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A B S T R A C T

This paper highlights several issues of the procedures nowadays adopted for the recovery of cross-sections stress
distribution within tapered thin-walled I beams. In particular, deficiencies are evident even considering bi-
symmetric structural elements behaving under the assumption of plane stress. In fact, analytical results available
in the literature since the first half of the past century highlight that the continuous variation of the height of a
infinite long wedge induces shear stress distributions substantially different from the ones occurring in prismatic
beams. Unfortunately, this peculiarity of non-prismatic beams is neglected or treated with coarse approaches by
most of the modern engineering tools and procedures, leading to inaccurate descriptions (and also severe un-
derestimations) of the real stress magnitude. After a comprehensive literature review on this specific topic, the
paper compares most common stress-recovery procedures with a new, simple, and effective tool derived from a
recently proposed non-prismatic planar beam model. The numerical examples reported in the paper highlight
that the approaches available in the literature and widely used in practice estimate the parameters of interest for
practitioners with errors bigger than 50% leading therefore to unreliable results. Conversely, the herein pro-
posed tool leads to errors smaller than 5% in all the considered cases, paving the way to a new generation of
effective tools that practitioners can use for the design of such structural elements.

1. Introduction

Structural elements with variable height have been widespread in
several engineering fields since the nineteenth century, because they
allow to optimize strength and stiffness of structures with significant
material savings. This practice became extremely popular in steel
constructions since this workable material allows to manufacture
structural elements with complex geometry without a significant in-
crease of the production costs. Nowadays, on the one hand, highly
challenging structures like skyscrapers, bridges, and large-span pavi-
lions lead the structural optimization to be increasingly important
whereas, on the other hand, modern production technologies like high
precision cutting and automatic welding allow a further reduction of
the production costs. As a consequence, the usage of non-prismatic
structural elements is becoming an increasingly diffused practice with
significant economical benefits. Unfortunately, the modeling of non-
prismatic structural elements is a non trivial task of the design process
that could impede effective usage of non-prismatic structural elements.

First of all, also considering a simple example like a statically-
loaded non-prismatic beam behaving under the assumption of plane
stress, the most stressed cross-section generally does not coincide with

the cross-section subjected to the maximal internal force [19]. There-
fore, the design of non-prismatic beams requires a stress analysis more
extensive and accurate than the one usually adopted for prismatic
beams. Even more important, recent papers have highlighted that the
continuous variation of the cross-section geometry of a homogeneous
beam deeply influences several aspects of the beam behavior like (i) the
cross-section stress distribution [8], (ii) the beam's constitutive relation
[7], (iii) the stiffness [24], (iv) the stability, (v) the post-buckling be-
havior, (vi) the dynamic response, etc. As a consequence, the analysis of
non prismatic beams can not be done using tools developed for pris-
matic beams but it requires specific-purpose models that carefully
consider all the phenomenon occurring within the body of this special
class of structural elements.

Within the so far introduced list, the most elementary but maybe
also the most critical problem is the distribution of stresses within the
cross-section. In fact, an accurate stress analysis is the first mandatory
step for the evaluation of the cross-section resistance and, furthermore,
it represents the core of the beam models together with the kinematics
[6], and, therefore, it deeply influences all the other following aspects.
Aiming at a better understanding of the problematic so far introduced,
we start by considering several analytical results that allow us to
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highlight main critical points.

1.1. The infinite long wedge

Let us consider the infinite long wedge –depicted in Fig. 1– behaving
under the hypothesis of plane stress. Neglecting the self-weight of the
material and considering the concentrated loads applied in the wedge's
vertex, it is possible to calculate the analytical solution for the 2D
equilibrium equations i.e., the stress distribution within the body [35,
Art. 35]. In Polar coordinates it reads
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As discussed by Bresler et al. [12], the analytical solution (1) highlights
that only radial stresses σr resist the concentrated forces applied at the
vertex, without any contribution of the tangential shear τrθ. Conversely,
both the radial stress σr and the tangential shear τrθ resist the bending
moment applied at the vertex.

Representing the stress with respect to the Cartesian coordinate
systemOxy depicted in Fig. 1, a linear distribution of horizontal stress σx
and a quadratic distribution of shear stress τ with respect to y provide a
reasonable approximation of the analytical solution (1) for small values
of α [35,13], as illustrated qualitatively in Table 1. In greater detail

• the radial stress distribution resulting from a load parallel to the
wedge bisector leads to a constant distribution of horizontal stress
and a linear (odd) distribution of shear,

• the radial stress distribution resulting from a load perpendicular to

the wedge bisector leads to a linear (odd) distribution of horizontal
stress and a parabolic (even) distribution of shear, with vanishing
magnitude on the wedge bisector,

• the stresses resulting from a bending moment lead to a linear (odd)
distribution of horizontal stress and a parabolic (even) distribution
of shear with vanishing mean value.

The results so far introduced can be generalized to a tapered beam as
illustrated by Krahula [20], Russo and Garic [33], Hodges et al. [17],
Auricchio et al. [5], Beltempo et al. [8], and Balduzzi et al. [7].

Table 1 clearly highlights that the stress distribution in tapered
beams is strikingly different compared to the one in a prismatic beam,
where

• a constant distribution of horizontal stress and a vanishing shear
resist the axial load,

• a linear (odd) distribution of horizontal stress and a parabolic (even)
distribution of shear, with maximum on the beam axis, resist the
shear-bending load,

• a linear (odd) distribution of horizontal stress and a vanishing shear
resist the pure bending load.

In greater detail, the horizontal stress distributions on prismatic and
tapered beams coincide whereas the shear distributions are sub-
stantially different. In fact, tapered beams lead to non-vanishing shear
for every load condition and, also for the shear-bending load, the
maximal shear magnitude and its location within the cross-section are
substantially different. Specifically, as clearly stated by Trahair and
Ansourian [37], according to prismatic beams design formulas for
shear-bending load, “the distribution of the shear stress is parabolic, with
zero stresses at the top and bottom edges, and 1.5 times the average at the
axis. For the wedge, the shear stress variation is also parabolic, but with zero
stress at the axis and 3 times the average at the top and bottom edges.” This
means that, even in the simplest case, the design formulas for prismatic
beams underestimate the maximal shear by 50%, locate the maximal
shear in the wrong position, and this error occurs for every taper angle
different from zero.

Even if limited to an extremely simple problem, the results so far
discussed clearly demonstrate that the procedures usually adopted for
the stress analysis of prismatic beams can not be effective for non
prismatic beams, but even lead to dangerous underestimations.

Fig. 1. Infinite long, planar wedge.

Table 1
Cross-section stress distribution in tapered and prismatic beams.
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1.2. Thin-walled tapered beams

Extending the discussion to more realistic situations we consider
thin-walled non-prismatic beams, limiting our attention to bi-sym-
metric I shaped cross-sections with variable web height.

Despite the stress distribution within non-prismatic beams has a
crucial role in determining their stiffness and strength, its importance is
often underestimated both in engineering practice and research. In fact,
most of literature on thin-walled tapered and non-prismatic beams fo-
cuses on the second order effects, buckling, and post-buckling behaviors
that, for thin-walled structures, represents the main failure mechanism
[9,2,31,3,23,38,36,26,14]. Unfortunately, in most of the so far cited
papers, it is assumed that, in tapered beams, stress distributes within
the cross-section as in prismatic beams, neglecting therefore also the
effects of non-trivial shear stress distribution on constitutive relations,
stiffness, stability, and post-buckling behavior. Consistently, also na-
tional and international design standards provide specific indications
for the buckling limit loads of tapered structures, but do not provide
specific indications about the presence of non-trivial shear stresses
[16]. As an example, introducing the problem of the non-prismatic
beam buckling and referring to the differences of stress distribution
within tapered and prismatic beams, Marques [23] states that “for small
tapering angles < °( 15 ) this difference is negligible and, as a result, re-
garding member design, the design formulas for prismatic have been ex-
tended for the case of tapered members”. Clearly, this statement disagrees
with the analytical results reported in Section 1.1, leads to extremely
coarse and unsafe cross-section strength estimations, as will be de-
monstrated in the following, and maybe undercuts the effectiveness of
any attempt for buckling and post-buckling analysis.

An even more critical modeling procedure widely adopted in prac-
tice is the usage of the so called “stepped” Finite Element (FE) models
[30,21,22]. It consists in modeling the tapered beam with a certain
number of prismatic elements (usually 10 or 20) in which the variable
parameters (the area and the inertia) are approximated with their mean
value within the element length. Clearly, this procedure ignores the non
trivial constitutive relations and the resulting stiffness [24]. As a con-
sequence, stepped FE leads to heavy errors in the evaluation of both the
structural element stiffness and the internal forces acting in static-in-
determinate structures [26]. Last but not least, the prismatic beam
stress recovery is used in post-processing, leading to severe under-
estimations of the real stresses acting within the beam already discussed
in Section 1.1 and deeply examined in the following sections.

Looking at the literature, the former approach for the recovery of
stress distribution within non-prismatic beams was developed by Bleich
[10] and consists in a generalization of the Jourawasky theory [18].
Aiming at evaluating the cross-section resistance, the author evaluates
the shear stress in the cross-section's geometric center assuming that the
shear magnitude reaches its maximum there, as in prismatic beams.
Unfortunately, the assumption on the location of maximal shear is
wrong, as can be seen looking at the results reported in Table 1. As a
consequence, the procedure turned out to be very imprecise and has
strongly been criticized by Paglietti and Carta [28,29].

Searching for an effective approach capable to determine the cross-
section resistance, several books propose simplified procedures [11,12].
The main idea behind all the so far proposed approaches is that the
boundary equilibrium forces principal stresses within flanges to be or-
iented as the flanges' plane. As a consequence, the forces resulting from
stresses acting on the flanges have a vertical component that con-
tributes to the vertical equilibrium of the cross-section. In particular,
Blodgett [11] proposed a simple analysis tool which assumes that
flanges resist to the bending moment, subsequently estimates the
flanges contribution to the shear equilibrium according to the idea so
far introduced, and finally evaluates the mean value of the shear stress
within the web. Similar principles were used more recently by Rubin
[32], Redmond [31] whereas Trahair and Ansourian [37] exploit the
analytical solution for the infinite long wedge, but recover results

similar to the ones coming from the procedures so far introduced.
More recently, Vu-Quoc and Léger [39] proposed a more refined

approach for the recovery of shear stress distribution within the web of
tapered I beams subjected to shear bending loads within the web plane.
The proposed method accounts for the boundary equilibrium and the
variation of the cross-section area, but neglects derivatives of the mo-
ment of inertia and the flanges contribution to the shear equilibrium.
Nevertheless, the obtained shear stress recovery formulas was recently
used by Chiorean and Marchis [14], within an higher order model for
tapered beams.

Finally, Balduzzi et al. [6] have recently proposed a simple planar
non-prismatic beam model capable to tackle all the aspects so far in-
troduced. In particular, the paper proposes a planar stress representa-
tion based on a rigorous generalization of the Jourawsky theory, fol-
lowing a derivation path not different from the one proposed by Bleich
[10]. Furthermore, it also provides instruments capable to manage ac-
curately the effects of non trivial stress distribution on the beam stiff-
ness and displacements. The numerical results reported in the paper
indicate that the proposed model evaluates accurately both stresses and
displacements.

The only remaining modeling approach available in literature is the
usage of 3D models e.g., realized with highly refined FE based on 3D
continuum mechanics [4,40], shell, or 3D FE. This approach is ex-
tremely accurate but also expensive from the computational point of
view [27,1]. As a consequence, it is rarely used for the global modeling
of real structures where engineers prefer to use 1D FEs. The only si-
tuations in which 3D models may be adopted are the enhanced checks
like local stability and the enhanced design of structural details like
stiffeners. To the authors knowledge, the only field in which shell or 3D
FE are used for the modeling of a whole structure is the research,
mainly for the validation of less expensive analysis approaches
[15,39,25,3,23,40].

1.3. Paper aims and outline

According to the remarks discussed in Section 1.2, this paper aims at
comparing performances and verifying effectiveness of the most im-
portant procedures for the stress recovery so far introduced. Specifi-
cally, the paper compares the following methods:

• METHOD 1: prismatic beam stress recovery formulas i.e., the
method adopted by the most of the commercial software for struc-
tural analysis,

• METHOD 2: the simplified stress recovery proposed by Blodgett
[11] that assumes constant stresses within flanges and web, but
tackle the shear contribution coming from inclined flanges,

• METHOD 3: the stress recovery proposed by Vu-Quoc and Léger
[39] that accounts for web boundary equilibrium but neglects de-
rivative of the cross-section inertia function and the flanges' con-
tribution to the vertical equilibrium,

• METHOD 4: the enhanced stress recovery proposed by Balduzzi
et al. [6],

• METHOD 5: the stress analysis performed trough 3D FE that will be
used as reference solution in the discussion of numerical results.

It is worth highlighting that METHODS 2, 3, and 4 assume that the
beam behaves under the assumption of plane stress state. Despite this
assumption could seem highly restrictive, it is widely accepted in en-
gineering practice since the first-design of most of the steel structures
can be done analyzing planar frames. Furthermore, METHODS 2 and 3
provide the stress recovery only for bi-symmetric linearly tapered
beams subjected to shear-bending loads. Therefore, due to the pre-
liminary nature of the considered investigation and aiming at per-
forming a fair comparison, the present paper considers only beam's
geometry and loads that could be tackled by al the considered methods.

The paper is structured as follows.
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• Section 2 provides formulas for the cross-sectional stress analysis
approaches introduced so far. Specifically, (i) it provides a synopsis
of formulas used for prismatic beams, (ii) it briefly resumes the
analysis approach proposed by Blodgett [11], (iii) it reports for-
mulas derived by Vu-Quoc and Léger [39], and (iv) it derives closed-
form formulas for I shaped bi-symmetric tapered beams starting
from the stress representation proposed by Balduzzi et al. [6].

• Section 3 reports numerical results obtained by the application of
the formulas so far introduced to a simple problem. Specifically, it
considers the stress distribution within several cross-sections of a
tapered beam subjected to shear bending load.

• Section 4 discusses the numerical results.

• Section 5 reports final remarks and delineates future research.

The simple numerical example considered in Section 3 will highlight
that all the engineering tools and procedures for the recovery of stresses
from one dimensional models nowadays used both in everyday en-
gineering practice and research suffer from heavy deficiencies and are
not reliable. Conversely, the procedure proposed by Balduzzi et al. [6]
seems more accurate and promising for the development of new and
effective instruments.

2. Analysis of cross-section stress distribution

Let us consider the homogeneous thin walled tapered beam depicted
in Fig. 2(a). The cross-section has two symmetry axes as illustrated in
Fig. 2(b) and only the web height h x( )w varies along the beam axis as
illustrated in Fig. 2(c). Specifically, we assume that it varies linearly
with respect to the x coordinate

= ′ +h x h x h( ) 2w 0 (2)

where ′h represents the slope of the flanges and h0 is the web height at x
= 0.

In the following we are going to assume that (i) the beam behaves
under the assumption of small displacements and strain, (ii) the ma-
terial is linear-elastic and isotropic, (iii) cross-sections behave as a rigid
body, and (iv) the beam behaves under the assumption of planar stress
state, as usually accepted in engineering practice. As a consequence of
assumption (iv), all parameters are constant with respect to the depth

coordinate z, simplifying the 3D beam geometry to the planar problem
depicted in Fig. 2(c) in which the mechanical properties of layers are
proportional to the flange width and the web thickness, respectively.
Finally, two bending moments M (0) and M l( ) and two shear forces
V (0) and V l( ) (satisfying equilibrium equations) act on the beam ex-
tremities, as illustrated in Fig. 2(c).

For convenience in the notation, we introduce the piece-wise
function b x y( , ) defining the variation of flange width and web thick-
ness with respect to the y coordinate
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2.1. METHOD 1 Prismatic beam's stress recovery

According to the formulas proposed in standard literature for pris-
matic beams the horizontal stress distribution within the cross-section
can be evaluated as

= −σ x y M x
J x

y( , ) ( )
( )x (4)

where, for the bi-symmetric cross-section the cross-section inertia J x( )
reads

= + + +J x
b h x b h b h

h h x( )
( )

12 6 2
( ( ))w w f f f f

f w

3 3
2

(5)

Furthermore, the shear stress distribution within the cross-section
can be evaluated as

= −τ x y V x Q x y
J x b x y

( , ) ( ) ( , )
( ) ( , )

V

(6)

where the first order of area about the centroid axis Q x y( , )V results as

Fig. 2. Thin-walled non-prismatic beam, Cartesian coordinate system, dimensions, and load definitions.
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2.2. METHOD 2 (Blodgett [11])

Assuming that only the flanges resist the bending moment, the
magnitude of the force Ff resulting from flange's horizontal stress reads

=
+

F x M x
h x h

( ) ( )
( )f

w f (8)

and the resulting horizontal stress in the flanges is defined as

= ±σ x y
F x
b h

( , )
( )

x f
f

f f (9)

where, given a positive bending moment the stress is positive in the
bottom flange and negative in the top one.

As illustrated in Fig. 3, the horizontal equilibrium on the flanges's
boundary induces a non vanishing shear which magnitude is

= ′ =
′
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F x h

b h
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f x f
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Therefore, the resulting flange's vertical force is defined as

= ′V x F x h( ) ( )f f (11)

leading to the following distribution of the shear stress
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2.3. METHOD 3 (Vu-Quoc and Léger [39])

The beam model proposed by Vu-Quoc and Léger [39] assumes the
same distribution of the horizontal stress of the prismatic beam.
Therefore, Eq. (4) is valid also for the herein proposed approach.

Conversely, according to [39, Formula (26)] and consistently with
the notation and sign convention introduced at the beginning of Section
2 the shear stress distribution within the web is defined as
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2.4. METHOD 4 (Balduzzi et al. [6])

The beam model proposed by Balduzzi et al. [6] assumes the same
distribution of the horizontal stress of the prismatic beam. Therefore,

Eq. (4) is valid also for the herein proposed approach.
Conversely, the recovery of the shear stress distribution within the

cross-section is done according to the Jourawsky theory derivation
[18]. Considering the horizontal equilibrium of an infinitesimal portion
of the beam of size ×dx dy and after few calculations the shear stress
distribution results to be defined as

∫= ∂
∂

+τ x y
x

σ x y dy C( , ) ( , )x (14)

where C is a constant of integration. Substituting the horizontal stress
distribution (4), Eq. (14) becomes
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Thereafter, the boundary equilibrium (see Fig. 3) and the horizontal
equilibrium between flange and web allows to determine the value of
the constant of integration. Readers may found further details about the
so far resumed procedure in [6, Section 3.3].

Introducing the herein considered beam geometry (see Fig. 2) in Eq.
(15), the shear stress distribution within the cross-section is defined as
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where the functions a x( )͠ , b x( )͠ , and c x( )͠ read
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It is worth recalling that both the functions Q x y( , )M and Q x y( , )V
are even functions with respect to the variable y. Furthermore, Q x y( , )M
is minimal for y = 0, whereas Q x y( , )V is maximal. As a consequence,
Formula (16) suggests that, when the shear load is prevailing, the
maximal shear will be located at the cross-section geometrical center, as
usual for prismatic beams. On the contrary, when the bending moment
is prevailing, the maximal shear will be on the web boundary or in the
flanges.

2.5. METHOD 5 3D FE (reference solution)

In order to provide a reference solution describing the mechanical
behavior of the considered body as accurately as possible we modeled
the whole beam body with 3D FE, through the commercial software

Fig. 3. Schematic representation of the stresses acting on the boundary of the sloped
flange.
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ABAQUS Simulia [34]. Specifically, we exploited the problem sym-
metry with respect to the plane z = 0 and we modeled only the left
hand half of the domain, imposing that displacements with respect to
the z direction vanish on the symmetry plane. Furthermore, we as-
sumed that, at the beam ends, shear forces result from a uniform surface
vertical shear stress over the web and the bending moment results from
a uniform surface traction/compression over the flanges. In order to
obtain a numerical solution, we set the following mechanical properties
of the material: =E 210 000 MPa and =ν 0.3 and we impose a vertical
and two horizontal constraints on two nodes in the initial cross-section.
Finally, we adopted a structured mesh of × ×2000 3 23 trilinear ele-
ments for the flanges and a structured mesh of × ×2000 160 2 trilinear
elements for the web. Globally, 916,000 elements constitute the 3D FE
model. It is worth highlighting that a so refined mesh is usually not
required in engineering practice, but is herein adopted in order to en-
sure that errors affecting the reference solutions are negligible. Finally,
since the proposed analysis of cross-section stress distributions are done
considering a plane stress state and aiming at performing a fair com-
parison, we further elaborated the 3D FE results calculating the mean
value of all the quantities of interest with respect to the z direction.

3. Numerical results

Aiming at discussing the proposed methods capabilities, this section
provides the stress recoveries done with methods introduced in Section
2 for a simple example.

According to the notations introduced in Fig. 2, we assign the fol-
lowing numerical values

= = = =
= = ′ = ≈

l h h l b
h b h θ

10 000 mm (0) 900 mm ( ) 100 mm 6 mm
16 mm 250 mm 0.04 2.3 deg

w w w

f f

(19)

It is worth noticing that the inclination angle of the flanges is equal to
2.3 deg, significantly smaller than the limit of 15 deg indicated by
Marques [23] as the limit for the validity of prismatic stress recovery.
Furthermore, the web height is the prevailing dimension in the left
hand part of the domain whereas the flanges depth is the prevailing
dimension on the right hand part of the domain. Finally, we set the
forces acting on the beam ends as follow

= = −
= =

V M
V l M l

(0) 100 kN (0) 700 kNm
( ) 100 kN ( ) 300 kNm (20)

It would be noted that the applied forces are in equilibrium. Further-
more, the bending moment is positive in the right hand part of the
domain, vanishes at =x 7000 mm and becomes negative in the left
hand part of the domain. As a consequence, in the left hand part of the
domain the beam height decreases according to the bending moment
magnitude whereas in the right hand part the beam height and the
bending moment have opposite derivatives.

Aiming at discussing the stress analysis tools introduced in Section
2, we consider 5 cross-sections A x( )i with =x 1000, 3000, 5000, 7000i ,
and 9000 mm, respectively.

Figs. 4, 5, 6, 7, and 8 show the distributions of the axial, shear, and
Mises's stresses in the 5 considered cross-sections.

It is worth recalling that the maximal Mises's stress is a crucial
parameter for practitioners and often used to check the resistance of
cross-sections. For the cross-section stress recovery methods introduced
in Section 2, the Mises's stress is calculated as

= +σ σ τ3m x
2 2 (21)

whereas the reference solution considers the results coming from the 3D
FE software ABAQUS. Obviously, the reference solution takes into ac-
count all the components of the 3D stress tensor resulting therefore
significantly more refined than the information provided by Eq. (21).
Anyway, the comparison of the simplified methods with accurate 3D FE

results will highlight their effectiveness in tackling real structures.
For each quantity ζ, we consider the relative error

=
−

e
ζ ζ

ζζ

ref

ref (22)

expressed in percentage. Differently from usual error definitions, the
absolute-value operators are omitted in Eq. (22). This choice depends
on the fact that we would like to highlight when simplified formulas
introduced in Section 2 overestimate (i.e., lead to a positive error) or
underestimate (i.e., lead to a negative error) the reference values. In the
authors' opinion, this information is crucial since it allows to determine
if the predictions are on the safe side or not.

Table 2 reports the values of shear stress evaluated in the middle and
on the boundary of the web. In fact, as discussed in Section 1 and due to
the cross-section symmetries, the location of the maximal shear in ta-
pered beams can be both at the middle or on the boundary of the web.

Table 3 reports the values of the Mises's stress evaluated in the
middle and on the boundary of the web and at the highest/lowest point
of the cross-section. It is worth recalling that, in analogy with prismatic
beams, the chosen points are the ones that could be critical.

Both Tables 2, 3 indicate if the cross-section stress-analysis methods
predict the location of the maximal stress correctly (✓ right, wrong).
Finally, bold text in Table 3 highlights the location of the maximal
Mises's stress in the reference solution, the estimations of this value
provided by the different methods, and their relative errors.

4. Discussion of the results

We start by noticing that, among the five considered cross-sections,
A x( )1 is loaded with the maximal bending moment

= −M( (1000) 600 kNm), whereas ≈= σmax ( ) 150 N/mmx x1000 (See Fig. 4).
Conversely, A x( )5 is loaded with a intermediate bending moment

=M( (9000) 200 kNm), but ≈ >= =σ σmax ( ) 250 N/mm max ( )x x x x9000 1000 .
This simple observation confirms what is stated by Kim et al. [19] i.e., the
location of maximal horizontal stress does not coincide with the location of
maximal bending moment.

In greater detail, for prismatic beams the cross-section inertia I x( ) is
a constant parameter. Therefore the search for maximal

+σ x h h( , /2 )x w f and for maximal M x( ) are equivalent (see Eq. (4)).
Conversely, for tapered beams, finding the maximal +σ x h h( , /2 )x w f
requires to solve the following equation

+ = ′ − ′ ⎛
⎝

+ ⎞
⎠

+ ′ =

d
dx

σ x h x h M x I x M x I x
I x

h x h

M x
I x

h

( , ( )/2 ) ( ( ) ( ) ( ) ( ))
( )

( )
2

2 ( )
( )

0

x w f
w

f2

(23)

Obviously, the solution of Eq. (23) is non trivial and could require
specific numerical tools, usually not needed for prismatic beams.

A few simple analytical calculations would allow to generalize the
so far introduced considerations to the maximal shear and the maximal
Mises's stress but this does not seem to be necessary to make the point
clear.

4.1. Horizontal stress

Formula (4) (METHOD 1 prismatic beam's stress recovery, METHOD
3 (Vu-Quoc and Léger [39]), and METHOD 4 Balduzzi et al. [6]) results
to be accurate in most of the cross-sections. Specifically, a significant
difference to the reference solution can only be noticed in A x( )4
(Fig. 7(a)). Nevertheless, in this cross-section the magnitude of hor-
izontal stress is negligible if compared to the shear stress magnitude in
the same cross-section (Fig. 7(b)) and also when compared to the
horizontal stresses in other cross-sections (Fig. 4(a), Fig. 5(a), Fig. 6(a),
and Fig. 8(a)). In particular, it is worth noticing that the difference so
far highlighted depends on the fact that the proposed methods can
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Fig. 4. Cross-section stress distributions evaluated at =x 1000 mm1 . MET.1 (prismatic beam's stress recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and Léger [39]), MET.4 (Balduzzi
et al. [6]), and MET.5 3D FE (reference solution).

Fig. 5. Cross-section stress distributions evaluated at =x 3000 mm2 . MET.1 (prismatic beam's stress recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and Léger [39]), MET.4 (Balduzzi
et al. [6]), and MET.5 3D FE (reference solution).
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Fig. 6. Cross-section stress distributions evaluated at =x 5000 mm3 . MET.1 (prismatic beam's stress recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and Léger [39]), MET.4 (Balduzzi
et al. [6]), and MET.5 3D FE (reference solution).

Fig. 7. Cross-section stress distributions evaluated at =x 7000 mm4 . MET.1 (prismatic beam's stress recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and Léger [39]), MET.4 (Balduzzi
et al. [6]), and MET.5 3D FE (reference solution).
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tackle only first order effects, whereas the 3D FE model has the cap-
ability to catch higher order effects that result to be significant in this
cross-section.

Formula (9) (METHOD 2 Blodgett [11]) results to be more coarse
than Formula (4). In particular, it usually overestimates the maximal
horizontal stress in flanges with errors up to 20% (Fig. 4(a)), but, un-
fortunately, errors are not always on the safe side (Fig. 8(a)). Further-
more, it is not able to evaluate horizontal stress in the web, leading
therefore to an extremely coarse description of the stress distribution
within the web.

4.2. Shear stress

Formulas (6) (METHOD 1 prismatic beam's stress recovery) and (13)
(METHOD 3 Vu-Quoc and Léger [39]) are not reliable in evaluating the
real shear stress distribution, as illustrated by Fig. 4(b), Fig. 5(b),
Fig. 6(b), and Fig. 8(b). In detail, the only case in which they lead to
accurate results is the cross-section subjected to a pure shear load
(Fig. 7(b)). Furthermore, as reported in Table 2, METHOD 1 (prismatic
beam's stress recovery) leads to errors ranging from − 45% to + 115%
whereas METHOD 3 (Vu-Quoc and Léger [39]) leads to errors ranging
from− 70% to+ 190%. Last but not least, both Formulas (6) and (13) are

Fig. 8. Cross-section stress distributions evaluated at =x 9000 mm5 . MET.1 (prismatic beam's stress recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and Léger [39]), MET.4 (Balduzzi
et al. [6]), and MET.5 3D FE (reference solution).

Table 2
Evaluation of shear stress in critical points, correctness of the maximal shear position (✓ right, wrong), and relative errors. MET.1 (prismatic beam's stress
recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and Léger [39]), MET.4 (Balduzzi et al. [6]), and MET.5 3D FE (reference solution).
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also not able to individuate the right position of the maximal shear (see
Table 2 A x( )1 and A x( )2 ). In fact, since the bending moment is the
prevailing internal force in A x( )1 and A x( )2 , the maximal shear is not
located at the middle of the web (see Fig. 4(b) and Fig. 5(b)), but
Formula (6) completely ignores this important effect. Finally, it is worth
noticing that the prismatic beam formula always predicts quasi-van-
ishing shear in the flanges, whereas the reference solution indicates that
it has generally a non-negligible magnitude.

Formula (12) (METHOD 2 Blodgett [11]) allows to provide a rea-
sonably accurate prediction of the shear stress mean value in flanges
and is generally more accurate than both Formulas (6) (METHOD 1
prismatic beam's stress recovery)) and (13) (METHOD 3 Vu-Quoc and
Léger [39]) since it leads to errors ranging from − 25% to 20%.
Nevertheless it is not able to individuate the maximal shear location
and its estimations do not guarantee a conservative estimation of the
quantities of interest for practitioners.

Formula (16) (METHOD 4 Balduzzi et al. [6]) results to be the most
effective and accurate since it is able to individuate correctly both the
maximal shear and its location, leading to errors smaller than 1% in all
the cross-sections.

4.3. Mises's stress

Looking at Table 3, it is worth noticing that (i) METHOD 1 (pris-
matic beam's stress recovery) leads to errors ranging from − 45% to
115%, (ii) METHOD 2 (Blodgett [11]) leads to errors ranging from
− 90% to 20%, (iii) METHOD 3 (Vu-Quoc and Léger [39]) leads to errors
ranging from − 70% to 190%, and (iv) METHOD 4 (Balduzzi et al. [6])
leads to errors always smaller than 5%. Furthermore, it is also possible
to notice that using both METHOD 1 (prismatic beam's stress recovery)
and METHOD 3 (Vu-Quoc and Léger [39]) the more consistent errors
occur at y = 0, whereas using METHOD 2 (Blodgett [11]) the more
consistent errors occurs at the intersection between web and flanges.
Finally, METHODS 1, 2, and 3 sometime are not able to individuate the
right position of the maximal Mises's stress.

Since the maximal Mises's stress defines the cross-section resistance
and the usage of METHODS 1, 2, and 3 could lead to underestimate this
fundamental parameter more than 50%, we can conclude that they are
unreliable. Furthermore, since they are not able to individuate the right
location of the maximal Mises stress –i.e., the location of the failure
point– they lead designers to uselessly increase the size of certain beam

components with any immediate benefit for both the cross-section and
the structure strength. As a consequence, literature methods turn out to
be not only ineffective but also extremely dangerous.

Conversely, METHOD 4 (Balduzzi et al. [6]) results to be the most
effective and accurate since it is able to individuate correctly both the
maximal Mises stress and its location, leading to errors smaller than 5%
in all the cross-sections.

5. Final remarks

This paper tackles the problem of the recovery of stress distribution
within the cross-section of bi-symmetric tapered steel beams. Analytical
results (available in the literature since the first half of the past century)
highlight that the continuous variation of the beam height induces
shear stress distribution substantially different from the one occurring
in prismatic beams.

In order to predict the stress distribution within tapered beams, a
certain number of methods were proposed in literature and several of
them were compared within this paper trough the evaluation of their
performances in a simple practical example. Specifically the paper
considers

• METHOD 1 stress recovery usually adopted for prismatic beams,

• METHOD 2 stress recovery proposed by Blodgett [11],

• METHOD 3 stress recovery proposed by Vu-Quoc and Léger [39],

• METHOD 4 stress recovery proposed by Balduzzi et al. [6].

METHOD 1 can underestimate the maximal shear up to 45% and
lead to underestimation up to 25% for the Mises's stress. Similarly,
METHOD 2 can underestimate the maximal shear up to 25% and the
Mises's stress up to 55%. METHOD 3 can underestimate the maximal
shear up to 70% and the Mises's stress up to 10%. As a consequence,
METHODS 1, 2, and 3 are not reliable and should be avoided in design
practice. Conversely, METHOD 4 leads to errors always smaller than 5%
in all the considered cross-sections, representing therefore an effective
and accurate tool for the cross-section stress analysis.

Further developments of this work will include the generalization of
the METHOD 4 to 3D thin-walled beams and the investigation of the
effects that non-trivial stresses have on beam stiffness, buckling, and
dynamic behavior.

Table 3
Evaluation of Mises's stress in critical points, correctness of the maximal Mises's stress position (✓ right, wrong), and relative errors. Bold text highlight the
maximal Mises's stress within the cross-section in reference solution. MET.1 (prismatic beam's stress recovery), MET.2 (Blodgett [11]), MET.3 (Vu-Quoc and
Léger [39]), MET.4 (Balduzzi et al. [6]), and MET.5 3D FE (reference solution).
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