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In this work, new absorbing boundary conditions (ABCs) for a wave equation with a temperature
dependent speed of sound are proposed. Based on the theory of pseudo-differential calculus, first
and second order ABCs for the one- and the two-dimensional wave equations are derived. Both
boundary conditions are local in space and time. The well-posedness of the wave equation with
the developed ABCs is shown through the reduction of the original problem to an equivalent one
for which the uniqueness and existence of the solution has already been established. Although the
second order ABC is more accurate, the numerical realization is more challenging. Here we use a
Lagrange multiplier approach which fits into the abstract framework of saddle point formulations
and yields stable results. Numerical examples illustrating stability, accuracy and flexibility of the
ABCs are given. As a test setting, we perform computations for a high-intensity focused ultrasound
(HIFU) application, which is a typical thermo-acoustic multiphysics problem.

Keywords: wave equation with variable coefficients; absorbing boundary conditions; pseudo-
differential calculus; thermo-acoustic problem.

1. Introduction1

In many engineering applications, multiphysics problems on unbounded domains occur.2

Although a lot of work has been done in recent years, the numerical simulation is still chal-3

lenging. One possible approach is to restrict the model equations to a bounded domain and4

to impose additional boundary conditions on the fictitious boundaries. However, the solu-5

tion is highly sensitive to the choice of the boundary conditions. Imposing simple Dirichlet6

1
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or Neumann conditions results in non-physical effects and spurious oscillations. Suitable7

boundary conditions have to be transparent for outgoing waves. This type of boundary8

conditions is also called absorbing boundary condition (ABC), in contrast to natural and9

essential boundary conditions. It is commonly recognized that ABCs play a key role for10

unbounded domains. Over the past thirty years, ABCs have developed into a vigorous re-11

search direction including a wide spectrum of methods. The description of these techniques12

at length is beyond the scope of this work, and therefore we restrict ourselves to a brief13

overview.14

In the late 1970s, the Sommerfeld-like ABCs dominated the field.1 Due to the poor15

approximation, spurious reflections of the waves can be observed. The necessity to sup-16

press these reflections resulted in a number of different ABCs till the middle of 1980s. The17

most well-known are the Engquist–Majda ABCs2, the Bayliss–Turkel ABCs3, the Dirichlet-18

Neumann map9 and others.4,5,6,7,8 The Engquist–Majda approach is based on a factoriza-19

tion of the wave equation leading to perfect ABCs which are nonlocal in space and time.20

To obtain local ABCs, the theory of pseudo-differential calculus has to be combined with21

truncated Taylor series. Quite popular are the first and second order boundary conditions.22

The Bayliss–Turkel technique consists in the construction of an operator annihilating the23

leading terms in an asymptotic expansion of the solution in the far field zone.24

Later, high-order local ABCs have been developed and used mainly for the linear wave25

equation.12,13 At the same time investigations on the boundary element14 and the integral26

formulations15 as well as the infinite element approach16,17,18,19 have been carried out. In27

addition, the Perfectly Matched Layer technique was developed20 and had a continuation28

in a series of papers.21,22,23,24 This method is based on a modification of the governing29

equations by means of a change of coordinates. Concluding this brief survey, we would like30

to refer the reader to the comprehensive review articles.25,26,27
31

Despite the intensive research activities in this field, most results are obtained for linear32

problems with constant coefficients. There are only a few papers devoted to problems with33

variable coefficients28, convective30 and nonlinear28,29,31,32,33 terms.34

In this work, we develop local ABCs for a wave equation with a temperature dependent35

speed of sound.34,35,36 This wave equation plays an important role in the mathematical36

modeling of high-intensity focused ultrasound (HIFU) applications. In particular, the so-37

lution reflects the thermo-acoustic lensing phenomenon, which can be observed in heated38

media as a movement of the thermal focus in the direction of the transducer. A localized39

temperature elevation in an initially acoustically homogeneous media causes a change in40

the local refraction index that leads to an acoustically inhomogeneous tissue. The thermo-41

acoustic lensing effect is of great importance in many medical applications and can only42

be observed numerically if a non-linear coupled model is used. Neglecting the movement43

of the thermal spot during HIFU surgeries of tumors48,47,46 can lead to wrong conclusions44

about temperature distributions created within sonicated biotissues. The latter may result45

on the one hand in overheating and thus destroying healthy tissues. On the other hand,46

underheating the tumor possibly results in recidivism. Another example is the tempera-47

ture estimation using diagnostic ultrasound.49,50,51 The thermo-acoustic lensing effect may48



July 13, 2012 16:24 WSPC/130-JCA OnABCforWaveEquWithTemperatureDepen-
dentC˙11

Absorbing boundary conditions for a wave equation with a temperature dependent speed of sound 3

substantially distort the estimates of echo shifts what in turn causes incorrect temperature49

predictions.50

Our investigations of ABCs are based on the theory of pseudo-differential operators used51

by Engquist and Majda.28 The key ingredients are a full factorization of the wave equation52

with the temperature dependent speed of sound and an asymptotic expansion. Using the53

work of Engquist and Majda28, which considers the standard linear wave equation, as a54

starting point, we obtain new ABCs for the thermo-acoustic problem.55

The rest of the paper is organized as follows. In Section 2, we briefly discuss the model56

problem. The proposed ABCs are introduced in Section 3. In Section 4, we focus on the57

discretization in terms of a Lagrange multiplier. Finally in Section 5, different numerical58

results are presented illustrating the difference between the first and second order boundary59

conditions.60

2. Model problem61

Let Ω be a bounded domain, see Fig. 1, in which an acoustic wave equation and the heat62

equation are solved. By ΓA we denote the absorbing boundary part which can be viewed63

as an artificial boundary reducing an unbounded domain to the bounded one. The inner64

boundary part is denoted by ΓE , and the associated boundary conditions model a given65

excitation.66

ΓE
Ω

ΓA

Fig. 1. General geometrical setup.

For convenience of the reader, we briefly recall how the wave equation with a temperature67

dependent speed of sound can be obtained. Its derivation is based on the state equation68

p = ρc2(T ), (1)

the linearized momentum conservation equation69

∂v

∂t
= − 1

ρ0
∇p (2)

and the linearized mass conservation70

∂ρ

∂t
= −ρ0∇ · v. (3)
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Here p = p(x, y, t) is the acoustic pressure, ρ is the acoustic density, c(T ) is the temperature71

dependent speed of sound, v = (u(x, y, t), v(x, y, t)) is the acoustic particle velocity, t is the72

time, ρ0 is the mean density which is assumed to be constant, and T = T (x, y, t) is the73

temperature.74

Since we consider non-viscous media, the property ∇× v = 0 holds. We introduce the75

acoustic scalar potential ψ = ψ(x, y, t) by v = −∇ψ and obtain in terms of (1) and (3) the76

following equation77

1

ρ0

∂

∂t

(
c−2(T )p

)
= ∆ψ. (4)

Substitution of v = −∇ψ in (2) provides the relation between the acoustic pressure and78

the scalar potential79

p = ρ0
∂ψ

∂t
.

Using this result in (4) leads to the wave equation with a temperature dependent speed80

of sound for the acoustic potential81

c−2(T )
∂2ψ

∂t2
+
∂ψ

∂t

∂

∂t
c−2(T ) = ∆ψ in Ω× (0, tmax], (5)

where tmax is the final time at which the problem has to be solved.82

To obtain a closed system for the acoustic problem, boundary and initial conditions83

have to be specified on ΓE ∪ ΓA and in Ω, respectively. On ΓE , we set the inhomogeneous84

Neumann boundary condition85

∂ψ

∂n
= g(t) on ΓE × (0, tmax] (6)

modeling a prescribed excitation, whereas on ΓA appropriate ABCs are set. Here n is the86

unit normal vector to the boundary ΓE pointing outward Ω. The initial conditions in Ω are87

ψ(x, y, 0) = ψ0(x, y),
∂

∂t
ψ(x, y, 0) = ψ1(x, y). (7)

The acoustic model is coupled with the thermal heat conduction equation which reads88

as89

ρcν
∂T

∂t
= κ∆T + 〈Q(ψ)〉 in Ω× (0, tmax] (8)

with the Dirichlet boundary condition90

T (x, y, t) = Tbnd(x, y) on {ΓA ∪ ΓE} × (0, tmax] (9)

and the initial condition91
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T (x, y, 0) = T0(x, y) in Ω. (10)

The parameter cν denotes the specific heat capacity, κ the thermal conductivity, and ρ92

the density. The acoustic source term Q(ψ) is a temporal average of the acoustic energy93

being absorbed and converted to heat37,59,58, namely94

Q(ψ) = ρ0

(
∇∂ψ
∂t
· ∇ψ +

∂ψ

∂t
∆ψ

)
.

Thus the system of equations is formed by the wave equation (5) and the heat conduction95

equation (8).96

3. Absorbing boundary conditions97

In order to obtain ABCs for the wave equation (5), one can use two different approaches28.98

The first approach is based on the frozen coefficient theory which converts the wave equation99

with variable coefficients to its analog with constant coefficients by “freezing” the coefficients100

at a given point. For instance, the two-dimensional wave equation (24) reduces to α∂2
t ψ +101

β∂tψ = ∆ψ with constant α, β. We remark that in order to derive ABCs one can follow102

the idea of Engquist–Majda2 and apply the Fourier transformation in the (y, t)-variables.103

This transformation leads to the term ∂x =
√
α(iτ)2 + βiτ − (iη)2 which has to be properly104

approximated. Here, iτ ↔ ∂t and iη ↔ ∂y stand for the transfer between the frequency and105

time domains.106

Alternatively, one can use the second approach which is based on pseudo-differential107

operators. We follow this approach and consider in a first step the one-dimensional wave108

equation which, according to (5), is109

c−2(T )
∂2ψ

∂t2
+
∂ψ

∂t

∂

∂t
c−2(T ) =

∂2ψ

∂x2
in [0, a]× (0, tmax], (11)

where ABCs are set on the left and the right boundaries of the segment [0, a]. We replace the110

terms c−2(T ) and ∂t(c
−2(T )) in the wave equation (11) by the variable coefficients α(x, t)111

and β(x, t), respectively. Such a replacement leads to the following equation112

D1ψ = 0, D1 = α(x, t)
∂2

∂t2
+ β(x, t)

∂

∂t
− ∂2

∂x2
. (12)

We point out that both α(x, t), β(x, t), used here, and α(x, y, t), β(x, y, t), used later for113

the two-dimensional case, are assumed to be C∞ functions in space and time. Otherwise114

the pseudo-differential calculus is not applicable. In the case of limited smoothness one has115

to use the more complex para-differential strategy.38,39
116

Taking into account Nirenberg’s factorization40 of the operator D1 and ideas of Engquist117

and Majda28, we arrive at118

D1 = −
(
∂

∂x
−A(x, t,Dt)

)(
∂

∂x
−B(x, t,Dt)

)
+R. (13)
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HereDt stands for−i∂t, andR is a smoothing pseudo-differential operator with the Schwartz119

kernel k(x, y) ∈ C∞ satisfying120

(1 + |x− y|)N
∣∣∣∣ ∂ξ∂xξ ∂ν∂yν k(x, y)

∣∣∣∣ ≤ Cξ,ν,N , ∀ξ, ν,N ∈ N0.

The pseudo-differential operators A = A(x, t,Dt) and B = B(x, t,Dt) have symbols121

a(x, t, τ) and b(x, t, τ) from the space122

S1 = S1(R2) =

{
f(t, τ) ∈ C∞(R2) :

∣∣∣∣ ∂ξ∂tξ ∂ν∂τν f(t, τ)

∣∣∣∣ ≤ Cξ,ν(1 + |τ |)1−|ν|, ∀ξ, ν ∈ N0

}
.

In order to obtain ABCs at x = a from (13), one has to make use of the fact41 that123 (
∂

∂x
−A(x, t,Dt)

)
= 0 (14)

is an annihilating operator for outgoing waves at {x = a} × [0,+∞).124

Using the factorization (13), we get125

α(x, t)
∂2

∂t2
+ β(x, t)

∂

∂t
− ∂2

∂x2
= − ∂2

∂x2
+ (A+B)

∂

∂x
+
∂B

∂x
−AB +R. (15)

At the symbolic level (15) can be expressed by126

−α(x, t)τ2 + β(x, t)iτ = (a+ b)
∂

∂x
+
∂b

∂x
− ab+R. (16)

Now, we have to define symbols a and b in (16). This can be done by using asymptotic127

expansions given by128

a(x, t, τ) ∼
∑
j≥0

a1−j(x, t, τ), |τ | → ∞ (17a)

and129

b(x, t, τ) ∼
∑
j≥0

b1−j(x, t, τ), |τ | → ∞ , (17b)

where a1−j(x, t, τ) and b1−j(x, t, τ) are homogeneous of degree 1− j in τ .130

We note that the theorem on the product of two pseudo-differential operators42,131

A(x,D) ∈ Ψm1 and B(x,D) ∈ Ψm2 with symbols a(x, ζ) ∈ Sm1 and b(x, ζ) ∈ Sm2 re-132

spectively, yields that C(x,D) = A(x,D)B(x,D) ∈ Ψm1+m2 has an asymptotic expansion133

of its symbol c(x, ζ) ∈ Sm1+m2 given by134

c(x, ζ) ∼
∑
|σ|≤N

1

σ!
Dσ
ζ a(x, ζ)∂σx b(x, ζ) (18)

for every nonnegative integer N , and the standard multi-index notation σ = (σ1, σ2, . . . , σk)135

and |σ| = σ1 + σ2 + . . .+ σk.136
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Combining (17) and (18), we find that137

c(x, t, τ) ∼
∑

k,l,m≥0

(−i)m

m!

∂m

∂τm
a1−l(x, t, τ)

∂m

∂tm
b1−k(x, t, τ). (19)

Now, substitution of (17) and (19) in (16) determines recursively the coefficients138

{aj , bj}j≤0139 
a−j + b−j = 0, j ≥ 0,

δj0β(x, t)iτ = −
∑

k+l+m=j+1

(
(−i)m

m!

∂m

∂τm
a1−l

∂m

∂tm
b1−k

)
+ ∂xb1−j , k, l,m ≥ 0,

(20)

where δ is the Kronecker delta, and140

a1 = −
√
α(iτ)2, b1 = −a1.

For simplicity in exposition, we present additionally to a1 and b1 only two coefficients141

a0 and b0142

a0 =
1

2a1

(
β(x, t)iτ +

∂a1

∂x
+ i

∂a1

∂τ

∂a1

∂t

)
, b0 = −a0.

The use of the asymptotic expansion (17a) in (14) and the first k terms enable us to143

rewrite the boundary conditions in the form144  ∂

∂x
−

k∑
j=0

a1−j(x, t, τ)

ψ = 0 at {x = a} × [0,+∞). (21)

Finally, substitution of the coefficients a1 and a0 in the boundary condition (21) gives the145

first order ABC in the following form146 (
∂

∂x
+

1

c(T )

∂

∂t
+

1

2c(T )

(
∂

∂x
c(T )− 1

c(T )

∂

∂t
c(T )

))
ψ = 0 at {x = a} × [0,+∞). (22)

The ABC for the left boundary is obtained analogously with the only difference that the147

sign in (14) is changed from minus to plus, namely148 (
∂

∂x
− 1

c(T )

∂

∂t
− 1

2c(T )

(
∂

∂x
c(T )− 1

c(T )

∂

∂t
c(T )

))
ψ = 0 at {x = 0} × [0,+∞). (23)

Remark 3.1. It is important to stress out that we define the order of the ABC by the order149

of the principal part of the differential operator in this ABC.150

We can now derive transparent boundary conditions for the two-dimensional case. First,151

we obtain ABCs on the wall x = a and then extend the result for the whole domain152

Ω = (0, a) × (0, b). The derivation starts from the replacement of the terms c−2(T ) and153
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∂t(c
−2(T )) in the wave equation (5) with the variable coefficients α(x, y, t) and β(x, y, t).154

Thus the wave equation becomes155

D2ψ = 0, D2 = α(x, y, t)
∂2

∂t2
+ β(x, y, t)

∂

∂t
− ∂2

∂x2
− ∂2

∂y2
. (24)

As in the one dimensional case, we factorize the operator D2 by156

D2 = −
(
∂

∂x
−A(x, y, t,Dy, Dt)

)(
∂

∂x
−B(x, y, t,Dy, Dt)

)
+R. (25)

Here A(x, y, t,Dy, Dt) and B(x, y, t,Dy, Dt) are pseudo-differential operators with symbols157

a(x, y, t, η, τ) and b(x, y, t, η, τ), respectively. These symbols can then be recursively deter-158

mined from the factorization analogously to (16), namely159

−α(x, y, t)τ2 + β(x, y, t)iτ + η2 = (a+ b)
∂

∂x
+
∂b

∂x
− ab+R. (26)

A similar argument as in the one-dimensional case yields the coefficients160

a1 = −
√
η2 − α(x, y, t)τ2 , b1 = −a1,

a0 =
1

2a1

(
β(x, y, t)iτ +

∂a1

∂x
− i2 ∂

2a1

∂η∂τ

∂2a1

∂y∂t

)
, b0 = −a0.

(27)

So far, the derivation followed exactly the same lines as in the one-dimensional case.161

From now on, there is a difference. Due to the desired locality of the boundary condition,162

we have to approximate the square root in (27). There are several ways how to do such163

approximations. Some of them are based on Padé and Taylor series2, others use rational43
164

or least-squares approximations.44 In this work, we expand the square root in a Taylor165

series up to the second order of accuracy. Substitution of the coefficients a1, a0 in the166

two-dimensional analog of (21)167 (
∂

∂x
−

k∑
i=0

a1−i(x, y, t, η, τ)

)
ψ = 0 (28)

gives the first168 (
∂

∂x
+

1

c(T )

∂

∂t
+

1

c(T )

(
1

2

∂

∂x
c(T )− 1

c(T )

∂

∂t
c(T )

))
ψ = 0 (29a)

and the second169 (
1

c(T )

∂2

∂x∂t
+

1

c2(T )

∂2

∂t2
− 1

2

∂2

∂y2
+

1

c2(T )

(
1

2

∂

∂x
c(T )− 1

c(T )

∂

∂t
c(T )

)
∂

∂t

)
ψ = 0 (29b)

order ABCs on the wall x = a. The boundary conditions on the walls x = 0, y = 0 and170

y = b can be derived in the same way.171
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Introducing the normal n and the tangential τ derivatives, the ABCs on the entire172

absorbing boundary ΓA of the domain Ω can be written as173 (
∂

∂n
− 1

c(T )

∂

∂t
+

1

c(T )

(
1

2

∂

∂n
c(T )− 1

c(T )

∂

∂t
c(T )

))
ψ = 0 (30a)

and174 (
1

c(T )

∂2

∂n∂t
− 1

c2(T )

∂2

∂t2
+

1

2

∂2

∂τ2
− 1

c2(T )

(
1

2

∂

∂n
c(T )− 1

c(T )

∂

∂t
c(T )

)
∂

∂t

)
ψ = 0.(30b)

It is worth to point out that for the one-dimensional case the ABCs can only be improved175

if additional terms in the asymptotic expansion of the symbol a(x, t, τ) are taken into176

account. However, in the two-dimensional setting, also higher-order approximations of the177

square root in (27) result in more accurate boundary conditions.178

Remark 3.2. If the constant speed of sound is used in the boundary conditions (30), one179

arrives at the first order180 (
∂

∂n
− 1

c

∂

∂t

)
ψ = 0 (31a)

and the second order181 (
1

c

∂2

∂n∂t
− 1

c2

∂2

∂t2
+

1

2

∂2

∂τ2

)
ψ = 0 (31b)

Engquist–Majda ABCs on ΓA.182

Thus the boundary conditions (30) can be regarded as a natural extension of the Engquist–183

Majda ABCs (31) to a wave equation with temperature dependent speed of sound.184

The obtained boundary conditions (30) give rise to the question: Is the wave equation185

with the new ABCs well-posed? In order to show that the initial boundary value prob-186

lem (5),(7),(30) is well-posed one has to prove the uniqueness and the existence of the187

solution for the original problem or to rewrite it as an equivalent problem for which the188

well-posedness is already established. For instance, the well-posedness of the initial bound-189

ary value problem (5),(7),(30) with constant speed of sound has been completely analyzed190

in a half-space28,53 and for a corner problem.52 Thus the only step we have to perform is191

to reduce our problem to the one with constant speed of sound. Such a reduction can be192

based on the Gordienko technique54 which consists of three main steps: (i) “Freeze” the co-193

efficients and extract the principal part of the differential operator in the wave equation (5)194

and in the boundary condition (30); (ii) Check that the obtained system satisfies the uni-195

form Lopatinskii condition; (iii) Reduce the problem to a symmetric hyperbolic system and196

prove the dissipativity of the boundary condition.197

In our situation, we do not have to work out all three steps. It is sufficient to apply198

only the first step which already leads to the standard wave equation with constant speed199

of sound and the Engquist–Majda ABCs (31) for which the well-posedness results are well-200

known.201
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4. Discretization202

In this section, we apply a standard low order finite element method for the two-dimensional203

thermo-acoustic problem (5)-(10) with ABCs (30). The weak formulation of the wave equa-204

tion (5) reads as205 ∫
Ω

1

c2

∂2ψ

∂t2
φ dΩ +

∫
Ω

(∇ψ · ∇φ) dΩ−
∫

ΓA

∂ψ

∂n
φ dΓA =

∫
ΓE

gφ dΓE (32)

for all suitable test functions φ.206

The use of ABC (30a) in (32) is obvious. However, the situation is different in case of207

the second order condition (30b). A straightforward substitution of (30b) in the boundary208

integral along ΓA is not possible due to the lack of the term ∂nψ. Thus, we use a Lagrange209

multiplier based approach which consists of the following steps.56
210

Firstly, a Lagrange multiplier Λ on the absorbing boundary ΓA is introduced and the211

term −∂nψ is replaced by Λ in (32). For the Lagrange multiplier we can use any stable212

approach well-known from the mortar setting. We point out that each discontinuity of the213

normal on ΓA is handled as a crosspoint within the mortar context.214

Secondly, we restate the boundary condition (30b) weakly in terms of Λ215 ∫
ΓA

(
−1

c

∂Λ

∂t
− 1

c2

∂2ψ

∂t2
+

1

2

∂2ψ

∂τ2
− 1

c2

(
1

2

∂c

∂n
− 1

c

∂c

∂t

)
∂ψ

∂t

)
µ dΓA = 0, (33)

where µ is a test function. Thus, one has a subsystem of two equations for the unknowns216

(ψ,Λ). Due to the temperature dependent speed of sound, this subsystem forms together217

with the heat conduction equation (8) a two-sided coupled problem.218

The algebraic formulation of this problem can be expressed as a semidiscrete system of219

nonlinear ordinary differential equations220 0 0 0

0 M 0

0 B 0

T̈

Ψ̈

Λ̈

+

C Q 0

0 N 0

0 R D

Ṫ

Ψ̇

Λ̇

+

K̃ 0 0

0 K DT

0 C̃ 0


T

Ψ

Λ

 =

0

f

0

 (34)

with standard notations for the mass matrix M and the damping matrix C. The stiffness221

matrices for the heat conduction equation and the wave equation are denoted by K and K̃,222

respectively. The matrices B(T), R(T), D(T) and C̃(T) are responsible for the coupling223

between the boundary condition (33) and the wave equation (32). In addition, the matrices224

Q(Ψ,Λ) and N(T) reflect the nonlinear terms in the wave equation and the heat equation.225

In order to discretize the system of equations (34) in time, the classical Newmark scheme226

can be applied.60 However, the wave propagation and the heat conduction are processes227

evolving on different time scales. For instance, the characteristic time of temperature changes228

lies in the range of seconds while high intensity ultrasound waves require hundredths of a229

microsecond to be accurately resolved. Thus, in order to accurately resolve the physical230

processes on different time scales we apply a multi-time stepping integration method56
231
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which is more accurate and works faster compared to the conventional technique used in232

HIFU applications.48,47,46
233

5. Numearical results234

5.1. Model problem235

In this section, we study numerically the performance of the newly developed ABCs (30a)236

and (30b) for the thermo-acoustic problem (5)-(10). We will also apply the standard237

Engquist-Majda boundary conditions to demonstrate that a naive application of these ABCs238

which are tailored for the linear wave equation does not guarantee satisfying results when239

applying it to the wave equation with temperature dependent speed of sound.240

Ω

ΓE

ΓA

ΓA

ΓN

ΓN

Fig. 2. Geometrical setup for the thermo-acoustic problem.

We consider cylindrical waves on a unit square as displayed in Fig. 2. The computational241

domain Ω ⊂ R2 is filled up with water for which the constant and the temperature dependent242

speed of sound are assumed to be46 c = c0 and243

c(T ) = c0 + 5.0371T − 5.8085 · 10−2T 2 + 3.3420 · 10−4T 3− 1.4780 · 10−6T 4 + 3.1464 · 10−9T 5

where c0 = 1402.39. On the boundary ΓE we prescribe the normal derivative of the acous-244

tic potential (inhomogeneous Neumann boundary condition) to model a mono-frequency245

transducer vibrating at a frequency of 5 kHz. Furthermore on ΓA, we set the ABCs and246

on ΓN , homogeneous Neumann boundary conditions are used to guarantee symmetry. For247

the thermal computation, we set for the temperature a homogeneous Neumann boundary248

condition on ΓE and a homogeneous Dirichlet boundary condition on ΓN ∪ ΓA.249

In order to compare different transparent boundary conditions for the setup in Fig.2, we250

first compute a solution in the domain Ω′ c Ω representing a square domain with the side251

of length ctmax, which is than used as a reference solution when computing the L∞-norm252

relative error δ for the numerical results obtained on the restricted domain Ω. Furthermore,253
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13 bilinear finite elements per wavelength are used in the numerical simulations, and the254

time step size is set to 20 ms, which corresponds to 10 time samples per time period.255

5 ms

a b c d e

15 ms

25 ms

Fig. 3. The evolution of the acoustic field for the setup in Fig. 2. The row a corresponds to the reference
solution, the rows b and c stand for the first and second order Engquist–Majda ABCs while the rows d and
e represent the boundary condition (30a) and (30b).

Figure 3 displays the contour levels of the acoustic pressure at different characteristic256

time steps. The discrepancy between the first and second order Engquist–Majda ABCs and257

the proposed transparent boundary conditions (30a) and (30b) is clearly visible. This result258

is also reflected in Fig. 4, which shows the evolution of the relative error δ in time.259

δ

t (ms)

Fig. 4. L∞-norm relative error (vertical axis) of the temperature vs. time in milliseconds (horizontal axis) for

the setup in Fig. 2. The first (30a) and second (30b) order ABCs are marked by A(1) and A(2), respectively.

The first (31a) and second (31b) order Engquist–Majda ABCs are denotes by Ã(1) and Ã(2), respectively.
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Furthermore, Fig. 4 demonstrates the strong improvement of the second order ABCs260

compared to the first order ones.261

5.2. HIFU heating example262

In this section, we study how the performance of the proposed ABCs (30a) and (30b)263

depends on the excitation frequency. We consider a rectangular computational domain Ω =264

[0, 20 mm] × [0, 25 mm] consisting of a human liver tissue for which, in accordance to265

Connor and Hynynen46, the temperature dependent speed of sound is given by the followinf266

polynomial267

c(T ) = 1529.3+1.6856T+6.1131·10−2T 2−2.2967·10−3T 3+2.2657·10−5T 4−7.1795·10−8T 5.

This polynomial adequately describes the speed of sound within the temperature interval268

[30◦C, 90◦C] which is suitable for many HIFU treatments.269

On all boundaries of the computational domain, except for the bottom part, we set270

ABCs (30). We use a monofrequency transducer ΓE , located on the bottom of the compu-271

tational domain, with an aperture of 20 mm, producing sinusoidal waves. We use frequen-272

cies ω = {0.8 MHz, 1.0 MHz, 1.2 MHz} which are typical for HIFU therapy. The time step273

for the temperature T is set to be ∆t = 0.01 s, and the acoustic potential ψ is resolved with274

the time step δt to have 20 time samples per time period for each of the frequencies ω. In275

space, 20 finite elements per wavelength are used. For the sake of convenience in exposition,276

the acoustic pressure, the temperature field and the time are normalized to their maximum277

values, and we set Tbnd = 37◦C.278

The primary goal of this work is to analyze the efficiency and robustness of the developed279

ABCs (30). However, one of the most important factors which determines the success of any280

HIFU therapy is the knowledge of the temperature distribution created within sonicated281

biotissues. Thus, we also study how the imperfection of the ABCs influences the temperature282

field.283

In a first step, we consider the lowest frequency ω = 0.8 MHz. Fig. 5 shows the acoustic284

pressure and the temperature field for the first and second order ABCs (30a) and (30b) as285

well as for the first and second order Engquist–Majda ABCs.286

As it can be seen from Fig. 5(c), the second order ABC (30b) yields in comparison to287

the first order condition (30a) a better numerical approximation. Even for small simulation288

times (t = 0.4), the first order ABC (30a) shows pollution of the temperature distribution289

appearing in the upper part of Fig. 5(d),II. For larger times, the pollution effect increases290

(see Fig. 5(d),II for t = 0.6) and at t = 1.0 the upper part of the temperature field is291

completely distorted by reflected waves. In contrast, the second order ABC (30b) gives292

good results throughout the entire simulation, and the pollution effect of the wave solution293

in the temperature field is considerably reduced (see Fig. 5(d),III) for (30b).294

Let us now address the results obtained for the first and second order Engquist–Majda295

ABCs (31). Already from the very beginning (t = 0.4), the first order condition (31a) gives a296

lower accuracy compared to the ABC (30a). The situation becomes worse as time advances297
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I

II

III

IV

V

t = 0.4 t = 0.6 t = 1.0
(c) Acoustic pressure.

t = 0.4 t = 0.6 t = 1.0
(d) Temperature field.

Fig. 5. A series of snapshots of the acoustic pressure and the temperature field for the excitation frequency
ω = 0.8 MHz at different times. The reference solution is in row I. The first and second order ABCs (30)
are in rows II and III, whereas the first and second order Engquist–Majda ABCs (31) are in rows IV and V,
respectively.

(see Fig. 5,IV for t > 0.4). Moreover, the use of the second order Engquist–Majda boundary298

condition (see Fig. 5,V) does not significantly change the situation, and the solution is still299

substantially polluted by reflected waves. Thus we can conclude that a naive application of300

ABCs which have been developed for the linear wave equation does not provide satisfying301
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results when applying it to the wave equation with temperature dependent speed of sound.302

Even for the low frequency case, the numerical solution is quite poor.303

In our next step, we increase the frequency and use ω = 1.0 MHz. The numerical results304

are shown in Fig. 6.305

I

II

III

t = 0.4 t = 0.6 t = 1.0
(a) Acoustic pressure.

t = 0.4 t = 0.6 t = 1.0
(b) Temperature field.

Fig. 6. A series of snapshots of the acoustic pressure and the temperature field for the excitation frequency
ω = 1.0 MHz at different times. The reference solution is in row I. The first and second order ABCs (30)
are in rows II and III, respectively.

It can be easily observed from Fig. 6 that the proposed first order ABC (30a) is much306

more sensitive to the excitation frequency than the second order ABC (30b). In comparison307

to Fig.5, Fig. 6 shows much higher spurious oscillations for the first order case in the wave308

solution, and as a consequence the temperature distribution is more distorted.309

Finally, we set ω = 1.2 MHz and report the results in Fig. 7. Increasing the frequency310

from 1.0 MHz to 1.2 MHz leads to a quite poor numerical approximation for the acoustic311

pressure as well as for the temperature with the use of the first order ABC (30a). As it can be312

clearly seen in the second row of Fig. 7, the acoustic pressure shows a wrong pattern which313

superposes the global structure of the temperature distribution on a finer scale. Moreover,314

even the thermal spot starts to exhibit artificial details (Fig. 7(b),II for t = 1.0).315
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I

II

III

t = 0.4 t = 0.6 t = 1.0
(a) Acoustic pressure.

t = 0.4 t = 0.6 t = 1.0
(b) Temperature field.

Fig. 7. A series of snapshots of the acoustic pressure and the temperature field for the excitation frequency
ω = 1.2 MHz at different times. The reference solution is in row I. The first and second order ABCs (30)
are in rows II and III, respectively.

We also analyze how the relative error of the acoustic pressure and the temperature316

propagates in time (see Fig. 8).317

In the short term range both first and second order ABCs (30) are quite independent318

of the applied excitation frequency ω. However, the situation is different in the long term319

range. Here, the first order ABC is very sensitive with respect to ω. The higher the frequency320

is the higher the error is. This effect is drastically reduced by the use of the second order321

ABC.322

Another observation is that the first order ABC for different frequencies gives mostly323

the same accuracy for t ≤ 0.6 (see Fig.8(a)) for any of the considered ω and becomes324

worse for t > 0.6 as ω increases. This is explained by the thermo-acoustic lensing effect325

which manifests itself rather weakly up to t ≈ 0.6. However, for t > 0.6 its influence is326

more pronounced and makes the acoustic field more challenging for the first order ABC. In327

contrast, the second order ABC is of high accuracy in the short and long term range, and328

operates equally well for all studied frequencies.329
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δ

t
(a) Acoustic pressure.

δ

t
(b) Temperature field.

Fig. 8. The accuracy of the first A(1) and second A(2) order ABCs (30) for different excitation frequencies
ω1 = 0.8 MHz, ω2 = 1.0 MHz, ω3 = 1.2 MHz. The relative error δ is given in the Euclidean norm.6. Conclusions330

In this paper, we propose new absorbing boundary conditions for the wave equation with a331

temperature dependent speed of sound. The well-posedness of the acoustic wave equation332

is shown and also confirmed by numerical simulations which exhibit no instabilities. All our333

experiments show that the first order ABC is computationally easier to handle than the334

second order one but it leads to a substantial loss of accuracy especially at high frequencies.335

The second order ABC is more accurate and provides quantitatively much better results336

in a wide range of excitation frequencies compared to the first order condition. To obtain337

a stable discrete formulation of the second order ABC, we use a weak Lagrange multiplier338

formulation. Both proposed absorbing boundary conditions have low computational com-339

plexity due to their locality and can be implement into existing codes. We also would like340

to remark that the application of self-adapting ABCs55 to the thermo-acoustic problem will341

lead to a further improvement of the results.342
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non linéaires, Ann. Sci. École. Norm. Sup. 14 (1981) 209.424

39. S. Benzoni-Gavage, D. Serre, Multidimensional hyperbolic partial differential equations. First-425

order systems and applications (Oxford University Press, 2007).426

40. L. Nirenberg, Lectures on linear partial differential equations, Uspekhi Mat. Nauk 30 (1975)427

147.428

41. B. Engquist, A. Majda, Reflection of singularities at the boundary, Comm. Pure Appl. Math.429

XXVIII (1975) 479.430

42. M. W. Wong, An introduction to pseudo-differential operators (World Scientific Publishing,431

Singapore, 1999).432

43. B. Engquist, A. Majda, Numerical radiation boundary conditions for unsteady transsonic flow,433

J. Comput. Phys. 40 (1981) 91.434

44. L. Wagatha, Approximation of pseudodifferential operators in absorbing boundary conditions435

for hyperbolic equations, Numer. Math. 42 (1983) 51.436

45. J. Chung, G. Hulbert, A time integration algorithm for structural dynamics with improved437

numerical dissipation: The generalized α-method, J. Appl. Mech. 60 (1993) 371.438

46. C. W. Connor, K. Hynynen, Bio-acoustic thermal lensing and nonlinear propagation in focused439

ultrasound surgery using large focal spots: a parametric study, Phys. Med. Biol. 47 (2002) 1911.440

47. I. Hallaj, R. Cleveland, K. Hynynen, Simulations of the thermo-acoustic lens effect during fo-441

cused ultrasound surgery, J. Acoust. Soc. Am., 109 (2001) 2245.442

48. C. Le Floch, M. Tanter, M. Fink, Self-defocusing in ultrasonic hyperthermia: Experiment and443

simulation, Appl. Phys. Lett., 74 (1999) 3062.444

49. C. Le Floch, M. Fink, Ultrasonic mapping of temperature in hyperthermia: the thermal lens445

effect, Proceedings of 1997 IEEE Ultrasonics Symposium, (1997) 1301.446

50. C. Simon, P. VanBaren, E.S. Ebbini, Two-dimensional temperature estimation using diagnostic447

ultrasound, IEEE Trans. Ultrason. Ferr., 45 (1998) 1088.448

51. M. Pernot, K.R. Waters, J. Bercoff, M. Tanter, M. Fink, Reduction of the thermo-acoustic lens449

effect during ultrasound-based temperature estimation, Proceedings of 2002 IEEE Ultrasonics450

Symposium, (2002) 1447.451

52. A. Bambergern, P. Joly, J. Roberts, Second-Order Absorbing Boundary Conditions for the Wave452



July 13, 2012 16:24 WSPC/130-JCA OnABCforWaveEquWithTemperatureDepen-
dentC˙11

20 I. Shevchenko, M. Kaltenbacher, B. Wohlmuth

Equation: A Solution for the Corner Problem, SIAM J. Numer. Anal., 27 (1990) 323.453

53. T. Ha-Duong, P. Joly, On the Stability Analysis of Boundary Conditions for the Wave Equation454

by Energy Methods. Part I: The Homogeneous Case, Math. Comp., 62 (1994) 539.455

54. V. Gordienko, Symmetrization of mixed problem for second-order hyperbolic equation with two456

space variables, Sib. Mat. Zh., 22 (1981) 84.457

55. I. Shevchenko, B. Wohlmuth, Self-adapting absorbing boundary conditions for the wave equa-458

tion, Wave Motion, 49 (2012) 461.459

56. I. Shevchenko, M. Kaltenbacher, B. Wohlmuth, A multi-time stepping integration method for460

the ultrasound heating problem, Accepted for publication in ZAMM, (2012).461

57. A. Knapp, Advanced real analysis (Birkhäuser, USA, 2005).462
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