
Reactive Policies with Planning for Action Languages

Zeynep G. Saribatur and Thomas Eiter ?

Technische Universität Wien, Vienna, Austria,
{zeynep,eiter}@kr.tuwien.ac.at

Abstract. Action languages are an important family of formalisms to represent
action domains in a declarative manner and to reason about them. For this reason,
the behavior of an agent in an environment may be governed by policies which take
such action domain descriptions into account. In this paper, we describe a formal
semantics for describing policies that express a reactive behavior for an agent,
and connect our framework with the representation power of action languages.
In this framework, we mitigate the large state spaces by employing the notion
of indistinguishability, and combine components that are efficient for describing
reactivity such as target establishment and (online) planning. Our representation
allows one to analyze the flow of executing the given reactive policy, and lays
foundations for verifying properties of policies. Additionally, the flexibility of the
representation opens a range of possibilities for designing behaviors.

1 Introduction

Reactive agents are a particular type of autonomous agents that are able to interact with
the environment. They can perceive the current state of the world and figure out their
next actions by consulting a given policy and their knowledge base, which describes their
capabilities and represents the world’s model. After executing these actions, they are able
to observe the outcomes and reiterate the process. As such agents become more common
in our lives, the issue of verifying that they behave as intended becomes increasingly
important. It would be highly costly, time consuming and sometimes even fatal to realize
on runtime that following a given policy does not provide the desired results.

For example, in search scenarios, an agent needs to find a missing person in unknown
environments. A naive approach is to search for a plan that achieves the main goal,
which easily becomes troublesome, since the planner needs to consider all possibilities
to find a plan that guarantees finding the person. Alternatively, a reactive policy can be
described for the agent (e.g., “move to the farthest visible point”) that determines its
course of actions and guides the agent in the environment towards the main goal, while
the agent gains information (e.g., obstacle locations) through its sensors on the way.
Then, one can check whether this policy works or not. Verifying beforehand whether the
designed policy satisfies the desired goal (e.g., can the agent always find the person?), in
all possible instances of the environment is nontrivial.

As action languages [18] are a convenient tool to describe dynamic systems, one
can use them in representing reactive agents and defining reactive policies. However,

? This work has been supported by Austrian Science Fund (FWF) project W1255-N23.

the shortage of representations of reactive policies using action languages with formal
semantics prevents us from verifying such policies before putting them into use. We thus
aim for a general model that allows for verifying the reactive behavior of agents. In that
model, we want to use the representation power of the transition systems described by
action languages and combine components that are efficient for describing reactivity.

We consider in this paper agents with a reactive behavior that decide their course of
actions by determining targets as stepping stones to achieve during their interaction with
the environment. Such agents come with an (online) planning capability that computes
plans to reach the targets. This method matches the observe-think-act cycle in [20], but
involves a planner that considers targets. The flexibility in the two components—target
development and external planning—allows for a range of possibilities for designing
behaviors. For example, one can use HEX [15] to describe a program that determines
a target given the current agent state, and finds a suitable plan and execution schedule.
ACTHEX programs [17], in particular, are a tool to define such reactive behaviors by
allowing iterative program evaluation. Specifically, we make the following contributions:
(1) We introduce a novel framework for describing the semantics of a policy that
follows a reactive behavior, by integrating components of target establishment and online
planning. Our aim is not synthesis, but to lay foundations for verification of behaviors of
(human-designed) reactive policies. The outsourced planning might also lend itself for
modular, hierarchic planning, where macro actions (as targets) are turned into a plan of
micro actions. Furthermore, outsourced planning may also be exploited to abstract from
correct sub-behaviors (e.g., going always to the farthest point).
(2) We employ the notion of indistinguishable states and cluster states to reduce the
large state spaces by omitting information irrelevant to the agent’s behavior.
(3) We discuss complexity issues regarding the representation and show that verifying
policy correctness over this framework is in PSPACE (with matching hardness instances).
(4) We connect the framework with action languages and discuss possibilities for policy
formulation. In particular, we consider the action language C [19] for an application.

We proceed as follows. After some preliminaries in Section 2, we present a running
example in Section 3. In Section 4, we introduce the general framework for modeling
policies. Then, in Section 5, we show the relation with action languages. After some
discussion and considering related work in Section 6, we conclude in Section 7 with
issues for ongoing and future work. Throughout the paper, we consider (a fragment of)
the action language C as a particular application, and provide example formulations.

2 Preliminaries

We define state transition systems as follows.

Definition 1. An (original) transition system is a tuple T = 〈S, S0,A, Φ〉 where

– S is the finite set of states,
– S0 ⊆ S is the (finite) set of possible initial states,
– A is the finite set of possible actions, and
– Φ : S×A → 2S is the transition function, which returns the set of possible successor

states after applying a possible action in the current state.

2

For any states s, s′ ∈ S, we say that there is a trajectory between s and s′, denoted
by s →σ s′ for some action sequence σ = 〈a1, . . . , an〉 where n ≥ 0, if there exist
s0, . . . , sn ∈ S such that s = s0, s

′ = sn and si+1 ∈ Φ(si, ai+1) for all 0 ≤ i < n.

If knowing the actions taken in the transitions is not necessary, then one can project
away the actions and consider the transition function as Φ : S → 2S , which returns the
set of successor states after applying some action.

Action Languages Rooted in the work in knowledge representation, action languages
[18] describe a particular type of transition systems that are based on action signatures.
An action signature consists of a set V of value names, a set F of fluent names and a set
A of action names. Any fluent has a value in any state of the world.

A transition system of an action signature 〈V,F,A〉 is similar to Definition. 1, where
A = A and Φ ⊆ S × A × S is the transition relation. In addition, we have a value
function V : F× S → V, where V (P, s) shows the value of P in state s. A transition
system can be thought as a labeled directed graph, where a state s is represented by
a vertex labeled with P → V (P, s), that gives the value of the fluents. Every triple
〈s, a, s′〉 ∈ Φ is represented by an edge leading from a state s to s′ and labeled by a.

An action a is executable at a state s, if there is at least one state s′ such that
〈s, a, s′〉 ∈ R and a is deterministic at state s, if there is at most one such state. Con-
current execution of actions can be defined by considering transitions 〈s,A, s′〉 with a
set A ⊆ A of actions, where each action a∈A is executable at s. Here we confine to
propositional action signatures, which have truth values as value names, V={f, t}.

The transition system allows one to answer queries about the domain description. For
example, one can find a plan to reach a goal state from an initial state, by searching for a
path between the respective vertices. The properties about the paths can be expressed
using an action query language.

The action language C [19] is based on causality, where one distinguishes the cases
that a fact “holds” and that it is “caused”. Its syntax consists of static and dynamic laws
of the form

caused F if G,
caused F if G after U

respectively, where F and G are formulas of fluents, and U is a formula containing
fluents and elementary actions. For details, see [19, 18]. We focus on a fragment of the
language C where the heads of the static and dynamic laws only consist of literals. This
restriction on the laws reduces the cost of evaluating the transitions to polynomial time.

3 Running Example: Search Scenarios

Consider a memoryless agent that can sense horizontally and vertically, in an unknown
n×n grid cell environment with obstacles, where a missing person needs to be found.
Suppose we are given a policy of “always go to the farthest reachable point in visible
distance (until a person is found)”. Following this policy, the agent would determine a
target (i.e., the farthest point) at its current state, compute the course of actions to reach
the target, execute it and observe the outcomes.

3

1 2 3
1

2

3

(a)

1 2 3
1

2

3

(b)

1 2 3
1

2

3

(c)

?

??

?

1 2 3
1

2

3

(d)

Fig. 1: (a),(b),(c): Possible instances of a search scenario in a grid-cell environment,
(d): Agent’s observation in the instances, 2:agent, •:person, ×:obstacle, ?:unknown

Target determination at the states according to the given policy can be done using a
logic program as shown below.

targetCell(X1 ,Y1)← farthest(X ,Y ,X1 ,Y1), robotAt(X ,Y),
not personDetected .

personDetected ← personDetected(X ,Y).
targetPerson(X ,Y)← personDetected(X ,Y).
personFound ← personDetected(X ,Y), robotAt(X ,Y).

(1)

The target of a state can be computed through joint evaluation of these rules over
the state with the known/observed fluents about the agent’s location and the reachable
points. The target can either be moving to the farthest cell, targetCell(X1 ,Y1), if the
person is not detected, or moving to the cell of the person, targetPerson(X ,Y), if the
person is detected. Then, an outsourced planner can be used to determine the course of
actions from the agent’s current location to the target location.

Given such a policy, it needs to be checked whether or not the agent can always find
the person, in all instances of the environment. Note that we assume that the obstacles
are always placed in a way that the person is reachable.

Figures 1(a) to 1(c) show some instances for n=3 to demonstrate that the given
policy might not always work. Firstly, notice that these initial states provide the same
observations for the agent, which is shown in Figure 1(d), since it can only observe
horizontally and vertically. In these states, the agent only sees that the first column is
clear of obstacles, and the first row has one obstacle. Since the rest of the environment
can not be observed, these states are indistinguishable to the agent.

The farthest reachable point in these states is (3,1), which is determined as the target.
Then the policy computes the course of actions to reach this target. Clearly, in Figure 1(a)
the person will be found when moved to (3,1). However, in Figure 1(b) after reaching
(3,1), the agent/policy will decide to move to (1,1) again, which results in a loop. Also,
in Figure 1(c), after reaching (3,1), the agent/policy can either choose to move to (3,3)
(which results in seeing the person), or to move back to (1,1). So there is a possibility
for the agent to go in a loop. Hence, the policy does not work for the last two instances.

4 Modeling Policies in Transition Systems

We consider a general notion of a policy, that guides the agent by setting up targets and
determining the course of actions to bring about these targets, and describe how such a
policy can be represented with transition systems.

4

Definition 2. A policy is a function Pg∞,KB : S→2Σ that outputs the set of courses of
actions, i.e., plans, given the current state, where Σ is the set of plans, while considering
the main goal and the knowledge base, which is the formal representation of the world’s
model with a transition system view.

We define a transition system that shows the policy execution, while also employing
the notion of indistinguishability to do state clustering. The determination of targets for
a given state is done by a target component, while the (higher level) transition between
states is determined by the course of actions computed by a (online) planner component.

Having a classification on states and defining higher level transitions helps in reducing
the state space/the number of transitions. Furthermore, it aids in abstraction and allows
one to emulate a modular hierarchic approach, in which a higher level (macro) action,
expressed by a target, is realized by a sequence of (micro) actions that is compiled by the
external planner, which may use different ways (planning on the fly, using scripts etc.)

4.1 State Profiles According to the Policy

Large state spaces are a major issue for the (original) transition system when dealing
with large environments. However, depending on the agent’s designed behavior, and
its determination of its course of actions at a state, some information in the state may
not be necessary, relevant or even observable. In this sense, the states that contain
different facts about such information can be seen as indistinguishable to the agent. Such
indistinguishable states can be clustered into one with respect to the profiles they provide
and only the relevant information to the agent/policy can be kept.

Definition 3. A profile scheme is a tuple p = 〈a1, .., an〉 of attributes ai that can take
values from a set Vi; a (concrete) profile is a tuple 〈v1, ..., vn〉 of values.

Note that the agent has the capability to gain knowledge, and this knowledge can
eventually become relevant to the policy. So it would be useful to keep such potentially
relevant knowledge in the states to pass on to the successor states even though this
knowledge might not be currently relevant to the policy. Therefore the profile scheme
consists of all attributes that may be relevant to the policy. A profile at a state consists
of values of attributes that are partitioned as currently relevant, irrelevant and not yet
observed, depending on the observability of the environment and the policy. Currently
relevant attributes at a state can be regarded as the active profile.

Example 1. Reconsider Figure 1. Due to partial observability, the agent is unable to
distinguish its state, and the policy does not consider the unobservable parts. The
agent’s observation, “robotAt(1, 1), obstacleAt(1, 3), reachable(1, 2), reachable(2, 1),
reachable(3, 1)” that is currently relevant and the rest of the environment that is not yet
observed, is viewed as a profile, and the states with this profile can be clustered in one
group (Fig. 1(d)).

The profile of a state is determined by evaluating a set of formulas that yield the
attribute values. We consider a classification function, h : S→Ωh, where Ωh is the set of
possible state clusters with respect to the profiles. For partially observable environments,
same observations yield the same profile. However, in fully observable environments,
observability is not of concern. One needs to check the policy to determine profiles.

5

Definition 4. An equalized state relative to the classification function h is a state ŝ∈Ωh.

The term equalized comes from the fact that the states in the same cluster are
considered as the same, i.e., equal. We abuse the notation s∈ ŝ when talking about a
state s that is clustered into an equalized state ŝ, and identify ŝ with its pre-image (i.e.,
the set of states that are mapped to ŝ according to h).

4.2 Transition Systems According to the Policy

We now define the notion of a transition system that is able to represent the evaluation of
the policy on the state clusters.

Given a set of equalized states Ŝ, for an equalized state ŝ ∈ Ŝ, the policy Pg∞,KB

uses a target function B(ŝ) to determine a target gB from a set of possible targets, GB ,
and then an outsourced planner Reach(ŝ, gB) to compute a plan to reach the target from
the current equalized state, i.e., Pg∞,KB(ŝ) = {σ | σ ∈ Reach(ŝ, gB), gB ∈ B(ŝ)}.
Definition 5. Reach is an outsourced function that returns a set of plans needed to
reach a state that meets the target condition gB from the current equalized state ŝ ∈ Ŝ:

Reach(ŝ, gB) ⊆ {σ | ∀ŝ′ ∈ Res(ŝ, σ) : ŝ′ |= gB}
where ŝ|=gB ⇔ ∀s∈ ŝ : s|=gB , and Res gives the resulting states of executing a
sequence of actions at a state ŝ: Res(ŝ, 〈〉) = {ŝ}, and

Res(ŝ, 〈a1, . . . , an〉) =
{⋃

ŝ′∈Φ̂(ŝ,a1) Res(ŝ
′, 〈a2, . . . , an〉) Φ̂(ŝ, a1)6=∅

{ŝerr} Φ̂(ŝ, a1)=∅

for n ≥ 1. Here ŝerr is an artifact state that does not satisfy any target, and Φ̂ is a
transition relation of executing an action at a state ŝ:

Φ̂(ŝ, a) = {ŝ′ | ∃s′ ∈ ŝ′ ∃s ∈ ŝ : s′ ∈ Φ(s, a)}.
The transition system that represents the policy evaluation is defined over the original

transition system by taking into account the classification function and the policy.

Definition 6. An equalized (higher level) transition system Th,Pg∞,KB
, with respect

to the classification function h and the policy Pg∞,KB , is defined as Th,Pg∞,KB
=

〈Ŝ, Ŝ0, Σ,GB ,B, ΦB〉, where

– Ŝ is the finite set of equalized states;
– Ŝ0 ⊆ Ŝ is the finite set of initial equalized states, where ŝ ∈ Ŝ0 if there is some
si ∈ ŝ such that si ∈ S0 holds;

– Σ is the set of possible plans σ=〈a1, a2, . . . , an〉 where ai ∈A, for all i, 1≤ i≤n.
– GB is the finite set of possible targets relative to the behavior, where a target can be

satisfied by more than one equalized state;
– B : Ŝ → 2GB , is the target function that returns the possible targets to achieve from

the current equalized state, according to the policy;
– ΦB : Ŝ × Σ → 2Ŝ is the transition function according to the policy, called the

policy execution function, where
ΦB(ŝ, σ) = {ŝ′ | ŝ′ ∈ Res(ŝ, σ), σ ∈ Reach(ŝ, gB), gB ∈ B(ŝ)};

it returns the possible resulting equalized states after applying the plan determined
by the policy in the current equalized state.

6

ŝ

gB

...

ŝ′

t̂1

t̂2

ΦB(ŝ, σ)Φ̂(ŝ, a1)

Φ̂(t̂1, a2)

Φ̂(t̂2, a3)

Fig. 2: A transition in the equalized transition system

?

?

?

??

?

...

1 2 3
1

2

3

ŝ1

ΦB(ŝ1)

ŝ′1 ŝ′2 ŝ′3 ŝ′4

Fig. 3: Parts of an equalized transition system

The target function gets the equalized state as input and produces the possible targets
to achieve. These targets may be expressed as formulas over the states (in particular, of
states that are represented by fluents or state variables), or in some other representation.
The aim is to intend to reach a state that satisfies the conditions of the target.

The equalized transition system 〈Ŝ, Ŝ0, Σ, ΦB〉 can be viewed as a transition system
〈S, S0,A, Φ〉 with an infinite set of actions. Additionally, it contains auxiliary definitions
〈GB ,B〉 that are used in defining the policy.

Figure 2 demonstrates a transition in the equalized transition system. Depending
on the current state, ŝ, a plan σ can be executed if it is returned by Reach to reach
the target gB that is determined by the policy. There may be more than one equalized
state satisfying gB , and the policy execution function ΦB(ŝ, σ) executes σ and finds a
transition into one of these states, ŝ′. In our case, the actions taken in the transitions
are not of concern. Therefore, we project away the knowledge of the executed action
sequences, and only consider ΦB : Ŝ → 2Ŝ . Thus, the transition ΦB becomes a big jump
between states, where the actions taken and the states passed in between are omitted.

Example 2. Figure 3 shows a part of the equalized transition system constructed accord-
ing to the policy. The indistinguishable states due to partial observability are clustered
into one. The policy is applied according to current observations, and the possible suc-

7

cessor states are shown. The policy is targeting the farthest reachable point, which for ŝ1
is (3, 1). Since the agent gains knowledge about the environment while moving, there
are several possibilities for the resulting state that satisfy the target gB=robotAt(3, 1).

Notice that we assume that the outsourced Reach function is able to return con-
formant plans that guarantee to reach a state that satisfies the determined targets. For
practical reasons, we consider Reach to be able to return a subset of all conformant
plans. The maximal possible Reach , where we have equality, is denoted with Reach0.

Consider the case of uncertainty, where the agent requires to do some action, e.g.,
checkDoor , to gain further knowledge about its state. The target function can be modified
to return dummy fluents as targets to ensure that the action is made, e.g., doorIsChecked ,
and given this target, the Reach function can return the desired action as the plan. The
nondeterminism of the environment is modeled through the possible outcomes of Res .

Our generic definition allows for the possibility of representing well-known concepts
like purely reactive systems or conformant planning. Reactive systems can be represented
with the policy “pick some action”, which models systems that immediately react to the
environment without reasoning. As for conformant planning, one can set the target as the
main goal. Then, Reach would have the difficult task of finding a plan that quarantees
reaching the main goal. If however, such a plan is available, then we have the following.

Proposition 1. Let P = 〈a1, . . . , an〉,n ≥ 1, be a conformant plan that reaches a goal
state g from the initial states s01, . . . , s0r in the original transition system. The plan P
can be polynomially expressed in an equalized transition system.

Proof (Sketch). One can mimic the plan by modifying the targets GB and the target
function B in a way that at each point in time the next action in the plan is returned
by Reach , and the corresponding transition is made. For that, one needs to record
information in the states and keep track of the targets.

4.3 Complexity Issues

As the function Reach is outsourced, we rely on an implementation that returns con-
formant plans to achieve transitions in the equalized transition systems. This raises the
issue whether a given such implementation is suitable, and leads to the question of
soundness (only correct plans are output) and completeness (some plan will be output,
if one exists). We next assess how expensive it is to test this, under some assumptions
about the representation and computational properties of (equalized) transition systems,
which will then also be used for assessing the cost of policy checking.

Assumptions We assume that given a state s ∈ S which is implicitly given using a binary
encoding, the cost of evaluating the classification h(s), the (original) transition Φ(s, a)
for some action a, and recognizing the initial state, say with Φinit(s), is polynomial.
The cost could also be in NP, if projective (i.e., existentially quantified) variables are
allowed. Furthermore, we assume that the size of the representation of a “target” in GB
is polynomial in size of the state, so that given a string, one can check in polynomial
time if it is a correct target description gB . This test can also be relaxed to be in NP by
allowing projective variables.

8

Given these assumptions, we have the following two results on the cost of checking
whether a given implementation of Reach is sound and complete; we assume here that
testing whether σ ∈ Reach(ŝ, gB) is feasible in Πp

2 (i.e., it is no worse than a naive
guess and check algorithm that verifies conformant plans).

Theorem 1 (soundness of Reach). Let Th=〈Ŝ, Ŝ0, GB ,B, ΦB〉 be a transition system
w.r.t. a classification function h. Checking whether every transition found by the policy
execution function ΦB induced by a given implementation Reach is correct is in Πp

3 .

The result for soundness of Reach1 is complemented with another result for com-
pleteness with respect to short (polynomial size) conformant plans that it returns.

Theorem 2 (completeness of Reach). Let Th = 〈Ŝ, Ŝ0, GB , B, ΦB〉 be a transition
system w.r.t. a classification function h. Deciding whether for a given implementation
Reach, ΦB fulfills ŝ′ ∈ΦB(ŝ) whenever a short conformant plan from ŝ to some gB ∈
B(ŝ) exists and ŝ′ is the resulting state after the execution of the plan in Th, is in Πp

4 .

The complexities drop if checking the output of Reach is lower (e.g., it drops to Πp
2 for

soundness and to Πp
3 for completeness, if output checking is in co-NP).

Throughout the paper we assume that Reach is complete. We also restrict the plans
σ that are returned by Reach to have polynomial size. This constraint would not allow
for exponentially long conformant plans (even if they exist). Thus, the agent is forced to
develop targets that it can reach in polynomially many steps. Informally, this does not
limit the capability of the agent in general. The “long” conformant plans can be split
into short plans with a modified policy and by encoding specific targets into the states,
such that at each state, one chooses the next action with respect to the conformant plan.
The targets can be encoded to give the stage of the plan execution so that the respective
action is taken, or they can be encoded to assign the latest action in the conformant plan
that is done from the current state.

The main goal that the policy is aiming for, denoted by g∞, can be expressed as a
formula that should be satisfied at a state. Note that the policy could be easily modified
to stop or to loop in any state ŝ that satisfies the goal.

Definition 7. The policy works w.r.t. the main goal g∞, if for each run ŝ0, ŝ1, . . . such
that ŝ0 ∈ Ŝ0 and ŝi+1 ∈ΦB(ŝi), for all i ≥ 0, there is some j ≥ 0 such that ŝj |=g∞.

One can also make use of temporal operators, and define g∞ by a temporal formula (e.g.,
AF(personFound)) and then check whether the initial states in Ŝ0 satisfy the formula.

Under the assumptions from above, we obtain the following.

Theorem 3. The problem of determining whether the policy works is in PSPACE.

In the proof of Theorem 3, for a counterexample, a run of at most exponential length
from some initial state in which the main goal is not satisfied can be nondeterministically
built in polynomial space.

Note that in this formulation, we have tacitly assumed that the main goal can be
established in the original system, thus at least some trajectory from some initial state to
a state fulfilling the goal exists. In a more refined version, we could define the working

1 Proof sketches of this and further results are in the extended version at http://goo.gl/FXktqP.

9

of a policy relative to the fact that some abstract plan would exist that makes g∞ true;
naturally, this may impact the complexity of the policy checking.

The results in Theorems 1-3 are all complemented by lower bounds for realistic
parameter instantiations (notably, for action languages such as fragments of C).

4.4 Constraining Equalization

The definition of Φ̂ allows for certain transitions that do not have corresponding concrete
transitions in the original transition system. However, the aim of defining such an
equalized transition system is not to introduce new features, but to keep the structure
of the original transition system and discard the unnecessary parts with respect to the
policy. Therefore, one needs to give further restrictions on the transitions.

Let us consider the following condition.

ŝ′ ∈ Φ̂(ŝ, a)⇔ ∀s′ ∈ ŝ′, ∃s ∈ ŝ : s′ ∈ Φ(s, a) (2)

This condition ensures that a transition between two states ŝ1, ŝ2 in the equalized
transition system represents that any state in ŝ2 has a transition from some state in ŝ1.
An equalization is called proper if condition (2) is satisfied.

Theorem 4. Let Th=〈Ŝ, Ŝ0, GB ,B, ΦB〉 be a transition system w.r.t. a classification
function h. Let Φ̂ be the transition function that the policy execution function ΦB is based
on. The problem of checking whether Φ̂ is proper is in Πp

2 .

This result is also complemented by a lower bound similar to the results in Theorem 1-3.
The following proposition shows that the policy execution function is sound.

Proposition 2 (soundness). Let Th=〈Ŝ, Ŝ0, GB ,B, ΦB〉 be a transition system w.r.t. a
classification function h. Let ŝ1, ŝ2 ∈ Ŝ be equalized states that are reachable2 from
some initial states, and ŝ2 ∈ ΦB(ŝ1). For any concrete state s2 ∈ ŝ2, assuming (2),
there is a concrete state s1 ∈ ŝ1 such that s1 →σ s2 for some action sequence σ, in T .

Proof of Proposition 2 is based on the possibility of backwards tracking with any of the
plans σ executed to reach ŝ2 from ŝ1.

Thus, we obtain the following corollary, with the requirement of only having initial
states clustered into the equalized initial states (i.e., no “non-initial” state is mapped to
an initial equalized state). Technically, it should hold that ∀s ∈ S0 : h−1(h(s)) ⊆ S0.

Corollary 1. If there is a trajectory in the equalized transition system with initial state
clustering from an equalized initial state ŝ0 to g∞, then for any g ∈ g∞ a trajectory can
be found in the original transition system from some concrete initial state s0 ∈ ŝ0.

Our aim is to analyze the reactive policy through the equalized transition system.
If the policy does not work as expected, there will be trajectories showing the failure.
Knowing that any such trajectory found in the equalized transition system exists in the
original transition system is enough to conclude that the policy indeed does not work.

2 For a formal definition of reachability, see the extended version at http://goo.gl/FXktqP.

10

Current assumptions can not avoid the case where a plan σ returned by Reach on the
equalized transition system does not have a corresponding trajectory from some initial
state in the original transition system. Therefore, we consider as an additional condition

ŝ′ ∈ Φ̂(ŝ, a)⇔ ∀s ∈ ŝ, ∃s′ ∈ ŝ′ : s′ ∈ Φ(s, a) (3)

that strengthens the properness condition (2). Under this condition, every plan returned
by Reach can be successfully executed from any initial state in the original transition
system T . However, still we may lose trajectories of T as clustering the states might
restrain conformant plans; for this, also stronger conditions like exact approximation [8],
ŝ′ ∈ Φ̂(ŝ, a)⇔∀s∈ ŝ, ∀s′ ∈ ŝ′ : s′ ∈Φ(s, a), is not enough. One would need to modify
the target determination, i.e., the set of targets GB and the function B.

5 Bridging to Action Languages

We now describe how our representation of the behavior of the policy can fit into action
languages. Given a domain description defined by an action language and its respective
(original) transition system, we now show how to model a reactive policy and how to
construct the corresponding equalized transition system.

Classifying the State Space The approach to classify the (original) state space relies
on defining a function that classifies the states. There are at least two kinds of such
classification; one can classify the states depending on the observed values of the fluents,
or introduce a new set of fluents and classify the states depending on their values:

Type 1: Extend the set of truth values by V′ = V ∪ {u}, where u denotes the value to
be unknown. Consider an observability relation O : F × S → V′ which returns how
the fluents’ values are observed at the states. Then, consider a set of clusters, Ŝ, where
a cluster ŝi ∈ Ŝ contains all the states s ∈ S that have the same observed values, i.e.,
Ŝ = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ⇐⇒ ∀p ∈ F : O(p, d)=O(p, e) }. The value function for
the clusters is V̂ : F× Ŝ → V′.

Type 2: Consider a set of (auxiliary) fluent names Fa, where each fluent p ∈ Fa is related
with some fluents of F. The relation can be shown with a mapping ∆ : 2F×V → Fa × V.
Then, consider a new set of clusters, Ŝ, where a cluster ŝi ∈ Ŝ contains all the states s ∈
S that give the same values for all p ∈ Fa, i.e., Ŝ = {ŝ | ∀d, e ∈ S, d, e ∈ ŝ⇐⇒ ∀p ∈
Fa : V (p, d)=V (p, e) }. The value function for the clusters is V̂ : Fa × Ŝ → V.

We can consider the states in the same classification to have the same profile, and the
classification function h as a membership function that assigns the states into groups.

Remarks: (1) In Type 1, introducing the value unknown allows for describing sensing
actions and knowing a fluent’s true value later. Also, one needs to impose constraints;
e.g., a fluent related to a grid cell can not be unknown while the robot can observe it.
(2) In Type 2, one needs to modify the action descriptions according to the newly defined
fluents and define abstract actions. However, this is not necessary in Type 1, assuming
that the action descriptions only use fluents that have known values.

11

Example 3. In C, we introduce unknown values by auxiliary fluents as follows.

caused uReachable(X ,Y) if not reachable(X ,Y) ∧ not ¬reachable(X ,Y).

i.e. if it is not known that a grid cell is reachable or not, then the fluent uReachable
becomes true. Additional rules are added to express that it becomes false otherwise.

Defining a Target Language A policy is defined through a target language which
figures out the targets and helps in determining the course of actions. The target determi-
nation formulas, denoted as a set of formulas FB(F̂), is constructed over F̂, the set of
fluents that the equalized transition system is built upon. The possible targets that can be
determined via the evaluation of FB(F̂) are denoted as a set FGB

(F̂).

Example 4. FB(F̂) corresponds to the set of causal laws in (1) and FGB
(F̂) consists of

all atoms targetCell(X ,Y) and targetPerson(X ,Y) for 1≤X ≤n, 1≤Y ≤n.

Notice that the separation of formulas FB(F̂) and the targets FGB
(F̂) is to allow

for outsourced planners that understand simple target formulas. These planners need
no knowledge to find plans. However, if one is able to use planners that are powerful
enough, then the target language can be given as input to the planner, so that the planner
determines the target and finds the corresponding plan.

Transition Between States The transitions in the (projected) equalized transition system
can be denoted with R̂ ⊆ Ŝ×Ŝ, where R̂ corresponds to the projection of the policy
execution function ΦB that uses (a) the target language to determine targets, (b) an
outsourced planner (corresponding to the function Reach) to find conformant plans and
(c) the computation of executing the plans (corresponding to the function Res). Thus, R̂
shows the resulting states after applying the policy.

Equalized Transition System over Action Language C The equalized transition system
〈Ŝ, V̂ , R̂〉 that describes a policy is defined as follows:

(i) Ŝ is the set of all interpretations of F̂ such that, ŝ satisfies every static law in FB(F̂).
(ii) V̂ (P, ŝ) = ŝ(P), where P ∈ F̂,

(iii) R̂ ⊆ Ŝ × Ŝ is the set of all 〈ŝ, ŝ′〉 such that
(a) for every s′ ∈ ŝ′ there is a trajectory from some s ∈ ŝ of the form s,A1, s1, . . . ,

An, s
′ in the original transition system;

(b) for static laws f1, f2, . . . , fm ∈FB(F̂) for which ŝ satisfies the body, it holds
that ŝ′ |= g for some g ∈ M(f1, . . . , fm), where M is a mapping M :

2FB(F̂)→2FGB
(F̂), that gives the relation between the formulas and the targets.

Notice that R̂ in (iii) has no prescription of (a) how a trajectory is computed or (b) how a
target is determined. This makes the implementation of these components flexible.

By focusing on a fragment of C, we match the above conditions on complexity.
Furthermore, by well-known results on the complexity of action language C [27, 14], the
results in Theorems 1-4 can be turned into completeness results already for this fragment.
Other languages can be similarly used to describe the equalized transition system, as
long as they are powerful enough to express the concepts in the previous section.

12

6 Discussion

The notions of profiles and state clustering help in reducing the state space by omitting
irrelevant information. This also comes in handy when dealing with partial observability,
since it omits the unobservable information that is irrelevant to the policy.

In the equalized transition system, the trajectories from the initial states correspond
to the policy execution, where one can check and verify properties of the policy. The
properness condition ensures that any counterexample found in the equalized transition
system stating a failure of the policy has a concrete trajectory in the original transition
system. This way, the shortcomings of the policy can be detected, and thus improved.

For target language definitions, we can use other formalisms with different expres-
siveness capabilities, e.g., answer set programming. Target descriptions can be made
more complex by considering formulas. In particular, target formulas with disjunctions
would express nondeterminism in the environment that affects the target determination.
Handling this within the framework requires further study.

It is also possible to use other plans, e.g., short conditional plans, in the planner
component. Furthermore, this component can be extended by considering a plan library
of precomputed plans. This offline planning component can provide the frequently used
plans and reduce the calls to the online planner.

6.1 Related Work

There are works being conducted on the verification of GOLOG programs [22], a family
of high-level action programming languages defined on top of action theories expressed
in the situation calculus. The method of verifying properties of non-terminal processes
are sound, but incomplete as the verification problem is undecidable [11, 9]. By resorting
to action formalisms based on description logic, decidability can be achieved [1].

Verifying temporal properties of dynamic systems in the context of data management
is studied by [5] for description logic knowledge bases. However, target establishment
and planning components, and real-life environment settings are not considered.

The BDI model [24] is based on beliefs, desires and intentions, in which agents are
viewed as being rational and acting in accordance with their beliefs and goals. There are
many different agent programming languages and platforms based on it. Some works
considered verifying properties of agents represented in these languages [4, 12]. These
approaches consider very complex architectures that even contain a plan library where
plans are matched with the intentions or the agent’s state and manipulate the intentions.
Verification for such complex BDI architecture gets very challenging.

Verification of multi-agent systems with specifications defined in the epistemic logic
is studied by [23], while our focus is on single agents with target determination and
planning components which help in reasoning about the behavior of the agent in the
environment.

Synthesizing and Verifying Plans. Synthesizing plans via symbolic model checking
techniques was considered, e.g., in [7, 6, 3]. The approaches could solve difficult planning
problems like strong planning and strong cyclic planning. Son and Baral [25] extend
the action language A by allowing sensing actions and allow to query conditional plans.
The latter are general plans that consist of sensing actions and conditional statements.

13

They also consider a “combined-state” which consists of the real state of the world and
the states that the agent thinks it may be in, while we combine the real states into one
state if they provide the same profile for the agent. The equalization of states allows for
omitting the details that are irrelevant to the behavior of the agent.

These works address a different problem than ours. Under nondeterminism and
partial observability, finding a plan that satisfies the desired results in the environment
is highly demanding. Our framework is capable of emulating the plans found by these
works, and verifying policies relates to an intertwined plan generation and checking task.

Verifying whether a given plan is a solution to a planning problem considering
knowledge-based programs as plans [21] or HTN plans [2] has been studied, while the
policies that we focus on are more enriched, making use of target determination and
outsourced planning.

Execution Monitoring. There are logic-based monitoring frameworks for plan
execution and recovery in case of failure. Some of the approaches are replanning [10],
backtracking to the point of failure and continuing from there [26], or diagnosing the
failure and recovering from the failure situation [16, 13]. These works consider the
execution of a given plan, while we consider a given reactive policy that determines
targets and uses (online) planning to reach them.

7 Conclusion and Future Work

In this paper, we described a high-level representation that models reactive behaviors,
and integrates target development and online planning capabilities. Flexibility in these
components does not bound one to only use action languages, but allows for the use
of other formalizations as well. For future work, one could imagine targets to depend
on further parameters or to incorporate learning from experience in the framework.
Furthermore, to instantiate the framework for a range of action languages besides C.

The long-term goal of this work is to check and verify properties of the reactive
policies for action languages. In order to solve these problems practically, it is necessary
to use techniques from model checking, such as abstraction, compositional reasoning and
parameterization. Also, the use of temporal logic formulas is needed to express complex
goals such as properties of the policies. Our main target is to work with action languages,
and to incorporate their syntax and semantics with such model checking techniques.
The general structure of our framework allows one to focus on action languages, and to
investigate how to merge these techniques.

References

1. Baader, F., Zarrieß, B.: Verification of Golog programs over description logic actions. Frontiers
of Combining Systems pp. 181–196 (2013)

2. Behnke, G., Höller, D., Biundo, S.: On the complexity of htn plan verification and its implica-
tions for plan recognition. In: Proc. of ICAPS. pp. 25–33 (2015)

3. Bertoli, P., Cimatti, A., Riveri, M., Traverso, P.: Strong planning under partial observability.
Artificial Intelligence 170(4), 337–384 (2006)

4. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by
model checking. Autonomous agents and multi-agent systems 12(2), 239–256 (2006)

14

5. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthesis in descrip-
tion logic based dynamic systems. In: Web Reasoning and Rule Systems, pp. 50–64. Springer
(2013)

6. Cimatti, A., Riveri, M., Traverso, P.: Automatic OBDD-based generation of universal plans in
non-deterministic domains. In: Proc. of AAAI/IAAI. pp. 875–881 (1998)

7. Cimatti, A., Riveri, M., Traverso, P.: Strong planning in non-deterministic domains via model
checking. AIPS 98, 36–43 (1998)

8. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transactions
on Programming Languages and Systems (TOPLAS) pp. 1512–1542 (1994)

9. Claßen, J., Lakemeyer, G.: A logic for non-terminating Golog programs. In: Proc. of KR. pp.
589–599 (2008)

10. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level robot
programs. In: Proc. of KR. pp. 453–465 (1998)

11. De Giacomo, G., Ternovskaia, E., Reiter, R.: Non-terminating processes in the situation
calculus. In: Working Notes of Robots, Softbots, Immobots: Theories of Action, Planning
and Control, AAAI97 Workshop (1997)

12. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming
languages. Automated Software Engineering 19(1), 5–63 (2012)

13. Eiter, T., Erdem, E., Faber, W., Senko, J.: A logic-based approach to finding explanations for
discrepancies in optimistic plan execution. Fundamenta Informaticae 79(1-2), 25–69 (2007)

14. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach
to knowledge-state planning: Semantics and complexity. ACM Trans. Comput. Log. 5(2),
206–263 (2004), http://doi.acm.org/10.1145/976706.976708

15. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer-Set Programming. In: Proc. of IJCAI. pp.
90–96 (2005)

16. Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic
environments. Fundamenta Informaticae 57(2-4), 371–392 (2003)

17. Fink, M., Germano, S., Ianni, G., Redl, C., Schüller, P.: Acthex: Implementing HEX programs
with action atoms. Logic Programming and Nonmonotonic Reasoning pp. 317–322 (2013)

18. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on AI 3(16) (1998)
19. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary

report. In: Proc. of AAAI/IAAI. pp. 623–630 (1998)
20. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems. Ann. Math.

Artif. Intell. 25(3-4), 391–419 (1999), http://dx.doi.org/10.1023/A:1018934223383
21. Lang, J., Zanuttini, B.: Knowledge-based programs as plans - the complexity of plan verifica-

tion. In: Proc. of ECAI. pp. 504–509 (2012)
22. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic program-

ming language for dynamic domains. The Journal of Logic Programming 31(1), 59–83
(1997)

23. Lomuscio, A., Michliszyn, J.: Verification of multi-agent systems via predicate abstraction
against ATLK specifications. In: Proc. of AAMAS. pp. 662–670 (2016)

24. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Proc. of
KR. pp. 473–484 (1991)

25. Son, T.C., Baral, C.: Formalizing sensing actions – a transition function based approach.
Artificial Intelligence 125(1), 19–91 (2001)

26. Soutchanski, M.: High-level robot programming and program execution. In: Proc. of ICAPS
Workshop on Plan Execution (2003)

27. Turner, H.: Polynomial-length planning spans the polynomial hierarchy. In: Proc. of JELIA.
pp. 111–124. Springer (2002)

15

