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a b s t r a c t

The present paper combines an effective beam theorywith a simple and accurate numerical
technique opening the door to the prediction of the structural behavior of planar beams
characterized by a continuous variation of the cross-section geometry, that in general
deeply influences the stress distribution and, therefore, leads to non-trivial constitutive
relations. Accounting for these peculiar aspects, the beam theory is described by a mixed
formulation of the problem represented by six linear Ordinary Differential Equations
(ODEs) with non-constant coefficients depending on both the cross-section displacements
and the internal forces. Due to theODEs’ complexity, the solution can be typically computed
only numerically also for relatively simple geometries, loads, and boundary conditions;
however, the use of classical numerical tools for this problem, like a (six-field) mixed finite
element approach, might entail several issues (e.g., shear locking, ill-conditioned matrices,
etc.). Conversely, the recently proposed isogeometric collocation method, consisting of the
direct discretization of the ODEs in strong form and using the higher-continuity properties
typical of spline shape functions, allows an equal order approximation of all unknown
fields, without affecting the stability of the solution. This makes such an approach simple,
robust, efficient, andparticularly suitable for solving the systemofODEs governing the non-
prismatic beam problem. Several numerical experiments confirm that the proposedmixed
isogeometric collocationmethod is actually cost-effective and able to attain high accuracy.

© 2017 Published by Elsevier Ltd.

1. Introduction

Non-prismatic structural elements are widely used in several engineering fields, e.g., large span structures, mechanical
components, aeronautical applications [1,2]. Unfortunately, theirmodeling is a non trivial task since the variable geometrical
properties of the cross-section lead to scarcelymanageable solutions, alsowhen considering simple geometries (i.e., linearly
tapered homogeneous beams), loads, and Boundary Conditions (BCs) [3,4]. As a consequence, it is necessary to take
advantage of numerical tools (mainly, Finite Element (FE) analysis), which researchers continuously aim at improving in
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terms of efficiency and effectiveness [5–9]. Furthermore, recent papers have highlighted that smooth changes of the cross-
section geometry lead to non trivial stress distributions that deeply influence the whole beam behavior [10–12]. In this
context, the use of prismatic beam Ordinary Differential Equations (ODEs) simply assuming that the cross-section area and
inertia are variable parameters results in a non-effective approach, as noticed since the ’60s of the past century [13].

A significant contribution overcoming the problems so far discussed was recently proposed by Balduzzi et al. [14]
that derive a novel and effective non-prismatic beam theory based on a simple and consistent definition of kinematics,
equilibrium, and constitutive relations. Specifically, all variables are represented with respect to a global Cartesian
coordinate system, avoiding possible complications arising from the definition of local coordinate systems. Furthermore, the
three cross-section displacements usually adopted in prismatic Timoshenko beam (i.e., cross-section rotation φ, horizontal
u and vertical v displacements) and the three internal forces (i.e., bending moment M , horizontal H and vertical V internal
forces) are used as unknowns and the resulting beam theory is naturally expressed as a system of six first order ODEs. The
numerical results discussed in [14] and the application of the proposed model to several engineering problems [1,4] have
already been shown the highly improved performances of the adopted beam theory in terms of ability in predicting stress,
strain, displacements, and stiffness.

However, even if it is a 1D theory (hence representing a simplification of the 2D problem), the above mentioned beam
model is still represented by a system of ODEs which requires a numerical treatment to obtain solutions in non-trivial cases.
Standard numerical approaches such as a displacement-based or mixed FE approach have been already considered in the
literature [10], but their use leads to non trivial numerical schemes, for which a high computational cost has to be paid in
order to accurately capture the complexity of the solution.

Accordingly, in the present paper, we resort to IsoGeometric Analysis (IGA) (see, e.g., [15] and references therein), and in
particular to the family of methods referred to as isogeometric collocation. Initially introduced in [16], aiming at optimizing
the computational cost still taking advantage of geometrical flexibility and accuracy typical of IGA, the fundamental idea of
isogeometric collocation consists of the direct discretization of the (system of) equations of interest in strong form, adopting
the isoparametric paradigm and making use of the higher-continuity properties typical of the spline-based shape functions
used in IGA (see, e.g., [17] and references therein).

Isogeometric collocation has been particularly successful in the context of structural elements. In particular, Bernoulli–
Euler beam and Kirchhoff plate elements have been proposed by [18], and shear-deformable structural elements have
been considered in a number of papers. Mixed formulations both for Timoshenko initially-straight planar beams [19]
and for curved spatial rods [20] have been proposed and studied, and then successfully extended to the geometrically
nonlinear case [21]. Isogeometric collocation has been moreover successfully applied to the solution of Reissner–Mindlin
plate problems in [22], and a new single-parameter formulation for shear-deformable beams, recently introduced by Kiendl
et al. [23], has been solved also via IGA collocation.

In the case of the beam theory considered in the present paper, isogeometric collocation seems to be an ideal solution
strategy, allowing the creation of a unique combination of a simple and effective analysis tool with a simple and effective
structural theory. Therefore, also supported by a number of convincing numerical experiments, we believe that the approach
herein proposed may have a significant impact on non-prismatic structural elements modeling.

The paper is structured as follows: In Section 2,we summarize the differential equations governing the beammodel under
investigation and provide some highlights on the beammodel properties. In Section 3, we introduce B-splines and describe
the isogeometric collocation method adopted for the numerical solution. In Section 4, we provide several numerical results
showing the good behavior of the proposed approach. Finally, in Section 5, we draw our conclusions and discuss possible
future developments.

2. Synopsis of the non-prismatic Timoshenko-like beam

This section recaps the Timoshenko-like beam model ODEs derived in [14]. Readers may refer to the so far mentioned
paper for further details on the derivation procedure. The beam behaves under the hypothesis of small displacements and
plane stress state and is made of a homogeneous and linear-elastic material. Being l the beam length, we introduce the beam
longitudinal axis

L := {x ∈ [0, l]} (1)

that coincides with the domain of the functions we are going to introduce. Thereafter, we introduce the beam center line
c : L → R and the cross-section height h : L → R+ (where R+ indicates strictly positive real values). We assume that both
the center line and the cross-section height are sufficiently smooth function, as specified in the following. The beam lower
and upper boundaries bl, bu : L → R are defined as

bl (x) := c (x)−
1
2
h (x) ; bu (x) := c (x)+

1
2
h (x) (2)

and, the 2D region occupied by the beam bodyΩ is defined as

Ω := { (x, y)| ∀x ∈ L → y ∈ [bl (x) , bu (x)]} . (3)
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Fig. 1. Beam model domain, 2D beam geometry, coordinate system, dimensions and adopted notations.

Fig. 1 represents the beam longitudinal axis L, the 2D region occupied by the beam body Ω , the Cartesian coordinate
system Oxy, the lower and upper boundaries y = bl (x) and y = bu (x), and the center line y = c (x).

Assuming that the lower and upper boundaries bl (x) and bu (x) are unloaded, being σ : Ω → R2×2
s the 2D symmetric

stress tensor and n =

nx, ny

T
: bl ∪ bu → R2 the outward unit vector defined as

n =


nx
ny


= ±

1
1 + b′2 (x)


b′ (x)
−1


(4)

where the notation (·)′ indicates the first derivative with respect to the independent variable x and b (x) represents either
bl (x) or bu (x), depending on the point where the boundary equilibrium is evaluated. The equilibrium on lower and upper
boundaries (σ · n)|bl∪bu = 0 allows to express the shear stress τ as a function of the axial stress σx

τ = −
nx

ny
σx = b′σx. (5)

Remark 2.1. Eq. (5) highlights that the shear at the boundary is defined only if the slopes of the lower and upper boundaries
are limited, i.e., b′

l (x) and b′
u (x) < ∞. Furthermore, discontinuities in b′

l (x) and b′
u (x) lead to meaningless discontinuous

shear. As a consequence, requiring {c (x) , h (x)} ∈ C1 (L) is a reasonable hypothesis to ensure that the ODEs are awell-posed
problem and the solution has a meaningful physical meaning.

The displacement field s : Ω → R2 is approximated as in prismatic Timoshenko beam i.e., assuming that the cross-
section behaves as a rigid body

s (x, y) =


sx (x, y)
sy (x, y)


≈


u (x)+ (c (x)− y) φ (x)

v (x)


(6)

where u : L → R is the centerline horizontal displacement, φ : L → R is the cross-section rotation, and v : L → R is the
centerline vertical displacement.

The beam compatibility is expressed through the following ODEs

ε0 (x) = u′ (x)+ c ′ (x) φ (x)

χ (x) = φ′ (x)

γ (x) = v′ (x)− φ (x)

(7)

where the horizontal deformation ε0 : L → R, the curvature χ : L → R, and the shear deformation γ : L → R represent the
generalized deformations.

According to a consolidated approach in structural mechanics [24, Section 1.4], we introduce the internal forces, i.e., the
horizontal internal force H : L → R, the resulting bending moment M : L → R, and the vertical internal force V : L → R,
respectively defined as follows

H (x)=
 bu(x)

bl(x)
σx (x, y) dy; V (x)=

 bu(x)

bl(x)
τ (x, y) dy; M (x)=

 bu(x)

bl(x)
σx (x, y) (c (x)− y) dy. (8)
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Being q,m, p : L → R the horizontal, bending, and vertical loads, respectively, the beam equilibrium reads

H ′ (x) = −q (x)

M ′ (x)− H (x) · c ′ (x)+ V (x) = −m (x)

V ′ (x) = −p (x) .

(9)

As usual in elementary beam models and taking into account the changes of geometry, we assume that the horizontal
stress has a linear distributionwithin the cross-section and the shear stress has a quadratic distribution (with non-vanishing
values at boundaries). Inmore detail, the distribution of the horizontal stress turns out to be consistentwith the cross-section
kinematics (see Eq. (6)), whereas the distribution of the shear stress was constructed according to the Jourawsky formula,
opportunely modified in order to take into account the boundary equilibrium (5) [25, Section 3.4]. Therefore, the stresses
distribution within the 2D region occupied by the bodyΩ can be expressed as

σx (x, y) = σH (x, y)H (x)+ σM (x, y)M (x) (10a)
τ (x, y) = τH (x, y)H (x)+ τM (x, y)M (x)+ τV (x, y) V (x) (10b)

where

σH (x, y)=
1

h (x)

σM (x, y)=
12 (c (x)− y)

h3 (x)

τH (x, y)= −
h′ (x) (c (x)− y)

h2 (x)
+

c ′ (x)
h (x)


−

1
2

+
3
2


2 (c (x)− y)

h (x)

2


τM (x, y)=
12c ′ (x) (c (x)− y)

h3 (x)
−

3h′ (x)
h2 (x)


−

1
2

+
3
2


2 (c (x)− y)

h (x)

2


τV (x, y)=
3

2h (x)


1 −


2 (c (x)− y)

h (x)

2

.

(11)

Remark 2.2. The recovery relation (10b) leads to a non-trivial distribution of the shear stress within the cross-section
and introduces non-trivial dependencies of the shear stress on horizontal internal force and bending moment [14,25].
This issue is well known since the first half of the 20th century. In particular, referring to the analytical solution of the
2D equilibrium equation for an infinite long wedge, stress distribution can be expressed as the combination of some
trigonometric functions [26–28]. Furthermore, Timoshenko and Goodier [28] state that a parabolic shear distribution is
a reasonably accurate approximation in the case of small boundary slope (i.e., b′

l (x) and b′
u (x) should be smaller than

tan (15°) ≈ 0.25). Later on, Krahula [29] extends the so far mentioned results to tapered beams, recovering equations
substantially identical to (10). Similar results were obtained also by Bleich [30] through an accurate generalization of the
Jourawsky theory.

We consider the following simplified expression of stress potential:

Ψ ∗
=

1
2


σ 2
x (x, y)

E
+
τ 2 (x, y)

G


(12)

where E and G denote Young’s and shear modulus, respectively. Substituting the stress recovery relations (10) into Eq. (12)
and considering the integral with respect to y of the partial derivatives

ε0 (x) =

 bu(x)

bl(x)

∂Ψ ∗

∂N (x)
dy; χ (x) =

 bu(x)

bl(x)

∂Ψ ∗

∂M (x)
dy; γ (x) =

 bu(x)

bl(x)

∂Ψ ∗

∂V (x)
dy, (13)

we finally obtain the beam constitutive relations consistent with the so far introduced kinematics and internal forces:


ε0 (x)
χ (x)
γ (x)


=


εH (x) εM (x) εV (x)
χH (x) χM (x) χV (x)
γH (x) γM (x) γV (x)

 H (x)
M (x)
V (x)


(14)
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where

εH (x) =


c ′2 (x)
5Gh (x)

+
h′2 (x)

12Gh (x)
+

1
Eh (x)


; εM (x) = χH (x) = −

8c ′ (x) h′ (x)
5Gh2 (x)

;

εV (x) = γH (x) = −
c ′ (x)

5Gh (x)
; χM (x) =


9h′2 (x)
5Gh3 (x)

+
12c ′2 (x)
Gh3 (x)

+
12

Eh3 (x)


;

χV (x) = γM (x) =
3h′ (x)
5Gh2 (x)

; γV (x) =
6

5Gh (x)
.

(15)

Remark 2.3. Differently from prismatic beams in which each generalized deformation depends only on the corresponding
internal force, constitutive relations (14) highlight that all the generalized deformations depend on all internal forces. In
authors’ knowledge, the only papers that notice the non-trivial dependence of generalized deformations on all internal forces
are [31,10,11,32]. Specifically, deriving a model for a tapered beam, Rubin [32] and Aminbaghai and Binder [31] consider
the fact that the bending moment produces also shear deformation and the shear force produces a curvature. Nevertheless
both papers do not consider the effect of a non-horizontal centerline and use different coefficients with respect to the ones
that naturally result in Eqs. (14). Conversely, Auricchio et al. [10] and Beltempo et al. [11] consider implicitly these aspects
through enhanced model derivations.

Substituting the constitutive relations (14) into the compatibility Eqs. (7)weobtain the beammodelODEs in the following
mixed form:

H ′ (x)
V ′ (x)
M ′ (x)
φ′ (x)
v′ (x)
u′ (x)


=


0 0 0
0 0 0 0

c ′(x) −1 0
χH χV χM 0 0 0
γH γV γM 1 0 0
εH εV εM −c ′(x) 0 0




H (x)
V (x)
M (x)
φ (x)
v (x)
u (x)

−


q (x)
p (x)
m (x)
0
0
0

 . (16)

Obviously, the six first order ODEs (16) must be equipped with six suitable BCs (three per each beam end) in order to ensure
the uniqueness of the solution. In Section 4, BCs for every considered numerical example are specified.

Remark 2.4. Within the herein discussed beam model all variables are referred to the global Cartesian coordinate system
Oxy and the domain of the independent variable functions is L, a subset of the x axis defined in Eq. (1) and highlighted
with a bold line in Fig. 1. This modeling strategy is substantially different from the one usually adopted for curved beams
that are formulated with respect to a curvilinear coordinate running along the beam centerline [33,34], but has the
following main advantages: (i) it avoids complications coming from the handling of a curvilinear coordinate (e.g., curve
parameterization, mapping, total derivatives); (ii) it allows to obtain linear and simple ODEs (see Remark 2.5); and (iii) in
numerical discretization, it reduces the mapping between real and reference elements to a trivial scaling function.

Remark 2.5. In Eq. (16), the matrix that collects equations’ coefficients has a lower triangular formwith vanishing diagonal
terms. As a consequence, from a theoretical point of view the ODEs’ solution can be easily obtained through an iterative
procedure of row by row integration, starting from H (x) and arriving at u (x). Several other beammodels have this peculiar
property, among others we would like to mention the famous Timoshenko beam model and the 3D beam model proposed
by Gimena et al. [35].

Remark 2.6. As usually done by standard beam theories and according to the adopted kinematics and stress representation,
the introduced beam model cannot tackle boundary effects like stress concentrations occurring nearby the constrains [36].
Furthermore, according to Remark 2.2, the formulas for the recovery of stress distributions (10) and consequently the whole
beam model provide meaningful solutions only for values of b′

l (x) and b′
u (x) smaller than tan (15°) ≈ 0.25.

3. Numerical solution via isogeometric collocation methods

The aim of this section is to present a short description of B-splines and of their use in isogeometric analysis, followed
by an introduction on isogeometric collocation in 1D. We finally present here the application of isogeometric collocation in
mixed form for the solution of the system of ODEs describing the beammodel introduced in the previous section. The good
behavior of the proposed method is then confirmed by the numerical experiments reported in the following section.
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Fig. 2. Quartic basis functions formed from the open knot vectorΞ = {0, 0, 0, 0, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1, 1, 1, 1}.

3.1. Basics on B-splines and their use in isogeometric analysis

We limit the description in the following to the basic concepts on B-splines and isogeometric analysis essential for the
proposed method. For more details, the interested reader is referred to [15] and to the references therein.

A knot vector is a set of non-decreasing real numbers representing coordinates in the parametric spacewhichwe assume
here to be [0, 1]:

Ξ = {ξ1 = 0, . . . , ξn+p+1 = 1}, (17)

where p is the degree of the B-spline and n is the number of basis functions necessary to describe it. A knot vector is said
to be uniform if its knots are uniformly-spaced and non-uniform otherwise; it is moreover said to be open if its first and last
knots have multiplicity p + 1. In what follows, only open knot vectors are considered. Basis functions formed from open
knot vectors are interpolatory at the ends of the parametric interval [0, 1] but are not, in general, interpolatory at interior
knots.

Given a knot vector, univariate B-spline basis functions are defined recursively starting with p = 0 as follows:

Ni,0(ξ) =


1 if ξi ≤ ξ < ξi+1
0 otherwise. (18)

For p > 1:

Ni,p(ξ) =


ξ − ξi

ξi+p − ξi
Ni,p−1(ξ)+

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) if ξi ≤ ξ < ξi+p+1

0 otherwise,
(19)

where, in (19), we adopt the convention 0/0 = 0.
As an example, in Fig. 2 we report the n = 12 quartic basis functions generated from the open knot vector Ξ =

{0, 0, 0, 0, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 1, 1, 1, 1}.
If internal knots are not repeated, B-spline basis functions are Cp−1-continuous (as in the case of Fig. 2). If a knot has

multiplicity k, the basis is Cp−k-continuous at that knot. In particular, when a knot has multiplicity p, the basis is C0 and
interpolates the control point at that location. We define

Sn = span{Ni,p(ξ), i = 1, . . . , n} (20)

the spline space spanned by the basis functions Ni,p(ξ). Following the isogeometric approach [15], the space of B-spline
functions defined on a generic interval [a, b] is given by:

Vn = span{Ni,p ◦ F−1, i = 1, . . . , n}, (21)

where x = F(ξ) = a + (b − a)ξ is the linear parameterization mapping [0, 1] onto [a, b]. The images of the knots through
the function F naturally define a partition of the interval (a, b), which is referred to as ‘‘mesh’’ and is defined by a mesh-size
h (being h the largest size of the elements in the mesh).

3.2. The adopted mixed isogeometric collocation method

As anticipated in Section 1, isogeometric collocation methods have been introduced in [16] for the numerical solution of
ordinary and partial differential equations in strong form bymeans of an isoparametric approach based on spline functions.
Theyhavebeen shown tobe an interesting and efficient alternative to isogeometricGalerkinmethods, attracting in particular
a lot of attention in the context of structural elements and mixed methods, where equal order approximations seem to be
stable and accurate. Such a unique feature can be analytically proven in the univariate context and has been exploited to
develop effective Timoshenko-like beam formulations in [20,19].
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Following these works, we herein propose to discretize the system of ODEs of Eq. (16) using a mixed isogeometric
collocation approach where splines of the same degree are adopted for the discretization of each unknown field.
Furthermore, the simple assumptions behind the beam model do not require special treatment of the problem’s data
(see Remark 2.4). As a consequence, due to the relative simplicity of the numerical examples we are going to discuss,
we decide to handle the center line c (x), the cross-section height h (x), and the distributed loads q (x), p (x), and m (x)
as analytical functions. Nevertheless, according to Remark 2.1, splines represent the most natural and effective choice for
the approximation of both the geometry and the loads in more complex situations. We therefore substitute in Eq. (16) the
approximated fields:

ψ(x) =

n
j=1

Nj,p(x)ψ̂j, (22)

whereψ(x) indicates one of the six generic unknown functions (i.e., H(x), V (x),M(x), φ(x), v(x), u(x)) and ψ̂j (j = 1, . . . , n)
the n corresponding control variables (i.e., the unknown coefficients), while Nj,p(x) (j = 1, . . . , n) are the n basis functions
of degree p generated by the knot vector Ξ = {ξ1 = 0, . . . , ξn+p+1 = 1}. The obtained strong-form equations are then
collocated at the images x̂i = F(ξ̂i) of the Greville abscissae of the first-derivative spline space ξ̂i (i = 1, . . . , n − 1), which
can be easily computed as:

ξ̂i =
ξi+2 + ξi+3 + · · · + ξi+p

p − 1
, i = 1, . . . , n − 1. (23)

The resulting algebraic system of equations, consisting of 6(n − 1) equations in the 6n control variables (i.e., n control
variables for each of the six unknown functions), has to be finally completed by six suitable BCs to be imposed strongly as
additional equations.

Remark 3.1. The possibility of using the same approximation space for all unknown fields, without affecting the stability
of the solution, makes the proposed approach particularly simple and effective, and its implementation straightforward. On
the other hand, building an equivalent Galerkin approach, dealingwith the possible locking effects typical of mixed FEs, may
be cumbersome.

4. Numerical results

The proposed mixed isogeometric collocation method for the solution of non prismatic Timoshenko-like beams is tested
on three different examples: (i) a shear-loaded tapered cantilever beam, (ii) an axially-loaded arch-shaped cantilever beam,
and (iii) an arch-shaped beam clamped at both the extremities and subjected to self-weight load. Examples (i) and (ii) are
taken from [10,14], respectively, which provide also the analytical solution for the ODEs reported in Eq. (16). For Example
(iii) we refer to Beltempo et al. [11], where only a numerical estimation of the solution is given due to the high problem
complexity, which does not allow to obtain an explicit form of the analytical solution. All investigated examples highlight
the non-trivial behavior of a non-prismatic beam body.

For Examples (i) and (ii), the results obtained with the proposed mixed collocation method are reported in terms of
convergence analysis. In particular, considering the numerical approximation of a generic solution variableψnum (x) and its
analytical counterpart ψan (x), we introduce the following error definition

errL2ψ =


a·n
i=1
(ψnum (xi)− ψan (xi))2

a·n
i=1
(ψan (xi))2


1
2

(24)

where the points xi are uniformly distributed within L and a · n is the number of points used for the error evaluation (the
results that follow are obtained setting a equal to 10). It is worth noting that Eq. (24) is an estimation of the error evaluated
in L2 norm.

For Example (iii), being the analytical solution not available, the obtained isogeometric collocation results are compared
with an overkill solution computed with 2D FE analysis.

4.1. Example (i): tapered cantilever

We consider the symmetric tapered beam illustrated in Fig. 3 with the following dimensions: l = 10mm, h (0) = 1mm,
and h (l) = 0.5 mm. We assume E = 105 MPa and G = 4 · 104 MPa as material parameters. The beam section at x = 0 is
clamped and a vertical load P = −1 N acts on the section at x = l (as illustrated in Fig. 3), x being the axis coordinate.
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Fig. 3. Example (i): Symmetric tapered cantilever beam.

Fig. 4. Symmetric tapered cantilever: convergence of the L2-norm of the displacement error estimations errL2v and errL2φ .

In the present example, c (x) = 0, therefore, following Eqs. (15), γH (x) = χH (x) = εM (x) = εV (x) = 0. As a conse-
quence, the axial and shear-bending equations become independent. In particular, the ODEs governing the problem read

H ′ (x) = 0 (BC H (l) = 0)
u′ (x) = εH (x)H (x) (BC u (0) = 0) (25a)
V ′ (x) = 0 (BC V (l) = 1)
M ′ (x) = V (x) (BC M (l) = 0)
φ′ (x) = χV (x) V (x)+ χM (x)M (x) (BC φ (0) = 0)
v′ (x) = γV (x) V (x)+ γM (x)M (x)+ φ (x) (BC v (0) = 0) .

(25b)

ODEs (25a) have a trivial solution H (x) = u (x) = 0 that the proposed isogeometric collocation method is able to compute
exactly (i.e., Hnum (x) = unum (x) = 0). As a consequence, the error estimations for the horizontal internal force H and for
the centerline horizontal displacement u (i.e., errL2H and errL2u , respectively) are meaningless and, in the following, we do not
consider them.

The analytical solution (also reported in [14]) consists in a constant vertical internal force V (x) = 1 and a linear bending
momentM (x) = x− 10. Since both the distributions can be exactly represented by any non-trivial (at least linear) approx-
imating B-spline, with the developed collocation method they can be computed up to machine precision, independently
from the number of used collocation points n. As a consequence, their convergence is trivial and it is not reported in the
following.

Fig. 4 reports the variation of the error estimations errL2v and errL2φ for different number of collocation points n, chosen
always equal for each field. All polynomial orders are chosen equal to p = 2, 4, and 6, respectively, for the shape functions
of each of the six independent fields. The obtained results show that the convergence rates of the collocation method agree
with the expected ones [19].

4.2. Example (ii): Arch-shaped cantilever beam

We consider the arch-shaped beam depicted in Fig. 5 with the following dimensions: l = 10 mm,∆ = 0.5 mm, h (l) =

h (0) = 0.6 mm, q = 1 N/mm.We assume E = 105 MPa and G = 4 · 104 MPa as material parameters. For this example, the
beam centerline and the section height are defined as

c (x) := −
1

100
x2 +

1
10

x; h (x) :=
1
50

x2 −
1
5
x +

3
5
, (26)
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Fig. 5. Arch-shaped cantilever: l = 10 mm,∆ = 0.5 mm, h (l) = h (0) = 0.6 mm, Q = 0.6 N, E = 105 MPa, and G = 4 · 104 MPa.

Fig. 6. Arch-shaped cantilever beam: convergence of the displacement error estimations according to L2 norm.

Fig. 7. Statically indeterminate arch-shaped beam: l = 10 m,∆ = 0.5 m, h (l) = h (0) = 1 m, p = 50 kN/m2 , E = 105 MPa, and G = 3.846 · 104 MPa.

respectively. The beam section at x = 0 is clamped and a horizontal load Q = 0.6 N acts on the centroid of the section at
x = l (as illustrated in Fig. 5). Consequently, the BCs for the ODEs (16) read

H (l) = 0.6; V (l) = 0; M (l) = 0; φ (0) = 0; v (0) = 0; u (0) = 0. (27)

The analytical solution is provided in [14] and consists in a constant horizontal internal force H (x) = 0.6, in a quadratic
distribution of the bending momentM (x) = 0.6 · c (x), while the vertical internal force vanishes (i.e., V (x) = 0).

Since, also in this case, the distributions of the internal forces can be exactly represented by any (at least quadratic)
approximating B-spline, with the proposed isogeometric collocation method they can be computed up to machine
precision, independently from the number of adopted collocation points n. Consequently, in the following we do not report
convergence results of internal forces solution.

We rather represent in Fig. 6 the error estimations errL2v , errL2u , and errL2φ for each cross-section displacement evaluated
using different number of collocation points n. Also in this case, we keep equal the number of collocation points for each
field, as well as the polynomial orders (i.e., p = 2, 4, and 6, respectively) of the shape functions of the six fields. Expected
convergence rates, in agreement with Beirao da Veiga et al. [19], are obtained.

4.3. Example (iii): statically indeterminate arch-shaped beam

We consider the statically undetermined arch-shaped beam depicted in Fig. 7 with the following dimensions: l = 10 m,
∆ = 0.5 m, h (l) = h (0) = 1 m. We assume E = 105 MPa and G = 3.846 · 104 MPa as material parameters.
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Fig. 8. Statically indeterminate arch-shaped beam: numerical results.

In this example, the beam centerline and section height are defined as

c (x) := −
1

100
x2 +

1
10

x; h (x) :=
1
50

x2 −
1
5
x + 1. (28)

As shown in Fig. 7, the beam is clamped at both extreme cross sections and subjected to self-weight load p equal to the
artificial value of 50 kN/m2. As a consequence, the vertical load is defined as p (x) = −50 h (x) and the BCs read

φ (0) = φ (l) = 0; v (0) = v (l) = 0; u (0) = u (l) = 0. (29)

In order to provide a reference solution wemodel the 2D beam bodywith 2D FEs, using the commercial software Abaqus
(Dassault Systémes, Paris, France). Specifically, we use quadrilateral bilinear elementswith a characteristic length of 0.001m
leading to a structured (overkill) mesh of 6 513 396 elements.

Fig. 8 reports the numerical solution for the problem under investigation using the proposed IGA collocation method
with n = 8 and p = 4 for each field. The reference FE solution is reported at 21 sections, equally distributed along the beam
length.

It is worth noting that, already for n = 8, an accurate numerical solution is attained in terms of both internal forces and
displacements, with negligible computational costs as compared with 2D FE analysis. Finally, Eqs. (10) allow to accurately
recover the cross-section distribution of stresses (as extensively discussed in [11,14]) and therefore to perform accurate
analysis of the cross-section strength. Therefore, Fig. 8 demonstrates that the herein proposed method is a promising
analysis tool allowing to estimate all the quantities of interest for practitioners also for complex structural elements with a
computational effort similar to that required by standard 1D FEs.
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5. Conclusions

This paper presents an innovative numerical approach for the solution of the ODEs governing the problem of planar non-
prismatic Timoshenko-like beams that naturally gives rise to a mixed formulation. The proposed scheme is based on mixed
isogeometric collocation, where B-splines of the same order are used for the approximation of all (six) unknown variables,
and the governing equations of the problem are solved in strong form. The method is simple, cost-effective, and robust.
Finally, several numerical experiments have confirmed its good accuracy, even in the case of coarse meshes. If compared
with FEs, the most diffused numerical tools for structural analysis, the herein considered numerical approach presents the
following main advantages: (i) it avoids the possible locking effects typical of mixed FEs resulting to be more robust and
simple to implement, and (ii) it requires a computational effort smaller than (at most similar to) standard 1D FEs.

Further developmentswill include the generalization of the proposed combination of the beammodel and the collocation
method to more complex situations like multilayered and 3D beams.
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