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Abstract

The present paper considers a non-prismatic beam i.e., a beam with a cross-section varying along the
beam axis. In particular, we derive and discuss a model of a 2D linear-elastic non-prismatic beam and
the corresponding finite element. To derive the beam model, we use the so-called dimensional reduction
approach: from a suitable weak formulation of the 2D linear elastic problem, we introduce a variable
cross-section approximation and perform a cross-section integration. The satisfaction of the boundary
equilibrium on lateral surfaces is crucial in determining the model accuracy since it leads to consider correct
stress-distribution and coupling terms (i.e., equation terms that allow to model the interaction between
axial-stretch and bending). Therefore, we assume as a starting point the Hellinger-Reissner functional in a
formulation that privileges the satisfaction of equilibrium equations and we use a cross-section approximation
that exactly enforces the boundary equilibrium.

The obtained beam-model is governed by linear Ordinary Differential Equations (ODEs) with non-
constant coefficients for which an analytical solution cannot be found, in general. As a consequence, starting
from the beam model, we develop the corresponding beam finite element approximation. Numerical results
show that the proposed beam model and the corresponding finite element are capable to correctly predict
displacement and stress distributions in non-trivial cases like tapered and arch-shaped beams.
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Nomenclature

E Young’s modulus

H (0) ,H
(
l
)

initial and final cross-sections

H (x) beam cross-section

JHR Hellinger-Reissner (HR) functional

L2 (Ω) ,H (div,Ω) 2D Sobolev spaces

L2 (l) , H1 (l) beam-model Sobolev spaces

M (x) bending moment

N (x) resulting axial stress

O, x, y Cartesian coordinate system

V (x) resulting shear

W,S0, St 2D HR functional spaces

∆ difference of cross-section height

Ω beam body i.e., 2D problem domain

δsss, δσσσ virtual fields

∂
∂x

, ∂
∂y

x− and y− partial derivatives

γ generic field

γref reference solution

γ̂γγ axial coefficient functions

t̂ttx, t̂tty projection of external load on profile functions

λ wave length

∇ · ( · ) divergence operator

ν Poisson’s coefficient

H (x) cross-section height

sss boundary displacement function

l beam length

u, v cross-section axial- and transversal- displacement
mean-values

∂Ω domain boundary

∂Ωs, ∂Ωt displacement constrained and externally loaded
boundaries

DDD fourth-order elastic tensor

EEE1,EEE2 engineering notation’s Boolean matrices

FFF beam-model load vector

GGG,HHH ODE coefficient matrices

HHHσs,HHHσσ,GGGσs beam-model coefficient matrices

KKKsσ,KKKσσ FE stiffness matrices

NNNγi axis shape functions

PPP s,PPP σ matrices collecting displacement and stress profile
functions

RRR matrix accounting for boundary equilibrium

TTT beam-model external load vector

σσσ symmetric stress tensor field

fff distributed load

nnn outward unit vector

pppγ profile functions

sss displacement vector field

ttt external load distribution

σx, σy , τ axial, transversal, and shear stresses

W̃ , S̃ beam-model variational formulation spaces

T̃TT FE load vector

γ̃γγi numerical coefficients

e (x) eccentricity

erelγ relative error

hl (x) , hu (x) cross section lower- and upper- boundaries

l beam longitudinal axis

m number of profile functions

u, v horizontal and vertical displacements

t number of axis shape functions

1. Introduction

Non-prismatic beams are slender bodies in which the position of the cross-section barycentre, the cross-
section shape, and/or the cross-section size vary along the prevalent dimension of the body. Those bodies
are widely used in engineering practice since they provide effective solutions for optimisation problems. As
an example, arc-shaped beams (in Figure 1(a) the Risorgimento bridge, Verona, Italy) could be optimized in
order to carry the loads using the minimum amount of materials. As an other, more sophisticated example,
windmill turbine blades (in Figure 1(b) the fiberglass-reinforced epoxy blades of Siemens SWT-2.3-101 wind
turbines) are optimized with respect to different conflicting needs like aerodynamic efficiency, noise pollution,
forces induced on the tower. The models that describe the behaviour of non-prismatic beams must be as
efficient as possible in order to perform an effective design. Unfortunately, non-prismatic beam models rarely
satisfy the needs of the practitioners, who must choose between refined but too expensive models –like 3D
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(a) Risorgimento bridge, Verona, Italy, designed by eng. Pier Luigi Nervi (1963). The cross-section shape changes in
order to maximize the resistance to the bending moment using the minimum amount of material. Image from
it.wikipedia.org.

(b) Fiberglass-reinforced epoxy blades of Siemens SWT-2.3-101 wind turbines. Image from it.wikipedia.org.

Figure 1: Examples of structures that could be seen as non-prismatic beams

Finite Element (FE) analysis– and inexpensive but too coarse models –like frame analysis that uses 1D
elements with piecewise-constant cross-sections.

Consider first the tapered beams, i.e. a class of non-prismatic beams with the following properties:
(i) the beam has a straight axis, (ii) the cross-section dimension varies linearly with respect to the axis
coordinate, and (iii) the cross sections have at least two symmetry axes whose intersection coincides with
the beam axis. Under these conditions, the positions of either cross-section barycentre (i.e., the point where
a resulting axial force can be applied without inducing any bending moment) and shear-centre (i.e., the
point where a resulting shear force can be applied without inducing any torsion) do not depend on the
beam-axis coordinate. The tapered-beam modelling takes advantage of the tapered-beam geometry since it
ensures that axial-, transverse-, and rotation- equilibrium equations are independent. As a consequence of
their simplicity, tapered beams are deeply investigated and many modelling approaches have been proposed
in the literature, as illustrated in the following. The simplest modelling-approach consists in modifying the
coefficients of the Euler-Bernoulli (EB) or Timoshenko beam-model equations in order to take into account
the variation of the cross-section area and inertia along the beam axis. Banerjee and Williams (1985, 1986)
illustrate significant examples of this modelling approach, used for example in Vinod et al. (2007) as the
basis of the FE analysis. Unfortunately, it is well-known that this approach introduces a modelling error
proportional to the rate of cross-section size change which is non-negligible also for small rates (see Boley,
1963). Moreover, investigating the effect of the variation of cross-section size, Hodges et al. (2010) show
that the model degeneration is a consequence of the violation of the boundary equilibrium on the lateral
surface in the beam model formulation.

Extending the discussion to more complex geometries, new difficulties arise. In fact, considering beams
without any symmetry with respect to the beam axis, the positions of barycentre and shear centre vary along
the beam axis independently of the position of resulting applied loads. In this context, an axial and shear
loads respectively produce variable bending- and torque- moments. On the other hand, EB and Timoshenko
model axial-, transverse-, and rotation- equilibriums with independent equations, as a consequence they
cannot describe such complex effects. To overcome the coupling problems, Li and Li (2002) and Kitipornchai
and Trahair (1975) consider the coupling of axial-compression and shear-bending equations, and the coupling
of shear-bending and torque equations, respectively, in the case of mono-symmetric cross-sections. Both
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approaches introduce suitable terms in the model equations. Unfortunately, as highlighted in (Hodges et al.,
2010), the evaluation of the coupling term coefficients could be non trivial, in particular for non-trivial
cross-section geometries.

In this paper we consider 2D bodies, for which Hodges et al. (2008) develop an effective displacement-
based tapered beam model. The authors use the variational-asymptotic method for the model derivation
and they consider the slope of the lateral boundary as a model parameter. Starting from this model, Hodges
et al. (2010) provide ways to recover stresses and strains, and they have shown the excellent accuracy of the
model. More recently, Rajagopal et al. (2012) have used the variational-asymptotic method for the analysis
of initially curved isotropic strips, whereas Rajagopal and Hodges (2014) have used the same approach
to perform oblique cross-section analysis. In both papers, the proposed approaches lead to accurate and
promising results, although the generalization to non-prismatic beams does not seem to be available.

With respect to prismatic 2D beams (i.e., beams with constant cross-section and straight axis), Auricchio
et al. (2010) have presented a modelling-approach, based on the dimensional reduction, and a suitable FE
approximation of the beam model. The dimensional reduction is a general mathematical procedure, initially
proposed by Kantorovich and Krylov (1958), that exploits the domain geometry to reduce the problem
dimension (in planar beam modelling from 2D Partial Differential Equations (PDEs) to a system of Ordinary
Differential Equations (ODEs)).

This paper generalizes the procedure proposed by Auricchio et al. (2010) to a non-prismatic, homoge-
neous, linear-elastic planar beam, with the aim to overcome the modelling limitations previously highlighted.
In particular, we exploit the capability of the modelling approach described in Auricchio et al. (2010) to
accurately capture the cross-section stress distribution.

An brief outline of the paper is as follows.
Section 2 provides a mathematical formulation of the problem under consideration, Section 3 develops the

beam model, described by means of an engineering-oriented notation, Section 4 develops the correspond-
ing FE, Section 5 provides some numerical examples, and Section 6 considers the influence of geometry
parameters on the beam FE accuracy.

2. 2D-problem variational formulation

We consider a homogeneous, isotropic, and linearly elastic 2D beam Ω with non-constant cross-section.
We assume small displacements, small deformations and plane stress state. The beam longitudinal-axis l
and the cross-section H (x) are given by

l :=
{
x ∈

[
0, l
]}

; H (x) := {y ∈ [hl (x) , hu (x)]} (1)

where l is the beam length, while hl, hu : l → R are C1 (l) functions with hl (x) < hu (x) ∀x ∈ l, which
represent the cross section lower and upper boundaries, respectively. Then, we define the problem domain
as:

Ω := l ×H (x) (2)

As usual in beam modelling, we assume l ≫ H (x) ∀x ∈ l, where H (x) is the cross section height, defined
as H (x) := hu (x)− hl (x).

Figure 2 represents the domain Ω, the adopted Cartesian coordinate system, the lower and upper bound-
aries y = hl (x) and y = hu (x) respectively, and the initial and final cross sections H (0) and H

(
l
)

respec-

tively. We denote the domain boundary as ∂Ω := H (0) ∪ H
(
l
)
∪ hl (x) ∪ hu (x). Moreover, we introduce

the partition {∂Ωs; ∂Ωt}, where ∂Ωs and ∂Ωt are the parts where the displacements sss : ∂Ωs → R
2 and

the tractions ttt : ∂Ωt → R
2 are imposed, respectively. Finally, we assume that the beam is subjected to a

distributed load fff : Ω → R
2. In what follows, we assume that sss, ttt and fff are sufficiently smooth.

Introducing the displacement vector field sss : Ω → R
2 and the symmetric stress tensor field σσσ : Ω → R

2×2
s ,
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Figure 2: 2D beam geometry, coordinate system, dimensions and adopted notations.

we define the functional spaces W , S0, and St as follows:

W :=
{
sss ∈ L2 (Ω)

}
(3)

S0 :=
{
σσσ ∈ H(div,Ω) : σσσ ·nnn|∂Ωt

= 000
}

(4)

St :=
{
σσσ ∈ H (div,Ω) : σσσ ·nnn|∂Ωt

= ttt
}

(5)

where nnn is the outward unit vector and, being the divergence operator defined as ∇ · ( · ), the Sobolev spaces
L2 (Ω) and H (div,Ω) are defined as:

L2 (Ω) :=

{
sss : Ω → R

2 :

∫

Ω

sss ·sss dΩ < ∞

}

H (div,Ω) :=

{
σσσ : Ω → R

2×2
s :

∫

Ω

σσσ : σσσ dΩ < ∞ and (∇ ·σσσ) ∈ L2 (Ω)

}

Therefore, the 2D problem under investigation can be expressed through the following variational equa-
tion.

Find sss ∈ W and σσσ ∈ St such that ∀ δsss ∈ Wand ∀ δσσσ ∈ S0

δJHR =−

∫

Ω

δsss ·∇ ·σσσ dΩ−

∫

Ω

∇ · δσσσ ·sss dΩ −

∫

Ω

δσσσ :DDD−1 : σσσ dΩ

−

∫

Ω

δsss ·fff dΩ +

∫

∂Ωs

δσσσ ·nnn ·sss dS = 0

(6)

where DDD is the fourth-order, invertible, linear, and elastic tensor, depending on the Young’s modulus E and
the Poisson’s coefficient ν.

We recall that the solution of Equation (6) represents the saddle point of the Hellinger-Reissner (HR)
functional JHR (see Auricchio et al., 2010). We highlight also that the displacement constraint sss|∂Ωs

= sss
is a natural condition i.e., it is weakly imposed through Equation (6), whereas the boundary equilibrium
σσσ ·nnn|∂Ωt

= ttt is an essential condition i.e., it is strongly enforced in the trial space St (see Equation (5)).
In the following, as usual in beam modelling, we assume that the lower and the upper boundaries are

subjected to zero tractions, i.e. {hu (x) ∪ hl (x) ; x ∈ l} ⊂ ∂Ωt and ttt|hl∪hu
= 000. Nevertheless, we notice

that the latter assumption is could be easily removed without spoiling the model derivation procedure.
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The outward normal vectors on the lower and upper boundaries are:

nnn|hl
(x) =

1√
1 + (h′

l (x))
2

{
h′
l (x)
−1

}

nnn|hu
(x) =

1√
1 + (h′

u (x))
2

{
−h′

u (x)
1

} (7)

where ( · )′ means the derivative with respect to x. The boundary equilibrium on lower and upper boundaries
(i.e., (σσσ ·nnn)|hl∪hu

= 000) could be expressed as follows:

[
σx τ
τ σy

]{
nx

ny

}
=

{
0
0

}
⇒

{
σxnx + τny = 0

τnx + σyny = 0
(8)

where we omit to write the restriction operator ( · )|hl∪hu
for notation simplicity. Manipulating Equation (8),

we express the shear and transversal stresses τ and σy as function of the axial stress σx. Using definition (7),
we obtain the following expressions for the boundary equilibrium:

τ = −
nx

ny
σx = h′ (x)σx; σy =

n2
x

n2
y

σx = (h′ (x))
2
σx (9)

where h (x) indicates either hl (x) and hu (x). Therefore, σx could be seen as the independent variable that
completely defines the stress state on the upper and the lower boundaries. Moreover, in accordance with
(Hodges et al., 2008) and (Hodges et al., 2010), the slopes h′

l and h′
u are sufficient geometric quantities to

define the boundary equilibrium.

3. Model derivation

In this section we develop the beam model using the dimensional reduction approach illustrated in
Auricchio et al. (2010). However, compared to (Auricchio et al., 2010), the stress cross section approximation
is now modified in order to satisfy the boundary equilibrium on the lower and the upper boundaries.

3.1. Profile approximation and notations

Considering a generic field γ : Ω → R
( · ) involved in the beam models, we introduce its approximation

defined as the linear combination of m preassigned linearly independent profile functions pppγ : H (x) →
R

( · )×m, weighted with m undefined axial coefficient functions γ̂γγ : l → R
m. Then, the approximation of a

given field γ (x, y) is defined as follows:

γ (x, y) ≈ pppTγ (y, hl (x) , hu (x)) γ̂γγ (x) (10)

where ( · )
T

is the transpose operator. In what follows, we will usually drop the variables on which the
functions depend, for notation simplicity. We remark that, as a consequence of the approximation defini-
tion (10), the m components of γ̂γγ are the unknowns of the beam model we will develop. In addition, we
introduce the following additional hypotheses.

1. The stress profile functions pppσx
, pppτ , and pppσy

are Lagrange polynomials, uniquely defined by the number
and the position of suitable interpolating nodes.

2. The lower and upper cross section boundaries hl (x) ; hu (x) are interpolating nodes for the stress
profile function.

3. The σy and τ profile functions vanish on the lower and upper cross section boundaries i.e., ∀x ∈
l pppσy

|hl∪hu
= pppτ |hl∪hu

= 000.

6



Due to definition (10), partial derivatives may be computed as follows:

∂

∂x
γ =

∂

∂x

(
pppTγ γ̂γγ

)
=

(
∂pppTγ
∂hl

h′
lγ̂γγ +

∂pppTγ
∂hu

h′
uγ̂γγ

)
+ pppTγ γ̂γγ

′ = pppTγ,xγ̂γγ + pppTγ γ̂γγ
′;

∂

∂y
γ =

∂

∂y

(
pppTγ γ̂γγ

)
= pppTγ,yγ̂γγ

where ( · )′ indicates x derivative for γ̂γγ, hl, and hl, whereas we use ( · ),x and ( · ),y to denote x− and y− total
derivatives for pppγ , respectively. It is worth noticing that the total derivative with respect to x of pppγ vanishes
for a prismatic beam. As a consequence, in this case we recover the equations detailed in (Auricchio et al.,
2010). Switching to an engineering-oriented notation and considering Equation (10), we set:

sss =

{
u (x, y)
v (x, y)

}
≈

[
pppTu 000
000 pppTv

]{
ûuu
v̂vv

}
= PPP sŝss (11)

σσσ =





σx(x, y)
σy(x, y)
τ(x, y)



 ≈




pppTσx
000 000

pppTσx
RRR2 pppTσy

000

pppTσx
RRR 000 pppTτ







σ̂σσx

σ̂σσy

τ̂ττ



 = PPP σσ̂σσ (12)

where RRR is a diagonal matrix whose entries are defined as follows:

Rii :=





0 if pσxi|hl
= pσxi|hu

= 0

h′
l if pσxi|hl

6= 0

h′
u if pσxi|hu

6= 0

(13)

We highlight that the boundary equilibrium (9) is exactly enforced on the lower and the upper boundaries.
Virtual fields are analogously defined as:

δsss = PPP sδŝss; δσσσ = PPP σδσ̂σσ

In accordance with the engineering notation just introduced, Table 1 defines the divergence operator and
the outward unit vector scalar product. We highlight that products between partial derivatives and Boolean
matrices EEEi, i = 1, 2 must be intended as scalar-matrix products, whereas differential operators are applied
to the stress approximations PPP σσ̂σσ.

Tensorial notation Engineering notation

∇ ·σσσ

(
∂

∂x
EEE1 +

∂

∂y
EEE2

)
PPP σσ̂σσ

σσσ ·nnn (nxEEE1 + nyEEE2) PPP σσ̂σσ

Table 1: Tensor and engineering equivalent notations.

The matrices EEE1 and EEE2 are defined as follows:

EEE1 :=

[
1 0 0
0 0 1

]
; EEE2 :=

[
0 0 1
0 1 0

]

Finally, the fourth order elastic tensor DDD−1 can be expressed as the square matrix:

DDD−1 :=
1

E




1 −ν 0
−ν 1 0
0 0 2 (1 + ν)



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3.2. Dimension reduction

In the following, we assume that ∂Ωs = H (0) and sss = 000. As a consequence, ∂Ωt = H
(
l
)
∪hl (x)∪hu (x).

In Section 2, we assumed ttt|hl∪hu
= 000. Here, we suppose also that ttt|Hl

can be exactly represented using the
profiles chosen for σσσ ·nnn in order to exactly satisfy the boundary condition. Recalling Definition (12), and

noting that nnn|Hl
= (1, 0)

T
, the exact representation of ttt|Hl

implies that there exist suitable vectors t̂ttx and
t̂tty such that:

ttt =

{
PPPT

σx
t̂ttx

PPPT
τ t̂tty

}
(14)

Therefore, the boundary condition σσσ ·nnn|Hl
= ttt may be written as:

{
σ̂σσx

(
l
)

τ̂ττ
(
l
)
}

=

{
t̂ttx
t̂tty

}
(15)

Substituting Equations (11) and (12) in Equation (6) and assuming sss = 000, the variational Equation (6)
becomes:

δJHR = −

∫

Ω

δŝssTPPPT
s

[(
∂

∂x
EEE1 +

∂

∂y
EEE2

)
(PPP σσ̂σσ)

]
dΩ

−

∫

Ω

[(
∂

∂x
EEE1 +

∂

∂y
EEE2

)
(PPPσδσ̂σσ)

]T
PPP sŝss dΩ

−

∫

Ω

δσ̂σσTPPPT
σDDD

−1PPP σσ̂σσ dΩ−

∫

Ω

δŝssTPPPT
s fff dΩ = 0

(16)

which can be written as:

δJHR =−

∫

Ω

(
δŝssT

(
PPPT

s EEE1PPP σ

)
σ̂σσ′ + δŝssT

(
PPPT

s EEE1PPP σ,x

)
σ̂σσ + δŝssT

(
PPPT

s EEE2PPPσ,y

)
σ̂σσ
)
dΩ

−

∫

Ω

(
δσ̂σσ′T (PPPT

σEEE
T
1PPP s

)
ŝss+ δσ̂σσT (PPPT

σ,xEEE
T
1PPP s

)
ŝss+ δσ̂σσT (PPPT

σ,yEEE
T
2PPP s

)
ŝss
)
dΩ

−

∫

Ω

δσ̂σσT (PPPT
σDDD

−1PPP σ

)
σ̂σσ dΩ−

∫

Ω

δŝssT
(
PPPT

s fff
)
dΩ = 0

(17)

Recalling that only the profile functions depend on y, using Fubini-Tonelli Theorem and integrating over
H (x), Equation (17) becomes:

δJHR =

∫

l

(
− δŝssTGGGsσσ̂σσ

′ − δŝssTHHHsσσ̂σσ − δσ̂σσ′TGGGσsŝss− δσ̂σσTHHHσsŝss

−δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx = 0

(18)

where

HHHσs =HHHT
sσ :=

∫

H(x)

(
PPPT

σ,xEEE
T
1PPP s +PPPT

σ,yEEE
T
2PPP s

)
dy; FFF :=

∫

H(x)

PPPT
s fffdy;

HHHσσ :=

∫

H(x)

PPPT
σDDD

−1PPP σdy; GGGσs =GGGT
sσ :=

∫

H(x)

PPPT
σEEE

T
1PPP sdy

(19)

Equation (18) represents the weak formulation of the 1D beam model. We highlight that the matrices GGGσs,
HHHσs, and HHHσσ implicitly depend on x due to the definitions of the profile function and integral domain.

To obtain the boundary value problem of the beam model, we integrate by parts the third term of
Equation (18):

−

∫

l

δσ̂σσ′TGGGσsŝssdx = − δσ̂σσTGGGσsŝss
∣∣∣
x=l

x=0
+

∫

l

δσ̂σσTGGG′
σsŝssdx+

∫

l

δσ̂σσTGGGσsŝss
′dx (20)
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Substituting Equation (20) in Equation (18), recalling that δσ̂σσ = 000 on ∂Ωt (see Definition (4)), and collecting
the axial coefficient functions in a vector, we obtain:

∫

l

{δŝss; δσ̂σσ}
T

(
GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss
σ̂σσ

}
−

{
FFF
000

})
dx+ δσ̂σσTGGGσsŝss

∣∣∣
H(0)

= 0 (21)

where

GGG :=

[
000 −GGGsσ

+GGGσs 000

]
; HHH :=

[
000 −HHHsσ

GGG′
σs −HHHσs −HHHσσ

]

Since Equation (21) must be satisfied by every variations, we finally obtain the following ODEs, equipped
with both natural and essential boundary-conditions:





GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss
σ̂σσ

}
=

{
FFF
000

}
in l

GGGσsŝss = 000 at x = 0

σ̂σσx = t̂ttx at x = l

τ̂ττ = t̂tty at x = l

(22)

It is worth noting that GGGsσ and HHHsσ concern with the beam equilibrium, GGGσs, GGG
′
σs, and HHHσs concern with

the beam compatibility, and HHHσσ concerns with the beam constitutive laws.
To complete the beam model definition, we choose the profiles pppγ as polynomial functions with respect to

y of degree at most deg (pppγ), according to Table (2). The same polynomial degrees was adopted in (Auricchio
et al., 2010) to model prismatic beams.

pppu pppv pppσx
pppσy

pppτ
deg (pppγ) 1 2 1 3 2

Table 2: Highest polynomial degree with respect to y of the profile functions used in beam modelling.

It is now possible to compute the matrices GGG and HHH for a general non-prismatic beam, for instance with
the aid of a symbolic calculus software like MAPLE. We notice that rank (GGG) = 6, whereas the model uses
10 independent unknowns. As a consequence, we infer that the beam model (22) is a differential-algebraic
boundary value problem. Thus, 6 unknowns are determined as a solution of a differential problem, while the
remaining 4 are algebraically determined by the former ones. Since GGG and HHH are matrices of non-constant
coefficients, it is not possible to analytically find the homogeneous solution of the differential equation for a
general non-prismatic beam.

Moreover, looking at the definition of the matrix HHHσs given in Equation (18), we observe that the
former term of the integral (PPPT

σ,xEEE1PPP s) vanishes for a prismatic beam, whereas the latter (PPPT
σ,yEEE2PPP s) never

vanishes. As a consequence, we conclude that the non-prismatic beam model increases the fill-in of the
matrices, i.e., introduces new terms which take into account the axial-bending coupling.

3.3. Coefficient matrices for a symmetric tapered beam

In this section we present a simple beam-model example that highlights the features of the proposed
approaches. In particular, we provide the analytical expression of the coefficient matrices GGGsσ, HHHsσ, and
HHHσσ for the symmetric tapered beam depicted in Figure 3. According with the notation of Figure 3, the
cross-section lower and upper boundaries and their derivatives are defined by:

hl (x) = −hu (x) = −
H (0)

2
+

H (0)−H
(
l
)

2l
x, h′

l (x) = −h′
u (x) = h′ =

H (0)−H
(
l
)

2l
(23)

We use the following displacement profile functions:

pppu =

{
1; y −

hl (x) + hu (x)

2

}T

; pppv =

{
1; y −

hl (x) + hu (x)

2
; y2

}T

(24)
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O

x

y

l

H (0)
H

(
l
)

Q

Figure 3: Symmetric tapered beam: l = 10mm, H (0) = 1mm, H
(
l
)
= 0.5mm, Q = 1N, E = 105MPa, and ν = 0.25.

Therefore, the displacement axial coefficients have specific physical interpretations, as listed in the following.

• û1 is the axial displacement mean-value.

• û2 is the cross section rotation.

• v̂1 is transversal displacement mean-value.

• v̂2 is a displacement of the cross section, associated to the change of cross-section height.

• v̂3 is a displacement of the cross section, associated to a non uniform deformation.

Moreover, we use the following stress profile functions:

pppσx
=

{
hu (x)− y

H (x)
;

y − hl (x)

H (x)

}T

; pppτ = {4 pσx1 pσx2}

pppσy
=
3H (x)

3

32





(y − hl (x)) (hu (x)− y)

(
y −

(
hl (x) +

1

4
H (x)

))

(y − hl (x)) (y − hu (x))

(
y −

(
hl (x) +

3

4
H (x)

))





(25)

Therefore, the stress axial coefficients have the physical meanings listed in the following.

• σ̂x1 is the value of the axial stress at the bottom of the cross section.

• σ̂x2 is the value of the axial stress at the top of the cross section.

• τ̂1 is a quadratic bubble function that vanishes on lower and upper cross section boundaries.

• σ̂y1 and σ̂y2 are two cubic bubble functions that vanish on lower and upper cross section boundaries.

Inserting all these assumptions in Definitions (19), we obtain the following analytical expressions for the
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coefficient matrices:

GGGsσ =H (x)




1 1 0 0 0

−

1

3
H (x)

1

3
H (x) 0 0 0

h′
−h′ 0 0

4

3

−

1

3
h′H (x) −

1

3
h′H (x) 0 0 0

1

3
h′H

2
(x) −

1

3
h′H

2
(x) 0 0 −

4

15
H

2
(x)




HHHsσ =




−h′
−h′ 0 0 0

−

1

3
h′H (x)

1

3
h′H (x) 0 0 −

4

3
H (x)

− (h′)2 (h′)2 0 0 −

4

3
h′

−

1

3
(h′)2 H (x) −

1

3
(h′)2 H (x) −

8

9
H (x) −

8

9
H (x) 0

−

1

3
(h′)2 H

2
(x)

1

3
(h′)2 H

2
(x) −

32

45
H

2
(x)

32

45
H

2
(x) −

4

5
h′H

2
(x)




HHHσσ =
H (x)

3E




2
(
(h′)2 + 1

)
2

(
(h′)2 − 1

)
2

− 4ν (h′)2
4

5

(
(h′)2 − ν

) 28

15

(
(h′)2 − ν

)
4h′ (1 + ν)

(
(h′)2 − 1

)2

− 4ν (h′)2 2
(
(h′)2 + 1

)2 28

5

(
(h′)2 − ν

) 4

5

(
(h′)2 − ν

)
−4h′ (1 + ν)

4

5

(
(h′)2 − ν

) 28

15

(
(h′)2 − ν

) 704

315

64

105
0

28

15

(
(h′)2 − ν

) 4

5

(
(h′)2 − ν

) 64

105

704

315
0

4h′ (1 + ν) −4h′ (1 + ν) 0 0
32

5
(1 + ν)




(26)

It is worth noting that:

1. For a prismatic beam the lower and upper boundary slopes h′ vanish and the cross section height
H (x) becomes a constant parameter, recovering the single-layer beam model presented in (Auricchio
et al., 2010, Section 5.2).

2. Looking at the GGGsσ pattern, the third and the fourth columns have zero entries. As a consequence,
derivatives of σ̂y1 and σ̂y2 never appear in beam model ODEs; furthermore, the eighth and the ninth
equations do not use axial coefficient function derivatives, resulting in algebraic equations. These
observations confirm that Equation (22) is a differential-algebraic boundary value problem.

3. Looking at the HHHσσ pattern, the last column and row have non-vanishing entries. As a consequence,
we can conclude that, in non-prismatic beam model, the constitutive law introduces coupling between
axial deformations and shear stress. These relations represent further equation couplings for which,
to the best of the authors’ knowledge, no reference in literature exists.

4. FE derivation

We now derive a FEM approximation of our beam model. We first introduce a suitable weak form, as
described below.

We integrate by parts with respect to x both the third and the first terms of Equation (18), see Equa-
tions (20) and (27).

−

∫

l

δŝssTGGGsσσ̂σσ
′dx = − δŝssTGGGsσσ̂σσ

∣∣∣
x=l

x=0
+

∫

l

δŝssTGGG′
sσσ̂σσdx+

∫

l

δŝss′TGGGsσσ̂σσdx (27)
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Substituting Equations (20) and (27) into Equation (18), we obtain the variational formulation:

Find ŝss ∈ W̃ and σ̂σσ ∈ S̃ such that ∀ δŝss ∈ W̃ and ∀ δσ̂σσ ∈ S̃

δJHR=

∫

l

(
δŝss′TGGGsσσ̂σσ + δŝssTGGG′

sσσ̂σσ − δŝssTHHHsσσ̂σσ + δσ̂σσTGGGσsŝss
′ + δσ̂σσTGGG′

σsŝss− δσ̂σσTHHHσsŝss

− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF
)
dx− δŝssTTTT = 0

(28)

where W̃ :=
{
ŝss ∈ H1 (l) : ŝss|x=0 = 000

}
, S̃ := L2 (l), and TTT =

∫
Hl

PPPT
s tttdy; furthermore

L2 (l) :=

{
σ̂σσ :

∫

l

σ̂σσT σ̂σσdx < ∞

}
; H1 (l) :=

{
ŝss : ŝss, ŝss′ ∈ L2 (l)

}

We highlight that the derivatives with respect to x are applied only to displacement variables. Moreover,
the definition of W̃ leads to a formulation that essentially satisfies continuity of displacements along the
beam axis whereas axial equilibrium is weakly imposed through Equation (28). Finally, the weak formulation
(28) is symmetric.

We now suppose that the i-th axial coefficient function γ̂i of a given field γγγ can be approximated as a
linear combination of t axis shape functions, stored in a vector NNNγi : l → R

t. The t numerical coefficients
are collected in the vector γ̃γγi ∈ R

t. As a consequence:

γ̂γγ ≈NNNγ (x) γ̃γγ (29)

where

NNNγ =:




NNNT
γ1 000 · · · 000
000 NNNT

γ2 · · · 000
...

...
. . .

...
000 000 · · · NNNT

γm


 ; γ̃γγ :=





γ̃γγ1

γ̃γγ2
...

γ̃γγm





The FE discretization of the beam model follows from the introduction of the axis shape function
approximation (29) into the beam model weak formulation (28):

δJHR =

∫

l

(
δs̃ss

T
NNN ′T

s GGGsσNNNσσ̃σσ + δs̃ss
T
NNNT

sGGG
′
sσNNNσσ̃σσ − δs̃ss

T
NNNT

sHHHsσNNNσσ̃σσ

+ δσ̃σσ
T
NNNT

σGGGσsNNN
′
ss̃ss+ δσ̃σσ

T
NNNT

σGGG
′
σsNNNss̃ss− δσ̃σσ

T
NNNT

σHHHσsNNNss̃ss

− δσ̃σσ
T
NNNT

σHHHσσNNNσσ̃σσ − δs̃ss
T
NNNT

s FFF
)
dx− δs̃ss

T
NNNT

s TTT = 0

(30)

Collecting unknown coefficients in a vector and requiring Equation (30) to be satisfied for all possible virtual
fields we obtain: [

000 KKKsσ

KKKσs KKKσσ

]{
s̃ss
σ̃σσ

}
=

{
T̃TT
000

}
(31)

where the FE stiffness matrix blocks are defined as follows:

KKKsσ =KKKT
σs :=

∫

l

(
NNN ′T

s GGGsσNNNσ +NNNT
s GGG

′
sσNNNσ −NNNT

s HHHsσNNNσ

)
dx;

KKKσσ := −

∫

l

NNNT
σHHHσσNNNσdx; T̃TT := −

∫

l

NNNT
s FFFdx− NNNT

s

∣∣
x=l

TTT

Looking at the properties of the axis shape functions, we consider the same choices done in (Auricchio
et al., 2010) and summarized in Table 3. We notice that the FE solution satisfies:

s̃ss = −
(
KKKsσKKK

−1
σσKKKσs

)−1
T̃TT ; σ̃σσ = −KKK−1

σσKKKσss̃ss

In particular, since stresses are x−discontinuous, they can be eliminated by static condensation at the
element level, reducing the dimension of the global stiffness matrix.
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NNNu NNNv NNNσx
NNNσy

NNN τ

deg (NNNγ) 2 3 1 3 2
x- continuity yes yes no no no

Table 3: Polynomial degrees with respect to x of the axis shape functions used in beam FE.

5. Numerical examples

In this section we discuss some numerical results obtained through the FE scheme introduced in Section 4.
In particular, we consider the following two test cases.

1. A symmetric tapered beam that shows the beam model accuracy through the comparison of the
numerical results with the analytical solutions available in literature.

2. An arch-shaped beam that shows the capability of the beam model to take into account also some
phenomena that occur in complex geometries.

Both the examples consider the profile functions defined in Section 3.3 and are implemented in MAPLE
software which allows to calculate the FE stiffness matrices using symbolic calculus. Obviously, the same
results could be obtained also using numerical-calculus tools together with suitable integration rules.

We introduce the relative error, defined for a given variable γ as:

erelγ :=

∣∣γ − γref
∣∣

|γref |
(32)

where γref is the reference solution (specified for each problem under investigation).

5.1. Symmetric tapered beam

We consider the symmetric tapered beam shown in Figure 3 (l = 10mm, H (0) = 1mm, and H
(
l
)
=

0.5mm) and we assume E = 105MPa and ν = 0.25 as material parameters. Moreover, the beam is clamped
in the initial cross section H (0) and a concentrated load QQQ = [0,−1]N acts in the lower limit of the final
cross-section H

(
l
)
. Finally, we use a homogeneous mesh of 20 elements along the beam axis.

Figure 4 plots the displacement axial coefficients {û1; û2} and {v̂1; v̂2; v̂3}. As expected, only the transver-

0 2 4 6 8 10

0

2

4

6

8

10

12
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−3

 

 

x [mm]

û
i
[m

m
]

û1

û2

(a) Horizontal displacement, axial coefficient functions
ûi i = 1, 2.

0 2 4 6 8 10

−0.06

−0.04

−0.02

0

 

 

x [mm]

v̂
i
[m

m
]

v̂1
v̂2
v̂3

(b) Vertical displacement, axial coefficient functions
v̂i i = 1, 2, 3.

Figure 4: Horizontal (Figure 4(a)) and vertical (Figure 4(b)) displacement axial coefficient functions computed for a symmetric
tapered beam under shear-bending load.

sal displacement v̂1 and the cross section rotation û2 have a significant order of magnitude. Moreover, they
have an axial distribution qualitatively similar to the solution of a prismatic cantilever beam.
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We define the mean-value of the transversal displacement computed on the final cross section as follows:

v (10) =

∫

H(10)

v (x, y) dy (33)

Table 4 reports the values of v (10), obtained using different homogeneous meshes and the relative error erelv

defined in Equation (32). We assume as reference solution vref the solution of the 2D problem depicted in
Figure 3, obtained using the ABAQUS software and a structured mesh of 7680× 512 bilinear elements. We

Beam model v (10)mm erelv

Beam FE (1 elem.) -0.0641858 2.324 ·10−2

Beam FE (4 elem.) -0.0656567 8.522 ·10−4

Beam FE (20 elem.) -0.0657294 2.541 ·10−4

2D solution (vref ) -0.0657127 -

Table 4: Mean-value of the transversal-displacement evaluated on the final cross-section and obtained considering different axis
meshes for a symmetric tapered beam under shear-bending load.

notice that the beam FE proposed in this paper has the capability to predict the maximum displacement
with reasonable accuracy even using only 1 element. Moreover, increasing the number of elements, the FE
solution converges to the reference solution, leading to satisfying errors for engineering applications.

Figure 5 depicts the stress axial coefficient functions. In particular, Figure 5(c) shows that, far from the
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(a) Axial stress, axial coefficient functions σ̂xi i = 1, 2.
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(b) Shear stress, axial coefficient function τ̂1.
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(c) Transversal stress, axial coefficient functions
σ̂yi i = 1, 2.

Figure 5: Stress axial coefficient functions evaluated for a symmetric tapered beam under shear-bending load.

initial and final cross sections, the axial coefficient functions σ̂yi i = 1, 2 have a negligible order of magnitude
if compared to the other stress components. Moreover, close to the initial and final cross sections, the
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axial coefficient functions σ̂yi significantly oscillate. The comparison of different solutions (obtained using
different meshes and not reported here for brevity) highlights that the oscillations of the axial coefficient
functions occur only in the elements close to the boundaries. These oscillations could be probably explained
as an attempt of the beam model to take into account stress concentrations near the domain vertices.

0 2 4 6 8 10
0
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4
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8

10
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M
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m
m
]

(a) Resulting bending moment, axial distribution M (x).

0 2 4 6 8 10
−1.000010

−1.000005

−1.000000

−0.999995

x [mm]

V
[N

]
(b) Resulting shear, axial distribution V (x).

Figure 6: Resulting internal actions evaluated for a symmetric tapered beam under shear-bending load.

Figure 6(a) depict the axis distribution of the bending moment M (x) defined as follows:

M (x) =

∫

H(x)

σx · y dy (34)

The bending moment distribution M (x) agrees with the classical beam theories: it varies linearly along
the axis, vanishing in the final cross section and being equal to Q · l = 10Nmm in the initial cross section.
Instead, the axial coefficient functions σ̂x1 and σ̂x2 (Figure 5(a)) are non-linear in order to compensate the
change of the cross-section height.

Figure 6(b) plots the axis distribution of resulting shear V (x) defined as follows:

V (x) =

∫

H(x)

τ dy (35)

The resulting shear V (x) distribution is close to the value Q = −1N, even though some oscillations with
an amplitude of about 5 · 10−6N occur. Nevertheless, we conclude that also the resulting shear distribution
agrees with the classical beam theories, whereas the axial coefficient function τ̂1 (x) (Figure 5(b)) is non
linear in order to compensate the cross-section changes.

Figure 7 plots the cross section distributions of the computed axial and transversal stresses (σx and σy,
respectively), compared with the corresponding quantities obtain using the solution detailed in (Timoshenko
and Goodier, 1951, Section 35). The label num indicates the numerical solution obtained through the FE
introduced in Section 4, whereas the label ref indicates the solution of (Timoshenko and Goodier, 1951,
Section 35). Finally, to exclude boundary effects, we consider the cross section corresponding to x = 5, and
denoted as H (5). We highlight the good agreement between numerical results and the reference solution.

The shear cross section distribution τ requires some additional remarks. Figures 8(a), 8(b), and 8(c)
plot the shear distributions computed on the cross sections H (2.5), H (5), and H (7.5).

In Figures 8(a) and 8(c), we observe a very good agreement between numerical and reference solutions.
Concerning Figure 8(b), we notice that the reference solution has a high frequency component that the
numerical solution is unable to capture. This is due to the low-order degree of the profile functions adopted
in the model. However, we notice that the error is of a reasonable magnitude. Finally, Figure 8(d) depicts
the absolute error in the three considered cross sections. Again, the numerical solutions display a satisfactory
agreement with the reference solutions.
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(a) Axial stress σx cross-section distribution.
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Figure 7: Axial (Figure 7(a)) and transversal (Figure 7(a)) stress cross-section distributions, evaluated in the cross section
H (5) for a symmetric tapered beam under shear-bending load.

5.2. Arch shaped beam

We now consider the arch shaped beam shown in Figure 9. The lower and the upper boundaries are
defined respectively as:

hl (x) := −
1

50
x2 +

1

5
x−

1

2
; hu (x) :=

1

10
(36)

Moreover, the beam is clamped in the initial cross section and loaded on the final cross section with a
constant axial load distribution ttt|Hl

= [1, 0, 0]
T
N/mm. A homogeneous mesh of 20 elements is used and we

adopt the profile functions introduced in Equations (24) and (25).
Figure 10 depicts the displacement axial coefficients. We highlight that the solution shows significant

transversal displacement (see v̂1 in Figure 10(b)) and cross-section rotation (see û2 in Figure 10(a)) even if
only an axial load is applied. The displacement solutions indicate that the beam model and the corresponding
FE take into account the coupling between axial and bending equations, a consequence of the domain lack
of symmetry with respect to the x−axis.

We define the mean-value of the axial displacement computed on the final cross section as follows:

u (10) =

∫

H(10)

u (x, y) dy (37)

Table 5 reports the values of u (10) and v (10) (defined in Equation (33)), obtained using different meshes
and the corresponding relative errors erelv and erelu defined in Equation (32). We compute the reference
solution by means of the ABAQUS software, considering the full 2D problem and using a structured mesh of
10240× 256 bilinear elements. The results highlight that the proposed model is effective in the prediction of

Beam model v (10)mm erelv u (10)mm erelu

Beam FE (1 elem.) 0.016753 9.247 ·10−1 0.0009789 9.102 ·10−1

Beam FE (4 elem.) 0.219495 1.322 ·10−2 0.0120440 1.052 ·10−1

Beam FE (20 elem.) 0.222434 8.991 ·10−6 0.0108971 4.588 ·10−5

2D solution (vref , uref) 0.222436 - 0.0108976 -

Table 5: Mean-value of the transversal and axial displacements computed on the final cross section and obtained considering
different meshes for an arch shaped beam under axial load.

the displacements. However, the very rough single-element discretisation doe not yet provide a satisfactory
result in this case.
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(a) Shear τ cross-section distribution, evaluated in the
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(c) Shear τ cross-section distribution, evaluated in the
cross section H (7.5).
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Figure 8: Cross-section shear distributions (Figures 8(a), 8(b), and 8(c)) evaluated in the cross-sections H (2.5), H (5.0), and
H (7.5)) respectively for a symmetric tapered beam under shear-bending load and related absolute errors (Figure 8(d)).

Figure 11 depicts the stress axial coefficients, Figure 12(a) depicts the resulting axial stress defined
in (38), and Figure 12(b) depicts the eccentricity, defined in (39):

N (x) =

∫

H(x)

σx dy (38)

e (x) :=
M (x)

|ttt|
(39)

In particular, num denotes the eccentricity computed considering the FE solution, whereas ref denotes the
analytical eccentricity (it coincides with the positions of the cross section barycentre). We notice that the
stress axial distributions are highly non linear, whereas the resulting axial load is constant and equal to the
resulting load. Figure 12(a) highlights a small error, of the order of the 5 · 10−3N, in the resulting axial
stress. Moreover, the numerical eccentricity enum(x) coincides with the analytical eccentricity eref (x). As a
consequence, we conclude that the proposed beam model has the capability to model the coupling of axial
load and bending moment. Furthermore, we highlight that the coupling factors are automatically obtained
from the dimensional reduction procedure illustrated in Section 3.

Figure 13 depicts the cross section distributions of the stresses σx, σy , and τ . The label num indicates
the numerical solution obtained through the FE introduced in Section 4, whereas the label ref indicates the
2D ABAQUS solution. In order to exclude boundary effects, we consider the cross section corresponding to
the axis coordinate x = 7.5 and denoted as H (7.5). We highlight the good agreement between numerical
results and the reference solution.

17



q

O

x

y

l

∆
H (0)
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(
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= H (0) = 0.6mm, q = 1N/mm, E = 100000MPa, and ν = 0.25.
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Figure 10: Horizontal (Figure 10(a)) and vertical (Figure 10(b)) displacement axial coefficient functions, evaluated for an arch
shaped beam under axial load.

6. Stiffness-matrix condition-number

In this section we provide some information about the influence of the geometry parameters on the beam
FE introduced in Section 4. We here consider the condition number of the FE stiffness matrix as a possible
indicator of the range of applicability of our numerical scheme.

We recall that the condition number of a given matrix AAA is defined as:

cond (AAA) := ‖AAA‖ · ‖AAA−1‖ (40)

We here choose the norm:

‖AAA‖ := max
i=1...n





n∑

j=1

|aij |



 (41)

Figure 16(a) depicts the condition number computed for a prismatic beam, versus the number of elements,
for different values of beam slenderness l/H. In particular, we notice that the condition number gets larger
as the beam becomes more slender.

Figure 16(b) depicts the condition number computed versus the number of elements for the non-
symmetric beam of Figure 14, and for different values of ∆. Here, ∆ is defined as the difference between the
initial and final cross section heights. Furthermore, the average of the cross section height is kept constant
in all the considered cases, as as shown in Table 6. We notice that the condition number becomes larger as
∆ gets larger.
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Figure 11: Axial (Figure 11(a)), transversal (Figure 11(b)), and shear (Figure 11(c)) stress axial coefficient functions, evaluated
for an arch shaped beam under axial load.

As a final example, we consider a beam with a wave-like shape of the lower boundary, as shown in
Figure 15.

In this case, we choose the maximum slope h′
m := maxx∈l (|h

′
l|) as relevant geometric parameter. We

notice that h′
m determines the number of waves in the lower boundary description, see Table 7. Figure 16(c)

shows the condition number versus the number of elements, for different choices of h′
m. We observe that h′

m

does not significantly affect the condition number, at least for the cases of practical interest.

7. Conclusions

In this paper we developed a planar, non-prismatic beam model based on a mixed variational approach.
More precisely, we formulated the 2D elastic problem through the Hellinger-Reissner functional, with the
goal to accurately describe the stress profiles. In Section 3 we applied the dimensional reduction procedure

∆ H (0) H
(
l
)

h′
l

0.0 5.50 5.50 0.00
0.1 5.55 5.45 0.01
1.0 6.00 4.00 0.10
5.0 8.00 3.00 0.50
10.0 10.50 0.50 1.00

Table 6: Non-symmetric tapered beams, parameter definitions for the considered examples.
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Figure 12: Resulting axial force (Figure 12(a)) and eccentricity (Figure 12(b)), evaluated for an arch shaped beam under axial
load.

wave number λ h′
m

0 - 0
1 10.00 1⁄8
2 5.00 1⁄4
4 2.50 1⁄2
8 1.25 1

Table 7: Non-prismatic beams, parameter definitions for the considered examples.

that leads to the formulation of the non-prismatic beam model. In Section 4 we developed the non-prismatic
beam FE. In Section 5 we gave some numerical results that assessed the efficiency of the proposed model.
Finally, in Section 6 we provided some indications about the influence of the geometry parameters on the
effectiveness of the proposed beam FE.

Numerical results show that the beam model and the corresponding FE are capable to accurately ap-
proximate the analytical results available in literature. Moreover, the model takes into account the coupling
of axial stress and bending moment since the coupling terms naturally arise from the modeling procedure.

Future developments of this work could include the extension to the 3D case and to multilayer, non-
homogeneous beams.
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(b) Condition number, evaluated for a non-symmetric
tapered beam with different taper slope.
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Figure 16: Stiffness matrix condition number evaluated for prismatic beams (Figure 16(a)), non-symmetric tapered beams
(Figure 16(b)), and non-prismatic beams (Figure 16(c)).
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