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Abstract

This paper illustrates an innovative approach to obtain an analytical model for elastic, multilayer, anisotropic, and

moderately thick plates. The goals of the proposed approach are (i) provide an accurate stress description, (ii) take

into account the effects of material anisotropies and inhomogeneities, and (iii) lead to a plate model that does not need

shear correction factors.

The first step of the modeling procedure is the weak formulation of the 3D elastic problem. In particular, we

choose the Hellinger-Reissner functional expressed in a way that privileges an accurate description of stress field. The

second step consists of the reduction of the 3D elastic problem weak formulation to a 2D weak formulation (i.e. the

properly called plate-theory). Specifically, we perform this step using the dimension reduction method. Finally, the

third step allows the plate-theory strong formulation to be obtained (i.e. the partial differential equations governing

the plate behavior).

We evaluate some analytical solutions of the obtained plate-theory and we compare them with Classical Plate

Theory, First order Shear Deformation Theory, and Elasticity Theory solutions with the aim to evaluate the proposed

method accuracy. The results highlight the following main advantages: needless of shear correction factors and

accurate description of both stress and displacement fields also in complex situations, like multilayer, anisotropic, and

moderately thick plates.

Keywords: Multilayer Anisotropic Plate Modeling, Dimension Reduction Method, Hellinger-Reissner Principle,

Plate Analytical Solution

1. Introduction

Several laminate theories have been proposed in the literature since the end of 19th century. Among them, Classi-

cal Plate Theory (CPT) and First order Shear Deformation Theory (FSDT) are the most famous displacement-based

theories, i.e. theories formulated considering only displacements as independent variables.

Based on Kirchhoff-Love assumptions (straight and normal line to the middle-plane before deformation remain

straight and normal to the middle-plane also after deformation), CPT neglects shear deformation and could be seen as

the generalization of the Euler-Bernoulli beam-theory to 2D problems [1]. CPT accuracy depends on plate span-to-

depth ratio, in particular, CPT solution is exact when the span-to-depth ratio goes to infinity [2], but it becomes more

and more inaccurate by decreasing the span-to-depth ratio. Therefore, CPT assumptions are not satisfactory in several

practical applications and refined theories are required.
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Based on Reissner-Mindlin hypotheses (straight and normal line to the middle-plane before deformation remain

straight but not necessarily normal to the middle-plane after deformation), FSDT leads constant shear deformations

and shear stresses along thickness to be considered and could be seen as the generalization of the Timoshenko beam-

theory to 2D problems [1]. As a consequence, FSDT gives satisfactory results for a larger class of problems compared

with CPT [3] but, unfortunately, the span-to-depth ratio continues to influence the model accuracy, the predicted

shear stress distribution violates the boundary equilibrium, and shear correction factors must be introduced in order

to compute the true amount of shear deformation energy and achieve more accurate results. Real stress distribution

and shear correction factor could be easily evaluated for homogeneous plates (in this simple case the shear factor

results equal to 5/6). On the other hand, the evaluation of stress distribution and shear correction factor becomes non

trivial for multilayer or composite plates. In particular, Whitney [4] proposes a simple approach for the estimation

of the shear correction factor, whereas, among others, we cite Noor and Burton [5], Auricchio and Sacco [6] as

significant approaches for the estimation of the real shear distribution within the thickness. Nevertheless, due to

difficulties arising in the estimation process, practitioners often prefer to use 5/6 also for other cases like multilayer in-

homogeneous plates, even if it clearly represents an error [1, 7]. Moreover, all the so far proposed approaches imply

pre-processing and post-processing calculations that are clearly unwanted. As a consequence, researchers develop

several theories to overcome the FSDT’s limitations so far described and predict effectively the behavior of thick and

laminated plates. For a complete review of existing models readers may refer to [8].

Khandan et al. [9] review several laminated composite plate theories and discuss advantages and limitations of

each theory, focusing on how accurately and efficiently models can predict the transverse shear effect. They show

that enhanced theories must be used in order to effectively describe the behavior of plates with nontrivial properties,

specially for laminated plates. As discussed in [8], there exist different paths to improve standard theories and we can

classify enhanced theories in many categories: looking at considered approximations we can distinguish between the

higher order shear deformation and the layer-wise theories, whereas looking at considered independent-variables we

can distinguish between the displacement-based and the mixed theories.

The higher order theories are obtained assuming non-linear displacement distribution through the thickness. Lo

et al. [10, 11] are a classical example of higher order theory whereas as a more recent example we can cite Reddy and

Kim [12] that propose a general third order theory for a functionally graded plate with micro structure that depend

on length scale parameter. In particular, by choosing third order polynomial for in-plane displacement, the authors

obtain third order shear deformation theory and recover FSDT and CPT as special cases of their general model.

However, some of the higher order models do not satisfy the continuity conditions of transverse shear stresses at layer

interfaces and lead to inaccurate stress description. On the other hand, the layer-wise theories are obtained assuming

displacement distribution through each layer and imposing suitable continuities at interfaces [13]. Obviously these

models could be extremely accurate, but also expensive [14].

Displacement-based theories consider as independent variables only displacements, as usual for CPT, FSDT stan-

dard formulation, and higher-order theories, whereas mixed theories consider also stresses and strains as independent

variables. As an example, mixed theories can originate from mixed variational principles like Hellinger-Reissner (HR)

and Hu-Whashizu (HW) functionals. More in detail, HR functional considers displacement and stress as independent

variables whereas HW functional considers also strain [15]. Unfortunately, as stated by Brezzi [16], mixed variational

principles and the related theories are more delicate than the displacement-based theories since mixed functionals may

work well for specific problems but work poorly in general conditions. Moreover, to ensure and prove stability and

convergence of a mixed theory is a non-trivial achievement [17]. Nevertheless, mixed principles are widely used in

plate and shell theory development as well as in development of discretization techniques like Finite Elements since

their advantages exceed their limitations and costs. As significant examples of mixed theories we mention Bisegna

and Sacco [18], Auricchio and Sacco [19] that use the so far introduced mixed variational formulation together with

the FSDT displacement assumptions in order to improve the FSDT stress description. In the following, we focus our

attention on layer-wise, mixed variational theories since they provide an accurate stress description, in agreement with

the job’s aims.

For completeness in discussion of mixed variational principles, we cite also the so called Reissner Mixed Varia-

tional Theorem (RMVT) that uses only shear stresses as independent variables [20, 21, 22] and that was extensively

used in both plate model and Finite-Element derivation [23, 24]. Carrera [25] presents the comparison of classical

theories formulated on basis of principle of virtual displacement and mixed theories based on the RMVT, considering

both global and local responses of multilayer orthotropic plates. He concluded that the RMVT based theories are
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superior with respect to the Principle of Virtual Displacements based theories. Also Carrera and Demasi [26] derive

a plate-theory based on RMVT and, more recently, Demasi [27, 28, 29, 30, 31] develop a generalized unified formu-

lation with the aims to investigate the RMVT based theories and compare a variety of mixed first- and high- order

shear deformation theories as well as global, zig-zag, and layer-wise theories. Wu and Li [32, 33] investigate the static

behavior of simply supported multilayer composite and functionally graded material plate. In particular, they consider

both RMVT and the principle of virtual displacement in order to develop a RMVT-based Shear Deformation Theory.

Balduzzi [34] presents the HR and HW functionals and discusses their primal and dual formulation, highlighting

that the primal formulation privileges the regularity of displacement approximation whereas the dual formulation

privileges the regularity of stress approximation. He reviews also the applications in beam and plate modeling of both

formulations, noticing that the dual formulation is not so diffused in engineering practice, maybe as a consequence of

difficulties occurring in discretization of the involved functional spaces. Nevertheless, the promising results illustrated

by Balduzzi [34] lead us to focus our attention on the HR dual formulation since it provides equations more significant

than the primal. Also Alessandrini et al. [35] derive a plate-theory for an homogeneous, isotropic, and linearly

elastic body using both primal- and dual- HR functional formulations. Specifically, Alessandrini et al. [35] use the

dimension reduction method, prove the existence and uniqueness of the solution of the partial differential equations

corresponding to the plate-theory, and provide modeling error bounds for both formulations. Also Liu [36] uses the

dimension reduction method for elasticity plate on an unbounded domain, estimates error between the exact- and the

reduced- solutions, and shows the method capabilities in the field of plate modeling. The so far mentioned dimension

reduction method is a mathematical procedure that introduces some approximations in a variational principle with the

aim to solve a (n + 1) dimension boundary value problem by replacing it with a system of equations in n dimension

space. More in details, the procedure is firstly proposed by Kantorovich and Krylov [37] whereas, among others,

Vogelius and Babuska [38] use the dimension reduction method to drive a displacement based plate-theory with linear

displacement distribution.

In addition to all the so far introduced theories, we must mention that Pagano [39] publishes the analytical solution

of the 3D elastic problem for a rectangular laminated plate with pined edged and made of orthotropic materials with

material symmetry axes parallel to plate axes. The plate elasticity solution can be evaluated only assuming simple

geometry, loads, and boundary conditions. Moreover, it requires heavy computational process since the number of

variables depends on the number of layers. As a consequence, the elasticity solution is impractical for engineering

applications, nevertheless it remains a fundamental reference for the evaluation of the plate-theory capabilities. In

addition, Pagano [39] compares elasticity solution with classical laminated plate-theory and shows that the accuracy

of classical plate theories depends on material properties, geometry, and span-to-depth ratio. Finally the author notices

that the 3D-elasticity and CPT solutions could be extremely far for multilayer plates.

Despite the focus of the present paper limits to plate-theory derivation, we find useful to mention that mixed vari-

ational principles could be used also for plate finite element derivation. For instance, by adopting a mixed enhanced

variational formulation and first order shear deformation theory, Auricchio and Sacco [40] present a finite element

method for the analysis of laminated composite plates with an accurate evaluation of shear correction factor. More

recently, Daghia et al. [41] present another mixed theory based on FSDT and the corresponding quadratic, four-node

finite element based on mixed stress formulation. Finally, Moleiro et al. [42] propose a layer-wise finite element model

developed in a mixed least square formulation for static analysis of multilayer composite plates, obtaining numerical

solutions in agreement with 3D solution.

Auricchio et al. [43] introduce a new modeling approach for planar linear elastic beams based on HR principle.

Specifically, they specialize the approach suggested by Alessandrini et al. [35] to 2D problems and develop a planar

beam multilayer models based on dimension reduction approach and HR principle. The obtained model is extremely

accurate and has the capability to capture the local effects produced by boundary constrains and load distribution.

Moreover, shear correction factor appears naturally from the variational derivation. More recently Auricchio et al.

[44] generalize the planar beam-theory to the case of 3D beams.

In the present paper, we generalize the modeling approach presented by Auricchio et al. [43] to multilayer,

anisotropic plates. In Section 2, thickness shape functions with arbitrary coefficients are adopted for both displacement

and stress field and, then, plate-theory partial differential equations are derived starting from the HR dual formulation.

In Section 3, we discuss how to obtain the analytical solutions for CPT, FSDT, elasticity solution, and the plate-theory

introduced in this paper. Finally, in Section 4, the most important plate-theories are compared with the Current Work

in order to highlight capabilities and limitations of the proposed modeling approach.
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The main goals of the current work is to obtain a plate-theory that

1. provides an accurate description of both stress and displacement fields also in complex situations like multi-

layer, anisotropic, and moderately thick plates; in particular, we devote special emphasis to an accurate stress

description since it govern fundamental phenomena like failure

2. does not need any correction factor that must be evaluated a-priori

3. does not need any a-posteriori processing, e.g. in order to recover the stress thickness-distribution

4. could be generalized to complex situations, e.g. graded plates or non-linear constitutive laws

5. could use arbitrarily-accurate variable-descriptions, in order to adapt to specific practitioners needs

2. Theory Derivation

In this chapter we derive an enhanced plate mixed theory. In Subsection 2.1 we perform the first step of the

modeling procedure, i.e. the weak formulation of the 3D elastic problem, in Subsection 2.2 we perform the second

step, i.e. the reduction of the 3D problem to a 2D problem through the dimension reduction method, in Subsection

2.3 we perform the third step that consists of few analytical calculations that allow the partial differential equations

governing the plate-theory to be obtained. Finally, in Subsection 2.4 we show that the proposed modeling approach,

together with suitable assumptions, allows the FSDT partial differential equations to be recovered, with also the

capability to take into account the right amount of shear deformation energy (i.e. without the need of any further shear

correction factor).

2.1. Problem definition

We introduce the plate middle-plane A that is a closed and bounded set of R2 defined as follows:

A =
{
(x, y) ∈ R2|A closed and bounded

}
(1)

Moreover, we assume that its boundary, denoted as ∂A is a sufficiently smooth line. In addition, we introduce the plate

thickness h that is defined as follows:

h =

z ∈ R|z ∈


−h

2
,

h

2


 (2)

where h denotes the measure of the plate thickness. In consequence of the so far introduced sets, the problem domain

Ω is defined as follows:

Ω = A × h (3)

Figure 1 represents the problem domain Ω, the adopted Cartesian coordinate system, plate middle-plane A, and the

middle-plane boundary ∂A.

We denote the domain boundary as ∂Ω and we consider the partition {∂Ωs; ∂Ωτ}. ∂Ωs denotes the displacement

constrained boundary and in the following we assume that ∂Ωs = ∂A × h. On the other hand, ∂Ωτ denotes the loaded

boundary that, as a consequence results as ∂Ωτ = A ×
(
− h

2
, h

2

)
.

The mixed problem variables are the displacement vector field sss : Ω → R
3, the symmetric stress tensor field

σσσ : Ω→ R
3×3
S

, and the corresponding virtual fields δsss and δσσσ.

The boundary conditions are defined as:

sss = sss on ∂Ωs; σσσ · nnn = ttt on ∂Ωt (4)

where sss : ∂Ωs → R
3 is the assigned boundary displacement that is assumed to be a sufficiently smooth function,

ttt : ∂Ωt → R
3 is the assigned boundary load distribution, and nnn is the outward unit vector, defined on the boundary

surface. We highlight that the boundary-conditions (4) ensure that the 3D problem is well-posed but lead only the

clamp to be considered as admissible displacement constraint. Obviously, this assumption could appear too restrictive

for an enhanced plate-theory, nevertheless the derivation procedure leads the boundary conditions to be managed

in a way that recovers also other displacement constraints as the simply support without further complications (see
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Figure 1: problem domain, adopted Cartesian coordinate system, notations, and dimensions

Section 2.3). Finally, for notation simplicity, we are going to neglect the boundary load (i.e. we assume ttt = 000),

nevertheless this hypothesis is not necessary in plate-theory derivation and it could be easily removed.

Last but not least, we introduce the volume force density fff : Ω → R
3 and the fourth-order elastic tensor DDD that

describes the linear constitutive law of the anisotropic material constituting the plate.

Introducing the following spaces:

L2 (Ω) =
{
sss : Ω→ R3 :

∫

Ω

sss · sss dΩ < ∞
}

H(div,Ω) =
{
σσσ : Ω→ R3×3

s : σσσ and div (σσσ) ∈ L2(Ω)
}

W = { sss ∈ L2 (Ω)
}

; S := { δσσσ ∈ H(div,Ω) : δσσσ · nnn|∂Ωt
= 000

}
(5)

the 3D elastic problem could be formulated through the following variational equation.

Find sss ∈ W andσσσ ∈ S such that ∀δsss ∈ W and ∀δσσσ ∈ S

δJHR :=

∫

Ω

δsss · div (σσσ) dΩ +

∫

Ω

div (δσσσ) · sss dΩ +

∫

Ω

δσσσ : DDD : σσσ dΩ+

∫

Ω

δsss · fff dΩ −

∫

∂Ωs

δσσσ · nnn · sss dA = 0

(6)

that corresponds to the dual formulation of the HR functional. As anticipated in Section 1, we highlight that Equation

(6) uses stress field more regular than displacement field.

2.2. Dimension reduction

Following the notation introduced by Alessandrini et al. [35], we represent the displacement sss and the stress tensor

σσσ as illustrated in the following:

sss =



u

v

w


=

{
uuu

w

}
: σσσ =



σx τxy τxz

τxy σy τyz

τxz τyz σz


=

{
ςςς τττ

τττT
ς

}
(7)

where

uuu : Ω→ R
2 represents the in-plane displacements

w : Ω→ R
2 represents the out-of-plane displacement
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ςςς : Ω→ R
2×2
s represents the in-plane stresses

τττ : Ω→ R
2 represents the out-of-plane shear-stresses

ς : Ω→ R represents the out-of-plane stress

We highlight that the so far introduced notation has the following analogies and differences with the “classical” plate-

theory variables:

• uuu contains informations about the membrane displacements and bending rotations

• w contains informations about the out-of-plane displacement

• ςςς contains informations about the membrane stresses and the bending moments

• τττ contains informations about the out-of-plane shear stresses

• ς is usually neglected in classical plate modeling

Consistently with Definitions (7), we introduce also the following notations:

div (·) =



∂
∂x
∂
∂y
∂
∂z


=

{
divA (·)
∂
∂z

}
; fff =



fx

fy
fz


=

{
fff A

fz

}
; sss =



u

v

w


=

{
uuu

w

}
(8)

Introducing Definitions (7) and the notations introduced in Equation (8) Equation (6) can be re-wrote as follows:

δJHR :=

∫

Ω

(
δuuu · divA (ςςς) + δuuu ·

∂

∂z
τττ + δwdivA (τττ) + δw

∂

∂z
ς

)
dΩ+

∫

Ω

(
divA (δςςς) · uuu +

∂

∂z
δτττ · uuu + divA (δτττ) w +

∂

∂z
δςw

)
dΩ+

∫

Ω

(δςςς : DDDAA : ςςς + δςςς : DDDAτ · τττ + δςςς : DDDAhς

+δτττ ·DDDτA : ςςς + δτττ ·DDDττ · τττ + δτττ ·DDDτhς

+ δςDDDhA : ςςς + δςDDDhτ · τττ + δςDhhς) dΩ+
∫

Ω

(δuuu · fff A + δw fz) dΩ−

∫

∂Ωs

(
δςςς · nnnA · uuu + δτττ · nnnAw

)
dA = 0

(9)

where

DDDAA : h→ R
2×2×2×2 is a forth order tensor

DDDAτ = DDDT
τA

: h→ R
2×2×2 is a third order tensor

DDDAh = DDDT
hA

: h→ R
2×2 is a second order tensor

DDDττ : h→ R
2×2 is a second order tensor

DDDτh = DDDT
hτ

: h→ R
2 is a first order tensor

Dhh : h→ R is a scalar
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All them represent a suitable decomposition of the forth-order linear elastic tensor DDD. Moreover we notice that

nnn|∂Ωs
=

{
nnnT

A
, 0

}T
.

The dimension reduction continues with the introduction of the approximation of each unknown field γγγ : Ω→ R
(·)

that is expressed as the linear combination of nγ assigned and linearly independent thickness shape functions γ̂ : h→

R, defined together with an element of the image space γγγ ∈ R(·), and weighted with arbitrary coefficient functions

γ̃ : A→ R. As a consequence it results that:

γγγ (x, y, z) =

nγ∑

i=1

γ̂i (z)γγγiγ̃i (x, y) (10)

In other words, the notation introduced in Equation (10) allows the thickness approximation γ̂i (z) to be distinguished

, the image space structure γγγ, and the scalar functions γ̃i (x, y) that will become the unknowns of the partial differential

equations governing the plate-theory.

In order to explain better the so far introduced notation, we introduce a simple example. If we assume that the

in-plane displacements are linear with respect to the thickness coordinate as illustrated in the following ,we need 4

independent degrees of freedom in order to describe the in-plane kinematic.

uuu (x, y, z) =

{
u0 (x, y) + z ϕx (x, y)

v0 (x, y) + z ϕy (x, y)

}
(11)

Using the notation introduced in Equation (10), we fix nu = 4 and the linear combination terms result defined as

follows:
û1 (z) = 1; uuu1 = {1, 0}

T ; ũ1 (x, y) = u0 (x, y)

û2 (z) = 1; uuu2 = {0, 1}
T ; ũ2 (x, y) = v0 (x, y)

û3 (z) = z; uuu3 = {1, 0}
T ; ũ3 (x, y) = ϕx (x, y)

û4 (z) = z; uuu4 = {0, 1}
T ; ũ4 (x, y) = ϕy (x, y)

(12)

In Equation (10) we write explicitly the dependences of the variables on the Cartesian coordinates, nevertheless in

the following we are going to omit this information for notation simplicity.

As a consequence of assumption (10), the approximations of variables introduced in Equation (8) can be expressed

as:

uuu =

nu∑

i=1

ûiuuuiũi δuuu =

nu∑

j=1

û juuu jδũ j w =

nw∑

k=1

ŵkw̃k δw =

nw∑

l=1

ŵlδw̃l

ςςς =

na∑

p=1

ς̂pςςςpς̃p δςςς =

na∑

q=1

ς̂qςςςqδ̃ςq τττ =

nτ∑

r=1

τ̂rτττr τ̃r δτττ =

nτ∑

s=1

τ̂sτττsδ̃τs

ς =

nς∑

t=1

ς̂tς̃t δς =

nς∑

v=1

ς̂vδ̃ςv

(13)

In particular, we remark that:

• despite the different indexes, the same thickness shape functions describe both the variables and the correspond-

ing variations, e.g. if i = j⇒ ûi = û j and uuui = uuu j

• since w, δw, ς, and δς are scalar fields, wk, wl, ςt, and ςv result equal to scalar values and, as a consequence, we

neglect them in Equation (13) and in the following

• the satisfaction of boundary equilibrium (see space definitions (5)) requires that ∀r τ̂r |± h
2

= 0 and ∀t ς̂t |± h
2

=

0

• in the following, we are going to use the Einstein notation, in order to simplify expressions.
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Substituting Equation (13) in Equation (9), the mixed variational equation can be rewritten as:

δJHR :=

∫

Ω

(
û ĵςp δũ juuu j · divA

(
ςςςpς̃p

)
+ û ĵτ

′
r δũ juuu j · τττr̂τr+

ŵl̂τr δw̃ldivA

(
τττrτ̃r

)
+ ŵl̂ς

′
t δw̃l̃ςt

)
dΩ+

∫

Ω

(
ς̂qûi divA

(
δ̃ςqςςςq

)
· uuuiũi + τ̂

′
sûi δ̃τsτττs · uuuiũi+

τ̂sŵk divA

(
δ̃τsτττs

)
w̃k + ς̂

′
vŵk δ̃ςvw̃k

)
dΩ+

∫

Ω

(
ς̂q̂ςp δ̃ςqςςςq : DDDAA : ςςςpς̃p + ς̂qτ̂r δ̃ςqςςςq : DDDAτ · τττrτ̃r + ς̂q̂ςt δ̃ςqςςςq : DDDAς̃ςt +

τ̂ŝςp δ̃τsτττs ·DDDτA : ςςςpς̃p + τ̂ŝτr δ̃τsτττs ·DDDττ · τττrτ̃r + τ̂ŝςt δ̃τsτττs ·DDDτhςt̃ςt +

ς̂v̂ςp δ̃ςvDDDhA : ςςςpς̃p + ς̂vτ̂r δ̃ςvDDDhτ · τττrτ̃r + ς̂v̂ςt δ̃ςvDhhς̃t

)
dΩ+

∫

Ω

(
û j δũ juuu j · fff A + ŵl δw̃l fz

)
dΩ−

∫

∂Ωs

(
ς̂q δ̃ςqςςςq · nnnA · uuu + τ̂s δ̃τsτττs · nnnAw

)
dA = 0

(14)

where (·)′ indicates the derivative with respect to z.

Exploiting the domain structure (see Equation (3)) it is possible to split the integral over the volume Ω into an

integral over the middle-plane A and an integral within the thickness h. As a consequence we can rewrite Equation (14)

as:

δJHR :=

∫

A

(
G jp δũ juuu j · divA

(
ςςςpς̃p

)
+G jr δũ juuu j · τττr̂τr +Glr δw̃ldivA

(
τττrτ̃r

)
+Glt δw̃l̃ςt

)
dΩ+

∫

A

(
Gqi divA

(
δ̃ςqςςςq

)
· uuuiũi +Gsi δ̃τsτττs · uuuiũi +Gsk divA

(
δ̃τsτττs

)
w̃k +Gvk δ̃ςvw̃k

)
dΩ+

∫

A

(
Gqp δ̃ςqςςςq : DDDAA : ςςςpς̃p +Gqr δ̃ςqςςςq : DDDAτ · τττrτ̃r +Gqt δ̃ςqςςςq : DDDAς̃ςt +

Gsp δ̃τsτττs ·DDDτA : ςςςpς̃p +Gsr δ̃τsτττs ·DDDττ · τττrτ̃r +Gst δ̃τsτττs ·DDDτhςt̃ςt +

Gvp δ̃ςvDDDhA : ςςςpς̃p +Gvr δ̃ςvDDDhτ · τττrτ̃r +Gvt δ̃ςvDhhς̃t

)
dΩ+

∫

A

(
δũ juuu j · FFF j + δw̃lFl

)
dΩ−

(
δ̃ςq|∂Aςςςq · nnnA ·UUUq + δ̃τs|∂Aτττs · nnnAW s

)
dA = 0

(15)

where the coefficients are defined as follows:

G jp = Gqi =

∫

h

û ĵapdz for i = j and q = p G jr = Gsi =

∫

h

û ĵτ
′
rdz for i = j and s = r

Glr = Gsk =

∫

h

ŵl̂τrdz for k = l and s = r Glt = Gvk =

∫

h

ŵl̂ς
′
t dz for k = l and v = t

Gqp =

∫

h

âq̂apdz Gqr = Gsp =

∫

h

âq̂τrdz for p = q and s = r

Gqt = Gvp =

∫

h

âq̂ςtdz for p = q and v = t Gsr =

∫

h

τ̂ŝτrdz

Gst = Gvr =

∫

h

τ̂ŝςtdz for v = t and r = s Gvt =

∫

h

ς̂v̂ςtdz

FFF j =

∫

h

û j fff Adz Fl =

∫

h

ŵl fzdz

UUUq =

∫

h

âquuudz W s =

∫

h

τ̂swdz

(16)

8



We highlight that Equation (15) can be seen as the weak formulation of the proposed plate-theory.

2.3. Partial differential equation derivation

In order to derive the 2D partial differential equations that govern the plate-theory, we need to apply the divergence

theorem to the fifth and seventh terms of Equation (15), as illustrated in the following.
∫

A

Gqi divA

(
δ̃ςqςςςq

)
· uuuiũidz =Gqi δ̃ςq|∂Aςςςq · nnnA · uuuiũi −

∫

A

Gqi δ̃ςqςςςq · grads
A

(
uuuiũi

)
dz

∫

A

Gsk divA

(
δ̃τsτττs

)
w̃kdz =Gsk δ̃τs|∂Aτττs · nnnAw̃k −

∫

A

Gsk δ̃τsτττsgradA (w̃k) dz

(17)

where grads
A

(
uuu
)

is the symmetric gradient, defined as

grads
A

(
uuu
)
=

1

2

(
gradA

(
uuu
)
+ gradT

A

(
uuu
))

(18)

Substituting Equation (17), Equation (15) can be rewritten as:

δJHR :=

∫

A

(
G jp δũ juuu j · divA

(
ςςςpς̃p

)
+G jr δũ juuu j · τττr τ̂r +Glr δw̃ldivA

(
τττrτ̃r

)
+Glt δw̃l̃ςt

)
dΩ+

∫

A

(
−Gqi δ̃ςqςςςq · grads

A

(
uuuiũi

)
+Gsi δ̃τsτττs · uuuiũi −Gsk δ̃τsτττsgradA (w̃k) +Gvk δ̃ςvw̃k

)
dΩ+

∫

A

(
Gqp δ̃ςqςςςq : DDDAA : ςςςpς̃p +Gqr δ̃ςqςςςq : DDDAτ · τττrτ̃r +Gqt δ̃ςqςςςq : DDDAςς̃t +

Gsp δ̃τsτττs ·DDDτA : ςςςpς̃p +Gsr δ̃τsτττs ·DDDττ · τττrτ̃r +Gst δ̃τsτττs ·DDDτhςt̃ςt +

Gvp δ̃ςvDDDhA : ςςςpς̃p +Gvr δ̃ςvDDDhτ · τττr τ̃r +Gvt δ̃ςvDhhς̃t

)
dΩ+

∫

A

(
δũ juuu j · FFF j + δw̃lFl

)
dΩ+

δ̃ςq|∂Aςςςq · nnnA ·
(
Gqi uuuiũi −UUUq

)
+ δ̃τs|∂Aτττs · nnnA

(
Gsk w̃k −W s

)
dA = 0

(19)

Since Equation (19) must be satisfied for all virtual fields, the following partial differential equations must be satisfied

in the middle-plane A:

G jp uuu j · divA

(
ςςςpς̃p

)
+G jr uuu j · τττrτ̂r + uuu j · FFF j = 000 (20a)

Glr divA

(
τττrτ̃r

)
+Glt ς̃t + Fl = 000 (20b)

−Gqi ςςςq · grads
A

(
uuuiũi

)
+Gqp ςςςq : DDDAA : ςςςpς̃p +Gqr ςςςq : DDDAτ · τττrτ̃r +Gqt ςςςq : DDDAς̃ςt = 000 (20c)

Gsi τττs · uuuiũi −Gsk τττsgradA (w̃k) +Gsp τττs ·DDDτA : ςςςpς̃p +Gsr τττs ·DDDττ · τττrτ̃r +Gst τττs ·DDDτhςtς̃t = 000 (20d)

Gvk w̃k +Gvp DDDhA : ςςςpς̃p +Gvr DDDhτ · τττrτ̃r +Gvt Dhhς̃t = 000 (20e)

together with the following boundary conditions that must be satisfied on the middle-plane boundary ∂A:

Gqi uuuiũi −UUUq = 000 (21a)

Gsk w̃k −W s = 000 (21b)

The partial differential equations (20) and the boundary conditions (21) are the strong formulation of the plate-

theory. In particular, we highlight the following statements.

• Equations (20a) and (20b) enforce the plate equilibrium. More in detail, Equation (20a) enforces the membrane

and the bending equilibrium whereas Equation (20b) enforces the transversal equilibrium.

• Equations (20c), (20d), and (20e) model the constitutive and the compatibility relations. In particular, Equa-

tion (20e) represents only algebraic relations and, as a consequence, we can conclude that the plate theory (20)

is governed by an algebraic-differential equations system.

9



• The assumption that the thickness shape functions are linearly independent ensures that it is possible to statically

condensate out all the stress variables and obtain an hybrid version of the plate-theory. Nevertheless, this

opportunity will not be investigated in the present document.

• The displacement boundary conditions (Equations (21a) and (21b)) are a natural outcome of the manipulation

of the problem variational formulation.

• On the other hand, we recall that the boundary equilibrium equations are imposed in spaces definitions (5) and

must be satisfied a-priori by all the stresses involved in the problem formulation.

• Despite the heavy initial assumption on boundary displacements, the model leads in-plane and transversal

boundary displacements to be managed separately.

• The number of boundary conditions depends on the number of adopted thickness shape-functions (specifically

the boundary conditions result equal to q + s). As a consequence, using numerous thickness shape-functions,

we are able to manage refined boundary conditions and situations e.g. displacement distributions that induce

only local effects. Nevertheless this model’s capability will be investigated in the future.

• Using suitable assumptions on displacements thickness shape functions and opportunely substituting displace-

ment boundary conditions with the dual conditions on stresses in all ∂A or only in some portion of it, it is also

possible to obtain boundary conditions more usual in plate modeling (hinge, simple support, etc.).

2.4. FSDT equations recovery

In this subsection we show that is possible to recover classical FSDT equations using Equation (20) and suitable

assumptions on thickness shape functions.

Specifically, we assume that plate is homogeneous and made of an isotropic material characterized by a Young’s

modulo E , 0 and a vanishing Poisson’s ratio ν = 0. Moreover we assume that ςz = 0 and we introduce the following

thickness shape functions:

û1 = û2 = 1; û3 = û4 = z; ŵ1 = 1

τ̂1 = τ̂2 =

(
1 − 4

z2

h2

)
; ς̂1 = ς̂2 = ς̂3 = 1; ς̂4 = ς̂5 = ς̂6 = z

(22)

uuu1 = uuu3 = {1, 0}
T ; uuu2 = uuu4 = {0, 1}

T ;

τττ1 = {1, 0}
T ; τττ2 = {0, 1}

T

ςςς1 = ςςς4 =

{
1 0

0 0

}
; ςςς2 = ςςς5 =

{
0 1

1 0

}
; ςςς3 = ςςς6 =

{
0 0

0 1

} (23)

and the corresponding coefficient functions, collected in suitable vectors:

ũi =
{
u0, v0, ϕx, ϕy

}T
; w̃k = w0; ς̃p =

{
σx0, σy0, τxy0, σx1, σy1, τxy1

}T
; τ̃r =

{
τxz, τyz

}T
(24)

In consequence of the so far introduced assumptions it results that ςt = 0 and DDDAτ = 000, and Equation (20e)

becomes the trivial identity 0 = 0. Moreover, the coefficient G could be easily evaluated and we resume their values

in the following matrices:

G jp =



h h h 0 0 0

h h h 0 0 0

0 0 0 J J J

0 0 0 J J J


; G jr =

2

3



0 0

0 0

h h

h h


; Glr =

2

3

{
h; h

}

Gqp =



h h h 0 0 0

h h h 0 0 0

h h h 0 0 0

0 0 0 J J J

0 0 0 J J J

0 0 0 J J J



; Gsr =
8

15

{
h h

h h

}
(25)
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where J = h
3
/12.

Assuming also a vanishing load, i.e. fff = 000, Equations (20) reduce to the following scalar equations:

hσx0,x + hτxy0,y = 0 (26a)

hτxy0,x + hσy0,y = 0 (26b)

Jσx1,x + Jτxy1,y −
2

3
hτxz = 0 (26c)

Jτxy1,xJ + σy1,y −
2

3
hτyz = 0 (26d)

2

3
hτxz,x = 0 (26e)

2

3
hτyz,y = 0 (26f)

− hu0,x +
h

E
σx0 = 0 (26g)

− hu0,y − hv0,x +
2h

E
τxy0 = 0 (26h)

− hv0,y +
h

E
σy0 = 0 (26i)

− Jϕx,x +
J

E
σx1 = 0 (26j)

− Jϕx,y − Jϕy,x +
2J

E
τxy1 = 0 (26k)

− Jϕy,y +
J

E
σy1 = 0 (26l)

2

3
hϕx −

2

3
hw0,x +

8

15

2h

E
τxz = 0 (26m)

2

3
hϕy −

2

3
hw0,y +

8

15

2h

E
τyz = 0 (26n)

Furthermore, using Equations from (26g) to (26n) it is possible to express stress unknowns as a function of

displacements. Substituting these latter expressions in Equations from (26a) to (26f) we obtain the following problem

displacement-formulation:

hEu0,xx + h
E

2

(
u0,yy + v0,xy

)
= 0 (27a)

h
E

2

(
u0,xy + v0,xx

)
+ hEv0,yy = 0 (27b)

Jϕx,xx + J
E

2

(
ϕx,yy + ϕy,xy

)
−

5

6

E

2
h
(
w0,x − ϕx

)
= 0 (27c)

Jϕy,yy + J
E

2

(
ϕx,xy + ϕy,xx

)
−

5

6

E

2
h
(
w0,y − ϕy

)
= 0 (27d)

5

6

E

2
h
(
w0,xx − ϕx,x

)
= 0 (27e)

5

6

E

2
h
(
w0,yy − ϕy,y

)
= 0 (27f)

We highlight that in Equations from (27c) to (27f) the shear factor 5/6 appears naturally from the problem formulation,

without the need of any further evaluation or discussion.
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3. Simply Supported Plate

In the following we focus on the case of a rectangular plate for which, due to the simple geometry, it is possible

to easily compute a series solution. Moreover, we assume that the plate is simply supported along its edges, i.e.:

∫ h
2

− h
2

u (x, y, z)|y=0,b dz = 0;

∫ h
2

− h
2

v (x, y, z)|x=0,a dz = 0;

∫ h
2

− h
2

w (x, y, z)|∂A dz = 0 (28)

Finally, we assume that the load is orthogonal to the plate middle-plane (i.e. fff = {0, 0, fz}
T ) and it could have a

uniform distribution. All the assumptions introduced so far allow the analytical solution of many different theories to

be evaluated.

In particular, to compare the proposed theory with some others, in the following we provide the details necessary

to evaluate the analytical solutions for CPT, FSDT, elasticity theory, and the theory proposed in the Current Work and

represented by Equation (20).

Figure 2: rectangular plate: coordinate system and dimensions

3.1. Classical Plate Theory

CPT solution is completely determined by the displacement of the points on the middle-plane along the three

coordinate directions as:

u (x, y, z) = u0 (x, y) − z
∂w0

∂x

v (x, y, z) = v0 (x, y) − z
∂w0

∂y

w (x, y, z) = w0 (x, y)

(29)

where u0, v0, and w0 are displacement filed of middle-plane along x, y, and z directions, respectively. We notice

that the assumed displacement fields lead to a vanishing transverse strains (i.e. γxz = γyz = 0). Due to the assigned

boundary conditions and load, u0 and v0 are going to be always equal to zero and we will neglect them in the following.

On the other hand, we use a double sin series with unknown coefficients Wmn in order to describe the vertical

displacement field w0, as illustrated in the following.

w0 (x, y) =

∞∑

n=1

∞∑

m=1

Wmn sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
(30)

Analogously, the load could be expressed as a double sin series:

q (x, y) =

∞∑

n=1

∞∑

m=1

Qmn sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
(31)
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where Qmn can be determined with:

Qmn =
4

ab

∫ a

0

∫ b

0


∫ h

2

− h
2

fz (x, y, z) dz

 sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
dxdy (32)

The resulting bending moments Mxx, Myy, and Mxy are obtained by introducing Equation (30) in the compatibility

relation εεε = ∇ssss, substituting the obtained strains εεε into the constitutive relation σσσ = DDD−1εεε, and evaluating the

following integrals: 
Mxx

Myy

Mxy

 =
∫ h

2

− h
2


zσxx

zσyy

zτxy

 dz (33)

The analytical solution of CPT comes from the satisfaction of the following governing equation:

∂2

∂x2
Mxx + 2

∂2

∂x∂y
Mxy +

∂2

∂y2
Myy + q = 0 (34)

We highlight that, due to the introduction of assumptions (30) and (31), Equation (34) reduces to a set of infinite

algebraic equations in infinite unknowns. Truncating both the double sin series (30) and (31) at suitable n and m, it is

possible to evaluate numerically an approximation of the analytical solution. The complete solution procedure can be

found in reference books [e.g. 7, 45].

3.2. First Order Shear Deformation Theory

FSDT allows independent and arbitrary rotations of transverse segments of the plate, as described in the following:

u(x, y, z) = u0 (x, y) − zϕx (x, y)

v(x, y, z) = v0 (x, y) − zϕy (x, y)

w(x, y, z) = w0 (x, y)

(35)

As in Section 3.1, u0, v0, and w0 denote the middle-plane displacements whereas ϕx and ϕy denote the rotations of a

transverse normal around the y and x axises respectively.

In addition to the double sin series expansion introduced in Equations (30) and (31), we use 2 sin-cos series

with unknown coefficients φx
mn and φ

y
mn, in order to describe the rotations ϕx and ϕy respectively, as illustrated in the

following.

ϕx (x, y) =

∞∑

n=1

∞∑

m=1

φx
mn cos

(
mπ

a
x

)
sin

(
nπ

b
y

)

ϕy (x, y) =

∞∑

n=1

∞∑

m=1

φ
y
mn sin

(
mπ

a
x

)
cos

(
nπ

b
y

) (36)

As a consequence of Equation (35), the transverse shears strains and the corresponding stresses result to be constant

through the plate thickness, whereas in order to satisfy boundary equilibrium they must vanish at boundaries z = ± h
2
.

As a consequence,we introduce shear correction factor Ks = 5/6, with the aim to compute the correct amount of

deformation work induced by shear deformations.

The resulting shear forces Qx and Qy could be obtained evaluating the following integrals:

{
Qx

Qy

}
= Ks

∫ h
2

− h
2

{
τxz

τyz

}
dz (37)

where the shear stresses τxz and τyz are evaluated through the procedure introduced in Section 3.1.

The analytical solution of FSDT comes from the satisfaction of the following governing equations:

∂Qx

∂x
+
∂Qy

∂y
+ q = 0

∂Mxx

∂x
+
∂Mxy

∂y
− Qx = 0

∂Mxy

∂x
+
∂Myy

∂y
− Qy = 0

(38)
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Similarly to CPT, due to the introduction of assumptions (30), (36), and (31), Equation (38) reduces to a set of infinite

algebraic equations in infinite unknowns. Truncating the series (30), (36), and (31) at suitable n and m, it is possible

to evaluate numerically an approximation of the analytical solution. Further details can be found in reference book

[45].

3.3. Elasticity Theory

As it is mentioned in Section 1, Pagano [39] studies the 3D solution for a rectangular simply supported plate. The

3D elasticity solution is based on the displacement field prediction. In paricular Pagano [39] suggests the following

expansion for the displacement field.

u (x, y, z) =

∞∑

n=1

∞∑

m=1

U (z) cos

(
mπ

a
x

)
sin

(
nπ

b
y

)

v (x, y, z) =

∞∑

n=1

∞∑

m=1

V (z) sin

(
mπ

a
x

)
cos

(
nπ

b
y

)

w (x, y, z) =

∞∑

n=1

∞∑

m=1

W (z) sin

(
mπ

a
x

)
sin

(
nπ

b
y

)

(39)

By using the 3D problem governing equations together with assumptions (39) and the boundary equilibrium on the

top and bottom of the plate, the unknown functions along the z axis can be determined as illustrated in the reference

paper.

3.4. Current work

In order to choose the thickness shape functions γ̂, we need to recall the spaces where we choose both solution

and virtual functions for the starting 3D problem (5). Furthermore, in order to ensure that the theory proposed in

Section 2.3 is well-posed, Auricchio et al. [46] suggest to require the following condition:

div (S ) = W (40)

Moreover, we assume that the thickness shape functions γ̂ are complete polynomial, defined by their maximum degree,

denoted as deg
(̂
γ
)
. As a consequence, in order to satisfy Equation (40), we need to enforce the following condition

on thickness shape functions:

deg
(
ς̂p

)
= deg

(̂
τr

)
− 1 = deg

(̂
ui

)

deg
(̂
τr

)
= deg

(̂
ςt

)
− 1 = deg

(
ŵk

) (41)

Choosing deg
(̂
τr

)
= 2, in order to recover a shear distribution similar to the analytical solution, enforcing all the

Equations (41) and imposing boundary equilibrium (i.e. the essential condition) on ∂Ωτ we select the degrees of each

scalar component as specified in Table 1.

deg z− continuity Layer DOF Global DOF

uuu
u 1 no 2 2n

v 1 no 2 2n

w 2 no 3 3n

ςςς

σx 1 no 2 2n

σy 1 no 2 2n

τxy 1 no 2 2n

ς σz 3 yes 4 3n-1

τττ
τxz 2 yes 3 2n-1

τyz 2 yes 3 2n-1

Table 1: thickness shape functions: definition of polynomial degrees, z−continuity properties and resulting number of degree of freedom

We highlight the following statements.
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• Displacement components u, v, and w are z−discontinuous. This assumption apparently violates the interlayer

compatibility that nevertheless is naturally enforced by the plate theory equations (20), according to the initial

problem formulation (6).

• The in-plane stress components σx, σy, and τxy are z−discontinuous. This assumption appears as a reasonable

choice with respect to initial problem formulation (6) since these stress-components has no role in interlayer

equilibrium. Furthermore, from a physical point of view, assuming inhomogeneous plates the these stresses

may be discontinuous within the thickness.

• The out-of-plane shear-stress components τxz and τyz and the out-of-plane stress σz are z−continuous. This

assumption ensures that interlayer equilibrium is imposed as essential condition for the plate theory, according

to the initial problem formulation (6).

As a consequence, the current work theory privileges an accurate stress description, according to the goals introduced

at the end of Section 1 and it does not show inconsistencies with respect to the initial 3D problem formulation.

Using for each ŵi an expansion similar to the one introduced in Equation (30), for each ûi expansions similar to

the ones introduced in Equation (36), and the following expansions for stress coefficient functions, we can reduce the

strong formulation of the plate theory (20) to a set of algebraic equations, as in all the previously discussed theories.

σ̃i =

∞∑

n=1

∞∑

m=1

S i
mn cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
i = x, y, z

τ̃xy =

∞∑

n=1

∞∑

m=1

S
xy
mn cos

(
mπ

a
x

)
cos

(
nπ

b
y

)

τ̃xz =

∞∑

n=1

∞∑

m=1

S xz
mn cos

(
mπ

a
x
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3.5. Remarks on theories analytical solutions

We conclude this section highlighting the following remarks on the illustrated theories and the corresponding

analytical solutions.

• The analytic solutions of all the presented theories can be numerically evaluated through a suitable truncation

of the series expansions and solving numerically the obtained algebraic equations.

• All the series expansions are defined in a way that satisfy the boundary conditions (28).

• CPT and FSDT are single-layer models, i.e. they use functions globally defined on the whole thickness.

• On the other hand, elasticity theory and the Current Work are layer-wise models, i.e., considering multilayer

plates, they could use functions defined locally on each layer.

4. Numerical Results

In this section we compare the theories introduced in Section 3 through the discussion of some numerical results

with the aim to highlight capabilities and limitations of the proposed modeling approach. In particular, we consider

an homogeneous and isotropic plate and some multilayer orthotropic plates, which numerical results are discussed

in Subsections 4.1 and 4.2 respectively. We highlight that, since the plate analytical solution is available only for

orthotropic materials [39], we are forced to limit our attention on the restrictive hypothesis so far mentioned in order

to perform a rigorous discussion. Nevertheless, the proposed theory can be applied to more general cases which

rigorous investigation will be object of further developments.

15



In the following we consider the dimensionless transversal displacement evaluated at center of plate and defined

as:

w =
Eh3

q0a4


∫ h

2

− h
2

w

(
a

2
,

b

2
, z

)
dz

 · 102 (43)

where q0 is the magnitude of uniformly distributed load or the maximum magnitude of the sinusoidally distributed

load.

4.1. Isotropic Plate

Table 2 reports the dimensionless transverse displacement w evaluated for an isotropic square plate under uniform

load. The parameter is evaluated considering the different theories introduced in Section 3, different series truncations,

and different span-to-depth ratios. Finally, we assume Ks = 5/6 as shear correction factor for FSDT.

Theory n, m a
h
= 5 a

h
= 10 a

h
= 20 a

h
= 50 a

h
= 100

CPT

n=m=10 4.5703 4.5703 4.5703 4.5703 4.5703

n=m=20 4.5701 4.5701 4.5701 4.5701 4.5701

n=m=30 4.5701 4.5701 4.5701 4.5701 4.5701

FSDT

n=m=10 5.4558 4.7917 4.6256 4.5791 4.5725

n=m=20 5.4540 4.7911 4.6254 4.5790 4.5724

n=m=30 5.4543 4.7912 4.6254 4.5790 4.5724

n=m=40 5.4542 4.7912 - - -

n=m=50 5.4542 - - - -

Current Work

n=m=10 5.4638 4.7939 4.6262 4.5792 4.5725

n=m=20 5.4622 4.7933 4.6260 4.5791 4.5724

n=m=30 5.4623 4.7934 4.6260 4.5791 4.5724

n=m=40 5.4623 4.7934 - - -

Elasticity

n=m=10 5.3654 4.7704 4.6204 4.5783 4.5723

n=m=20 5.3646 4.7700 4.6202 4.5782 4.5721

n=m=30 5.3646 4.7700 4.6202 4.5782 4.5721

Table 2: dimensionless transversal displacement w evaluated for one layer, isotropic, square, and simply supported plate, evaluate considering

different theories, truncation terms, and span-to-depth ratios

We notice that the solutions converge with a number of expansion terms between 20 and 40 for all the considered

theories and span-to-depth ratios. In particular, the convergence is quick for thin plates ( a
h
= 100 and a

h
= 50) whereas

it is slow for thick plates ( a
h
= 5 and a

h
= 10). Focusing our attention to the theory proposed in Current Work, we

notice that it converges faster than FSDT for a
h
= 5. Moreover, the Current Work solution is not significantly different

from FSDT for all the span-to-depth ratios, maybe as a consequence of the simple geometry and material properties

that, among other consequences, lead the applied shear factor to be exact. Finally, for thin plate ( a
h
= 100), the

solutions of current theory, elasticity, FSDT, and CPT are very close, as expected from theoretical analysis [2]. All the

results reported in the following of this section are obtained using a number of expansion terms sufficient to ensure

the convergence of the solution, according to the results reported in Table 2.

Figure 3 shows the distribution of shear stress τxz along the thickness, evaluated in (x, y) = (0, b/2). In particular,

for the FSDT we plot the shear stress distribution evaluated using the compatibility and constitutive laws, using only

those elements FSDT does not provide the correct shear stress distribution but it provides only its mean value, as

noticed also in reference books [45]. On the other hand, it is well known that the equilibrium equation allows an

accurate distribution of the shear stresses to be derived in FSDT. Specifically, it is possible to recover the quadratic

distribution of the shear stress post-processing the in plane stress solution. For the homogeneous plate considered in

this section, the shear stress distribution obtained trough the equilibrium-equation post-processing is exactly equal to

the one determined from the proposed approach.

Nevertheless, we notice that the Current Work theory is extremely accurate in predicting both the displacement

and the stress distributions, without the need to introduce any shear correction factor or to perform any post-processing

analysis.
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Figure 3: out of plane shear stress τxz evaluated for one layer, isotropic, square, and simply supported plate, distribution along the thickness

evaluated in (x, y) = (0, b/2)

4.2. Layered Orthotropic Plate

In this section we consider a multilayer plate, in which each layer is made of an orthotropic material with the

following mechanical properties:

E1 = 25 · E2; E2 = E3

G12 = G13 = 0.5 · E2; G23 = 0.2 · E2

ν12 = ν13 = ν23 = 0.25

(44)

More in detail, we consider plates made of 2, 3, and 4 equal layers with the fibers orientated as follows: 0/90, 0/90/0,

and 0/90/90/0 respectively. As usual in engineering practice the numbers indicate the orientation angle of the fibers in

each layer.

Table 3 reports the dimension-less transversal displacement evaluated for a square, simply supported, and uni-

formly loaded plates with different number of layers and different span-to-depth ratios.

We notice that CPT theory provide a reasonable prediction only for slender plates ( a
h
= 50 and a

h
= 100), whereas

its solution effectiveness worsen quickly decreasing the span-to-depth ratio.

In order to discuss more rigorously the results of Table 3, we introduce also the displacement relative error, defined

as:

error =
wi − welasticity

welasticity

× 100 i = CPT, FS DT, andCurrent Work (45)

Table 4 reports the relative errors evaluated for the theories considered in this paper and for the multilayer plate.

We notice the following statements.

• Increasing the number of layers, CPT and FSDT becomes ineffective in predicting the maximum displacement,

also for relatively slender plates ( a
h
= 20).

• On the other hand, the Current Work relative error remains < 1% independently from the number of layers and

the span-to-depth ratio.

• Moreover, looking at the 4 layer relative errors we observe that increasing the span-to-depth ratio of 1 order of

magnitude, the relative errors of CPT and FSDT decrease of 1 order of magnitude whereas the Current Work

relative error decrease of more than 4 order of magnitude.
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Theory a
h
= 5 a

h
= 10 a

h
= 20 a

h
= 50 a

h
= 100

1 Layer

CPT 0.8187 0.8187 0.8187 0.8187 0.8187

FSDT 1.9183 1.0776 0.8595 0.7977 0.7888

Current Work 1.9373 1.0900 0.8698 0.8073 0.7984

Elasticity 1.9008 1.0852 0.8689 0.8072 0.7983

2 Layers

CPT 2.0439 2.0439 2.0439 2.0439 2.0439

FSDT 2.8570 2.1006 1.9119 1.8592 1.8516

Current Work 2.8733 2.1451 1.9630 1.9121 1.9048

Elasticity 2.8362 2.1370 1.9611 1.9118 1.9047

3 Layers

CPT 0.8342 0.8342 0.8342 0.8342 0.8342

FSDT 2.0923 1.1434 0.8873 0.8136 0.8030

Current Work 2.4872 1.2925 0.9366 0.8308 0.8155

Elasticity 2.4611 1.2882 0.9357 0.8307 0.8154

4 Layers

CPT 0.8485 0.8485 0.8485 0.8485 0.8485

FSDT 2.0613 1.1507 0.8998 0.8267 0.8161

Current Work 2.4139 1.2838 0.9459 0.8442 0.8293

Elasticity 2.3905 1.2795 0.9450 0.8440 0.8293

Table 3: dimensionless transversal displacement w evaluated for multi-layer, non-homogeneous, orthotropic, square, and simply supported plate,

evaluate considering different theories, span-to-depth ratios and uniform load

Error(%) Theory a
h
= 5 a

h
= 10 a

h
= 20 a

h
= 50 a

h
= 100

1 Layer

CPT 56.929 24.558 5.7774 1.4247 2.5554

FSDT 0.9207 0.7003 1.0818 1.1769 1.1900

Current Work 1.9202 0.4423 0.1036 0.0124 0.0125

2 Layers

CPT 27.935 4.3566 4.2221 6.9097 7.3082

FSDT 0.7334 1.7033 2.5088 2.7513 2.7878

Current Work 1.3081 0.3790 0.0969 0.0157 0.0053

3 Layers

CPT 66.105 35.243 10.848 0.4213 2.3056

FSDT 14.985 11.241 5.1726 2.0585 1.5207

Current Work 1.0605 0.3338 0.0962 0.0120 0.0123

4 Layers

CPT 64.505 33.685 10.212 0.5332 2.3152

FSDT 13.771 10.066 4.7831 2.0498 1.5917

Current Work 0.9789 0.3361 0.0952 0.0237 < 10−4

Table 4: displacement errors evaluated for multi-layer, non-homogeneous, orthotropic, square, and simply supported plate, evaluate considering

different theories, span-to-depth ratios and a uniform load
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(a) shear stresses τxz evaluated in (x, y) = (0, b/2) (b) shear stresses τxz evaluated in (x, y) = (a/2, 0)

Figure 4: out of plane shear stresses τxz and τyz evaluated for 3 layers, non homogeneous, orthotropic, square, and simply supported plate, fiber

orientation 0/90/0, distribution along the thickness

Figure 4 plots the out of plane shear stresses for the 3 layers plate so far introduced. The figure confirm that, also

in complex situations, the Current Work provides accurate stress descriptions without the need of any post-processing

operation.

Figure 5 plots the out of plane shear stresses for 3 layers plate so far introduced. The figure highlight that FSDT has

only the capability to catch the displacement mean values (membrane displacement and rotation). On the contrary, the

Current Work has the capability to predict effectively also complex displacement distributions, leading to extremely

accurate description of multilayer plate behavior and opening interesting perspective for enhanced analysis.

5. Conclusions

This paper considers a new modeling approach applicable to inhomogeneous, anisotropic, and moderately thick

plates based on HR principle and dimension reduction method. More in detail, we start choosing an expression of

the HR principle that privileges an accurate description of stress field. We continue reducing the problem dimension,

i.e. we approximate each field variable as a combination of some assigned cross section shape functions weighted

with arbitrary coefficient functions that become the plate model unknowns. Finally, we obtain the system of partial

differential equations governing the plate behavior through some analytical calculations. In order to understand the

capabilities of Current Work, we compare the current-work analytical solution with the analytical solutions of other

well known theories available in literature.

The main advantages of the proposed theory are listed in the following.

• As a consequence of the use of the HR principle, the obtained theory consider separately displacements and

stresses.

• Moreover, the use of the HR principle dual formulation leads stresses to be described more accurately than dis-

placements, allowing the goal of an accurate stress description to be achieved increasing only useful variables.

• The approach used to obtain the plate-theory allows the number of unknown variables to use within the equa-

tions to be chosen, opening the possibility to manage both theory accuracy and costs.
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Figure 5: in-plane displacement u evaluated for 3 layers, non homogeneous, orthotropic, square, and simply supported plate, fiber orientation

0/90/0, distribution along the thickness

• The proposed approach does not need the introduction of shear correction factor, at least adopting the assump-

tions introduced in this paper.

• Stresses are obtained directly from the theory, without the need of any post-processing operation.

The numerical results highlight the capability of the proposed theory to provide accurate solutions even in com-

plex situations like inhomogeneous, orthotropic, and moderately thick plates. In particular, the performances of the

proposed theory are equivalent to the performance of classical theories in predicting the plate maximum displacement

for simple plate geometries. On the other hand, the proposed theory exceeds classical theories in predicting displace-

ments for complex and/or thick plates. Moreover, the proposed theory results effective in the description of both

displacement and stress distributions, catching complex behaviors like non-linear displacement distributions. Finally,

numerical results highlight that the Current Work performances are not influenced by the number of layers.

Further investigations will include the development of the plate finite element corresponding to the proposed

theory and the investigation of further aspects like stress concentration, local effects, buckling, dynamics, large defor-

mations, and failure.
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