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We present physical/mathematical models base on partial differential equations (PDEs) and efficient
numerical simulation schemes based on the Finite Element (FE) method for multi-field problems,
where the acoustic field is the field of main interest. Acoustics, the theory of sound, is an emerging
scientific field including disciplines from physics over engineering to medical science. We concentrate
on the following three topics: vibro-acoustics, aero-acoustics and high intensity focused ultrasound.
For each topic, we discuss the physical/mathematical modeling, efficient numerical schemes and
provide practical applications.
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1. Introduction

The physical/mathematical modeling and numerical simulation of complex systems in en-

gineering and medical science is an emerging topic and a topic of intensive active research.

Often these systems, e.g. sensors and/or actuators, are immersed in an acoustic fluid and

the computation of the acoustic quantities such as sound pressure level (SPL), radiated

sound intensity and power are of main interest. Since all the different coupling mechanisms

of the involved physical fields have to be considered for the development of these systems,

the design process is a very complex task. Therefore, an increasing need for reliable and

usable computer modeling tools capable of precisely simulating the multi-field interactions

arises. Such appropriate computer-aided engineering (CAE) tools offer many possibilities to

the design engineer. Arbitrary modification of transducer geometry and selective variation

of material parameters are easily performed and the influence on the transducer behavior

can be studied immediately. In addition, simulations provide access to physical quantities

that cannot be measured and thus strongly support the insight into physical phenomena.

Therefore, CAE-based design tremendously reduces the number of necessary prototypes

within the design process. However, we have to be aware of the fact, that the mathemati-

cal model is always an abstraction of reality and especially the material models and their

parameters will limit the accuracy between model and reality.

Acoustics has developed into an interdisciplinary field encompassing the disciplines of

physics, engineering, speech, audiology, music, architecture, psychology, neuro-science, and
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others (see, e.g., [1]). Therewith, the arising multi-field problems range from classical air-

borne sound over underwater acoustics (e.g., ocean acoustics) to ultrasound used in medical

application. We concentrate on three topics: vibro-acoustics (Sec. 2), high intensity focused

ultrasound (Sec. 3) and aero-acoustics (Sec. 4). For all three topics we will discuss the phys-

ical/mathematical models as well as efficient numerical schemes for their solution applying

the Finite Element (FE) method. To demonstrate the applicability of the developed numeri-

cal schemes, we will discuss three applications: active damping by piezoelectric patches, high

intensity focused ultrasound (HIFU) for treatment of cancers as well as use in lithotripsy

and the human phonation process. All examples have in common, that they are multi-field

problems, where the acoustic quantities are of main interest. The formulations described

within this work have been successfully implemented in our research software CFS++ (Cou-

pled Field Simulation) [2].

2. Vibro-Acoustics

In many technical applications, sensors as well as actuators are immersed in an acoustic

fluid. Therefore, mechanical vibrations will generate acoustic waves, which itself will act as

a surface pressure load on the vibrating structure. In general, we distinguish between the

(a) Acoustic sound field of a piezoelectric
ultrasound array antenna.

(b) Acoustic sound field of an electric power
transformer due to the Lorentz forces acting on
its winding.

Fig. 1. Two typical setups, where the computation of the acoustic field within the multi-field problem is the
main point of interest.

following two situations concerning mechanical-acoustic systems:

• Strong Coupling:

In this case, the mechanical and acoustic field equations including their couplings have to

be solved simultaneously. A typical example is a piezoelectric ultrasound array immersed

in water (see Fig. 1(a) and [3]).
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• Weak Coupling:

If the acoustic pressure forces on the solid are negligible, a sequential computation can be

performed. For example, the acoustic sound field of an electric transformer as displayed

in Fig. 1(b) can be obtained in this way. In a first simulation the mechanical surface

vibrations are calculated which are used as the input for a subsequent acoustic field

computation [4].

At a solid–fluid interface Γsa, the continuity requires that the normal component of

the mechanical surface velocity must coincide with the normal component of the acoustic

particle velocity of the fluid. Thus, the following relation between the velocity vs of the solid

expressed by the mechanical displacement u and the acoustic particle velocity v′ expressed

by the acoustic scalar potential ψ arises

vs =
∂u

∂t
v′ = −∇ψ

ns · (vs − v′) = 0

ns ·
∂u

∂t
= −ns ·∇ψ = − ∂ψ

∂ns
. (1)

In (1) ns denotes the normal vector on Γsa pointing from the solid to the fluid domain. In

addition, one has to consider the fact that the ambient fluid causes a mechanical stress σn

on the surface

σn = −nsp
′ = −nsρ0

∂ψ

∂t
, (2)

which acts as a surface load, resulting from the acoustic pressure p′. In (2) ρ0 denotes the

mean density of the fluid.

When modeling special wave phenomena, we often arrive at a partial differential equation

for the acoustic pressure. Therewith, we will also derive the coupling conditions between the

mechanical displacement u and acoustic pressure p′ at a solid–fluid interface. For the first

coupling condition, the continuity of the velocities, we have to establish the relation between

the acoustic particle velocity v′ and the acoustic pressure p′. According to the linearized

momentum equation for acoustics (see, e.g., [5]), we can express the normal component of

v′ by

ns ·
∂v′

∂t
= − 1

ρ0

∂p′

∂ns
. (3)

Since ns · vs = ns · v′ has to hold, we get the relation for the mechanical displacement by

ns ·
∂2u

∂t2
= − 1

ρ0

∂p′

∂ns
. (4)

The second coupling condition defined in (2) is already established for an acoustic pres-

sure formulation.
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2.1. FE Formulation for Vibro-Acoustics

The acoustic part of the computational domain Ωa ⊂ Rd as depicted in Fig. 2(a) is governed

by the linear acoustic wave equation in pressure formulation. The strong form reads as

(a) Geometrical setup for acoustics. (b) Geometrical setup for mechanics.

Fig. 2. Computational domains for acoustics and mechanics.

follows: Given

p′0, ṗ
′
0 : Ωa → R ,

find the acoustic pressure p′ : Ωa × [0, T ]→ R such that

∆p′ − 1

c2

∂2p′

∂t2
= 0 in Ωa × (0, T ), (5)

with Dirichlet and Neumann boundary conditions of the form

p′ = p′D on Γa
D × (0, T ) ;

∂p′

∂n
= p′N on Γa

N × (0, T ),

and initial conditions

p′(x, 0) = p′0, ṗ
′(x, 0) = ṗ′0, x ∈ Ωa.

In (5) c : Ωa → R denotes the speed of sound which is assumed to be constant.

One of the great challenges for each volume discretization scheme is the precise modeling

of unbounded domains. The crucial point for these computations is that the numerical

scheme avoids any reflections at the boundaries, even for the case where the computational

domain is just a fraction of a wavelength. Since the beginning of the eighties of the last

century, several numerical techniques have been developed to deal with this topic: infinite

elements, Dirichlet-to-Neumann operators based on truncated Fourier expansions, absorbing

boundary conditions, perfectly matched layer (PML) technique, etc. For an overview on

this topic, we refer to [6]. To simplify our derivation, we will apply an absorbing boundary

condition of first order (cf. [7]) on Γa
abc, where a free field radiation condition shall be

considered (
∂

∂t
− c ∂

∂n

)
p′ = 0 on Γa

abc. (6)
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Multiplying (5) by an appropriate test function, integrating over the whole computational

domain and perform an integration by parts will lead to the weak formulation: Find p′ ∈
V = {ϕ ∈ H1(Ωa)|ϕ = pD on Γa

D}a such that∫
Ωa

1

c2
wp̈′ dΩ +

∫
Ωa

∇w ·∇p′ dΩ−
∫

Γa
N

wp′N dΓ−
∫

Γa
abc

1

c
w
∂p′

∂t
dΓ = 0 (7)

for all w ∈W = {q ∈ H1(Ωa)|q = 0 on Γa
D}.

Furthermore, we consider the problem of a solid elastic body in the domain Ωs ⊂ Rd, d =

2, 3 as shown in Fig. 2(b). The body has an isotropic density ρs : Ωs → R and deforms

under the given time dependent volume force fV and the surface traction g. The surface of

Ωs with the outward normal vector ns consists of the disjoint subsets Γs
D, where Dirichlet

boundary conditions are given, Γs
N a Neumann boundary with given surface traction, and

Γs
P a Neumann boundary with prescribed pressure load. The linear differential operator B

Bt =


∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


relates the displacement field u to the strains. The material law describing the relationship

between strains and stresses is given by the elasticity tensor [c] with component functions

cijkl : Ωs → R. The strong formulation of the mechanical problem therefore reads as follows:

Given initial conditions and mechanical volume force

u0, u̇0, fV : Ωs → Rd ,

find mechanical displacement u : Ωs × [0, T ]→ Rd such that

Bt[c]Bu + fV = ρs
∂2u

∂t2
in Ωs × (0, T ), (8)

with boundary conditions

u = uD on Γs
D × (0, T ),

σt = g on Γs
N × (0, T ),

[σ] · ns = pnns on Γs
P × (0, T ) ,

and initial conditions

u(x, 0) = u0, x ∈ Ωs ; u̇(x, 0) = u̇0, x ∈ Ωs ,

aH1 is the Sobolev space, i.e. space of square integrable functions, whose first derivatives in a weak sense
are also square integrable (see [8])
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where [σ] denotes the tensor of Cauchy stresses, pnns is an external pressure load acting

in normal direction on Γs
P, whereas g is a surface traction acting in arbitrary direction on

Γs
N.

Multiplying (8) by an appropriate test function w, integrating over the whole computa-

tional domain and perform an integration by parts results in the weak formulation:

Find u ∈ V = {v ∈ (H1)d (Ωs) |v = uD on Γs
D}, such that∫

Ωs

ρsw · ü dΩ +

∫
Ωs

(Bw)t[c]Bu dΩ =

∫
Ωs

w · fV dΩ +

∫
Γs
P

pnw · ns dΓ +

∫
Γs
N

w · gn dΓ (9)

for all w ∈W = {q ∈
(
H1
)d

(Ωs) |q = 0 on Γs
D}. The mechanical and the acoustic fields

are coupled along a common interface Γsa (see Fig. 3(a)). We assume that the common

(a) Solid–fluid interface. (b) Nonmatching grids along
mechanical-acoustic interface Γsa.

Fig. 3. Solid fluid interface: general setup and FE mesh with a nonconforming interface.

interface Γsa corresponds to Γs
N in (9) and to Γa

N in (7), so that we have Γsa = Γs
N =

Γa
N. We may therefore substitute the surface integral term over Γs

N in (9) by the pressure

interface condition (2) and the surface integral term over Γa
N in (7) by the velocity interface

condition (4). Furthermore, for simplicity we set fV and g to zero, and arrive at the fully

coupled system where additionally an external pressure load pn is applied to the mechanical

subsystem ∫
Ωs

ρsw · ü dΩ +

∫
Ωs

(Bw)t[c]Bu dΩ +

∫
Γsa

w · nsp dΓ =

∫
Γs
P

pnw · nS dΓ , (10)

∫
Ωa

1

c2
wp̈ dΩ +

∫
Ωa

∇w ·∇p dΩ +

∫
Γa
abc

w
1

c

∂p

∂t
dΓ−

∫
Γsa

wρans ·
∂2u

∂t2
dΓ = 0 . (11)

After discretizing the system (10), (11) with Lagrangian finite elements, we arrive at the
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semi-discrete Galerkin formulation(
Mu 0

−Mup Mp

)(
ü

p̈

)
+

(
Cu 0

0 Cp

)(
u̇

ṗ

)
+

(
Ku Kpu

0 Kp

)(
u

p

)
=

(
f

0

)
. (12)

Now, since in most cases the discretization within the solid has to be much finer than the

one needed for the acoustic wave propagation in the fluid, we will use nonmatching grid

techniques to allow different grids for mechanics and acoustics (see Fig. 3(b)). Therewith,

the coupling matrix Kpu computes element-wise as

Kpu =

nisec∧
e=1

ke; ke = [kab] ; kab =

∫
Γe

Nj
a · nNk

b dΓ . (13)

Here ∧ is the element-wise FE assembly operator and nisec is the number of intersection ele-

ments on the interface since the surface integrals over Γsa have to be evaluated with respect

to different grids as shown in Fig. 3(b). This makes the introduction of grid intersection

operators necessary [9, 10].

The finite element basis functions N j
a and Nk

b in (13) denote the traces of the FE

basis on the mechanical and on the acoustic side of the interface. Basically the coupling

matrix Mup is linked to the matrix Kpu through the mean density of the acoustic fluid

by the equation Mup = ρ0K
t
pu. The damping matrix Cu is due to the introduction of

Rayleigh damping. It computes as Cu = αMMu + αKKu. The coefficients αM and αK are

related to the modal loss factor, tan δi, via the equation tan δi = (αM + αKω
2
i )/ωi with

ωi being the i-th eigenfrequency of the mechanical system. For the computation of the

coefficients from measured data we refer to [5,11]. The acoustic damping matrix Cp is due

to the incorporation of the absorbing boundary condition on Γa
abc. The time discretization

is performed by applying the standard implicit Newmark time stepping scheme [11], e.g.,

using the time stepping parameters β = 0.25 and γ = 0.5.

2.2. Application: Active Damping by Piezoelectric Patches

In many engineering applications vibrations are responsible for the generation of acoustic

noise. Especially slender or thin-walled structures with a large surface exhibit these effects.

A modern way of controlling vibrations is to attach piezoelectric patches to membrane/plate

like structures, which can measure the deformation and which act against these deforma-

tions, when the patches are loaded by adequate voltage signals. These enhanced devices are

so-called smart materials.

It is our goal to simulate such devices with the flexibility to arbitrarily place the piezo-

electric patches on the plate structure without the need to re-mesh the computational do-

main. Our considered setup is displayed in Fig. 4. Therewith, we can efficiently investigate

the optimal position of the piezoelectric actuators to minimize mechanical vibrations. This

flexibility is provided by the Mortar FEM, which allows to couple computational grids with

different mesh sizes. Similar to the acoustic-acoustic coupling (see Sec. 4.1) we are now con-

cerned with a mechanical-mechanical coupling between supporting plate and piezoelectric
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patch. Therewith, we force the continuity of the mechanical displacement in a weak sense∫
ΓI

(u1 − u2)µ dΓ = 0 (14)

with µ from a suitable Lagrange multiplier space Mnd (cf. [9,12,13]). In addition, we apply

a strong condition on the normal stresses by introducing the Lagrange multiplier (LM) λ

λ = −[σ1] · n = −[σ2] · n . (15)

The piezoelectric effect is modeled by the standard PDE for mechanics (see Sec. 2.1)

and the PDE for electrostatics, using the scalar electric potential V and the piezoelectric

constitutive law coupling the mechanical and electric physical quantities (see, e.g., [5]).

Furthermore, since the discretization requirements for the supporting plate and the

ambient fluid are very different, we will also use a nonmatching grid along the common

interface between the plate and the ambient acoustic computational domain. To strengthen

this point we consider the acoustic wave length in air at 100 Hz, which is λ = 3.4 m. This

would permit the usage of linear finite elements with an edge length of about λ/20 = 17 cm.

The metal plate which excites the acoustic wave is however of rectangular dimensions 50 cm

by 30 cm by 1 mm. Therewith, we discretize the plate as a 3D solid and use 2nd order

finite element basis functions with a special selected reduced integration technique to avoid

locking [14]. To accurately simulate the mechanical deformations of this plate we need to

apply a mesh size of about 5 mm in plane and 1 mm in thickness direction. This means that

the acoustic mesh size (linear finite elements) may be one order of magnitude (34 times

at 100 Hz) larger in plane direction than the mesh size (2nd order finite elements) for the

mechanical computation.

Now, the overall formulation in the frequency domain (harmonic analysis) results in the

following complex algebraic system of equations

K∗u1
0 Dt Ku1V 0

0 K∗u2
Mt 0 Ku2p

D M 0 0 0

Kt
u1V

0 0 −KV V 0

0 −ω2Mpu2 0 0 K∗p





û1

û2

λ̂

V̂

p̂


=



0

0

0

f̂e

0


with

K∗u1
= −Ku1 + jωCu1 − ω2Mu1 ; K∗p = Kp − ω2Mp

K∗u2
= Ku2 + jωCu2 − ω2Mu2 .

The two matrices D, M care for the mechanical - mechanical nonmatching grid inter-

face (supporting plate and piezoelectric patch), and the two matrices Ku2p, Mpu2 for the

mechanical-acoustic nonconforming interface (supporting plate and ambient fluid).
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(a) Plate from top.
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x

y

Plate

(b) Acoustic domain from top.

(c) Computational domain at the front.

Fig. 4. Setup of computational domain (for display reasons not at scale).

The geometry for our setup consists of a metal plate of thickness 1 mm with two attached

piezoelectric patches as depicted in Fig. 4. The thickness of both patches is also 1 mm. They

are attached below the plate at the given positions. The top surface of the plate coincides

with z=0. The bottom surface of the acoustic domain also coincides with the plane z=0.

The acoustic propagation domain extends 80 cm in z-direction. An additional 20 cm layer

for applying a perfectly matched layer (cf. [15]) to simulate free field radiation is added on

top of the propagation domain.

As materials we choose aluminum for the plate, lead zirconate titanate (PZT-4) for both

patches and air for the acoustic propagation region. For the electrostatic field we apply

homogeneous Dirichlet conditions on the bottom electrodes and inhomogeneous Dirichlet

conditions on the top electrodes to prescribe the electric potential. Homogenous Neumann

conditions are used on the rest of the faces. The plate is mechanically fixed for all degrees

of freedom on its left and right boundaries and may move freely anywhere else.

In a first step, we just excite patch 1 by applying a voltage load at 80 Hz. Figure 5(a)

displays the mesh in the vicinity of patch 2 to demonstrate the large difference between the

mesh size in the plate and the ambient fluid. The computed acoustic sound pressure on a
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(a) Nonmatching Grid. (b) Amplitude of sound pres-
sure at z=50 cm (at 80 Hz).

Fig. 5. Nonmatching grid and acoustic pressure at 80 Hz

plane 50 cm above the plate is shown in Fig. 5(b)).

In a second step, we apply the inverse voltage Û = −10 V to patch 2 and study the

amount of reduction for the mechanical displacement (see Fig. 6). For the investigated

x

y

1.6e-5

1.2e-6

8.1e-6

4.1e-6

0.00

m

z

(a) Original Configuration.

x

y

1.6e-5

1.2e-6

8.1e-6

4.1e-6

0.00

m

z

(b) Patch2 3 cm closer to
Patch1.

x

y

1.6e-5

1.2e-6

8.1e-6

4.1e-6

0.00

m

z

(c) Patch2 5 cm closer to
Patch1.

Fig. 6. Mechanical displacements on plate for different positions of Patch2.

setup, the position of patch 2 is already a quite optimal one. Changing its position just

by some small amount, as shown in Figure 6, strongly increases the mechanical vibration

amplitude and furthermore the radiated sound as demonstrated in Fig. 7.

3. High-Intensity Focused Ultrasound

High-power ultrasound sources have found their way into a wide variety of applications,

ranging from medical ultrasound, like lithotripsy or HIFU-therapy (High-Intensity Focused

Ultrasound) to ultrasonic cleaning or welding and sonochemistry [16]. In contrast to ul-

trasonic applications with low amplitude pressure waves non-linear effects like sawtooth
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(c) Patch2 5 cm closer to
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Fig. 7. Acoustic amplitude field at z=50 cm for different positions of Patch2.

and shock formation occur within high-power ultrasound. Appropriate numerical simula-

tion tools are required to speed up their design process. These have to include the electro-

mechanical and the fluid–solid coupling and must be capable to compute the propagation

of finite amplitude waves through lossy and compressible media.

A quite general approach, which fulfills these requirements is Kuznetsov’s equation [17],

which is a second-order approximation for viscous heat-conducting fluids

c2∆ψ − ∂2ψ

∂t2
= − ∂

∂t

(
b∆ψ +

1

c2

B

2A

(
∂ψ

∂t

)2

+ ∇ψ ·∇ψ

)
. (16)

In (16) b denotes the diffusivity of sound and B/A the parameter of non-linearity. Besides

Kuznetsov’s equation, the following three partial differential equations for modeling non-

linear wave propagation are widely used (see e.g., [18]):

• Burger’s equation:

∂p′

∂x
− b

2c3

∂2p′

∂τ2
=

βa
ρ0c3

p
∂p′

∂τ
(17)

with τ = (t − x/c) the retarded time, b the diffusivity of sound and βa = 1 + B/2A the

coefficient of non-linearity. Burger’s equation allows the investigation of the combined

effect of dissipation and non-linearity on progressive one-dimensional plane waves.

• Westervelt equation:

∇2p′ − 1

c2

∂2p′

∂t2
+

b

c4

∂3p′

∂t3
= − βa

ρ0c4

∂2p′2

∂t2
(18)

with b the diffusivity of sound. This partial differential equation can describe the propaga-

tion of plane waves including the non-linear effects as well as dissipation. This means that
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we can apply this equation, when cumulative non-linear effects dominate local non-linear

effects, e.g., in cases where the distance of propagation is larger than one wavelength.

The approximation is not appropriate for the simulation of standing waves.

• Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation:

∂2p′

∂x∂t
− c

2
∇2
⊥p
′ − b

2c3

∂3p′

∂t3
=

βa
2ρ0c3

∂2p′2

∂t2
(19)

with βa = 1 + B/2A the coefficient of non-linearity, b the diffusivity of sound and ∇⊥
the nabla operator including only partial derivatives with respect to the transversal co-

ordinates. The simplification w.r.t. to Kuznetsov’s equation is given by modeling only

directional wave propagation fulfilling

k⊥
kx
� 1 ,

with k⊥ the wave number in the transversal direction and kx the wave number in the

direction of propagation. This approximation is mainly used for investigation of diffrac-

tion, non-linearity and dissipative effects in directional sound beams which occur, e.g., in

medical ultrasound, acoustic microscopy or non-destructive testing.

Besides the correct modeling of the non-linearities within the wave propagation, the

process of heat transfer in biological tissue has to be modeled. A general approach is given

by the equation known either as the bio-heat equation or as the Pennes equation [19].

Often, the thermal model of interest can be derived from this equation by a truncation of

the blood perfusion and metabolic activity terms. Thus the problem of heat transfer for the

temperature T reads as

ρ(T )cν
∂T

∂t
= κ∆T + 〈q〉 (20)

with the density ρ, the specific heat capacity cν , the specific heat conductivity κ and the

temporal averaged heat source 〈q〉. The acoustic source term q is the total acoustic energy

absorbed and converted to heat, which is defined over the acoustic intensity I as

q = −∇ · I with I = p′v′ .

In terms of the acoustic potential the source term computes as

q = ρ0(∇∂ψ
∂t
· ∇ψ +

∂ψ

∂t
∆ψ) ,

where ρ0 is the mean density. This source term was firstly obtained by Nyborg [20] and

later in [21], and is valid for arbitrary wave propagation. We remark that this temporal

averaging must be performed over a sufficiently long time interval within which the wave

does not change its general character.
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3.1. FE Formulation for High Intensity Focused Ultrasound

In the following, we will summerize the main steps for the numerical solution of Kuznetsov’s

equation by an enhanced FE formulation. The strong formulation for the non-linear wave

equation by (16) reads as: Given

ψ0, ψ̇0 : Ωa → R and f , c , B/A , b : Ωa → R

find the scalar acoustic potential ψ : Ωa × [0, T ]→ R such that

1

c2

∂2ψ

∂t2
−∆ψ = f +

1

c2

∂

∂t

(
b(∆ψ) +

B/A

2c2

(
∂ψ

∂t

)2

+ (∇ψ)2

)
(21)

with Dirichlet and Neumann boundary conditions of the form

ψ = ψD on Γa
D × (0, T ) ;

∂ψ

∂n
= ψN on Γa

N × (0, T ),

and initial conditions

ψ(x, 0) = ψ0, ψ̇
′(x, 0) = ψ̇0, x ∈ Ωa.

For simplicity we set all boundary conditions as well as initial conditions to zero. Now, to

obtain the variational formulation, we multiply (21) by an appropriate test function w and

perform an integration by parts for the Laplace term on the left- and right-hand sides. Thus,

the variational formulation reads as follows: Find ψ ∈ V = {ϕ ∈ H1(Ωa)|ϕ = pD on Γa
D}

such that∫
Ω

1

c2
wψ̈ dΩ +

∫
Ω

(∇w) · (∇ψ) dΩ =

∫
Ω

wf dΩ−
∫
Ω

∇
(
b

c2
w

)
· (∇ψ̇) dΩ

+

∫
Ω

2

c4

B

2A
wψ̇ψ̈ dΩ +

∫
Ω

w∇
(

2

c2
ψ

)
· (∇ψ̇) dΩ (22)

for all w ∈W = {q ∈ H1(Ωa)|q = 0 on Γa
D}. Applying standard Lagrangian finite elements,

we arrive at

Mψψ̈ + Kψψ + Cψψ̇ −N1
ψ(ψ̇)ψ̈ −N2

ψ(ψ)ψ̇ = f . (23)

The time discretization is performed by an implicit Newmark algorithm with time stepping

parameters β = 0.25 and γ = 0.5. Since (23) is a non-linear equation, we have to apply

an iterative scheme. By shifting all non-linearities to the right-hand side of the equation

system, we arrive at the following scheme:

(1) Perform predictor step:

ψ̃ = ψ
n

+ ∆t ψ̇
n

+
∆t2

2
(1− 2β) ψ̈

n
= ψk

n+1
(24)

˜̇
ψ = ψ̇

n
+ (1− γ)∆t ψ̈

n
= ψ̇

k

n+1
. (25)
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(2) Solve algebraic system of equations:

M∗
ψψ̈

k+1

n+1
= f

n+1
(26)

− Kψψ̃ −Cψ
˜̇
ψ + N1

ψ(ψ̇
k

n+1
)ψ̈

k

n+1
+ N2

ψ(ψk
n+1

)ψ̇
k

n+1

M∗
ψ = Mψ + γ∆tCψ + β∆t2 Kψ . (27)

(3) Perform corrector step:

ψk+1
n+1

= ψ̃ + β∆t2 ψ̈
k+1

n+1
(28)

ψ̇
k+1

n+1
=

˜̇
ψh + γ∆t ψ̈

k+1

n+1
. (29)

(4) Test convergence:

‖ψ̈k+1

n+1
− ψ̈k

n+1
‖2

‖ψ̈k+1

n+1
‖2

≤ δψ
{

fulfilled : perform next time step

not fulfilled : k := k + 1 goto step 2 .
(30)

In order to demonstrate the non-linearity, we consider in a first example a simple acoustic

channel setup as displayed in Fig. 8. The vibrating body is excited by a sine-burst with an

Fig. 8. Simple computational setup and excitation signal to demonstrate the generation of non-linear waves.

amplitude of 100µm at 100 kHz. For the medium we use water (c = 1500 m/s) with a

parameter of non-linearity B/A equal to 5 and a diffusivity of sound value b = 6 ·10−9 m2/s.

We choose a FE mesh with 250 finite elements per fundamental wavelength (λfundamental =

cwater/ffundamental = 1500/105) and set the time step size to 20 ns, which corresponds to 500

time samples per fundamental time period (Tfundamental = 1/ffundamental). The fine spatial

and time discretization is necessary to correctly resolve the higher harmonics, which arise

due to the non-linearity. Figure 9 shows the time signal and frequency spectra exactly at the

shock formation distance (for the analytical solution we refer to [22]). As the wave further

propagates, its shape will become a saw-tooth as displayed in Fig. 10 (for the analytical

solution at this distance we refer to [22]).

In a second example, we want to demonstrate for a coupled acoustic-thermal simula-

tion the strong difference between a realistic model (uses Kuznetsov’s equation with tem-

perature dependent speed of sound) and a quite simple model (uses linear wave equa-

tion with constant speed of sound). Therewith, we introduce a computational domain
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(a) Time signal. (b) Frequency spectrum.

Fig. 9. Time signal and frequency spectrum of the non-linear wave at the shock formation distance.

(a) Five times the shock formation distance. (b) Eight times the shock formation dis-
tance.

Fig. 10. Time signal of the non-linear wave at five and eight times the shock formation distance.

Ω = ΩF ∪ ΩT which is divided into two sub-domains ΩF = [0, 0.01m] × [0, 0.005m] and

ΩT = [0, 0.01m] × [0.005m, 0.025m] (see Fig. 11). These two subregions represent a water-

liver system with temperature dependencies for the speed of sound as well as density (for

details see [23]). The wave transducer with an aperture size of 20 mm located at the bottom

of the domain emits ultrasound waves at a frequency of 1MHz traveling from bottom to

top. For simplicity, we do not model the actual transducer (in most cases a piezoelectric

transducer), but instead model the transducer by the following inhomogeneous Neumann

boundary condition

∂ψ

∂n
= − sin(2π106t) on ΓE × [0, tn] . (31)

Furthermore, we set second order absorbing boundary conditions for the acoustic scalar

potential on all other boundaries of the computational domain [23]. The temperature field



March 11, 2011 8:4 WSPC/130-JCA CoupledFieldsAcousticEnd

16 M. Kaltenbacher

Fig. 11. The computational setup for the ultrasonic heating problem.

is set to 293.15K on all boundaries. For the sake of convenience in exposition the acoustic

potential/pressure and the temperature field are normalized to their maximum values. From

Fig. 12. The evolution of the acoustic potential/pressure (upper/lower row) profile at time moments tk, tl,
tn with tk < tl < tn (from left to right) and the temperature focus (the rightmost picture) for the realistic
model (Kuznetsov equation with temperature dependent speed of sound). The horizontal axis represents the
line x = 0.01 in the computational domain Ω (see Fig. 11).

Fig. 12 one can see how the acoustic potential/pressure and temperature peaks moves in

the direction of the acoustic source that is caused by the thermo-acoustic lensing effect.

However, as displayed in Fig. 13 the simple model does not show any thermo-acoustic

lensing effect and furthermore, the temperature increase is quite smaller.
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Fig. 13. The evolution of the acoustic potential/pressure (upper/lower row) profile at time moments tk, tl,
tn (from left to right) and the temperature focus (the rightmost picture) for the simple model (linear wave
equation with constant speed of sound). The horizontal axis represents the line x = 0.01 in the computational
domain Ω (see Fig. 11).

3.2. Application: High-Intensity Focused Ultrasound Sources

The principle setup of an acoustic power source based on the piezoelectric effect is shown in

Fig. 14(a). Due to the geometric focusing of the lens, high acoustic intensity can be achieved

in the focus region. The piezoelectric transducer has a diameter of 60 mm and the radius of

(a) Principle setup of high-power ultra-
sound source.

(b) Finite ele-
ment mesh (for
display reasons,
just a coarse
mesh is shown).

Fig. 14. Setup of a high-power ultrasound source and corresponding FE mesh (axisymmetric model).
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curvature of the lense is 55 mm, which results in a focal distance of 70 mm. The operating

frequency of the transducer is 1.7 MHz.

At the starting point in our investigations impedance calculations have been performed

for the piezoelectric disc transducer. This was mainly performed to obtain all necessary and

unknown material parameters. By applying an inverse scheme, in which we fully simulate the

transducer and automatically adjust the material parameters to fit measured and computed

electric impedance, we obtain the dielectric, mechanical and piezoelectric material values

[24–26]. The simulated and the measured electric impedance of the piezoelectric transducer

(a) Impedance of the M453 piezo transducer in
air.

(b) Electrical input impedance of the HIFU
source loaded with water.

Fig. 15. Two typical acoustic field computations.

is displayed in Fig. 15(a). Due to good agreement over a wide frequency range, we can

trust the fitted material parameters. Next, the impedance of the whole HIFU source was

simulated with water load. The computed electric impedance in water is displayed in Fig.

15(b).

In the numerical simulation of the HIFU source, the piezoelectric and the fluid–solid

coupling as well as the non-linear wave propagation in the fluid is taken into account.

Therefore, an axi-symmetric finite element model has been setup in which the piezoelectric

transducer, the lens, the matching layer and the water has been discretized (see Fig. 14(b)).

The FE model consists of about one million finite elements just in the acoustic computa-

tional domain. Therewith, at least 8 linear finite elements per wavelength λ are guaranteed

for the first 4 harmonics. For the excitation of the piezoelectric transducer a sine burst

at 1.7 MHz with a maximal amplitude of U = 133Vpp has been chosen. The simulation

results were observed at several points on the rotational axis between the source and the

focus region. A transient analyses has been performed for 13.500 time steps with a time

step size of 4 ns. It should be noted that also for the higher excitation voltage the piezoelec-

tric transducer is still in the linear region. Therefore, any distortions in the pressure signal
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arise from non-linear effects in the fluid only. The comparison of measurements (see [27])

with simulation results is shown in Figs. 16(a) and 16(b). The non-linear distortion of the

sine wave due to the generation of higher harmonics is clearly visible. In the simulations a

damping value for the fluid of 0.22 dB/MHz2m has been used.

(a) Pressure pulse signal for high-intensity mea-
surement and non-linear simulation at the focal
distance.

(b) Frequency spectrum of pressure pulse for
high-intensity measurement and non-linear sim-
ulation at the focal distance.

Fig. 16. Time signal and frequency spectrum for the non-linear simulation compared to measured data.

In a second example, we will discuss the numerical computation of a high-power electro-

magnetic pulse source used for lithotripsy application. In such applications we have up to

80 MPa in the focus, and we need a fine grid within the acoustic domain in order to resolve

the higher harmonics forming the high-pressure pulse. The schematic setup of the electro-

magnetic pulse source is displayed in Fig. 17. When the slab coil is loaded by a capacitor

discharge, eddy currents are induced in the aluminum plate. The interaction between these

eddy currents and the overall magnetic field results in a magnetic volume force (Lorentz

force) acting on the plate. Therewith, the aluminum plate is deformed and an acoustic pulse

is radiated into the fluid and focused by the lens. Since in this case, we have to consider the

non-linearities within the electromagnetic transducer, we perform the numerical simulation

in two steps:

(1) Transducer Computation

Since the non-linearities of the acoustic field near the transducer can be neglected, we

compute the acoustic pressure using the linear acoustic wave equation. Therewith, we

fully take into account the fluid loading of the transducer. For modeling the electro-

magnetic transducer we consider all relevant non-linearities: (1) updated Lagrangian

formulation for the magnetic field to take eddy currents due to the deformation of the

aluminum plate within the magnetic field into account (motional electromagnetic force);

(2) geometric non-linearity for the aluminum plate; (3) the non-linear electromagnetic
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Fig. 17. Schematic of an electromagnetic driven acoustic power source

force term [16,28].

(2) Non-linear Wave Propagation Computation

In a second run, we fully solve Kuznetsov’s non-linear wave equation using the computed

scalar acoustic potential near the transducer obtained from the first simulation step and

prescribe it as Dirichlet boundary condition.

Therewith, in a first step we just consider the electromagnetic actuator and investigate

the electromagnetic and mechanical quantities. This step has been performed for the full 3D

model (due to the structure of the flat coil). The results are displayed in Fig. 18, where the

eddy currents as well as the deformations of the aluminum plate are shown at different time

steps. It can be clearly seen, that the deformations in radial direction are quite different.

Especially at the center, the deformation is even in opposite direction. This results from

the fact, that no eddy currents are induced in the aluminum plate near the center, since

the flat coil has no turns there (see. Fig. 17). Therewith, in this region no Lorentz forces

are generated, which could push this part of the aluminum plate away from the flat coil.

In a second step, we use the recorded scalar acoustic potential near the surface of

the plate and prescribe it as Dirichlet boundary conditions within the FE formulation of

Kuznetsov’s equation for an axi-symmetric setup. The lense itself is modeled by the me-

chanical PDE, such that the fluid-structure interface between mechanics and acoustics is

taken into account. For the numerical simulation a finite element grid width of 90µm (cor-

responds to about 70 linear finite elements per fundamental wavelength) was used for the

acoustic domain, which resulted in already 2 million finite elements for the axisymmetric

setup. The time step size has been chosen to include 100 time steps per fundamental time

period.

The measured and simulated pressure signals in the focus region of the source are shown

in Fig. 19. The dispersion at the beginning and the decreasing slope of the simulated pressure
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Fig. 18. Eddy currents and deformations of the aluminum plate at different time steps in relation to the
resulting current in the flat coil.

Fig. 19. Comparison between measured and simulated sound pressure level in the focal region of the elec-
tromagnetic pulse source

pulse as compared to the measured one indicates that the mesh size and the time step have

to be reduced further to obtain higher accuracy.
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4. Aero-acoustics

Since the beginning of computational aero-acoustics several numerical methodologies have

been proposed. Each of these trying to overcome the challenges that the specific problems

pose for an effective and accurate computation of the radiated sound. The main difficulties

include [29,30]:

• Energy disparity and acoustic inefficiency: There is a large disparity between the overall

energy of the flow and the part which is converted to acoustic energy. In general, the

total radiated power of a turbulent jet scales with O(v8/c5), and for a dipole source aris-

ing from pressure fluctuations on surfaces inside the flow scales with O(v6/c3), where v

denotes the characteristic flow velocity and c the speed of sound.

• Length scale disparity: A large disparity also occurs between the size of an eddy in the

turbulent flow and the wavelength of the generated acoustic sound. Low Mach number

eddies have a characteristic length scale l and velocity v. This eddy will then radiate

acoustic waves of the same characteristic frequency, but with a much larger length scale,

expressed by the acoustic wavelength λ

λ ∝ c l
v

=
l

M
.

• Preservation of multipole character: The numerical analysis must preserve the multipole

structure of the acoustic source. Furthermore, in order to estimate the source strength,

it is necessary to resolve the whole structure of the source.

• Simulation of unbounded domains: As a main issue for the simulation of unbounded

domains using volume discretization methods remains the boundary treatment which

needs to be applied to avoid the reflection of the outgoing waves on the truncating

boundary of the computational domain. This remains to be a very active field of research

and several numerical formulations have been developed for both transient and harmonic

analyses (for an overview we refer to [6]).

Currently available aeroacoustic methodologies overcome only some of these physical

and numerical issues, which restricts their applicability and making them, in many cases,

problem dependent methodologies. Due to the large disparities of length and energy scales

between fluid and acoustic quantities, Direct Numerical Simulation (DNS) still remains re-

stricted to low Reynolds number flows [31, 32]. Due to the practical advantages provided

by the separate treatment of fluid and acoustic computations, these hybrid methodologies

still remain the most commonly used approaches for aeroacoustic computations. Among the

group of hybrid approaches, integral methods remain widely used in CAA for solving large

open acoustic domain problems such as airframe noise, landing gear noise, fan (turbines)

noise and rotor noise. In such cases, integral methods such as Lighthill’s acoustic analogy

(see, e.g., [33,34]), Curle’s formulation (see, e.g., [35]), Ffwocs-Williams and Hawkings’ for-

mulation (see, e.g., [35–37]), the Kirchhoff method (see, e.g., [37, 38]) or extensions thereof
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(see, e.g., [39–42]) are computationally less expensive than volume discretization methods

where a volume discretization of the acoustic domain is required. In case of elastic boundaries

or for the inclusion of structural mechanics - acoustics effects, volume discretization methods

are necessary to account directly for the interaction between solid and fluid. In these cases,

integral formulations would require a priori knowledge of a hard-wall Green’s function that

is not known for complex geometries [43]. Among the volume discretization methods used in

CAA we find finite differences (FD), discontinuous Galerkin (DG) and finite volume (FV)

schemes, generally employed to solve aeroacoustic formulations based on Linearized Euler

Equations (see, e.g., [44–49]) or systems of equations such as the Acoustic Perturbation

Equation (see [50]) and Linearized Perturbed Compressible Equation (see [51]). Addition-

ally, we find the Finite Element (FE) method used to solve the variational formulation of

Lighthill’s acoustic analogy [52,53].

Figure 20 shows the typical numerical methods which are employed when using one of

these hybrid methodologies. For a precise prediction of the flow induced noise, Large Eddy

Fig. 20. Schematic of some of the possible strategies when using an aeroacoustic hybrid approach.

Simulation (LES) is mainly used for solving the flow and provide the acoustic sources. In

the LES method the large scales are directly resolved and the effect of the small scales on

the large scales are modeled [54]. Even though the computational cost is still high, it is

possible to simulate turbulent flows with high Reynold numbers and complex geometries

with the LES method. Therefore, this method has been adopted by researchers as one of the
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standard methods for computing the turbulent near field in CAA problems. Additionally we

find the group of combined RANS (Reynolds Averaged Navier Stokes)/LES methods [55].

This type of methods blend statistical approaches with LES in order to yield enhanced

predictions of both turbulence statistics and unsteady flow dynamics at a fraction of the

cost of traditional LES. Under these RANS/LES methods we find Detached Eddy Simu-

lation (DES) [56] which allows the turbulence model to pass from an uRANS (unsteady

Reynolds Averaged Navier Stokes) method for attached boundary layers to a LES in sepa-

rated regions. Another recently developed approach is the Scale-Adaptive Simulation (SAS)

method [57], which adjusts to the already resolved scales in a dynamic way and allows the

development of a turbulent spectrum in the detached regions. Therefore, it shows similar

characteristics as a DES model, but without the explicit grid dependence in the RANS

regime [57]. Furthermore, to keep the computational costs for the CFD computation as low

as possible, there are many attempts to use RANS and to generate a time dependent veloc-

ity field by help of the SNGR (Stochastic Noise Generation and Radiation) method , which

is used to evaluate acoustic source terms (see, e.g., [58–60]). These approaches are strongly

used to predict broadband noise, e.g., [61, 62]. A review of the current ongoing research in

CFD methods used for CAA simulations can be found in [63].

Many hybrid approaches employed in CAA are based on the inhomogeneous wave equa-

tion as derived by Lighthill in [34], which reads as follows

1

c2

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2Lij
∂xi∂xj

. (32)

In (32) Lij denotes Lighthill’s stress tensor given by

Lij = ρvivj + δij [(p − p0)− c2
0(ρ − ρ0)] − eij (33)

with vi the i-th component of the flow velocity vector v, p the overall pressure, eij the

(i, j)th component of the viscous stress tensor, ρ0 and p0 the atmospheric values of density

and pressure, respectively.

An important aspect in Lighthill’s acoustic analogy is the assumption that Lij is known

or can be evaluated to a certain degree of approximation. Additionally, this source term is

assumed to vanish outside the turbulent region. For a turbulent flow embedded in a uniform

atmosphere at rest, Lighthill’s stress tensor Lij can be neglected outside the turbulent region

itself. Moreover, the effects of viscosity and heat conduction are expected to cause only a

slow damping due to the conversion of acoustic energy into heat and to have a significant

effect only for very large distances. Under these assumptions, it is possible to neglect eij
entirely [33].

Furthermore, the term (p − p0) − c2
0(ρ − ρ0) only becomes important for anisotropic

media, when the Mach number in the acoustic domain is significantly different from the

one in the fluid domain. For isentropic flows in which (p− p0)/p0 and (ρ− ρ0)/ρ0 are very

small, the relation

(p − p0) = c2
0(ρ − ρ0) (34)
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can be assumed. Therefore, the resulting approximation of Lighthill’s tensor is given by

Lij ≈ ρ vivj . (35)

The explicit separation of propagation and generation as derived by Lighthill has raised

many discussions ever since, which motivated the derivation of improved acoustic analogy

formulations. A difficulty of Lighthill’s equation is the interpretation of the source term

where mean flow effects on the wave propagation are included [64]. In order to obtain a

formulation to describe the noise propagation in a transversally sheared mean flow, Lilley

[65, 66] proposed a third-order wave operator. The mean flow and any refraction it causes

are explicitely considered in this wave operator.

4.1. FE Formulation for Aero-acoustics

Let us consider the global acoustic domain subdivided into two sub-domains for the source

and far field regions (cf. Fig. 21). Here Ωa1 denotes the acoustic source region (corresponding

to the computational domain for the fluid flow), and Ωa2 the far field propagation domain.

Furthermore, we consider in Ωa1 a solid domain Ωs with a flow - structural mechanics in-

terface along Γfs. Therewith, we solve (32) in Ωa1 and (5) in Ωa2 to obtain the acoustic

pressure p′ : Ωi × (0, T ) → R. In order to accurately resolve the aeroacoustic source term,

Fig. 21. Geometrical setup for aero-acoustics.

our approach is to employ a much finer spatial discretization in Ωa1 than in Ωa2 without the

requirement of geometrical conformity between them. Therewith, we obtain a nonmatching

interface Γaa, where adequate coupling conditions have to be applied. We cannot guaran-

tee pointwise continuity of the acoustic pressure as would be the case for geometrically

conforming triangulations,

p′1 − p′2 = 0 on Γaa.

Therefore, we reformulate this condition as a weak condition for the jump of the pressure

on both sides of the interface and choose µ from a suitable Lagrange multiplier space M
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(cf. [9]) ∫
Γaa

(p1 − p2)µ dΓ = 0 ∀ µ ∈M.

We also postulate that the flux of the acoustic pressure is continuous across Γaa. We do this

by introducing a Lagrange multiplier (LM)

λ = −∂p
′
1

∂na
= −∂p

′
2

∂na
on Γaa . (36)

The sub-domain from which the discretization for the Lagrange multiplier on the interface

is inherited is called slave side. The values of the functions defined on it are determined by

the values of the functions on the other side, which is called master side. We use the finite

element basis functions restricted to the discretization of the interface on the slave side as

Lagrange multiplier (cf. [9]).

We rewrite the weak formulation of the acoustic wave equations (see (32) and (5)) for

the two sub-domains and substitute the definition of the Lagrange multiplier according to

(36). For simplicity, we set the arising integral over the outer boundary Γ to zero . Summing

up, one arrives at the symmetric saddle point problem of finding p′1, p
′
2, λ such that

2∑
i=1

 ∫
Ωai

1

c2
wip̈′i dΩ +

∫
Ωai

∇wi ·∇p′i dΩ

+

∫
Γaa

(w1 − w2)λ dΓ (37)

+

∫
Γfs

w1
∂p′

∂ns
dΓ = −

∫
Ωa1

(∇ · Lij) · ∇w1 dΩ +

∫
Γfs

w1 (∇ · Lij) · ns dΓ ,

∫
Γaa

(
p′1 − p′2

)
µ dΓ = 0 (38)

for all µ and wi, i = 1, 2. We note that µ is a test function with the same basis as the LM

λ. The boundary integral over Γfs including the Lighthill tensor is obtained by applying

integration by parts. It may be substituted based on the conservation of flow momentum

by [53] ∫
Γfs

w1 (∇ · Lij) · ns dΓ =

∫
Γfs

w1
∂p′

∂ns
dΓ−

∫
Γfs

w1
∂ρv

∂t
· ns ni dΓ . (39)

The term
∫

Γfs

w1 ∂p
′/ns dΓ in (39) cancels, when being substituted into (37). According to

the continuity between the flow velocity and the mechanical velocity of the solid along the

common interface Γfs, we may substitute the flow velocity v by the solid velocity vs. Fur-

thermore, the vibrating solid body will generate acoustic sound according to the coupling

condition (4). Therefore, the extended weak formulation of Lighthill’s wave equation con-

sidering both flow induced and vibrational induced sound with a nonconforming interface
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between the source and propagation regions reads as

2∑
i=1

 ∫
Ωai

1

c2
wip̈′i dΩ +

∫
Ωai

∇wi ·∇p′i dΩ

 +

∫
Γaa

(w1 − w2)λ dΓ (40)

= −
∫

Ωa1

(∇ · Lij) · ∇w1 dΩ +

∫
Γfs

ρ0w1
∂2u

∂t2
· ns dΓ ,

∫
Γaa

(
p′1 − p′2

)
µ dΓ = 0 . (41)

Performing a spatial discretization using Lagrangian finite elements, we arrive at the fol-

lowing semi-discrete Galerkin formulationMp1 0 0

0 Mp2 0

0 0 0

p̈1

p̈2

λ̈

+

Kp1 0 D

0 Kp2 M

DT MT 0

p1

p2

λ

 =

f1

0

0

 . (42)

In (42) Mp1,Mp2 and Kp1,Kp2 are the mass and stiffness matrices respectively. The matri-

ces D and M are due to the nonconforming interface and are formally mass matrices. They

compute element-wise as

D =

nes∧
e=1

de; de = [dab]; dab =

∫
Γe

N j
aΦj

b dΓ , (43)

M =

nisec∧
e=1

me; me = [mab]; mab =

∫
Γe

Nk
aΦj

b dΓ . (44)

For all details, concerning the intersection operators and the evaluation of the above ma-

trices, we refer to [10]. This advanced formulation is within the framework of Mortar FEM,

see, e.g., [9, 67,68].

A crucial point for any hybrid method is the transfer of the acoustic sources from the

flow grid to the acoustic grid [53,69]. In order to preserve the acoustic energy, we compute

the source terms within the FE formulation on the fine flow grid, which we then interpolate

to the coarser acoustic grid (see Fig. 22(a)). This interpolation has to be conservative to

ensure the preservation of acoustic energy. Therefore, for each of these nodal sources fF
k on

the flow grid we have to find its position in the acoustic grid. We then compute from the

global position (xk, yk) the local position (ξk, ηk) in the reference element (see Fig. 22(b)),

which is in general a non-linear mapping and is solved by a Newton scheme. Now, it is

possible to perform a bilinear interpolation and add the contribution of fF
k to the nodes of

the acoustic grid by using standard finite element basis functions Ni corresponding

fA
i = Ni(ξk, ηk)f

F
k .

By this procedure, the interpolation preserves the overall energy of the acoustic sources.
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(a) Illustration of conservative interpolation. (b) Global to local mapping.

Fig. 22. Conservative interpolation.

4.2. Application: Human Phonation

Besides respiration itself, the human respiratory system has a second important function-

ality: phonation. The possibility to generate sounds is an important factor in social life as

therewith information can be exchanged. The larynx plays an important role in this process.

It is located inside the throat and connects either the trachea (airway) with the pharynx or

the esophagus (food pipe or digestive tract). The larynx can be understood as a valve that

has two positions, one for breathing, where the trachea is connected to the pharynx and one

for swallowing, where the esophagus is connected to the pharynx. During exhalation the

larynx can generate sounds by setting the vocal folds into the phonation position. Figure 23

shows the frontal cut through the larynx. While in Fig. 23(a) the anatomical components

(a) rontal cut through the larynx. (b) Different sound mechanism.

Fig. 23. Frontal cut through the larynx showing the anatomical constitution and the different sound sources.

are specified, Fig. 23(b) illustrates the sound sources that exist in phonation. Basically, we

differ between three sources: the eddy-induced sound which emerges from turbulent flow
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structures, the volume-induced sound due to the modulated flow resulting from the self-

sustained oscillation of the vocal folds, and the sound from the vibrating vocal folds. The

modulated flow provides the main contribution. The air stream induced by lung compres-

sion is guided through the trachea and through the glottis. The air stream induces the vocal

folds to vibrate yielding an oscillating glottis cross sectional area. Due to the varying cross

sectional area the air stream gets modulated in an acoustically relevant frequency range.

This process builds the fundamental frequency of phonation.

For a realistic physical model of the phonation process, we have to consider the multi-

field setup of fluid, solid-mechanics and acoustics. The fluid flow through the larynx is

modeled with the incompressible Navier-Stokes equations

ρ
∂v

∂t
+ ρ(v · ∇)v +∇p− µ∆v = 0 , (45)

∇ · v = 0 (46)

with v the flow velocity, ρ the fluid density, p the hydrodynamic pressure and µ the dynamic

viscosity. The equations hold for incompressible fluids, which may be assumed due to the fact

that for the considered application the Mach number is smaller than 0.3. The computational

domain of the fluid flow constantly changes since the vocal folds move and hence define the

fluid boundary. This difficulty is tackled by utilizing the Arbitrary-Lagrangian-Eulerian

(ALE) approach (for details see [70,71]).

The air and vocal folds share a common interface Γfs along the continuity between the

fluid velocity v and the mechanical velocity vs (expressed by the first time derivative of the

solid displacement u) has to hold

v =
∂u

∂t
on Γfs . (47)

This implies for solid mechanics the following inhomogeneous Neumann boundary condition

[σs] · n = [σf ] · n on Γfs (48)

describing the equivalence of fluid stress [σf ] and solid stress [σs] in normal direction n. The

fluid stresses can be written explicitly by the hydrodynamic pressure p and fluid velocity v

as

[σs] · n = ρ0

∫
Γfs

−p I · n dΓ

︸ ︷︷ ︸
pressure

+

∫
Γfs

µ
(
∇v + (∇v)t · n

)
dΓ

︸ ︷︷ ︸
shear

. (49)

Having Dirichlet boundary condition for the fluid and Neumann boundary conditions for

solid mechanics, the fluid-solid interaction is also called Dirichlet-to-Neumann problem.

A sketch of all relevant relationships between the physical fields is given in Fig. 24, which

has been implemented using the finite element (FE) method [72, 73]. Generally speaking,

we consider a fluid flow which acts onto a deformable structure, which in turn influences
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Fig. 24. Sketch of interaction and coupling types between fluid mechanics, structure mechanics and acoustics.

the adhering fluid. Furthermore, the deforming structure prescribes the fluid domain and

its grid which has to change constantly in time (ALE method).

In the following we will present simulation results for a simplified geometrical model

of the larynx. This simulation setup consists of a channel with the two vocal folds, which

act as a constriction inside the channel as displayed in Fig. 25(a). Figure 25(b) shows the

fine mesh around the vocal folds, which is necessary to accurately resolve the fluid flow.

Approximately 45000 quadratic finite elements are used to resolve the fluid, which results

in about 400000 degrees of freedom. For structural mechanics the vocal folds have been

divided into three different layers, the body, the ligament and the cover. Each have different

elasticity modulus to model the real physiology more accurately. For body, ligament and

cover the elasticity moduli were set to 21 kPa, 33 kPa and 12 kPa respectively. To simulate

the pressure, the lungs build up, a pressure gradient from in– to outflow of 1.5 kPa is

prescribed. The simulations show the typical self sustained oscillation of the vocal folds

(a) Simulation model (dimensions in) mm. (b) Mesh around the vocal folds.

Fig. 25. Model of the larynx with vocal folds and the according mesh used for the simulations.
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during phonation, which is divided into the divergent (opening) and convergent (closing)

phase as displayed in Fig. 26. In Fig. 27 the fluid field can be seen at a characteristic time

Fig. 26. Computed deformation cycle of the vocal folds, which can be divided in divergent to convergent
phase.

step. In the transient simulation one can observe, how the jet is stochastically attaching to

either side of the trachea wall, which is known as the Coanda effect.

Fig. 27. Snap–shot of velocity field and deformation of vocal folds. Jet is attached to the top vocal fold —
Coanda effect.

The acoustic sound computation has been separated into a computation of the flow

induced sound (using Lighthill’s tensor, see (35)) and into a vibrational induced sound (see

(4) for the coupling term ). In a series of simulations the acoustic field of vibrational and

fluid induced sound was compared. As can be seen in Fig. 28(a) the mechanical induced

sound is much smaller than that of the fluid induced sound. Comparing this result with a

simulation were the initial glottis width is enlarged to 0.7 mm (see Fig. 28(b)) it shows that

the bigger glottis results in a much broader acoustic frequency spectrum. Furthermore, no

dominant frequency component is recognizable as in Fig. 28(a) at about 190 Hz.

These results imply the importance of a proper closing glottis for a clear and healthy

voice. Furthermore, they show that the fluid flow is the dominant source of the phonation,

which is hard to proof by measurements.

5. Conclusion

We have presented physical/mathematical models for computational acoustics based on

partial differential equations and their efficient numerical solution applying the FE method.
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(a) Acoustic spectra of vibrational and fluid in-
duced sound at a glottis width of 0.3 mm

(b) Acoustic spectra of vibrational and fluid in-
duced sound at a glottis width of 0.7 mm.

Fig. 28. Comparison of acoustic spectra for fluid induced and vibrational induced sound simulation for
different glottis widths.

Therewith, we have concentrated on three topics: vibro-acoustics, aero-acoustics and high-

intensity focused ultrasound. All these topics have in common, that they are multi-field

problems, where the acoustic field is the field of main interest. We are aware of the fact,

that our presentation is just a small extract of the broad interdisciplinary field acoustics has

developed. However, the application examples demonstrates the importance of numerical

simulation schemes being able to handle multi-field problems.
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