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1 Introduction

Our aim in this paper is incorporate combinatorial techniques into natural lan-
guage semantics, and, particularly, to develop a concept of natural language
quantification. During the last decades, there have been several approaches to
context dependent interpretation regarding determiners like many, and we find
that they can be divided into two main streams. One is carried out by linguists,
like Fernando and Kamp [6], Keenan and Stavi [9], Barwise and Cooper [1], or
Westerstahl [13,14], and Lappin [10,11,12], and they all share the feature of two-
valued interpretation, that is, the expressions, involving many, are either true
or false. Then, there is the other community, namely the fuzzy logicians, like
Zadeh [15], Glockner [8], or Héjek [2], and Fermiiller [3,4,5]. They, accept the
need of graded interpretations, while the use of contexts, that is in particular
also the acceptance of intensional aspects of the matter, is still best observed
in [12], where extensionality and intensionality get fit into one unifying frame.
In both, the extensional and the intensional setting, one can make use of com-
parison classes. Lappin calls them comparison sets in the extensional case and
normative situations for the intensional case. Even though we follow his termi-
nology, we intend to show, that the underlying combinatorial pattern is the same
in both cases. In so doing, we will give four additional extensional readings for
many in Section 2, and eight new intensional readings in Section 3, and each
time emphasize the combinatorial underpinnings. Also, in Section 2, we char-
acterize what can be seen as a canonical structure for contexts, which we call
a distinction tree. The ideas get illustrated through an easy context dependent
statement, involving many. Eventually, in Section 4, we show how one can go
down the road to graded interpretations of many, and how many and few are
functionally related. Thus, this paper aims at bringing the two streams closer
together.
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2 Lappin’s approach and beyond

Our main reference throughout this paper will be Shalom Lappin’s article [12],
and particularly his two-valued intensional parametric interpretation of || many ||,
namely this one:

[B]* € || many [|([|A[>*) iff
§#0, and for all sn € S, [[[[A[P* O [[BI*] = (A" A [|BIP" (1)

The statement is formulated in the following notation (cf. [12], p. 601):

e sa is an actual situation (a situation that supports only states of affairs that
we identify as actual).

e S is a set of normative situations sn.
e a situation is, effectively, a non-maximal possible world.!

e for a predicate P, we have ||P||®* = {a : s E P(a)}, thus the set of a such that
P(a) holds in s.?

Thus, assuming we have a domain of objects, that share two crisp® properties
A and B, and distinguished other domains where all objects have the same two
properties, Lappin’s semantics of many evaluates to true iff the original domain
is at least as big, in terms of cardinality, as the distinguished other domains.
Hence, it is necessary to point out that not the range of the determiner is vague,
but what is meant by vague, is that there are different possibilities for interpret-
ing it. Contrasting it with || every ||, Lappin states this:

“By contrast || many || and || few || allow a large number of distinct interpreta-
tions whose specification involves essential reference to contextual parameters.
In fact, these quantifiers seem to be vague in a way that GQ’s like || every ||
are not.” ( [12], p. 600)

In this section, we will follow that strategy, and come back to the possibility of
augmenting it in Section 4. The following statement of Lappin’s can be seen as
a motivation for his approach:

“The determiners many and few are problematic for generalized quantifier
theory because, as has frequently been noted, their interpretations are radically
context-dependent and under-determined.” ( [12], p. 599)

L Cf. p. 601 in [12], footnote 6
2 Cf. p. 602 in [12], footnote 8
3 Here, crisp means two-valued



He singles out the two options of extensional readings and intensional readings,
but in each case (1) is meant to give an adequate semantics. Referring to the
work of Keenan and Stavi (1986, [9]) and Fernando and Kamp (1996, [6]) in this
area, he gives the following assessment:

“Both types of analysis are problematic in that either they do not allow for
certain readings of many (few), or they generate multiple ambiguity with no
apparent upper bound on the set of possible interpretations for these deter-
miners. In Section 2 I present a different sort of intensional account of vague
quantifiers which avoids these difficulties.” ( [12], p. 601)

Also, he explains how extensionality and intensionality are related:

“In addition to intensional readings like those indicated for (7) and (9), it is
possible to derive from (5)* the full range of extensional readings which have
been proposed on alternative accounts of many by extensionalising S through
the requirement that the elements of S = sa.”( [12], p. 603)

For illustration, Lappin gives nine different extensional readings of many, re-
ferred to as (10), (11a-d), and (12a-d) (in [12]), and embeds them into his set-
ting. This appears to be a neat formal frame for figuring things. Along with it,
we present four additional interpretations that fit into this frame, to extend his
list of nine into a list of 13. We want to employ several “comparison sets” to
augment applicability. Thus, for i € {1,...,k} let C; be the i-th comparison set.
Also, we define:

pE = AP OB, and - pi* = [[LA]* N |G-

Be I, :={i:ie{1,...,k},p5* > pP ,and a = |I].

Be Iy :={i:ie{l,....k}Lp*=p%} ,and b:= |l
Bel.:={i:ie{l,....k},p* <p? ,and ¢ = |I.|.

|| = max{[[|Gi[|** N [|A[I**] i € {1,..., k}}

Now we can state our four additional interpretations for many:
(Al) S={sn:sn=sa & p% > pi*, forall i€ {1,...,k}}

(A2) S={sn:sn=sa & p% > p*, for most i € {1,...,k}}
(A3) S={sn:sn=sa &> pi* <Dicp i}

(Ad) S={sn:sn=sa& |CT|<p%}

* The (1) from the present paper is referred to as (5) in [12]



The second one is clearly just a weakening of the first. Employing a ’>’-sign,
instead of the ">’-sign (in (A1) or (A2)), would be a strengthening. We will come
back to this in a bit. The third one is apparently somewhat new, even though the
meaning should be clear from a philosophical viewpoint. Having several compar-
ison sets, it says the following: If the sum of the masses of the comparison sets
smaller than the one under investigation, is bigger than the corresponding sum
of the masses of the comparison sets bigger than the one under investigation,
then ||B]|** € ||many ||(]|4[**) can be regarded adequate. The last one can be
seen as a strengthening with respect to Lappin’s 12a, using several, instead of
one, comparison set. One can also think of very different readings of many. For
example, there may be psychological reasons to consider something as many. In
cases in which there are no comparison classes, or at least, they are not obvious,
we can think of an information overflow interpretation. For example, if we look
at a table, that hosts exactly five coins, most of us will be able to recognize the
number of coins at once, without counting them. If we put 17 coins instead, most
human brains will consider that as to many to handle at once, and will need to
count them. It seems interesting to encounter such readings as well, but for the
sake of brevity we will not so do here. One example we consider here informally,
builds upon the idea of small children playing LEGO. What could bring a child
to consider the number of red LEGO-bricks as many, is that there are more of
the red sort than of all other colors. That would be Lappin’s interpretation, if he
had introduced more than one allowed comparison set, since we are in the exten-
sional case. Still, it makes sense to talk about ‘many red LEGO-bricks’, even if
there is a color of which there are more LEGO-bricks. That is what we formalize
here. The intensional case would be the one of one child playing LEGO, but,
e.g., at different days, and in different rooms, and using these different informa-
tion clusters as comparison classes. This shall, on empirical grounds, motivate
the need to extend Lappin’s approach. The next example will be our running
example for the remaining part of the paper. It is a context dependent statement
that will be revisited in Section 3:

“Many students are German” (2)

For a first assessment of this, we intend to use a situation sa to which we infor-
mally refer to as Vienna. Formally, we will define sa as follows:
Be F the set of all people registered in Vienna. Thus, E = {p1,...,pm} for some
m € N. We assume that 'being a student’ is a crisp predicate, and is decidable,
for all people living in Vienna. Hence, we separate the elements of E in the
following way:

Jst :={j :j €{1,...,m}andstudent(p;) is true}
Again, we assume that, for all such students, it is decidable whether one is
German or not, thus we separate I further:

Jst,c '=1{Jj : j € Jss and German(p;) is true}

Similarly, assuming there are k other nationalities C1,...,Ck, apart from the
Austrians themselves, and that each person only possesses one citizenship, we
have:



Jse,ar i={J 1 j € Js and Austrian(p,) is true}

Js,c; ={J : j € Jsy and C;(p;) istrue} for all C; with i € {1,...,k}.
Thus: Jst = Jst,GUJst,AtUJst,Clo ce UJst,Ck
Before we continue presenting the example for the extensional assessment of (2),
using only one situation, namely sa (= Vienna), we capture that context struc-

ture. Here, it is crucial, that the used predicates are crisp, and fulfill the law of
excluded middle with respect to the root-set E:

This intuitive picture captures basically the idea of a canonical structure for
figuring orderings of objects in a predicative way: At each node, we add a new
predicate, that all the node following objects have to fulfill forever. Thus, the
leaves carry objects, that fulfill all the predicates of the preceding nodes. This
tangible way of writing things down, can eventually lead to an increase of process-
ability by machines. Lets give a definition:

Definition 1 (Distinction Tree). Be L a finite list of objects, and T a finitely
branching (finite) tree with root Ty. Be n € N the number of objects in L, and
I:=1{1,...,n}. A node corresponds to a sublist of L. In particular, L = Tp.
A node t' is a successor of node t, if t' C t. For this we write t' = t. If the
list-inclusion is strict, we say that t' is an echt successor of t. For a list | =
(tms .- to) of nodes with t,, C tm—1 C ... C tg, we set m (the number of list-
inclusions) as length of 1, and denote it with 1h(l). With slh(l) we denote the
number of strict list-inclusions. Also, we denote with t' =,, t, that there is a list
I=(tt1,...,tm—1,t") with Ih(l) = m, and with t' =3, t the same situation with
slh(l) = m. The list-inclusions are governed by the principle of separation, that
is, if, forr € N, t' =2 t, then the objects of t' fulfill all the very same properties
that the objects of t fulfill, plus exactly v more. If there is such a tree T with
L =Ty, and the union of all leaves gives L again, we call it a distinction tree.

Definition 2 (Context). A context is a distinction tree with L = E, for some
non-empty set E of finite cardinality.

Now, if we evaluate (2), using (Aj) (with j € {1,...,4}), and the context Vienna,
where we take C1, ..., Ck as our comparison sets, i.e. we actually evaluate “Many
(foreign) students (in Vienna) are German.”, we have the following four results:

j=1: (2) is true if and only if the number of German students in Vienna is
at least as big as the number of students from C; in Vienna, for all i €
{1,...,k}.

Jj =2: (2) is true if and only if the number of German students in Vienna is at
least as big as the number of students from C; in Vienna, for more than half
of the i € {1,...,k}. (Weakening w.r.t. j = 1)

j =3: (2) is true if and only if the sum of the fractions that are smaller than
the German one, is greater than the sum of fractions that are bigger than
the German one.



j =4: (2) is true if and only if the fraction of German students in Vienna is
greater than the one of every single comparison class. (Strengthening w.r.t.

j=1)

Note that, unlike later on in the intensional case, there is no need to introduce
relativity counts here, since we would simply divide every term by the same
normative term || A[[52(# 0)°, and hence it cancels out again immediately.

For readability and the sake of conciseness, we introduced only the four readings
(A1),...,(A4), but we will now, as a preparation for Section 4, show, how the
structure behind unfolds into a neat combinatorial pattern. Eventually, we intend
to motivate the use of this pattern for a graded interpretation of many.

We can have the following 13 orders of the numbers a, b, and c:

z1:a>b>c Zo:b>a>c zz:c>a>b zz:a=b>c
zs:a>b=c zg:b>a=c zZz:c>a=b zg:a=c>b
zg:a>c>Db zZip:b>c>a z11:¢c>b>a z12:b=c>a

z13:a=b=c

These classes correspond to integer partitions where the order counts:

IP := {(a,b,c) e N3 :a+b+c=k}

We can make out three possible majority scenarios and one additional one :

(B1) for most i € {1,...,k} p5* > p%
(B2) for most i € {1,...,k} pf* = pP
(B3) for most i € {1,...,k} pi* < p¥
(B4) neither (B1) nor (B2) nor (B3) hold.

Of course, we could replace “most” with “all” in (B1), (B2), and (B3), but this
would make considerations only easier, thus we decided to go for the slightly
more involved (weaker) interpretation. Also, we want to point out, that the
distinction into the four above scenarios will yield a more precise consideration
than the one from (A1),..,(A4). It could easily be weakened to fit the former
interpretation again, though. The reason why we are not doing it, is that we
want to emphasize the inherent combinatorial systematics. Particularly, when
we develop the graded interpretation of many, it will make sense to treat few
simultaneously, and therefor we will need the full structure at our disposal. To

5 Cf. remark on p. 10



stress this a bit further, in [12] Lappin also attempts to so do as well. This can
be read off the second quote of this paper, and from the following:

“A corresponding interpretation for || few || is obtained by substituting || few ||

for || many || and ’<’ for *>’ in (5)%.”( [12], p. 601)

Singling out (B2) as a distinct set of scenarios will enable us to give an even
more direct correspondence of the two determiners, in Section 4.

_ (k+1)(k+2)
Clearly, |IP | = 5=
The number of possible scenarios for (B1), (B2), and (B3) is the same, namely:
If k is even: 2 (5) (X +1). Andif kisodd: 2 (|5] +1) (|4] +2).

The remaining scenarios from (B4) will be referred to as no-majority situations.
Of them we have:

If kiseven: 3 (5+1)(£+2). Andifkisodd: % (|%])([%5]+1).

Also, we could give a detailed analysis of the distribution of the orderings of the
numbers a, b, and ¢, and show how they can be used to determine intermediate
truth values of statements involving many. As this would take to much space, we
delegate it to future work. Here, we only emphasize the existence of this pattern.
The vicinity to probabilistic approaches (like the one of Fernando and Kamp)
may be apparent, even from this narrow treatment, though. Still, we give an
intuition how to evaluate (2) using more than two truth values, making use only
of the numbers a, b, and c:

Many (A, B) = 0, for scenarios from (B1) .
Many (A, B) = 1, for scenarios from (B2).
Many (A, B) = 1, for scenarios from (B3).
And for one of the remaining ones from (B4)

¢>a— Many(A, B) € (%, 1}, and a>c¢— Many(A, B) € [O, %)
Later, we intend to look into that a little bit deeper and also make use of the
measure of the corresponding comparison sets, as already indicated through
(A3). Deeper considerations, into the direction of probability theory, can find a
good starting point in [7].

5 The (1) from the present paper is referred to as (5) in [12]



3 Diversification

In this section, we will show, why Lappin’s (1) is not enough to capture all
readings of many, by giving an easy example, employing again (2). Before we
will so do, lets fix some notation and have a look at the most apparent different

interpretations: (S = {sn; :i € {1,...,n}})

— AP B> i LAY A B[P |
ﬁ y and pB,rel = W’ and

Sa
PBrel = A

=2

P = A= O IBI=]  and pl 2= 4] 0 [ B].

Bel,:={i:ie{l,... ,n},piByrcl > PE e} ,and a = |1,
Be Ip:={i:ic{l,...,n}, 05 0 = DB ra) , and B := |Ig].
Be I, :={i:ie{l,... ,n},piBJel < PBrel} ,and v = |L,].

Be Is:={i:i € {l,...,n},0p s > PBapsy - and a:=|lsl.
Be I := {i:ie{l,... ,71},;7"]3,,&}3S =PFabst - and B = |IB|'

Be Iy :={i:i€{l,...,n},p5 s <PHapst - and 7:=|I;].

[1B[* € || many [|([|A[>*) iff
S # 0, and for every i € {1,...,n}, it holds: p3 o > piB’rel

Other options are striking, like the following two weakenings:

1B € || many [|(||A]**) iff
S %0, and for most i € {1,...,n}, it holds: p s = P aps

[ BII"* € || many || ([|A[>*) iff
S # 0, and for most i € {1,...,n}, it holds: p% .o = Plp el

Or similarly to what we did before, we can use these two strengthenings:

IBI[** € || many [|([|A]**) iff
S # 0, and it holds: p s > max{pl s : ¢ € {1,...,n}}



[B** € || many [|([A]|>*) iff
S # 0, and it holds: p o > max{pj . : i € {1,...,n}} (7)

To complete our selection:

[B]** € || many [|([|A[|>*) iff
S # 0, and it holds: ZpiB’abs > Z Phabs (8)

ie].“y i€ls

| B]* € || many || (|| A]**) iff
S # (), and it holds: Z piB)rel > Z p%wel (9)

iel, i€l

Remark: To not run into trouble here, we use the following common interpreta-
|[MON|

tion: For two sets M and N, we have: =z =0, if |N| = 0.
A natural question is now, whether we really do something new here, or whether

there is a way to translate (3)-(9), by some means, into (1). This can also be so
expressed:

Proposition 1. Let S = {sny,...,sn,} be a set of normative situations. Fur-
thermore, assume we want to employ the relative reading of many captured
by (3). It is not possible to rewrite S into S’ = {sn},...,sn} such that S’
is a set of normative situations, and we can employ (1) equivalently to (3) using
this S’ instead of S.

Proof. Assumptions:

o ||A][** # 0, and || A||* # 0 for all sn € S

® Vanes = IAIIF* O BIF/IIIAIS] = (LAl A1 BIE= /1AL (&)
We are looking for a S” such that:

Vawes = |IAI= NI BIF| = (1A 0|1 B]™]

Our setting grants us, that A and B are fixed predicates. Also, we can fix some sn

from S for which we have equality in (X), and try to rewrite it into an sn’, while

sa is fixed from the very beginning. Thus, generally by assumption, ¢ := % is

a non-negative rational number, depending particularly on the actual situation



sa. Hence, it can be, that ¢ = %, as a special case, as well as it may be the case,
that [[|A]|** N || B||*"| = 26. Now, since ||| A||** N||B||**| € N, it can not be, that:

A sa / ’
1Al A Bl gl = 1Al A (18],

since that would mean, that % € N, which is clearly wrong. This completes the
argument. O

(4) can be treated differently. Indeed, we can switch to a subset S’ of S for which
we have that, (4) becomes (1), if we replace S by S’. Regarding (5), (7) and (9),
we can use a similar argument like for (3), hence they are not translatable into
(1). (6) is just a strengthening of (1), thus, the first implies the latter, but not the
other way around. Hence, if we start off with (1), we can rewrite the S from there
into a S’, by dropping the situations for which we have equality, and arrive at
(6). Since (8) is a new plausible reading of many, not directly referring to p3'
at all, it is not translatable into (1) without losing the intended information that
it should express.

This shows, that there is much more to achieve than (1) suggests. Now, again
for clarity, lets look again at (2) and evaluate it with regard to the following set
of normative situations S = {sny, sny, snz}, with sn; = New York,

sny = London, and sng = Paris. So, what we intend to evaluate is, actually, the
following statement:

“Many students are German (in Vienna, compared to NY, London and Paris)”.

Lets consider the following fictive numbers” :

City  |inhabitants|German students|per cent |students total|relative count
Wien 1800000 20000 ~ 0.011 60000 ~0.33
NY 10000000 20010 ~ 0.002 150000 ~0.13
London| 10000000 12000 ~ 0.0012 100000 ~0.12
Paris 2200000 10010 ~ 0.0046 80000 ~0.125

Using (1), we are bound to evaluate (2) to false, unlike with, say (3), since, even
though there is a normative situation in which we have (absolutely) more German
students than in the actual one, it is still true, that Vienna has (relatively) the
most German students within all normative situations. This is still a plausible
reading of many. Since (3) is just the relative version of (1), it it obvious how
the interpret the two ( absolute and relative) weakenings (4) and (5), as well as
the two (absolute and relative) strengthenings (6) and (7). Clearly, (8) and (9)
are the truly new intensional readings of many. Again, we point out, that, unlike
before in the extensional case, here it makes a difference whether we introduce

" ‘German students’ corresponds to ||| B]| N || Al||, ‘students’ corresponds to ||| Al||, and

. BN||A
‘relative count’ corresponds to W.



a relative version of (8), namely (9), for the normative situations are distinct.
These respectively evaluate to:

W.r.t. (8): Many(A, B) = 1, since 10010+12000>20010

W.r.t. (9): Many(A, B) =1, since 0.12+0.1254+0.13>0

4 Fuzzy Range

In this section, we intend to arrive at first options for interpreting many in
the semy-fuzzy case, i.e. we want our predicates to be crisp, and classically
interpreted, but at the same time, we want to take up the challenge of graded
interpretations of many. In Glockner’s [8], no intensionality is considered.

Lets have a look at the following function:

f:Qg x Qg \{0,0} — [0,1] , with f(z,y) = 3%,

This one fulfills the following five properties:

e r =y implies, that f(z,y) = % e z >y implies, that f(z,y) € (%7 1}
e x < y implies, that f(z,y) € [0, %) e y = 0 implies, that f(z,y) =1

e x = 0 implies, that f(z,y) =0

Thus, as a first option one can give the following refinement, for scenarios from
(B4), of what we did at the end of Section 2:

c
c+a

Many(4, B) = f(c,a)

A deeper consideration (still with regard to the extensional case) may be this
one:

sa sa Zl <p§a
MaHY(Aa B) = f (Z pi ) Z pi ) = Z psaisz psa
i€l 1 i€l, i

i€l i€l,

The combinatorial structure used above allows for an analogue treatment of the
intensional case:

(C1) for most i € {1,...,n} pléyml > D rel
(C2) for most i € {1,...,n} Pl o = P el
(C3) for most i € {1,...,n} P o < PP ral
(C4) neither (C1) nor (C2) nor (C3) hold.



Thus (for scenarios from (C4)):

W.r.t.(5):

Many (A, B) = f(v,a) = Tto

W.r.t.(9):

. . ZiEI p%’ rel
Many(A, B) = f PBrelr ) PBrel | = — = ;
iezlz e zezlu e Yicr, PBrel T 2ict, PBrel

And for the remaining ones, analogously to the extensional case:
Many (A, B) = 0, for scenarios from (C1) .

Many (A4, B) = 3, for scenarios from (C2).

1
27
Many (A, B) = 1, for scenarios from (C3).

Note, that for all scenarios from (B4) and (C4) it is not possible for a and e,
or « and « respectively, to be zero at the same time. In fact, only if k, or n
respectively, is even, it may happen, that one of them is zero. Otherwise both
values are bound to be greater than zero.

So, through singling out the scenarios (B2) and (C2), we can now see the sym-
metry of the parameters a and ¢, or a and v respectively. This gives us the
opportunity to define few complementary to many, by just swapping the deno-
tation of the respective values a and ¢, or a and ~ respectively. This is also an
argument why one may prefer the strict inequalities over the non-strict ones,
and at the same time a singling out of the third case to which we assigned the
intermediate truth value % A full characterization of few is not part of this
paper, but can be carried out straightforwardly, particularly by means of this
functional equality:

Few(A, B) =1 — Many(A, B)

5 Conclusion and Future Work

We have seen how Lappin’s parametrization of many provides a neat frame to
evaluate natural language statements involving vague quantifier expressions. On
top of that, we augmented the applicability through giving additional plausible
readings, for both the extensional and the intensional case. We have seen how
combinatorics can facilitate considerations, but interesting parts had to be del-
egated to future work. The full characterization of all mentioned distributions
is clearly our attempt, as well as formally making out all relevant parameters in
play. One class of readings that we did not touch in this paper are the subjec-
tive ones. For example, further information about our comparison classes, such



as topological distance, and even sympathy values, can enter the setting. How
to rank these evaluation techniques is a very interesting question, that we will
pursue in the near future. Game semantics, in particular with more than two
players, will surly play an important role. This will bring us to the true fuzzy
scenario, in which the predicates will not necessarily be classically interpreted
anymore. Also, of course, we will treat more complex statements involving logical
fuzzy connectives such as A, V.
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