cyclic instances, while our approach
is somewhat better on acyclic instances. To illustrate the generality of our approach,
we also experimented on skeptical acceptance of sentences under stable semantics (a
task not supported by abagraph). Our approach solved 6228 of the 6710 instances. The
per-instance runtime was < 10 s on over 6000 instances. A majority of runtime was
used in the AF translation on every instance, AF translation taking over 80% of the
total runtime on approximately 95% of the solved instances. The ASP solving part was
very efficient, finishing within 65 seconds on each instance.

7 Conclusions

We studied an approach to reasoning about acceptance in assumption-based argumen-
tation via translating ABA frameworks into argumentation frameworks. We considered
relevant ABA arguments as a sought after small yet sufficient set for reasoning about
acceptance of ABA sentences on AFs. However, we showed that counting the number
of relevant arguments is #P-complete, and hence proposed an algorithm for overap-
proximating the set of relevant arguments in order to translate ABAs to AFs, and ASP
encodings specifically suited for the types of AFs obtained through the translation. Our
prototype implementation yields complementary performance wrt the state-of-the-art
dedicated ABA reasoning system abagraph. As a further benefit, our approach also al-
lows for deciding skeptical acceptance in ABA, not supported by abagraph.

References

1. Besnard, P., García, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni, F.: Intro-
duction to structured argumentation. Argument & Computation 5(1), 1–4 (2014)

2. Besnard, P., Hunter, A.: Elements of Argumentation (2008)
3. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic

approach to default reasoning. Artif. Intell. 93, 63–101 (1997)
4. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the difference between assumption-

based argumentation and abstract argumentation. In: Proc. BNAIC. pp. 25–32 (2013)
5. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions in ab-

stract argumentation: A SAT-based approach. In: TAFA 2013 Revised Selected Papers.
LNCS, vol. 8306, pp. 176–193 (2014)

6. Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: Solving argumentation problems using
SAT. In: Proc. COMMA. FAIA, vol. 266, pp. 455–456 (2014)

7. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation. Artif. Intell.
233, 1–59 (2016)

8. Craven, R., Toni, F., Cadar, C., Hadad, A., Williams, M.: Efficient argumentation for medical
decision-making. In: Proc. KR. pp. 598–602 (2012)

9. Craven, R., Toni, F., Williams, M.: Graph-based dispute derivations in assumption-based
argumentation. In: TAFA 2013 Revised Selected Papers. LNCS, vol. 8306, pp. 46–62 (2014)

10. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of assumption-based
argumentation for default reasoning. Artif. Intell. 141(1/2), 57–78 (2002)

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

12. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, ad-
missible argumentation. Artif. Intell. 170(2), 114–159 (2006)

13. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I.,
Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 25–44 (2009)

14. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell.
171(10-15), 642–674 (2007)

15. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Rahwan, I., Simari,
G.R. (eds.) Argumentation in Artificial Intelligence, pp. 85–104 (2009)

16. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for
counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)

17. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision proce-
dures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

18. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argumentation
frameworks. Argument & Computation 1(2), 147–177 (2010)

19. Gaertner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation. In:
Proc. NMR. pp. 80–95 (2007)

20. Gaertner, D., Toni, F.: Computing arguments and attacks in assumption-based argumentation.
IEEE Intell. Syst. 22(6), 24–33 (2007)

21. Gaertner, D., Toni, F.: Hybrid argumentation and its properties. In: Proc. COMMA. FAIA,
vol. 172, pp. 183–195 (2008)

22. García, A.J., Simari, G.R.: Defeasible logic programming: An argumentative approach.
TPLP 4(1-2), 95–138 (2004)

23. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.:
Potassco: The potsdam answer set solving collection. AI Comm. 24(2), 107–124 (2011)

24. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument systems
under preferred semantics. Artif. Intell. 207, 23–51 (2014)

25. Nofal, S., Atkinson, K., Dunne, P.E.: Looking-ahead in backtracking algorithms for abstract
argumentation. Int. J. Approx. Reasoning 78, 265–282 (2016)

26. Prakken, H.: An abstract framework for argumentation with structured arguments. Argument
& Computation 1(2), 93–124 (2010)

27. Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of
the first international competition on computational models of argumentation. AI Magazine
37(1), 102 (2016)

28. Toni, F.: A generalised framework for dispute derivations in assumption-based argumenta-
tion. Artif. Intell. 195, 1–43 (2013)

29. Toni, F.: A tutorial on assumption-based argumentation. Argument & Computation 5(1), 89–
117 (2014)

