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Abstract. We introduce heap automata, a formalism for automatic rea-
soning about robustness properties of the symbolic heap fragment of sep-
aration logic with user-defined inductive predicates. Robustness prop-
erties, such as satisfiability, reachability, and acyclicity, are important
for a wide range of reasoning tasks in automated program analysis and
verification based on separation logic. Previously, such properties have
appeared in many places in the separation logic literature, but have not
been studied in a systematic manner. In this paper, we develop an al-
gorithmic framework based on heap automata that allows us to derive
asymptotically optimal decision procedures for a wide range of robust-
ness properties in a uniform way.

We implemented a prototype of our framework and obtained promising
results for all of the aforementioned robustness properties.

Further, we demonstrate the applicability of heap automata beyond ro-
bustness properties. We apply our algorithmic framework to the model
checking and the entailment problem for symbolic-heap separation logic.

1 Introduction

Separation logic (SL) [38] is a popular formalism for Hoare-style verification
of imperative, heap-manipulating programs. While its symbolic heap fragment
originally emerged as an idiomatic form of assertions that occur naturally in
hand-written proofs [34,5,4], a variety of program analyses based on symbolic-
heap separation logic have been developed [5,2,16,30,35,9,22]. Consequently, it
now serves as formal basis for a multitude of automated verification tools, such
as [6,15,17,20,28,37,31,8], capable of proving complex properties of a program’s
heap, such as memory safety, for large code bases [16,15]. These tools typically
rely on systems of inductive predicate definitions (SID) to specify the shape of
data structures employed by a program, such as trees and linked lists. Origi-
nally, separation logic tools implemented highly-specialized procedures for such
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fixed SIDs. As this limits their applicability, there is an ongoing trend to sup-
port custom SIDs that are either defined manually [28,17] or even automatically
generated. The latter may, for example, be obtained from the tool Caber [12].

Robustness properties Allowing for arbitrary SIDs, however, raises various ques-
tions about their robustness. A user-defined or auto-generated SID might, for
example, be inconsistent, introduce unallocated logical variables, specify data
structures that contain undesired cycles, or produce garbage, i.e., parts of the
heap that are unreachable from any program variable. Accidentally introducing
such properties into specifications can have a negative impact on performance,
completeness, and even soundness of the employed verification algorithms:

– Brotherston et al. [11] point out that tools might waste time on inconsistent
scenarios due to unsatisfiability of specifications.

– The absence of unallocated logical variables, also known as establishment, is
required by the approach of Iosif et al. [26,27] to obtain a decidable fragment
of symbolic heaps.

– Other verification approaches, such as the one by Habermehl et al. [23,24],
assume that no garbage is introduced by data structure specifications.

– During program analysis and verification, questions such as reachability,
acyclicity and garbage-freedom arise depending on the properties of inter-
est. For example, as argued by Zanardini and Genaim [39], acyclicity of the
heap is crucial in automated termination proofs.

Being able to check such robustness properties of custom SIDs is thus cru-
cial (1) in debugging of separation-logic specifications prior to program analysis
and (2) in the program analyses themselves. So far, however, all of the above
properties have either been addressed individually or not systematically at all.
For example, satisfiability is studied in detail by Brotherston et al. [11], whereas
establishment is often addressed with ad-hoc solutions [26,23].

Several reasoning tasks arise in the context of robustness properties. As a
motivation, consider the problem of acyclicity. If our program analysis requires
acyclicity, we would like to decide whether all interpretations of a symbolic
heap are acyclic; if not, to find out how cycles can be introduced into the heap
(counterexample generation); and, finally, to be able to generate a new SID that
does guarantee acyclicity (called refinement below). A systematic treatment of
robustness properties should cover these reasoning tasks in general, not just for
the problem of acyclicity.

Problem statement We would like to develop a framework that enables:

1. Decision procedures for robustness properties. In program analysis, we gen-
erally deal with symbolic heaps that reference SIDs specifying unbounded
data structures and thus usually have infinitely many interpretations. We
need to be able to decide whether all, or some, of these infinitely many
interpretations are guaranteed to satisfy a given robustness property.

2. Generation of counterexamples that violate a desired property.
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3. Refinement of SIDs to automatically generate a new SID that respects a
given robustness property.

4. Automatic combination of decision procedures to derive decision procedures
for complex robustness properties from simpler ingredients.

Motivating example: Inductive reasoning about robustness properties The key
insight underlying our solution to the above problems is that many properties
of symbolic heaps can be decided iteratively by inductive reasoning. To moti-
vate our approach, we illustrate this reasoning process with a concrete example.
Consider an SID for acyclic singly-linked list segments with head x and tail y:

sll(x, y) ⇐ emp : {x = y} sll(x, y) ⇐ ∃u . x 7→ u ∗ sll(u, y) : {x 6= y}.

The two rules of the SID define a case distinction: A list is either empty or
the first element has a successor u (specified by the points-to assertion x 7→ u),
which in turn is at the head of a (shorter) singly-linked list segment, sll(u, y).
The inequality in the second rule guarantees that there is no cyclic model.
Now, consider the following symbolic heap with predicate calls to sll: ϕ =
∃x, y, z . sll(x, z)∗z 7→ y ∗sll(y, x), which might appear as an assertion during
program analysis. Say our program analysis depends on the acyclicity of ϕ, so
we need to determine whether ϕ is acyclic. We can do so by inductive reasoning
as follows.
– We analyze the call sll(x, z), the first list segment in the symbolic heap ϕ.

If it is interpreted by the right-hand side of the first rule of the SID from
above, then there is no cycle in sll(x, z) and z is reachable from x.

– If we already know for a call sll(u, z) that all of its models are acyclic
structures and that z is reachable from u, then z is also reachable from x in
the symbolic heap ∃u . x 7→ u ∗ sll(u, z) : {x 6= z} obtained by the second
rule of the SID. Since our SID does not introduce dangling pointers, we also
know that there is still no cycle.

– By induction, sll(x, z) is thus acyclic and z is reachable from x.
– Likewise, sll(y, x) is acyclic and x is reachable from y.
– Now, based on the information we discovered for sll(x, z) and sll(y, x),

we examine ϕ and conclude that it is cyclic, as z is reachable from x, y is
reachable from z, and x is reachable from y. Crucially, we reason inductively
and thus do not re-examine the list segments to arrive at our conclusion.

In summary, we examine a symbolic heap and corresponding SID bottom-up,
starting from the non-recursive base case. Moreover, at each stage of this analy-
sis, we remember a fixed amount of information—namely what we discover about
reachability between parameters and acyclicity of every symbolic heap we exam-
ine. Similar inductive constructions are defined explicitly for various robustness
properties throughout the separation logic literature [11,13,26]. Our aim is to
generalize such manual constructions following an automata-theoretic approach:
We introduce automata that operate on symbolic heaps and store the relevant
information of each symbolic heap they examine in their state space. Whenever
such an automaton comes across a predicate that it has already analyzed, it can
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simply replace the predicate with the information that is encoded in the corre-
sponding state. In other words, our automata recognize robustness properties in
a compositional way by exploiting the inductive structure inherent in the SIDs.

Systematic reasoning about robustness properties Our novel automaton model,
heap automata, works directly on the structure of symbolic heaps as outlined in
the example, and can be applied to all the problems introduced before. In par-
ticular, heap automata enable automatic refinement of SIDs and enjoy a variety
of closure properties through which we can derive counterexample generation as
well as decision procedures for various robustness properties—including satisfi-
ability, establishment, reachability, garbage-freedom, and acyclicity.

Our approach can thus be seen as an algorithmic framework for deciding a
wide range of robustness properties of symbolic heaps. Furthermore, we show
asymptotically optimal complexity of our automata-based decision procedures
in a uniform way. By enabling this systematic approach to reasoning about
robustness, our framework generalizes prior work that studied single robustness
properties in isolation, such as the work by Brotherston et al. [11,13].

As a natural byproduct of our automata-based approach, we also derive de-
cision procedures for the model-checking problem, which was recently studied,
and proven to be ExpTime–complete in general, by Brotherston et al. [13]. This
makes it possible to apply our framework to run-time verification—a setting in
which robustness properties are of particular importance [33,28,13].

Entailment checking with heap automata Finally, we also address the entailment
problem. In Hoare-style program analysis, decision procedures for the entail-
ment problem become essential to discharge implications between assertions, as
required, for example, by the rule of consequence [25]. Because of this central
role in verification, there is an extensive body of research on decision procedures
for entailment; see, for example [3,10,14,26,27,32,36,21]. Antonopoulos et al. [1]
study the complexity of the entailment problem and show that it is undecidable
in general, and already ExpTime–hard for SIDs specifying sets of trees.

We use heap automata to check entailment between determined symbolic
heaps. Intuitively, determinedness is a strong form of the establishment prop-
erty guaranteeing that two variables are either equal or unequal in every model.
Unlike other decision procedures [26,27,3], our approach does not impose syn-
tactic restrictions on the symbolic heap under consideration but merely requires
that suitable heap automata for the predicates on the right-hand side of the en-
tailment are provided. In particular, we show how to obtain ExpTime decision
procedures from such heap automata—which exist for highly non-trivial SIDs.
If desired, additional syntactic restrictions can be integrated seamlessly into our
approach to boost our algorithms’ performance.

Contributions Our main contributions can be summarized as follows.

– We introduce heap automata, a novel automaton model operating directly on
symbolic heaps. We prove that heap automata enjoy various useful closure



Unified Reasoning about Robustness Properties of Symbolic-Heaps 5

properties. Besides union, intersection and complement, they are closed under
the conjunction with pure formulas, allowing the construction of complex
heap automata from simple ones.

– We develop a powerful algorithmic framework for automated reasoning about
and debugging of symbolic heaps with inductive predicate definitions based
on heap automata.

– We show that key robustness properties, such as satisfiability, establishment,
reachability, garbage freedom and acyclicity, can naturally be expressed as
heap automata. Moreover, the upper bounds of decision procedures obtained
from our framework are shown to be optimal—i.e., ExpTime–complete—in
each of these cases. Further, they enable automated refinement of SIDs to
filter out (or expose) symbolic heaps with undesired properties.

– Additionally, we apply heap automata to tackle the entailment and the model
checking problem for symbolic heaps. We show that if each predicate of an
SID can be represented by a heap automaton, then the entailment problem
for the corresponding fragment of symbolic heaps is decidable in 2-ExpTime
in general and ExpTime-complete if the maximal arity of predicates and
points-to assertions is bounded. For example, our framework yields an Exp-
Time decision procedure for a symbolic heap fragment capable of repre-
senting trees with linked leaves—a fragment that is out of scope of most
ExpTime decision procedures known so far (cf. [3,21,27]).

– We implemented a prototype of our framework that yields promising results
for all robustness properties considered in the paper.

Organization of the paper The fragment of symbolic heaps with inductive pred-
icate definitions is briefly introduced in Section 2. Heap automata and derived
decision procedures are studied in Section 3. Section 4 demonstrates that a va-
riety of robustness properties can be checked by heap automata. We report on a
prototypical implementation of our framework in Section 5. Special attention to
the entailment problem is paid in Section 6. Finally, Section 7 concludes. Due
to lack of space, most proofs as well as detailed construction are provided in a
full version of this paper that is available online [29].

2 Symbolic Heaps

This section briefly introduces the symbolic heap fragment of separation logic
equipped with inductive predicate definitions.

Basic Notation N is the set of natural numbers and 2S is the powerset of a set
S. (co)dom(f) is the (co)domain of a (partial) function f . We abbreviate tuples
(u1, . . . , un), n ≥ 0, by u and write u[i], 1 ≤ i ≤ ‖u‖ = n, to denote ui, the
i-th element of u. By slight abuse of notation, the same symbol u is used for
the set of all elements occurring in tuple u. The empty tuple is ε and the set of
all (non-empty) tuples [of length n ≥ 0] over a finite set S is S∗ (S+ [Sn]). The
concatenation of tuples u and v is u v.
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Syntax We usually denote variables taken from Var (including a dedicated vari-
able null) by a, b, c, x, y, z, etc. Moreover, let Pred be a set of predicate symbols
and ar : Pred→ N be a function assigning each symbol its arity. Spatial formulas
Σ and pure formulas π are given by the following grammar:

Σ ::= emp | x 7→ y | Σ ∗Σ π ::= x = y | x 6= y,

where y is a non-empty tuple of variables. Here, emp stands for the empty heap,
x 7→ y is a points-to assertion and ∗ is the separating conjunction. Furthermore,
for P ∈ Pred and a tuple of variables y of length ar(P ), Py is a predicate call.
A symbolic heap ϕ(x0) with variables Var(ϕ) and free variables x0 ⊆ Var(ϕ) is
a formula of the form ϕ(x0) = ∃z . Σ ∗Γ : Π, Γ = P1x1 ∗ . . . ∗Pmxm, where
Σ is a spatial formula, Γ is a sequence of predicate calls and Π is a finite set of
pure formulas, each with variables from x0 and z. This normal form, in which
predicate calls and points-to assertions are never mixed, is chosen to simplify
formal constructions. If an element of a symbolic heap is empty, we usually
omit it to improve readability. For the same reason, we fix the notation from
above and write zϕ, xϕi , Σϕ etc. to denote the respective component of symbolic
heap ϕ in formal constructions. Hence, ‖xϕ0 ‖ and ‖Γϕ‖ refer to the number of
free variables and the number of predicate calls of ϕ, respectively. We omit the
superscript whenever the symbolic heap under consideration is clear from the
context. If a symbolic heap τ contains no predicate calls, i.e., ‖Γ τ‖ = 0, then
τ is called reduced. Moreover, to simplify the technical development, we tacitly
assume that null is a free variable that is passed to every predicate call. Thus, for
each i ∈ N, we write xi[0] as a shortcut for null and treat xi[0] as if xi[0] ∈ xi.

3

Systems of Inductive Definitions Every predicate symbol is associated with one
or more symbolic heaps by a system of inductive definitions (SID). Formally,
an SID is a finite set of rules of the form Px0 ⇐ ϕ, where ϕ is a symbolic heap
with ar(P ) = ‖xϕ0 ‖. The set of all predicate symbols occurring in SID Φ and
their maximal arity are denoted by Pred(Φ) and ar(Φ), respectively.

Example 1. An SID specifying doubly-linked list segments is defined by:

dll(x1, x2, x3, x4) ⇐ emp : {x1 = x3, x2 = x4}
dll(x1, x2, x3, x4) ⇐ ∃u . x1 7→ (u, x2) ∗ dll(u, x1, x3, x4),

where x1 corresponds to the head of the list, x2 and x3 represent the previous
and the next list element and x4 represents the tail of the list. Further, the
following rules specify binary trees with root x1, leftmost leaf x2 and successor
of the rightmost leaf x3 in which all leaves are connected by a singly-linked list
from left to right.

tll(x1, x2, x3) ⇐ x1 7→ (null,null, x3) : {x1 = x2}
tll(x1, x2, x3) ⇐ ∃` r z . x1 7→ (`, r,null) ∗ tll(`, x2, z) ∗ tll(r, z, x3).

3 Since xi[0] is just a shortcut and not a proper variable, ‖xi‖ refers to the number of
variables in xi apart from xi[0].
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s, h |=Φ x ∼ y ⇔ s(x) ∼ s(y), where ∼∈ {=, 6= }
s, h |=Φ emp ⇔ dom(h) = ∅
s, h |=Φ x 7→ y ⇔ dom(h) = {s(x)} and h(s(x)) = s(y)

s, h |=Φ Py ⇔ ∃τ ∈ UΦ(Py) . s, h |=∅ τ

s, h |=Φ ϕ ∗ ψ ⇔ ∃h1, h2 . h = h1 ] h2

and s, h1 |=Φ ϕ and s, h2 |=Φ ψ

s, h |=Φ ∃z.Σ ∗ Γ :Π ⇔ ∃v ∈ Val‖z‖ . s [z 7→ v] , h |=Φ Σ ∗ Γ
and ∀π ∈ Π . s [z 7→ v] , h |=Φ π

Fig. 1. Semantics of the symbolic heap fragment of separation logic with respect to an
SID Φ and a state (s, h).

Definition 1. We write SH for the set of all symbolic heaps and SHΦ for the set
of symbolic heaps restricted to predicate symbols taken from SID Φ. Moreover,
given a computable function C : SH → {0, 1}, the set of symbolic heaps SHC is
given by SHC , {ϕ ∈ SH | C(ϕ) = 1}. We collect all SIDs in which every right-
hand side belongs to SHC in SIDC. To refer to the set of all reduced symbolic
heaps (belonging to a set defined by C), we write RSH (RSHC).

Example 2. Let α ∈ N and FV≤α(ϕ) ,

{
1, ‖xϕ0 ‖ ≤ α
0, otherwise

.

Clearly, FV≤α is computable. Moreover, SHFV≤α is the set of all symbolic
heaps having at most α free variables.

Semantics As in a typical RAM model, we assume heaps to consist of records
with a finite number of fields. Let Val denote an infinite set of values and Loc ⊆
Val an infinite set of addressable locations. Moreover, we assume the existence
of a special non-addressable value null ∈ Val \ Loc.

A heap is a finite partial function h : Loc ⇀ Val+ mapping locations to
non-empty tuples of values. We write h1 ] h2 to denote the union of heaps h1
and h2 provided that dom(h1) ∩ dom(h2) = ∅. Otherwise, h1 ] h2 is undefined.
Variables are interpreted by a stack, i.e., a partial function s : Var ⇀ Val
with s(null) = null. Furthermore, stacks are canonically extended to tuples of
variables by componentwise application. We call a stack–heap pair (s, h) a state.
The set of all states is States. The semantics of a symbolic heap with respect to
an SID and a state is shown in Figure 1. Note that the semantics of predicate
calls is explained in detail next.

Unfoldings of Predicate Calls The semantics of predicate calls is defined in terms
of unfolding trees. Intuitively, an unfolding tree specifies how predicate calls are
replaced by symbolic heaps according to a given SID. The resulting reduced sym-
bolic heap obtained from an unfolding tree is consequently called an unfolding.
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Formally, let ϕ = ∃z.Σ ∗P1x1∗. . .∗Pmxm : Π . Then a predicate call Pixi may be
replaced by a reduced symbolic heap τ if ‖xi‖ = ‖xτ0‖ and Var(ϕ)∩Var(τ) ⊆ xτ0 .
The result of such a replacement is

ϕ [Pi/τ ] , ∃z zτ . Σ ∗Στ [xτ0/xi] ∗

P1x1 ∗ . . . ∗ Pi−1xi−1 ∗ Pi+1xi+1 ∗ . . . ∗ Pmxm :
(
Π ∪Πτ [xτ0/xi]

)
,

where τ [xτ0/xi] denotes the substitution of each free variable of τ by the corre-
sponding parameter of Pi.

A tree over symbolic heaps SHΦ is a finite partial function t : N∗ ⇀ SHΦ such
that ∅ 6= dom(t) ⊆ N∗ is prefix-closed and for all u ∈ dom(t) with t(u) = ϕ,
we have {1, . . . , ‖Γϕ‖} = {i ∈ N | u i ∈ dom(t)}. The element ε ∈ dom(t)
is called the root of tree t. Furthermore, the subtree t|u of t with root u is
t|u : {v | u v ∈ dom(t)} → SHΦ with t|u(v) , t(u · v).

Definition 2. Let Φ ∈ SID and ϕ ∈ SHΦ. Then the set of unfolding trees of ϕ
w.r.t. Φ, written TΦ(ϕ), is the least set that contains all trees t that satisfy (1)
t(ε) = ϕ and (2) t|i ∈ TΦ(ψi) for each 1 ≤ i ≤ ‖Γϕ‖, where Pϕi ⇐ ψi ∈ Φ.

Note that for every reduced symbolic heap τ , we have ‖Γ τ‖ = 0. Thus, TΦ(τ) =
{t}, where t : {ε} → {τ} : ε 7→ τ , forms the base case in Definition 2. Every
unfolding tree t specifies a reduced symbolic heap JtK, which is obtained by
recursively replacing predicate calls by reduced symbolic heaps:

Definition 3. The unfolding of an unfolding tree t ∈ TΦ(ϕ) is

JtK ,

{
t(ε) , ‖Γ t(ε)‖ = 0

t(ε) [P1/Jt|1K, . . . , Pm/Jt|mK] , ‖Γ t(ε)‖ = m > 0 ,

where we tacitly assume that the variables zt(ε), i.e., the existentially quantified
variables in t(ε), are substituted by fresh variables.

Example 3. Recall from Example 1 the two symbolic heaps τ (upper) and ϕ
(lower) occurring on the right-hand side of the dll predicate. Then t : {ε, 1} →
{ϕ, τ} : ε 7→ ϕ, 1 7→ τ is an unfolding tree of ϕ. The corresponding unfolding is

JtK = ϕ [Pϕ1 /τ ] = ∃z . x1 7→ (z, x2) ∗ emp : {z = x3, x1 = x4}.

Definition 4. The set of all unfoldings of a predicate call Pixi w.r.t. an SID
Φ is denoted by UΦ(Pixi). Analogously, the unfoldings of a symbolic heap ϕ are
UΦ(ϕ) , {JtK | t ∈ TΦ(ϕ)}.

Then, as already depicted in Figure 1, the semantics of predicate calls requires
the existence of an unfolding satisfying a given state. This semantics corresponds
to a particular iteration of the frequently used semantics of predicate calls based
on least fixed points (cf. [11]). Further note that applying the SL semantics to a
given symbolic heap coincides with applying them to a suitable unfolding.

Lemma 1. Let ϕ ∈ SHΦ. Then, for every (s, h) ∈ States, we have

s, h |=Φ ϕ iff ∃τ ∈ UΦ(ϕ) . s, h |=∅ τ.
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3 Heap Automata

In this section we develop a procedure to reason about robustness properties of
symbolic heaps. This procedure relies on the notion of heap automata; a device
that assigns one of finitely many states to any given symbolic heap.

Definition 5. A heap automaton over SHC is a tuple A = (Q,SHC , ∆, F ),
where Q is a finite set of states and F ⊆ Q is a set of final states, respec-
tively. Moreover, ∆ ⊆ Q∗ × SHC × Q is a decidable transition relation such

that (q, ϕ, p) ∈ ∆ implies that ‖q‖ = ‖Γϕ‖. We often write q
ϕ−→A p instead of

(q, ϕ, p) ∈ ∆.

A transition q
ϕ−→A p takes a symbolic heap ϕ and an input state qi for every

predicate call Pi of ϕ—collected in the tuple q—and assigns an output state p
to ϕ. Thus, the intuition behind a transition is that ϕ has a property encoded
by state p if every predicate call Pi of ϕ is replaced by a reduced symbolic heap
τi that has a property encoded by state q[i].

Note that every heap automaton A assigns a state p to a reduced symbolic
heap τ within a single transition of the form ε

τ−→A p. Alternatively, A may
process a corresponding unfolding tree t with JtK = τ . In this case, A proceeds
similarly to the compositional construction of unfoldings (see Definition 3). How-
ever, instead of replacing every predicate call Pi of the symbolic heap t(ε) at the
root of t by an unfolding Jt|iK of a subtree of t, A uses states to keep track of
the properties of these unfolded subtrees. Consequently, A assigns a state p to

the symbolic heap t(ε) if (q1, . . . , qm)
t(ε)−−→A p holds, where for each 1 ≤ i ≤ m,

qi is the state assigned to the unfolding of subtree t|i, i.e., there is a transition

ε
Jt|iK−−−→A qi. It is then natural to require that p should coincide with the state

assigned directly to the unfolding JtK, i.e., ε
JtK−−→A p. Hence, we require all heap

automata considered in this paper to satisfy a compositionality property.

Definition 6. A heap automaton A = (Q,SHC , ∆, F ) is compositional if for
every p ∈ Q, every ϕ ∈ SHC with m ≥ 0 predicate calls Γϕ = P1x1 ∗ . . . ∗Pmxm,
and all reduced symbolic heaps τ1, . . . , τm ∈ RSHC, we have:

∃q ∈ Qm . (q, ϕ, p) ∈ ∆ and
∧

1≤i≤m(ε, τi,q[i]) ∈ ∆
if and only if

(ε, ϕ [P1/τ1, . . . , Pm/τm] , p) ∈ ∆.

Due to the compositionality property, we can safely define the language L(A)
accepted by a heap automaton A as the set of all reduced symbolic heaps that
are assigned a final state, i.e., L(A) , {τ ∈ RSHC | ∃q ∈ F . ε

τ−→A q}.

Example 4. Given a symbolic heap ϕ, let |Σϕ| denote the number of points-
to assertions in ϕ. As a running example, we consider a heap automaton A =
({0, 1},SH, ∆, {1}), where ∆ is given by

q
ϕ−→A p iff p =

{
1, if |Σϕ|+

∑‖q‖
i=1 q[i] > 0

0, otherwise.
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While A is a toy example, it illustrates the compositionality property: Consider
the reduced symbolic heap τ(x, y) = ∃z.emp∗ emp : {x = z, z = y}. Since τ con-

tains no points-to assertions, A rejects τ in a single step, i.e., ε
τ−→A 0 /∈ {1}. The

compositionality property of A ensures that A yields the same result for every un-
folding tree t whose unfolding JtK is equal to τ . For instance, τ is a possible unfold-
ing of the symbolic heap ϕ(x, y) = ∃z.sll(x, z) ∗sll(z, y), where sll is a predi-
cate specifying singly-linked list segments as in Section 1. More precisely, if both
predicate calls are replaced according to the rule sll(x, y)⇐ emp : {x = y}, we
obtain τ again (up to renaming of parameters as per Definition 3). In this case,

A rejects as before: We have ε
emp:{x=y}−−−−−−−→A 0 for both base cases and (0, 0)

ϕ−→A 0
for the symbolic heap ϕ. By the compositionality property, this is equivalent to
ε

τ−→A 0. Analogously, if a predicate call, say the first, is replaced according to

the rule sll(x, y)⇐ ψ, where ψ = ∃z.x 7→ z ∗ sll(z, y), then 0
ψ−→A 1, 1

ψ−→A 1

and (1, 0)
ϕ−→A 1 holds, i.e., A accepts. In general, L(A) is the set of all reduced

symbolic heaps that contain at least one points-to assertion.

While heap automata can be applied to check whether a single reduced sym-
bolic heap has a property of interest, i.e., belongs to the language of a heap
automaton, our main application is directed towards reasoning about infinite
sets of symbolic heaps, such as all unfoldings of a symbolic heap ϕ. Thus, given
a heap automaton A, we would like to answer the following questions:
1. Does there exist an unfolding of ϕ that is accepted by A?
2. Are all unfoldings of ϕ accepted by A?

We start with a special case of the first question in which ϕ is a single predicate
call. The key idea behind our corresponding decision procedure is to transform
the SID Φ to filter out all unfoldings that are not accepted by A. One of our
main results is that such a refinement is always possible.

Theorem 1 (Refinement Theorem). Let A be a heap automaton over SHC
and Φ ∈ SIDC. Then one can effectively construct a refined Ψ ∈ SIDC such that
for each P ∈ Pred(Φ), we have UΨ (Px0) = UΦ(Px0) ∩ L(A).

Proof. We construct Ψ ∈ SIDC over the predicate symbols Pred(Ψ) = (Pred(Φ)×
QA)∪Pred(Φ) as follows: If Px0 ⇐ ϕ ∈ Φ with Γϕ = P1x1 ∗ . . . ∗Pmxm, m ≥ 0,

and (q1, . . . , qm)
ϕ−→A q0, we add a rule to Ψ in which P is substituted by 〈P, q0〉

and each predicate call Pixi is substituted by a call 〈Pi, qi〉xi. Furthermore, for
each q ∈ FA, we add a rule Px0 ⇐ 〈P, q〉x0 to Ψ . See [29] for details. ut

Example 5. Applying the refinement theorem to the heap automaton from Ex-
ample 4 and the SID from Example 1 yields a refined SID given by the rules:

dllx0 ⇐ 〈dll, 1〉x0 〈dll, 0〉x0 ⇐ emp : {x1 = x3, x2 = x4}
〈dll, 1〉x0 ⇐ ∃z . x1 7→ (z, x2) ∗ 〈dll, 0〉(z, x1, x3, x4)

〈dll, 1〉x0 ⇐ ∃z . x1 7→ (z, x2) ∗ 〈dll, 1〉(z, x1, x3, x4)

Hence, the refined predicate dllx0 specifies all non-empty doubly-linked lists.
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Input : SID Φ, I ∈ Pred(Φ), A = (Q,SHC ,∆, F )
Output: yes iff UΦ(Ix) ∩ L(A) = ∅

R ← ∅;
repeat

if R ∩ ({I} × F ) 6= ∅ then return no;
pick a state q in Q; pick a rule P ⇐ ϕ in Φ;
s ← ε; // list of states of A
for i in 1 to ‖Γϕ‖ do

pick (Pϕi , p) ∈ R; append(s,p) // base case if ‖Γϕ‖ = 0
end
if (s, ϕ, q) ∈ ∆ then R ← R ∪ {(P, q)} ;

until R reaches a fixed point (w.r.t. all choices of rules);
return yes

Algorithm 1: On-the-fly construction of a refined SID with emptiness check.

To answer question (1) we then check whether the set of unfoldings of a
refined SID is non-empty. This boils down to a simple reachability analysis.

Lemma 2. Given an SID Φ and a predicate symbol P ∈ Pred(Φ), it is decidable
in linear time whether the set of unfoldings of P is empty, i.e., UΦ(Px) = ∅.

Proof (sketch). It suffices to check whether the predicate P lies in the least set
R such that (1) I ∈ R if Ix0 ⇐ τ ∈ Φ for some τ ∈ RSH, and (2) I ∈ R
if Ix0 ⇐ ϕ ∈ Φ and for each Pϕi xϕi , 1 ≤ i ≤ ‖Γϕ‖, Pϕi ∈ R. The set R is
computable in linear time by a simple backward reachability analysis. ut

As outlined before, putting the Refinement Theorem and Lemma 2 together
immediately yields a decision procedure for checking whether some unfolding of
a predicate symbol P is accepted by a heap automaton: Construct the refined
SID and subsequently check whether the set of unfoldings of P is non-empty.

To extend this result from unfoldings of single predicates to unfoldings of
arbitrary symbolic heaps ϕ, we just add a rule P ⇐ ϕ, where P is a fresh
predicate symbol, and proceed as before.

Corollary 1. Let A be a heap automaton over SHC and Φ ∈ SIDC. Then, for
each ϕ ∈ SHΦ

C , it is decidable whether there exists τ ∈ UΦ(ϕ) such that τ ∈ L(A).

The refinement and emptiness check can also be integrated: Algorithm 1 dis-
plays a simple procedure that constructs the refined SID Ψ from Theorem 1
on-the-fly while checking whether its set of unfoldings is empty for a given pred-
icate symbol. Regarding complexity, the size of a refined SID4 obtained from
an SID Φ and a heap automaton A is bounded by ‖Φ‖ · ‖QA‖M+1, where M
is the maximal number of predicate calls occurring in any rule of Φ. Thus, the

4 We assume a reasonable function ‖.‖ assigning a size to SIDs, symbolic heaps, un-
folding trees, etc. For instance, the size ‖Φ‖ of an SID Φ is given by the product of
its number of rules and the size of the largest symbolic heap contained in any rule.
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aforementioned algorithm runs in time O
(
‖Φ‖ · ‖QA‖M+1 · ‖∆A‖

)
, where ‖∆A‖

denotes the complexity of deciding whether the transition relation ∆A holds for
a given tuple of states and a symbolic heap occurring in a rule of Φ.

Example 6. Resuming our toy example, we check whether some unfolding of the
doubly-linked list predicate dllx0 (see Example 1) contains points-to assertions.
Formally, we decide whether UΦ(dllx0) ∩ L(A) 6= ∅, where A is the heap au-
tomaton introduced in Example 4. Algorithm 1 first picks the rule that maps
dll to the empty list segment and consequently adds 〈dll, 0〉 to the set R of
reachable predicate–state pairs. In the next iteration, it picks the rule that maps
to the non-empty list. Since 〈dll, 0〉 ∈ R, s is set to 0 in the do-loop. Abbre-
viating the body of the rule to ϕ, we have (0, ϕ, 1) ∈ ∆, so the algorithm adds
〈dll, 1〉 to R. After that, no is returned, because 1 is a final state of A. Hence,
some unfolding of dll is accepted by A and thus contains points-to assertions.

We now revisit question (2) from above–are all unfoldings accepted by a heap
automaton?–and observe that heap automata enjoy several closure properties.

Theorem 2 ([29]). Let A and B be heap automata over SHC. Then there exist
heap automata C1,C2,C3 over SHC with L(C1) = L(A) ∪ L(B), L(C2) = L(A) ∩
L(B), and L(C3) = RSHC \ L(A), respectively.

Then, by the equivalence X ⊆ Y ⇔ X∩Y = ∅ and Theorem 2, it is also decidable
whether every unfolding of a symbolic heap is accepted by a heap automaton.

Corollary 2. Let A be a heap automaton over SHC and Φ ∈ SIDC. Then, for
each ϕ ∈ SHC, it is decidable whether UΦ(ϕ) ⊆ L(A) holds.

Note that complementation of heap automata in general leads to an exponen-
tially larger state space and exponentially higher complexity of evaluating ∆.
Thus, UΦ(ϕ) ⊆ L(A) is decidable in O

(
(‖ϕ‖+ ‖Φ‖) · ‖2QA‖2(M+1) · ‖∆A‖

)
. In

many cases it is, however, possibly to construct smaller automata for the com-
plement directly to obtain more efficient decision procedures. For example, this
is the case for most heap automata considered in Section 4.

Apart from decision procedures, Theorem 1 enables systematic refinement of
SIDs according to heap automata in order to establish desired properties. For
instance, as shown in Section 4, an SID in which every unfolding is satisfiable
can be constructed from any given SID. Another application of Theorem 1 is
counterexample generation for systematic debugging of SIDs that are manually
written as data structure specifications or even automatically generated. Such
counterexamples are obtained by constructing the refined SID w.r.t. the comple-
ment of a given heap automaton. Then an unfolding of the SID that is rejected by
the original heap automaton, i.e., a counterexample, can be reconstructed from
a (failed) emptiness check. Further applications are examined in the following.

Remark 1. While we focus on the well-established symbolic heap fragment of
separation logic, we remark that the general reasoning principle underlying heap
automata is also applicable to check robustness properties of richer fragments.
For example, permissions [7] are easily integrated within our framework.
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4 A Zoo of Robustness Properties

This section demonstrates the wide applicability of heap automata to decide and
establish robustness properties of SIDs. In particular, the sets of symbolic heaps
informally presented in the introduction can be accepted by heap automata over
the set SHFV≤α of symbolic heaps with at most α ≥ 0 free variables (cf. Ex-
ample 2). Furthermore, we analyze the complexity of related decision problems.
Towards a formal presentation, some terminology is needed.

Definition 7. The set of tight models of a symbolic heap ϕ ∈ SHΦ is defined
as Models(ϕ) , {(s, h) ∈ States |dom(s) = xϕ0 , s, h |=Φ ϕ}.

We often consider relationships between variables that hold in every tight model
of a reduced symbolic heap. Formally, let τ , ∃z.Σ : Π ∈ RSH. Moreover, let
strip(τ) be defined as τ except that each of its variables is free, i.e., strip(τ) , Σ :
Π . Then two variables x, y ∈ Var(τ) are definitely (un)equal in τ , written x =τ y
(x 6=τ y), if s(x) = s(y) (s(x) 6= s(y)) holds for every (s, h) ∈ Models(strip(τ)).
Analogously, a variable is definitely allocated if it is definitely equal to a variable
occurring on the left-hand side of a points-to assertion. Thus the set of definitely
allocated variables in τ is given by

alloc(τ) = {x ∈ Var(τ) | ∀(s, h) ∈ Models(strip(τ)) . s(x) ∈ dom(h)}.

Finally, a variable x definitely points-to variable y in τ , written x 7→τ y, if for
every (s, h) ∈ Models(strip(τ)), we have s(y) ∈ h(s(x)).

Example 7. Recall from Example 1 the symbolic heap τ in the first rule of tllx0.
Then alloc(τ) = {x1, x2} and neither x1 =τ x3 nor x1 6=τ x3 holds. Further,

x1 =τ x2 is true, x1 =τ x3 is false, x1 6=τ null is true,

x1 6=τ x3 is false, x1 7→τ x3 is true, x3 7→τ x1 is false.

Remark 2. All definite relationships are decidable in polynomial time. In fact,
each of these relationships boils down to first adding inequalities x 6= null and
x 6= y for every pair x, y of distinct variables occurring on the left-hand side of
points-to assertions to the set of pure formulas and then computing its (reflexive),
symmetric (and transitive) closure with respect to 6= (and =). Furthermore,
if the closure contains a contradiction, e.g., null 6= null, it is set to all pure
formulas over the variables of a given reduced symbolic heap. After that, it is
straightforward to decide in polynomial time whether variables are definitely
allocated, (un)equal or pointing to each other.

4.1 Tracking Equalities and Allocation

Consider the symbolic heap ϕ , ∃x, y, z.P1(x, y) ∗ P2(y, z) : {x = z}. Clearly,
ϕ is unsatisfiable if x = y holds for every unfolding of P1(x, y) and y 6= z holds
for every unfolding of P2(y, z). Analogously, ϕ is unsatisfiable if x is allocated
in every unfolding of P1(x, y) and z is allocated in every unfolding of P2(y, z),
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because x 7→ ∗ z 7→ implies x 6= z. This illustrates that robustness properties,
such as satisfiability, require detailed knowledge about the relationships between
parameters of predicate calls. Consequently, we construct a heap automaton
ATRACK that keeps track of this knowledge. More precisely, ATRACK should accept
those unfoldings in which it is guaranteed that
– given a set A ⊆ x0, exactly the variables in A are definitely allocated, and
– exactly the (in)equalities in a given set of pure formulas Π hold.

Towards a formal construction, we formalize the desired set of symbolic heaps.

Definition 8. Let α ∈ N>0 and x0 be a tuple of variables with ‖x0‖ = α.
Moreover, let A ⊆ x0 and Π be a finite set of pure formulas over x0. The
tracking property TRACK(α,A,Π ) is the set

{τ(x0) ∈ RSHFV≤α | ∀i, j . x0[i] ∈ A iff x0[i] ∈ alloc(τ)

and x0[i] ∼ x0[j] ∈ Π iff xτ0 [i] ∼τ xτ0 [j]}.

Intuitively, our heap automaton ATRACK stores in its state space which free vari-
ables are definitely equal, unequal and allocated. Its transition relation then

enforces that these stored information are correct, i.e., a transition q
ϕ−→ATRACK

p
is only possible if the information stored in p is consistent with ϕ and with the
information stored in the states q for the predicate calls of ϕ.

Formally, let x0 be a tuple of variables with ‖x0‖ = α and Pure(x0) ,
2{x0[i]∼x0[j] | 0≤i,j≤α,∼∈{=, 6= }} be the powerset of all pure formulas over x0. The
information stored by our automaton consists of a set of free variables B ⊆ x0

and a set of pure formulas Λ ∈ Pure(x0). Now, for some unfolding τ of a symbolic
heap ϕ, assume that B is chosen as the set of all definitely allocated free variables
of τ . Moreover, assume Λ is the set of all definite (in)equalities between free
variables in τ . We can then construct a reduced symbolic heap kernel(ϕ, (B,Λ))
from B and Λ that precisely captures these relationships between free variables.

Definition 9. Let ϕx0 be a symbolic heap, B ⊆ x0 and Λ ∈ Pure(x0). Further-
more, let min(B,Λ) = {xi0 ∈ B | ¬∃x

j
0 ∈ B.j < i and xi0 =Λ xj0} be the set of

minimal (w.r.t. to occurrence in x0) allocated free variables. Then

kernel(ϕ, (B,Λ)) , Fx0[i]∈min(B,Λ) xϕ0 [i] 7→ null : Λ,

where we write Fs∈S s 7→ null for s1 7→ null∗ . . .∗ sk 7→ null, S = {s1, . . . , sk}.

Consequently, the relationships between free variables remain unaffected if a
predicate call of ϕ is replaced by kernel(ϕ, (B,Λ)) instead of τ . Thus, ATRACK has
one state per pair (B,Λ). In the transition relation of ATRACK it suffices to replace
each predicate call Px0 by the corresponding symbolic heap kernel(Px0, (B,Λ)).
and check whether the current state is consistent with the resulting symbolic
heap. Intuitively, a potentially large unfolding of a symbolic heap ϕ with m
predicate calls is “compressed” into a small one that contains all necessary in-
formation about parameters of predicate calls. Here, q is a sequence of pairs
(B,Λ) as explained above. Formally,
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Definition 10. ATRACK = (Q,SHFV≤α , ∆, F ) is given by:

Q , 2x0 × Pure(x0), F , {(A,Π )},

∆ : q
ϕ−→ATRACK

(A0, Π0) iff ∀x, y ∈ x0 .

y ∈ A0 ↔ yϕ ∈ alloc(compress(ϕ,q))

and x ∼ y ∈ Π0 ↔ xϕ ∼compress(ϕ,q) y
ϕ ,

compress(ϕ,q) , ϕ [P1/kernel(P1x1,q[1]), . . . , Pm/kernel(Pmxm,q[m])] ,

where m = ‖Γϕ‖ = ‖q‖ is the number of predicate calls in ϕ and yϕ denotes the
free variable of ϕ corresponding to y ∈ x0, i.e., if y = x0[i] then yϕ = xϕ0 [i].

Since compress(τ, ε) = τ holds for every reduced symbolic heap τ , it is straight-
forward to show that L(ATRACK) = TRACK(α,A,Π). Furthermore, ATRACK satisfies
the compositionality property [29]. Hence,

Lemma 3. For all α ∈ N>0 and all sets A ⊆ x0, Π ∈ Pure(x0), there is a heap
automaton over SHFV≤α accepting TRACK(α,A,Π ).

4.2 Satisfiability

Tracking relationships between free variables of symbolic heaps is a useful aux-
iliary construction that serves as a building block in automata for more natural
properties. For instance, the heap automaton ATRACK constructed in Definition 10
can be reused to deal with the
Satisfiability problem (SL-SAT): Given Φ ∈ SID, ϕ ∈ SHΦ, decide whether
ϕ is satisfiable, i.e., there exists (s, h) ∈ States such that s, h |=Φ ϕ.

Theorem 3. For each α ∈ N>0, there is a heap automaton over SHFV≤α accept-

ing the set SAT(α) , {τ ∈ RSHFV≤α | τ is satisfiable} of all satisfiable reduced
symbolic heaps with at most α free variables.

Proof. A heap automaton accepting SAT(α) is constructed as in Definition 10
except for the set of final states F , {(A,Π ) | null 6= null /∈ Π} (cf. [29]). ut

A heap automaton accepting the complement of SAT(α) is constructed analo-
gously by choosing F , {(A,Π ) | null 6= null ∈ Π}. Thus, together with
Corollary 1, we obtain a decision procedure for the satisfiability problem similar
to the one proposed in [11]. Regarding complexity, the heap automaton ASAT

from Definition 10 has 22α
2+α states. By Remark 2, membership in ∆ASAT

is
decidable in polynomial time. Thus, by Corollary 1, our construction yields an
exponential-time decision procedure for SL-SAT. If the number of free variables
α is bounded, an algorithm in NP is easily obtained by guessing a suitable un-
folding tree of height at most ‖QASAT

‖ and running ASAT on it to check whether
its unfolding is decidable (cf. [29]). This is in line with the results of Brotherston
et al. [11], where the satisfiability problem is shown to be ExpTime–complete
in general and NP–complete if the number of free variables is bounded. These
complexity bounds even hold for the following special case [13]:
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Restricted satisfiability problem (SL-RSAT) Given an SID Φ that con-
tains no points-to assertions, and a predicate symbol P , decide whether Px is
satisfiable w.r.t. Φ. The complement of this problem is denoted by SL-RSAT.

4.3 Establishment

A symbolic heap ϕ is established if every existentially quantified variable of every
unfolding of ϕ is definitely equal to a free variable or definitely allocated.5 This
property is natural for symbolic heaps that specify the shape of data structures;
for example, the SIDs in Example 1 define sets of established symbolic heaps.
Further, establishment is often required to ensure decidability of the entailment
problem [26,27]. Establishment can also be checked by heap automata.

Theorem 4. For all α ∈ N>0, there is a heap automaton over SHFV≤α accepting
the set of all established reduced symbolic heaps with at most α free variables:

EST(α) , {τ ∈ RSHFV≤α | ∀y ∈ Var(τ) . y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y}

Proof. The main idea in the construction of a heap automaton AEST for EST(α) is
to verify that every variable is definitely allocated or equal to a free variable while
running ATRACK (see Definition 10) in parallel to keep track of the relationships
between free variables. An additional flag q ∈ {0, 1} is attached to each state of
ATRACK to store whether the establishment condition is already violated (q = 0)
or holds so far (q = 1). Formally, AEST = (Q,SHFV≤α , ∆, F ), where

Q , QATRACK
× {0, 1}, F , QATRACK

× {1},

∆ : (p1, q1) . . . (pm, qm)
ϕ−→AEST

(p0, q0)

iff p1 . . . pm
ϕ−→ATRACK

p0 and q0 = min{q1, . . . , qm, check(ϕ, p1 . . . pm)}.

Here, check : SHFV≤α ×Q∗ATRACK
→ {0, 1} is a predicate given by

check(ϕ,p) ,


1 , if ∀y ∈ Var(ϕ) . y ∈ alloc(compress(ϕ,p))

or ∃x ∈ xϕ0 . x =compress(ϕ,p) y

0 , otherwise ,

where compress(ϕ,p) is the reduced symbolic heap obtained from the tracking
property as in Definition 10. Moreover, unlike in the construction of ATRACK, we
are not interested in a specific set of relationships between the pure formulas, so
any state of ATRACK is chosen as a final state provided that predicate check could
be evaluated to 1. See [29] for a correctness proof. ut

Again, it suffices to swap the final- and non-final states of AEST to obtain a heap
automaton AEST accepting the complement of EST(α). Thus, by Corollary 1 and
Remark 2, we obtain an ExpTime decision procedure for the
Establishment problem (SL-EST): Given an SID Φ and ϕ ∈ SHΦ, decide
whether every τ ∈ UΦ(ϕ) is established.

5 Sometimes this property is also defined by requiring that each existentially quantified
variable is ”eventually allocated” [26].
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Lemma 4. SL-RSAT is polynomial-time reducible to SL-EST. Hence, the es-
tablishment problem SL-EST is ExpTime–hard in general and coNP–hard if
the maximal number of free variables is bounded.

Proof. Let (Φ,P ) be an instance of SL-RSAT. Moreover, let ϕx0 , ∃zy . Pz :
{x0[1] = null, y 6= null}. As y is neither allocated nor occurs in Pz, ϕ is estab-
lished iff x0[1] = y iff null 6= null iff Px is unsatisfiable. Hence, (Φ,ϕ) ∈ SL-EST
iff (Φ,P ) ∈ SL-RSAT. A full proof is found in [29]. ut

Lemma 5. SL-EST is in coNP for a bounded number of free variables α.

Proof. Let (Φ,ϕ) be an instance of SL-EST, N = ‖Φ‖+‖ϕ‖, and M ≤ N be the
maximal number of predicate calls occurring in ϕ and any rule of Φ. Moreover,
let AEST be a heap automaton accepting EST(α)—the complement of EST(α) (cf.
Theorem 4). Since α is bounded by a constant, so is the number of states of

AEST, namely ‖QAEST
‖ ≤ k = 22α

2+α+1. Now, let TΦ(ϕ)≤k denote the set of all
unfolding trees t ∈ TΦ(ϕ) of height at most k. Clearly, each of these trees is of
size ‖t‖ ≤ Mk ≤ Nk, i.e., polynomial in N . Moreover, let ω : dom(t) → QAEST

be a function mapping each node of t to a state of AEST. Again, ω is of size
polynomial in N ; as such ‖ω‖ ≤ k · Nk. Let Ωt denote the set of all of these
functions ω for a given unfolding tree t with ω(ε) ∈ FAEST

. Given an unfolding

tree t ∈ TΦ(ϕ)≤k and ω ∈ Ωt, we can easily decide whether ε
JtK−−→AEST

ω(ε) holds:
For each u, u1, . . . , un ∈ dom(t), u(n + 1) /∈ dom(t), n ≥ 0, it suffices to check

whether ω(u1) . . . ω(un)
t(u)−−→AEST

ω(u). Since, by Remark 2, each of these checks
can be performed in time polynomial in N the whole procedure is feasible in
polynomial time. We now show that (Φ,ϕ) ∈ SL-EST if and only if

∀t ∈ TΦ(ϕ)≤k . ∀ω ∈ Ωt . not ε
JtK−−→AEST

ω(ε).

Since each t ∈ TΦ(ϕ) and each ω ∈ Ωt is of size polynomial inN , this is equivalent
to SL-EST being in coNP. To complete the proof, note that UΦ(ϕ) ⊆ EST(α)
holds iff JtK /∈ EST(α) for each t ∈ TΦ(ϕ). Furthermore, by a standard pumping
argument, it suffices to consider trees in TΦ(ϕ)≤k: If there exists a taller tree t
with JtK ∈ EST(α) then there is some path of length greater k in t on which two
nodes are assigned the same state by a function ω ∈ Ωt proving membership of
t in EST(α). This path can be shortened to obtain a tree of smaller height. ut

Putting upper and lower bounds together, we conclude:

Theorem 5. SL-EST is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

4.4 Reachability

Another family of robustness properties is based on reachability questions, e.g.,
“is every location of every model of a symbolic heap reachable from the location
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of a program variable?” or “is every model of a symbolic heap acyclic?”. For
established SIDs, heap automata accepting these properties are an extension of
the tracking automaton introduced in Definition 10.

More precisely, a variable y is definitely reachable from x in τ ∈ RSH, written
x  τ y, if and only if x 7→τ y or there exists a z ∈ Var(τ) such that x 7→τ z
and z  τ y.6 Note that we define reachability to be transitive, but not reflexive.
As for the other definite relationships between variables, definite reachability is
computable in polynomial time for reduced symbolic heaps, e.g., by performing
a depth-first search on the definite points-to relation 7→τ . Note that our notion
of reachability does not take variables into account that are only reachable from
one another in some models of a reduced symbolic heap. For example, consider
the symbolic heap τ = x 7→ y ∗ z 7→ null. Then x τ z does not hold, but there
exists a model (s, h) with s(z) = s(y) ∈ h(s(x)). Thus, reachability introduced
by unallocated variables is not detected. However, the existence (or absence) of
such variables can be checked first due to Theorem 4.

Theorem 6. Let α ∈ N>0 and R ⊆ x0 × x0 be a binary relation over the
variables x0 with ‖x0‖ = α. Then the reachability property REACH(α,R), given
by the set {τ ∈ RSHFV≤α | ∀i, j . (x0[i] ,x0[j]) ∈ R iff xτ0 [i]  τ xτ0 [j]}, can be
accepted by a heap automaton over SHFV≤α .

Proof (sketch). A heap automaton AREACH accepting REACH(α,R) is constructed
similarly to the heap automaton ATRACK introduced in Definition 10. The main
difference is that AREACH additionally stores a binary relation S ⊆ x0 × x0 in its
state space to remember which free variables are reachable from one another.
Correspondingly, we adapt Definition 9 as follows:

kernel(ϕ, (B,Λ, S)) , ∃z . Fmin(B,Λ) xϕ0 [i] 7→ (vi) : Λ ,

where z is a fresh variable and vi[j] , xϕ0 [j] if (i, j) ∈ S and vi[j] , z, otherwise.
The other parameters ϕ,B,Λ are the same as in Definition 10. Note that the
additional variable z is needed to deal with allocated free variables that cannot
reach any other free variable, including null. Moreover, the set of final states is
FAREACH

= QATRACK
× {R}. Correctness of this encoding is verified in the transition

relation. Hence, the transition relation of AREACH extends the transition relation of
ATRACK by the requirement (x, y) ∈ S iff xϕ  compress(ϕ,p) y

ϕ for every pair of free
variables x, y ∈ x0. Here, compress(ϕ,p) is defined as in Definition 10 except that
the new encoding kernel(Pixi,q[i]) from above is used. Since compress(τ, ε) = τ
holds for every reduced symbolic heap τ , it is straightforward to verify that
L(AREACH) = REACH(α). Further details are found in [29]. ut

Furthermore, we consider the related
Reachability problem (SL-REACH): Given an SID Φ, ϕ ∈ SHΦ with α =
‖xϕ0 ‖ and variables x, y ∈ xϕ0 , decide whether x τ y holds for all τ ∈ UΦ(ϕ).

Theorem 7. The decision problem SL-REACH is ExpTime–complete in gen-
eral and coNP–complete if the number of free variables is bounded.
6 The definite points-to relation 7→τ was defined at the beginning of Section 4.
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Proof. Membership in ExpTime follows from our upper bound derived for Algo-
rithm 1, the size of the state space of AREACH, which is exponential in α, and Re-
mark 2. If α is bounded, membership in coNP is shown analogously to Lemma 5.
Lower bounds are shown by reducing SL-RSAT to SL-REACH. Formally, let
(Φ,P ) be an instance of SL-RSAT. Moreover, let ϕx0 , ∃z . x0[1] 7→ null ∗
Pz : {x0[2] 6= null}. As x0[2] is neither allocated nor null, x0[2] is not definitely
reachable from x0[1] in any model of ϕ. Hence (Φ,ϕ,x0[1] ,x0[2]) ∈ SL-REACH
iff P is unsatisfiable. A detailed proof is found in [29]. ut

4.5 Garbage-Freedom

Like the tracking automaton ATRACK, the automaton AREACH is a useful ingredient
in the construction of more complex heap automata.

For instance, such an automaton can easily be modified to check whether a
symbolic heap is garbage-free, i.e., whether every existentially quantified variable
in every unfolding is reachable from some program variable.7

Garbage-freedom is a natural requirement if SIDs represent data structure
specifications. For example, the SIDs in Example 1 are garbage-free. Further-
more, this property is needed by the approach of Habermehl et al. [24].

Lemma 6. For each α ∈ N>0, the set GFREE(α), given by

{τ ∈ RSHFV≤α | ∀y ∈ Var(τ) . ∃x ∈ xτ0 . x =τ y or x τ y},

of garbage-free symbolic heaps can be accepted by a heap automaton over SHFV≤α .

Proof (sketch). A heap automaton AGFREE accepting GFREE(α) is constructed sim-
ilarly to the heap automaton AEST introduced in the proof of Theorem 4. The
main difference is that heap automaton AREACH is used instead of ATRACK. Fur-
thermore, the predicate check : SHFV≤α ×Q∗AREACH

→ {0, 1} is redefined to verify
that every variable of a symbolic heap ϕ is established in compress(ϕ,p), where
compress(ϕ,p) is the same as in the construction of AREACH (see Theorem 6):

check(ϕ,p) ,


1 , if ∀y ∈ Var(ϕ) .∃x ∈ xϕ0 .

x =compress(ϕ,p) y or x compress(ϕ,p) y

0 , otherwise ,

Since compress(τ, ε) = τ holds for every reduced symbolic heap τ , it is straight-
forward that L(AGFREE) = GFREE(α). A proof is found in [29]. ut

To guarantee that symbolic heaps are garbage-free, we solve the
Garbage-freedom problem (SL-GF): Given an SID Φ and ϕ ∈ SHΦ, decide
whether every τ ∈ UΦ(ϕ) is garbage-free, i.e., τ ∈ GFREE(α) for some α ∈ N.

Theorem 8. SL-GF is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.
7 Note that a variable may be reachable from different program variables in different

unfoldings as garbage-freedom is formally defined as a set of reduced symbolic heaps
in which no form of disjunction exists (cf. Lemma 6).
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4.6 Acyclicity

Automatic termination proofs of programs frequently rely on the acyclicity of
employed data structures, i.e., they assume that no variable is reachable from
itself (cf. [39]). Hence, we are interested in verifying that an SID is acyclic.

Lemma 7. For each α ∈ N>0, the set of all weakly acyclic symbolic heaps

ACYCLIC(α) , {τ ∈ RSHFV≤α | null 6=τ null or ∀x ∈ Var(τ) . not x τ x}

can be accepted by a heap automaton over SHFV≤α .

Here, the condition null 6=τ null ensures that an unsatisfiable reduced symbolic
heap is considered weakly acyclic. Further, note that our notion of acyclicity
is weak in the sense that dangling pointers may introduce cyclic models that
are not considered. For example, ∃z.x 7→ z is weakly acyclic, but contains cyclic
models if x and z are aliases. However, weak acyclicity coincides with the absence
of cyclic models for established SIDs—a property considered in Section 4.3.

Proof (sketch). A heap automaton AACYCLIC for the set of all weakly acyclic re-
duced symbolic heaps is constructed analogously to the heap automaton AGFREE

in the proof of Lemma 6. The main difference is the predicate check : SHFV≤α ×
Q∗AREACH

→ {0, 1}, which now checks whether a symbolic heap is weakly acyclic:

check(ϕ,p) ,

{
1 , if ∀y ∈ Var(ϕ) . not x compress(ϕ,p) x

0 , otherwise.

Moreover, the set of final states FAACYCLIC
is chosen such that accepted symbolic

heaps are unsatisfiable or check(ϕ,p) = 1. See [29] for details. ut

For example, the symbolic heap sllx0 is weakly acyclic, but dllx0 (cf. Exam-
ple 1) is not. In general, we are interested in the
Acyclicity problem (SL-AC): Given an SID Φ and ϕ ∈ SHΦ, decide whether
every τ ∈ UΦ(ϕ) is weakly acyclic, i.e., τ ∈ ACYCLIC(α) for some α ∈ N.

Theorem 9. SL-AC is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

Proof. Similar to the proof of Theorem 5. For lower bounds, we show that
SL-RSAT is reducible to SL-AC. Let (Φ,P ) be an instance of SL-RSAT. More-
over, let ϕx0 = ∃z.x0[1] 7→ x0[1] ∗ Pz. Since x0[1] is definitely reachable from
itself, ϕx0 is weakly acyclic iff Px0 is unsatisfiable. Thus, (Φ,ϕ) ∈ SL-AC iff
(Φ,P ) ∈ SL-RSAT. See [29] for details. ut

5 Implementation

We developed a prototype of our framework—called Harrsh8—that implements
Algorithm 1 as well as all heap automata constructed in the previous sections.

8 Heap Automata for Reasoning about Robustness of Symbolic Heaps
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In addition, our tool supports automatic refinement of SIDs. Algorithms for
counterexample generation and automatic combination of decision procedures
can be extracted from the (constructive) proof of Theorem 2, but have not yet
been implemented. The code, the tool and our experiments are available online.9

For our experimental results, we first considered common SIDs from the lit-
erature, such as singly- and doubly-linked lists, trees, trees with linked-leaves
etc. For each of these SIDs, we checked all robustness properties presented
throughout this paper, i.e., the existence of points-to assertions (Example 4),
the tracking property TRACK(B,Λ) (Section 4.1), satisfiability (Section 4.2), es-
tablishment (Section 4.3), the reachability property REACH(α,R) (Section 4.4),
garbage-freedom (Section 4.5), and weak acyclicity (Section 4.6). All in all, our
implementation of Algorithm 1 takes 300ms to successfully check these proper-
ties on all 45 problem instances. Since the SIDs under consideration are typically
carefully handcrafted to be robust, the low runtime is to be expected. Moreover,
we ran heap automata on benchmarks of the tool Cyclist [11]. In particular,
our results for the satisfiability problem—the only robustness property checked
by both tools—were within the same order of magnitude.

Further details are found in [29].

6 Entailment Checking with Heap Automata

So far, we have constructed heap automata for reasoning about robustness prop-
erties, such as satisfiability, establishment and acyclicity. This section demon-
strates that our approach can also be applied to discharge entailments for certain
fragments of separation logic. Formally, we are concerned with the
Entailment problem (SL-ENTAILΦC ): Given symbolic heaps ϕ,ψ ∈ SHΦ

C ,
decide whether ϕ |=Φ ψ holds, i.e., ∀(s, h) ∈ States . s, h |=Φ ϕ implies s, h |=Φ ψ.

Note that the symbolic heap fragment of separation logic is not closed under
conjunction and negation. Thus, a decision procedure for satisfiability (cf. The-
orem 3) does not yield a decision procedure for the entailment problem. It is,
however, essential to have a decision procedure for entailment, because this prob-
lem underlies the important rule of consequence in Hoare logic [25]. In the words
of Brotherston et al. [10], “effective procedures for establishing entailments are
at the foundation of automatic verification based on separation logic”.

We show how our approach to decide robustness properties, is applicable to
discharge entailments for certain fragments of symbolic heaps. This results in an
algorithm deciding entailments between so-called determined symbolic heaps for
SIDs whose predicates can be characterized by heap automata.

Definition 11. A reduced symbolic heap τ is determined if all tight models
of τ are isomorphic.10 If τ is also satisfiable then we call τ well-determined.

9 https://bitbucket.org/jkatelaan/harrsh/
10 Two states (s1, h1), (s2, h2) are isomorphic iff dom(s1) = dom(s2) and there exists

a bijective function g : dom(h1) → dom(h2) such that for all x ∈ dom(s1) and all
` ∈ dom(h1), we have g(s1(x)) = s2(x) and g(h1(`)) = h2(g(`)), where g is lifted to
tuples by componentwise application.

https://bitbucket.org/jkatelaan/harrsh/
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Moreover, for some SID Φ, a symbolic heap ϕ ∈ SHΦ is (well-)determined if all
of its unfoldings τ ∈ UΦ(ϕ) are (well-)determined. Consequently, an SID Φ is
(well-)determined if Px is (well-)determined for each predicate symbol P in Φ.

We present two sufficient conditions for determinedness of symbolic heaps. First,
a reduced symbolic heap τ is determined if all equalities and inequalities between
variables are explicit, i.e., ∀x, y ∈ Var(τ) . x = y ∈ Πτ or x 6= y ∈ Πτ [29]. Fur-
thermore, a reduced symbolic heap τ is determined if every variable is definitely
allocated or definitely equal to null, i.e., ∀x ∈ Var(τ) . x ∈ alloc(τ) or x =τ null.
These two notions can also be combined: A symbolic heap is determined if every
variable x is definitely allocated or definitely equal to null or there is an explicit
pure formula x ∼ y between x and each other variable y.

Example 8. By the previous remark, the SID generating acyclic singly-linked
lists from Section 1 is well-determined. Furthermore, although the predicate
dllx0 from Example 1 is not determined, the following symbolic heap is well-
determined: x0[4] 7→ null ∗ dllx0 : {x0[1] 6= x0[3]}.

6.1 Entailment between predicate calls

We start by considering entailments between predicate calls of well-determined
SIDs. By definition, an entailment ϕ |=Φ ψ holds if for every stack–heap pair
(s, h) that satisfies an unfolding of ϕ, there exists an unfolding of ψ that is
satisfied by (s, h) as well. Our first observation is that, for well-determined un-
foldings, two quantifiers can be switched: It suffices for each unfolding σ of ϕ to
find one unfolding τ of ψ such that every model of σ is also a model of τ .

Lemma 8. Let Φ ∈ SID and P1, P2 be predicate symbols with ar(P1) = ar(P2).
Moreover, let UΦ(P1x) be well-determined. Then

P1x |=Φ P2x iff ∀σ ∈ UΦ(P1x) .∃τ ∈ UΦ(P2x) . σ |=∅ τ.

Note that, even if only well-determined predicate calls are taken into account, it is
undecidable in general whether an entailment P1x0 |=Φ P2x0 holds [1, Theorem
3]. To obtain decidability, we additionally require the set of reduced symbolic
heaps entailing a given predicate call to be accepted by a heap automaton.

Definition 12. Let Φ ∈ SIDC and ϕ ∈ SHΦ
C . Then

HCϕ,Φ , {σ ∈ RSHC | ‖xσ0‖ = ‖xϕ0 ‖ and ∃τ ∈ UΦ(ϕ) . σ |=∅ τ}

is the set of all reduced symbolic heaps in SHC over the same free variables as ϕ
that entail an unfolding of ϕ.

Example 9. Let ϕ(x0) = tllx0 : {x0[1] 6= x0[2]}, where tll is a predicate of

SID Φ introduced in Example 1. Then HFV≤3

ϕ,Φ consists of all reduced symbolic
heaps with three free variables representing non-empty trees with linked leaves.
In particular, note that these symbolic heaps do not have to be derived using
the SID Φ. For instance, they might contain additional pure formulas.
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In particular, HCPx,Φ can be accepted by a heap automaton for common predi-
cates specifying data structures such as lists, trees, and trees with linked leaves.
We are now in a position to decide entailments between predicate calls.

Lemma 9. Let Φ ∈ SIDC and P1, P2 ∈ Pred(Φ) be predicate symbols having the
same arity. Moreover, let UΦ(P1x) be well-determined and HCP2x,Φ

be accepted
by a heap automaton over SHC. Then the entailment P1x |=Φ P2x is decidable.

Proof. Let AP2x be a heap automaton over SHC accepting HCP2x,Φ
. Then

P1x |=Φ P2x

⇔ ∀σ ∈ UΦ(P1x) .∃τ ∈ UΦ(P2x) . σ |=∅ τ (Lemma 8)

⇔ ∀σ ∈ UΦ(P1x) . σ ∈ HCP2x,Φ (Definition 12)

⇔ UΦ(P1x) ⊆ L(AP2x). (L(AP2x) = HCP2x,Φ
)

where the last inclusion is decidable by Corollary 2. ut

6.2 Entailment between symbolic heaps

Our next step is to generalize Lemma 9 to arbitrary determined symbolic heaps ϕ
instead of single predicate calls. This requires the construction of heap automata
Aϕ accepting HCϕ,Φ. W.l.o.g. we assume SIDs and symbolic heaps to be well -
determined instead of determined only. Otherwise, we apply Theorem 1 with
the heap automaton ASAT (cf. Theorem 3) to obtain a well-determined SID.
Thus, we restrict our attention to the following set.

Definition 13. The set SH〈α〉 is given by 〈α〉 : SH → {0, 1}, where 〈α〉(ϕ) = 1
iff ϕ is well-determined and every predicate call of ϕ has ≤ α ∈ N parameters.

Clearly, 〈α〉 is decidable, because satisfiability is decidable (cf. Theorem 3) and
verifying that a symbolic heap has at most α parameters amounts to a simple
syntactic check. Note that, although the number of parameters in predicate calls
is bounded by α, the number of free variables of a symbolic heap ϕ ∈ SH〈α〉 is
not. We then construct heap automata for well-determined symbolic heaps.

Theorem 10 ([29]). Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for
each predicate symbol P ∈ Pred(Φ), let there be a heap automaton over SH〈α〉

accepting H
〈α〉
Px,Φ. Then, for every well-determined symbolic heap ϕ ∈ SHΦ, there

is a heap automaton over SH〈α〉 accepting H
〈α〉
ϕ,Φ.

Remark 3. Brotherston et al. [13] studied the model-checking problem for sym-
bolic heaps, i.e., the question whether s, h |=Φ ϕ holds for a given stack–heap pair
(s, h), an SID Φ, and a symbolic heap ϕ ∈ SHΦ. They showed that this problem
is ExpTime–complete in general and NP–complete if the number of free vari-
ables is bounded. We obtain these results for determined symbolic heaps in a
natural way: Observe that every stack–heap pair (s, h) is characterized by an es-
tablished, well-determined, reduced symbolic heap, say τ , that has exactly (s, h)
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Input : established SID Φ, ϕ,ψ ∈ SHΦ determined,
heap automaton APi for each Pi ∈ Pred(Φ)

Output: yes iff ϕ |=Φ ψ holds

Ω ← {Pxϕ0 ⇐ ϕ} ∪ Φ ; // P fresh predicate symbol

Ψ ← removeUnsat(Ω) ; // Theorem 3

Aψ ← automaton(ψ,AP1 ,AP2 , . . .) ; // Theorem 10

Aψ ← complement(Aψ) ; // Lemma 2

return yes iff UΨ (Px) ∩ L(Aψ) = ∅ ; // Algorithm 1

Algorithm 2: Decision procedure for ϕ |=Φ ψ.

as a tight model up to isomorphism. Then Theorem 10 yields a heap automaton

Aτ accepting H
〈α〉
τ,Φ , where α is the maximal arity of any predicate in Φ. Thus,

s, h |=Φ ϕ iff L(Aτ )∩UΦ(ϕ) 6= ∅, which is decidable by Corollary 1. Further, note
that the general model-checking problem is within the scope of heap automata.
A suitable state space is the set of all subformulas of the symbolic heap τ .

Coming back to the entailment problem, it remains to put our results together.
Algorithm 2 depicts a decision procedure for the entailment problem that, given
an entailment ϕ |=Φ ψ, first removes all unsatisfiable unfoldings of ϕ, i.e. ϕ
becomes well-determined. After that, our previous reasoning techniques for heap
automata and SIDs from Section 3 are applied to decide whether ϕ |=Φ ψ holds.

Theorem 11. Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for every

P ∈ Pred(Φ), let H
〈α〉
Px,Φ be accepted by a heap automaton over SH〈α〉. Then

ϕ |=Φ ψ is decidable for determined ϕ,ψ ∈ SHΦ with xϕ0 = xψ0 .

Proof. We define a new SID Ω , Φ ∪ {Px ⇐ ϕ}, where P is a fresh predicate
symbol of arity ‖xϕ0 ‖. Clearly, ϕ |=Φ ψ iff Px |=Ω ψ. Since ϕ and Φ are estab-
lished, so is Ω. Then applying Theorem 1 to Ω and ASAT (cf. Theorem 3), we
obtain a well-determined SID Ψ ∈ SID〈α〉 where none of the remaining unfold-
ings of Ω is changed, i.e., for each P ∈ Pred(Ω), we have UΨ (Px) ⊆ UΩ(Px).

By Theorem 10, the set H
〈α〉
ψ,Φ = H

〈α〉
ψ,Ψ can be accepted by a heap automaton

over SH〈α〉. Then, analogously to the proof of Lemma 9, ϕ |=Φ ψ iff Px |=Ψ

ψ iff UΨ (Px) ⊆ H〈α〉ψ,Ψ , where the last inclusion is decidable by Corollary 2. ut

6.3 Complexity

Algorithm 2 may be fed with arbitrarily large heap automata. For a meaningful
complexity analysis, we thus consider heap automata of bounded size only.

Definition 14. An SID Φ is α–bounded if for each P ∈ Pred(Φ) there exists a

heap automaton AP over SH〈α〉 accepting H
〈α〉
Px,Φ such that ∆AP is decidable in

O
(
2poly(‖Φ‖)

)
and ‖QAP ‖ ≤ 2poly(α).
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The bounds from above are natural for a large class of heap automata. In par-
ticular, all heap automata constructed in Section 4 stay within these bounds.
Then a close analysis of Algorithm 2 for α–bounded SIDs yields the following
complexity results. A detailed analysis is provided in [29].

Theorem 12. SL-ENTAILΦ〈α〉 is decidable in 2-ExpTime for every α–bounded

SID Φ. If α ≥ 1 is a constant then SL-ENTAILΦ〈α〉 is ExpTime-complete.

Note that lower complexity bounds depend on the SIDs under consideration.
Antonopoulos et al. [1, Theorem 6] showed that the entailment problem is al-
ready ΠP

2 –complete (the second level of the polynomial hierarchy) for the base
fragment, i.e., Φ = ∅. Thus, under common complexity assumptions, the expo-
nential time upper bound derived in Theorem 12 is asymptotically optimal for a
deterministic algorithm. Since the entailment problem is already ExpTime–hard
for points-to assertions of arity 3 and SIDs specifying regular sets of trees (cf.
[1, Theorem 5] and [29]), exponential time is actually needed for certain SIDs.

6.4 Expressiveness

Most common data structures specified by SIDs, such as lists, trees, trees with
linked leaves and combinations thereof can be encoded by heap automata [29].
However, SIDs are more expressive than heap automata. For example, consider
two concatenated lists of the same length that use different fields. While such
lists are outside the scope of heap automata, a suitable SID is given by:

P (x, y)⇐ ∃z.x 7→ (z,null) ∗ z 7→ (null, y)

P (x, y)⇐ ∃u, v.x 7→ (u,null) ∗ P (u, v) ∗ v 7→ (null, y)

In general, the close relationship between established SIDs and context-free
graph languages studied by Dodds [19, Theorem 1] and Courcelle’s work on
recognizable graph languages [18, Theorems 4.34 and 5.68], suggest that heap
automata exist for every set of reduced symbolic heaps that can be specified in
monadic second-order logic over graphs [18].

7 Conclusion

We developed an algorithmic framework for automatic reasoning about and de-
bugging of the symbolic heap fragment of separation logic. Our approach is
centered around a new automaton model, heap automata, that is specifically tai-
lored to symbolic heaps. We show that many common robustness properties as
well as certain types of entailments are naturally covered by our framework—
often with optimal asymptotic complexity. There are several directions for future
work including automated learning of heap automata accepting common data
structures and applying heap automata to the abduction problem [16].
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