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Abstract—Extending Hintikka’s game for the evaluation of
classical formulas, we explore the realm of quantifier rules that
can be defined by combining several moves consisting of choices
by the two strategic players, but also by a third non-strategic
player ‘Nature’, representing random choices. The simple format
of Hintikka-style games is compared to the seemingly much more
general one of Giles’s game for Łukasiewicz logic.

I. INTRODUCTION

One of the most important challenges in fuzzy logic is the
design of adequate models of vague quantifier expressions
like ‘many’, ‘few’, ‘almost all’, ‘about half’. The literature
on corresponding fuzzy quantifiers, initiated by Zadeh’s [1], is
almost insurmountable large; we refer to the monograph [2]
and the more recent survey article [3] for an overview of
relevant literature. Focusing on monadic (type 〈1〉) quantifiers,
a fuzzy quantifier is given by a truth function mapping
any fuzzy set of domain objects D into a truth value in
[0, 1]. Following a useful and well argued suggestion by
Glöckner [2], such functions are to be determined in two
separate steps: (1) define a semi-fuzzy quantifier, where the
scope of the quantifier is a crisp (classical) predicate, and
(2) lift the semi-fuzzy quantifier to a (fully) fuzzy quantifier
in some systematic and uniform manner. Glöckner proposed
an axiomatic approach for the second step and arrives at
a corresponding quantifier fuzzification mechanism (QFM).
Here we are mainly interested in the first step and moreover
restrict attention to proportional quantifiers, like the ones in
our opening sentence above, where the truth value of the
quantified sentence only depends on the proportion of domain
elements that satisfy the scope predicate of the quantifier.
Even for this restricted (but important) class of semi-fuzzy
quantifiers there are uncountably many different functions of
type [0, 1]→ [0, 1] that are prima facie reasonable candidates
for the corresponding truth function of each quantifier of this
type. It remains a challenge to single out particular (families
of) truth functions in a systematic and principled manner, that
respects criteria like linguistic adequateness, computational
and conceptual simplicity, and compatibility with deductive
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fuzzy logics. The latter are systems of many-valued logics
over the truth value set [0, 1]; in particular the t-norm based
logics at the core of mathematical fuzzy logic as presented,
e.g., in the Handbook of Mathematical Fuzzy Logic [4].

The above mentioned challenge has been addressed in [5],
[6] by extending Giles’s game for Łukasiewicz logic [7].
This game models the stepwise reduction of logical complex
assertions into atomic ones in a rule guided dialogue between
two players. The players’ payoff at a final state of the game
is specified in terms of the total expected loss of money if
each player bets for the success of dispersive experiments
corresponding to atomic formulas. ‘Dispersive’ means that the
(yes/no) results may differ when repeated; but a fixed success
probability is associated with each experiment. In this manner
Giles succeeded in deriving the truth functions of the logical
connectives of Łukasiewicz logic from first principles about
approximate reasoning, rather than just imposing these func-
tions in an ad hoc fashion. While the game includes rules for
standard existential and universal quantification, Giles did not
consider (semi-)fuzzy quantifiers. The main ingredient of the
semi-fuzzy quantifier rules presented in [5] and investigated
more systematically in [6] are bets for and against certain
numbers of instances of the scope formula that result from
random choices of domain elements.

Better known than Giles’s game, and arguably indeed more
fundamental, is Hintikka’s [8] characterization of truth in a
model for classical first order formulas. It consists in a simple
game with two players, one in the role of the proponent P
and the other one in the role of the opponent O, who stepwise
reduce a given formula to one of its immediate subformulas
until an atomic formula is reached. In this H-game, as we
shall call it, conjunction and universal quantification trigger
choices by O, while disjunction and existential quantification
correspond to choices by P; negation is expressed by a switch
of roles between the players. At the final state of a run of the
game P wins the game if the resulting atomic formula is true
in the given interpretation, otherwise O wins.

While Giles’s game (G-game) shares some central ideas
with the H-game, it features not only a more complex evalua-
tion of final game states, but also a considerably more complex
notion of a game state. Whereas a state of a H-game is fully
determined by a single formula and the current distribution of



roles (O/P) between the two players, a state of the G-game
consists in two multisets of formulas, one for each player.
Another type of generalization of Hintikka’s game to fuzzy
logics (E-games) is described in [9], which likewise features
an additional component in the corresponding notion of a
state, namely an explicit truth values attached to each formula
in question. The corresponding game rules specify not only
which subformula is selected for continuation, but also certain
computations that are to be performed on the truth value in
reducing compound formulas. We refer to [10] for a detailed
presentation of these and some further variants of semantic
games for fuzzy logics.

The aim of this paper is to explore the scope and limits
of game rules for semi-fuzzy quantifiers that, in contrast to
the G-game and the E-game, strictly adhere to ‘Hintikka’s
principle’: any state of the game is determined by a single
(instance of a) subformula of the original formula and the
information about which player acts as P and which as O.
In [11], the first author has investigated such Hintikka-style
games for propositional fuzzy logics. Moreover the focus there
is on quite simple, binary branching rules. Here we deal with
quantification. Like in [5] and [6], random choices of domain
elements are essential for obtaining interesting families of truth
functions. However, note that Hintikka’s principle prevents the
reduction to simultaneous bets for and against whole multisets
of corresponding instances of the quantified formula, that is
central for Giles-style games. As we shall see, the expressive
power of Hintikka-style games is nevertheless considerable if
one considers rules that consist in several moves, combining
random choices with those of the two strategic players.

II. THE BASIC H-GAME

Our starting point is Hintikka’s classic semantic game [8],
[12], called the basic H-game here. Two players, called I
(Myself) and You, can both act either as proponent P or as
opponent O1 with respect to a formula F built up using
connectives ∧, ∨, ¬ and the quantifiers ∀, ∃. Initially I act
as P and You act as O. My aim — or, more generally, P’s
aim at any state of the game — is to show that the initial
formula is true in a given interpretation M. The following
rules refer to the outermost connective or quantifier of the
current formula. For simplicity, we will assume that there is
a constant for every element of the domain of M.

RH∧ : If the current formula is F ∧ G then O chooses
whether the game continues with F or with G.

RH∨ If the current formula is F ∨ G then P chooses
whether the game continues with F or with G.

RH¬ : If the current formula is ¬F , the game continues with
F , except that the roles of the players are switched:
the player who is currently acting as P, acts as O at
the next state, and vice versa for the current O.

RH∀ : If the current formula is ∀xF (x) then O chooses a
constant c and the game continues with F (c).

1Hintikka uses Nature and Myself as names for the players and Verifier and
Falsifer for the two roles. However, in our many-valued setting these names
are problematic. Our terminology follows the handbook article [10].

RH∃ : If the current formula is ∃xF (x) then P chooses a
constant c and the game continues with F (c).

Except for RH¬ , the players’ roles remain unchanged. The
game ends when the current formula is atomic. The player
who is acting as P at the final state wins and the other player
(acting as O) loses, if this atomic formula is true in M. We
associate payoff 1 with winning and payoff 0 with losing.
We also include the falsity constant ⊥ , signifying definite
payoff 0, among the atomic formulas. The game starting with
formula F is called the H-game for F under M.

Theorem 1 (Hintikka). A formula F is true in a (classical)
interpretation M (also written as vM(F ) = 1) iff I have a
winning strategy in the H-game for F under M.

At the propositional level this result directly generalizes to
Kleene-Zadeh logic KZ, resulting from extending any given
assignment of values in [0, 1] to atomic formulas as follows:
given by the truth functions

vM(F ∧G) = min(vM(F ), vM(G)),
vM(F ∨G) = max(vM(F ), vM(G)),
vM(¬F ) = 1− vM(F ),
vM(⊥) = 0.

At the first order level we may define the semantics of the
universal and the existential quantifier as follows, where we
identify the elements of the domain D with constants:

vM(∀xF (x)) = infd∈D(vM(F (d))),
vM(∃xF (x)) = supd∈D(vM(F (d))).

The H-game rules remain unchanged here. Of course, such a
straightforward lifting from classical to fuzzy logic (general-
izing payoffs in {0, 1} to [0, 1]) is only possible for KZ.

In the following we will restrict attention to finite domains
and thus may assume that there are witnessing constants for
all suprema and infima.

Definition 1. w is called the value of the game for player X
if X has a strategy that guarantees a payoff of at least w for
X, while the opponent player has a strategy that ensures that
X’s payoff is at most w.

Theorem 2 ([6]). A formula F evaluates to vM(F ) = w
in a KZ-interpretation M iff the H-game for F with payoffs
matching M has value w for Myself.

III. GENERAL H-GAME RULES – HINTIKKA’S PRINCIPLE

The H-game does not provide rules for implication (→)
or for equivalence (↔). However such rules can easily be
augmented by combining the basic building blocks — choices
by P, choices by O, and role switch – within a single rule.

RH→: If the current formula is F → G then P chooses
whether (1) the game continues with F or (2) with G;
in the first case after a switch of roles.

RH↔ : If the current formula is F ↔ G then O chooses
between one of the following two options:
(1) P gets to choose whether to continue with F or



with G; in the first case after a switch of roles.
(2) P gets to choose whether to continue with F or
with G; in the latter case after a switch of roles.

One could also consider connectives with more than two argu-
ments. In particular, it is obvious how to formulate rules for k-
ary conjunction or disjunction. In any case, the characteristic
feature of the H-game, which we want to maintain for all
extensions of Hintikka’s basic game throughout this paper, is
the following.

Hintikka’s Principle: The application of any game rule to the
current formula F results in a state that is fully determined
by (an instance of) an immediate subformula of F (or a truth
constant) and a distribution of roles (I:P/You:O or I:O/You:P).

Obviously, only rules for connectives that are definable
over {∨,∧,¬} can be obtained in this manner. By functional
completeness, for any truth function f : {0, 1}k → {0, 1},
there is a rule of the indicated type—combining choices by P
and O, projections to fixed subformulas or truth constants, and
role switch, possibly in several rounds—for the correspond-
ing classical connective. This observation generalizes to KZ,
where the corresponding truth functions are those definable
using min, max, 1−x, and projections to arguments or to the
truth constant ⊥.

Interesting options for generalizing the basic H-game arise
for quantifiers. Consider, e.g., the following rule:
RHE2

: If the current formula is E2xF (x) then P chooses
two different constants c1 and c2 and, after that, O
chooses whether the game continues with F (c1) or
with F (c2).

It is straightforward to check that this rules characterizes the
classical quantifier ‘at least two’. As is well known, this
quantifier can be defined from ∃ in the presence of identity.
But the above rule enhances the expressive power of classical
logic without the identity predicate. Again, it is straightforward
to lift this observation to the many-valued setting.

IV. RANDOM CHOICES – INTRODUCING NATURE

A quite powerful way to obtain game rules for connectives
and quantifiers that are not expressible in KZ is to allow for
uniformly random choices in addition to those by Myself and
You. As is customary in game theory, such (uniformly) random
choices can be understood as those of an additional, non-
strategic player, called Nature (N for short). In particular it
has been demonstrated in [11], that the expressivity of KZ
is considerably extended already at the propositional level by
introducing a new binary connective π given by the following
H-game rule.
RHπ : If the current formula is FπG then N decides ran-

domly whether the game continues with F or G.
As shown in [11], the corresponding truth function is given
by

vM(FπG) = vM(F )+vM(G)
2 .

This observation can be lifted to specify the ‘random choice
quantifier’ Π, introduced in [5] by the following rule.

RHΠ : If the current formula is ΠxF (x) then N (uniformly)
randomly chooses a constant c and the game contin-
ues with F (c).

Remember that we assume that the domain D of given
interpretation M is always finite. Moreover we assume that
constants and domain elements are in one-one correspondence.
These assumptions lead to the following truth function for Π.

vM(ΠxF (x)) = PropDF =df

∑|D|
i=1 vM(F (ci))

|D| .

In the following we will suppress the reference to the domain
D, since it will always be clear from the context. Also the
reference to F is usually clear, allowing us to simply write p
instead of PropF when convenient. We are primarily interested
in the case where F is crisp, i.e., {0, 1}-valued.

Notice that RHπ nor RHΠ are perfectly compatible with
Hintikka’s principle: there is still just a single next current
formula and the role distribution (P/O or O/P) for the two
strategic players (I and You) remains unaffected by the non-
strategic player N.

V. A GENERAL FORMAT FOR QUANTIFIER RULES

Combining Sections II, III, and IV we find all ingredients for
a general format of quantifier rules for Hintikka-style games.
We will only consider monadic (type 〈1〉) quantifiers. As
already indicated in Section III for the case of the connective
↔, the key for obtaining game based definitions for a wider
class of connectives and quantifiers is to compile several basic
moves into a single rule. For monadic quantifiers this leads to
the following scheme for rules referring to a current formula
of the form QxF (x):

Rule Scheme for QxF (x):
Each move of the rule refers to some X ∈ {O,P,N}, where
the player (in role) X may do just one of two things:
(A) choose a constant, or else
(B) choose among a finite number of given options for
continuation; i.e., X chooses either the next move or else the
particular instance F (c) with which the rule ends, where c is
one of the previously chosen constants.

In addition, the rule may specify a role switch between
the two strategic players (I and You) after the final move, i.e.,
before the game is continued. In any case, the finally chosen
F (c) is the current formula of the next round of the game.

Note that Hintikka’s Principle is respected by our scheme.
Every rule following the above scheme may be visualized as a
tree of finite depth, where each node is associated with either
P, O, or N, and where the edges leaving the node correspond to
the possible choices for that player in the corresponding move.
Moves of type (A) induce a successor node for each domain
element, whereas moves of type (B) induce a successor node
for each of the given options for continuation. These options,
according the scheme, may correspond to a further internal
node (representing the next move) or else to a leave node
(rule end), labeled by an instance of one of the scope formulas.
Together with the possible indication of a role switch between



P and O, this next current formula determines the next state
of the game.

In the next sections we will instantiate the above scheme in
various ways and explore corresponding truth functions.

VI. EXAMPLES

The following rules specify quantifiers where O may choose
among a given finite number of constants, chosen by N, for
instantiating the scope formula.

RHΠ∧
k

: If the current formula is Π∧kxF (x), then N chooses
k (not necessarily different) constants c1, . . . , ck, and
then the player in role O chooses with which F (ci),
where 1 ≤ i ≤ k, to continue the game.

RH
Π

∧
k

: Exactly as RHΠ∧
k

, except for a final role switch be-
tween Myself and You before the game is continued.

Note that these two families of quantifier rules indeed
follow the general scheme of Section V. They combine k
moves of type (A) by N with a single final move by O,
possibly followed by a role switch. Whereas the choices of the
non-strategic player N, by definition, are uniformly random;
the choices of O are strategic and amount to conjunction.
Remember that we focus on the case where the scope formula
F of a given quantifier occurrence is crisp. Together with our
stipulation that constants and domain elements are in one-one
correspondence this entails that PropF denotes the fraction
of domain elements that satisfy the scope formula. These
observations allow us to determine truth functions for our new
quantifiers as follows.

Proposition 1. The rules RHΠ∧
k

and RH
Π

∧
k

, applied to crisp
scope formulas F , yield the following truth functions:

vM(Π∧kxF (x)) = (PropF )k, (1)

vM(Π
∧
kxF (x)) = (1− PropF )k. (2)

Proof. (1) First observe that the various component moves of
the rule RHΠ∧

k
indicate that Π∧kxF (x) can be decomposed as

follows in the context of the H-game for logic KZ, extended
by rule RHΠ of Section IV:

vM(Π∧kxF (x)) = vM(Πx1 . . .Πxk(F (x1) ∧ · · · ∧ F (xk)))

Since the random choices of the constants (N’s choices) are
by definition independent of each other, we obtain

1

|D|k
∑
c1∈D

· · ·
∑
ck∈D

min(vM(F (c1)), . . . , vM(F (ck)))

for vM(Π∧kxF (x)). Since F is a crisp formula, i.e. true (1) or
false (0) in each instance, we may rearrange the sums to get

vM(Π∧kxF (x)) =

(∑|D|
i=1 vM(F (ci))

)k
|D|k

= (PropF )k.

(2) The second claim follows from the above considerations
for the first one by taking into account that the final rule switch
in RH

Π
∧
k

(by Theorem 2) corresponds to negation and thus to the

function 1−x. From this observation we obtain the following
in analogy to case (1):

vM(Π
∧
kxF (x)) =

(∑|D|
i=1(1− vM(F (ci)))

)k
|D|k

= (1−PropF )k.

Corollary 1. For crisp scope formulas F the following holds:

vM(Π
∧
kxF (x)) = vM(Π∧kx¬F (x)).

In the proof of Proposition 1 we made use of the fact that
the current formula of the form QxF (x) corresponds to a
compound formula using only the elementary random choice
quantifier Π and ∧ and ∨. This observation can be generalized
as expressed in the following proposition.

Proposition 2. Let G be a formula built up from variants2

of a given formula F (x) using the connectives ∧, ∨, π,
¬ and the quantifiers ∀, ∃, and Π, such that all exhibited
variable occurrences are bound. Then G translates into a
game rule instantiating the scheme presented in Section V for
the quantifier QG specified by vM(QGxF (x)) = vM(G).

Proof. (Sketch, relying on Theorems 1 and 2, as well as their
generalizations to π and Π in [11] and [6], respectively.)
Occurrences of ∀, ∃, and Π in G correspond to moves of
type (A) for O, P, and N, respectively. Occurrences of ∧,
∨, and π, correspond to moves of type (B) for O, P, and
N, respectively. Negation corresponds to role switch. Since
the scheme only allows for role switch as a final step, it
remains to observe that all occurrences of negation signs
(¬) in G can be pushed in front of occurrences of atomic
formulas. This is clear for conjunctions, disjunctions, and uni-
versal and existential quantification, since the classical equiva-
lences, vM(¬(A ∧B)) = vM(¬A ∨ ¬B), vM(¬(A ∨B)) =
vM(¬A ∧ ¬B), vM(¬∀xA(x)) = vM(∃x¬A(x)), and
vM(¬∃xA(x)) = vM(∀x¬A(x)) hold for KZ as well. But
we also have vM(¬ΠxA(x)) = vM(Πx¬A(x)) as well
as vM(¬(AπB)) = vM(¬Aπ¬B), which completes the
proof.

We illustrate Proposition 2 by extracting a rule from G =
Πx(¬F (x)∨∀y(F (y)π∃z¬F (z))). Following the above proof
sketch we obtain:

RHQG
: If the current formula is QGxF (x), then

1 [type (A) move for N]: N chooses a constant c.
2 [type (B) move for P]: P chooses between 3 and 4.
3 [end]: The game continues with F (c) after role switch.
4 [type (A) move for O]: O chooses a constant d.
5 [type (B) move for N]: N chooses between 6 and 7.
6 [end]: The game continues with F (d) (no role switch).
7 [type (A) move for P]: N chooses a constant e.
8 [end]: The game continues with F (e) after role switch.

2A variant of F (x) results from uniformly renaming all free occurrences
of the exhibited variable x in F . In particular F (x) and F (y) denote variants
of each other.



As we have seen, the truth functions of Π∧k and Π
∧
k depend

on the proportion PropF of domain elements satisfying the
crisp scope predicate F in a very straightforward manner.
Next we show how more involved game rules allow us to
match more complex truth functions that reflect binomially
distributed expected payoff in the corresponding game.

VII. BINOMIAL DISTRIBUTION

We start by synthesizing a quantifier rule induced by

G = Πx((F (x) ∧Πy¬F (y)) ∨ (¬F (x) ∧ΠyF (y))).

Writing Π1
1 for QG, we obtain the following rule according to

the proof sketch for Proposition 2:
RH

Π1
1
: If the current formula is Π1

1xF (x), then
1: N chooses a constant c.
2: P chooses between 3 and 3’.
3: O chooses between the following options:

– to continue the game with F (c), or
– to go to move 4.

4: N chooses a constant d.
5: The game continues with F (d) after role switch.

3’–5’: Like 3–5, except for a role switch before contin-
uation with F (c), instead of before continuation
with F (d).

To see that this rule is indeed adequate relative to G, note
that the choices of a constant by N in moves 1, 4, and 4’ of
RH

Π1
1

correspond to occurrences of Π in G (cf. Section IV).
By Hintikka’s Theorem 1, lifted to the many-value setting in
Theorem 2, P’s choice between the two options in move 2
corresponds to a disjunction. Similarly, the choices by O in
moves 3 and 3’ of RH

Π1
1

correspond to conjunctions.
The truth function for Π1

1, understood as semi-fuzzy quan-
tifier, is as follows.

Lemma 1. For crisp scope formulas F we have

vM(Π1
1xF (x)) = 2PropF (1− PropF ).

Proof. Let c be the constant chosen by N in move 1 of RH
Π1

1
.

Since F is crisp, we may distinguish two cases:
(1) vM(F (c)) = 1: in this case P will choose option 3 in
move 2 of rule RH

Π1
1

to increase her expected payoff. This
corresponds to picking the left disjunct of the formula in the
scope of Πx in G. (In fact the choice is irrelevant if |D| =
1. However if |D| > 1, the expected value for P is indeed
higher for this option leading to the left disjunct of G.) Next
O (in move 3) will rationally choose to continue with move 4,
corresponding to the focus on the subformula Πy¬F (y) of G.
The expected value for P in this case therefore is 1− PropF .
(2) vM(F (c)) = 0: in this case P rationally will choose option
3’ in move 2. This corresponds to picking the right disjunct
of G. Again O (in move 3) will choose to continue with 4,
which amounts to the focus on the subformula ΠyF (y). The
expected value for P in this case therefore is PropF .
Since case (1) occurs with probability PropF and case (2) with
probability 1− PropF we obtain

PropF (1−PropF )+(1−PropF )PropF = 2PropF (1−PropF )

for the overall expected value.

In the above proof, although not strictly necessary, we have
appealed to the decomposition of Π1

1xF (x) into a formula
involving only Π, ∧, ∨, and ¬. We will now go into the inverse
direction and first determine truth functions of quantifiers in-
duced by such formulas and then conclude from Proposition 2
that corresponding H-game rules can be synthesized.

For the following recursive definition recall the quantifiers
Π∧k from Section VI and note that Π∧1 xF (x) = ΠxF (x).

Definition 2. The quantifiers Πk
m are given by

Πk
0xF (x) = Π∧kxF (x), Π0

mxF (x) = Π
∧
mxF (x), and

Πk
mxF (x) = Πx((F (x) ∧ Πk−1

m y¬F (y)) ∨ (¬F (x) ∧ Πk
m−1yF (y)).

Theorem 3. Applied to crisp scope formulas F the truth
functions for Πk

m are as follows:

vM(Πk
mxF (x)) =

(
k +m

k

)
(PropF )k(1− PropF )m.

Proof. The two base cases follow from Proposition 1. For the
case k = 1 we argue like in the special case of Π1

1 in the
proof of Proposition 1. Writing vkm for vM(Πk

mxF (x)), vkm
for vM(Πk

mx¬F (x)) and p for PropF we obtain

v1
m+1 = pv0

m+1 + (1− p)v1
m

and hence by Proposition 1 and induction on m

v1
m+1 = p(1− p)m+1 + (1− p)

(
m+ 1

1

)
p(1− p)m

= (m+ 1 + 1)p(1− p)m+1 =

(
m+ 2

1

)
p(1− p)m+1.

The case for m = 1 is analogous. Generally, for m > 1,

vk+1
m = pvkm + (1− p)vk+1

m−1

and therefore, by induction,

vk+1
m = p

(
k +m

k

)
pk(1− p)m+

(1− p)
(
m+ 1 +m− 1

k + 1

)
pk+1(1− p)m−1

=

(
k +m+ 1

k + 1

)
pk+1(1− p)m.

The case for increasing k while fixing m is analogous.

From Theorem 3 and Proposition 2 we obtain:

Corollary 2. For every k,m ≥ 0 a game rule instantiating the
general scheme of Section V can be defined for the semi-fuzzy
quantifier with the truth function

vM(Πk
mxF (x)) =

(
k +m

k

)
(PropF )k(1− PropF )m.



VIII. COMPARISON WITH G-GAME BASED RULES

As mentioned in the Introduction, game rules for semi-
fuzzy quantifiers based on Giles’s game (G-game) [7] for
Łukasiewicz logic Ł have been presented in [5] and in [6].
These rules refer to a much richer notion of a game state,
given by

[F1, . . . , Fm | G1, . . . , Gn] ,

where {F1, . . . , Fm} is the multiset of Ł-formulas currently
asserted by You, called your tenet, and {G1, . . . , Gn} is the
multiset of augmented formulas currently asserted by Myself,
called my tenet. At any non-final state a current (non-atomic)
formula F gets picked. If this formula occurrence F is in my
tenet, then I act as P and you as O for F , and vice versa
if F is in your tenet. At the final state, where all occurring
formulas are atomic, the payoff for Myself is given by

m− n+ 1 +
∑

1≤i≤n

vM(Gi)−
∑

1≤i≤m

vM(Fi).

We may view the H-game as a very restricted version of the
G-game, where each state is either of the form [ | F ] signaling
the role distribution I:P/You:O or of the form [F | ], signaling
the role distribution I:O/You:P. Indeed, the G-game rules for
(weak) conjunction (∧), disjunction (∨), and for the universal
and existential quantifiers (∀ and ∃) directly correspond to the
rules RH∧ , RH∨ , RH∀ , and RH∃ reviewed in Section II.

The G-game setting admits the following rule [5]:
RHΠk

m
: If the current formula is Πk

mxF (x), then k+m (not
necessarily different) constants are chosen randomly.
P picks k of those constants, say c1, . . . , ck and bets
for F (c1), . . . , F (ck), while simultaneously betting
against F (c′1), . . . , F (c′m), where c′1, . . . , c

′
m are the

remaining random constants.
Betting for a formula F in the G-game means that F is added
to P’s tenet, while betting against F means that F is added
to O’s tenet, while an occurrence of ⊥ is added to P’s tenet.
Moreover a principle of limited liability is in place. In this
case this means that, after the randomly chosen constants are
revealed, P may decide to replace the current formula by an
occurrence of ⊥ instead of proceeding as specified in RHΠk

m
.

It is no accident that we have used the same symbol
(Πk

m) for the above G-game based quantifiers as for the ones
specified quite differently in Definition 2 of Section VII. As
shown in [6], we have

vM(Πk
mxF (x)) =

(
k +m

k

)
(PropF )k(1− PropF )m

also in the current setting, where Πk
m is given by the above G-

game rule RHΠk
m

. In the light of Section VII we thus obtain the
perhaps surprising result that neither the relatively complex
structure of G-game states nor simultaneous bets for and
against several instances of the scope formula are really needed
to provide a game based semantics for these quantifiers. As
stated in Corollary 2 one may alternatively specify Πk

m by
(multiple-move) rules that respect Hintikka’s Principle and
thus fit the H-game format.

However we hasten to point out that one cannot always
trade simultaneous bets in complex G-game states for complex
(multi-move) rules referring to simple H-game states. Indeed,
for example the so-called blind choice quantifiers Lkm and
Gkm introduced in [6], cannot be defined in our H-game
based setting. This follows from Theorem 9.2.4 in [10], show-
ing that connectives like Łukasiewicz implication or strong
Łukasiewicz conjunction, that are not definable in logic KZ
and thus also not by H-game rules, are needed to reduce those
quantifiers to the basic choice quantifier Π.

IX. CONCLUSION

We have explored the realm of monadic semi-fuzzy quan-
tifiers specified by Hintikka-style game rules that may in-
volve uniformly random choice and combine several moves.
‘Hintikka style’, here, refers to what we called Hintikka’s
Principle: each game state is completely determined by a
single instance of a subformula of the original formula together
with the current distribution of roles between the two strategic
players. It turned out that the expressive power of such rules
is considerable. We have shown that a family of quantifiers,
that were originally defined in the context of the much
more general setting of Giles’s game for Łukasiewicz logic
can already be specified by game rules that obey Hintikka’s
Principle. In particular, the simultaneous bets for and against
several instances of the scope formula featured by Giles-style
rules can be traded for Hintikka-style multi-move rules.

As a topic for future work it remains to characterize the class
of all truth functions for quantifiers that can be defined in this
manner. Furthermore, we have restricted attention to formulas
built up from crisp predicates, here. However, in principle, our
game semantic setting amounts to a quantifier fuzzification
mechanism (cf. [2]) that deserves to be investigated for its
own sake.
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