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Abstrat

This paper illustrates an appliation of the so-alled dimensional redution modelling approah to obtain a

mixed, 3D, linear, elasti beam-model.

We start from the 3D linear elasti problem, formulated through the Hellinger-Reissner funtional, then

we introdue a ross-setion pieewise-polynomial approximation, and �nally we integrate within the ross

setion, obtaining a beam model that satis�es the ross-setion equilibrium and ould be applied to inho-

mogeneous bodies with also a non trivial geometries (suh as L-shape ross setion). Moreover the beam

model an predit the loal e�ets of both boundary displaement onstraints and non homogeneous or

onentrated boundary load distributions, usually not aurately aptured by most of the popular beam

models.

We modify the beam-model formulation in order to satisfy the axial ompatibility (and without violating

equilibrium within the ross setion), then we introdue axis pieewise-polynomial approximation, and �nally

we integrate along the beam axis, obtaining a beam �nite element. Also the beam �nite elements have the

apability to desribe loal e�ets of onstraints and loads. Moreover, the proposed beam �nite element

desribes the stress distribution inside the ross setion with high auray.

In addition to the simpliity of the derivation proedure and the very satisfying numerial performanes,

both the beam model and the beam �nite element an be re�ned arbitrarily, allowing to adapt the model

auray to spei� needs of pratitioners.

Keywords: linear elasti beam, mixed variational modelling, beam analytial solution, stati analysis,

�nite element

1. Introdution

The modelling of a beam body, i.e. a 3D, prismati, slender, linear, and elasti body, is one of the most

investigated problem in the ontinuum mehanis �eld. Nevertheless, this researh area ontinues to be open

to new ontributions sine new design-philosophies (e.g. the limit-states or the performane-based designs)

and new tehnologies (e.g. omposite materials) need more and more aurate analysis. Readers may refer

to (Hjelmstad and Tairoglu, 2003) to get the idea about reent trends and disussions in beam-modelling

�eld.

The Euler-Bernoulli (EB) beam model, proposed in eighteenth entury, is a simple beam model, still

widely used by pratitioners, despite today's omputational instruments allow to handle more re�ned models.

In EB beam model, the ross setion is fored to remain rigid and orthogonal to the beam axis, also in
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deformed on�guration. It follows that 4 ross-setion rigid motion (i.e.: (i) the axial displaement; (ii-

iii) the translations orthogonal to the beam axis; (iv) the rotation around the beam axis) are neessary

to desribe the beam kinemati and 4 independent Ordinary Di�erential Equations (ODEs) impose the

equilibrium between the internal resulting stresses (i.e.: axial ompression, shears, bending moments, and

torque) and the applied loads.

However, EB beam is e�etive only for extremely slender bodies. As a onsequene, in the past entury,

researhers developed many re�ned beam models. In the following we list a few signi�ant examples, detailing

improvements with respet to the EB beam model.

� Timoshenko beam model. It does not fore the ross setion to remain orthogonal to the beam axis

and it solves the shear-bending problems more aurately (see e.g. (Timoshenko and Goodier, 1951)).

� Higher order beam models. They onsider more re�ned kinematis. As an example, they assume that

the ross setion an warp and/or hange shape (among the others, see e.g. (Vinayak et al., 1996)).

� Mixed beam models. They onsider both displaement and stress as independent variables with the

aim to improve the stress desription (see (Hjelmstad and Tairoglu, 2002) for a brief introdution and

a literature review).

Unfortunately, to be e�etive, many re�ned beam models and also the EB beam model require sti�ness

orretion fators that are not easy to evaluate, in relatively simple ases, too.

In the nineteen entury, Saint-Venant (SV) proposed a ompletely di�erent approah to beam modelling,

i.e. he provided the solution of the ontinuum mehani problem for a beam body assuming that: (i) the body

is homogeneous and isotropi; (ii) no distributed-loads are applied; (iii) loads and displaement onstraints

are applied far from the region where the solution is evaluated; (iv) stress omponents orthogonal to the

beam axis are negligible. Unfortunately, SV solution is not expliit beause it depends on some unknown

warping funtions, governed by auxiliary Partial Di�erential Equations (PDEs) de�ned on the ross setion.

Readers may refer to (Timoshenko and Goodier, 1951) for more details.

Warping funtions are deeply investigated not only in order to determine the SV solution, but also

beause they are useful in the evaluation of sti�ness orretion fators. As an example, Gruttmann et al.

(1999) disuss the physial meaning of the warping funtions and propose a numerial approah to solve

the auxiliary PDEs, omparing some numerial results with available analytial solutions. More reently,

Laarbonara and Paolone (2007) propose and ompare di�erent strategies to ompute the warping funtions,

highlighting advantages and ritial steps of eah strategy. In general, the numerial omputation of warping

funtions ould be quite expensive. However, it must be done only one, after the setion geometry de�nition.

As a onsequene, the proedure is usually adopted in frame-struture analysis.

In pratial appliations, many of the hypotheses that allow to obtain the SV solution ould be too

restritive. An attempt to overome the SV hypotheses was proposed by Ladeveze and Simmonds (1998),

under the assumption that the ross-setion is a pieewise onstant funtion along the beam axis. The 3D

solution is obtained applying the 3 steps listed in the following: (i) de�nition of the beam-model onstitutive

operators through the solution of problems de�ned in the ross setion, (ii) determination of the beam-model

solution governed by a 1D problem, and (iii) reonstrution of the 3D solution through the ombination of

the onstitutive operators. In addition to the SV solution, the resulting solution takes into aount also loal

e�ets like stress onentrations that our in proximity of displaement onstrained boundary. As spei�ed

in (Ladeveze and Simmonds, 1998), the proposed theory determines exat stati and kinemati generalized

quantities (i.e. axial ompression, shears, bending moments, torque, and the dual kinemati variables).

A ompletely di�erent attempt to overome the SV hypotheses in beam model formulation was proposed

by Dong et al. (2001); Kosmatka et al. (2001) and Lin et al. (2001), that apply the dimensional redution

method to the ontinuum mehani PDEs problem in order to obtain a semi-analytial SV-like solution. The

authors assume displaement as independent variable and the Total Potential Energy variational priniple

as starting point in derivation whereas no restritive hypotheses on materials, stress desription, and loads

are onsidered. Some ODEs govern the resulting model solution that desribes e�etively also loal e�ets.

The advantages of the approah are: (i) the proedure does not need the a-priori de�nition and solution of
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auxiliary problems, (ii) sti�ness oe�ient fators are automatially omputed through the model derivation

proedure, and (iii) the desription of boundary e�ets result as a omponent of the homogeneous solution

of the ODEs governing the beam model problem.

It is worth mentioning that the dimensional redution method was proposed by Kantorovih and Krylov

(1958) as a general mathematial proedure that exploits the geometry of the domain to redue the problem

dimension (in beam modelling from 3D PDEs to ODEs). The method is widely used in ontinuum mehani

and we would ite, among other examples, (Vogelius and Babuska, 1981a,b; Alessandrini et al., 1999; Batra

et al., 2002), and Batra and Vidoli (2002).

Reently, Aurihio et al. (2010) onsidered a planar beam problem and the Hellinger-Reissner (HR)

variational priniple as the starting point for the dimensional redution proedure. By hoosing appropri-

ate ross-setion approximating pro�les, the resulting beam model is apable, in partiular, of aurately

desribing the ross-setion stress distribution. In addition, Aurihio et al. (2010) proposed a suitable FE

approximation of that beam model.

In this paper, we generalize the approah and the FE derivation proedure illustrated in Aurihio et al.

(2010) to a 3D beam body. Due to the 2D nature of the ross-setions, the hoie of the approximating

pro�les requires more are than the orresponding planar ase.

A brief outline of the paper is as follows. In Setion 2 we de�ne the problem we are interested in, and

in Setion 3 we derive the beam model starting from the HR funtional, giving also some insight on the

struture of its analytial solution. In Setion 4 we develop suitable FE shemes, and in Setion 5 we present

numerial results to illustrate the atual omputational performanes of our approah.

2. Problem de�nition

We onsider a 3D, prismati, slender, linear, and elasti body under the hypothesis of small displaements.

For simpliity, we onsider only isotropi materials, even if this assumption is not neessary for the model

derivation.

We de�ne the problem domain as:

Ω := l ×A (1)

where the beam longitudinal axis l ⊂ R and the ross setion A ⊂ R
2
are orthogonal, losed and bounded

sets. Figure 1 represents the domain Ω, the adopted Cartesian oordinate system, the initial and �nal ross
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Figure 1: 3D beam body geometry, oordinate system, dimensions, and adopted notations.

setions (A0 and Al respetively), and the lateral surfae L := ∂A × l, where ∂A is the boundary of the

ross setion, as illustrated in Figure 2. Thus, the domain boundary is ∂Ω := A0 ∪ Al ∪ L and we onsider

the partition {∂Ωt; ∂Ωs}, where ∂Ωt and ∂Ωs are the externally loaded and the displaement onstrained

boundaries, respetively. We notie that the body ould be inhomogeneous in the ross setion, as illustrated

in Figure 2. As a onsequene, the Young's modulus E and the Poisson's ratio ν are salar �elds depending

on the ross-setion oordinates, i.e. E : A → R and ν : A → R.

The presribed boundary displaement sss : ∂Ωs → R
3
, the external load, de�ned as a surfae fore density

ttt : ∂Ωt → R
3
, and the body load, de�ned as a volume fore density fff : Ω → R

3
, are assumed to be su�iently

smooth funtions.
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Figure 2: Cross setion geometry, oordinate system, and adopted notations.

Introduing the symmetri stress tensor �eld σσσ : Ω → R
3×3
s , the displaement vetor �eld sss : Ω → R

3
,

the orresponding variation �elds δσσσ and δsss, and the following spaes:

L2 (Ω) :=
{
sss : Ω → R

3 :

∫

Ω

sss ·sss dΩ < ∞
}

H(div,Ω) :=
{
σσσ : Ω → R

3×3
s :

∫

Ω

σσσ : σσσ dΩ < ∞ and (∇ ·σσσ) ∈ L2(Ω)
}

W := { sss ∈ L2 (Ω)
}

St := { σσσ ∈ H (div,Ω) : σσσ ·nnn|∂Ωt
= ttt
}

(2)

S0 := { δσσσ ∈ H(div,Ω) : δσσσ ·nnn|∂Ωt
= 000
}

the 3D elasti problem onsists in solving the following variational system.

Find sss ∈ W and σσσ ∈ St suh that ∀δsss ∈ W

and ∀δσσσ ∈ S0

δJHR :=−

∫

Ω

δsss ·∇ ·σσσ dΩ−

∫

Ω

∇ · δσσσ ·sss dΩ−

∫

Ω

δσσσ :DDD−1 : σσσ dΩ−

∫

Ω

δsss ·fff dΩ

+

∫

∂Ωs

δσσσ ·nnn ·sss dA = 0

(3)

Above, DDD is the fourth order, linear, elasti, isotropi tensor whih depends on the material parameters E
and ν.

We highlight that, due to the adopted formulation, the boundary equilibrium σσσ ·nnn|∂Ωt
= ttt is an essential

ondition, i.e. it is diretly inserted into the de�nition of the trial spae St. On the ontrary, the boundary

ompatibility sss|∂Ωs
= sss is a natural ondition, i.e. it is weakly imposed to the solution omponent sss through

the variational system (3).

3. Model derivation

In this setion, starting from the 3D problem weak formulation (3), we perform the dimensional redution

whih is based on the introdution of �eld ross-setion approximations and on a ross-setion integration.

For simpliity, in the model derivation, we swith to an engineering-oriented notation.

3.1. Cross-setion approximation and notations

The �rst step in the beam model derivation is to approximate the generi three-dimensional �eld γ :
Ω → R

( · )
as a linear ombination of d ross-setion shape funtions, stored in a vetor rrrγ : A → R

( · )×d
,
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weighted with arbitrary axial oe�ient funtions γ̂γγ : l → R
d
, i.e. formally:

γ (x, y, z) ≈ rrrTγ (y, z) γ̂γγ (x) (4)

where ( · )
T
indiates the transposition operation.

We emphasize that the ross-setion shape funtions rrrγ (y, z) are a set of pre-assigned, linearly-independent
funtions. As a onsequene, the �eld γ (x, y, z) is uniquely determined by the axial oe�ient funtions

γ̂γγ (x) that are indeed the unknowns of the beam model we are developing. In the following, we omit the

dependenes of rrrγ on y, z and of γ̂γγ on x for notation simpliity.

Adopting Position (4) and swithing to an engineering notation we set:

sss :=





su
sv
sw



 ≈




rrrTu 000 000
000 rrrTv 000
000 000 rrrTw







ûuu
v̂vv
ŵww



 = RRRsŝss (5)

σσσ := {σxx, σyy, σzzτxy, τxz , τyz}
T
≈




rrrTσx
000 000 000 000 000

000 rrrTσy
000 000 000 000

000 000 rrrTσz
000 000 000

000 000 000 rrrTτxy
000 000

000 000 000 000 rrrTτxz
000

000 000 000 000 000 rrrTτyz








σ̂σσx

σ̂σσy

σ̂σσz

τ̂ττxy
τ̂ττxz
τ̂ττyz





= RRRσσ̂σσ
(6)

In the same way we de�ne the virtual �eld approximations:

δsss := RRRsδŝss; δσσσ := RRRσδσ̂σσ

Aording to the engineering notations just introdued, we re-de�ne the di�erential operator and the

normal unit vetor produt as follows:

Tensor notation Engineering notation

∇ ·σσσ ≡

(
∂

∂x
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσσ̂σσ (7)

σσσ ·nnn ≡ (nxEEE1 + nyEEE2 + nzEEE3) RRRσσ̂σσ (8)

where produts between partial derivatives and boolean matries EEEi, i = 1, 2, 3 must be intended as salar-

matrix produts, whereas di�erential operators are applied to stress approximations RRRσσ̂σσ. The boolean

matries EEEi, i = 1, 2, 3, are de�ned as follows:

EEE1 :=




1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




EEE2 :=




0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1




EEE3 :=




0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0




(9)

In Setion 2, we denoted withDDD−1
the fourth order, linear, elasti, isotropi tensor, while from now on, with

a small abuse, we use the same notation to indiate the orresponding square matrix obtained following the
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engineering notation. Therefore, we have:

DDD−1 :=
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 (1 + ν) 0 0
0 0 0 0 2 (1 + ν) 0
0 0 0 0 0 2 (1 + ν)




(10)

Due to assumption (4), omputation of partial derivatives is straightforward:

∂

∂x
γ = rrrTγ

d

dx
γ̂γγ = rrrTγ γ̂γγ

′
(11)

∂

∂y
γ =

∂

∂y
rrrTγ γ̂γγ = rrrTγ ,y γ̂γγ;

∂

∂z
γ =

∂

∂z
rrrTγ γ̂γγ = rrrTγ ,z γ̂γγ

where the prime means the derivative along x, ( · ) ,y and ( · ) ,z mean derivatives along y and z, respetively.

3.2. Model formulation

In the following we assume that ∂Ωs = A0, ∂Ωt = Al ∪ L, and the lateral surfae is unloaded, i.e.:

ttt|L = 000. The unloaded lateral surfae is an usual assumption in beam modelling. However, we notie that

the model derivation an be performed taking into aount arbitrary load onditions as well.

In order to strongly satisfy the boundary equilibrium, aording to the de�nition of St, see (2), we assume

that the external tration ttt|Al
an be exatly represented using the pro�les RRRσ. This means that there exist

suitable vetors t̂ttx, t̂tty, and t̂ttz suh that:

ttt|Al
=





rrrTσx
t̂ttx

rrrTτxy
t̂tty

rrrTτxz
t̂ttz



 (12)

Sine nnn|Al
= (1, 0, 0)

T
, De�nition (8) beomes σσσ ·nnn|Al

= EEE1RRRσσ̂σσ
(
l
)
and the essential boundary ondition

σσσ ·nnn|Al
= ttt|Al

an be expressed as follows:





σ̂σσx

(
l
)

τ̂ττxy
(
l
)

τ̂ττxz
(
l
)



 =





t̂ttx
t̂tty
t̂ttz



 (13)

Introduing the engineering notation and the approximations de�ned in setion 3.1, variational prob-

lem (3) beomes:

δJHR = −

∫

Ω

δŝssTRRRT
s

[(
d

dx
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσσ̂σσ

]
dΩ

−

∫

Ω

[(
d

dx
EEE1 +

∂

∂y
EEE2 +

∂

∂z
EEE3

)
RRRσδσ̂σσ

]T
RRRsŝss dΩ

−

∫

Ω

δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσdΩ−

∫

Ω

δŝssTRRRT
s fff dΩ

+

∫

∂Ωs

[(nxEEE1 + nyEEE2 + nzEEE3)RRRσδσ̂σσ]
T
sss dA = 0

(14)
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Expanding produts, introduing the derivative notation (11), and realling that ∂Ωs = A0, Equation (14)

beomes:

δJHR = −

∫

Ω

(δŝssTRRRT
s EEE1RRRσσ̂σσ

′ + δŝssTRRRT
s EEE2RRRσ,y σ̂σσ

+δŝssTRRRT
s EEE3RRRσ,z σ̂σσ + δσ̂σσ′TRRRT

σEEE
T
1RRRsŝss

+δσ̂σσTRRRT
σ ,yEEE

T
2RRRsŝss+ δσ̂σσTRRRT

σ ,zEEE
T
3RRRsŝss

+ δσ̂σσTRRRT
σDDD

−1RRRσσ̂σσ + δŝssTRRRT
s fff
)
dΩ

−

∫

A0

δσ̂σσTRRRT
σEEE

T
1 sss dA = 0

(15)

Splitting the integral on the domain Ω into an integral along the axis l and an integral on the ross setion

A, Equation (15) beomes:

δJHR = −

∫

l

( δŝssTGGGsσσ̂σσ
′ + δŝssTHHHsσσ̂σσ + δσ̂σσ′TGGGσsŝss

+δσ̂σσTHHHσsŝss+ δσ̂σσTHHHσσσ̂σσ + δŝssTFFF ) dx

−δσ̂σσTSSS = 0

(16)

where

HHHsσ :=HHHT
σs =

∫

A

(
RRRT

s EEE2RRRσ,y +RRR
T
s EEE3RRRσ,z

)
dA

HHHσσ :=

∫

A

RRRT
σDDD

−1RRRσdA

GGGsσ =GGGT
σs :=

∫

A

RRRT
s EEE1RRRσdA (17)

FFF :=

∫

A

RRRT
s fffdA; SSS =

∫

A0

RRRT
σEEE1sssdA

Equation (16) represents the weak formulation of the beam model: the integrals are de�ned only along the

beam axis, whereas the ross-setion integrals beome oe�ient matries.

To obtain the orresponding strong formulation, i.e. the assoiated ODE system, we need to integrate

by parts the third term of Equation (16):

−

∫

l

δσ̂σσ′TGGGσsŝssdx = − δσ̂σσTGGGσsŝss
∣∣∣
x=l

x=0
+

∫

l

δσ̂σσTGGGσsŝss
′dx (18)

Substituting Equation (18) in Equation (16), realling that δσ̂σσ
(
l
)
= 000, and olleting the unknowns in a

vetor, we obtain:

∫

l

[
δŝssT ; δσ̂σσT

](
GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss
σ̂σσ

}
−

{
FFF
000

})
dx

− δσ̂σσT (SSS −GGGσsŝss
)
= 0

(19)

where

GGG :=

[
000 −GGGsσ

GGGσs 000

]
HHH :=

[
000 −HHHsσ

−HHHσs −HHHσσ

]
(20)

Sine Equation (19) needs to be satis�ed for all the possible virtual �elds, we obtain the following ODE,
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equipped with the essential boundary ondition (13).





GGG

{
ŝss′

σ̂σσ′

}
+HHH

{
ŝss
σ̂σσ

}
=

{
FFF
000

}
in l

GGGσsŝss = SSS at x = 0

σ̂σσx = t̂ttx at x = l

τ̂ττxy = t̂tty at x = l

τ̂ττxz = t̂ttz at x = l

(21)

We notie that, sine HHH ontains only y and z derivatives, it governs a generalized plane strain problem

de�ned in the ross setion. Furthermore, looking at the de�nition of GGG (see (20)�(17)) and at the de�nition

of the boolean matrix EEE1 (see (9)), we observe that all the oe�ients multiplying σ̂σσ′

y, σ̂σσ
′

z, and τ̂ττ ′yz vanish.

As a onsequene, we onlude that the beam model (21) is an algebrai-di�erential problem where at least

σ̂σσy, σ̂σσz, and τ̂ττyz are determined through purely algebrai equations.

3.3. Cross-setion shape funtions de�nition

Due to the domain de�nition (1) we an represent the stress tensor as follows:

σσσ :=

[
σl τττ lA
τττAl σσσA

]
(22)

where

σl := σxx; τττ lA = τττTAl := [τxy; τxz ] ; σσσA :=

[
σyy τyz
τzy σzz

]

Aordingly, we represent the divergene operator as follows:

∇ :=





∂

∂x
∇A



 where ∇A :=





∂

∂y
∂

∂z





(23)

We �rst reall that the spae de�nition (2) requires in partiular σσσ ∈ H (div,Ω). Therefore, we must

hoose σσσ suh that (∇ ·σσσ) ∈ L2 (Ω), i.e.:

∇ ·σσσ =





∂

∂x
σl +∇A ·τττ lA

∂

∂x
τττAl +∇A ·σσσA





∈ L2 (Ω) (24)

Su�ient onditions that guarantee the satisfation of (24) are the following:

∂

∂x
σl ∈ L2 (Ω) ; ∇A ·τττ lA ∈ L2 (Ω) ;

∂

∂x
τττAl ∈ L2 (Ω) ; ∇A ·σσσA ∈ L2 (Ω)

(25)

In addition to Conditions (25), as suggested by Alessandrini et al. (1999), to ensure that the model is

well-posed, one possible hoie is to require the following ondition:

∇ ·S0 = W (26)
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Given a generi ross-setion geometry, it is not trivial to de�ne ross-setion shape funtions that

satisfy onditions (25) and (26). As a onsequene, we start fousing on the simplest ase, i.e. a beam with

a retangular ross-setion:

A =

{
(y; z) ∈ R

2 : y ∈

[
−
h

2
,
h

2

]
and z ∈

[
−
b

2
,
b

2

]}

where h is the beam thikness and b is the beam depth. Due to the simpliity of the onsidered geometry,

the ross-setion shape funtions an be de�ned as the tensor produts of two pro�le funtion vetors pppγ (y)
and qqqγ (z):

pppγ : h → R
g; qqqγ : b → R

k; rrrTγ := vec
(
pppγ (y)qqq

T
γ (z)

)
(27)

where vec ( · ) is the linear operator that re-arranges a tensor into a row vetor. Obviously the g omponents

of pppγ and the k omponents of qqqγ are sets of linearly independent funtions.

Due to the introdution of pro�le funtion de�nition (27), we an express Condition (26) as follows (f.

also (5) and (6)).

Given ŝss, there exists σ̂σσ suh that:

vec
(
pppσx

qqqTσx

)
σ̂σσ′

x + vec
(
ppp′τxy

qqqTτxy

)
τ̂ττxy + vec

(
pppτxz

qqq′Tτxz

)
τ̂ττxz

= vec
(
pppuqqq

T
u

)
ûuu

(28)

vec
(
pppτxy

qqqTτxy

)
τ̂ττ ′xy + vec

(
ppp′σy

qqqTσy

)
σ̂σσy + vec

(
pppτyzqqq

′T
τyz

)
τ̂ττyz

= vec
(
pppvqqq

T
v

)
v̂vv

(29)

vec
(
pppτxz

qqqTτxz

)
τ̂ττ ′xz + vec

(
ppp′τyzqqq

T
τyz

)
τ̂ττyz + vec

(
pppσz

qqq′Tσz

)
σ̂σσz

= vec
(
pppwqqq

T
w

)
ŵww,

(30)

and vieversa.

We onsider omplete polynomials as pro�le funtions and we denote with deg( · ) their maximum degree.

As a onsequene, to satisfy Equations (28), (29), and (30) we enfore the following �natural� onditions:

deg (pppσx
) = deg

(
pppτxy

)
− 1 = deg (pppτxz

) = deg (pppu)

deg
(
pppτxy

)
= deg

(
pppσy

)
− 1 = deg

(
pppτyz

)
= deg (pppv)

deg (pppτxz
) = deg

(
pppτyz

)
− 1 = deg (pppσz

) = deg (pppw)

deg (qqqσx
) = deg

(
qqqτxy

)
= deg (qqqτxz

)− 1 = deg (qqqu)

deg
(
qqqτxy

)
= deg

(
qqqσy

)
= deg

(
qqqτyz

)
− 1 = deg (qqqv)

deg (qqqτxz
) = deg

(
qqqτyz

)
= deg (qqqσz

)− 1 = deg (qqqw)

(31)

Table 1 displays the degree of pro�le funtions pppγ and qqqγ , assuming deg
(
pppτxy

)
= deg (qqqτxz

) = 2 and imposing

Equation (31).

As illustrated in Figure 3, we an de�ne non-elementary ross-setions assembling elementary retangular

bloks that we all �bers and we suppose to be homogeneous. We onstrut the non elementary ross-setion

shape funtions rrrγ onsidering the pro�le funtions so far de�ned on eah �ber, requiring the pro�le-funtion

ontinuities spei�ed in Table 1, and imposing the essential boundary ondition σσσ ·nnn|∂A = 000. We speify

that pro�le-funtion ontinuities are �xed in order to satisfy Condition (25).

3.4. Beam-model examples

In this sub-setion we evaluate and disuss the solution of the beam model (21) for the homogeneous

beam with square ross setion depited in Figure 4. We assume that the properties of the material are E =

9
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Figure 3: Non-elementary ross-setion geometry de�nition, dimensions, and adopted notations.

Variable deg (pppγ) y ont. deg (qqqγ) z ont.

u 1 C−1
1 C−1

v 2 C−1
1 C−1

w 1 C−1
2 C−1

σx 1 C−1
1 C−1

σy 3 C0
1 C−1

σz 1 C−1
3 C0

τxy 2 C0
1 C−1

τxz 1 C−1
2 C0

τyz 2 C0
2 C0

Table 1: Degree and ontinuity of ross-setion pro�le funtions (C−1
means disontinuous funtion).

105MPa and ν = 0.25 and, with respet to the notation introdued in Figure 3, the ross-setion dimensions

are h = b = 1mm. We model the physial problem using 2 ross-setion disretization: the one-�ber ross-

setion disretization, depited in Sub-�gure 4(a), and the two-�ber ross-setion disretization, depited

in Sub-�gure 4(b); the aim of these modelling hoies is to appreiate the e�et of di�erent disretization

re�nement.

In the following, the matries GGG and HHH are evaluated through symboli-alulus funtions, whereas the

further results are obtained using numerial-alulus funtions, both implemented in MAPLE software.

3.4.1. One-�ber ross-setion

After imposition of the lateral free-tration boundary ondition, the one-�ber ross-setion beam has 33

unknowns. Sine rank (GGG) = 16, in the onsidered example we an distinguish between 16 unknowns that

are solutions of a di�erential problem, and the remaining 17 that are algebraially determined by linear

ombination of the di�erential problem solutions. As already observed at the end of Sub-setion 3.2, the 9

σ̂σσy, σ̂σσz , and τ̂ττyz axial oe�ient funtions are among the ones algebraially determined. Moreover, looking

at Equation (21) for the onsidered example, the boundary onditions are 16, sine rank (GGGσs) = 8 and

the boundary equilibrium onsists of 8 onditions. Therefore, the number of boundary onditions and the

number of essential �rst order di�erential equations in (21) perfetly math.

As already explained in Aurihio et al. (2010), to onstrut the homogeneous solution of ODEs (21),

10
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we need the solution of the generalized eigenvalue problem:

det (λGGG+HHH) = 0 (32)

where λ is the eigenvalue. For the ase under investigation we obtain:

λλλ =

{
∼ 0

±3.3652± 1.1509i

}
[12]
[4]

where the numbers in square brakets are the eigenvalue multipliities (onsidering all the possible ombi-

nation of sign of real and imaginary parts) and the notation ∼ 0 means that the eigenvalues vanish up to

the mahine preision.

3.4.2. Two-�ber ross-setion

After imposition of the lateral free-tration boundary ondition, the two-�ber ross-setion beam has

71 independent unknowns. Moreover, rank (GGG) = 36. Hene, 36 unknowns are solution of a di�erential

problem, whereas the remaining 35 are algebraially determined by linear ombination of the di�erential

problem solutions. Looking at Equation (21) for the onsidered example, the boundary onditions are 36,

sine rank (GGGσs) = 18 and the boundary equilibrium onsists of 18 onditions. Therefore, the number of

boundary onditions and the number of essential �rst order di�erential equations in (21) perfetly math

for this ase, too.

In the two-�ber beam, the solution of the generalized eigenvalue problem (32) is:

λλλ =





∼ 0
±11.786
±10.116
±10.022
±8.2174
±8.1037

±4.5891± 1.2945i
±5.6931± 0.4331i

±4.9317
±3.3520± 1.1591i





[12]
[2]
[2]
[2]
[2]
[2]
[4]
[4]
[2]
[4]

and it is going to be disussed in the next Sub-setion.
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3.4.3. Conlusions on beam models

We omputed the solutions of the homogeneous problem assoiated to (21) for the beam models so far

introdued, but we do not report them sine their expressions are too long. However, the following remarks

about the solution struture apply.

� Zero eigenvalues lead to polynomial terms, that orrespond to the polynomial terms that appear also

in the Saint-Venant solution. In partiular, the 12 zero eigenvalues orrespond to the 6 rigid body

translations and to the 6 uniform deformations: extension, torque, two bendings, and two shears

(assoiated with bendings).

� Non-zero, omplex onjugate or real eigenvalues (generally represented as ±a ± ib) lead to harmoni

dumped funtions like Cie
±ax sin (bx+ Cj), that desribe loal e�ets near the boundaries, as it hap-

pens in other beam models, like Ladeveze and Simmonds (1998) and Allix and Dupleix-Couder (2010).

Similar onlusions was also reported in Lin et al. (2001) where, moreover, the authors speify that the

real part of the eigenvalue de�nes the inverse deay length of the orresponding boundary e�et. As a

onsequene, the smallest eigenvalue real-part provides an estimation of the length of the axis region where

boundary e�ets are not negligible.

From the omparison between the one- and two-�ber ross-setion beam models, it is possible to draw

some additional observations.

� The number of eigenvalues orresponds exatly to the rank ofGGGmatrix i.e. to the number of di�erential

equations governing the problem.

� The number of null eigenvalues does not hange. As a onsequene, we may onlude that the poly-

nomial terms in the solution are independent from the number of onsidered �bers.

� Instead, the number of non-zero eigenvalues inreases with the �ber number. As a onsequene, we

may onlude that a �ner disretization improves at least the auray of the desription of loal

e�ets.

� The deay lengths of the two models are not so di�erent (the smallest real part of eigenvalues are

3.3652 and 3.3520 for one- and two- �ber ross-setions, respetively). As a onsequene, we may

onlude that also the simplest model is e�etive in the evaluation of this parameter.

� In both models, the inverse of deay length ensures that the magnitude of dumped funtions is redued

of more than the 96% of its initial value, in a length of 1mm.

The independene of the polynomial solution with respet to the number of �bers suggests the idea that the

modelling far from the extremal ross setions ould be done by means of few global degrees of freedom, as

in EB beam model. However, this idea will be the topi of future investigations.

4. FE derivation

The goal of this setion is to obtain a displaement-based beam FE formulation. Aordingly, we intro-

due an approximation along the x diretion, modify the beam-model weak formulation (16), and perform

an integration along the axis. The proedure redues the algebrai-di�erential equation system (21) to a

pure algebrai equation system.

4.1. Axial approximation

We introdue the following approximation:

γ̂γγ (x) ≈NNNγ (x) γ̃γγ (33)
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where

NNNγ =




NNNT
γ1 (x) 000 · · · 000
000 NNNT

γ2 (x) · · · 000
.

.

.

.

.

.

.

.

.

.

.

.

000 000 · · · NNNT
γd (x)




γ̃γγ = {γ̃γγ1, γ̃γγ2, · · · γ̃γγd}
T

Aordingly, the i-th axial oe�ient funtion γ̂i (x) is approximated as a linear ombination of some assigned

axial shape funtions, stored in the vetor NNNγi : l → R
t
; the numerial oe�ients of the ombination are

olleted in the vetor γ̃γγi ∈ R
t
. In the following, we drop the expliit dependene of NNNγ on x for notational

simpliity.

4.2. FE formulation

In the following, we assume that the beam is lamped in A0, i.e. sss = 000. Starting from beam-model weak

formulation (16), we integrate by parts with respet to the x diretion both the �rst and the third terms

obtaining the following, alternative beam-model weak formulation:

Find ŝss ∈ W̃ and σ̂σσ ∈ S̃ suh that ∀ δŝss ∈ W̃ and ∀ δσ̂σσ ∈ S̃

δJHR =

∫

l

( δŝss′TGGGsσσ̂σσ − δŝssTHHHsσσ̂σσ + δσ̂σσTGGGσsŝss
′

−δσ̂σσTHHHσsŝss− δσ̂σσTHHHσσσ̂σσ − δŝssTFFF ) dx

−δŝssTTTT = 0

(34)

where TTT :=
∫
Al

RRRT
s tttdA, W̃ :=

{
ŝss ∈ H1(l) : ŝss|x=0 = 000

}
, and S̃ := L2(l). We reall that:

L2 (l) :=

{
σ̂σσ :

∫

l

σ̂σσT σ̂σσdx < ∞

}

H1 (l) :=
{
ŝss : ŝss, ŝss′ ∈ L2 (l)

}

The FE disretization of the model follows from the introdution of the axial shape funtion approxima-

tion (33) into the beam-model weak formulation (34):

δJHR =

∫

l

( δs̃ss
T
NNN ′T

s GGGsσNNNσσ̃σσ − δs̃ss
T
NNNT

sHHHsσNNNσσ̃σσ

+ δσ̃σσTNNNT
σGGGσsNNN

′

ss̃ss− δσ̃σσTNNNT
σHHHσsNNNss̃ss

− δσ̃σσ
T
NNNT

σHHHσσNNNσσ̃σσ − δs̃ss
T
NNNT

s FFF ) dx

− δs̃ssTNNNT
s TTT = 0

(35)

Colleting unknown oe�ients in a vetor and requiring (35) to be satis�ed for all possible virtual �elds,

we obtain the following algebrai equation system:

[
000 KKKsσ

KKKσs KKKσσ

]{
s̃ss
σ̃σσ

}
=

{
T̃TT
000

}
(36)

where

KKKsσ =KKKT
σs :=

∫

l

(
NNN ′T

s GGGsσNNNσ −NNNT
s HHHsσNNNσ

)
dx

KKKσσ := −

∫

l

NNNT
σHHHσσNNNσdx; T̃TT :=

∫

l

NNNT
s FFFdx+ NNNT

s

∣∣
x=l

TTT

We highlight the following remarks.
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� Sine ŝss ∈ W̃ , the ontinuity of displaements along the beam axis is satis�ed a priori, whereas axial

equilibrium is weakly imposed through Equation (34).

� The weak formulation (34) is symmetri.

4.3. Axial shape funtions de�nition

In this sub-setion we speify how to hoose the FE approximation spaes. We �rst notie that, sine

sss ∈ H1 (l), we need to impose axial ontinuity on displaements. Instead, sine σσσ ∈ L2 (l) stress omponents

an be axial-disontinuous, and in general it is onvenient that they are so. Furthermore, to properly balane

the disrete spaes, it seems reasonable to hoose W̃ and S̃ satisfying: ∀σ̂σσ ∈ S̃ there exists ŝss ∈ W̃ suh that

d

dx
ŝss = EEE1σ̂σσ; ŝss = EEE2σ̂σσ; ŝss = EEE3σ̂σσ, (37)

and vieversa.

Aordingly, we require the following onditions on the axial shape funtions:

deg (NNNu) = deg (NNNσx
) + 1 = deg

(
NNN τxy

)
= deg (NNN τxz

)

deg (NNNv) = deg
(
NNN τxy

)
+ 1 = deg

(
NNNσy

)
= deg

(
NNN τyz

)

deg (NNNw) = deg (NNN τxz
) + 1 = deg

(
NNN τyz

)
= deg (NNNσz

)

(38)

Assuming deg (NNNv) = 3 and imposing Equations (38), we determine the degree of axis shape funtions NNNγ ,

summarized in Table 2 together with properties of pro�le vetors.

Variable deg (pppγ) y ont. deg (qqqγ) z ont. deg (NNNγ) x ont.

u 1 C−1
1 C−1

2 C0

v 2 C−1
1 C−1

3 C0

w 1 C−1
2 C−1

3 C0

σx 1 C−1
1 C−1

1 C−1

σy 3 C0
1 C−1

3 C−1

σz 1 C−1
3 C0

3 C−1

τxy 2 C0
1 C−1

2 C−1

τxz 1 C−1
2 C0

2 C−1

τyz 2 C0
2 C0

3 C−1

Table 2: Degree and ontinuity of ross-setion pro�le funtions and axis shape funtions (C−1
means disontinuous funtion)

Looking at the properties of the axial shape funtions summarized in Table 2, we notie that all stress

omponents are disontinuous along the beam axis. Moreover, the matrix HHHσσ (see (17) and (10)) is

invertible. Therefore, it is possible to statially ondense the stress variables out at the element level. This

leads to a displaement-based-like formulation of the problem, thus signi�antly reduing the dimension of

the global sti�ness matrix and improving the FE algorithm e�ieny.

5. Numerial results

The goal of this setion is to illustrate the apability of the beam model and FE introdued so far.

Aordingly, we onsider the problems listed below.

1. Homogeneous square ross-setion beam, depited in Figure 5(a).

2. Non-homogeneous square ross-setion beam, depited in Figure 5(b).

3. Homogeneous L-shape ross-setion beam, depited in Figure 5().
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We introdue the relative error de�nition for a generi variable γ:

eγrel :=

∣∣γ − γref
∣∣

|γref |
(39)

where γref
is the referene solution, to be spei�ed for eah problem under investigation.

FE solutions onsidered in this setion are evaluated through numerial-alulus funtions implemented

in MATLAB software, unless spei�ed.

5.1. Homogeneous square ross-setion beam

We onsider the homogeneous beam with a square ross-setion depited in Figure 5(a) and we disuss

the following aspets.

1. Displaement error and onvergene of displaement solution.

2. Stress error.

3. Asymptoti behaviour.

We reall that, in FE derivation, the beam is assumed to be lamped at the initial ross-setion (∂Ωs = A0;

sss = 000); moreover, we set l = 10mm, vanishing volume load (fff = 000), and a distributed shear load applied to

the �nal ross setion Al (ttt|Al
= [0,−1, 0]

T
MPa). In Figure 5(a), we de�ne the parameter δ that de�nes both

the ross-setion and the axial disretizations where the length of the kth axis FE is de�ned as lk := l/ (10 · δ).
In the following, the aronym MB FE (Mixed Beam Finite Element) denotes the beam model FE dis-

retization of Equation (36).

5.1.1. Displaement error

We onsider the y-oriented displaement omponent sv (see De�nition (5)) and we evaluate its mean

value v
(
l
)
on the �nal ross setion Al:

v
(
l
)
:=

∫
Al

rrrTv v̂vv|x=l dydz∫
Al

dydz
(40)

In order disuss the displaement solution of the MB FE, we ompare the solutions of the models listed

in the following.

� The analytial solution of Euler-Bernoulli beam,

� The analytial solution of Timoshenko beam,

� The numerial solution of the MB FE evaluated onsidering two ases:

� 1 �ber ross-setion (i.e. δ = 1),

� 25 �ber ross-setion (i.e. δ = 5).

� 3D numerial solutions obtained using the software ABAQUS and with 3D trilinear briks. The

following uniform meshes are employed.

� A uniform mesh of 5× 5× 50 elements.

� A uniform mesh of 10× 10× 100 elements.

� A �ne and uniform mesh of 50×50×500 elements. This overkilled solution is used as the referene

solution srefv .
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Beam model v (10) mm ev rel

Euler-Bernoulli -4.000000 · 10−2
3.222 · 10−3

Timoshenko -4.030000 · 10−2
4.254 · 10−3

MB FE 1 �ber (δ = 1) -4.022380 · 10−2
2.355 · 10−3

MB FE 25 �ber (δ = 5) -4.012917 · 10−2
0.003 · 10−3

3D solution (mesh 5× 5× 50) -4.175198 · 10−2
40.437 · 10−3

3D solution (mesh 10× 10× 100) -4.051178 · 10−2
9.531 ·10−3

3D solution (vref ) -4.012929 · 10−2
-

Table 3: Mean value of �nal ross-setion displaement v (10) and the orresponding relative error for a antilever (l = 10mm,

b = h = 1mm) evaluated using di�erent beam models.
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Figure 6: Relative error ev rel plotted as funtion of the element size 1/δ.

In Table 3 we report the vertial-displaement mean-value v
(
l
)
for the onsidered beam models and

their relative errors. We notie that all the models, even the two simplest ones (i.e., the Euler-Bernoulli and

the Timoshenko models) give a relative error below 5�. Furthermore, as expeted, MB FE 25 �ber model

provides the best solution, with a relative error lose to 10−6
, negligible in most pratial appliations. In

addition, despite the oarse disretization in the modelling proedure, the MB FE 1 �ber relative error is of

the order of 2�, better than both Euler-Bernulli and Timoshenko beams.

In Figure 6 we plot the relative error ev rel as funtion of the element size 1/δ. It is worth observing the

monotoni behaviour and the high speed onvergene.

5.1.2. Stress error

We fous our attention to the shear omponents τxy and τxz sine they have non-trivial distributions. In
the following, the numerial results refer to the 25 �ber disretization.

Figures 7(a) and 7(b) report the shear axial oe�ient funtions τ̂ττxy and τ̂ττxz respetively. We remark

that they show dumped osillations near the initial and �nal ross setions, while they are approximately

onstant otherwise. We notie that this numerial behaviour is onsistent with the ODEs homogeneous

solutions disussed in Setion 3.4.

Moreover, the osillations rapidly deay in an axial region whose length is of the order of magnitude of

the ross-setion edge, in aordane with the solution provided by the Saint-Venant priniple.

Figures 8(a) and 8(b) report the ross-setion distribution of shear omponents τxy (5, y, z) and τxz (5, y, z)
respetively. We onsider the ross setion at x = 5mm in order to exlude boundary e�ets. It is worth

notiing that the ross-setion shear omponent τxy has a paraboli distribution along y. Moreover, τxy is

not onstant along z, and the shear omponent τxz displays a non vanishing distribution in the ross setion.
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These latter results provide a shear stress evaluation whih is better than the one given by the simpli�ed

Jourawsky theory (e.g. Hjelmstad (2005)), usually adopted in onnetion with lassial beam models.

Figures 8() and 8(d) report the ross-setion error distributions

∣∣τxy (5, y, z)− τrefxy (5, y, z)
∣∣
and

∣∣τxz (5, y, z)− τrefxz (5, y, ,

where τrefxy (5, y, z) and τrefxz (5, y, z) are referene solutions obtained using the results detailed in Timoshenko

and Goodier (1951)[Chap. 12℄. It is interesting to note that the numerial solution appears to be generally

aurate. However, the error is higher lose to the ross setion edges.
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Figure 7: Shear axial oe�ient funtions τ̂ττxy(x) and τ̂ττxz(x) for the ase of homogeneous and square ross setion.

5.1.3. Asymptoti analysis

In this sub-setion, we investigate the beam model behaviour as the ross-setion size tends to zero. It

an be shown that the 3D beam solution onverges to the EB solution, after a suitable saling of the loads

(see Ciarlet (1997), for instane). In this setion we numerially verify that, dereasing the ross-setion

size, the MB FE solution onverges to the EB solution, thus ensuring the asymptoti onsisteny of the

proposed beam model.

We onsider a beam with length and boundary onditions introdued in Setion 5.1, and using a single

square �ber to disretize the ross setion. We use uniform meshes along the beam axis, and di�erent

dereasing values of the ross setion size h. We implement the MB FE using numerial funtions available

in MAPLE software. In partiular, we exploit the apability of the software to use an arbitrary number

of digits during numerial alulation. Sine we are interested in the asymptoti behaviour, the EB beam

solution vref
(
l
)
is assumed as referene solution.

In Figure 9 we plot the relative error ev rel evaluated at di�erent ratios h/l, for di�erent axial meshes

(4 and 50 elements, respetively), and for di�erent mahine preisions (16 and 30 digits, respetively). We

notie that bad solutions are omputed when using 16 digits and for very small ratios h/l, independently of

the number of elements. However, satisfatory results are obtained for slendernesses of pratial engineering

interest. On the ontrary, raising to 30 digits, the omputed solutions display the orret behaviour. We

remark that the plateau regions for 4el(30dig) and 50el(30dig) in Figure 9 orrespond to the error due to

the axial disretization, whih dominates the total error in the asymptoti regime (h/l << 1).
In Figure 10 we show the relative error of the single �ber MB FE, onsidering di�erent ratios h/l and

varying the number of elements in the axial diretion. The plot on�rms the onvergene of the solution,

independently of the ratio h/l when 30 digits are employed. As already notied, a degeneray in the

onvergene behaviour is experiened for very small h/l and 16 digit preision.

5.1.4. Computational osts

In this subsetion we give some information about the omputational performane of the proposed

method, omparing the numerial osts with the osts of a 3D displaement based analysis of the homoge-
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homogeneous and square ross setion.
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neous square ross-setion beam.

The time elapsed to ompute the solutions is not a fair riterion due to the use of di�erent softwares

and mahines. Instead, in Table 4 we provide some information that may be used to ompare the di�erent

approahes. We notie that, in all the onsidered ases, the global sti�ness matries governing the problem

will be symmetri, sparse, and with a band struture.

The displaement relative error ev rel is the same as reported in Table 3 and it provides information

about the solution auray. The estimation of the number of DOFs (# DOFs) orresponds to the size

of the global sti�ness matrix. In partiular, for the 1- and 5- �ber models, # DOFs does not take into

aount the number of variables ondensed out at the element level, sine negligible with respet to number

of global DOFs (e.g. in the 5 �bre model ∼ 1.5 · 103 DOFs are ondensed on eah element). The number

of non-vanishing entries in the global sti�ness matries (# entries 6= 0) is stritly related to the memory

usage during omputation. The fourth olumn of Table 4 reports an estimation of the band width. The �fth

olumn reports an estimation of the number of �ops neessary to LU-fatorize the global sti�ness matrix (#

�ops), under the following assumptions: (i) # DOFs ≫ band-width and (ii) the omputational ost of both

the assembling proedure and the post-proessing are negligible. As a onsequene, # �ops is evaluated
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Model ev rel # DOFs # entries 6= 0 band-width # �ops

MB FE 1 �ber (δ = 1) 2.355 · 10−3
1.60 · 102 7.17 · 103 3.30 · 101 8.71 · 104

MB FE 25 �ber (δ = 5) 0.003 · 10−3
2.00 · 104 2.37 · 107 1.60 · 103 2.57 · 1010

3D solution (mesh 5× 5× 50) 40.437 · 10−3
5.40 · 103 4.37 · 105 4.33 · 102 5.05 · 108

3D solution (mesh 10× 10× 100) 9.531 ·10−3
3.63 · 104 2.94 · 106 1.45 · 103 3.83 · 1010

3D solution (mesh 50× 50× 500) - 3.90 · 106 3.16 · 108 3.12 · 104 1.90 · 1015

Table 4: Final ross-setion displaement relative error, number of DOFs used in the analysis (# DOFs), number of global

sti�ness-matrix entries di�erent from zero (# entries 6= 0), band width of the global sti�ness matrix (band-width), and

estimation of the number of �ops neessary to fatorize the global sti�ness matrix (# �ops) for a antilever (l = 10mm,

b = h = 1mm) evaluated using di�erent beam models.

through the following equation (see Quarteroni et al., 2007):

# �ops =
# DOFs · (band-width)2

2
(41)

We highlight that the MB FE 25 �ber and the 3D solution (mesh 10 × 10 × 100) require omaprable

# �ops. Nevertheless, the former model provides a solution with a relative error that is 3 order of magnitude

smaller than the latter. The obtained results, even if non exhaustive, lead us to onlude that the proposed

method has interesting numerial performanes with respet to the standard 3D analysis.

5.1.5. Conlusions on the beam model and the orresponding FE sheme

Looking at all the analyses performed in this setion, we may remark what follows.

� As illustrated in Subsetion 5.1.1, the MB and the orresponding FE sheme an apture the real

displaement better than the most popular beam models (EB and Timoshenko models).

� As illustrated in Subsetion 5.1.2, the proposed beam model has a signi�ant auray in the stress

desription.

� As illustrated in Subsetion 5.1.3, the asymptoti behaviour, for reasonable ratios h/l, is orret.

Nevertheless, we note that the MB FE sheme may exhibits troubles for extremely small ratios h/l.

� As illustrated in Subsetion 5.1.4, the MB FE is numerially ompetitive with respet to standard

methods.

5.2. Non homogeneous ross-setion beam (soft ore beam)

In this subsetion we onsider a beam with the non-homogeneous square ross-setion depited in Figure

5(b), and modeled through 25 equal �bers. We assume the boundary onditions of the example in Setion

5.1. Furthermore, we set l = 20mm, E1 = 105MPa, E2 = 103MPa, and ν = 0.25 everywhere in the

ross setion. Along the beam axis we use a non-uniform 8 element meshes, whose nodal oordinates are

olleted in the following vetor: [0; 1; 2; 3; 10; 17; 18; 19; 20]. We plot the stress distribution in the ross

setion x = 10mm. The numerial results are reported in Figure 11.

Consistently with the Saint-Venant priniple, the stress omponents σyy, σzz and τyz are negligible.

Moreover, due to the large ratio between the two Young's moduli, stress distributions within the ore

appear always extremely regular and �at.

In this example the non uniform distribution of shear omponent τxy along z−diretion is less evident than

in the ase of homogeneous beam. The ratio between the maximum values of the shears τxy and τxz, is lose
to 10, whih on�rms, one again, that τxz should not be negleted. In order to validate the results, we

ompute a 3D numerial solution using the ABAQUS software and a homogeneous mesh of 40 brik elements.

In Table 5 we report the minimum and the maximum values of the ross-setion stress distribution evaluated

on the ross-setion x = 10mm. From the omparison of the two methods it is possible to appreiate the

substantial agreement of the results. We notie that the high value of the σy, σz , and τyz in ABAQUS min

and max evaluation depends on some loalized instabilities that our in numerial evaluation of stress.
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Figure 11: Stress distributions evaluated at x = 10mm for the non homogeneous ase.

MB FE ABAQUS

min max min max

σx −7.54 ·101 7.54 · 101 −7.55 ·101 7.55 · 101

σy −5.73 ·10−2 5.73 · 10−2 −2.57 ·10−1 2.57 ·10−1

σz −1.22 ·10−1 1.22 · 10−1 −3.36 ·10−1 3.39 ·10−1

τxy −1.23 ·100 0.00 · 100 −1.23 ·100 −8.01 ·10−2

τxz −1.25 ·10−1 1.25 · 10−1 −9.62 ·10−2 9.62 ·10−1

τyz −7.27 ·10−3 7.27 · 10−3 −1.02 ·10−1 1.02 ·10−1

Table 5: Minimum and maximum value of stress omponents distributions evaluated on the ross-setion x = 10mm for the

non-homogeneous ase, evaluated with di�erent methods.

5.3. L-shape ross-setion beam

We onsider the ross-setion geometry and �ber distribution reported in Figure 5(). We assume the

beam length, the axial mesh, and the displaement onstraint of the example in Setion 5.2, while the

material parameters are set as E = 105MPa and ν = 0.25. We load the beam with a torsion moment

equal to 1Nmm in Al, imposed through a ouple of opposite unit fores [0, 0, 1]N and [0, 0,−1]N applied in

verties (20,−0.5;−0.5) and (20, 0; 0.5) respetively. The stress distributions at x = 10mm are reported in

Figure 12.

It is interesting to observe that, as expeted, the magnitude of σx, σy , σz and τyz is negligible with respet
to the magnitude of the shear omponents τxy and τxz. Moreover, onsidering the ross-setion symmetry

highlighted in Figure 5(), the τxy distribution is anti-symmetri respet to the τxy distribution. Finally,

a small stress onentration of σx, σy, σz and τyz an be appreiated lose to the setion verties where

onentrated fores are applied. In order to validate the results, we ompute a 3D numerial solution using

the ABAQUS software and a homogeneous mesh of 40 brik elements. In Table 6 we report the minimum

and the maximum values of the ross-setion stress distribution evaluated on the ross-setion x = 10mm.

From the omparison of the two method results it is possible to appreiate the substantial agreement of the

results. We notie a small di�erene between the maximum values of τxy and τxz that ours in the re�ex
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Figure 12: Stress distributions evaluated at x = 10mm for the L-shape ross setion.

MB FE ABAQUS

min max min max

σx −3.61 ·10−3 1.74 ·10−3 −1.20 ·10−9 1.65 ·10−9

σy −2.68 ·10−2 5.78 ·10−2 −1.41 ·10−11 1.51 ·10−11

σz −7.50 ·10−3 7.19 ·10−3 −1.49 ·10−11 2.12 ·10−11

τxy −9.54 ·100 1.56 ·101 −1.66 ·101 9.55 ·100

τxz −1.56 ·101 9.54 ·100 −9.55 ·100 1.66 ·101

τyz −2.47 ·10−3 7.29 ·10−3 −8.12 ·10−12 1.24 ·10−11

Table 6: Minimum and maximum value of stress omponents distributions evaluated on the ross-setion x = 10mm for the

L-shape ase, evaluated with di�erent methods.

angle of the ross-setion where stress onentration ours.

6. Conlusions

In this paper we develop a 3D beam model methodology and possible orresponding FE shemes: starting

from a suitable Hellinger-Reissner formulation of the elasti problem, we derive beam models by using a

variational dimension redution approah. When the pro�le funtions are properly seleted, the resulting

models lead to ODEs systems that an apture the boundary e�ets, too. However, we do not disuss how

to evaluate the warping funtions and the generalized stress and displaements. Those aspets might be

treated as illustrated in Dong et al. (2001).

Introduing a suitable FE disretization of the beam-model, we obtain a numerial sheme apable of

aurately desribing both displaement and stress �elds, as the numerial results on�rm.

Future developments of the present work ould inlude: a rigorous mathematial study of the model; the

development of more spei� ross-setion shape funtions, with the aim to handle more general geometries;

optimization issues, with the aim of redue the number of involved DOFs; the onsideration of more general

onstitutive laws.
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