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The paper in hand addresses the application of the spectral finite element (FE) method to problems
in the field of computational aeroacustics (CAA). We apply a mixed finite element approximation
to the acoustic perturbation equations, in which the flow induced sound is modeled by assesing
the imapct of a mean flow field on the acoustic wave propagation. We show the properties of
the approximation by numerical benchmarks and an application to the CAA problem of sound
generated by an airfoil.
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1. Introduction

Many numerical methods have been proposed in the field of computational aeroacoustics

(CAA) most of which rely on a hybrid approach in which the sound radiation is calculated

based on sources obtained from a preceding flow field computation. Integral methods like

Ffwocs Williams-Hawkings or the Kirchhoff method have been proposed which are specially

well suited for free field radiation problems due to their low computational complexity.

Among the volume discretization methods, the finite element (FE) method is one of the

most general and established numerical schemes. The numerical simulation of flow induced

sound using the wave equation in combination with Lighthill’s acoustic analogy1 is well

established and widely used in many different scenarios2,3,4,5. For acoustic propagation in the

presence of a (non-uniform) mean flow or compressible, non-isentropic media, formulations

based on the linearized Euler equations and perturbed acoustic equations can be utilized.

These equations are mostly solved by using numerical schemes like finite differences (FD)

or discontinuous Galerkin (DG) methods 6,7,8. Within the paper in hand we focus on a

spectral finite element solution of the acoustic perturbation equations (APE) given in 5. As

the standard finite element method does not yield stable solutions we use a mixed variational

formulation as introduced in 9 for linear acoustics which we extend to numerically solve for

1
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APE.

The rest of the paper is structured as follows. In section two we discuss the governing

equations as well as the corresponding aeracoustic source terms. Next we derive the varia-

tional formulation for APE and investigate its properties in terms of accuracy and stability

in section four. Afterwards we present a modified formulation which yields a better stabil-

ity and finally demonstrate in section six the applicability of the scheme to aeroacoustic

problems.

2. Aeroacoustic formulations

The derivation of the acoustic perturbation equations is based on the linearized Euler equa-

tions in which the unknown quantities are split into their mean and fluctuating parts

f(x, t) = f(x) + f ′(x, t) ; f(x) = lim
T→∞

1

T

t0+T∫
t0

f(x, t) dt .

For the density ρ, the pressure p and the velocity u we thereby obtain

ρ = ρ+ ρ′ ; u = u + u′ ; p = p+ p′ .

By using a source term filtering technique to ensure that only acoustic eigenmodes of the

system are excited 5 it is possible to derive the perturbation equations which include con-

vective effects of a present mean flow

∂p′

∂t
+ c2∇ · (ρ u′) + c2∇ · (u′ p

′

c2 ) = c2qc , (1)

∂u′

∂t
+∇(u · u′) +∇

(
p′

ρ

)
= qm . (2)

In the following we refer to p′ as the acoustic pressure and to u′ as the acoustic particle

velocity.

In the special case of a vanishing mean flow,u = 0, and spatially constant speed of sound

c = c0 and density ρ = ρ0, we directly obtain the conservation equations of linear acoustics

which can be transformed to get to the acoustic wave equation in its pressure formulation

1

c2
0

∂2p′

∂t2
+ ∆p′ = qw . (3)

To compute the aeroacoustic source terms in above equtions one has to rely on an

acoustic analogy which uses flow quantities to formulate acoustially relevant source terms.

One of the most general and established analogies is given by Lighthill for the acoustic

wave equation 1. The right hand side of (3) then reads as

qw =
∂2Tij
∂xi∂xj

; i, j ∈ [1, 2, 3] , (4)



February 15, 2012 15:32 WSPC/130-JCA caa˙ape

A spectral Finite Element Approximation of Acoustic Perturbation Equations 3

in which Tij denote the components of the Lighthill tensor [T ] which can be approximated

as Tij ≈ ρuf
iu

f
j were uf denotes the flow velocity obtained e.g. by a numerical solution of

the flow field.

The source term for APE is based on the Lamb vector10 given by L = ωf × uf . Here,

ωf denotes the vorticity of the fluid and is defined as ωf = ∇× uf . For problems in which

most of the sound is generated by vortices in the flow field, the sources of the system (1)

and (2) can be given as

qc = 0

qm = −
(
ωf × uf

)′
= −L′ .

(5)

The vector L′ is referred to as the perturbed Lamb vector and is computed as L′ =(
ωf × uf

)
−
(
ωf × uf

)
.

3. Weak formulation and FE discretization

For a finite element method it is essential to find a variational formulation for the given

partial differenctial equation (PDE). Therewith, the wave equation according to (3) results

in 11

1

c2
0

∫
Ω

ϕ
∂2p′

∂t2
dΩ +

∫
Ω

∇ϕ · ∇p′ dΩ = −
∫
Ω

∇ϕ · (∇ · [T ]) dΩ +

∫
Γ

ϕ
∂p′

∂~n
dΓ , (6)

with ∇· [T ] the divergence of the Lighthill tensor. Furthermore we assume that the velocity

field vanishes at the domain boundary i.e.
∂Tij

∂xj
ni = 0. Now it is possible to apply the finite

element (FE) method to (6) in which the unknown quantity as well as the test function ϕ

are thought to be within the Sobolev space H1.a

For the derivation of the variational formulation of APE we restrict ourself to the case

of a spatially constant mean flow u = u0. Initially we multiply (1) with a test function ϕ

and (2) with a vectorial function ψ. An integration over the computational domain leads

to

1

ρ0c2
0

∂

∂t

∫
Ω
p′ ϕ dΩ +

∫
Ω
∇ · u′ϕ dΩ +

1

ρ0c2
0

∫
Ω

u0 · ∇p′ ϕ dΩ =
1

ρ0

∫
Ω
qc ϕ dΩ , (7)

ρ0
∂

∂t

∫
Ω

u′ ·ψ dΩ + ρ0

∫
Ω

(u0 · ∇) u′ ·ψ dΩ +

∫
Ω
∇p′ ·ψ dΩ = ρ0

∫
Ω

qm ·ψ dΩ . (8)

Furthermore we perform an integration by parts on the second term in (7) which reads as∫
Ω
∇ · u′ϕ dΩ = −

∫
Ω

u′ · ∇ϕ dΩ +

∫
Γ

u′ · n ϕ dΓ . (9)

aH1 is the Sobolev space,i.e. the space of square integrable functions whose first derivatives in a weak sense
are also square integrable12
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Unless explicitly noted, the boundary integral is assumed to be zero which corresponds to

a sound hard wall 13.

Even for the case of vanishing mean flow it is not trivial to obtain a stable finite element

method due to the violation of the Ladyzhenskaya-Babuška-Brezzi (or inf-sup) condition 14.

One has to use either a discontinuous Galerkin (DG) scheme or a mixed formulation in

which the unknowns are defined in different Sobolev spaces.

To define the functional spaces we follow 9 and assume a domain, discretized by N

quadrilateral or hexahedral finite elements K, Ω = ∪Nj=1Kj . Furthermore, there is a bijective

mapping Fj to transform the grid element Kj to the reference element K̂j . Then the discrete

spaces of approximation are defined as

p′h, ϕh ∈ Uk
h =

{
q ∈ H1

0

∣∣∣ q|Kj ◦ Fj ∈ Qk(K̂j) and q = 0 on Γ
}

(10)

u′
h,ψh ∈ V k

h =

{
w ∈ [L2]d

∣∣∣ 1

|Jj |
Jj w|Kj ◦ Fj ∈

[
Qk(K̂j)

]d}
. (11)

In (10) and (11), Jj denotes the Jacobian of element Kj and Qk(K̂j) the set of Lagrange

polynomials of degree k and dimension d on K̂j . Furthermore, L2 is the space of Lebesque

square integrable functions 12. Thereby the acoustic particle velocity u′ is approximated

discontinuously from element to element which is similar to a DG formulation.

It is important to notice, that the space V k
h is defined with the H(div)-conforming Piola

transform 15. Therefore, the mapping of the grid element to the reference element is defined

by uh = 1/|Jj | Jjûh. The usage of this mapping in combination with a spectral element

approximation16,9 enables a very efficient implementation of the resulting scheme 17.

In the initial approach we applied the above choice of functional spaces directly to the

variational formulation of APE and investigate its accuracy and stability by the means of

the following numerical examples.

4. Verification and stability test

As a verification example we choose a setup introduced in 18 as depicted in Fig. 1a. At t = 0

we prescribe an acoustic pressure field given by

p′(t = 0) = exp

(
ln (2)

x2 + (y + 75)2

25

)
,

while setting u′(t = 0) to be zero. During the pulse propagation, we record the acoustic

pressure for different times along the monitoring line plotted in Fig. 1a. For the computation

we choose a uniform flow velocity of u0 = (0.5c, 0)T resulting in a Mach number Mx = 0.5.

The domain is discretized by second order spectral elements with an edge length of h = 1m

and a fourth order Runge-Kutta time stepping scheme is used. The pressure distribution

along the monitoring line is given in Fig. 1b for t = 60s. Analytical and the numerical

solutions match well, which validates our approach.

To investigate the stability the setup is changed such that the domain is assumed to be

bounded by sound-hard walls. The solution becomes instable after the wave impinges on the
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(a) Sketch of computational setup (b) Computed acoustic pressure and analytical solu-
tion along the monitoring line with length L for t = 60s

Fig. 1: Sketch of setup used for verification of the scheme and comparison of computational

results to analytical solution.

domains boundary (Fig. 2 (left) ). Similar instabilities have been observed for other setups

especially in case of higher Mach numbers and distorted meshes. Therefore, the following

attempts were made to stabilize the solution.

5. A modified formulation

The convective term in (8), i.e. the second integral, requires the computation of the deriva-

tive of the aocustic particle velocity. This operation is problematic because the functional

space of the particle velocity is the discontinuous space L2. Therefore we utilize the idea of

the discontinuous Galerkin method and add a numerical flux term to (8).

Assume two adjacent elements K1 and K2 with a common boundary Γ12 then a central

flux could be formulated as 6

∫
K1

(u0 · ∇) u′
K1
·ψK1

dK ≈ −
∫
K1

u′
K1

(u0 · ∇) ·ψK1
dK

+
1

2

∫
Γ12

((u0 · nK1) uK1 − (u0 · nK2) uK2) ·ψK1
dΓ

=a(u′,ψ)

(12)

On the obtained bilinear form a(u′,ψ) we performing a reverse integration by parts which
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leads to

a(u′,ψ) =

∫
K1

(u0 · ∇) u′
K1
·ψK1

dK

−1

2

∫
Γ12

((u0 · nK1) uK1 + (u0 · nK2) uK2) ·ψK1
dΓ

(13)

Therefore by averaging the two expressions (12) and (13) we obtain∫
K1

(u0 · ∇) u′
K1
·ψK1

dK ≈1

2

(∫
K1

(u0 · ∇) u′
K1
ψK1

dK

−
∫
K1

u′
K1
· (u0 · ∇) ψK1

dK

)
−1

2

∫
Γ12

(u0 · nK2) uK2 ψK1
dΓ .

(14)

In addition one can add an explicit penalization term as used in 6 for the DG formulation.

The effect of these changes in the formulation is demonstrated in Fig. 2. On the left

side we see the acoustic pressure field at T = 150 s calculated by the original formulation

and on the right we see the results of our modifield formulation. Obviously the stability

of the scheme was improved dramatically. This result also holds for long time simulations

and higher, subsonic Mach numbers. It has to be mentioned that the scheme still shows

Fig. 2: Stabilizing effect of the modified formulation. Contour plot of the acoustic pressure

at T = 150 s for the initial formulation (left) showing unstable results and the stable results

obtained by the proposed ansatz displayed on the right.

instabilities for distorted meshes. We are currently working on further stabilizations and a

detailed mathematical analysis.
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6. Aeroacoustic computations

The work flow of our approach towards CAA is depicted in Fig. 3. From the results of a

flow computation we can calculate the appropriate source terms as given in (4) and (5).

Additionally, we can perform the computation required to obtain the right hand side of

each formulation. The results are the time dependent aeroacoustic sources on the fluid grid.

Fig. 3: Toolchain of hybrid aeroacoustic computations

6.1. Interpolation of source serms

As the requirements on the computational grid differ significantly for fluid and acoustic

computations, it is almost always necessary to transfer the aeroacoustic sources from the

fluid grid to a coarser acoustic grid. It is crucial that no energy is lost during this step in

order to obtain valid results11.

The interpolation procedure used here can be split in the following two steps:

(1) For each node in the fluid grid find the element in the acoustic grid in which the node

is located
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(2) Determine the local coordinates (ξk, ηk) of the fluid node with respect to the corresond-

ing reference element and use the elements shape functions Ni to compute the contri-

bution of the fluid nodes value ffk to the degree of freedom fai of the element taking into

account the Piola transform.

6.2. Co-rotating vortex pair

To validate our formulation we utilize the co-rotating vortex pair benchmark 11,5 as displayed

in Fig. 4a. The two point like vortices are separated by a fixed distance 2r0 and have a

circulation intensity Γ. The vortices rotate around each other with freqeuncy ω = Γ/(4πr2
0).

For this example it is possible to give an analytical expression for the flow field as well as

(a) Schematic diagram of co-rotating vortices (b) Sketch of acoustic domains Ωa and the source
grid Ωf in the center

Fig. 4: Co-rotating vortices example

for the induced acoustic pressure by using the method of matched asymptotic expansion

(MAE) 19.

As the vortices are confined to delta functions, we follow 5 and evaluate a vortex core

model based on an Gaussian vorticity distribution with standard deviation σ ≈ r0. The

vortex source term for the APE can be given as

qm(r, t) = − Γ er(t)

8π2σ2r0

2∑
i=1

(−1)i exp

(
−|r + (−1)i r0(t)|2

2σ2

)
. (15)

In (15) we define r = (x, y)T , r0 = r0er and er = (cos(ωt), sin(ωt))T . The resulting source

term is computed on a fine computational grid Ωf with dimensions 8mx8m and an element

size hf = 0.01m.
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The domain Ωa of dimenstion 200mx200m for the acoustic field computation with a

mesh size ha of 6m is displayed in Fig. 4b. Additionaly, the source gird Ωf is displayed in

the center of the acoustic domain. It can be seen that almost the complete source grid is

included in just one finite element of the acoustic grid. Around the propagation region we

define a perfectly matched layer (PML) to avoid reflections at the domain boundary 13.

As a first step we compute the acoustic pressure on a fine grid with element size ha =

0.4m and second order spectral elements. A comparison between analytical pressure field

and computed pressure field is shown in Fig. 5. One can see only minor deviations in the

two fields. In Fig. 6 the acoustic pressure along a line is plotted for the finer (ha = 0.4 m)

Fig. 5: Sound field generated by a corotating vortex pair. Contour plot of acoustic pressure

for analytical solution h = 0.1m and computed solution ha = 0.4m

and the coarser grid (ha = 6 m). One can see, that the computed values are in very good

agreement to the analytical solution even for the coarse gird.

6.3. Trailing edge noise

As a final, practical example we apply the numerical scheme to the setup depicted in Fig. 7.

The CFD computation has been carried out at a Mach number of 0.3 and is motivated by

the NACA 0012 airfoil test-case20. The fluid computation along with aeroacoustic results

using Lighthills analogy have been presented in 21. The aim of the current investigation is

to show some of the properties of two aeroacoustic schemes using the wave equation on the

one hand and the APE on the other.

Following the work flow, we initially compute the aeroacoustic sources on the CFD

grid which leads to right hand sides plotted in Fig. 8. It is obvious that the Lighthill

sources show spourious sources which are confined to lines in the fluid grid. This is most

likely caused by the combination of two issues. First, to compute the CFD solution a finite
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(b) Coarse grid

Fig. 6: Comparison of numerical and analytical solution for the corotating vortex pair. Plot

along the line from domain center at (0, 0)T to right boundary at (100, 0)T

Fig. 7: Schematic diagram of airfoil at Mach 0.3

volume (FV) scheme has been utilized in which the solution may have minor jumps from

one element to the other. Secondly the computation of the right hand side integral involves

the multiplication of the divergence of the Lighthill tensor by the derivative of the test

function which makes the result very sensitive against small deviations in the flow field.

Thereby the afore mentioned minor jumps can cause distortions in the field as pictured in

Fig. 8a. Still it has to be noted that these spurious sources have a much lower amplitude

(factor 1 · 102) then the major source terms. The right hand side field based on the Lamb

vector does not show these oscillations and the sound generating vortices can be seen nicely

(see Fig. 8b). To investigate if this difference in the sources has an impact on the numerical

results, we compare the sound pressure level of the two computations at a monitoring point

0.4cm above the airfoil (see Fig. 10 for the position of the monitoring point). To obtain

the results we compute a total time of T = 0.1 s with the time step size of the limiting

Courant-Friedrichs-Lewy (CFL) condition for the fourth order Runge-Kutta scheme used

for the APE. The speed of sound is c0 = 343m/s and the acoustic grid is computed to have

at least 5 second order elements per wavelength for a frequency of 5kHz which correspond
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(a) Based on Lighthill tensor
(scaled by a factor of 1 · 102)

(b) Based on Lamb vector
(magnitude scaled by a factor of 10)

Fig. 8: Contour plots of right hand side terms

to ha ≈ 0.06m. Depicted in Fig. 9 are the frequency transformed sound pressure levels

Fig. 9: Sound pressure level 40cm above the airfoil

at the monitoring point above the airfoil for different simulation runs. In the displayed

frequency range we notice two significant peaks at 2.6kHz and 3kHz which can be observed

in all simulations. One can see, that the results for the wave equation and the APE at

zero mean flow are very similar except that the solution of the wave equation is about

3dB lower than the solution with the APE. Possible reasons for this can be related to the

implicit time stepping scheme used for the wave equation and/or the spurious source terms

mentioned before. In a last simulation run we apply a mean flow of Mach 0.3 to the region

of propagation and notice that the calculated SPL is increased over the complete frequency

range. Figure 10 shows the acoustic pressure field obtained by APE computations with and

without a mean flow velocity. One can see that the acoustic waves are amplified in upstream

direction and damped in downstream direction. Right above the airfoil, the two fields are

very similar which explains the small differences in the SPLs at the monitoring point.
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Fig. 10: Contour plot of the acoustic pressure field obtained for the trailing edge noise

problem. Comparison of results obtained at Mach 0 (left) and for a uniform flow with Mach

0.3 (right).

7. Conclusion and outlook

We have presented a spectral finite element approximation to the acoustic perturbation

equations based on an mixed variational formulation implemented within the FE frame-

work CFS++22. Instabilities which occurred in the initial formulation could be reduced

significantly by introducing a numerical flux term as known from DG methods. Further-

more we were able to verify our approach towards computational aeroacoustics including

calculation of source terms, interpolation to a coarser acoustic grid of arbitrary element or-

der and finally the acoustic computation. Due to the usage of explicit time stepping schemes

the scheme performs very well and the most time consuming part at the moment is the in-

terpolation of source terms in each time step which leaves much room for optimization. One

last important issue was noticed during the computations of the airfoil. Even though the

elements inside the computational mesh show only minor distortions the setup was very

sensitive with respect to stability. This effect shows that the modifications performed so far

were not sufficient to obtain a general stable scheme. Addressing this issue will be the main

topic in our ongoing research.
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