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Abstract. Quantified Boolean Formulas (QBFs) can be used to suc-
cinctly encode problems from domains such as formal verification, plan-
ning, and synthesis. One of the main approaches to QBF solving is Quan-
tified Conflict Driven Clause Learning (QCDCL). By default, QCDCL
assigns variables in the order of their appearance in the quantifier prefix
so as to account for dependencies among variables. Dependency schemes
can be used to relax this restriction and exploit independence among
variables in certain cases, but only at the cost of nontrivial interferences
with the proof system underlying QCDCL. We propose a new technique
for exploiting variable independence within QCDCL that allows solvers
to learn variable dependencies on the fly. The resulting version of QCDCL
enjoys improved propagation and increased flexibility in choosing vari-
ables for branching while retaining ordinary (long-distance) Q-resolution
as its underlying proof system. In experiments on standard benchmark
sets, an implementation of this algorithm shows performance comparable
to state-of-the-art QBF solvers.

1 Introduction

Conflict Driven Clause Learning (CDCL) represents the state of the art in
propositional satisfiability (SAT) solving (see, e.g., [23]). Modern CDCL solvers
are able to handle input formulas with thousands of variables and millions of
clauses [22]. Their remarkable performance has led to the adoption of SAT solving
in electronic design automation (for a survey, see [33]), it has turned algorithms
relying on SAT oracles into viable tools for solving hard problems (see, e.g., [24]),
and it has even helped resolve open questions in combinatorics [12].

Encouraged by this success, researchers are turning to an even harder problem:
the satisfiability problem of Quantified Boolean Formulas (QSAT). Quantified
Boolean Formulas (QBFs) enrich propositional formulas with universal and
existential quantification over truth values and offer much more succinct encodings
of problems from domains such as planning and synthesis [9]. This expressive
power comes at a price: QSAT is complete for the complexity class PSPACE and
thus believed to be significantly harder than SAT.

Quantified CDCL [7,34] is a natural generalization of CDCL and one of two
dominant algorithmic paradigms in QSAT solving (the other being approaches
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broadly based on quantifier expansion [3, 14,15,21,27,29,31]). While the perfor-
mance of QCDCL solvers has much improved over the past years, they have so
far failed to replicate the success of CDCL in the domain of SAT. One of the
main obstacles in lifting CDCL to QSAT is that the alternation of existential
and universal quantifiers in the quantifier prefix of a QBF (we consider formulas
in prenex normal form) introduces dependencies among variables that have to
be respected by the order of variable assignments. The resulting constraints
not only reduce the empirical effectiveness of branching heuristics but impose
severe theoretical limits on the power of QCDCL [13]. By default, QCDCL only
considers variables from the outermost quantifier block with unassigned variables
for branching. In the worst case, this forces solvers into a fixed branching order.
Among several techniques that have been introduced to relax this restriction,
dependency schemes are arguably the most general. Given a QBF, a dependency
scheme efficiently computes an overapproximation of its variable dependencies—
that is, the result contains every pair of variables for which there is a “real”
dependency, but it may contain “spurious” dependencies. Lonsing and Biere [5]
introduced a generalization of QCDCL that uses dependency schemes to relax
constraints on the order of variable assignments and implemented this algorithm
in the solver DepQBF.

The use of dependency schemes within DepQBF often leads to performance
improvements, but it has several drawbacks. First, it changes the proof system
underlying constraint learning, and proving soundness of the resulting algorithm
is nontrivial even for a simple version of QCDCL and common dependency
schemes [25, 30]. The continuous addition of solver features makes QCDCL a
moving target, and the integration of dependency schemes with any new technique
usually requires a new soundness proof. Second, even if soundness of the resulting
proof system can be established, efficient (linear-time) strategy extraction from
proofs—a common requirement for applications—does not follow. Third, and
perhaps most importantly, the syntactic criteria for identifying dependencies
used by common dependency schemes (such as the standard dependency scheme
or the resolution-path dependency scheme) are fairly coarse, so that the set of
dependencies computed by such schemes frequently coincides with the “trivial”
dependencies implicit in the quantifier prefix (see Table 3 in Section 5).

In this paper, we describe a new approach to exploiting variable independence
in QCDCL solvers we call dependency learning. The idea is that the solver
maintains a set D of dependencies that is used in propagation and choosing
variables for branching just like in QCDCL with dependency schemes: a clause is
considered unit under the current assignment if it contains a single existential
variable that does not depend, according to D, on any universal variable remaining
in the clause; a variable is eligible for branching if it does not depend, according
to D, on any variable that is currently unassigned (cf. [5]). But instead of
initializing D using a dependency scheme, dependencies are added on the fly as
needed. Initially, the set D is empty, so every clause containing a single existential
variable is considered unit and variables can be assigned in any order. When
propagation runs into a conflict, the solver attempts to derive a new clause



by long-distance Q-resolution [1, 8]. Because propagation implicitly performs
universal reduction relative to D but Q-resolution applies universal reduction
according to the prefix order, the solver may be unable to generate a learned
clause. If this happens, a set of variable dependencies can be identified as the
reason for this failure and added to D, preventing this situation from occurring in
the future. The resulting version of QCDCL potentially improves on the flexibility
provided by dependency schemes but retains long-distance Q-resolution as its
underlying proof system and therefore supports linear-time strategy extraction [2].

To explore the effectiveness of this technique, we implemented Qute, a QCDCL
solver that supports dependency learning. In experiments with benchmark in-
stances from the 2016 QBF evaluation, Qute is competitive with state-of-the-art
QBF solvers on formulas in prenex conjunctive normal form (PCNF). For for-
mulas represented as quantified circuits in the QCIR format, Qute solves more
instances than any other available solver. Additional experiments show that the
number of dependencies learned by Qute on PCNF instances preprocessed by
Bloqqer is typically only a fraction of those identified by the standard dependency
scheme and even the (reflexive) resolution-path dependency scheme, and that
dependency learning allows QCDCL to deal with formulas that are provably hard
to solve for vanilla QCDCL [13].

The remainder of this paper is organized as follows. In Section 2, we cover basic
definitions and notation. In Section 3, we introduce QCDCL and (long-distance)
Q-resolution, its underlying proof system. In Section 4, we describe how to modify
QCDCL to support dependency learning, and prove that the resulting algorithm
is sound and terminating. In Section 5, we provide an experimental evaluation
of Qute. In Section 6, we conclude with a discussion of our results and future
research directions.

2 Preliminaries

We consider QBFs in Prenex Conjunctive Normal Form (PCNF), i.e., formulas
Φ = Q.ϕ consisting of a (quantifier) prefix Q and a propositional CNF formula ϕ,
called the matrix of Φ. The prefix is a sequence Q = Q1x1 . . . Qnxn, where
Qi ∈ {∀,∃} is a universal or existential quantifier and the xi are variables. We
write xi ≺Φ xj if 1 ≤ i < j ≤ n and Qi 6= Qj , dropping the subscript if the
formula Φ is understood. A CNF formula is a finite conjunction C1 ∧ · · · ∧Cm of
clauses, a clause is a finite disjunction (`1 ∨ · · · ∨ `k) of literals, and a literal is a
variable x or a negated variable ¬x. Dually, a DNF formula is a finite disjunction
of T1 ∨ · · · ∨ Tk of terms, and a term is a finite conjunction (`1 ∧ · · · ∧ `k) of
literals. Whenever convenient, we consider clauses and terms as sets of literals,
CNF formulas as sets of clauses, and DNF formulas as sets of terms. We assume
that PCNF formulas are closed, so that every variable occurring in the matrix
appears in the prefix, and that each variable appearing in the prefix occurs in the
matrix. We write var(x) = var(¬x) = x to denote the variable associated with a
literal and let var(C) = { var(`) : ` ∈ C } if C is a clause, var(ϕ) =

⋃
C∈ϕ var(C)

if ϕ is a CNF formula, and var(Φ) = var(ϕ) if Φ = Q.ϕ is a PCNF formula.



An assignment is a sequence σ = (`1, . . . , `k) of literals such that var(`i) 6=
var(`j) for 1 ≤ i < j ≤ n. If S is a clause or term, we write S[σ] for the the result
of applying σ to S. For a clause C, we define C[σ] = > if `i ∈ C for some 1 ≤ i ≤ k,
and C[σ] = C \ {`1, . . . , `k} otherwise, where x = ¬x and ¬x = x. For a term T ,
we let T [σ] = ⊥ if `i ∈ T for some 1 ≤ i ≤ k, and T [σ] = T \ {`1, . . . , `k}
otherwise. An assignment σ falsifies a clause C if C[σ] = ∅; it satisfies a term T
if T [σ] = ∅. For CNF formulas ϕ, we let ϕ[σ] = {C[σ] : C ∈ ϕ,C[σ] 6= >}, and
for PCNF formulas Φ = Q.ϕ, we let Φ[σ] = Q′.ϕ[σ], where Q′ is obtained by
deleting variables from Q not occurring in ϕ[σ].

The semantics of a PCNF formula Φ are defined as follows. If Φ does not
contain any variables then Φ is true if its matrix is empty and false if its matrix
contains the empty clause ∅. Otherwise, let Φ = QxQ.ϕ. If Q = ∃ then Φ is true
if Φ[(x)] is true or Φ[(¬x)] is true, and if Q = ∀ then Φ is true if both Φ[(x)]
and Φ[(¬x)] are true.

3 QCDCL and Q-resolution

We briefly review QCDCL and Q-resolution [17], its underlying proof system. More
specifically, we consider long-distance Q-resolution, a version of Q-resolution that
admits the derivation of tautological clauses in certain cases. Although this proof
system was already used in early QCDCL solvers [34], the formal definition shown
in Figure 1 was given only recently [1]. A dual proof system called (long-distance)
Q-consensus, which operates on terms instead of clauses, is obtained by swapping
the roles of existential and universal variables (the analogue of universal reduction
for terms is called existential reduction).

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

The resolution rule allows the derivation of C1 ∨ C2 from clauses C1 ∨ e and ¬e ∨ C2,
provided that the pivot variable e is existential and that e ≺ var(`u) for each universal
literal `u ∈ C1 such that `u ∈ C2. The clause C1 ∨ C2 is called the resolvent of C1 ∨ e
and ¬e ∨ C2.

C (universal reduction)
C \ {u,¬u}

The universal reduction rule admits the deletion of a universal variable u from a clause C
under the condition that e ≺ u for each existential variable e in C.

Fig. 1. Long-distance Q-resolution.

A (long-distance) Q-resolution derivation from a PCNF formula Φ is a se-
quence of clauses such that each clause appears in the matrix of Φ or can be



derived from clauses appearing earlier in the sequence using resolution or univer-
sal reduction. A derivation of the empty clause is called a refutation, and one can
show that a PCNF formula is false, if, and only if, it has a long-distance Q-reso-
lution refutation [1]. Dually, a PCNF formula is true, if, and only if, the empty
term can be derived from a DNF representation of its matrix by Q-consensus.

Starting from an input PCNF formula, QCDCL generates (“learns”) con-
straints—clauses and terms—until it produces an empty constraint. Every clause
learned by QCDCL can be derived from the input formula by Q-resolution, and
every term learned by QCDCL can be derived by Q-consensus [8,10]. Accordingly,
the solver outputs true if the empty term is learned, and false if the empty
clause is learned.

One can think of QCDCL solving as proceeding in rounds. Along with a set of
clauses and terms, the solver maintains an assignment σ. During each round, this
assignment is extended by quantified Boolean constraint propagation (QBCP)
and—possibly—branching.

Quantified Boolean constraint propagation consists in the exhaustive applica-
tion of universal and existential reduction in combination with unit assignments.1

More specifically, QBCP reports a clause C as falsified if C[σ] 6= > and uni-
versal reduction can be applied to C[σ] to obtain the empty clause. Dually, a
term T is considered satisfied if T [σ] 6= ⊥ and T [σ] can be reduced to the empty
term. A clause C is unit under σ if C[σ] 6= > and universal reduction yields
the clause C ′ = (`), for some existential literal ` such that var(`) is unassigned.
Dually, a term T is unit under σ if T [σ] 6= ⊥ and existential reduction can
be applied to obtain a term T ′ = (`) containing a single universal literal `. If
C = (`) is a unit clause, then the assignment σ has to be extended by ` in order
not to falsify C, and if T = (`) is a unit term, then σ has to be extended by `
in order not to satisfy T . If several clauses or terms are unit under σ, QBCP
nondeterministically picks one and extends the assignment accordingly. This is
repeated until a constraint is empty or no unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended
by branching. That is, the solver chooses an unassigned variable x such that every
variable y with y ≺ x is assigned, and extends the assignment σ by x or ¬x.

The resulting assignment can be partitioned into so-called decision levels. The
decision level of an assigment σ is the number of literals in σ that were assigned
by branching. The decision level of a literal ` in σ is the decision level of the
prefix of σ that ends with `. Note that each decision level greater than 0 can be
associated with a unique variable assigned by branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or
satisfy a term. When this happens (this is called a conflict), the solver proceeds
to conflict analysis to derive a learned constraint C. Initially, C is the falsified
clause (satisfied term), called the conflict clause (term). The solver finds the
existential (universal) literal in C that was assigned last by QBCP, and the
antecedent clause (term) R responsible for this assignment. A new constraint
is derived by resolving C and R and applying universal (existential) reduction.

1 We do not consider the pure literal rule as part of QBCP.



This is done repeatedly until the resulting constraint C is asserting. A clause
(term) S is asserting if there is a unique existential (universal) literal ` ∈ S with
maximum decision level among literals in S, the corresponding decision variable
is existential (universal), and every universal (existential) variable y ∈ var(S)
such that y ≺ var(`) is assigned at a lower decision level (an asserting constraint
becomes unit after backtracking). Once an asserting constraint has been found,
it is added to the solver’s set of constraints. Finally, QCDCL backtracks, undoing
variable assignments until reaching a decision level computed from the learned
constraint.

4 QCDCL with Dependency Learning

We now describe how to modify QCDCL to support dependency learning. First,

Algorithm 1 QCDCL with Dependency Learning

1: procedure solve( )
2: D = ∅
3: while true do
4: conflict = QBCP()
5: if conflict == none then
6: decide()
7: else
8: constraint , btlevel = analyzeConflict(conflict)
9: if constraint != none then

10: if isEmpty(constraint) then
11: if isTerm(constraint) then
12: return true
13: else
14: return false
15: end if
16: else
17: addLearnedConstraint(constraint)
18: end if
19: end if
20: backtrack(btlevel)
21: end if
22: end while
23: end procedure

the solver maintains a set D ⊆ { (x, y) : x ≺ y } of variable dependencies. Second,
both QBCP and the decision rule must be modified as follows:

– qbcp() uses universal and existential reduction relative to D. Universal
reduction relative to D removes each universal variable u from a clause C such
that there is no existential variable e ∈ var(C) with (u, e) ∈ D (existential
reduction relative to D is defined dually).



Algorithm 2 Conflict Analysis with Dependency Learning

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint , reason, pivot) then
7: constraint = resolve(constraint , reason, pivot)
8: constraint = reduce(constraint)
9: else

10: illegal merges = illegalMerges(constraint , reason, pivot)
11: D = D ∪ { (v, pivot) : v ∈ illegal merges }
12: return none, decisionLevel(pivot)
13: end if
14: end while
15: btlevel = getBacktrackLevel(constraint)
16: return constraint , btlevel
17: end procedure

– decide() may assign any variable y such that there is no unassigned variable x
with (x, y) ∈ D (note that (x, y) ∈ D implies x ≺ y).

This is how DepQBF uses the dependency relation D computed by a depen-
dency scheme in propagation and decisions [5]. Unlike DepQBF, QCDCL with
dependency learning does not use the generalized reduction rules during conflict
analysis (resolve and reduce in lines 7 and 8 refer to resolution and reduction
as defined in Figure 1). As a consequence, the algorithm cannot always construct
a learned constraint during conflict analysis (see the example below). Such cases
are dealt with in lines 9 through 12 of analyzeConflict (Algorithm 2):

– existsResolvent(constraint , reason, pivot) determines whether the resol-
vent of constraint and reason exists.

– If this is not the case, there has to be a variable v (universal for clauses,
existential for terms) satisfying the following condition: v ≺ pivot and there
exists a literal ` ∈ constraint with var(`) = v and ` ∈ reason. The set of
such variables is computed by illegalMerges. For each such variable, a
new dependency is added to D. No learned constraint is returned by conflict
analysis, and the backtrack level (btlevel) is set so as to cancel the decision
level at which pivot was assigned.

The criteria for a constraint to be asserting must also be slightly adapted:
a clause (term) S is asserting with respect to D if there is a unique existential
(universal) literal ` ∈ S with maximum decision level among literals in S, the
corresponding decision variable is existential (universal), and every universal
(existential) variable y ∈ var(S) such that (y, var(`)) ∈ D is assigned (again, this
corresponds to the definition of asserting constraints used in DepQBF [19, p.119]).
Finally, in the main QCDCL loop, we have to implement a case distinction to
account for the fact that conflict analysis may not return a constraint (line 9).



Examples

We now illustrate the two possible outcomes of conflict analysis with simple
examples. First, take the QBF

Φ = ∀u∃e.(u ∨ e).

Starting from an empty set D of dependencies, QCDCL with dependency learning
initially assumes that e is independent of u. By applying universal reduction
relative to D to the clause (u∨e), one derives the unit clause (e). Accordingly, the
solver appends e to its current assignment and finds the matrix satisfied. Since
(e) is a term in the DNF representation of Φ’s matrix and (e) can be reduced
to the empty term by existential reduction, QCDCL learns the empty term and
correctly reports that Φ is true. Now consider

Ψ = ∀u∃e.(u ∨ e) ∧ (¬u ∨ ¬e).

Again, QCDCL with dependency learning starting with empty D considers the
first clause unit and appends e to its assignment. Propagating this assignment
to the second clause results in a conflict, as (¬u ∨ ¬e)[e 7→ 1] = (¬u), which
simplifies to the empty clause by universal reduction. During conflict analysis,
the solver attempts to construct a learned clause by resolving the conflict clause
(¬u ∨ ¬e) with the clause (u ∨ e) responsible for propagating e. But since u ≺ e
is universal and appears negated in the first and unnegated in the second clause,
these two clauses do not have a resolvent in long-distance Q-resolution, and the
solver is unable to learn a clause. Instead, it adds the dependency (u, e) to D
and backtracks until e is unassigned. Now that D contains the dependency (u, e),
the universal variable u can no longer be reduced from a clause that contains e,
so neither clause is unit. Moreover, the solver cannot branch on e while u is
unassigned. It is easy to see that from this point on, the solver behaves just like
ordinary QCDCL on this example.

Soundness and Termination

Soundness of QCDCL with dependency learning is an immediate consequence of
the following observation.

Observation 1. Every constraint learned by QCDCL with dependency learn-
ing can be derived from the input formula by long-distance Q-resolution or
Q-consensus.

To prove termination, we argue that the algorithm learns a new constraint or a
new dependency after each conflict. Just as in QCDCL, every learned constraint
is asserting, so learning does not introduce duplicate constraints.

Observation 2. QCDCL with dependency learning never learns a constraint
already present in the database.



The only additional argument required to prove termination is one that tells us
that the algorithm cannot indefinitely “learn” the same dependencies.

Lemma 1. If QCDCL with dependency learning does not learn a constraint
during conflict analysis, it learns a new dependency.

Proof. To simplify the presentation, we are only going to consider clause learning
(the proof for term learning is analogous). We first establish an invariant of
intermediate clauses derived during conflict analysis: they are empty under the
partial assignment obtained by backtracking to the last literal in the assignment
that falsifies an existential literal in the clause. Formally, let C be a clause
and let σ = (`1, . . . , `k) be an assignment. We define lastC(σ) = max({ i ∈
[k] : `i ∈ C, var(`i) ∈ var∃ } ∪ {0}) and let σC = (`1, . . . , `lastC(σ)). In particular,
if lastC(σ) = 0 then σC is empty.

We now prove the following claim: if σ is an assignment that falsifies a clause,
then, for every intermediate clause C constructed during conflict analysis, C[σC ]
is empty after universal reduction. The proof is by induction on the number
of resolution steps in the derivation of C. If C is the conflict clause then C[σ]
reduces to the empty clause. That means C[σC ] can only contain universal literals
and can also be reduced to the empty clause by universal reduction. Suppose C is
the result of resolving clauses C ′ and R and applying universal reduction, where
C ′ is an intermediate clause derived during conflict analysis and R is a clause
that triggered unit propagation. The induction hypothesis tells us that C ′[σC′ ]
reduces to the empty clause. Since the pivot literal ` is chosen to be the last
existential literal falsified in C ′, we must have σC′ = (`1, . . . , `k) where `k = `.
Let τ = (`1, . . . , `k−1). We must have C ′[τ ] = U ′ ∪ {`}, where U ′ is a purely
universal clause. Because R is responsible for propagating `, we further must
have R[τ ] = U ′′ ∪{`}, where U ′′ again is a purely universal clause. It follows that
their resolvent C[τ ] = (C ′ \ {`})[τ ] ∪ (R \ {`})[τ ] = U ′ ∪ U ′′ is a purely universal
clause. Since τ is a prefix of σ, it follows that C[σC ] is a purely universal clause
as well and therefore empty after universal reduction. This proves the claim.

We proceed to prove the lemma. If the algorithm does not learn a clause
during conflict analysis, this must be due to a failed attempt at resolving an
intermediate clause C with a clause R responsible for unit propagation. That
is, if e is the existential pivot variable, there must be a universal variable u ≺ e
such that u ∈ var(C) ∩ var(R) and {u,¬u} ⊆ C ∪R. Towards a contradiction,
suppose that (u, e) ∈ D. Let σ denote the assignment that caused the conflict
and assume without loss of generality that {u, e} ⊆ R and {¬u,¬e} ⊆ C. Since
R caused propagation of e but (u, e) ∈ D, the variable u must have been assigned
before e and ¬u ∈ σ. As the pivot ¬e is the last existential literal falsified in C,
it follows that ¬u ∈ σC . Because ¬u ∈ C, this implies that the assignment σC
satisfies C, in contradiction with the claim proved above.

The number of dependencies and constraints is bounded by a function of the
number n of variables, and QCDCL runs into a conflict at least every n variable
assignments, so Observation 2 and Lemma 1 imply termination.

Theorem 1. QCDCL with dependency learning is sound and terminating.



5 Experiments

To see whether dependency learning works in practice, we implemented a QCDCL
solver that supports this technique named Qute.2 We evaluated the performance
of Qute in several experiments. First, we measured the number of instances solved
by Qute on benchmark sets from the 2016 QBF evaluation [26]. We compare
these numbers with those of the best performing publicly available solvers for
each benchmark set. In a second experiment, we computed the dependency sets
given by the standard dependency scheme [4,28] and the reflexive resolution-path
dependency scheme [30, 32] for preprocessed instances, and compared their sizes
to the number of dependencies learned by Qute. Finally, we revisit an instance
family which is known to be hard to solve for QCDCL [13] and show they pose
no challenge to Qute. For our experiments, we used a cluster with Intel Xeon
E5649 processors at 2.53 GHz running 64-bit Linux.

Solved Instances for QBF Evaluation 2016 Benchmark Sets

In our first experiment, we used the prenex non-CNF (QCIR [16]) benchmark
set from the 2016 QBF evaluation consisting of 890 formulas. Time and memory
limits were set to 10 minutes and 4 GB, respectively. The results are summarized
in Table 1 and Figure 2. Qute is able to solve signficantly more instances within
the timeout than the other solvers, and this appears to be in large part due to
dependency learning: when dependency learning is deactivated, the number of
solved instances drops significantly.

Table 1. Instances from the 2016 QBF evaluation prenex non-CNF (QCIR) benchmark
set solved within 10 minutes.

solver total sat unsat

Qute+dl 581 274 307
GhostQ 524 228 296
QuAbS 515 225 290
Qute 494 228 266
RAReQS 403 174 229

For our second experiment, we used the prenex CNF (PCNF) benchmark set
from the 2016 QBF evaluation consisting of 825 instances. Time and memory
limits were again set to 10 minutes and 4 GB. We performed this experiment
twice: with and without preprocessing using bloqqer [6]. In order not to introduce
variance in overall runtime through preprocessing, each instance was preprocessed
only once and solvers were run on the preprocessed instances with a timeout
corresponding to the overall timeout minus the time spent on preprocessing.

2 http://github.com/perebor/qute
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Fig. 2. Solved instances from the 2016 QBF evaluation prenex non-CNF (QCIR)
benchmark set (x-axis) sorted by runtime (y-axis).

Since Qute shows good performance on QCIR instances, we included config-
urations that perform partial circuit reconstruction using qcir-conv3 and then
solve the resulting QCIR instance.

The results obtained without using bloqqer are shown on the left hand
side of Table 2. When not using qcir-conv, Qute solves more instances with
dependency learning than without dependency learning. Curiously, the opposite
is the case when qcir-conv is used: in this case, Qute solves 3 more instances when
dependency learning is turned off. Overall, we see that circuit reconstruction
(also used internally by GhostQ [18]) substantially increases the performance of
Qute.

The results including preprocessing with bloqqer are shown on the right hand
side of Table 2. With the exception of GhostQ, all solvers and configurations
solve more instances when paired with bloqqer. However, the increase is less
significant for Qute compared to other solvers, in particular in combination with
qcir-conv. Notably, dependency learning increased the number of instances solved
by Qute regardless of whether qcir-conv was used.

Learned Dependencies Compared to Dependency Relations

To get an idea of how well QCDCL with dependency learning is able to exploit
independence, we compared the number of dependencies learned by Qute with

3 http://www.cs.cmu.edu/~wklieber/qcir-conv.py



Table 2. Instances from the QBF evaluation 2016 prenex CNF (PCNF) benchmark
set solved within 10 minutes without preprocessing (left) and with preprocessing using
bloqqer (right).

solver total sat unsat

GhostQ 584 297 287
Qute+qcir-conv 538 283 255
Qute+dl+qcir-conv 535 277 258
DepQBF 451 200 251
Qute+dl 434 190 244
Qute 416 191 225
CAQE 358 167 191
RAReQS 335 128 207

solver total sat unsat

RAReQS 615 299 316
DepQBF 585 294 291
CAQE 577 288 289
GhostQ 563 289 274
Qute+dl+qcir-conv 556 276 280
Qute+qcir-conv 541 266 275
Qute+dl 519 252 267
Qute 510 242 268

the number of standard and resolution-path dependencies for instances from
the PCNF benchmark set after preprocessing with bloqqer. We only considered
instances with at least one quantifier alternation after preprocessing. Qute was
run with a 10 minute timeout (excluding preprocessing). If an instance was not
solved we used the number of dependencies learned within that time limit. 4

Summary statistics are shown in Table 3. On average, the standard dependency
scheme does not provide a significant improvement over trivial dependencies. The
reflexive resolution-path dependency scheme does better, but the high median
shows that the set of trivial dependencies it can identify as spurious is still small
in many cases. The fraction of learned dependencies is much smaller than either
dependency relation on average, and the median fraction of trivial dependencies
learned is even below 1%.

This indicates that proof search in QCDCL with dependency learning is less
constrained than in QCDCL with either dependency scheme: since QCDCL is
allowed to branch on a variable x only if every variable that x depends on has
already been assigned, decision heuristics are likely to have a larger pool of
variables to choose from if fewer dependencies are present.

Dependency Learning on Hard Instances for QCDCL

For our third experiment, we chose a family of instances CRn recently used
to show that ordinary QCDCL does not simulate tree-like Q-resolution [13].
Since the hardness of these formulas is tied to QCDCL not propagating across
quantifier levels, they represent natural test cases for QCDCL with dependency
learning. We recorded the number of backtracks required to solve CRn by Qute

4 We cannot rule out that, for unsolved instances, Qute would have to learn a larger
fraction of trivial dependencies before terminating. However, the solver tends to
learn most dependencies at the beginning of a run, with the fraction of learned
trivial dependencies quickly converging to a value that does not increase much until
termination.



Table 3. Learned dependencies, standard dependencies, and reflexive resolution-path
dependencies for instances preprocessed by bloqqer, as a fraction of trivial dependencies.

dependencies mean median variance

learned 0.082 0.008 0.030
standard 0.938 1.000 0.030
resolution-path 0.660 0.942 0.172
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Fig. 3. Backtracks for instances CRn based on the completion principle [13], as a function
of n.



with and without dependency learning, for n ∈ {1, ..., 50}. As a reference, we
used DepQBF.5 For this experiment, we kept the memory limit of 4 GB but
increased the timeout to one hour. The results are summarized in Figure 3. As
one would expect, Qute without dependency learning and DepQBF were only
able to solve instances up to n = 7 and n = 8, respectively. Furthermore, it is
evident from the plot that the number of backtracks grows exponentially with n
for both solvers. By contrast, Qute with dependency learning was able to solve
all instances within the timeout.

6 Discussion

In our experiments, Qute performed much better when presented with non-
CNF input. In particular, dependency learning was most effective on the prenex
non-CNF (QCIR) benchmark set, accounting for a 15% increase in the number
of solved instances. Even for PCNF formulas, the best configuration(s) used
tools for partially recovering circuit structure from CNF. This is consistent with
the fact that Qute did not benefit from preprocessing nearly as much as other
solvers, since preprocessing is known to adversely affect circuit reconstruction [11].
Whether this bias towards non-CNF representations is inherent to QCDCL with
dependency learning or an artifact of other design choices implemented in our
solver remains to be seen.

Dependency learning has several advantages over the use of dependency
schemes within QCDCL: by retaining long-distance Q-resolution as its underlying
proof system, the resulting algorithm is amenable to a simple correctness proof
and supports linear-time strategy extraction. Moreover, our experiments indicate
that proof search is less constrained with dependency learning, since typically only
a small fraction of the dependencies computed by known dependency schemes
has to be learned.

Sometimes, this additional freedom can be detrimental to performance, and a
significant proportion of the overall runtime has to be spent on learning dependen-
cies that are not spurious. To deal with such cases, we hope to find some middle
ground between our current “tabula rasa” implementation of dependency learning
and approaches that include too many spurious dependencies, by introducing
a (small) set of dependencies that steer proof search in the right direction. For
instance, Qute uses Tseitin conversion to obtain a set of initial clauses and terms
from non-CNF (QCIR) instances. We found that assigning a Tseitin variable
before a variable used in its definition often results in learning a dependency,
so that it pays off to simply include dependencies of a Tseitin variable on the
variables used in its definition from the start. For similar reasons, users may
want to initialize D with pairs of variables that they know are dependent by con-
struction. We hope to address this question by designing heuristics for “seeding”
dependencies in a smart way as part of future work.

5 For sake of comparing with Qute in prefix mode, we disabled features recently added
to DepQBF such as dynamic quantified blocked clause elimination [20] and oracle
calls to the expansion-based solver Nenofex.
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formulas. Information and Computation, 117(1):12–18, 1995.

18. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A non-prenex, non-clausal QBF
solver with game-state learning. In O. Strichman and S. Szeider, editors, Theory
and Applications of Satisfiability Testing - SAT 2010, volume 6175 of Lecture Notes
in Computer Science, pages 128–142. Springer Verlag, 2010.

19. F. Lonsing. Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. PhD thesis, Johannes Kepler University, Linz, Austria, Apr. 2012.

20. F. Lonsing, F. Bacchus, A. Biere, U. Egly, and M. Seidl. Enhancing search-based
QBF solving by dynamic blocked clause elimination. In M. Davis, A. Fehnker,
A. McIver, and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, Novem-
ber 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in Computer Science,
pages 418–433. Springer Verlag, 2015.

21. F. Lonsing and A. Biere. Nenofex: Expanding NNF for QBF solving. In H. K.
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