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ABSTRACT

Classical query optimization relies on a predefined set of
rewrite rules to re-order and substitute SQL operators at
a logical level. This paper proposes Blitz, a system that
can synthesize efficient query-specific operators using au-
tomated program reasoning. Blitz uses static analysis to
identify sub-queries as potential targets for optimization. For
each sub-query, it constructs a template that defines a large
space of possible operator implementations, all restricted to
have linear time and space complexity. Blitz then employs
program synthesis to instantiate the template and obtain a
data-parallel operator implementation that is functionally
equivalent to the original sub-query up to a bound on the
input size.
Program synthesis is an undecidable problem in general

and often difficult to scale, even for bounded inputs. Blitz
therefore uses a series of analyses to judiciously use program
synthesis and incrementally construct complex operators.
We integrated Blitz with existing big-data query lan-

guages by embedding the synthesized operators back into
the query as User Defined Operators. We evaluated Blitz on
several production queries fromMicrosoft running on two
state-of-the-art query engines: SparkSQL as well as Scope,
the big-data engine of Microsoft. Blitz produces correct
optimizations despite the synthesis being bounded. The re-
sulting queries have much more succinct query plans and
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demonstrate significant performance improvements on both
big-data systems (1.3x — 4.7x).
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1 INTRODUCTION

Big-data analytics is typically performed by writing and
executing queries in SQL-like languages [1, 20, 28] supported
by systems such as Hadoop [23], Scope [2] and Spark [25].
The queries are compiled to an execution plan that consists
of a DAG of map-reduce-like stages. The query compilation
happens in three phases. First, operators are transformed and
reordered at the logical level, for example, SQL operators are
substituted with other equivalent SQL operators and filtering
operators are pushed up closer to the source of the data.
Next, efficient physical implementations are chosen for each
operator; typical SQL operators lend to highly-optimized low-
complexity implementations. Finally, operators are grouped
together into stages as long as the composition continues to
have low complexity. The generated plan is then executed
on a distributed system such that each stage runs in parallel.
The data between stages is shuffled over the network.

https://doi.org/10.1145/3132747.3132773
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We analyzed the generated plan for several queries from
different execution engines and noticed the following trend
in a significant fraction of them.
(1) Many of the plans, represented as a DAG of stages,

had a single stage that dominated significant parts
of the query.1 In other words, the number of stages
whose input is functionally dependent on the output
of a single stage is high.

(2) Furthermore, in the final data that is produced by the
dominated sub-query, each row depends on only a
subset of the rows of the output of the dominating
stage.

These observations imply a possible query transformation to
replace the entire dominated sub-query using a mapper that
identifies the right group of rows and a reducer that applies a
function to each group to produce the correct output. Such an
optimization can have significant benefits because it reduces
the number of stages, thus decreasing the amount of data
that needs to be shuffled between machines. However, the
reducer function must be efficient in order to process each
mapped group on a single machine. For instance, naively
executing the sub-query itself inside the reducer function
would almost always blow up or run out of memory.

This paper introduces Blitz, a system that employs au-
tomated program reasoning to synthesize low complexity
operators. Blitz extends an existing, but rarely used, analy-
sis called groupwise analysis [3] to a formal static analysis
that can identify sub-queries with the properties mentioned
above. It then uses program synthesis to construct an effi-
cient operator with linear time and space complexity, at the
most relying on sorting features that are provided by most
existing query-processing engines.
Program synthesis is the problem of constructing exe-

cutable code given its input-output specification. In our set-
ting, the specification comes from the semantics of the orig-
inal query and the linear-time operator (modulo sorting)
is the desired output. Program synthesis is an undecidable
problem in general, and computationally very demanding
in practice. Often, it is limited to very simple or very small
synthesis tasks. Unsurprisingly, using synthesis naively was
insufficient to optimize many of the queries in our bench-
mark set. To make synthesis practical, Blitz uses several
auxiliary analyses that impose restrictions on the structure
of the synthesized code to reduce the search space of possible
implementations, while still allowing feasible solutions for
most queries that we would like to optimize.
Blitz fixes the high-level structure of the operator by

bounding the kinds of loops, branching and control flow that
it can have. It further bounds the amount of local state that
1In the query plan DAG, a node (or stage) N1 dominates node N2 if all paths
from the source node of the DAG to N2 pass through N1.

the operator can keep. It analyzes the input query to extract
expressions, predicates and aggregation functions that will
likely be reused in the operator. This information is used to
generate a partial program, i.e., a program with holes. Next,
Blitz employs an off-the-shelf program synthesis tool to
fill these holes with code such that the resulting operator
matches the semantics of the input query.
One limitation of Blitz is that it only guarantees partial

soundness. Current synthesis tools are able to guarantee that
the synthesized implementation meets its specification only
up to a fixed bound on the size of the input. We therefore
translate the synthesized operator back to the source lan-
guage as a query with User-Defined Operators (UDOs) and
validate manually that the optimization is indeed correct.
Our experience with such validation has been surprisingly
positive and we discuss this in more detail in §8.
We evaluated Blitz on several production queries from

Microsoft. We analyzed all jobs from a day’s run on one
of Microsoft’s clusters and found that about one-third of
them have stages that dominate three or more other stages.
We picked a few such queries that were long-running, opti-
mized them using Blitz, and compared their performance
against the original queries on Spark and Scope. Blitz sig-
nificantly reduces the execution time of the queries on both
big-data systems. Queries optimized by Blitz attain an aver-
age speedup of 2×, have 65% fewer stages, require less than
half the cumulative CPU time and shuffle up to 75% less data.
The rest of this paper is organized as follows. Section 2

gives an overview of Blitz on two example queries. Sec-
tion 3 sets up the formal notation and explains groupwise
analysis. Section 4 describes the UDO template that we use
for synthesis. Section 5 describes the architecture of Blitz.
Section 6 presents additional analyses used by Blitz to help
the synthesis task scale. Section 7 presents our experimen-
tal evaluation. Section 8 discusses practical challenges with
using our system. Section 9 discusses related work.

2 MOTIVATING EXAMPLES AND

OVERVIEW

We motivate our approach with two example queries. The
first is fromTPCx-BigBench [21], a standard benchmark suite
for evaluating big-data systems. We encoded a simplified
version of the query BigBench8, shown in Figure 1.2 The
query operates over a web-click stream with 4 fields:
wcs(ts:int, user:int, type:string, sales:int).

The column ts is the (unique) timestamp of the web click.
Column user identifies the user, column type represents the
transaction type (“buy” or “review”), and column sales is
2The complete query operates on a join of two tables to construct wcs
and has an additional predicate in V1. However, it has similar performance
characteristics and we obtain similar speedups with Blitz.
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VIEW V1 =

SELECT s1.user ,

s1.sales ,

s1.ts AS bts ,

s2.ts AS rts

FROM wcs AS s1 JOIN wcs AS s2

ON s1.user = s2.user

WHERE s1.type = "buy"

AND s2.type = "review"

AND s1.ts > s2.ts;

VIEW V2 =

SELECT user , rts , MIN(bts) AS mts

FROM V1

GROUP BY rts , user;

VIEW V3 =

SELECT ar.user , ar.sales

FROM wcs AS ar SEMI JOIN V2 AS bia

ON ar.bts = bia.mts

AND ar.user = bia.user;

Figure 1: A simplified version of the query BigBench8

Figure 2: Execution plan for BigBench8

the sales amount associated with the click. The query aims
to find buys where the customer checked online reviews just
before making the purchase: table V1 selects all buys after
reviews using a self-join on the wcs table, table V2 finds the
smallest purchase timestamp and V3 discards all rows except
ones with this least timestamp.

Figure 2 shows the execution plan for this query generated
by Scope, along with some runtime statistics. Note that all
the stages in the plan are dominated by the top-most stage.
The query plan is quite inefficient. It performs two expensive
joins and shuffles data redundantly between stages. As a
result, a large amount of time is spent in the dominated
stages. We now apply our techniques to optimize this query.
We first notice that the final output for a particular user

can only be influenced by the rows of the same user in in-
put wcs table. This suggests partitioning the input on the
user column, processing each partition independently and

TRANSFORM wcs

PARTITIONED BY user

SORTED BY ts

USING udo

proc udo(user, List rows)
// assumes sorted([ts], rows)
flag ← False

foreach row ∈ rows
if flag ∧ row.type == “buy”

output(row)
flag ← False

if row.type == “review”
flag ← True

Figure 3: Optimized version of BigBench8 query

then putting the results back together. Such kinds of queries,
which can be partitioned on a column and processed in-
dependently are called groupwise queries [3]. We use the
groupwise analysis to find maximal sub-queries that serve
as candidates for optimization. In this example, the entire
query is considered for optimization.
One attempt at optimization, as suggested in the group-

wise paper [3], could be to partition the input on user and
then execute the query on each partition independently. This
methodwill replacemultiple simple stages with a single stage
but that stage will have higher time and space complexity
than any of the original stages. We tried this method and
it either runs out of memory (when executed on Spark) or
is much slower than the original query (8x slower when
executed on Scope). Blitz instead uses program synthesis
to produce the equivalent query shown in Figure 3. Blitz
automatically figures out to partition on the user column,
sort each partition on ts (timestamp) and execute the UDO
shown in the figure to obtain the same output as the original
query. Notice that the UDO has linear time complexity and
requires just a constant amount of additional storage (the
flag variable). In fact, the UDO can even be executed in a
streaming fashion because it requires a single pass over the
input, offering further benefits. The optimized query is 3×
faster than the original query. In addition, it also uses much
fewer resources; it shuffles much less data and completes
execution with much fewer tasks. Finally, the synthesized
query turns out to be simpler to understand than the original
query.
It is clear that such an optimized query cannot be ob-

tained from standard query optimizations that operate in a
rule-based fashion, justifying the need for general-purpose
program synthesis techniques.

We next motivate several of the challenges in scaling our
technique to real-world production queries. Consider the
query in Figure 4 that we obtained from Microsoft. We
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have anonymized the column and table names for proprietary
reasons but the structure of the query remains the same. The
query is groupwise on columns a and b. However, a direct
application of synthesis on the entire query does not scale.
The synthesizer is unable to produce an answer even after
a few days of execution. Blitz employs a series of query
analyses to make synthesis more tractable.

First, it identifies that the query contains a union operator
that simply puts together the results from each of its inputs.
Blitz attempts to synthesize separate UDOs that produce
tables Out1 to Out5 and then put the operators together
in a rule-based fashion. For instance, it extracts a smaller
query that computes Out1 and synthesizes an operator for
it, as shown in the figure. Then it repeats this process for
each of Out2 to Out5. Blitz attempts this strategy for N -ary
operators whenever it knows that the N individual UDOs
can be put together safely while preserving semantics and
maintaining low UDO complexity (§6.1).

Second, Blitz further simplifies the sub-queries that com-
pute Out1 to Out5. It eliminates the input and intermediate
columns that are unnecessary for this sub-query (through a
taint analysis, §6.2), and eliminates redundant columns (§6.3).
These simplifications appear as crossed-out text in the figure.
For instance, each of the columns m2 to m6 are irrelevant
for Out1. Further, columns a and b always appear together,
hence they can be condensed into the same column (thus,
Blitz eliminates column b).
Finally, Blitz constructs the template for UDOs. A tem-

plate is a partial program, i.e., a program with holes and the
job of the synthesizer is to fill the holes. Fewer holes imply
better scalability but a smaller set of possible implemen-
tations. Blitz constructs the template to restrict attention
to linear-time operators that can only do a fixed number
of passes over the input. It considers pre-sorting the input.
Often we notice that sorting can drastically reduce the com-
plexity of the UDO. If the synthesizer finds that sorting is
useful, Blitz pushes sorting into the previous stage before
the UDO is called. Further, Blitz restricts the form of predi-
cates and expressions in the template: they can either contain
predicates or expressions that appear in the input query, or
do a simple manipulation of a finite number of flags and
memoization variables.
The synthesized UDO is shown in the figure as the pro-

cedure udo2. Notice how udo2 uses sortedness on column
c and the cnt1 aggregate for simulating “COUNT(DISTINCT
c)”. The synthesis takes around 5 minutes to finish. The
optimized query runs 4× faster than the original query.

3 BACKGROUND

This section defines the SQL-like input language of Blitz.
The language is kept simple to ease the presentation of our

VIEW V =
SELECT a, b, c,
SUM(m1) AS m1 ,SUM(m2) AS m2 ,
SUM(m3) AS m3 ,SUM(m4) AS m4 ,
SUM(m5) AS m5 ,SUM(m6) AS m6
FROM Input
GROUP BY a, b, c;

VIEW Out1 =
SELECT a, b
COUNT(DISTINCT c) AS c

FROM V
WHERE m1 > 100
GROUP BY a, b;

VIEW Out2 =
SELECT a, b
COUNT(DISTINCT c) AS c

FROM V
WHERE m2 > 100
GROUP BY a, b;

VIEW Out3 =
SELECT a, b
COUNT(DISTINCT c) AS c

FROM V
WHERE m3 > 100
GROUP BY a, b;

VIEW Out4 =
SELECT a, b
COUNT(DISTINCT c) AS c

FROM V
WHERE m4 > 100
GROUP BY a, b;

VIEW Out5 =
SELECT a, b
COUNT(DISTINCT c) AS c

FROM V
WHERE m5 > 100
GROUP BY a, b;

VIEW Final =
Out1 UNION Out2 UNION
Out3 UNION Out4 UNION Out5;

VIEW V =
SELECT a, b, c,
SUM(m1) AS m1 ,SUM(m2) AS m2
SUM(m3) AS m3, SUM(m4) AS m4
SUM(m5) AS m5, SUM(m6) AS m6
FROM Input
GROUP BY a, b, c;

VIEW Out1 =
SELECT a, b
COUNT(DISTINCT c) AS c

FROM V
WHERE m1 > 100
GROUP BY a, b;

TRANSFORM Input

PARTITIONED BY a

SORTED BY c

USING udo2

proc udo2(a, List rows)
// assumes sorted([c], rows)
first ← True

foreach (c,m1) ∈ rows
if first

sum1 ← 0; cnt1 ← 0;
oldC ← c; first ← False;

if oldC == c
sum1 ← sum1 + m1

else
if (sum1 > 100) cnt1++;
sum1 ← m1; oldC ← c;

if (sum1 > 100) cnt1++;
if cnt1 > 0

output(a, cnt1)

Figure 4: (Left) The complete query (Q2); (Right, top)
Simplified sub-query that Blitz feeds to the synthesis

tool; (Right, bottom) the generated UDO.

algorithms but it is powerful enough to encode all queries
that we considered in our evaluation.
We represent a table as a list of records, where a record

is of the form h = {a1 : v1, . . . ,an : vn}. We write h.ai to
access the value vi in a record h at column ai . Values are
either integers or rationals, i.e., pairs of integers. We say
that two records are equivalent if they contain the same
columns and all corresponding values are equal. We use
cols(h) = {a1, . . . ,an} to access the columns of a record or a
list of records.
We support operators akin to their SQL equivalents that

operate on tables, namely: selection, projection, renaming
of columns, join, union and group-by. In contrast to SQL,
however, each operator in our language imposes an order
on the output records relative to the order in the input.

The semantics of the operators is standard. Selection (σφ )
takes a predicate φ and uses it to filter the input. Projection
(πA) limits the output to the columns inA; it does not remove
duplicates. Union (:::) appends one list to another without
removing duplicates. Inner join (▷◁φ ) takes two lists and
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iterates over all pairs of rows. It outputs the concatenated pair
subject to the filter predicate φ. Rename (ρA 7→A′) renames the
columns inA toA′ and leaves the remaining ones unchanged.
The rename operator is necessary to avoid clashes between
column names of different tables. Group-by (γA,FB ) takes a
set of grouping columnsA, and a set of aggregation functions
over the aggregation columns B. It partitions the input on
all distinct values that appear in columns A, and for each
partition it computes the aggregation and concatenates it
with the partition value. Aggregations can be sum, count,
min or avg. Blitz supports other operators like semi-join
but we do not present them here due to space limitations.
A query Q is simply a composition of these operators

applied to a single input table. For the purpose of our ap-
plication, it is enough to consider single-input and single-
output queries, although the techniques used in our analysis
can be easily generalized to multi-input and multi-output
queries as well. We sometimes write queries in a view form
as a sequence of assignments that each apply a single op-
erator, i.e., vi = op(vj ) or vi = op(vj ,vk ), with i > j, i > k ,
op ∈ {σ ,π , :::, ▷◁,γ , ρ}. Such a query maps input table v0
to the output table vmax , where vmax is the last variable
assigned in the sequence of assignments.
Following are some examples of how SQL syntax trans-

lates to our language:

VIEW v = <QUERY>
def
= v = Q

SELECT * FROM r;
def
= r

SELECT * FROM r WHERE phi;
def
= σphi(r )

SELECT A FROM r;
def
= πA(r )

SELECT * FROM r1 UNION r2;
def
= r1 ::: r2

SELECT * FROM r1 JOIN r2 ON phi;
def
= r1 ▷◁phi r2

SELECT * FROM r AS r1;
def
= ρcols(r )7→r1.cols(r )(r )

SELECT A, F(B)FROM r
GROUP BY A HAVING phi;

def
= σphi(γA,FB (r ))

SELECT A AS Aprime FROM r;
def
= ρA 7→A′(r )

Furthermore, other queries can be desugared to fit in our
language. For instance, SELECT DISTINCT A FROM r can be
rewritten to SELECT A FROM r GROUP BY A.

While we use the ordering of rows in a table for implemen-
tation reasons (e.g., we may sort to reduce runtime complex-
ity), the application views a table as a multiset in line with
standard SQL semantics. Thus, we say that two queries Q1
and Q2 are equivalent, if given the same input they produce
the same output up to a reordering of rows.

Groupwise queries. Consider the query in Figure 1. Each
view contains either an equi-join or a group-by on the user

column. Hence, the query can be executed as follows: (i)
partition wcs on the user column, (ii) execute the query on

each partition, and (iii) combine the partial results using
a union. Such queries, where partitions of the input can be
considered in isolation are called groupwise queries [3]; and
the processing required on each partition is referred to as
the partial query. The partial query can be the original query
itself, or a simplified version based on the fact that each
partition carries a unique value for the partitioning columns.
An analysis to determine if a query is groupwise (and, if

so then on what columns) is described in Figure 5 in the form
of inference rules. The notation Γ ⊢ gw(A,Q)means that the
query Q is groupwise on columns A of its input table and Γ
is a set of column renamings, mapping columns of the out-
put table to columns of its input table. Tracking renamings
is important because the set of partitioning columns of a
groupwise query must refer to its input table.
The rule Init says that the identity query (which simply

returns the input table) is groupwise on all columns of the
table. Renaming (Rename) does not change the groupwise
nature of a query but we keep of the fact that B′ are aliases
of columns Γ(B) of the input table. Selection (Select) and
projection (Project) don’t change the groupwise nature of
a query as well. In Project, the notation Γ |A2 means that
we drop all mappings on columns other than A2. For a join
Q1 ▷◁φ Q2, we look at the join predicateφ to identify the equi-
join columns ({a1, · · · ,an}) and take an intersection with
the groupwise columns of Q1 and Q2. For a group-by query
γA2 (Q), we intersect Γ(A2) with the groupwise columns of
Q . For a union Q1 ::: Q2, the query is groupwise on the
intersection of the groupwise columns of Q1 and Q2.

4 UDO TEMPLATE

We use program synthesis to generate a UDO that is equiva-
lent to a given query. Formally, given a queryQ that operates
over table input, where input is pre-partitioned on columns
A, we produce a set of sort-columns B and a function udo such
that udo(sort(B, input)) is equivalent toQ(input). The use
of column sets A and B is crucial for integrating the synthesis
result with the rest of the tooling pipeline of Blitz (§5).

This section outlines a template that defines a space of pos-
sible combinations of sorting columns B and implementation
udo that the synthesis engine will search over. The template
is presented in a programmatic fashion in Figure 6 and re-
ferred to as a super_udo to denote the fact that it searches
over the sorting columns and the udo at the same time. As we
detail in the rest of this section, the template makes heavy
use of information extracted from the input query Q to keep
the synthesis task manageable. We highlight such extracted
information by boxing it in the figures.

The template uses meta-operators repeat and choose that
are directives to the synthesis engine: repeat(n){B} for a
constant n must be replaced by at most n instantiations of
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Q = r r : table
∅ ⊢ gw(cols(r ),Q)

Init
Γ ⊢ gw(A,Q)

Γ ∪ {B′ 7→ Γ(B)} ⊢ gw(A, ρB 7→B′(Q))
Rename

Γ ⊢ gw(A,Q)
Γ ⊢ gw(A,σφ (Q))

Select
Γ ⊢ gw(A1,Q)

Γ|A2⊢ gw(A1,πA2 (Q))
Project

Γ1 ⊢ gw(A1,Q1) Γ2 ⊢ gw(A2,Q2) Γ = Γ1 ∪ Γ2 Γ(φ) =
∧n
i ai = ai ∧ψ A1 ∩A2 ∩ {a1, . . . ,an } , ∅

Γ ⊢ gw(A1 ∩A2 ∩ {a1, . . . ,an },Q1 ▷◁φ Q2)
Join

Γ ⊢ gw(A1,Q) A1 ∩ Γ(A2) , ∅

Γ ⊢ gw(A1 ∩ Γ(A2),γA2,F (B)(Q))
GroupBy

Γ1 ⊢ gw(A1,Q1) Γ2 ⊢ gw(A2,Q2)

Γ1 ∪ Γ2 ⊢ gw(A1 ∩A2,Q1 ::: Q2)
Union

Figure 5: Groupwise query analysis.

B; choose{S} must be replaced by one of the expressions in
the set S. Note that the statements are evaluated from outer-
most to innermost; if a choose{S} statement is nested within
a repeat(n){B} block, then first the block B is instantiated
possibly multiple times, revealing multiple choose{S} state-
ments, each of which are resolved independently.
The template operates on a list of records (i.e., a table).

The helper functions update and predicate are defined in
Figures 7 and 8, respectively. The template is structured so
that any possible instantiationwill run in linear time (modulo
sorting) and require at most constant space in addition to
storing the input and output tables. Each loop iterates over
the input just once and loops are not nested.
The UDO template is chosen such that it is at least able

to synthesize SQL operators such as selection, projection,
and group-by. To this end the template makes use of the
following program constructs.

Let the set of aggregation functions used in the input query
be f_i for 1 ≤ i ≤ m. Let init(f) refer to the initial value
of aggregation f. For example, init(sum) is 0, whereas init(
min) is∞. The template uses a single object called scopewith
a fixed number of fields: Boolean fields flag_i for 1 ≤ i ≤ n
(fixed constant n), integer or rational fields v_i for 1 ≤ i ≤ m
(one for each aggregation function used in the input query),
a list sort_cols of column names that the UDO will sort, a
record old_row for memoizing the previously processed row,
a Boolean flag do_break used for breaking out of loops early,
and finally a list res to store the output.
The template starts by initializing the scope object (lines

3–9). Next, it assumes that the input is pre-partitioned on
columns A (line 11) by assuming that all values in A are the
same. In lines 13–17, the template chooses an arbitrary set
of columns and sorts the input (lexicographically) on those
columns. Lines 19–25 are optional loops for computing ag-
gregations, predicates and expressions that require a single
pass over all records. Lines 28–31 contain a mandatory loop
that in addition to the above computes the output.

1 List super_udo(List input) {

2 // init flags , i in [1,n]

3 scope.flag_i = false;

4 // init aggregation , i in [1,m]

5 scope.v_i = init( f_i );

6 // init sorting columns

7 scope.sort_cols = nil;

8 // init output

9 scope.res = nil;

10 // input is pre -partitioned on columns A

11 assume all_equal(input , A);

12 // choose sorting columns

13 if(choose{true , false }) {

14 repeat(p1) {

15 scope.sort_cols.add(choose{cols(input)});

16 } input = sort(input , scope.sort_cols);

17 }

18 // optional aggregation loops

19 if(choose{true , false }) {

20 repeat(p2) {

21 scope.do_break = false;

22 foreach(row in input) {

23 if(scope.do_break) break;

24 update(scope , row , false);

25 } } }

26 // aggregation and output loop

27 scope.do_break = false;

28 foreach(row in input) {

29 if(scope.do_break) break;

30 update(scope , row , true);

31 }

32 return scope.res;

33 }

Figure 6: The UDO template.

The update template (Figure 7) is a sequence of p3 guarded
commands. A command updates fields of scope, such as set-
ting flags, aggregating values, resetting them to their initial



Optimizing Big-DataQueries Using Program Synthesis SOSP ’17, October 28, 2017, Shanghai, China

void update(scope , row , can_output) {

repeat(p3) {

if(predicate(scope , row)) {

repeat(p4) {

choose {

// set flags , i in [1,n]

scope.flag_i = true ,

// set break

scope.do_break = true ,

// reset aggregation , i in [1,m]

scope.v_i = init( f_i ),

// aggregate , column a, i in [1,m]

scope.v_i = f_i (scope.v_i , row.a),

// memoize current row

scope.old_row = row ,

if(can_output) {

// add to output

scope.res.add(cat(row , scope.v_1 , ...,

scope.v_m))

}

};

} } } }

Figure 7: Updates scope or adds a row to output.

bool predicate(scope , row) {

p = choose{true , false };

repeat(p5) {

t = choose {

// check query predicate φ in Q

normalize( φ , scope , row),

// check flags , i in [1,n]

scope.flag_i == true ,

// check partition boundary , a in scope.

sort_cols

scope.old_row.a == row.a,

// check if last row

is_last(row),

true

};

t = choose {!t, t};

p = choose{p && t, p || t};

}

return p;

}

Figure 8: Template for a predicate.

value, or adding a single record to the res field. Each com-
mand is guarded by a predicate synthesized in predicate

(Figure 8). In our experiments, we found that often the
same predicate is needed for multiple commands. Hence, the
repeat(p4) block appears inside the predicate guard.

Sub-query Identification

Sketch Frontend

Sketch Backend

UDO Translation

SQL-to-Sketch
Compiler

Template
Construction

SQL

Sketch

C++

SQL

Figure 9: Blitz tool chain

The predicate template searches over possible predicates
consisting of p5 terms, where each term can check a flag,
check a predicate that appeared in the input query, compare
the old_row against the current, check if the current row is
the last in the table, or just be the constant true. A term can
optionally be negated (!) and then conjoined using either
conjunction (&&) or disjunction (||).
Predicates that are extracted from the input query need

to be normalized because they might refer to columns of
intermediate tables, whereas the UDO operates on the input
table. We undo renamings and replace column names with
ones appearing in row. We also replace aggregation functions
by intermediate results in the scope object. For example,
consider the query in Figure 4. We extract the predicate m1 >

100 from the query, but to use it, we normalize it to scope.

v_i > 100, where v_i is being used for a sum aggregation.

Remark. A group-by, for instance, can be synthesized by
first sorting over its partitioning columns, then iterating over
this sorted order and using the field old_row to remember
the previous row. When old_row differs from row on the sort
columns, the UDO knows that the partition has changed; it
can then reset any aggregated value and start aggregating
the next partition. Of course, the UDO can do much more, for
example, output multiple rows per group (unlike a group-by
that outputs a single row per group) or replace the complex
self-join of Figure 1 with iteration and flags (Figure 3).

5 QUERY OPTIMIZATION USING BLITZ
Blitz is a query-to-query transformation. Its workflow is
shown in Figure 9. This section describes the various com-
ponents of Blitz.
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The first stage of Blitz identifies sub-queries of the input
query that are candidates for optimization. This is done as fol-
lows. Blitz looks at the input queryQ in its view form as a se-
quence of assignments and constructs the query DAG. Nodes
in the DAG correspond to variables and edges correspond to
operators. For instance, an assignmentvi = op(vj ,vk ) results
in the edges (vj ,vi ) and (vk ,vi ) getting added to the query
DAG. In this DAG, for each node n that is not the result of a
select, project or a rename operator, Blitz performs a group-
wise analysis that starts at n and is limited to only nodes
dominated by n. Once this process finishes, Blitz picks the
largest sub-queries (greedily) that are groupwise on at least
one column. This process is quadratic time in the number of
union, join and group-by operators in the query but quite
efficient in practice. Let Qcand be one such sub-query. The
subsequent stages of Blitz are repeated for each such Qcand.
The second stage constructs the input to the synthesis

tool. Blitz uses a program synthesis tool called Sketch
[19]. Sketch accepts a program written in an imperative-
style language (also referred to as a sketch). This program
can contain assertions, repeat meta statements and it can
contain holes, which are used in if-else cascades to encode
choices between expressions and statements, much like the
template that we described in the previous section. The goal
of Sketch is to resolve all choices such that the resulting
program satisfies all its assertions.

It is important to note that Sketch can only provide guar-
antees of correctness under a bound on the size of the input
(in our case, the size of the input table). Currently, the output
of Blitz has to be manually verified for correctness, but so
far we found that either the synthesis fails or it produces a
correct output. This limitation has a bearing on the treatment
of complex predicates. For instance, a predicate x ≥ 5000,
where x is a count on the number of rows in a table, will
only be satisfied by tables with at least 5000 rows. The syn-
thesizer will not be able to satisfy the predicate (because
it operates on small input tables) and learn anything about
subsequent parts of the query. Blitz replaces large constants
with smaller ones, performs the synthesis, and then replaces
back the original values. This is possible because the UDO
template borrows predicates directly from the original query
(Figure 8). Blitz remembers the origin of each predicate in
the template as well as the synthesized UDO.

Blitz translates Qcand to a sketch program without holes.
This is done via a simple compilation of relational opera-
tors to imperative code that implements the operators. Next,
Qcand is used to generate a sketch based on the template de-
scribed in the previous section. Finally, these two sketches
are put together using a harness. The harness calls these
sketches one after the other to obtain their outputs (say,
spec_out and udo_out) and asserts they are equivalent:

assert size(spec_out) == size(udo_out);

foreach (srow in spec_out) {

bool matches = false;

foreach (urow in udo_out)

matches = matches || (srow == urow);

assert matches;

}

The resulting sketch, along with the harness, is fed
to Sketch. Blitz has a multitude of options to heuristi-
cally configure the template which helps in scaling the
synthesis task. Blitz does this by fixing the constants
p1, . . . , p5 that control the repeat blocks in the tem-
plate (Figures 6, 7 and 8). Blitz additionally makes use
of a parameter (let’s call it p6) to decide whether to
split the query predicates φ into their sub-terms when
constructing the template. The three configurations that
we use in our experiments are (p1,p2,p3,p4,p5,p6) =
{(1, 1, 3, 2, 3, F), (2, 1, 5, 1, 3, F), (2, 1, 5, 2, 4, T)}. The number
of Boolean flags (flag_i) was fixed at 2. Blitz then spawns
three Sketch instances–one for each configuration–in paral-
lel and picks the solution of the fastest instance. Typically, the
fastest solution comes from a run with smaller parameters
when it exists, resulting also in a simpler UDO. Sketch out-
puts, by default, a C++ program when the synthesis succeeds.
Finally, Blitz extracts the UDO implementation and the sort-
ing columns by inspecting the C++ program and translating
it to the input language expected by the big-data platform
that the original query was targeting. Currently, this trans-
lation is done manually but the process is mechanical and
amenable to automation.

6 QUERY ANALYSES

This section describes further query analyses used by Blitz
for scaling the synthesis process. These are used to split a
query into smaller ones to deal with N -ary unions and joins
(§6.1), perform taint analysis to simplify the UDO template
(§6.2) and identify redundant columns that can be eliminated
altogether from the query (§6.3).

6.1 Query splitting

Operators like join and union combine multiple data inputs.
When done in succession to combine more than two data
sources, e.g., Q1 ▷◁ (Q2 ▷◁ Q3), we refer to them as N -ary
operators. Blitz identifies N -way joins and unions and tries
to split the query into N + 1 queries; the first N each com-
pute one of the inputs to the N -ary operator, and the last
one actually runs the operator. For example, the query in
Figure 4 can be broken into six queries: one each to compute
tables Out1 to Out5 and the last one that does a union of these
five tables. Each smaller query is now much simpler to opti-
mize. However, the challenge is to put the synthesized UDOs
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together in a way that is efficient (with linear complexity)
while preserving semantics.

Composing UDOs. Consider a query Q that is either a join
or a union of N sub-queriesQ1 toQN . If Blitz has identified
this query as a target for optimization, thenQ must be group-
wise. LetA be the groupwise columns ofQ . Going by Figure 5,
it must be the case that queries Qi are also groupwise on A
(although they may be groupwise on more columns). Blitz
invokes the synthesizer on each Qi while enforcing A as the
groupwise columns. (If any of the synthesis task fails then
Blitz gives up trying to optimize Q .) Suppose it obtains the
pair (udoi , si ) of the UDO and sorting order for Qi . Blitz
checks if each si is a prefix of a common list s . If this holds,
then s will be the sorting order of the composed UDO. Next,
Blitz goes on to determine if the UDOs can be fused into a
single linear-complexity UDO.

Union. In the case of union, fusion is always possible.3 We
can simply call the individual UDOs one after the other on
different scope objects, except that they use the same res
field for output. A more efficient way is to fuse the update
loops of the individual UDOs into one loop and fuse the
output loops into a single loop as well. Figure 10a shows
the merged UDO that combines UDOs of Out1 and Out2 of
Query2 (Figure 4). The colors indicate parts of the individual
UDOs.

Join. For join, fusion need not always be possible. How-
ever, groupwise queries provide an interesting opportunity
for linear implementations of (equi-)joins. Note that because
the input queryQ is groupwise onA, then by the Join rule of
Figure 5, the N -ary join must be an equi-join on columns A.
If each of the N UDOs produce a single output per partition
on A (in general, we only require N − 1 UDOs to satisfy this
condition) then we can combine them into a single linear-
time UDO. This condition needs to be checked; for example,
the query from Figure 1 does not satisfy this requirement.
If the condition is satisfied, the UDOs are fused together
(refer Figure 10b), just like for union, but instead of adding
rows to the res field, the UDO concatenates rows together
to simulate the join operation.

Ensuring composability. Blitz does not perform syn-
thesis first and then later check if the resulting UDOs and
sorting orders can be put together. Instead, it adds additional
constraints to the synthesis tasks so that if each of the N syn-
thesis tasks succeed then the composition is always possible.
For the sorting order, it first chooses a single sorting order
s , then it enforces that each synthesis task only consider

3Note that in our language a union produces a multiset and does not elimi-
nate duplicates. This condition does not apply to a distinct union.

proc udo2_mergedU(a, List rows)
// assumes sorted([c], rows)
first ← True

foreach (c,m1,m2) ∈ rows
if first
sum1 ← 0; cnt1 ← 0;
sum2 ← 0; cnt2 ← 0;
oldC ← c; first ← False;

if oldC == c
sum1 ← sum1 + m1
sum2 ← sum2 + m2

else
if (sum1 > 100) cnt1++;
if (sum2 > 100) cnt2++;
sum1 ← m1; sum2 ← m2;
oldC ← c;

if (sum1 > 100) cnt1++;
if (sum2 > 100) cnt2++;
if cnt1 > 0

output(a, cnt1)
if cnt2 > 0

output(a, cnt2)

(a) UNION: Out1 ::: Out2

proc udo2_mergedJ(a, List rows)
// assumes sorted([c], rows)
first ← True

foreach (c,m1,m2) ∈ rows
if first
sum1 ← 0; cnt1 ← 0;
sum2 ← 0; cnt2 ← 0;
oldC ← c; first ← False;

if oldC == c
sum1 ← sum1 + m1
sum2 ← sum2 + m2

else
if (sum1 > 100) cnt1++;
if (sum2 > 100) cnt2++;
sum1 ← m1; sum2 ← m2;
oldC ← c;

if (sum1 > 100) cnt1++;
if (sum2 > 100) cnt2++;
if cnt1 > 0 ∧ cnt2 > 0

output(a, cnt1, cnt2)

(b) JOIN: Out1 ▷◁φa Out2

Figure 10: Merged UDOs for union (left) and join

(right).

prefixes of s . Further, in the case of N -ary joins, it restricts
the UDO templates to produce output just once.

6.2 Taint analysis

We designed a query taint analysis to determine which
columns of the input table of a query can influence what
columns in its output. Blitz uses taint relationships in vari-
ous ways. First, it eliminates input columns that do not taint
any of the output columns. For example, in Figure 4, columns
m2 to m6 do not influence any of the columns of the Out1 table.
Second, Blitz identifies flow-through columns, which are
input columns that do not influence any other column, i.e.,
they simply flow to the output unmodified. The sales col-
umn of Figure 1 is one such example. Flow-through columns
can be excluded for consideration in the UDO template in
all places, except when output is added to scope.res. That
is, they need not be considered for sorting, or in a predicate
or aggregation.
The taint analysis is presented formally in Figure 11 as

inference rules. A judgement Γ ⊢ ta(R,Q) means that the
query Q carries the taint relationship R, where R is a binary
relation from input columns to output columns, i.e., if (a,b) ∈
R then input column a potentially influences output column
b. As in the groupwise analysis, we use Γ to carry column
renaming information.
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Q = r r : table
∅ ⊢ ta({(a,a) | a ∈ cols(r )},Q)

Init
Γ1 ⊢ ta(R,Q) Γ = Γ1 ∪ {B′ 7→ Γ1(B)}

Γ ⊢ ta({(b, Γ(a)) | (b,a) ∈ R}, ρB 7→B′(Q))
Rename

Γ ⊢ ta(R,Q)
Γ ⊢ ta(R ∪ cols(Γ(φ)) × cols(σφ (Q))),σφ (Q))

Select
Γ ⊢ ta(R,Q)

Γ|A⊢ ta({(b,a) | (b,a) ∈ R,a ∈ A},πA(Q))
Project

Γ1 ⊢ ta(R1,Q1) Γ2 ⊢ ta(R2,Q2) Γ = Γ1 ∪ Γ2
Γ ⊢ ta(R1 ∪ R2 ∪ (cols(Γ(φ)) × cols(Q1 ▷◁φ Q2))),Q1 ▷◁φ Q2)

Join
Γ1 ⊢ ta(R1,Q1) Γ2 ⊢ ta(R2,Q2)

Γ1 ∪ Γ2 ⊢ ta(R1 ∪ R2,Q1 ::: Q2)
Union

Γ ⊢ ta(R,Q)
Γ ⊢ ta(R ∪ (Γ(A) × cols(γA,FB (Q))),γA,FB (Q))

GroupBy

Figure 11: Taint analysis.

Q = r r : table
∅ ⊢ rd(Equiv(cols(r )),Q)

Init
Γ ⊢ rd(E,Q)

Γ ∪ {B′ 7→ Γ(B)} ⊢ rd(E, ρB 7→B′(Q))
Rename

Γ ⊢ rd(E,Q)
Γ ⊢ rd(E − cols(Γ(φ)),σφ (Q))

Select
Γ ⊢ rd(E,Q)

Γ|A⊢ rd(E ⊓ Equiv(Γ(A)),πA(Q))
Project

Γ1 ⊢ rd(E1,Q1) Γ2 ⊢ rd(E2,Q2) Γ = Γ1 ∪ Γ2 Γ(φ) =
∧n
i ai = ai ∧ψ

Γ ⊢ rd((E1 ⊓ E2 ⊓ Equiv({a1, . . . ,an })) − cols(ψ ),Q1 ▷◁φ Q2)
Join

Γ ⊢ rd(E,Q)
Γ ⊢ rd((E ⊓ Equiv(Γ(A))) − Γ(B),γA,FB (Q))

GroupBy
Γ1 ⊢ rd(E1,Q1) Γ2 ⊢ rd(E2,Q2)

Γ1 ∪ Γ2 ⊢ rd(E1 ⊓ E2,Q1 ::: Q2)
Union

Figure 12: Redundant column analysis.

The analysis starts with the identity relationship (rule
Init) for the empty query. The rules for renaming and pro-
jection are straightforward. Whenever the analysis encoun-
ters a predicate (in Select or Join), it adds a taint from all
columns that appear in the predicate to all output columns.
For a group-by, we add a taint from all partitioning columns
to all output columns.

6.3 Redundant column analysis

We define a set of columns to be redundant if they always
occur together in the partitioning columns of a group-by
or an equi-join operator and never in a filtering predicate.
Essentially, redundant columns are treated in a similar man-
ner by the query. They can be replaced by a single column,
which carries a tuple of values of the redundant columns.
Blitz, for simplicity, instead drops all columns but one from
a redundant set of columns. This offers reduction in the
complexity of the UDO template. Once the UDO is synthe-
sized, the redundant columns are reintroduced. For Out1 in
Figure 4, {a, b} forms a redundant set.

The analysis is presented formally in Figure 12, following
a similar style as the other analyses presented in this paper.
The judgement Γ ⊢ rd(E,Q) defines an equivalence relation

E over the set of input columns ofQ . The equivalence classes
of E define all redundant column sets of the query. The figure
requires extra notation. For a set A of columns, Equiv(A) is
the equivalence class where (a,b) ∈ Equiv(A) if and only if
a ∈ A and b ∈ A. For two equivalence relations E1 and E2,
E1⊓E2 =

⋃
Equiv(Ai )∈E1,Equiv(Bj )∈E2 {Equiv(Ai∩Bj ), Equiv(Ai−

cols(E2)), Equiv(Bj−cols(E1))} is their partition. Finally, E−A
is the same as the equivalence E except that columns in
A are removed from all equivalence classes, i.e., E − A =⋃

Equiv(B)∈E Equiv(B −A).
For example, consider the following query (which is a sim-

plified version of Q3 from our benchmark suite). It operates
on a table r with columns {a, . . . , e}.

v1 = σe>0(γ {a,b,c,d },sum(e)(r ))
v2 = ρ {a,b,e }7→{a′,b′,e ′ }(γ {a,b },sum(e)(v1))
v3 = v1 ▷◁a=a′∧b=b′ v2

The analysis of Figure 12 will output that columns a and b
are equivalent, and so are columns c and d . Thus, we drop
columnsb andd and the resulting query will be the following,
which operates on a table r with columns {a, c, e}:

v1 = σe>0(γ {a,c },sum(e)(r ))
v2 = ρ {a,e }7→{a′,e ′ }(γ {a },sum(e)(v1))
v3 = v1 ▷◁a=a′ v2
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Table 1: This table shows benchmark queries andnum-

ber of stages in their query plans from two big-data

engines. It also shows the number of stages in the op-

timizable sub-query identified by Blitz and a count of

the important operators (Group By γ , Join ▷◁, Union ∪)
in the sub-query.

Spark Scope sub-query

stages sub-query stages sub-query operators

Q1 6 6 10 8 1 γ ,2 ▷◁
Q2 16 16 13 13 5 γ ,4 ∪
Q3 8 6 10 7 2 γ ,1 ▷◁
Q4 12 9 9 8 4 γ ,2 ∪
Q5 16 16 7 7 5 γ ,4 ▷◁
Q6 5 3 4 3 2 γ
Q7 10 8 12 9 3 γ ,2 ▷◁
Q8 7 7 8 8 4 γ ,2 ∪
Q9 15 15 12 12 7 γ ,6 ▷◁
Q10 11 9 20 18 8 γ ,7 ∪
Q11 4 2 11 9 3 γ ,2 ∪
Q12 9 7 14 11 2 γ ,2 ▷◁
Q13 5 5 7 7 2 γ ,1 ▷◁
Q14 6 4 5 4 1 γ ,2 ∪
Q15 4 2 11 9 1 γ ,1 ▷◁
Q16 4 2 4 2 1 γ ,1 ▷◁
Q17 6 4 5 4 2 γ , 1 ▷◁
Q18 5 4 9 7 1 γ ,1 ▷◁
Q19 5 3 4 3 2 γ ,1 ▷◁
Q20 4 4 6 6 2 γ ,1 ▷◁

7 EVALUATION

We evaluated Blitz on a set of production queries from
Microsoft. We first describe our benchmarks.

7.1 Benchmark selection

We analyzed a log of all Scope jobs executed on one of Mi-
crosoft’s clusters (with more than 50,000 nodes) in a single
day. The log included query scripts, their query plans as gen-
erated by Scope and execution time statistics. It had about
90,000 queries that cumulatively took nearly 790,000 minutes
to execute. Many of the queries executed repeatedly [15] and
some of them were short running (<30 minutes). We post-
processed the log and found there were about 1,100 unique
long-running jobs. They cumulatively accounted for 80% of
the total execution time. Among these, we found 375 queries
(34%) to have at least one stage that dominated three or more
stages.

Scope has a rich programming interface [28]. It allows the
use of arbitrary .NET types and functions from within the
query. Our current implementation, based on the language
described in Section 3, does not support .NET types and

functions.4 Given a query, we extracted its largest dominated
sub-query (i.e., the sub-query corresponding to the stages
dominated by the most dominant stage) and analyzed it for
the absence of .NET types, functions and other unsupported
Scope features. Of the 375 queries, we found that Blitz
can currently support 148 queries, which cumulatively take
92,250minutes of execution time. Among these, we randomly
picked 20 queries to form our benchmark set.

The input data of these queries was customer proprietary,
so we substituted it with data from TPCDS [22], a standard
database benchmark suite. (This also allowed us to evaluate
our optimization on Spark.) While generating the input data,
we made sure to match the sizes of intermediate outputs of
each stage, based on the available runtime statistics. Perform-
ing this matching was difficult for queries that used many
input tables; we had to discard a query (and pick another
one) if it used more than three input tables.

Table 1 shows the high-level characteristics of our bench-
mark queries. The table also contains statistics about the
query plans generated by Scope and Spark; it shows the
number of stages in the plan5 and how many of them were
included in a sub-query picked by Blitz for optimization. As
the table shows, a significant fraction (sometimes all) of the
stages are marked for optimization. Finally the table reports
the number of group-by, join and union operators in the
sub-query. The sub-queries are quite complex, some with
more than 5 joins or unions. But, as we will see in the next
few sections, Blitz is still able to scale to them.

7.2 Experimental setup

We ran the optimized queries returned by Blitz on both
Spark and Scope on two separate clusters. One was a pro-
ductionMicrosoft cluster running Scope and the other was
a 16-node standalone Spark (ver. 2.0.2) cluster running on
Azure (D4 v2 VMs). The production cluster had a little more
than 50,000 nodes and our jobs were restricted to use at-most
1,000 tokens [2] (each token is a bundle of 2 cores and 8GB of
RAM). Blitz itself was run on a standard desktop machine
(AMD Ryzen 1700 3.0GHz CPU with 8 cores, 16GB RAM).

7.3 Synthesis results

Results from running Blitz are reported in Table 2. Blitz
ran the synthesis engine with a time limit of 10 min. The
synthesis succeeded in all cases except for one (more on Q20
in §7.5). In fact, synthesis finished for 14 queries within a
minute. The table also shows which analyses were useful

4We lower SQL types such as float and double to int; and we lower a
string-typed column to int provided equality is the only operator that is
applied to the column, i.e., it only participates in a join or group-by.
5The query plans generated by Scope and Spark differ because of differences
in the query optimization process employed by the two.
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Figure 13: Performance comparison on Spark and Scope. The figure shows the baseline execution time (as labels)

and normalized execution times on Spark (normalized to baseline execution on Spark) and Scope (normalized

to baseline execution on Scope). All running times are in minutes.

Table 2: Results from running Blitz. Column “simpl.

anal.” refers to analyses required: s (query splitting,

§6.1) or t (taint analysis, §6.2), or r (redundancy analy-

sis, §6.3).

Synth. Simpl. UDO complexity Sort LOC

time(s) anal. time space cols

Q1 516 t 1 loop constant (∼5) 1 20
Q2 221 s,t,r 1 loop constant (∼30) 1 60
Q3 44 s,r 2 loops linear (n+∼20) 2 60
Q4 460 s,r 1 loop constant (∼10) 2 50
Q5 79 s 1 loop constant (∼20) 1 50
Q6 30 r,t 2 loops linear (n+∼10) 0 20
Q7 18 s 2 loops linear (n+∼10) 1 50
Q8 2 s 1 loop constant (∼10) 1 50
Q9 2 s,t 1 loop constant (∼20) 1 80
Q10 3 s 1 loop constant (∼20) 0 80
Q11 3 s,t 2 loops linear (n+∼20) 0 90
Q12 14 s 2 loops linear (n+∼10) 1 40
Q13 330 - 2 loops linear (n+∼10) 2 40
Q14 1 s 1 loop constant (∼10) 0 30
Q15 2 - 1 loop constant (∼10) 1 10
Q16 5 s 1 loop constant (∼10) 1 10
Q17 13 s 2 loops linear (n+∼20) 1 60
Q18 1 t 1 loop constant (∼5) 1 50
Q19 31 r 1 loop constant(∼10) 0 40
Q20 fail - N/A N/A N/A N/A

(column “simplifying analysis”) for each query. In particu-
lar, query splitting leads to significant gains; it applies to
13 queries and simplified all N -ary queries with N > 2.
Without this simplification, none of the queries with N > 2
would synthesize within the time limit. Redundant column
analysis applies to fewer queries but speeds up synthesis
significantly for these. Four of the five queries (all but Q19)

time-out without this analysis. The rest of the columns in
the table show characteristics of the synthesized UDO: time
complexity, space complexity, number of sorting columns,
and the lines of code (of the Python implementation of the
UDO required for Spark, which we manually read out from
Sketch’s output). A majority of the UDOs have constant
space complexity, i.e., they only require a single pass over
the input rows, thus, can be executed in a streaming fashion.

7.4 Performance comparison

Figure 13 shows results from running the benchmark queries
on Scope and Spark. The figure compares the normalized
execution time on each of the systems. Each benchmark has
four bars. The first bar is the baseline unoptimized query
running time normalized to 100%. For reference, this bar is
labelled with the actual execution time in minutes on Scope.
The second bar shows the percentage of time needed to run
the query when optimized by Blitz on Spark (compared
to the baseline execution on Spark). The third bar shows
the same for Scope and the last bar is the synthesis time.
Blitz-optimized queries perform consistently better on both
systems. They run 1.3×—4.7× faster with a mean speedup
of 1.92× on Scope and 2× on Spark.
The performance improvements are largely influenced

by two factors: the number of stages eliminated and the
complexity of the synthesized UDO. Queries Q1, Q2, Q4, Q5,
Q10 all use streaming UDOs (linear time, constant space)
with 6 or more stages eliminated, leading to 2.5× or more
performance improvement. Queries Q3, Q13, Q17 use linear
time UDOs, and Q16, Q19 have a small number of stages
eliminated. These queries still speed up in the range 1.3×—2×.
Q15 is very similar to Q16, but the UDOfilters out a significant
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Figure 14: Cumulative time spent (in minutes) in exe-

cuting benchmark queries with and without Blitz.

Figure 15: Total data shuffled (in GB) by the bench-

mark queries with and without Blitz.

amount of data, saving on computing large intermediate data,
leading to bigger gains.
There are differences in the amount of improvement ob-

tained on Spark versus that obtained on Scope. For example,
with Q8, Blitz does much better on Spark than on Scope.
We inspected the query plans and found out that these dif-
ferences are mainly due to how the two engines read source
tables and how they optimize N -ary operators. For example,
when it comes to reading input tables, Spark, on one hand
reads the same table multiple times (once per reference). This
allows it to partition or sort the table differently for each ac-
cess, if required and is also less prone to being bottlenecked
on a single stage. Scope, on the other hand, introduces a
single stage to read the table and shuffles only the necessary
data down to subsequent stages. Both these solutions lead to
unnecessary data reads and/or shuffles. Blitz’s optimization
eliminates the source of the problem. It avoids having to
redundantly read data from a source altogether by replacing
the dependant stages with a single linear-time UDO.

Resource savings. In addition to reducing execution time,
Blitz also reduces the resource requirements of the query.

Figure 14 shows the cumulative CPU time (defined as the
sum of the times spent by all tasks used to run the query)
and Figure 15 shows the total data shuffled, with and without
using Blitz. Note that unlike the execution time, which is
sensitive to the number of concurrent containers or VMs
that the cluster can support, these metrics are a more robust
measure of the quality of an execution plan. Blitz brings
down the resource consumption drastically. It saves more
than 50% of cumulative CPU time for all but one query, with
a peak saving of close to 90%. Blitz also brings down the
amount of data shuffled by up to 75%.

7.5 About Q20

We manually inspected Q20 and found that it cannot be
rewritten using a linear-time UDO. It performs two group-
by operations on the input table and joins their results. It
is groupwise on a single column, say a, but the group-by
operators were on more than one column, say a,b and a, c ,
hence they produced multiple rows per partition on a. Thus,
there is no way to avoid a quadratic-time loop inside the
UDO to do the join.
Nonetheless, we went ahead and manually wrote the

(quadratic-time) UDO and created the optimized query. Its
resulting query plan was shorter than the original query
because both group-by operators and the join operator were
replaced by the UDO. However, its execution was slower
than the original query by a factor of 2 to 3 on either of
the two clusters. The original plan employed an efficient
join algorithm (a sort-merge join) that is much more effi-
cient than the nested loops inside our UDO. This justifies
our requirement for insisting on linear-complexity UDOs.

8 DISCUSSION

Blitz proposes a novel approach towards optimizing big-
data queries. Unlike standard query optimizers that trans-
form SQL operators in a rule-based manner, Blitz synthe-
sizes newUDOs directly from a SQL specification.We demon-
strated that such an optimization strategy can uncover new
rewrites that bring about significant performance gains. A
key challenge with this methodology, however, is that our
use of program synthesis does not guarantee full functional
correctness. Thus, manual verification is required to ensure
that the synthesized UDOs are indeed equivalent to the orig-
inal query. Below we discuss why such an approach is still
useful and how it can be improved in the future.

First, our experience with bounded synthesis has been pos-
itive. We found that the synthesis made no mistakes on the
queries that we tried. Synthesis either failed completely (like
in the case of Q20) or produced a correct result. We believe
this is because the programs that we are trying to synthesize
are fairly small. The synthesized UDOs contain at most 2
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loops and roughly 10 statements per loop (see §5), with a total
of less than 100 lines of imperative code. Although bounded
synthesis does not provide full-correctness guarantees, small
bounds are often sufficient to find counterexamples in such a
setting and steer the synthesis to a correct solution. Further,
recall that Blitz employs query simplifications (§6) before
synthesis. These simplifications are sound. They not only
help in speeding up the synthesis task, but they also limit
the size of UDOs, thus further improving the chances of find-
ing counterexamples within small bounds. A more thorough
evaluation is required to test the limits of bounded synthesis
in this domain and we plan to do this in future work.

Proving the equivalence of SQL-like programs, which has
the potential of automatically verifying the results of Blitz,
has gotten recent attention [6, 7, 10]. While these results
are encouraging, the class of programs that Blitz works
with is much larger and these results are not yet applicable.
In particular, Blitz supports more operators (like Group-
By) and the target language (with UDOs) has imperative
code. Further work is required to scale sound (unbounded)
synthesis enough for use with Blitz.

Second, even with manual verification, Blitz adds signifi-
cant value for end users of a big-data system. Over the past
decade, users have mostly migrated from using low-level
map-reduce abstractions to declarative querying abstrac-
tions where they rely on the query engine to figure out the
most cost-effective way to execute their jobs. However, this
methodology does not provide any insight when the query
engine fails to optimize the query execution. Blitz identi-
fies an important class of such scenarios, automatically con-
structs a (potential) optimization and escalates it to the user.
Blitz emits roughly 100 lines of code within minutes, much
faster than a usual programmer. The user can then verify the
code returned by Blitz, instead of eagerly fine-combing all
their queries for optimizations. Moreover, the manual effort
is amortized in the long run because many production jobs
run repeatedly (around 60% with Scope [15]). Further work
is required to quantify the manual effort required to verify
Blitz’s proposed optimizations.

9 RELATEDWORK

Classical query optimization uses equivalence rules to
rewrite queries at the logical level. Once a query plan is
fixed, off-the-shelf physical implementations are chosen for
each logical operator. This style of query optimization has
been extensively researched and is today employed in mod-
ern big-data query optimizers [1, 13, 20, 29]. While such a
two-step approach has its advantages, it sometimes fails to
find the best implementation of a query [3, 4, 8, 14, 27, 29, 30]
especially in parallel and distributed settings. Attempts

to address this include adding more rules to the opti-
mizer [8, 14, 27, 29, 30] or extending the language [16] or at
the extreme letting the end-user manually write parts of the
query with user-defined operators. Rewrite rules are typi-
cally highly specialized and have low applicability. Manually
writing queries or introducing UDOs requires significantly
higher expertise and breaks the declarative programming
abstraction. This paper proposes an alternative optimization
strategy that addresses all of the above issues. It employs
advanced program reasoning techniques to synthesize new
query-specific operations on-the-fly. It discovers new opera-
tors that are not readily available in SQL and cannot typically
be constructed in a rule-based manner. To our knowledge,
our use of program synthesis for query optimization is novel.
The last decade has seen many applications of program

synthesis—a technique that was considered hard to scale.
There is one line of work that starts with a problem de-
scription given in terms of input-output examples. The goal
is then to come up with a program that satisfies these ex-
amples. In such situations, because the specification is so
under-specified, it is easy to come up with some program
that does the job, however, the difficult part is to come up
with the right program that a human would have written.
One of the most popular examples is Microsoft Excel’s Flash-
Fill feature [11]. More related to our work are SQLSynthe-
size [26], Scythe [24], and BigLambda [18] which construct
a SQL query or a map-reduce program from input-output
examples. However, the goals of their work are very different
from Blitz because the intent is to help a novice user write
a declarative query. Blitz, on the other hand, already has
the declarative query available and its job is to optimize the
execution of the query.
Another line of work in program synthesis starts with a

more detailed specification than just input-output examples.
For example, Sketch [19] falls in this category, originally
used to synthesize tricky parts of bit-manipulating programs
and data-structure operations. Cheung et al. [5] used pro-
gram synthesis to extract a SQL query out of imperative code
that used low-level accesses to a database. The target of their
work (SQL) is different from ours (a UDO).

Finally we note that optimizing queries with UDOs has its
own challenges and newer techniques have been proposed
recently [9, 12, 17] to address them. This line of work is
orthogonal and all these optimizations apply to our system
as well.
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