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Abstract. We introduce a novel diagnostic reasoning method for robotic systems
with multiple robots, to find the causes of observed discrepancies relevant for plan
execution. Our method proposes (i) a systematic modification of the robotic ac-
tion domain description by utilizing defaults, and (ii) algorithms to compute a
smallest set of diagnoses (e.g., broken robots) by means of hypothetical reason-
ing over the modified formalism. The proposed method is applied over various
robotic scenarios in cognitive factories.
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1 Introduction

For the fault-awareness and reliability of robotic systems (e.g., in cognitive factories or
service robotics), it is essential that the robots have cognitive skills, such as planning
their own actions, identifying discrepancies between the expected states and the ob-
served states during plan execution, checking whether these discrepancies would lead
to a plan failure, diagnosing possible causes of relevant discrepancies, learning from
earlier diagnoses, and finding new plans to reach their goals. In this paper, we focus on
diagnostic reasoning for robotics.

Consider, for instance, a cognitive factory [32, 11]. In a typical cognitive factory,
each workspace is medium sized with 3–12 heterogeneous robots; there may be many
workspaces, each focusing on a different task. On the other hand, each of these robots
has many components, failure of which may cause abnormalities in the manufactur-
ing process. Factory shut-downs for diagnosis and repairs are very costly; hence, it is
required that diagnosis is performed accurately and fast. Furthermore, it is essential
that the monitoring agent(s) have the capability of identifying further details on di-
agnosis (broken robot components, actions that could not be executed due to broken
robots/components), and learning from earlier diagnoses and failures.

With these motivations, we introduce a diagnostic reasoning method to find a small-
est set of broken robots (and their components) that cause the relevant discrepancies
observed during plan execution. Our method starts with the robotic action domain de-
scription used to compute a plan, the part of the plan executed from the initial state until
the current state, and a set of observations about the current state. The robotic domain
description is represented in an action description language [16], like C+ [18]. Then,
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our method (i) applies a systematic modification of the robotic action domain descrip-
tion by utilizing defaults, and (ii) computes a smallest set of diagnoses by means of
hypothetical reasoning over the modified formalism.

The modification of the domain description is essential to be able to generate pos-
sible causes of the observed discrepancies that would lead to plan failures. The use of
defaults help generation of possible causes for discrepancies (such as broken robots),
as well as generation of further information (such as which actions are prevented from
execution due to these causes). We have proven that our proposed modification con-
servatively extends the planning domain description, which is important for generating
such further information.

The computation of smallest sets of diagnoses is done by means of “diagnostic
queries” expressed in an action query language, like Q [16], and by using efficient au-
tomated reasoners, such as SAT solvers and ASP solvers. Two algorithms are proposed
for this computation: one of them relies more on hypothetical reasoning and can be used
in conjunction with both sorts of reasoners; the other algorithm relies on aggregates and
and optimization statements of answer set programming (ASP) [24, 27, 22, 23, 3].

Both algorithms synergistically integrate diagnostic reasoning with learning from
earlier experiences and probabilistic geometric reasoning. As demonstrated by our ex-
periments, learning improves the computational efficiency and quality of diagnoses,
since it allows robots to utilize their previous experiences (e.g., which robots or robot
components are more probable to be broken). As shown by examples, geometric rea-
soning improves accuracy of diagnoses by considering feasibility of robotic actions.

2 Preliminaries

We model dynamic domains like cognitive factories as transition diagrams – directed
graphs where the nodes characterize world states and the edges represent transitions
between states caused by (non)occurrences of actions. We represent transition diagrams
formally in the nonmonotonic logic-based action description language C+ [18].

Various sorts of reasoning tasks can be performed over transition diagrams, such as
planning and prediction. We describe reasoning tasks by means of formulas in an action
query language Q [16], and utilize SAT/ASP solvers to compute a solution.

This logic-based reasoning framework allows integration of low-level feasibility
checks (e.g., collision checks for robots) performed externally by the state-of-the-art
geometric reasoners. In this section, we will briefly describe these preliminaries over a
cognitive toy factory scenario.

2.1 A cognitive toy factory

As a running example, we consider the cognitive toy factory workspace of [12], where
a team of multiple robots collectively works toward completion of an assigned manu-
facturing task. In particular, the team manufactures nutcracker toy soldiers through the
sequential stages of cutting, carving and assembling. The workspace contains an as-
sembly line to move the toys and a pit stop area where the worker robots can change
their end-effectors. It also includes static obstacles.



The team is heterogeneous, composed of two types of robots with different capabil-
ities. Worker robots operate on toys, they can configure themselves for different stages
of processes; charger robots maintain the batteries of workers and monitor team’s plan.
All robots can move from any grid cell to another one following straight paths.

2.2 Representation of a robotic domain

The signature of an action domain description in C+ consists of two sorts of multi-
valued propositional constants, fluent constants F and action constants A, along with
a nonempty set Dom(c) of possible values for each constant c. Atoms are of the form
c = v where c is a constant and v is a value in Dom(c). If c is a boolean constant then
we adopt the notations c and ¬c. We assume that action constants are boolean.

Transition diagrams modeling dynamic domains can be described by “causal laws”
over such a signature. For instance, the following causal law describes a direct effect of
a robot r moving in the Right direction by u units from a location x on the x-axis: the
location of the robot becomes x+ u at the next state after the execution of this action.

move(r ,Right , u) causes xpos(r)= x + u if xpos(r)= x . (1)

The causal law below describes a precondition of this action: a worker robot w cannot
move u units in any direction d since its battery lasts for only bl<u units of movement:

nonexecutable move(w , d , u) if battery(w)= bl (bl < u). (2)

Similarly, causal laws can represent [18] ramifications of actions, noconcurrency con-
straints, state/transition constraints, the commonsense law of inertia.

We understand an action domain description as a finite set of definite causal laws.

2.3 Reasoning about a robotic domain

A query in Q [16] is a propositional combination of atomic queries of the two forms,
F holds at t or A occurs at t, where F is a fluent formula, A is an action formula, and
t is a time step.

The meaning of a query is defined in terms of histories. A history of an action do-
main description D is an alternating sequence s0, A0, s1, . . . , sn−1, An−1, sn (n ≥ 0)
of states and actions, denoting a path in the transition diagram described by D. States
(resp. actions) can be considered as functions from fluent constants (resp. action con-
stants) to their relevant domains of values. Then each state (resp. action) can be denoted
by a set of fluent (resp. action) atoms.

A query Q of the form F holds at t (resp. A occurs at t) is satisfied by such a
history if st satisfies F (resp. if At satisfies A). For non-atomic queries, satisfaction
is defined by truth tables of propositional logic. A query Q is satisfied by an action
description D, if there is a history of D that satisfies Q.

Let F and G be fluent formulas representing an initial state and goal conditions.
We can describe the problem of finding a plan of length k, with a query of the form
F holds at 0 ∧ G holds at k. Similarly, we can describe the problem of predicting the



resulting state after an execution of an action sequence A0, . . . , An−1 at a state de-
scribed by a fluent formula F , with a query of the form

F holds at 0 ∧ ∧iAi occurs at i. (3)

It is shown [18] that an action description in C+ can be transformed into a proposi-
tional theory and into an ASP program. Based on these sound and complete transforma-
tions, the software systems CCALC [25, 18] and CPLUS2ASP [5] turn an action domain
and a given query into the input languages of a SAT solver and an ASP solver.

2.4 Hybrid robotic planning

Geometric reasoning, such as motion planning and collision checks, can be integrated
into an action description in C+ by means of “external atoms” [9] (in the spirit of
semantic attachments in theorem proving [31]). The idea is to compute the truth values
of external atoms externally, and utilize these results, as needed, while computing plans.

For instance, consider an external atom &collision[r, x1, y1, x2, y2] that returns
true if a robot r collides with some static obstacles while moving from (x1, y1) to
(x2, y2). This atom can be evaluated by a program implemented in C++ utilizing a
motion planner. With this atom, we can describe a precondition of a diagonal move
action (“the robot can move diagonally if it does not collide with any static obstacles”):

nonexecutable move(w ,Right , u1 ) ∧move(w ,Up, u2 )
if xpos(w)= x1 ∧ ypos(w)= y1 where &collision[w , x1 , y1 , x1+u1 , y1+u2 ].

Further explanations and examples of the use of external atoms in robotic action
domain descriptions, and a systematic analysis of various forms of integration of feasi-
bility checks with planning can be found in [4, 10, 13].

3 Diagnostic Reasoning

To predict failures as early as possible and to recover from failures, values of some
fluents can be monitored by an agent. If during the execution of a plan, a discrepancy
is detected between the observed values of monitored fluents and the expected values
of monitored fluents, then the monitoring agent can check whether the detected dis-
crepancy might lead to any failures during the execution of the rest of the plan. If the
discrepancy is relevant for the rest of the plan, then the monitoring agent has to make
some decisions (e.g., replanning) to reach the goals. We propose the use of diagnostic
reasoning to identify the cause of a discrepancy (e.g., robots may be broken), and then
find a relevant recovery with the possibility of repairs.

3.1 Discrepancies

Let D be a domain description. Let P = 〈A0, A1, . . . , An−1〉 be a plan that is being
executed from an initial state s0. We denote by Pt the sequence A0, A1, . . . , At−1 of
actions in the plan P executed until step t. Let ot be an observed state of the world at



step t, where the observed values of fluents can be obtained by sensors. The expected
state et of the world at step t can be computed by a prediction query of the form (3)
with the initial state s0 and the sequence Pt of actions.

We say that there is a discrepancy at step t if the observed state and the expected
state are different, ot 6= et. A discrepancy is relevant to the rest of the plan if the rest
of the plan can not be executed from the observed state or does not reach a goal state.
This definition coincides with weakly k-irrelevant discrepancies when k = 1 [8] and
with the definition of relevancy as in [17].

3.2 Diagnosis: Identifying broken robots

In a cognitive factory setting, a diagnosis for a discrepancy can be identified by a set of
broken robots. To be able to find such a diagnosis, we first modify the action domain
description to be able to perform diagnostic reasoning. Then, we define diagnosis and
diagnostic queries to compute diagnoses over the modified domain description.

Modifying the domain description for diagnosis Let R denote the set of robots
in a cognitive factory, that may get broken. Let disables : 2R × A × F be a rela-
tion to describe which actions are affected and how, if a set of robots were broken:
disables(X, a, F ) expresses that if the set X of robots is broken, then the effect of ac-
tion a ∈ A performed by some robots in X on a fluent F is disabled. Note that disables
can be obtained automatically from the causal laws that describe effects of actions.

To find a diagnosis for the observed relevant discrepancies, we modify the domain
description D in three stages as follows, and obtain a new domain description Db.
Step 1: To indicate whether a robot r ∈ R is broken or not, we introduce a simple fluent
constant of the form broken(r).

By default, the robots in R are assumed to be not broken. We express this for every
robot r ∈ R, with a causal law:

default ¬broken(r). (4)

Meanwhile, every robot r may get broken at any time:

caused broken(r) if broken(r) after ¬broken(r) (5)

and if a robot r becomes broken it remains broken:

caused broken(r) after broken(r). (6)

For every r ∈ R, we add the causal laws (4)–(6) to the domain description D.
It is important to emphasize the usefulness of the nonmonotonicity of C+, which

allows us to represent defaults (4) as well as nondeterminism (5), and thus does not
necessitate introduction of non-robotic actions like break .
Step 2: If a robot is broken, then it may affect preconditions and effects of the actions
in the executed plan. It is good to know which actions could not be executed due to
which sort of broken robots, so that we can learn/infer some new knowledge that might
be used later for more accurate diagnoses and more effective repairs.



For that, for each (concurrent) action A = {a0, ..., an}, we introduce a simple
boolean fluent constant pre({a0, ..., an}) to express whether or not its preconditions
hold; brackets are dropped when |A| = 1. The values of these fluents are considered as
true by default; so we add to D the causal laws:

default pre({a0 , ..., an}). (7)

We then describe under which conditions an action’s preconditions are violated, by
replacing every causal law

nonexecutable
∧

ai ∈A

ai if G

in D, where G is a fluent formula, with the causal law

caused ¬pre({a0 , ..., an}) if G . (8)

For instance, the causal laws (2) are replaced by the causal laws:

caused ¬pre(move(w , d , u)) if battery(w)= bl (bl<u).

We then modify the causal laws describing the effects of actions, to express that they
can be observed under the additional condition that the preconditions of these actions
are satisfied. For that, we replace every causal law of the form

a causes F if G (9)

in D, where F and G are fluent formulas, with the dynamic causal law

a causes F if G ∧ pre(a). (10)

For instance, the causal laws (1) describing some effects of the move action are
replaced by the following:

move(r ,Right , u) causes xpos(r)= x + u if xpos(r)= x ∧ pre(move(r ,Right , u)).

Step 3: For every action a, let aR denote the robots in R that take part in the execution
of a. We reflect the influence of broken robots on direct effects of actions by replacing
every causal law (9) in D such that disables(aR, a, F ) holds, with the causal law

a causes F if G ∧
∧

r ∈ aR

¬broken(r), (11)

which expresses that the direct effects of actions are observed as expected only if the
relevant robots are not broken.

In our cognitive factory scenario, a charger robot cannot dock to a worker robot w
if the worker robot is broken, i.e., disables({w}, attach(w), attached(w)) (the direct
effect of attach(w) action on the fluent attached(w) is not observed if the worker
robot w is broken). Then, the causal law

attach(w) causes attached(w) if pre(attach(w))



obtained after Step 2 is replaced by the causal law

attach(w) causes attached(w) if pre(attach(w)) ∧ ¬broken(w).

The following proposition shows that if a query is satisfied by D then it is also
satisfied byDb; but not vice-versa. In that sense,Db “conservatively extends”D. This is
particularly important to be able to reason about executions of a plan (earlier computed
with D) with respect to Db to find diagnoses.

Proposition 1 Every query satisfied by D is satisfied by Db.

The proof of the proposition requires the following lemmas. Suppose that D is defined
over a set F of fluent constants and a set A of boolean action constants. LetM be the
set of all fluent constants of the forms broken(r) and pre(A) that are introduced to the
signature ofD, to transformD intoDb. Then, every state s′ ofDb is a function mapping
every constant c in F ∪M to a value in Dom(c).

Lemma 1 For every state s of D, there are states sb of Db such that (i) sb|F = s, (ii)
sb maps every fluent constant broken(r) to false , and (iii) for every causal law (8), sb
satisfies G ⊃ ¬pre({a0, . . . , an}).

Lemma 2 For every transition 〈s,A, s′〉 of D, there are transitions 〈sb, A, s′b〉 of Db

such that (i) sb|F = s, (ii) s′b|F = s′, (iii) both sb and s′b map every fluent constant
broken(r) to false , and (iv) sb maps every fluent constant pre(Z) (Z⊆A) to true .

Diagnosis Let us characterize a state s by the conjunction Fs of atoms in s; and an
action A by the conjunction EA of atoms in A.

Intuitively, a diagnosis for a discrepancy detected at time step t of a plan P is a set
of robots that, when broken, provides a possible execution of the plan from the initial
state to the observed state (i.e., they do not lead to an “inconsistency”). Formally:

Definition 1 A diagnosis problem, DP , is characterized by a tuple 〈Db, R, s0, Pt, ot〉
where t is the time step when a discrepancy is detected, Pt = 〈A0, . . . , At−1〉 is the
sequence of actions assumed to be executed at an initial state s0 until time step t, and
ot is the observed state at time step t. A solution of DP is a set X ⊆ R of broken robots
such that Db satisfies the query

Fs0 holds at 0 ∧
∧

Ai ∈Pt

EAi
occurs at i ∧ Fotholds at t ∧∧

r∈X

broken(r) holds at t ∧
∧

r∈R−X
¬broken(r) holds at t. (12)

We also say that X is a diagnosis of the discrepancy detected at time t.

Note that further information about which actions’ preconditions are violated can
be obtained from the history of Db that satisfies the query, since atoms of the form
¬pre(A) are part of the state information.

The query (12) checks if the observed state ot can be reached from the initial state
s0 by only executing the plan Pt, if the robots in X were broken. Note that, by the



definition of a discrepancy, we know that (12) will not be satisfied by Db if X = ∅,
since the observed state is different from the state that is expected to be reached from
s0 by Pt.

Generally, there will be more than one diagnosis for a discrepancy according to the
definition above. On the other hand, in practice, a discrepancy is caused by a small set
of broken robots. Therefore, it is reasonable to find as few broken instances as possible
to explain the discrepancy.

Definition 2 A diagnosis X is a minimum-cardinality diagnosis if there does not exist
any other diagnosis X ′ such that |X ′| < |X|.

3.3 Finding a minimum-cardinality diagnosis

We introduce two algorithms to find minimum-cardinality diagnoses by means of diag-
nostic queries as described above, using SAT solvers or ASP solvers.

In the first algorithm, to find a minimum-cardinality diagnosis for a diagnosis prob-
lem DP = 〈Db, R, s0, Pt, o

M
t 〉, for each X ⊆ R with increasing cardinalities, we

iteratively check whether X is a solution for DP , i.e., whether Db satisfies (12). We
can utilize this algorithm with both SAT solvers and ASP solvers, thanks to the sound
and complete transformations and software systems mentioned in the preliminaries.

The second algorithm is applicable with ASP solvers only, thanks to the possibil-
ity of representing aggregates and optimization statements. For instance, the following
optimization statement minimizes the total number of broken robots:

#minimize [broken(r) : robot(r)]. (13)

4 Geometric Reasoning for Diagnosis

Embedding geometric reasoning in the domain description D (and thus Db) by means
of external atoms, allows us to integrate diagnostic reasoning with geometric reasoning.
Let us show the importance of such an integration over an example, as in [12]. Consider
the execution of some part of a plan from a given state as in Figure 2, and the observed
state of the world at step 3 as in Figure 1. There is a discrepancy at step 3. To find a
diagnosis for this discrepancy, we ask diagnostic queries (12). To check whether the
charger is broken, we ask “is it possible to reach from the initial state to the observed
state by executing the plan, if the charger were broken?”

Without consideration of geometric reasoning, the answer to this question is “no”
since the goal is not reachable when the plan is executed as shown in Figure 3. However,
such an execution is not feasible in the real world because the worker robot cannot move
diagonally over the charger robot at Step 1 (due to collisions). On the other hand, with
consideration of geometric reasoning, the answer to the diagnostic query is “yes” since
the goal is reachable when the plan is executed as shown in Figure 4. Note that, due
to collisions, the preconditions of the action of the worker robot moving diagonally is
not possible, i.e., ¬pre({move(w,Up, 2),move(w,Right, 2)}) holds. Therefore, the
detected discrepancy is correctly diagnosed with hybrid diagnostic reasoning and false
negatives are avoided.
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Fig. 4. Diagnostic reasoning with geometric reasoning

5 Extensions of Our Method

Further diagnoses: broken robotic parts. Usually robots are broken if some of their
components are broken. Moreover, each broken component may play a role on the pre-
conditions/effects of different actions. To extend diagnostic reasoning to robotic com-
ponents, we modify the first and third steps of our procedure to obtain Db from D,
as well as the algorithms to compute smallest diagnoses. The definition of a diagnosis
remains the same.

For these modifications, we define Rp as the set of pairs (r, i) where r ∈ R and i is
a component of r that may be broken. For instance, for a cognitive toy factory scenario
with one worker robot w and with one charger robot c, Rp = {(w,Arm), (w, Inlet),
(c, P lug), (w,Base), (c,Base)}. We extend the disables relation: disablesp : 2Rp ×
A × F . For instance, disablesp({(w, Inlet)}, charge(c), battery(w)) expresses that,
if the inlet of the worker robot is broken then the effect of charging will not be observed
as expected on its battery level. In the representation Db, (i) we introduce new fluent
constants of the form brokeni(r) for every (r, i) ∈ Rp and add relevant causal laws for
them, and (ii) we modify the causal laws (11) according to disablesp. The algorithms
are modified to ensure that the computed smallest diagnosis contains minimum number
of broken components. Details are omitted for space restrictions.
Learning from previous diagnoses. If a discrepancy detected in a plan execution is
associated with several robots, there may be more than one potential diagnosis for the
discrepancy. If the computed diagnosis cannot be verified (by an agent) as correct, then



a different diagnosis can be computed by modifying the diagnostic query with a con-
straint. This process goes on until a correct diagnosis. As in [12], we reduce the number
of such uninformed iterations due to incorrect diagnoses, by utilizing learning from
earlier correct diagnoses of the discrepancies. The idea is to maintain and update in-
formation about the likelihood of robots’/components’ failures according to computed
correct diagnoses; and if there is a robot/component which has a history of being broken
more often, then to consider it as part of a potential diagnosis before the others.

To describe how often a robot r (resp. a component i of a robot r) is diagnosed
correctly as broken, we introduce atoms of the form weight(r, w) (resp. weight(r, i, w)
) where w is a number, which can store the number of times that r (resp. i of r) was
correctly diagnosed to be broken, or the probability of r (resp. i of r) being diagnosed
correctly so far. To find the most probable diagnosis, in the first algorithm proposed
for finding a smallest diagnosis, we consider subsets of robots/components with larger
weights before the others. In the second algorithm, we add a new optimization statement
to the ASP program, which tries to maximize the total weight of broken components.
This statement is added after the minimization statement (13), to maximize the total
weight of broken components among the minimum-cardinality ones.

Extending the experimental evaluations of [12], we performed several experiments
over various cognitive toy factory scenarios to show the usefulness of learning in the
first algorithm for finding a minimum-cardinality diagnosis by using the SAT solver
MINISAT (Version 2.0) [7], and in the second algorithm by using the ASP solver
CLASP (Version 2.1.3) [14]. Experiments are based on dynamic simulations, where
kinematic and geometric constraints of robots are considered. For geometric reasoning,
we use probabilistic motion planners and collision checkers available in open-source
frameworks, like OPENRAVE [6]. In each scenario, we first performed the experi-
ments without learning. Based on the computed diagnoses, we assigned the weights
for robots/components, and then performed the experiments with learning. For each in-
stance, the CPU time in seconds, and the number of iterations to compute the correct
diagnosis with correct set of broken components are illustrated in Table 1 (which ex-
tends the results in Table 1 of [12]). The results are obtained on a Linux server with 16
Intel E5-2665 CPU cores (2.4GHz) and 64GB memory.

As in [12], we observe 1) in both algorithms, the number of iterations to find a cor-
rect diagnosis significantly decreases as learning is utilized; 2) as the size of the team
and the cardinality of the diagnosis increase, the computation time to find a correct di-
agnosis increases. In addition to the observations of [12]: 3) The number of iterations in
ASP is less than the number of iterations with SAT solver, since the optimization state-
ment of ASP is effective in decreasing number of iterations to find a correct diagnosis.
Behavioral modes. A further extension of our approach can be by behavioral modes [20].
Since our approach is based on representing actions and change in the environment (un-
like the related work), behaviors of the robotic system are already modeled. We suppose
each robot has three modes of behavior: normal mode (functions as expected), broken
mode (does not function at all), or unknown mode.The broken modes are depicted by
disables relation; the behaviors are described by causal laws. In the normal mode, the
behavior (i.e., expected effects of relevant actions) is described by laws like (1). In the
broken mode, the behavior (i.e., by default nothing changes) is described by the com-



Table 1. Experimental Evaluation of Learning

Scenario
Number of iterations and CPU time [secs]

ASP SAT
w/o learning w/ learning w/o learning w/ learning

1 charger, 1 wet, 2 dry
Discrepancy at Step 12, Diagnosis cardinality=1

2 1 9 4
6.51 secs 3.21 secs 52.24 secs 26.49 secs

1 charger, 1 wet, 2 dry
Discrepancy at Step 8, Diagnosis cardinality=2

2 1 21 11
4.14 secs 2.06 secs 67.43 secs 39.85 secs

1 charger, 1 wet, 2 dry
Discrepancy at Step 10, Diagnosis cardinality=3

2 1 25 23
4.28 secs 2.14 secs 85.88 secs 84.16 secs

1 charger, 2 wet, 2 dry
Discrepancy at Step 8, Diagnosis cardinality=1

2 1 7 4
7.66 secs 3.85 secs 83.70 secs 42.97 secs

1 charger, 2 wet, 2 dry
Discrepancy at Step 12, Diagnosis cardinality=2

2 1 24 12
9.10 secs 4.56 secs 142.18 secs 80.35 secs

1 charger, 2 wet, 2 dry
Discrepancy at Step 13, Diagnosis cardinality=3

2 1 39 25
9.86 secs 4.93 secs 197.01 secs 127.25 secs

2 charger, 2 wet, 2 dry
Discrepancy at Step 6, Diagnosis cardinality=1

2 1 8 4
6.27 secs 3.13 secs 97.00 secs 49.30 secs

2 charger, 2 wet, 2 dry
Discrepancy at Step 14, Diagnosis cardinality=2

2 1 31 13
13.29 secs 6.63 secs 195.17 secs 102.48 secs

2 charger, 2 wet, 2 dry
Discrepancy at Step 12, Diagnosis cardinality=3

2 1 49 30
11.57 secs 5.78 secs 240.90 secs 154.85 secs

monsense law of inertia. In the unknown mode, we assume by default nothing changes.
Considering failures of robotic components leads to more number of behavioral modes.
The broken modes are specified by disablesp relation, and behaviors are described by
causal laws. Therefore, associating diagnoses explicitly with such behavioral modes
may be possible; it is left as a future work.

6 Related Work

Our work on diagnosis is similar to conflict-based model-based diagnosis [28, 21]: the
diagnostic query checks whether broken robots would lead to an inconsistency with
respect to the observations or not. It is also different in several ways. First, we consider
dynamic domains with actions and change, rather than a static system like circuits.
Second, our logical framework is nonmonotonic and thus the definition of a diagnosis
is different from the existing definitions. Third, motivated by robotics applications, our
approach to diagnostic reasoning is integrated with geometric reasoning and learning.

Later, the model-based diagnosis approach of [28, 21] is extended to dynamic do-
mains, using the logic-based action languages, such as situation calculus [26, 19] and
fluent calculus [30], and utilizing planning [29]. Our work is different from these ap-
proaches not only because of differences between the underlying formalisms but also
due to diagnosis definition (faulty actions vs. components), assumptions (faulty compo-
nents/actions may indirectly prevent execution of the rest of the plan, or not; our method
is applicable in either case), methods (introducing abnormality predicates and utilizing
nonmonotonicity by minimizing its extension, vs. expressing defaults; introducing fur-
ther transformations to domain description beyond abnormality predicates).

A more closely related line of research is diagnostic reasoning in answer set pro-
gramming and action languages [8, 1, 2, 11, 33, 15] due to the common underlying for-
malisms. Our approach is different from these works in several ways. Eiter et al. [8]
define a diagnosis as a “point of failure” which describes at which state and when the
plan diverges from its expected evolution; we consider a diagnosis as a set of bro-
ken robots/components. Thanks to the modified domain description D, we can identify



which action has failed and when, as part of an answer to the diagnostic query. Balduc-
cini and Gelfond [1], Baral et al. [2], and Gelfond and Kahl [15] (like [26]) define a
diagnosis as a set of broken components; they introduce a “break” action to define what
might be “broken”. In C+, no such non-robotic action is necessary; the causal laws (5)
are sufficient. Gelfond and Kahl also suggest using consistency-restoring rules [1] to
find minimal diagnoses. Erdem et al. [11] define a diagnosis as a set of broken robots,
but their method does not generalize to scenarios where broken robots prevent the ex-
ecution of an action in the rest of the plan and does not provide further information
about broken components or failed actions. Zhang et al. [33] generate explanations for
discrepancies in terms of exceptions to the defaults that hold at the initial state.

Our approach to diagnostic reasoning can be extended with repair planning by intro-
ducing “repair” actions into the robotic domain description D as in [1, 2]. Such repairs
can reduce the number of replanning needed to recover from plan failures. Extending
our method with repairs is not discussed due to page limit.

7 Conclusion
We have introduced a diagnostic reasoning method which utilizes expressive formalisms
of action languages and answer set programming, and efficient automated reasoners
(SAT solvers and ASP solvers). This method integrates geometric reasoning (for feasi-
bility checks of robotic actions), to eliminate false negatives and improve accuracy of
diagnosis. It utilizes learning from earlier diagnoses and failures to improve the com-
putation time required to find a correct diagnosis. Furthermore, causality-based hybrid
planning/prediction is utilized for finding minimum-cardinality diagnoses.

In an accompanying work [12], we integrate our approach to diagnostic reasoning
into a plan execution and monitoring framework, and perform further analysis to show
the usefulness of diagnostic reasoning and repairs for replanning. We use the ASP for-
mulation of the robotic domain, an ASP-based modification of the planning domain
description for diagnosis, and the ASP solvers for hybrid planning and diagnosis. In
that sense, the presented work complements the results in [12] by describing the formu-
lations and transformations in action description languages, by performing reasoning
tasks in action query languages with the possibility of using SAT solvers, by extending
the experimental evaluations to SAT solvers, and by providing some theoretical guar-
antees over the proposed transformation of the robotic domain description.
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24. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag (1999)
25. McCain, N.C.: Causality in Commonsense Reasoning about Actions. Ph.D. thesis (1997)
26. McIlraith, S.A.: Explanatory diagnosis: Conjecturing actions to explain observations. In:

Proc. of KR (1998)
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