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Abstract. We present a Galois theory connecting finitary operations with pairs of
finitary relations, one of which is contained in the other. The Galois closed sets on
both sides are characterised as locally closed subuniverses of the full iterative function
algebra (semiclones) and relation pair clones, respectively. Moreover, we describe the
modified closure operators if only functions and relation pairs of a certain bounded
arity, respectively, are considered.

1. Introduction

Clones of operations, i.e., composition closed sets of operations containing
all projections (cf. [31, 35, 25, 16]), play an important role in universal algebra,
as they encode structural properties independently of the similarity type of the
algebra. It is well known (see [10, 15], translations available in [8, 9]) that on
finite carrier sets, clones are in a one-to-one correspondence with structures
called relational clones. This is established via the Galois correspondence
Pol - Inv, which is induced by the relation of “functions preserving relations”.
In general, i.e., including in particular the case of infinite sets, so-called local
closure operators come into play (see [15, 30, 29, 24, 3]), and also the notion
of relational clone, as known from finite domains, needs to be generalised
(cf. ibid.). In this way, the Galois connection singles out certain locally closed
clones from the lattice of all clones on a given set. These clones can also be
seen as those which are topologically closed with respect to the topology that
one gets by endowing each set AAn

, for n ∈ N, with the product topology
arising from A initially carrying the discrete topology (see e.g., [6, 5]).

By equipping the set of all finitary functions on a fixed set A with a fi-
nite number of operations (including permutation of variables, identification
of variables, introduction of fictitious variables, a certain binary composition
operation and a projection as a constant; we present more details later on),
one obtains the full function algebra of finitary functions on A. It is known (cf.
e.g., [31, 25]) that the clones on A are exactly the carrier sets of subalgebras
of this structure. This relationship is a special case of the one between the
full iterative function algebra, also known as iterative Post algebra (introduced
by Maľcev in [27]), and its subuniverses (called Post algebras in [10]), which
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have often only been referred to as closed classes of functions in the Russian
literature (e.g., [21, 22]). These are similar in spirit to clones, but they do not
need to contain the projections (selectors in the terminology of [27]), as the
iterative Post algebra omits the projection constant in its signature compared
to the full function algebra.

In analogy to the Pol - Inv Galois connection, there is a Galois correspond-
ence Polp - Invp developed in [17] (see also [18, 19, 20]) based on the notion
of functions preserving pairs (�, �′) of relations �′ ⊆ �. For finite carrier sets,
the Galois closed sets have been characterised to be precisely the subuniverses
of the full iterative Post algebra and the subuniverses of a suitably defined
relation pair algebra, respectively. To the best knowledge of the author, a
generalisation of this result to arbitrary base sets has not yet appeared in the
literature. In particular, the general (and thus infinite) case is also missing in
Table 1 of [14, p. 296] summarising related Galois connections and character-
isations of their closure operators.

In this article, it is our aim to fill in this gap. We first coin the notion of
a semiclone, which relates to transformation semigroups in the same way as
clones relate to transformation monoids. It is not hard to figure out that semi-
clones and subuniverses of the full iterative Post algebra coincide. However,
the way a semiclone is defined is much more similar to the usual definition
of a clone and easier to grasp than that of a subalgebra of the full iterative
function algebra; hence, the proposition of the new terminology of semiclones.
Besides, note that our semiclones are different from those appearing in [33].

In a similar fashion as one needed to generalise the notion of relational clone
to accommodate the closed sets of InvA PolA for infinite carrier sets A, it will
be necessary to modify the relation pair algebra proposed by Harnau in [17].
We shall refer to the corresponding (new) subuniverses as relation pair clones.

Using the same local closure operator as introduced in [15, 29, 30] for sets
of functions (the topological closure), and appropriately modifying the local
closure on the side of relation pairs, we shall prove the following two main
results: the Galois closed sets of operations with respect to PolpA InvpA are
exactly the locally closed semiclones. Dually, the closed sets of InvpA PolpA
are precisely the locally closed relation pair clones.

Because it fits nicely in this context, we shall more specifically characterise
what it means that a semiclone can be described in the form PolpA Q for
some set Q of less than s-ary relation pairs, and that a relation pair clone is
given by InvpA F using a set F of less than s-ary operations. As in [30], this
involves certain s-local closure operators, and so quite a few of our results have
analogies in [30], where similar questions have been studied with respect to
Pol - Inv.

We mention that a related, in some sense more general, Galois connection
has been studied in [28] (finite case) and [13, 12]. There, for fixed sets A

and B, functions f : An → B have been related to pairs of relations R ⊆ Am,
S ⊆ Bm for some m ∈ N+, called relational constraints. In this situation, the
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Galois closed sets on the functional side are also closed with respect to variable
substitutions (as are our semiclones), but already for syntactic reasons, cannot
be closed with respect to compositions. So even if one considers the special
case that B = A, the results from [13] and [12] describe similar but differently
closed sets of functions due to other objects on the dual side (there is no
containment condition for the relations as in our setting since for general A
and B, there cannot be one).

We acknowledge that, perhaps, it could be possible to derive our results
by restricting the relational side of the Galois correspondence studied in [13,
12], but we think that the description of the closed objects on the dual side
used there is (and has to be) more complicated (using so-called conjunctive
minors). Besides, our strategy of proof exhibits more similarities with the
classical arguments known from clones and relational clones. Also, the local
closures developed for relational constraints in [13, 12] seem to require non-
trivial modifications (see Remark 2.14) to be used with our relation pairs due
to the inclusion requirement in their definition.

A still different weakening of the notion of clone and an associated Galois
theory for arbitrary domains has been considered in [26]: there closed sets of
functions have been characterised in terms of closed sets of so-called clusters.
Since the classes of functions occurring in [26] contain all projections, these
results explore a separate direction and cannot be exploited, either, to obtain
the missing general (infinite) case for semiclones.

Finally, this article is largely based on a more elaborate version [4] contain-
ing explicit proofs of statements that were considered straightforward here.

2. Preliminaries

2.1. Notation, functions and relations. In this article, the symbol N will
denote the set of all natural numbers (including zero), and N+ will be used for
N \ {0}. Moreover, we shall make use of the standard set theoretic represent-
ation of natural numbers by John von Neumann, i.e., n = { i ∈ N | i < n} for
n ∈ N. The power set of a set S will be denoted by P (S).

When discussing semiclones, relation pair clones, and their Galois theory,
we shall make no further assumptions on the carrier set, which we usually
represent by A. Any finite (including 0) or infinite cardinality is allowed for A.

For sets A and B, we write AB for the set of all mappings from B to A.
The order of composition employed in this article is from right to left, i.e.,
g ◦ f ∈ CA for f ∈ BA and g ∈ CB . That is, g ◦ f maps elements a ∈ A to
g(f(a)). For any index set I, sets A and (Bi)i∈I , and maps (fi : A → Bi)i∈I ,
their tupling is the unique map h : A →

∏
i∈I Bi satisfying πi ◦h = fi for each

i ∈ I, where πi :
∏

j∈I Bj → Bi is the i-th projection map belonging to the
Cartesian product

∏
j∈I Bj . As any ambiguity can usually be resolved from

the context, we denote the tupling h by (fi)i∈I , identically to the tuple (fi)i∈I .
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be necessary to modify the relation pair algebra proposed by Harnau in [17].
We shall refer to the corresponding (new) subuniverses as relation pair clones.
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closure on the side of relation pairs, we shall prove the following two main
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Because it fits nicely in this context, we shall more specifically characterise
what it means that a semiclone can be described in the form PolpA Q for
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given by InvpA F using a set F of less than s-ary operations. As in [30], this
involves certain s-local closure operators, and so quite a few of our results have
analogies in [30], where similar questions have been studied with respect to
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We mention that a related, in some sense more general, Galois connection
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and B, functions f : An → B have been related to pairs of relations R ⊆ Am,
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The notion of tupling is, of course, meaningful (by definition) in any cat-
egory having suitable products, and hence the following simple lemma about
composition of tuplings can be proved in such a general context. We recall
here just its instance for the category of sets (cf. [3, Lemma 2.5]).

Lemma 2.1. Let I and J be arbitrary index sets, k,m, n ∈ N natural numbers,
A,B,D,X and Bi (for i ∈ I), Cj (for j ∈ J) sets. Furthermore, suppose that
we are given mappings r : A → B, ri : A → Bi (for i ∈ I), gj : B → Cj (for
j ∈ J), and f :

∏
j∈J Cj → D.

(a) We have (gj)j∈J ◦ r = (gj ◦ r)j∈J .
(b) If B =

∏
i∈I Bi, then (gj)j∈J ◦ (ri)i∈I =

(
gj ◦ (ri)i∈I

)
j∈J

, and thus
(
f ◦ (gj)j∈J

)
◦ (ri)i∈I = f ◦

(
gj ◦ (ri)i∈I

)
j∈J

.

(c) If Bi = Cj = D = X for i ∈ I and j ∈ J , A = Xk, I = m, and J = n,
then we have

(f ◦ (g0, . . . , gn−1)) ◦ (r0, . . . , rm−1)

= f ◦ (g0 ◦ (r0, . . . , rm−1) , . . . , gn−1 ◦ (r0, . . . , rm−1)) ,

the superassociativity law for finitary operations on X.

In our modelling, natural numbers are simply sets; we consequently inter-
pret tuples as maps, too: if B = n ∈ N is a natural number, then AB = An is
the set of all n-tuples x = (x(i))i<n. We shall often write xi for the entry x(i)

(for i ∈ n), and whenever convenient, we shall also refer to the entries of
tuples by different indexing, e.g., x = (x1, . . . , xn). Note that the sole element
of A0 = A∅ is the empty mapping (tuple), whose graph is the empty relation.
It will consistently be denoted by ∅. As tuples are functions, we may compose
them with other functions, e.g., if x ∈ An and α : m → n, (for m,n ∈ N),
then x ◦ α is the tuple in Am whose entries are xα(i) (for i ∈ m). Similarly, if
g : A → B, then g ◦ x = (g(xi))i∈n is an element of Bn.

Any mapping f ∈ AAn

(for n ∈ N) is called an n-ary operation on A, and
the number n is referred to as its arity, denoted by ar (f). The set of all
finitary operations on A is OA :=

⊎
k∈N AAk

. Note that we explicitly include
nullary operations here, which is slightly uncommon in standard clone theory.
For a set of operations F ⊆ OA, we denote its n-ary part by F (n) := F ∩AAn

.
We extend this notation to operators yielding subsets of operations: for an
operator on a set S, OP: S → P (OA), we define OP(n) : S → P

(
O

(n)
A

)
by

the restriction OP(n)(s) := (OP(s))
(n) for s ∈ S. Based on this, we put

moreover OP(n1,...,nk)(s) :=
⊎k

i=1 OP(ni)(s) for s ∈ S and a finite list of arities
n1, . . . , nk, k > 0. We also abbreviate OP(0,...,n) as OP(≤n) or OP(<n+1), and
for s ∈ S, we let OP(>0)(s) := OP(s) \OP(0)(s); moreover, OP(<ℵ0) := OP.

The projection operations belonging to the finite Cartesian powers of the
carrier set play a special role. For n ∈ N and i ∈ n, we denote by e

(n)
i ∈ O

(n)
A
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the n-ary projection on the i-th coordinate. Evidently, there do not exist
any nullary projections. Therefore, the set of all projections on A, denoted
by JA, equals

⋃
n∈N+

{
e
(n)
i

∣∣∣ 0 ≤ i < n
}
. For the identity operation e

(1)
0 , we

occasionally also use the notation idA.
Knowing about re-indexing tuples, we can recollect the notion of polymer.

If m,n ∈ N are arities, α : n → m is any indexing map, and f ∈ O
(n)
A , then

δα (f) is the operation in O
(m)
A given by δα (f) (x) := f (x ◦ α) for x ∈ Am.

Any operation derived from f ∈ O
(n)
A by some map α : n → m, (for m ∈ N),

is said to be a polymer of f . Clearly, any polymer of f can be obtained by
composition with a suitable tupling of projections: δα (f) = f ◦

(
e
(m)
α(i)

)
i∈n

.
Besides operations, we shall also need relations: for m ∈ N, any subset

� ⊆ Am of m-tuples is an m-ary relation on A. Thus, P (Am) is the
set of all m-ary relations, and again allowing arity equal to null, the set of
all finitary relations is defined by RA :=

⋃
�∈N P

(
A�

)
. If Q ⊆ RA, we use

Q(m) := Q ∩P (Am) to denote its m-ary part. Moreover, if OP: S → P (RA)

is an operator on a set S, we put OP(m) : S → P
(
R

(m)
A

)
, mapping s ∈ S

to OP(m)(s) := (OP(s))
(m). Similarly as for operations, for s ∈ S, we define

OP(<m+1)(s) :=
⋃m

k=0 OP(k)(s), OP(≥m)(s) :=
⋃

k∈N,k≥m OP(k)(s), and we let
OP(>0) := OP(≥1), as well as OP(<ℵ0) := OP.

A relation pair of arity m ∈ N ([17, p. 15] or [19, p. 11]) is any pair (�, �′),
where �, �′ ∈ R

(m)
A and �′ ⊆ �. We collect all m-ary relation pairs in the set

Rp
(m)
A ; the disjoint union (the importance of this technical aspect is discussed

after Definition 2.8) RpA :=
⊎

�∈N Rp
(�)
A denotes the set of all finitary relation

pairs. As before, we abbreviate m-ary parts as Q(m) := Rp
(m)
A ∩ Q for any

Q ⊆ RpA and define operator restrictionsOP(m) : S → P
(
Rp

(m)
A

)
by mapping

s ∈ S to OP(m)(s) := (OP(s))
(m) for any OP: S → P (RpA). Further, we put

OP(<m+1)(s) :=
⊎m

k=0 OP(k)(s) for s ∈ S and OP(<ℵ0) := OP.
There is a natural order relation on Rp

(m)
A for each m ∈ N, which is given

by set inclusion in both components. That is, we write (σ, σ′) ≤ (�, �′) for
(�, �′) , (σ, σ′) ∈ Rp

(m)
A if and only if σ ⊆ � and σ′ ⊆ �′. Moreover, we shall

need the quasiorder on Rp
(m)
A , (for m ∈ N), that is specified by just ordering

the first components: (σ, σ′) � (�, �′) holds by definition if and only if σ ⊆ �.
We say that a relation pair (σ, σ′) ∈ RpA is a relaxation of some other pair

(�, �′) ∈ RpA (cf. [13, p. 153]) if �′ ⊆ σ′ and σ ⊆ �. A collection Q ⊆ RpA is
closed with respect to relaxations if with each pair (�, �′) ∈ Q, it also contains
any of its relaxations, i.e., if

→Q← := { (σ, σ′) ∈ RpA | ∃ (�, �′) ∈ Q : �′ ⊆ σ′ ⊆ σ ⊆ �}

is a subset of (equal to) Q. Since set inclusion is transitive, the collection
→Q← is the least subset of RpA (with respect to ⊆) that contains Q and is
closed with respect to relaxations. We call →Q← the closure of Q with respect
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to relaxation. In [19, Definition 1, p. 16], this closure has been handled by so-
called multioperations dv and dh.

2.2. The Galois correspondence Polp - Invp. Here we recall the Galois
connection Polp - Invp as defined in [17, p. 15] and [19, p. 11]. We slightly
extend the scope by allowing nullary operations and relations.

Definition 2.2. For an n-ary operation f ∈ O
(n)
A (n ∈ N) and an m-ary

relation pair (�, �′) ∈ Rp
(m)
A (for m ∈ N) on a set A, we say that f preserves

(�, �′) and write f � (�, �′) if the following equivalent conditions hold.

(i) For every tuple r ∈ �n, the composition of f with the tupling (r) of the
tuples in r belongs to the smaller relation: f ◦ (r) ∈ �′.

(ii) For every (m× n)-matrix X ∈ Am×n whose columns X−,j (for j ∈ n)
are tuples in �, the tuple (f(Xi,−))i∈m obtained by row-wise application
of f to X yields a tuple of �′.

Note, in this respect, that for any tuple r = (rj)0≤j<n ∈ (Am)
n, where

for 0 ≤ j < n, each tuple is given as rj = (rij)0≤i<m, the definition of

tupling precisely yields that f ◦ (r) =
(
f
(
(rij)0≤j<n

))
0≤i<m

, i.e., the result

of applying f row-wise to the matrix (rij)(i,j)∈m×n ∈ Am×n.
Note, furthermore, that for � ∈ RA and f ∈ OA, the condition f � (�, �)

coincides with the usual preservation condition for functions and relations
(cf. [3, Definition 2.3] for the framework involving nullary operations).

Based on the preservation condition we introduce a Galois correspondence
in the usual way: for a set F ⊆ OA, we denote by

InvpA F := { (�, �′) ∈ RpA | ∀f ∈ F : f � (�, �′)}

the set of its invariant relation pairs, and, dually, for Q ⊆ RA, the set

PolpA Q := {f ∈ OA | ∀ (�, �′) ∈ Q : f � (�, �′)}

contains all polymorphisms of relation pairs in Q. The pair (PolpA, InvpA)

forms the Galois correspondence Polp - Invp.
If we restrict the latter just to relation pairs (�, �′) where � = �′, then we

get the standard Galois connection Pol - Inv : for F ⊆ OA, we have

{ (�, �) | � ∈ RA ∧∀f ∈ F : f � (�, �)} = { (�, �) | � ∈ InvA F} ,

where InvA F = {� ∈ RA | ∀f ∈ F : f � �}; and for Q ⊆ { (�, �) | � ∈ RA},
letting Q′ := {� ∈ RA | (�, �) ∈ Q}, it is the case that

PolpA Q = {f ∈ OA | ∀ (�, �) ∈ Q : f � (�, �)} = PolA Q′,

wherein PolA Q′ := {f ∈ OA | ∀� ∈ Q′ : f � �}.
The name polymorphism attributed to the functions in PolA Q for sets of

relations Q ⊆ RA comes from the fact that an operation f ∈ OA belongs to
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PolA Q if and only if it is a homomorphism from the power
��
Aar(f) into the re-

lational structure
��
A =

〈
A; (�)�∈Q

〉
. This characterisation can be generalised.

Lemma 2.3. For Q ⊆ RpA and any arity n ∈ N, an operation f ∈ O
(n)
A

satisfies f ∈ PolpA Q if and only if f :
〈
A; (�)(�,�′)∈Q

〉n

→
〈
A; (�′)(�,�′)∈Q

〉

is a homomorphism of relational structures.

It is an evident consequence of the definition of preservation that sets of
the form InvpA F , for F ⊆ OA, are closed with respect to relaxation (cf. [19,
Lemma 8, p. 16]).

Lemma 2.4. For F ⊆ OA, we have InvpA F = →InvpA F←.

Corollary 2.5. For every Q ⊆ RpA, we have PolpA Q = PolpA
→Q←.

Proof. By Lemma 2.4, Q ⊆ →Q← ⊆ →InvpA PolpA Q← = InvpA PolpA Q for
Q ⊆ RpA, so PolpA Q ⊇ PolpA

→Q← ⊇ PolpA InvpA PolpA Q = PolpA Q. �

If a set Q ⊆ RpA or, more generally, InvpA PolpA Q contains a relation pair
that is not preserved by any operation, then PolpA Q is forced to be empty.
The next lemma characterises when this happens (cf. [17, p. 15] and [19, p. 12]).

Lemma 2.6. For Q ⊆ RpA, we have PolpA Q = ∅ if and only if InvpA PolpA Q

contains a relation pair of the form (�, ∅) with � �= ∅, which happens precisely
if
(
A0, ∅

)
∈ InvpA PolpA Q.

Remark 2.7. The previous lemma demonstrates the necessity to include nul-
lary relations in the framework, caused by our wish not to impose any restric-
tion on the carrier set A. Namely, for A = ∅, we have Am = ∅ for all m ∈ N+,
and thus R

(m)
A = P (Am) = {∅}. Hence, RpA =

{(
A0, ∅

)}
�
⊎

m∈N+
{(∅, ∅)},

which allows us to distinguish between PolpA RpA = PolpA
{(

A0, ∅
)}

= ∅ and
PolpA {(∅, ∅)} = PolpA ∅ = OA. Both sets are evidently semiclones (subalgeb-
ras of the iterative Post algebra) on any carrier set A, so in view of our overall
objective, it is more than desirable to be able to model them with our Galois
correspondence. Restricting to relations of positive arity, this would clearly be
impossible for A = ∅.

2.3. Local closure operators for functions and relation pairs. For the
Galois connection Pol - Inv in the case of infinite carrier sets, there exist ex-
amples F ⊆ OA where the inclusion 〈F 〉OA

⊆ PolA InvA F is proper. Hence,
in order to characterise the Galois closure, an additional local closure operator
is needed. A similar situation arises with Polp - Invp: for operations, we can
indeed reuse the same local closure operators as known from Pol - Inv. For the
side of relation pairs, we have to introduce a new variant of local closure.

In fact, in order to characterise Galois closures of sets of less than s-ary
operations/relations (for s ∈ N+), we define more specific variants of s-local
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to relaxation. In [19, Definition 1, p. 16], this closure has been handled by so-
called multioperations dv and dh.

2.2. The Galois correspondence Polp - Invp. Here we recall the Galois
connection Polp - Invp as defined in [17, p. 15] and [19, p. 11]. We slightly
extend the scope by allowing nullary operations and relations.

Definition 2.2. For an n-ary operation f ∈ O
(n)
A (n ∈ N) and an m-ary

relation pair (�, �′) ∈ Rp
(m)
A (for m ∈ N) on a set A, we say that f preserves

(�, �′) and write f � (�, �′) if the following equivalent conditions hold.

(i) For every tuple r ∈ �n, the composition of f with the tupling (r) of the
tuples in r belongs to the smaller relation: f ◦ (r) ∈ �′.

(ii) For every (m× n)-matrix X ∈ Am×n whose columns X−,j (for j ∈ n)
are tuples in �, the tuple (f(Xi,−))i∈m obtained by row-wise application
of f to X yields a tuple of �′.

Note, in this respect, that for any tuple r = (rj)0≤j<n ∈ (Am)
n, where

for 0 ≤ j < n, each tuple is given as rj = (rij)0≤i<m, the definition of

tupling precisely yields that f ◦ (r) =
(
f
(
(rij)0≤j<n

))
0≤i<m

, i.e., the result

of applying f row-wise to the matrix (rij)(i,j)∈m×n ∈ Am×n.
Note, furthermore, that for � ∈ RA and f ∈ OA, the condition f � (�, �)

coincides with the usual preservation condition for functions and relations
(cf. [3, Definition 2.3] for the framework involving nullary operations).

Based on the preservation condition we introduce a Galois correspondence
in the usual way: for a set F ⊆ OA, we denote by

InvpA F := { (�, �′) ∈ RpA | ∀f ∈ F : f � (�, �′)}

the set of its invariant relation pairs, and, dually, for Q ⊆ RA, the set

PolpA Q := {f ∈ OA | ∀ (�, �′) ∈ Q : f � (�, �′)}

contains all polymorphisms of relation pairs in Q. The pair (PolpA, InvpA)

forms the Galois correspondence Polp - Invp.
If we restrict the latter just to relation pairs (�, �′) where � = �′, then we

get the standard Galois connection Pol - Inv : for F ⊆ OA, we have

{ (�, �) | � ∈ RA ∧∀f ∈ F : f � (�, �)} = { (�, �) | � ∈ InvA F} ,

where InvA F = {� ∈ RA | ∀f ∈ F : f � �}; and for Q ⊆ { (�, �) | � ∈ RA},
letting Q′ := {� ∈ RA | (�, �) ∈ Q}, it is the case that

PolpA Q = {f ∈ OA | ∀ (�, �) ∈ Q : f � (�, �)} = PolA Q′,

wherein PolA Q′ := {f ∈ OA | ∀� ∈ Q′ : f � �}.
The name polymorphism attributed to the functions in PolA Q for sets of

relations Q ⊆ RA comes from the fact that an operation f ∈ OA belongs to
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closure operators. Note the following change of indexing compared to the lit-
erature: for s ≥ 2, our operator s-LocA coincides with the operator (s-1)-LocA
from [30, 1.9, p. 15] (see also [29, 1.5, p. 255 et seq.]); ℵ0-LocA is known as
LocA.

Definition 2.8. For a cardinal 0 < s ≤ ℵ0, F ⊆ OA, and Q ⊆ RpA, we set

s-LocA F :=
⊎
n∈N

{
g ∈ O

(n)
A

∣∣∣ ∀B ⊆ An, |B| < s ∃ f ∈ F (n) : g|B = f |B
}
,

s-LOCA Q :=
⊎
m∈N

{
(σ, σ′) ∈ Rp

(m)
A

∣∣∣∣∣
∀B ⊆ σ, |B| < s ∃ (�, �′) ∈ Q(m) :

B ⊆ � ∧ �′ ⊆ σ′

}
,

and call these s-local closure operators. For compatibility with traditional use,
we call ℵ0-LocA and ℵ0-LOCA local closure operators.

It is easy to check that s-LocA and s-LOCA are indeed closure operators
on OA and RpA, respectively. Moreover, ℵ0-LocA F =

⋂
s∈N+

s-LocA F and
ℵ0-LOCA Q =

⋂
s∈N+

s-LOCA Q hold for F ⊆ OA and Q ⊆ RpA. Likewise,
it is not hard to see that for every n ∈ N and cardinals 0 < s ≤ ℵ0, we have
s-Loc

(n)
A F = s-LocA

(
F (n)

)
for F ⊆ OA, and s-LOC

(n)
A Q = s-LOCA

(
Q(n)

)
for any set Q ⊆ RpA. To make a technical remark: if we had not insisted
on using the disjoint union for the definition of RpA, then for any n ∈ N,
we would have 1-LOCA

(
Q(n)

)
= RpA whenever (∅, ∅) ∈ Q (as in this case,

(∅, ∅) ∈ Q(n)(m)
were true for all m ∈ N), and this would obviously violate the

equality mentioned above: RpA = 1-LOCA

(
Q(n)

)
�⊆ 1-LOC

(n)
A Q ⊆ Rp

(n)
A .

Moreover, it follows directly from the definition that t-LocA F ⊆ s-LocA F

and t-LOCA Q ⊆ s-LOCA Q hold for all sets F ⊆ OA and Q ⊆ RpA whenever
0 < s ≤ t ≤ ℵ0. Thus, for F ⊆ OA, Q ⊆ RpA and s ∈ N+, we have

1-LocA F ⊇ · · · ⊇ s-LocA F ⊇ (s+ 1)-LocA F ⊇ · · · ⊇ ℵ0-LocA F ⊇ F,

1-LOCA Q ⊇ · · · ⊇ s-LOCA Q ⊇ (s+ 1)-LOCA Q ⊇ · · · ⊇ ℵ0-LOCA Q ⊇ Q.

It follows from these relations that

s-LocA t-LocA F = (min {s, t})-LocA F

holds for all F ⊆ OA and

s-LOCA t-LOCA Q = (min {s, t})-LOCA Q

for all Q ⊆ RpA and any 0 < s, t ≤ ℵ0 (cp. [30, Proposition 1.10, p. 16]).
Note that our definition of s-local closure of relation pairs for s ≥ 2 entails

the corresponding one for relations given in [30, 1.9, p. 16] in the following
way: for Q′ ⊆ RA \R(0)

A , put Q :=
⊎

m∈N+

{
(�, �)

∣∣∣ � ∈ Q′(m)
}
. Then given

1 < s ≤ ℵ0, one can verify s-LOCA Q =
⊎

m∈N+

{
(σ, σ)

∣∣∣ σ ∈ s-LØC(m)
A Q′

}

(see Lemma 6.13 for further details), in which s-LØCA Q′ denotes the set
{σ ∈ RA | ∀B ⊆ σ, |B| < s ∃� ∈ Q′ : B ⊆ � ⊆ σ}. Hence, one may reconstruct
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s-LØCA Q′ as {σ ∈ RA | (σ, σ) ∈ s-LOCA Q}. For 1 < s < ℵ0, the operator
s-LØCA was called (s-1)-LOCA in [30], and LOCA was used for ℵ0-LØCA.

The following is an obvious consequence of Definition 2.8.

Lemma 2.9. For Q ⊆ RpA, we have →Q← ⊆ ℵ0-LOCA Q.

Corollary 2.10. Let Q ⊆ RpA be s-locally closed for some 0 < s ≤ ℵ0; then
it is closed with respect to relaxation.

For relations of fixed arity and finite base sets, there is even a much stronger
connection between relaxation and s-local closure.

Lemma 2.11. For all finite carrier sets A of cardinality k := |A| < ℵ0 and any
m ∈ N, we have →Q← = ℵ0-LOCA Q = (km + 1)-LOCA Q for all Q ⊆ Rp

(m)
A .

Proof. Let � := km +1. The inclusions →Q← ⊆ ℵ0-LOCA Q ⊆ �-LOCA Q hold
in general (cf. Lemma 2.9). Conversely, for a set Q ⊆ Rp

(m)
A of m-ary pairs,

let us consider any (σ, σ′) ∈ �-LOCA Q = �-LOCA

(
Q(m)

)
= �-LOC

(m)
A Q. As

σ ∈ R
(m)
A , we have |σ| ≤ |Am| < �. Hence, taking B := σ as a subset of σ

having less than � elements, by definition of �-LOCA, there is (�, �′) ∈ Q(m)

such that σ = B ⊆ � and �′ ⊆ σ′. Therefore, (σ, σ′) ∈ →Q←. �

Corollary 2.12. For finite A, we have →Q← = ℵ0-LOCA Q for all Q ⊆ RpA;
thus, Q ⊆ RpA is locally closed if and only if it is closed with respect to
relaxation.

The following closure property will become important regarding the charac-
terisation of the closure operator InvpA Polp

(<s)
A in Section 5. For 0 < s ≤ ℵ0,

a collection T ⊆ P (S) of subsets of a set S is called s-directed if and only if
for all 0 ≤ t < s, all (Xi)i∈t ∈ T t, and every r = (ri)i∈t ∈

∏
i∈t Xi, there is

a set Z ∈ T such that im r = {ri | i ∈ t} ⊆ Z. For s < ℵ0, this condition
is equivalent to T being non-empty and that for all (Xi)0≤i<s−1 ∈ T s−1 and
r ∈

∏
0≤i<s−1 Xi, there is Z ∈ T fulfilling im r ⊆ Z. Certainly, T ⊆ P (S)

is ℵ0-directed if and only if it is s-directed for all 0 < s < ℵ0. We say
that a set Q ⊆ Rp

(m)
A of m-ary relation pairs is s-directed if and only if

{� | (�, �′) ∈ Q} ⊆ P (Am) is s-directed in the sense above. Sets of the form
s-LOCA Q, where Q ⊆ RpA, are closed with respect to unions of s-directed
systems of relation pairs of the same arity.

Lemma 2.13. If for 0 < s ≤ ℵ0, m ∈ N, and Q ⊆ RpA, a set T ⊆ s-LOC
(m)
A Q

is s-directed, then we have
⋃
T :=

(⋃
(µ,µ′)∈T µ,

⋃
(µ,µ′)∈T µ′

)
∈ s-LOC

(m)
A Q.

We call a set T ⊆ Rp
(m)
A directed if T �= ∅ and for all (�1, �′1) , (�2, �′2) ∈ T ,

there exists some (�, �′) ∈ T such that �1 ∪ �2 ⊆ �. This is equivalent to
saying that for any finite subset F ⊆ T , there is a pair (�, �′) ∈ T such that⋃

(µ,µ′)∈F µ ⊆ �, wherefore directedness clearly implies ℵ0-directedness.
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closure operators. Note the following change of indexing compared to the lit-
erature: for s ≥ 2, our operator s-LocA coincides with the operator (s-1)-LocA
from [30, 1.9, p. 15] (see also [29, 1.5, p. 255 et seq.]); ℵ0-LocA is known as
LocA.

Definition 2.8. For a cardinal 0 < s ≤ ℵ0, F ⊆ OA, and Q ⊆ RpA, we set

s-LocA F :=
⊎
n∈N

{
g ∈ O

(n)
A

∣∣∣ ∀B ⊆ An, |B| < s ∃ f ∈ F (n) : g|B = f |B
}
,

s-LOCA Q :=
⊎
m∈N

{
(σ, σ′) ∈ Rp

(m)
A

∣∣∣∣∣
∀B ⊆ σ, |B| < s ∃ (�, �′) ∈ Q(m) :

B ⊆ � ∧ �′ ⊆ σ′

}
,

and call these s-local closure operators. For compatibility with traditional use,
we call ℵ0-LocA and ℵ0-LOCA local closure operators.

It is easy to check that s-LocA and s-LOCA are indeed closure operators
on OA and RpA, respectively. Moreover, ℵ0-LocA F =

⋂
s∈N+

s-LocA F and
ℵ0-LOCA Q =

⋂
s∈N+

s-LOCA Q hold for F ⊆ OA and Q ⊆ RpA. Likewise,
it is not hard to see that for every n ∈ N and cardinals 0 < s ≤ ℵ0, we have
s-Loc

(n)
A F = s-LocA

(
F (n)

)
for F ⊆ OA, and s-LOC

(n)
A Q = s-LOCA

(
Q(n)

)
for any set Q ⊆ RpA. To make a technical remark: if we had not insisted
on using the disjoint union for the definition of RpA, then for any n ∈ N,
we would have 1-LOCA

(
Q(n)

)
= RpA whenever (∅, ∅) ∈ Q (as in this case,

(∅, ∅) ∈ Q(n)(m)
were true for all m ∈ N), and this would obviously violate the

equality mentioned above: RpA = 1-LOCA

(
Q(n)

)
�⊆ 1-LOC

(n)
A Q ⊆ Rp

(n)
A .

Moreover, it follows directly from the definition that t-LocA F ⊆ s-LocA F

and t-LOCA Q ⊆ s-LOCA Q hold for all sets F ⊆ OA and Q ⊆ RpA whenever
0 < s ≤ t ≤ ℵ0. Thus, for F ⊆ OA, Q ⊆ RpA and s ∈ N+, we have

1-LocA F ⊇ · · · ⊇ s-LocA F ⊇ (s+ 1)-LocA F ⊇ · · · ⊇ ℵ0-LocA F ⊇ F,

1-LOCA Q ⊇ · · · ⊇ s-LOCA Q ⊇ (s+ 1)-LOCA Q ⊇ · · · ⊇ ℵ0-LOCA Q ⊇ Q.

It follows from these relations that

s-LocA t-LocA F = (min {s, t})-LocA F

holds for all F ⊆ OA and

s-LOCA t-LOCA Q = (min {s, t})-LOCA Q

for all Q ⊆ RpA and any 0 < s, t ≤ ℵ0 (cp. [30, Proposition 1.10, p. 16]).
Note that our definition of s-local closure of relation pairs for s ≥ 2 entails

the corresponding one for relations given in [30, 1.9, p. 16] in the following
way: for Q′ ⊆ RA \R(0)

A , put Q :=
⊎

m∈N+

{
(�, �)

∣∣∣ � ∈ Q′(m)
}
. Then given

1 < s ≤ ℵ0, one can verify s-LOCA Q =
⊎

m∈N+

{
(σ, σ)

∣∣∣ σ ∈ s-LØC(m)
A Q′

}

(see Lemma 6.13 for further details), in which s-LØCA Q′ denotes the set
{σ ∈ RA | ∀B ⊆ σ, |B| < s ∃� ∈ Q′ : B ⊆ � ⊆ σ}. Hence, one may reconstruct
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As a consequence of this implication, we get that locally closed sets of
relation pairs are closed under directed unions of sets of pairs of identical
arity.

Under additional assumptions on the set of relation pairs Q, we shall extend
Lemma 2.13 to characterisations of s-local closedness for 0 < s ≤ ℵ0. We
conclude this subsection with remarks on the relationship of our local closure
operators to others defined in the more general setting in [12].

Remark 2.14. The s-local closure operators for 0 < s ≤ ℵ0 defined here
cannot directly be derived as special cases of the corresponding closure oper-
ators from [12]. As the case of local closures is similar, we shall only argue
for s-local closures. Specialising the framework in the mentioned article for a
pair of carrier sets (A,B) where B = A, we may apply the s-local closure LOs

described there (for 1 ≤ s < ℵ0) to any set Q ⊆ RpA \Rp(0)A , then yielding the
collection LOs (Q) = Q ∪Q′ where

Q′ :=
⋃

m∈N+

{
(R,S) ∈ (P (Am))2

∣∣∣
∀C ⊆ R, |C| ≤ s ∀Am ⊇ T ⊇ S : (C, T ) ∈ Q

}
.

As this set contains pairs (R,S) that are not relation pairs, i.e., failing the
condition R ⊇ S, the canonical modification would be to simply intersect the
result with RpA, leading to LOs (Q) ∩ RpA = Q ∪Q′′ with

Q′′ :=
⋃

m∈N+

{
(R,S) ∈ Rp

(m)
A

∣∣∣
∀C ⊆ R, |C| ≤ s ∀Am ⊇ T ⊇ S : (C, T ) ∈ Q

}
.

This set Q∪Q′′ equals Q on any set A (in fact, Q′′ = ∅, whenever A �= ∅). So
LOs (or its canonical modification) is not helpful at all in our setting.

Suppose, in the union over m ∈ N+, we change the condition describing
when a relation pair (R,S) is added to the s-local closure of Q as follows:
among all relational constraints (C, T ) relaxing (R,S) and verifying |C| ≤ s,
only those are required to be in Q that are indeed relation pairs. Then we get

Q∪
⋃

m∈N+

{
(R,S) ∈ Rp

(m)
A

∣∣∣ ∀C ⊆ R, |C| ≤ s ∀C ⊇ T ⊇ S : (C, T ) ∈ Q
}
.

This set still differs from (s+ 1)-LOCA Q as defined above. For instance, for
any s ≥ 1 and Q = ∅, we have (s+ 1)-LOCA Q = ∅, while the previously
displayed collection contains all relation pairs (R,S) ∈ RpA where |S| > s.

We do not see an obvious way how to turn LOs into (s+ 1)-LOCA.
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3. Semiclones and the full iterative Post algebra

The following definition is very similar to that of a clone of operations. The
only difference is that a clone F ⊆ OA is additionally required to contain the
set JA of projections as a subset.

Definition 3.1. A (concrete) semiclone (of operations) on a set A is a sub-
set F ⊆ OA of all finitary operations such that for all m,n ∈ N, we have
f ◦ (g0, . . . , gn−1) ∈ F for each f ∈ F (n) and (g0, . . . , gn−1) ∈

(
(F ∪ JA)

(m)
)n

.

The closure property stated in Definition 3.1 is formulated in terms of partial
composition operations on OA, as the functions making up the tupling all have
to be of identical arity. However, it is possible to extend these operations in a
conservative way to totally defined operations on OA such that semiclones are
exactly the subuniverses of a certain universal algebra on the carrier set OA:

for each n,m ∈ N, each subset I ⊆ n, and any tuple (gi)i∈I ∈
(
J
(m)
A

)I

of
m-ary projections, we define an (|n \ I|+ 1)-ary operation on OA, which maps(
f, (gi)i∈n\I

)
to f ◦ (gi)i∈n provided that f ∈ O

(n)
A and gi ∈ O

(m)
A for all

i ∈ n \ I, and to f otherwise. If we collect all the finitary operations obtained
in this way in a set Φ ⊆ OOA

, then it becomes clear that F ⊆ OA is a semiclone
if and only if it is a subuniverse of the algebra 〈OA; Φ〉.

Hence, the set SA := Sub (〈OA; Φ〉) of all semiclones on A bears the struc-
ture of a complete algebraic lattice with respect to set-inclusion, and is, in
particular, a closure system. The corresponding closure operator will be de-
noted by [ ]OA

.
Evident, trivial examples of semiclones are the empty set of operations and

any clone F ⊆ OA. Moreover, we have the following class of examples.

Lemma 3.2. For a set G ⊆ O
(1)
A of unary transformations, abbreviate its

generated transformation semigroup by S := 〈G〉〈
O

(1)
A ;◦

〉. Then we have

[G]OA
=

{
f ◦ e(n)i

∣∣∣ i ∈ n ∧ n ∈ N+ ∧ f ∈ S
}
.

Corollary 3.3. The unary parts of semiclones
{
F (1)

∣∣ F ∈ SA

}
are precisely

all (carrier sets of ) transformation semigroups on A.

As mentioned in the introduction, semiclones are not a new invention. They
are just the subuniverses (“closed classes of functions”) of the full iterative Post
algebra. In order to see this, we need a few definitions.

For n ∈ N+, define αζ
n : n → n by αζ

n (i) := i + 1 (mod n) and αζ
0 := id0.

Moreover, let ατ
n : n → n be the transposition (0, 1) for n ∈ N with n ≥ 2,

and put ατ
n := idn for n ∈ {0, 1}. We continue by defining α∆

n : n → n− 1 via
α∆
n (i) := max (0, i− 1) for n ∈ N with n ≥ 2, letting α∆

n := idn for n ∈ {0, 1}
and declaring the map α∇

n : n → n+ 1 by α∇
n (i) := i+ 1 for any n ∈ N.
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As a consequence of this implication, we get that locally closed sets of
relation pairs are closed under directed unions of sets of pairs of identical
arity.

Under additional assumptions on the set of relation pairs Q, we shall extend
Lemma 2.13 to characterisations of s-local closedness for 0 < s ≤ ℵ0. We
conclude this subsection with remarks on the relationship of our local closure
operators to others defined in the more general setting in [12].

Remark 2.14. The s-local closure operators for 0 < s ≤ ℵ0 defined here
cannot directly be derived as special cases of the corresponding closure oper-
ators from [12]. As the case of local closures is similar, we shall only argue
for s-local closures. Specialising the framework in the mentioned article for a
pair of carrier sets (A,B) where B = A, we may apply the s-local closure LOs

described there (for 1 ≤ s < ℵ0) to any set Q ⊆ RpA \Rp(0)A , then yielding the
collection LOs (Q) = Q ∪Q′ where

Q′ :=
⋃

m∈N+

{
(R,S) ∈ (P (Am))2

∣∣∣
∀C ⊆ R, |C| ≤ s ∀Am ⊇ T ⊇ S : (C, T ) ∈ Q

}
.

As this set contains pairs (R,S) that are not relation pairs, i.e., failing the
condition R ⊇ S, the canonical modification would be to simply intersect the
result with RpA, leading to LOs (Q) ∩ RpA = Q ∪Q′′ with

Q′′ :=
⋃

m∈N+

{
(R,S) ∈ Rp

(m)
A

∣∣∣
∀C ⊆ R, |C| ≤ s ∀Am ⊇ T ⊇ S : (C, T ) ∈ Q

}
.

This set Q∪Q′′ equals Q on any set A (in fact, Q′′ = ∅, whenever A �= ∅). So
LOs (or its canonical modification) is not helpful at all in our setting.

Suppose, in the union over m ∈ N+, we change the condition describing
when a relation pair (R,S) is added to the s-local closure of Q as follows:
among all relational constraints (C, T ) relaxing (R,S) and verifying |C| ≤ s,
only those are required to be in Q that are indeed relation pairs. Then we get

Q∪
⋃

m∈N+

{
(R,S) ∈ Rp

(m)
A

∣∣∣ ∀C ⊆ R, |C| ≤ s ∀C ⊇ T ⊇ S : (C, T ) ∈ Q
}
.

This set still differs from (s+ 1)-LOCA Q as defined above. For instance, for
any s ≥ 1 and Q = ∅, we have (s+ 1)-LOCA Q = ∅, while the previously
displayed collection contains all relation pairs (R,S) ∈ RpA where |S| > s.

We do not see an obvious way how to turn LOs into (s+ 1)-LOCA.
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On this basis, we define for ω ∈ {ζ, τ,∆,∇} a unary map ω : OA → OA

by ω (f) := δαω
ar(f)

(f) for f ∈ OA. Moreover, for f, g ∈ OA, n := ar(f) and

m := ar(g), we construct f ∗ g ∈ O
(k)
A , where k := max (0, n+m− 1), as

follows: if n ≥ 2, we put f ∗ g := f ◦
(
g ◦

(
e
(k)
i

)
i∈m

,
(
e
(k)
m+j

)
j∈n−1

)
; for

n = 1, we define the product f ∗ g := f ◦ g ◦
(
e
(k)
i

)
i∈m

whenever m > 0, and
f ∗ g := f ◦ g if m = 0; for n = 0, we define f ∗ g := f in case that k = 0, and
f ∗ g := f ◦

(
e
(k)
i

)
i∈0

otherwise (where
(
e
(k)
i

)
i∈0

by definition is the unique

map from Ak to A0).
In this way, we obtain an algebra OA := 〈OA; ζ, τ,∆,∇, ∗〉 of arity type

(1, 1, 1, 1, 2) that we call full iterative Post algebra. It is easy to see that
OA \O(0)

A is a subuniverse, and the corresponding subalgebra is the one that
has been introduced under precisely the same name in [27]. The difference
in terminology is just of a technical nature and shows up because we wish to
accommodate all nullary constants in our framework.

The algebra OA obviously is less prodigal of its fundamental operations
than 〈OA; Φ〉 above. The following lemma proves that both do the same job.

Lemma 3.4. The semiclones on A are exactly the subuniverses of the full
iterative Post algebra: SA = Sub (OA).

The following facts regarding the relationship of semiclones and clones are
well known (see [17, p. 5 et seq.] or [18, p. 8 et seq.], Lemmata 3 and 4,
and Satz 1). In this context, we recollect that 〈F 〉OA

denotes the least clone
containing some set F ⊆ OA, i.e., the clone generated by F . The symbol LA

stands for the set of all clones on A.

Lemma 3.5. For any set F ⊆ OA and any 0 ≤ i < n, n ∈ N, the following
assertions are true:
(a)

[{
e
(n)
i

}]
OA

= JA.

(b)
[
F ∪

{
e
(n)
i

}]
OA

= [F ]OA
∪ JA = 〈F 〉OA

.

(c) F ∩ JA ∈ {∅, JA} for F ∈ SA.
(d) LA = {G ∈ SA | G ∩ JA �= ∅}.

As a consequence of the previous lemma, we can describe those semiclones
whose unary parts yield proper transformation semigroups.

Corollary 3.6. On any set A, we have{
F (1)

∣∣∣ F ∈ SA \LA

}
=

{
S ⊆ O

(1)
A \ {idA}

∣∣∣ (S, ◦) is a semigroup
}
.

The Galois correspondence Polp - Invp gives us plenty of examples of semi-
clones (cf. [19, Lemma 2, p. 12] for the situation without nullary operations).

Lemma 3.7. Any polymorphism set PolpA Q with Q ⊆ RpA is a semiclone.
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Corollary 3.8. For any set F ⊆ OA, we have [F ]OA
⊆ PolpA InvpA F and

InvpA F = InvpA [F ]OA
.

The next lemma (cf. [19, Lemma 3, p. 13]) clarifies which sets of relation
pairs yield proper clones.

Lemma 3.9. For Q ⊆ RpA, a semiclone PolpA Q is a clone if and only if
� = �′ holds for all (�, �′) ∈ Q.

Note that (along with an appropriate generalisation of preservation) the
three previous statements remain true if one considers relation pairs of arbit-
rary, possibly infinite arity, i.e., pairs (R,S), where S ⊆ R ⊆ AK for sets K.

The following result is in analogy to [30, Proposition 1.11(a),(b), p. 17].

Lemma 3.10. For 0 < s ≤ ℵ0 and any set Q ⊆ Rp
(<s)
A of less than s-ary

relation pairs, we have s-LocA PolpA Q = PolpA Q.

4. Relation pair clones

In this section, we first recall the so-called general superposition of relations
([30, Definition 3.4(R4), p. 27], see also [29, Definition 2.2(ii), p. 258] and [3]),
which comes into play when generalising the notion of relational clone from
finite carrier sets to arbitrary ones. It is not surprising that it will be important
for the generalisation of relation pair algebras as introduced in [17, p. 21] (see
also [19, p. 16]) to carrier sets of arbitrary cardinality, as well.

Definition 4.1. Let A be any carrier set, moreover let index sets I and µ (one
could in principle restrict to ordinal numbers, but this only makes working
with the definition more technical), natural numbers m,mi ∈ N (for i ∈ I),
mappings (αi : mi → µ)i∈I and β : m → µ, and relations �i ∈ R

(mi)
A (for i ∈ I)

be given. The general superposition of these relations with respect to the given
data is defined to be the m-ary relation

β∧
(αi)i∈I

(�i)i∈I := {y ∈ Am | ∃ a ∈ Aµ : y = a ◦ β ∧ ∀ i ∈ I : a ◦ αi ∈ �i}

= {a ◦ β | a ∈ Aµ ∧ ∀ i ∈ I : a ◦ αi ∈ �i} .

We mention in passing that, in general, a relational clone can be defined as
any set Q ⊆ RA that is closed with respect to general superposition. That is,
whenever data as in Definition 4.1 is given and all relations �i, for i ∈ I, belong
to Q, then also

∧β
(αi)i∈I

(�i)i∈I has to be an element of Q (if nullary relations
are disregarded, then one restricts the integers m and (mi)i∈I to positive ones
only). Depending on the set A, one can work out cardinality bounds on the
sets I and µ involved in this closure property, but this is not our concern here.
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On this basis, we define for ω ∈ {ζ, τ,∆,∇} a unary map ω : OA → OA
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m := ar(g), we construct f ∗ g ∈ O
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; for
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whenever m > 0, and
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otherwise (where
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by definition is the unique

map from Ak to A0).
In this way, we obtain an algebra OA := 〈OA; ζ, τ,∆,∇, ∗〉 of arity type

(1, 1, 1, 1, 2) that we call full iterative Post algebra. It is easy to see that
OA \O(0)

A is a subuniverse, and the corresponding subalgebra is the one that
has been introduced under precisely the same name in [27]. The difference
in terminology is just of a technical nature and shows up because we wish to
accommodate all nullary constants in our framework.

The algebra OA obviously is less prodigal of its fundamental operations
than 〈OA; Φ〉 above. The following lemma proves that both do the same job.

Lemma 3.4. The semiclones on A are exactly the subuniverses of the full
iterative Post algebra: SA = Sub (OA).

The following facts regarding the relationship of semiclones and clones are
well known (see [17, p. 5 et seq.] or [18, p. 8 et seq.], Lemmata 3 and 4,
and Satz 1). In this context, we recollect that 〈F 〉OA

denotes the least clone
containing some set F ⊆ OA, i.e., the clone generated by F . The symbol LA

stands for the set of all clones on A.

Lemma 3.5. For any set F ⊆ OA and any 0 ≤ i < n, n ∈ N, the following
assertions are true:
(a)

[{
e
(n)
i

}]
OA

= JA.

(b)
[
F ∪

{
e
(n)
i

}]
OA

= [F ]OA
∪ JA = 〈F 〉OA

.

(c) F ∩ JA ∈ {∅, JA} for F ∈ SA.
(d) LA = {G ∈ SA | G ∩ JA �= ∅}.

As a consequence of the previous lemma, we can describe those semiclones
whose unary parts yield proper transformation semigroups.

Corollary 3.6. On any set A, we have{
F (1)

∣∣∣ F ∈ SA \LA

}
=

{
S ⊆ O

(1)
A \ {idA}

∣∣∣ (S, ◦) is a semigroup
}
.

The Galois correspondence Polp - Invp gives us plenty of examples of semi-
clones (cf. [19, Lemma 2, p. 12] for the situation without nullary operations).

Lemma 3.7. Any polymorphism set PolpA Q with Q ⊆ RpA is a semiclone.



398 M. Behrisch� Algebra Univers.14 M. Behrisch Algebra univers.

Definition 4.2. Let A be any carrier set, I, µ, m, mi, αi : mi → µ for i ∈ I,
and β : m → µ as in Definition 4.1. For relation pairs (�i, �

′
i) ∈ Rp

(mi)
A , for

i ∈ I, we define their general superposition to be

β∧
(αi)i∈I

(�i, �
′
i)i∈I :=




β∧
(αi)i∈I

(�i)i∈I ,

β∧
(αi)i∈I

(�′i)i∈I


 .

It is easy to see that this definition is well-defined, i.e., that we really have∧β
(αi)i∈I

(�i, �
′
i)i∈I ∈ Rp

(m)
A in the situation described in Definition 4.2. This

allows us to define relation pair clones as such sets of relation pairs that are
closed under general superposition.

Definition 4.3. We say that for some carrier A, a set Q ⊆ RpA is a relation
pair clone if and only if the following condition is satisfied: whenever I, µ,
m, mi, αi : mi → µ for i ∈ I, and β : m → µ are as in Definition 4.1, and
(�i, �

′
i) ∈ Q(mi) are given for i ∈ I, then also

∧β
(αi)i∈I

(�i, �
′
i)i∈I ∈ Q(m).

One can routinely check that for a given carrier set A, the collection of all
relation pair clones on A is a closure system. We denote the corresponding
closure operator by Q �→ [Q]RpA

for Q ⊆ RpA and refer to [Q]RpA
as the

relation pair clone generated by Q.
Note that for finite carrier sets A �= ∅, and provided that (∅, ∅) ∈ Q(m) for

all m ∈ N, our concept of locally closed relation pair clone, by taking Q\Rp(0)A ,
subsumes that of subuniverses of the full relation pair algebra defined in [17,
p. 21] (see also [19, p. 16]).

There are two issues here: the necessity to add local closure and the re-
quirement that pairs of empty relations have to belong to relation pair al-
gebras in Harnau’s sense. We noted above in Corollary 2.12 that for finite
carrier sets, closure under relaxation coincides with our local closure of rela-
tion pairs. Moreover, we shall prove in Theorem 5.9 that the closed sets with
respect to InvpA PolpA are precisely the locally closed relation pair clones,
which implies for finite carrier sets that they are exactly those relation pair
clones that are closed with respect to relaxations. In [17] and [19], this ad-
ditional closure property (with the goal of characterising the Galois closures)
has been incorporated into the definition of the full relation pair algebra via
multioperations dv and dh; however, it has been noted that these operators
are of a different nature than the other fundamental operations of relation
pair algebras. Comparing to the situation known from clones and relational
clones on arbitrary domains (see [30, 29, 34]) and looking from the perspect-
ive of infinite carrier sets, which requires local closures anyway, it is justified
to modify Harnau’s definition by separating closure properties related to con-
crete constructions involving relations from local interpolation properties. We
mention that for finite A, the constructive part can be expressed via interpret-
ations of primitive positive formulæ in both components. In fact, it was noted
by Ágnes Szendrei that given a set Q ⊆ RpA, one may consider the relational
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structures
��
A =

〈
A; (�)(�,�′)∈Q

〉
and

��
A′ =

〈
A; (�′)(�,�′)∈Q

〉
and primitive posi-

tively definable relations on the product
��
A ×

��
A′: if ϕ is a primitive positive

formula in the language of Q (including equality) with at mostm free variables,
then it defines the following m-ary relation on the product:

σ̂ :=
{
((xi, yi))i∈m ∈

(
A2

)m ∣∣∣ (
��
A×

��
A′, ((xi, yi))i∈m

)
|= ϕ

}

=
{
((xi, yi))i∈m ∈

(
A2

)m ∣∣∣ (
��
A, (xi)i∈m

)
|= ϕ ∧

(
��
A′, (yi)i∈m

)
|= ϕ

}

=
{
((xi, yi))i∈m ∈

(
A2

)m ∣∣∣ (
(xi)i∈m , (yi)i∈m

)
∈ σ × σ′

}
,

where σ :=
{
x ∈ Am

∣∣ (
��
A,x

)
|= ϕ

}
and σ′ :=

{
x ∈ Am

∣∣ (
��
A′,x

)
|= ϕ

}
. If σ

and σ′ are both non-empty, then one may obtain the relation pair (σ, σ′)

defined by ϕ as projections of σ̂. If one of them is the empty set, then σ̂ = ∅
and therefore both projections will be empty. Thus, only taking projections
of σ̂ (i.e., of pp-definable relations in the product

��
A×

��
A′) will never produce

relation pairs (σ, σ′) where σ′ = ∅ � σ, which is certainly needed, e.g., to model
intersection in both components. However, collecting all pairs (σ, σ′) arising
from primitive positive formulæ ϕ correctly describes the closure [Q]RpA

in the
case of finite carrier sets.

The second issue pointed out above is related to nullary operations. In
the literature, these are often neglected, which makes it necessary for relation
pair algebras ([19]) and for relational clones (relation algebras, [30]) to contain
the empty pair (∅, ∅) and the empty relation, respectively, in order to be in
accordance with the corresponding Galois theory.

If nullary operations are given their proper place, this absurdity vanishes
(see [3] for clones and relational clones); then empty relations (pairs) get a true
function, indicating by their presence the absence of nullary operations on the
dual side (see Lemma 4.8 below). This is also the reason why we cannot and
do not add the empty pairs of all arities as nullary constants to the closure
condition of relation pair clones.

Relational clones (as given in [3, Definition 2.2, p. 8]) relate to relation pair
clones in the following way:

Lemma 4.4. For any carrier set A, a subset Q ⊆ RA is a relational clone if
and only if P :=

⊎
m∈N

{
(�, �)

∣∣ � ∈ Q(m)
}
is a relation pair clone.

Lemma 4.5. Whenever Q ⊆ RpA is a relation pair clone on some set A, then

Q′ :=
{
�
∣∣∣ (�, �′) ∈ Q(m) for some m ∈ N

}
,

Q′′ :=
{
�′

∣∣∣ (�, �′) ∈ Q(m) for some m ∈ N
}

and

Q′′′ :=
{
�
∣∣∣ (�, �) ∈ Q(m) for some m ∈ N

}

are relational clones on A.
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Definition 4.2. Let A be any carrier set, I, µ, m, mi, αi : mi → µ for i ∈ I,
and β : m → µ as in Definition 4.1. For relation pairs (�i, �

′
i) ∈ Rp

(mi)
A , for

i ∈ I, we define their general superposition to be

β∧
(αi)i∈I

(�i, �
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i)i∈I :=
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It is easy to see that this definition is well-defined, i.e., that we really have∧β
(αi)i∈I

(�i, �
′
i)i∈I ∈ Rp

(m)
A in the situation described in Definition 4.2. This

allows us to define relation pair clones as such sets of relation pairs that are
closed under general superposition.

Definition 4.3. We say that for some carrier A, a set Q ⊆ RpA is a relation
pair clone if and only if the following condition is satisfied: whenever I, µ,
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i) ∈ Q(mi) are given for i ∈ I, then also
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One can routinely check that for a given carrier set A, the collection of all
relation pair clones on A is a closure system. We denote the corresponding
closure operator by Q �→ [Q]RpA

for Q ⊆ RpA and refer to [Q]RpA
as the

relation pair clone generated by Q.
Note that for finite carrier sets A �= ∅, and provided that (∅, ∅) ∈ Q(m) for

all m ∈ N, our concept of locally closed relation pair clone, by taking Q\Rp(0)A ,
subsumes that of subuniverses of the full relation pair algebra defined in [17,
p. 21] (see also [19, p. 16]).

There are two issues here: the necessity to add local closure and the re-
quirement that pairs of empty relations have to belong to relation pair al-
gebras in Harnau’s sense. We noted above in Corollary 2.12 that for finite
carrier sets, closure under relaxation coincides with our local closure of rela-
tion pairs. Moreover, we shall prove in Theorem 5.9 that the closed sets with
respect to InvpA PolpA are precisely the locally closed relation pair clones,
which implies for finite carrier sets that they are exactly those relation pair
clones that are closed with respect to relaxations. In [17] and [19], this ad-
ditional closure property (with the goal of characterising the Galois closures)
has been incorporated into the definition of the full relation pair algebra via
multioperations dv and dh; however, it has been noted that these operators
are of a different nature than the other fundamental operations of relation
pair algebras. Comparing to the situation known from clones and relational
clones on arbitrary domains (see [30, 29, 34]) and looking from the perspect-
ive of infinite carrier sets, which requires local closures anyway, it is justified
to modify Harnau’s definition by separating closure properties related to con-
crete constructions involving relations from local interpolation properties. We
mention that for finite A, the constructive part can be expressed via interpret-
ations of primitive positive formulæ in both components. In fact, it was noted
by Ágnes Szendrei that given a set Q ⊆ RpA, one may consider the relational
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Similarly as for semiclones, the Galois correspondence Polp - Invp provides
many examples of relation pair clones (see [17, Lemma 9, p. 21] or [19,
Lemma 9, p. 16] for the case of finite carrier sets; cf. [13, Lemma 3.1, p. 154]
for the general framework of relational constraints and conjunctive minors).

Lemma 4.6. For each F ⊆ OA the set InvpA F is a relation pair clone.

Corollary 4.7. For any set Q ⊆ RpA, we have [Q]RpA
⊆ InvpA PolpA Q and

PolpA Q = PolpA [Q]RpA
.

Next, we address how nullary operations affect relation pair algebras.

Lemma 4.8. For F ⊆ OA, we have (∅, ∅) ∈ InvpA F if and only if we have
F ⊆ OA \O(0)

A .

The following result is in analogy to [30, Proposition 1.11(a’),(b’), p. 17].

Lemma 4.9. For 0 < s ≤ ℵ0 and any set F ⊆ O
(<s)
A of less than s-ary

operations, we have s-LOCA InvpA F = InvpA F .

5. Characterisation of closures related to Polp - Invp

In this section, we characterise, for any cardinal 0 < s ≤ ℵ0, the operators
PolpA Invp

(<s)
A and InvpA Polp

(<s)
A as s-local closures of the generated semi-

clone and relation pair clone, respectively. Subsequently, we present a few
consequences of these theorems.

5.1. The operational side. For our task, it is helpful to gather some know-
ledge about the least (with respect to ≤ and thus a least among several equiva-
lent ones with respect to �) pair (�, �′) ∈ Rp

(m)
A being invariant for some set

F ⊆ OA and satisfying B ⊆ � for a given finite set B ⊆ R
(m)
A , for m ∈ N.

Addressing this issue, the following lemma generalises Proposition 2.4 of [30,
p. 21].

Lemma 5.1. Let F ⊆ OA be a set of operations and b ∈ (Am)
n for some

m,n ∈ N; set B := {b(j) | 0 ≤ j < n} ⊆ Am. Then the pair ΓF (B) := (�, �′),
where � :=

{
f ◦ (b)

∣∣∣ f ∈ 〈F 〉(n)OA

}
and �′ :=

{
f ◦ (b)

∣∣∣ f ∈ [F ]
(n)
OA

}
, is the

least pair (with respect to ≤) in Invp
(m)
A F satisfying B ⊆ �.

Note that the lemma also shows that the relations �, �′ ∈ R
(m)
A do not

depend on the order of the entries of the tuple b. Furthermore, instead of the
finite cardinal m, any cardinal or, in fact, any indexing set K can be used,
provided the notion of preservation is straightforwardly extended to relation
pairs of arbitrary arity, i.e., pairs (R,S) such that S ⊆ R ⊆ AK .

Proof. First of all, as J
(n)
A ⊆ 〈F 〉(n)OA

, we have B ⊆ �. Next, we prove that
(�, �′) ∈ InvpA F ; let � ∈ N, g ∈ F (�), and r = (rj)0≤j<� ∈ ��. By construction
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of �, for each 0 ≤ j < �, there exists some fj ∈ 〈F 〉(n)OA
= [F ]

(n)
OA

∪ J
(n)
A (see

Lemma 3.5(b)) such that rj = fj ◦ (b). Using Lemma 2.1(c), we have

g ◦ (r) = g ◦ (f0 ◦ (b) , . . . , f�−1 ◦ (b)) = (g ◦ (f0, . . . , f�−1)) ◦ (b) ∈ �′,

since g ◦ (f0, . . . , f�−1) ∈ [F ]
(n)
OA

by the closure property of semiclones.
Finally, we prove that any pair (σ, σ′) ∈ Invp

(m)
A F satisfying B ⊆ σ fulfils

(�, �′) ≤ (σ, σ′). By Corollary 3.8, we know (σ, σ′) ∈ InvpA F = InvpA [F ]OA
,

so since B ⊆ σ, we have f ◦(b) ∈ σ′ for any f ∈ [F ]
(n)
OA

. Therefore, �′ ⊆ σ′ ⊆ σ.
As, by Lemma 3.5(b), 〈F 〉(n)OA

= [F ]
(n)
OA

∪ J
(n)
A , it follows that � = �′ ∪ B. We

have B ⊆ σ and �′ ⊆ σ, so � ⊆ σ. Hence, (�, �′) ≤ (σ, σ′). �

Corollary 5.2. Let F ⊆ OA, n ∈ N, and X ⊆ An be any subset of finite
cardinality |X| =: k < ℵ0; moreover, consider an arbitrary bijection β : k → X

as fixed. Defining B :=
{
e
(n)
i |X ◦ β

∣∣∣ 0 ≤ i < n
}

⊆ Ak, as well as k-ary re-

lations �X,n :=
{
f |X ◦ β

∣∣∣ f ∈ 〈F 〉(n)OA

}
and �′X,n :=

{
f |X ◦ β

∣∣∣ f ∈ [F ]
(n)
OA

}
,

we have
(
�X,n, �

′
X,n

)
= ΓF (B) ∈ Invp

(k)
A F .

Theorem 5.3. For 0 < s ≤ ℵ0 and any set of operations F ⊆ OA, we have
the equality PolpA Invp

(<s)
A F = s-LocA [F ]OA

.

Proof. We have [F ]OA
⊆ PolpA Invp

(<s)
A [F ]OA

= PolpA Invp
(<s)
A F by Corol-

lary 3.8, whence s-LocA [F ]OA
⊆ s-LocA PolpA Invp

(<s)
A F = PolpA Invp

(<s)
A F ,

using Lemma 3.10.
For the converse inclusion, take g ∈ Polp

(n)
A Inv

(<s)
A F for any n ∈ N; we want

to prove that g ∈ s-Loc
(n)
A [F ]OA

. To do so, we consider any finite X ⊆ An

where k := |X| < s and an arbitrary bijection β : k → X. Now Corollary 5.2
yields that

(
�X,n, �

′
X,n

)
∈ Invp

(k)
A F ⊆ Invp

(<s)
A F , wherefore g �

(
�X,n, �

′
X,n

)
.

Moreover, we have B =
{
e
(n)
i |X ◦ β

∣∣∣ 0 ≤ i < n
}

⊆ �X,n, whence we obtain

g|X ◦ β = g ◦
(
e
(n)
i

)
0≤i<n

|X ◦ β = g ◦
(
e
(n)
i |X ◦ β

)
0≤i<n

∈ �′X,n. Thus, by

definition of �′X,n, there has to exist some f ∈ [F ]
(n)
OA

such that g|X◦β = f |X◦β,
implying g|X = f |X by bijectivity of β. This proves g ∈ s-Loc

(n)
A [F ]OA

. �

Lemma 5.4. Any relation pair clone Q ⊆ RpA on a non-empty carrier set A
satisfies Q(m) ⊆

[
Q(s)

]
RpA

for all m, s ∈ N with m ≤ s.

For A = ∅ and s ∈ N, we have Q(s) ⊆
[
Q(0)

]
RpA

for a relation pair clone Q.

Corollary 5.5. For s ∈ N and any set of operations F ⊆ OA on A �= ∅, we
have the equality PolpA Invp

(s)
A F = (s+ 1)-LocA [F ]OA

.
If A = ∅, we have s-LocA [F ]OA

= PolpA Invp
(0)
A F = 1-LocA [F ]OA

for any
F ⊆ OA and 0 < s ≤ ℵ0.

The second corollary proves that a set F ⊆ OA is closed with respect to
[ ]OA

and s-LocA if (and clearly only if) it is closed with respect to the operator
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Similarly as for semiclones, the Galois correspondence Polp - Invp provides
many examples of relation pair clones (see [17, Lemma 9, p. 21] or [19,
Lemma 9, p. 16] for the case of finite carrier sets; cf. [13, Lemma 3.1, p. 154]
for the general framework of relational constraints and conjunctive minors).

Lemma 4.6. For each F ⊆ OA the set InvpA F is a relation pair clone.

Corollary 4.7. For any set Q ⊆ RpA, we have [Q]RpA
⊆ InvpA PolpA Q and

PolpA Q = PolpA [Q]RpA
.

Next, we address how nullary operations affect relation pair algebras.

Lemma 4.8. For F ⊆ OA, we have (∅, ∅) ∈ InvpA F if and only if we have
F ⊆ OA \O(0)

A .

The following result is in analogy to [30, Proposition 1.11(a’),(b’), p. 17].

Lemma 4.9. For 0 < s ≤ ℵ0 and any set F ⊆ O
(<s)
A of less than s-ary

operations, we have s-LOCA InvpA F = InvpA F .

5. Characterisation of closures related to Polp - Invp

In this section, we characterise, for any cardinal 0 < s ≤ ℵ0, the operators
PolpA Invp

(<s)
A and InvpA Polp

(<s)
A as s-local closures of the generated semi-

clone and relation pair clone, respectively. Subsequently, we present a few
consequences of these theorems.

5.1. The operational side. For our task, it is helpful to gather some know-
ledge about the least (with respect to ≤ and thus a least among several equiva-
lent ones with respect to �) pair (�, �′) ∈ Rp

(m)
A being invariant for some set

F ⊆ OA and satisfying B ⊆ � for a given finite set B ⊆ R
(m)
A , for m ∈ N.

Addressing this issue, the following lemma generalises Proposition 2.4 of [30,
p. 21].

Lemma 5.1. Let F ⊆ OA be a set of operations and b ∈ (Am)
n for some

m,n ∈ N; set B := {b(j) | 0 ≤ j < n} ⊆ Am. Then the pair ΓF (B) := (�, �′),
where � :=

{
f ◦ (b)

∣∣∣ f ∈ 〈F 〉(n)OA

}
and �′ :=

{
f ◦ (b)

∣∣∣ f ∈ [F ]
(n)
OA

}
, is the

least pair (with respect to ≤) in Invp
(m)
A F satisfying B ⊆ �.

Note that the lemma also shows that the relations �, �′ ∈ R
(m)
A do not

depend on the order of the entries of the tuple b. Furthermore, instead of the
finite cardinal m, any cardinal or, in fact, any indexing set K can be used,
provided the notion of preservation is straightforwardly extended to relation
pairs of arbitrary arity, i.e., pairs (R,S) such that S ⊆ R ⊆ AK .

Proof. First of all, as J
(n)
A ⊆ 〈F 〉(n)OA

, we have B ⊆ �. Next, we prove that
(�, �′) ∈ InvpA F ; let � ∈ N, g ∈ F (�), and r = (rj)0≤j<� ∈ ��. By construction



402 M. Behrisch� Algebra Univers.18 M. Behrisch Algebra univers.

s-LocA [ ]OA
. This fact can be seen as a generalisation of Lemma 2.5(ii),(iii)

in [30, p. 22], where similar results have been proven for clones.

Corollary 5.6. For 0 < s ≤ ℵ0 a set F ⊆ OA of operations is an s-locally
closed semiclone if and only if s-LocA [F ]OA

= F .

Corollary 5.7 (cf. Lemma 2.6 in [30, p. 22]). For every F ⊆ OA, we have
Invp

(<m)
A F = Invp

(<m)
A [F ]OA

= Invp
(<m)
A s-LocA [F ]OA

for 0 < m ≤ s ≤ ℵ0.

5.2. The side of relation pairs. We start by preparing the proof of our
theorem with a lemma.

Lemma 5.8. Let Q ⊆ RpA be any set of relation pairs, m ∈ N an arity, and
B ⊆ Am a finite subset of cardinality n := |B|. Consider any enumeration
b = (b0, . . . , bs−1) ∈ Bs of B = {b0, . . . , bs−1} (for s ≥ n) and define

µ′
B :=

{
f ◦ (b)

∣∣∣ f ∈ Polp
(s)
A Q

}
, µB :=

{
f ◦ (b)

∣∣∣ f ∈ Pol
(s)
A Q1

}
,

where Q1 := {� ∈ RA | (�, �′) ∈ Q}.
(a) The pair (µB , µ

′
B) can be obtained from Q by general superpositions, i.e.,

(µB , µ
′
B) ∈ [Q]RpA

.
(b) For F := PolpA Q, one may obtain ΓF (B) as a relaxation of (µB , µ

′
B),

that is, ΓF (B) ∈ →[Q]RpA

←.

Proof. (a): In order to prove that (µB , µ
′
B) ∈ [Q]RpA

, we shall exhibit a gen-
eral composition producing this relation pair from the ones in Q. Using the
notation from Definition 4.2, we choose µ := As and define β : m → As

by β (i) := (b0 (i) , . . . , bs−1 (i)) for 0 ≤ i < m. Moreover, for n ∈ N and
(�, �′) ∈ Q(n), we put In,(�,�′) := { (n, �, �′, r) | r ∈ �s}; further, we define
I :=

⊎
n∈N

⋃
(�,�′)∈Q(n) In,(�,�′). Finally, for (n, �, �′, r) ∈ I, let the func-

tion αn,�,�′,r : n → As be given by αn,�,�′,r (j) := (r0 (j) , . . . , rs−1 (j)) for
0 ≤ j < n, where r = (r0, . . . , rs−1) ∈ �s.

We claim now that (µB , µ
′
B) =

∧β

(αn,�,�′,r)(n,�,�′,r)∈I

(�, �′)(n,�,�′,r)∈I , which

can be checked by the following calculation. For each (n, �, �′, r) ∈ I, denote
by σn,�,�′,r some relation in R

(n)
A ; we have

β∧

(αn,�,�′,r)(n,�,�′,r)∈I

(σn,�,�′,r)(n,�,�′,r)∈I

=

{
(f (β(i)))0≤i<m

∣∣∣∣∣
f ∈ AAs

∧ ∀ (n, �, �′, r) ∈ I :

(f (αn,�,�′,r(0)) , . . . , f (αn,�,�′,r(n−1))) ∈ σn,�,�′,r

}

=




f ◦ (b0, . . . , bs−1)

∣∣∣∣∣∣∣

f ∈ AAs

∧ ∀n ∈ N ∀ (�, �′) ∈ Q(n)

∀r = (r0, . . . , rs−1) ∈ �s :

f ◦ (r0, . . . , rs−1) ∈ σn,�,�′,r




=
{
f ◦ (b0, . . . , bs−1)

∣∣∣ f ∈ AAs

∧ ∀n ∈ N ∀ (�, �′) ∈ Q(n) : f � (�, σn,�,�′,r)
}
.
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s-LocA [ ]OA
. This fact can be seen as a generalisation of Lemma 2.5(ii),(iii)

in [30, p. 22], where similar results have been proven for clones.

Corollary 5.6. For 0 < s ≤ ℵ0 a set F ⊆ OA of operations is an s-locally
closed semiclone if and only if s-LocA [F ]OA

= F .

Corollary 5.7 (cf. Lemma 2.6 in [30, p. 22]). For every F ⊆ OA, we have
Invp

(<m)
A F = Invp

(<m)
A [F ]OA

= Invp
(<m)
A s-LocA [F ]OA

for 0 < m ≤ s ≤ ℵ0.

5.2. The side of relation pairs. We start by preparing the proof of our
theorem with a lemma.

Lemma 5.8. Let Q ⊆ RpA be any set of relation pairs, m ∈ N an arity, and
B ⊆ Am a finite subset of cardinality n := |B|. Consider any enumeration
b = (b0, . . . , bs−1) ∈ Bs of B = {b0, . . . , bs−1} (for s ≥ n) and define

µ′
B :=

{
f ◦ (b)

∣∣∣ f ∈ Polp
(s)
A Q

}
, µB :=

{
f ◦ (b)

∣∣∣ f ∈ Pol
(s)
A Q1

}
,

where Q1 := {� ∈ RA | (�, �′) ∈ Q}.
(a) The pair (µB , µ

′
B) can be obtained from Q by general superpositions, i.e.,

(µB , µ
′
B) ∈ [Q]RpA

.
(b) For F := PolpA Q, one may obtain ΓF (B) as a relaxation of (µB , µ

′
B),

that is, ΓF (B) ∈ →[Q]RpA

←.

Proof. (a): In order to prove that (µB , µ
′
B) ∈ [Q]RpA

, we shall exhibit a gen-
eral composition producing this relation pair from the ones in Q. Using the
notation from Definition 4.2, we choose µ := As and define β : m → As

by β (i) := (b0 (i) , . . . , bs−1 (i)) for 0 ≤ i < m. Moreover, for n ∈ N and
(�, �′) ∈ Q(n), we put In,(�,�′) := { (n, �, �′, r) | r ∈ �s}; further, we define
I :=

⊎
n∈N

⋃
(�,�′)∈Q(n) In,(�,�′). Finally, for (n, �, �′, r) ∈ I, let the func-

tion αn,�,�′,r : n → As be given by αn,�,�′,r (j) := (r0 (j) , . . . , rs−1 (j)) for
0 ≤ j < n, where r = (r0, . . . , rs−1) ∈ �s.

We claim now that (µB , µ
′
B) =

∧β

(αn,�,�′,r)(n,�,�′,r)∈I

(�, �′)(n,�,�′,r)∈I , which

can be checked by the following calculation. For each (n, �, �′, r) ∈ I, denote
by σn,�,�′,r some relation in R

(n)
A ; we have

β∧

(αn,�,�′,r)(n,�,�′,r)∈I

(σn,�,�′,r)(n,�,�′,r)∈I

=

{
(f (β(i)))0≤i<m

∣∣∣∣∣
f ∈ AAs

∧ ∀ (n, �, �′, r) ∈ I :

(f (αn,�,�′,r(0)) , . . . , f (αn,�,�′,r(n−1))) ∈ σn,�,�′,r

}

=




f ◦ (b0, . . . , bs−1)

∣∣∣∣∣∣∣

f ∈ AAs

∧ ∀n ∈ N ∀ (�, �′) ∈ Q(n)

∀r = (r0, . . . , rs−1) ∈ �s :

f ◦ (r0, . . . , rs−1) ∈ σn,�,�′,r




=
{
f ◦ (b0, . . . , bs−1)

∣∣∣ f ∈ AAs

∧ ∀n ∈ N ∀ (�, �′) ∈ Q(n) : f � (�, σn,�,�′,r)
}
.
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Specialising this to σn,�,�′,r := �′, we get
β∧

(αn,�,�′,r)(n,�,�′,r)∈I

(�′)(n,�,�′,r)∈I =
{
f ◦ (b0, . . . , bs−1)

∣∣∣ f ∈ Polp
(s)
A Q

}
= µ′

B .

Specialising once more to σn,�,�′,r := �, we obtain
β∧

(αn,�,�′,r)(n,�,�′,r)∈I

(�)(n,�,�′,r)∈I =
{
f ◦ (b0, . . . , bs−1)

∣∣∣ f ∈ Pol
(s)
A Q1

}
= µB .

(b): By Lemma 3.7, we have [F ]OA
= F , and therefore Lemma 3.5(b)

yields 〈F 〉OA
= [F ]OA

∪ JA = F ∪ JA. Hence, according to Lemma 5.1, we

obtain that ΓF (B) = (�, �′), wherein � =
{
f ◦ (b)

∣∣∣ f ∈ F (s) ∪ J
(s)
A

}
and

�′ =
{
f ◦ (b)

∣∣ f ∈ F (s)
}
=

{
f ◦ (b)

∣∣∣ f ∈ Polp
(s)
A Q

}
= µ′

B . Moreover, as
obviously F = PolpA Q ⊆ PolA Q1, we have µ′

B = �′ ⊆ � ⊆ µB . Since
(µB , µ

′
B) ∈ [Q]RpA

by (a), we finally see ΓF (B) = (�, �′) ∈ →[Q]RpA

←. �

Theorem 5.9. For 0 < s ≤ ℵ0 and any set Q ⊆ RpA of relation pairs, we
have InvpA Polp

(<s)
A Q = s-LOCA [Q]RpA

.

Proof. We have [Q]RpA
⊆ InvpA Polp

(<s)
A [Q]RpA

= InvpA Polp
(<s)
A Q by Co-

rollary 4.7, so s-LOCA [Q]RpA
⊆ s-LOCA InvpA Polp

(<s)
A Q = InvpA Polp

(<s)
A Q

by Lemma 4.9.
For the converse inclusion, let us consider m ∈ N and an arbitrary m-ary

pair (σ, σ′) ∈ Invp
(m)
A Polp

(<s)
A Q. To prove that (σ, σ′) ∈ s-LOCA [Q]RpA

,
we take any subset B ⊆ σ such that |B| < s. From Lemma 5.8(a), we get
(µB , µ

′
B) ∈ [Q]RpA

, and obviously we have B ⊆ µB . Moreover, since (σ, σ′)

belongs to InvA Polp
(<s)
A Q, we have f � (σ, σ′) for all f ∈ Polp

(<s)
A Q. So, as

|B| < s and B ⊆ σ, we get µ′
B ⊆ σ′. This proves (σ, σ′) ∈ s-LOCA [Q]RpA

. �

Lemma 5.10. Any semiclone F ⊆ OA satisfies F (n) ⊆
[
F (s)

]
OA

for all arities
n, s ∈ N where 0 < n ≤ s.

For n = 0 < s, the previous lemma (and its proof) fail. This is why in the
following corollary to Theorem 5.9, the arity 0 cannot be omitted in general.

Corollary 5.11. For s ∈ N and any set Q ⊆ RA of relation pairs, we have
the equality InvpA Polp

(0,s)
A Q = (s+ 1)-LOCA [Q]RpA

.

Corollary 5.12. For s,m ∈ N and any set Q ⊆ RpA such that (∅, ∅) ∈ Q(m),
we have InvpA Polp

(s)
A Q = (s+ 1)-LOCA [Q]RpA

.

Moreover, we can infer that a set Q ⊆ RpA is closed with respect to [ ]RpA

and s-LOCA if (and clearly only if) it is closed with respect to the operator
s-LOCA [ ]RpA

. This fact can be seen to generalise Proposition 3.8(ii),(iii)
in [30, p. 30], where similar statements have been proven for relational clones.
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Corollary 5.13. For 0 < s ≤ ℵ0, a set Q ⊆ RpA of relation pairs is an
s-locally closed relation pair clone if and only if s-LOCA [Q]RpA

= Q.

Corollary 5.14 (cf. Proposition 3.9 in [30, p. 30]). For any Q ⊆ RpA, we have
Polp

(<n)
A Q = Polp

(<n)
A [Q]RpA

= Polp
(<n)
A s-LOCA [Q]RpA

for 0 < n ≤ s ≤ ℵ0.

5.3. Characterisation of local closures for relation pairs. Finally, we
shall consider another characterisation of the s-local closure operators, in-
volving s-directed unions. The statement can be improved for sets of relation
pairs fulfilling an additional closure property, which is in particular satisfied
by relation pair clones. Hence, our characterisation is especially useful in con-
nection with the operator ℵ0-LOCA [ ]RpA

.
Our result is a generalisation of Proposition 1.13 in [30, p. 18] to relation

pairs (see also [29, Proposition 1.6, p. 256]). Without further assumptions on
the set Q of relation pairs, it works provided one accepts the axiom of choice.

Proposition 5.15. For any set Q ⊆ RpA of relation pairs and all cardinals
1 < s ≤ ℵ0, the following holds:

s-LOCA Q =
⊎
m∈N




(σ, σ′) ∈ Rp
(m)
A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃σ′′ ∈ R
(m)
A : σ′′ ⊆ σ′ ∧

∃T ⊆ Rp
(m)
A s-directed :

(σ, σ′′) =
⋃

T ∧

∀ (�, �′) ∈ T ∃�̃ ∈ R
(m)
A :

� ⊆ �̃ ∧ (�̃, �′) ∈ Q(m)




.

If Q ⊆ RpA is closed under arbitrary intersections of pairs of identical arity
and s = ℵ0, the ℵ0-directed collection T can be replaced by just a directed one.

Proof. To prove the inclusion “⊇”, let us consider any m ∈ N and a pair
(σ, σ′) ∈ Rp

(m)
A satisfying the lengthy condition in the proposition. Its first

part says that there is an s-directed system T ⊆ Rp
(m)
A whose union equals

(σ, σ′′) for some m-ary relation σ′′ ⊆ σ′. The remaining part states that for
every pair (�, �′) ∈ T , there is anm-ary relation �̃ ⊇ � such that (�̃, �′) ∈ Q(m).
This implies that (�, �′) ∈ → {(�̃, �′)}← ⊆ →Q← ⊆ → s-LOCA Q←. Since the
set s-LOCA Q is s-locally closed by Corollary 2.10, it is also closed under
relaxation. Hence, we have T ⊆ → s-LOCA Q← = s-LOCA Q. Now as T is an
s-directed system, Lemma 2.13 yields that (σ, σ′′) ∈ s-LOCA Q. Thus, from
σ′′ ⊆ σ′ ⊆ σ = σ, we get

(σ, σ′) ∈ → {(σ, σ′′)}← ⊆ → s-LOCA Q← = s-LOCA Q.

For the converse inclusion, take any (σ, σ′) ∈ s-LOC
(m)
A Q, m ∈ N. Then for

anyB ⊆ σ such that |B| < s, the set ΣB :=
{
(�, �′) ∈ Q(m)

∣∣ B ⊆ � ∧ �′ ⊆ σ′}
is non-empty; using the axiom of choice, one can fix some pair (�̃B , �′B) ∈ ΣB .
It satisfies �′B ⊆ σ′ ⊆ σ; thus, �′B ⊆ �̃B ∩ σ =: �B . By construction, we
have B ⊆ �B ⊆ �̃B ; thus, putting T := { (�B , �′B) | B ⊆ σ ∧ |B| < s}, the
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.
Our result is a generalisation of Proposition 1.13 in [30, p. 18] to relation
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.

If Q ⊆ RpA is closed under arbitrary intersections of pairs of identical arity
and s = ℵ0, the ℵ0-directed collection T can be replaced by just a directed one.

Proof. To prove the inclusion “⊇”, let us consider any m ∈ N and a pair
(σ, σ′) ∈ Rp

(m)
A satisfying the lengthy condition in the proposition. Its first

part says that there is an s-directed system T ⊆ Rp
(m)
A whose union equals

(σ, σ′′) for some m-ary relation σ′′ ⊆ σ′. The remaining part states that for
every pair (�, �′) ∈ T , there is anm-ary relation �̃ ⊇ � such that (�̃, �′) ∈ Q(m).
This implies that (�, �′) ∈ → {(�̃, �′)}← ⊆ →Q← ⊆ → s-LOCA Q←. Since the
set s-LOCA Q is s-locally closed by Corollary 2.10, it is also closed under
relaxation. Hence, we have T ⊆ → s-LOCA Q← = s-LOCA Q. Now as T is an
s-directed system, Lemma 2.13 yields that (σ, σ′′) ∈ s-LOCA Q. Thus, from
σ′′ ⊆ σ′ ⊆ σ = σ, we get

(σ, σ′) ∈ → {(σ, σ′′)}← ⊆ → s-LOCA Q← = s-LOCA Q.

For the converse inclusion, take any (σ, σ′) ∈ s-LOC
(m)
A Q, m ∈ N. Then for

anyB ⊆ σ such that |B| < s, the set ΣB :=
{
(�, �′) ∈ Q(m)

∣∣ B ⊆ � ∧ �′ ⊆ σ′}
is non-empty; using the axiom of choice, one can fix some pair (�̃B , �′B) ∈ ΣB .
It satisfies �′B ⊆ σ′ ⊆ σ; thus, �′B ⊆ �̃B ∩ σ =: �B . By construction, we
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collection T satisfies the second part of the condition we need to verify. We
shall check that T is s-directed farther below; first we deal with the union
(µ, µ′) :=

⋃
T (meaning union in both components). Since for every subset

B ⊆ σ, |B| < s, we have �′B ⊆ σ′ and �B ⊆ σ, it follows that also µ′ ⊆ σ′ and
µ ⊆ σ. Due to s > 1, we have that σ =

⋃
B⊆σ,|B|<s B ⊆

⋃
B⊆σ,|B|<s �B = µ,

wherefore µ = σ. This shows that (σ, σ′) has the right form to fit into the
set on the right-hand side, provided we establish that the non-empty set T is
s-directed.

For this goal, we consider t < s subsets B0, . . . , Bt−1 ⊆ σ subject to the
condition |Bi| < s for each 0 ≤ i < t and tuples ri ∈ �Bi ⊆ σ. Let us define
C := {ri | 0 ≤ i < t} ⊆ σ. As |C| ≤ t < s, the pair (�C , �′C) belongs to T by
definition. Thus, C ⊆ �C demonstrates s-directedness, concluding the proof.

If Q is closed with respect to intersections and s = ℵ0, to prove the inclu-
sion “⊆”, one constructs the pair (�̃B , �

′
B) in ΣB as

⋂
ΣB . Then T becomes

directed. �

Remark 5.16. The inclusion “⊆” in Proposition 5.15 fails to hold for s = 1.
Consider, for example, any pair of relations �′ ⊆ � � Am for some fixed m ∈ N.
Define Q := → {(�, �′)}← =

{
(σ, σ′) ∈ Rp

(m)
A

∣∣∣ �′ ⊆ σ′ ⊆ σ ⊆ �
}
; then Q is

certainly closed with respect to relaxation, and, moreover, it is not hard to see
that it is also closed under arbitrary non-empty unions, i.e., 1-directed unions.
Therefore, the set U appearing on the right-hand side in Proposition 5.15 is
contained in Q. Now, the set

1-LOCA Q =
{
(σ, σ′) ∈ Rp

(m)
A

∣∣∣ ∃ (µ, µ′) ∈ Q(m) : σ′ ⊇ µ′
}

clearly contains (Am, �′), but (Am, �′) /∈ U due to Am �⊆ �, i.e., (Am, �′) /∈ Q.

6. Special cases

6.1. Proper semiclones. Based on the results of the previous section, we
may also characterise all s-locally closed semiclones that fail to be clones.

Proposition 6.1. For any cardinal 0 < s ≤ ℵ0 and any carrier set A, the
collection {F ∈ SA \LA | F = s-LocA F} can be relationally described in the
form

{
PolpA Q

∣∣∣ Q ⊆ Rp
(<s)
A ∧ ∃ (�, �′) ∈ Q : �′ � �

}
.

Using the theory of the previous sections, we can also prove a decidability
result regarding the question if a clone with projections removed yields a semi-
clone, or if the non-trivial functions generate the projections. For this we need
a more detailed analysis of the process generating ΓF (B) (cf. Lemma 5.1).

Lemma 6.2. Let K be any set, B ⊆ AK , and F ⊆ OA. Define R0 := B and

Sj :=
⊎
n∈N

{
f ◦ (g0, . . . , gn−1)

∣∣∣ f ∈ F (n) ∧ (g0, . . . , gn−1) ∈ Rj
n
}
,

Rj+1 := Rj ∪ Sj ,
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for j ∈ N; set R :=
⋃

j∈N Rj and S :=
⋃

j∈N Sj. Employing the straightforward
generalisation of the preservation concept to infinite arities, the pair (R,S) is
the least (with respect to ≤) member of the set

QB :=
{
(�, �′)

∣∣ B ∪ �′ ⊆ � ⊆ AK , (�, �′) is preserved by all f ∈ F
}
.

If Rn = Rn+1, i.e., Sn ⊆ Rn, holds for some n ∈ N, then the equalities
Sm = Sn and Rm = Rn hold for all m ≥ n. Therefore, for finite A and
finite K, the condition Rn = Rn+1 is satisfied for some n ≤

∣∣AK
∣∣.

Proof. First, we note that, by definition, Rj ⊆ Rj+1, which implies Sj ⊆ Sj+1,
holds for all j ∈ N. Hence, the unions defining R and S are directed.

It is not difficult to see that (R,S) belongs to QB . Namely, we have that
B = R0 ⊆ R and Sj ⊆ Rj+1 ⊆ R for every j ∈ N, whence S ⊆ R. To prove
that (R,S) is preserved by every n-ary f ∈ F , one considers an n-tuple of
tuples (g0, . . . , gn−1) ∈ Rn. Due to directedness of the union producing R

and finiteness of n, there exists one j ∈ N such that (g0, . . . , gn−1) ∈ Rj
n,

wherefore f ◦ (g0, . . . , gn−1) ∈ Sj ⊆ S. Consequently, (R,S) is preserved by
every member of F and thus belongs to QB .

Second, take any pair (�, �′) ∈ QB . By definition, we have R0 = B ⊆ �.
Moreover, supposing that Rj ⊆ �, by the preservation condition, we get that
Sj ⊆ �′ ⊆ � and hence Rj+1 = Rj ∪ Sj ⊆ �, as well as Sj ⊆ �′. Thus, by
induction, we have shown R =

⋃
j∈N Rj ⊆ � and S =

⋃
j∈N Sj ⊆ �′. This

proves that (R,S) ≤ (�, �′), whence (R,S) is the ≤-least member of QB .
By induction, it is easy to see that Rn = Rn+1 entails Sm = Sn and

Rm = Rn for all m ≥ n. Moreover, if R0, R1, . . . , Rn are pairwise distinct (i.e.,
form a strictly increasing chain R0 � R1 � · · · � Rn), then n ≤ |Rn| ≤

∣∣AK
∣∣.

Thus, for finite A and K, Rn = Rn+1 must hold for some n ≤
∣∣AK

∣∣. �

The following lemma goes back to an idea of Peter Mayr.

Lemma 6.3. For F ⊆ OA, we have [F \ JA]OA
=

[
〈F 〉OA

\ JA
]
OA

.

Proof. Using Lemma 3.5(b), we have

F \ JA ⊆ 〈F 〉OA
\ JA = 〈F \ JA〉OA

\ JA =
(
[F \ JA]OA

∪ JA
)
\ JA

= [F \ JA]OA
\ JA ⊆ [F \ JA]OA

,

whence [F \ JA]OA
=

[
〈F 〉OA

\ JA
]
OA

by another application of [ ]OA
. �

We can now prove the problem of whether a finitely generated clone on a
finite set generates projections from its non-trivial members to be decidable.

Proposition 6.4. For both A and F ⊆ OA finite, it is decidable whether
〈F 〉OA

\ JA ∈ SA.

Proof. Since 〈F 〉OA
is a clone, and thus, in particular, a semiclone, containing

〈F 〉OA
\ JA, we have 〈F 〉OA

\ JA ⊆
[
〈F 〉OA

\ JA
]
OA

⊆ 〈F 〉OA
. Therefore, by

Lemma 3.5(c), the conditions 〈F 〉OA
\ JA /∈ SA, 〈F 〉OA

\ JA �
[
〈F 〉OA

\ JA
]
OA

,
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[
〈F 〉OA

\ JA
]
OA

∩JA �= ∅, JA ⊆
[
〈F 〉OA

\ JA
]
OA

, and idA ∈
[
〈F 〉OA

\ JA
](1)
OA

are

all equivalent. By Lemma 6.3,
[
〈F 〉OA

\ JA
](1)
OA

= [F \ JA](1)OA
, and using Corol-

lary 5.2 for n = 1, X = A, and some bijection β between A and its cardinality,
we have a description of the invariant pair

(
�A,1, �

′
A,1

)
= ΓF\JA

({idA ◦β}).
Via Lemma 6.2, this invariant relation pair generated by idA ◦β can be ex-
pressed as

(⋃
j∈N Rj ,

⋃
j∈N Sj

)
and finiteness of A guarantees that Rn = Rn+1

happens for some n ≤
∣∣AA

∣∣. This implies
{
f ◦ β

∣∣∣ f ∈ [F \ JA](1)OA

}
= �′A,1

can be written as the finite union U :=
⋃

0≤j≤|AA| Sj , which due to finiteness
of F , can be straightforwardly calculated using the definitions of Lemma 6.2.
Hence, one may check if idA is in [F \ JA](1)OA

by checking if β = idA ◦β ∈ U . �

6.2. Closed transformation semigroups. By considering just unary parts,
we can characterise s-locally closed (proper) transformation semigroups.

Proposition 6.5. For 0 < s ≤ ℵ0 and a set H ⊆ O
(1)
A of transformations, the

following facts are equivalent.
(a) H is an s-locally closed transformation semigroup (and idA /∈ H).
(b) H = Polp

(1)
A Invp

(<s)
A H (and there is (�, �′) ∈ Invp

(<s)
A H with �′ �= �).

(c) H = Polp
(1)
A Q for some Q ⊆ Rp

(<s)
A (where � �= �′ for some (�, �′) ∈ Q).

For A �= ∅ and s < ℵ0, the arity restrictions “< s” can be replaced by “s− 1”.

By intersecting (in a similar way as outlined in this subsection) with other
classes of functions, for example, the set of all permutations instead of all
unary operations, one can obtain further characterisations of s-locally closed
classes of functions in terms of relation pairs. Continuing the example of
permutations, one may get a characterisation of all s-locally closed (proper)
transformation semigroups that consist of permutations only. As on finite
carrier sets, every permutation has a finite order; such a result is necessarily
more appealing on infinite domains.

6.3. Classical Pol - Inv Galois correspondence. Here we demonstrate that
it is not difficult to derive the characterisations of the closure operators of the
Galois connection given by polymorphisms and invariant relations from our
theorems above. In this respect, we first consider the framework including
nullary operations and relations, as discussed in [3]; from there, it will be a
small step to obtain the variants known from [30, 29].

First, we recollect information concerning the relationship of the operators
PolA and InvA with respect to PolpA and InvpA (cf. before Lemma 2.3).

Lemma 6.6. For Q ⊆ RA, F ⊆ OA and any n ∈ N, we have

Pol
(n)
A Q = Polp

(n)
A

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Q(m)
}
,

Inv
(n)
A F =

{
�
∣∣∣ (�, �) ∈ Invp

(n)
A F

}
.
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for j ∈ N; set R :=
⋃

j∈N Rj and S :=
⋃

j∈N Sj. Employing the straightforward
generalisation of the preservation concept to infinite arities, the pair (R,S) is
the least (with respect to ≤) member of the set

QB :=
{
(�, �′)

∣∣ B ∪ �′ ⊆ � ⊆ AK , (�, �′) is preserved by all f ∈ F
}
.

If Rn = Rn+1, i.e., Sn ⊆ Rn, holds for some n ∈ N, then the equalities
Sm = Sn and Rm = Rn hold for all m ≥ n. Therefore, for finite A and
finite K, the condition Rn = Rn+1 is satisfied for some n ≤

∣∣AK
∣∣.

Proof. First, we note that, by definition, Rj ⊆ Rj+1, which implies Sj ⊆ Sj+1,
holds for all j ∈ N. Hence, the unions defining R and S are directed.

It is not difficult to see that (R,S) belongs to QB . Namely, we have that
B = R0 ⊆ R and Sj ⊆ Rj+1 ⊆ R for every j ∈ N, whence S ⊆ R. To prove
that (R,S) is preserved by every n-ary f ∈ F , one considers an n-tuple of
tuples (g0, . . . , gn−1) ∈ Rn. Due to directedness of the union producing R

and finiteness of n, there exists one j ∈ N such that (g0, . . . , gn−1) ∈ Rj
n,

wherefore f ◦ (g0, . . . , gn−1) ∈ Sj ⊆ S. Consequently, (R,S) is preserved by
every member of F and thus belongs to QB .

Second, take any pair (�, �′) ∈ QB . By definition, we have R0 = B ⊆ �.
Moreover, supposing that Rj ⊆ �, by the preservation condition, we get that
Sj ⊆ �′ ⊆ � and hence Rj+1 = Rj ∪ Sj ⊆ �, as well as Sj ⊆ �′. Thus, by
induction, we have shown R =

⋃
j∈N Rj ⊆ � and S =

⋃
j∈N Sj ⊆ �′. This

proves that (R,S) ≤ (�, �′), whence (R,S) is the ≤-least member of QB .
By induction, it is easy to see that Rn = Rn+1 entails Sm = Sn and

Rm = Rn for all m ≥ n. Moreover, if R0, R1, . . . , Rn are pairwise distinct (i.e.,
form a strictly increasing chain R0 � R1 � · · · � Rn), then n ≤ |Rn| ≤

∣∣AK
∣∣.

Thus, for finite A and K, Rn = Rn+1 must hold for some n ≤
∣∣AK

∣∣. �

The following lemma goes back to an idea of Peter Mayr.

Lemma 6.3. For F ⊆ OA, we have [F \ JA]OA
=

[
〈F 〉OA

\ JA
]
OA

.

Proof. Using Lemma 3.5(b), we have

F \ JA ⊆ 〈F 〉OA
\ JA = 〈F \ JA〉OA

\ JA =
(
[F \ JA]OA

∪ JA
)
\ JA

= [F \ JA]OA
\ JA ⊆ [F \ JA]OA

,

whence [F \ JA]OA
=

[
〈F 〉OA

\ JA
]
OA

by another application of [ ]OA
. �

We can now prove the problem of whether a finitely generated clone on a
finite set generates projections from its non-trivial members to be decidable.

Proposition 6.4. For both A and F ⊆ OA finite, it is decidable whether
〈F 〉OA

\ JA ∈ SA.

Proof. Since 〈F 〉OA
is a clone, and thus, in particular, a semiclone, containing

〈F 〉OA
\ JA, we have 〈F 〉OA

\ JA ⊆
[
〈F 〉OA

\ JA
]
OA

⊆ 〈F 〉OA
. Therefore, by

Lemma 3.5(c), the conditions 〈F 〉OA
\ JA /∈ SA, 〈F 〉OA

\ JA �
[
〈F 〉OA

\ JA
]
OA

,
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Lemma 6.7. Suppose a set F ⊆ OA of operations satisfies F ∩ JA �= ∅; then
InvpA F =

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Inv
(m)
A F

}
.

This enables us now to derive the characterisation of the closure operators
PolA Inv

(<s)
A and PolA Inv

(s)
A . The case s = ℵ0 yields [3, Theorem 3.17, p. 29].

Theorem 6.8. We have s-LocA 〈F 〉OA
= PolA Inv

(<s)
A F for any F ⊆ OA and

0 < s ≤ ℵ0; if s < ℵ0, then the equality s-LocA 〈F 〉OA
= PolA Inv

(s−1)
A F holds.

Proof. Using Lemma 3.5(b), we can write 〈F 〉OA
= [F ∪ {idA}]OA

; hence,
Theorem 5.3 entails that s-LocA 〈F 〉OA

= s-LocA [F ∪ {idA}]OA
coincides with

PolpA Invp
(<s)
A (F ∪ {idA}), which by Lemma 6.7, equals

PolpA
⊎

0≤m<s

{
(�, �)

∣∣∣ � ∈ Inv
(m)
A (F ∪ {idA})

}

= PolpA
⊎

0≤m<s

{
(�, �)

∣∣∣ � ∈ Inv
(m)
A F

}
(since InvA (F ∪ {idA}) = InvA F )

=
⋂

0≤m<s

PolpA

{
(�, �)

∣∣∣ � ∈ Inv
(m)
A F

}

=
⋂

0≤m<s

PolA Inv
(m)
A F = PolA Inv

(<s)
A F. (cf. Lemma 6.6)

For A �= ∅, we may replace Theorem 5.3 by Corollary 5.5 and therefore the op-
erator PolpA Invp

(<s)
A by PolpA Invp

(s−1)
A . The rest of the argument is analog-

ous to the above. For A = ∅, PolA Inv
(s−1)
A F and PolA Inv

(<s)
A = s-LocA 〈F 〉OA

are both clones on ∅, but there exists only one such structure, namely O∅. �

In contrast to semiclones, nullary relations are never needed to discern loc-
ally closed clones. In fact, invariants of small arity may always be neglected.

Corollary 6.9. For a set of operations F ⊆ OA and any arity m ∈ N, we
have the equality PolA Inv

(≥m)
A F = PolA InvA F = ℵ0-LocA 〈F 〉OA

.

Lemma 6.10. For operations F ⊆ OA \O(0)
A of positive arity and every car-

dinal 0 < s ≤ ℵ0, the equality s-Loc
(0)
A 〈F 〉OA

= 〈F 〉(0)OA
= ∅ holds.

Corollary 6.11. Let F ⊆ OA \O(0)
A be without nullary operations and s ∈ N+;

then the equalities Pol
(>0)
A InvA F = Pol

(>0)
A Inv

(>0)
A F = ℵ0-LocA 〈F 〉OA

and
Pol

(>0)
A Inv

(s−1)
A F = s-LocA 〈F 〉OA

are fulfilled.

For F ⊆ OA \O(0)
A , the equalities ℵ0-LocA 〈F 〉OA

= Pol
(>0)
A Inv

(>0)
A F as well

as s-LocA 〈F 〉OA
= Pol

(>0)
A Inv

(s−1)
A F for s > 1 express two of the main results

regarding Pol - Inv that one finds in [29, Theorem 3.2, p. 260], [30, Theorem 4.1,
p. 31], where neither nullary operations nor nullary relations were considered.

In order to attack the relational side of the Pol - Inv Galois correspondence,
we need to express generated relational clones, i.e., the closure [ ]RA

of a set
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of relations under general superpositions, in terms of generated relation pair
clones. This is prepared in the following lemma.

Lemma 6.12. For any set Q ⊆ RA, we have

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ [Q]
(m)
RA

}
=

[ ⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Q(m)
}]

RpA

.

Lemma 6.13. For any set Q ⊆ RA and 1 < s ≤ ℵ0, we have

s-LOCA

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Q(m)
}
=

⊎
m∈N

{
(σ, σ)

∣∣∣ σ ∈ s-LØC(m)
A Q

}
.

Theorem 6.14 (see [3, Theorem 3.20, p. 31] for s = ℵ0). For any cardinal
0 < s ≤ ℵ0 and any set Q ⊆ RA, we have s-LØCA [Q]RA

= InvA Pol
(<s)
A Q; if

s < ℵ0, then InvA Pol
(<s)
A Q can be replaced by InvA Pol

(0,s−1)
A Q.

Proof. Using the previous results, we calculate for Q ⊆ RA and 1 < s ≤ ℵ0:

InvA Pol
(<s)
A Q

6.6
= InvA Polp

(<s)
A

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Q(m)
}

6.6
=

{
σ

∣∣∣∣∣ (σ, σ) ∈ InvpA Polp
(<s)
A

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Q(m)
}}

5.9
=


σ

∣∣∣∣∣∣
(σ, σ) ∈ s-LOCA

[ ⊎
m∈N

{
(�, �)

∣∣∣ � ∈ Q(m)
}]

RpA




6.12
=

{
σ

∣∣∣∣∣ (σ, σ) ∈ s-LOCA

⊎
m∈N

{
(�, �)

∣∣∣ � ∈ [Q]
(m)
RA

}}

6.13
=

{
σ

∣∣∣∣∣ (σ, σ) ∈
⊎
m∈N

{
(�, �)

∣∣∣ � ∈ s-LØC(m)
A [Q]RA

}}

= s-LØCA [Q]RA
.

Invoking Corollary 5.11 instead of Theorem 5.9 in the previous calculation, we
may replace the operator InvA Pol

(<s)
A by InvA Pol

(0,s−1)
A , and InvpA Polp

(<s)
A

by InvpA Polp
(0,s−1)
A , respectively, in the manipulations above.

Due to inapplicability of Lemma 6.13 for s = 1, this case needs a manual
proof. Clearly, we have 1-LØCA [Q]RA

=
{
σ ∈ RA

∣∣ ∃� ∈ [Q]RA
: σ ⊇ �

}
and

InvA Pol
(0)
A Q = InvA

{
c
(0)
a

∣∣∣ ∀� ∈ Q : (a, . . . , a) ∈ �
}

= {σ ∈ RA | σ ⊇ µ},

in which µ := { (a, . . . , a) | a ∈ A ∧ ∀� ∈ Q : (a, . . . , a) ∈ �} and c
(0)
a denotes

the nullary operation with image {a}. It is easy to see that µ ∈ [Q]RA
, namely,

for σ ∈ RA, let β : ar (σ) → 1 and α� : ar (�) → 1 for � ∈ Q be the unique con-
stant mappings, then µ =

∧β
(α�)�∈Q

(�)�∈Q ∈ [Q]RA
. This proves the inclusion

InvA Pol
(0)
A Q ⊆ 1-LØCA [Q]RA

. The converse is simple: if σ ∈ RA includes
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InvpA F =
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m∈N

{
(�, �)

∣∣∣ � ∈ Inv
(m)
A F

}
.

This enables us now to derive the characterisation of the closure operators
PolA Inv

(<s)
A and PolA Inv

(s)
A . The case s = ℵ0 yields [3, Theorem 3.17, p. 29].

Theorem 6.8. We have s-LocA 〈F 〉OA
= PolA Inv

(<s)
A F for any F ⊆ OA and

0 < s ≤ ℵ0; if s < ℵ0, then the equality s-LocA 〈F 〉OA
= PolA Inv

(s−1)
A F holds.

Proof. Using Lemma 3.5(b), we can write 〈F 〉OA
= [F ∪ {idA}]OA

; hence,
Theorem 5.3 entails that s-LocA 〈F 〉OA

= s-LocA [F ∪ {idA}]OA
coincides with

PolpA Invp
(<s)
A (F ∪ {idA}), which by Lemma 6.7, equals

PolpA
⊎
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{
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∣∣∣ � ∈ Inv
(m)
A (F ∪ {idA})

}
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}

=
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(m)
A F = PolA Inv

(<s)
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For A �= ∅, we may replace Theorem 5.3 by Corollary 5.5 and therefore the op-
erator PolpA Invp

(<s)
A by PolpA Invp
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A . The rest of the argument is analog-

ous to the above. For A = ∅, PolA Inv
(s−1)
A F and PolA Inv

(<s)
A = s-LocA 〈F 〉OA

are both clones on ∅, but there exists only one such structure, namely O∅. �

In contrast to semiclones, nullary relations are never needed to discern loc-
ally closed clones. In fact, invariants of small arity may always be neglected.

Corollary 6.9. For a set of operations F ⊆ OA and any arity m ∈ N, we
have the equality PolA Inv

(≥m)
A F = PolA InvA F = ℵ0-LocA 〈F 〉OA

.

Lemma 6.10. For operations F ⊆ OA \O(0)
A of positive arity and every car-

dinal 0 < s ≤ ℵ0, the equality s-Loc
(0)
A 〈F 〉OA

= 〈F 〉(0)OA
= ∅ holds.

Corollary 6.11. Let F ⊆ OA \O(0)
A be without nullary operations and s ∈ N+;

then the equalities Pol
(>0)
A InvA F = Pol

(>0)
A Inv

(>0)
A F = ℵ0-LocA 〈F 〉OA

and
Pol

(>0)
A Inv

(s−1)
A F = s-LocA 〈F 〉OA

are fulfilled.

For F ⊆ OA \O(0)
A , the equalities ℵ0-LocA 〈F 〉OA

= Pol
(>0)
A Inv

(>0)
A F as well

as s-LocA 〈F 〉OA
= Pol

(>0)
A Inv

(s−1)
A F for s > 1 express two of the main results

regarding Pol - Inv that one finds in [29, Theorem 3.2, p. 260], [30, Theorem 4.1,
p. 31], where neither nullary operations nor nullary relations were considered.

In order to attack the relational side of the Pol - Inv Galois correspondence,
we need to express generated relational clones, i.e., the closure [ ]RA

of a set
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some � ∈ [Q]RA
, and c

(0)
a ∈ Pol

(0)
A Q = Pol

(0)
A [Q]RA

, then (a, . . . , a) ∈ � ⊆ σ.
As this holds for all constants in Pol

(0)
A Q, we obtain σ ∈ InvA Pol

(0)
A Q. �

Lemma 6.15. We have PolA {∅} = OA \O(0)
A and thereby Pol

(s)
A {∅} = O

(s)
A

whenever s ∈ N+; therefore, Pol
(s)
A (Q ∪ {∅}) = Pol

(s)
A Q for any Q ⊆ RA.

Corollary 6.16. Let Q ⊆ RA and s ∈ N. Then s-LOCA [Q]RA
= InvA Pol

(s)
A Q

if (and, provided that s > 0, also only if ) ∅ ∈ InvA PolA Q (which is true in
particular if ∅ ∈ Q).

Corollary 6.17. We have LOCA [Q ∪ {∅}]RA
= InvA Pol

(>0)
A Q for Q ⊆ RA.

Moreover, for s ∈ N+, the equality s-LOCA [Q ∪ {∅}]RA
= InvA Pol

(s)
A Q holds.

Restricting the statement of Corollary 6.17 to sets Q ⊆ RA \R(0)
A and in-

tersecting the equalities on both sides with RA \R(0)
A yields the character-

isations LOCA

(
[Q ∪ {∅}](>0)

RA

)
= Inv

(>0)
A Pol

(>0)
A Q and, for positive paramet-

ers s, s-LOCA

(
[Q ∪ {∅}](>0)

RA

)
= Inv

(>0)
A Pol

(s)
A Q. The closure [Q ∪ {∅}](>0)

RA

describes the appropriate notion of generated relational clone (as employed
e.g., in [30]) if one does neither consider nullary operations nor relations in
connection with Pol - Inv. With the two stated equalities, we have therefore
established the two main results (see Theorem 4.2, p. 32, and Theorem 3.3,
p. 260, respectively) of [30, 29] regarding the relational side of Pol - Inv.

7. Possible applications

In the literature, the Pol - Inv Galois connection has been very successfully
employed to discover the structure of the lattice of all clones (e.g., [32, 23, 38,
37]), but it is also fundamentally involved in investigating other problems in
algebra and theoretical computer science ([11, 2, 1, 7, 36]). It is to be expected
that the theory developed within this article will find similar applications with
respect to semiclones in the future, especially regarding infinite carrier sets.

In this connection, we briefly outline one possible idea, picking up again
the topic of topologically closed (proper) transformation semigroups from the
previous section. According to Proposition 6.5, for any set Q ⊆ RpA of relation
pairs, the set of all locally closed transformation semigroups S ⊆ O

(1)
A lying

properly below Polp
(1)
A Q can be described as all those sets S = Polp

(1)
A Σ (for

Σ ⊆ RpA) satisfying Polp
(1)
A Σ � Polp

(1)
A Q. If S is a maximal member of this

collection with respect to inclusion, then Q ⊆ InvpA Polp
(1)
A Q � InvpA S. One

may take any pair (�, �′) ∈ InvpA S \ InvpA Polp
(1)
A Q and obtain that

S = Polp
(1)
A InvpA S ⊆ Polp

(1)
A (Q ∪ {(�, �′)}) � Polp

(1)
A Q,

which by maximality of S entails that S = Polp
(1)
A (Q ∪ {(�, �′)}). In case

that Polp
(1)
A Q is a monoid, i.e., Q contains only relation pairs with identical
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components and PolpA Q is a real clone, then one may also be interested in
the maximal locally closed proper transformation semigroups below it. This
additional requirement enforces that the pair (�, �′) one had to add above even
has to be a proper relation pair, i.e., �′ � �.

In a similar way, all maximal s-locally closed (possibly proper) semiclones
(or s-locally closed transformation semigroups) below one specific structure of
the respective sort can be described by preserving one additional relation pair.
It is plausible that for certain sets Q, a complete characterisation in analogy
to [32] can be attempted. Furthermore, on infinite carrier sets, the machinery
developed in this paper can also be useful to reveal counterexamples, e.g.,
structures having no maximal proper (s-locally closed) substructures below
them. It is, for example, not hard to prove for Q = ∅, that proper semigroups
of the form Polp

(1)
A {(�, �′)} with �′ � � ⊆ A can never be maximal among all

locally closed proper transformation semigroups on A whenever |A| ≥ 2.
The author is, moreover, confident that a generalisation of the presented

theory to categories with finite powers is possible along the lines of [24], where
a similar project has been realised for clones and the Pol - Inv Galois connec-
tion (at the same time, dualising the involved notions, which is not in our
focus). Most of our results do not impose any restrictions on the carrier set,
i.e., the particular object of the category of sets the Galois theory is based
on. Therefore, the main theorems of this article could be a guideline and used
to hint at what form of results to expect in the general setting. Once such a
generalisation has been established, the corresponding results can be instanti-
ated in any category of interest, as long as it has finite powers, for instance, in
that of topological spaces. In this way, it may be possible to perform similar
investigations as sketched above also for transformation semigroups consisting
of continuous functions.

References

[1] Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited.
In: 26th Annual IEEE Symposium on Logic in Computer Science—LICS 2011, pp.
301–310. IEEE Computer Soc., Los Alamitos, CA (2011)

[2] Barto, L., Kozik, M.: Absorbing subalgebras, cyclic terms, and the constraint
satisfaction problem. Log. Methods Comput. Sci. 8 1:07, 27 pp. (2012)

Acknowledgements.
The  author  expresses  his  gratitude  to  Erhard Aichinger

for an invitation to the Institute for Algebra at Johannes Kepler University
Linz, which enabled fruitful discussions on some aspects of the topic with mem-
bers of the institute including Erhard Aichinger, Peter Mayr, Keith Kearnes
and Ágnes Szendrei. The author wishes to thank them, too, for their valuable
comments and contributions. Moreover, he is grateful to both anonymous re-
viewers for careful proofreading, pointing out typos, suggesting an additional
reference, and urging the author to develop a common framework for the local
and s-local closure operators.

Open access funding  provided by Austrian  Science 
Fund (FWF).  

26 M. Behrisch Algebra univers.

some � ∈ [Q]RA
, and c

(0)
a ∈ Pol

(0)
A Q = Pol

(0)
A [Q]RA

, then (a, . . . , a) ∈ � ⊆ σ.
As this holds for all constants in Pol

(0)
A Q, we obtain σ ∈ InvA Pol

(0)
A Q. �

Lemma 6.15. We have PolA {∅} = OA \O(0)
A and thereby Pol

(s)
A {∅} = O

(s)
A

whenever s ∈ N+; therefore, Pol
(s)
A (Q ∪ {∅}) = Pol

(s)
A Q for any Q ⊆ RA.

Corollary 6.16. Let Q ⊆ RA and s ∈ N. Then s-LOCA [Q]RA
= InvA Pol

(s)
A Q

if (and, provided that s > 0, also only if ) ∅ ∈ InvA PolA Q (which is true in
particular if ∅ ∈ Q).

Corollary 6.17. We have LOCA [Q ∪ {∅}]RA
= InvA Pol

(>0)
A Q for Q ⊆ RA.

Moreover, for s ∈ N+, the equality s-LOCA [Q ∪ {∅}]RA
= InvA Pol

(s)
A Q holds.

Restricting the statement of Corollary 6.17 to sets Q ⊆ RA \R(0)
A and in-

tersecting the equalities on both sides with RA \R(0)
A yields the character-

isations LOCA

(
[Q ∪ {∅}](>0)

RA

)
= Inv

(>0)
A Pol

(>0)
A Q and, for positive paramet-

ers s, s-LOCA

(
[Q ∪ {∅}](>0)

RA

)
= Inv

(>0)
A Pol

(s)
A Q. The closure [Q ∪ {∅}](>0)

RA

describes the appropriate notion of generated relational clone (as employed
e.g., in [30]) if one does neither consider nullary operations nor relations in
connection with Pol - Inv. With the two stated equalities, we have therefore
established the two main results (see Theorem 4.2, p. 32, and Theorem 3.3,
p. 260, respectively) of [30, 29] regarding the relational side of Pol - Inv.

7. Possible applications

In the literature, the Pol - Inv Galois connection has been very successfully
employed to discover the structure of the lattice of all clones (e.g., [32, 23, 38,
37]), but it is also fundamentally involved in investigating other problems in
algebra and theoretical computer science ([11, 2, 1, 7, 36]). It is to be expected
that the theory developed within this article will find similar applications with
respect to semiclones in the future, especially regarding infinite carrier sets.

In this connection, we briefly outline one possible idea, picking up again
the topic of topologically closed (proper) transformation semigroups from the
previous section. According to Proposition 6.5, for any set Q ⊆ RpA of relation
pairs, the set of all locally closed transformation semigroups S ⊆ O

(1)
A lying

properly below Polp
(1)
A Q can be described as all those sets S = Polp

(1)
A Σ (for

Σ ⊆ RpA) satisfying Polp
(1)
A Σ � Polp

(1)
A Q. If S is a maximal member of this

collection with respect to inclusion, then Q ⊆ InvpA Polp
(1)
A Q � InvpA S. One

may take any pair (�, �′) ∈ InvpA S \ InvpA Polp
(1)
A Q and obtain that

S = Polp
(1)
A InvpA S ⊆ Polp

(1)
A (Q ∪ {(�, �′)}) � Polp

(1)
A Q,

which by maximality of S entails that S = Polp
(1)
A (Q ∪ {(�, �′)}). In case

that Polp
(1)
A Q is a monoid, i.e., Q contains only relation pairs with identical



412 M. Behrisch� Algebra Univers.28 M. Behrisch Algebra univers.

[3] Behrisch, M.: Clones with nullary operations. In: J. Power, C. Wingfield (eds.)
Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electron. Notes Theor. Comput. Sci., vol. 303, pp. 3–35. Elsevier Sci. B. V.,
Amsterdam (2014)

[4] Behrisch, M.: Galois theory for semiclones. CoRR abs/1509.06355, 1–38 (2015).
URL http://arxiv.org/abs/1509.06355v1

[5] Bodirsky, M., Pinsker, M.: Minimal functions on the random graph. Israel J. Math.
200, 251–296 (2014)

[6] Bodirsky, M., Pinsker, M.: Topological Birkhoff. Trans. Amer. Math. Soc. 367,
2527–2549 (2015)

[7] Bodirsky, M., Pinsker, M., Pongrácz, A.: Reconstructing the topology of clones.
CoRR abs/1312.7699, 1–30 (2014)

[8] Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post
algebras. I. Cybernetics 5, 243–252 (1969)

[9] Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post
algebras. II. Cybernetics 5, 531–539 (1969)

[10] Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Теория Галуа для
алгебр Поста. I, II [Galois theory for Post algebras. I, II]. Kibernetika (Kiev) 5, 1–10;
ibid. 1–9 (1969)

[11] Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53, 66–120 (2006)

[12] Couceiro, M.: On Galois connections between external operations and relational
constraints: arity restrictions and operator decompositions. Acta Sci. Math. (Szeged)
7215–35 (2006)

[13] Couceiro, M., Foldes, S.: On closed sets of relational constraints and classes of
functions closed under variable substitutions. Algebra Universalis 54, 149–165 (2005)

[14] Couceiro, M., Lehtonen, E.: Galois theory for sets of operations closed under
permutation, cylindrification, and composition. Algebra Universalis 67, 273–297
(2012)

[15] Geiger, D.: Closed systems of functions and predicates. Pacific J. Math. 27, 95–100
(1968)

[16] Goldstern, M., Pinsker, M.: A survey of clones on infinite sets. Algebra Universalis
59, 365–403 (2008)

[17] Harnau, W.: Ein verallgemeinerter Relationen- und ein modifizierter
Superpositionsbegriff für die Algebra der mehrwertigen Logik. [A generalised notion of
relation and a modified notion of superposition for the algebra of multiple-valued
logic.]. Habilitation thesis, Universität Rostock (1983)

[18] Harnau, W.: Ein verallgemeinerter Relationenbegriff für die Algebra der
mehrwertigen Logik. I. Grundlagen [A generalised notion of relation for the algebra of
multiple-valued logic. I. Foundations.]. Rostock. Math. Kolloq. 28, 5–17 (1985)

[19] Harnau, W.: Ein verallgemeinerter Relationenbegriff für die Algebra der mehrwertigen
Logik. II. Relationenpaare [A generalised notion of relation for the algebra of
multiple-valued logic. II. Pairs of relations.]. Rostock. Math. Kolloq. 31, 11–20 (1987)

[20] Harnau, W.: Ein verallgemeinerter Relationenbegriff für die Algebra der
mehrwertigen Logik. III. Beweis [A generalised notion of relation for the algebra of
multiple-valued logic. III. Proof.]. Rostock. Math. Kolloq. 32, 15–24 (1987)

[21] Jablonskij, S.V.: Функциональные построения в k-значной логике [Functional
constructions in k-valued logic]. Trudy Mat. Inst. Steklov. 51, 5–142 (1958)

[22] Jablonskij, S.V., Gavrilov, G.P., Kudrjavcev, V.B.: Функции алгебры логики и
классы Поста [Functions of algebraic logic and Post classes]. Izdat. “Nauka”, Moscow
(1966)

[23] Janov, Ju.I., Mučnik, A.A.: О существовании k-значных замкнутых классов, не
имеющих конечного базиса [Existence of k-valued closed classes without a finite
basis]. Dokl. Akad. Nauk SSSR 127, 44–46 (1959)

[24] Kerkhoff, S.: A general Galois theory for operations and relations in arbitrary
categories. Algebra Universalis 68, 325–352 (2012)



 Galois theory for semiclones 413Vol. 00, XX Galois theory for semiclones 29

[25] Lau, D.: Function algebras on finite sets. A basic course on many-valued logic and
clone theory. Springer Monographs in Mathematics. Springer, Berlin (2006)

[26] Lehtonen, E.: Closed classes of functions, generalized constraints, and clusters.
Algebra Universalis 63, 203–234 (2010)

[27] Maľcev, A.I.: Итеративные алгебры и многообразия Поста [Iterative algebras and
Post varieties]. Algebra i Logika Sem. 5, 5–24 (1966)

[28] Pippenger, N.: Galois theory for minors of finite functions. Discrete Math. 254,
405–419 (2002)

[29] Pöschel, R.: Concrete representation of algebraic structures and a general Galois
theory. In: Contributions to general algebra (Proc. Klagenfurt Conf., Klagenfurt,
1978), pp. 249–272. Heyn, Klagenfurt (1979)

[30] Pöschel, R.: A general Galois theory for operations and relations and concrete
characterization of related algebraic structures, Report 1980, vol. 1. Akademie der
Wissenschaften der DDR Institut für Mathematik, Berlin (1980). With German and
Russian summaries

[31] Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Ein Kapitel der
diskreten Mathematik, Mathematische Monographien, vol. 15. VEB Deutscher Verlag
der Wissenschaften, Berlin (1979)

[32] Rosenberg, I.G.: Über die funktionale Vollständigkeit in den mehrwertigen Logiken.
Struktur der Funktionen von mehreren Veränderlichen auf endlichen Mengen [On
functional completeness in multiple-valued logics. Structure of functions of several
variables on finite sets], Rozpravy Československé Akademie Věd: Řada
matematických a přírodních věd, vol. 80. Academia (1970)

[33] Schmidt, J.: Clones and semiclones of operations. In: Universal algebra (Esztergom,
1977), Colloq. Math. Soc. János Bolyai, vol. 29, pp. 705–723. North-Holland,
Amsterdam (1982)

[34] Szabó, L.: Concrete representation of related structures of universal algebras. I. Acta
Sci. Math. (Szeged) 40, 175–184 (1978)

[35] Szendrei, Á.: Clones in universal algebra, Séminaire de Mathématiques Supérieures,
vol. 99. Presses de l’Université de Montréal, Montreal, QC (1986)

[36] Vargas, E.: Clausal relations and C -clones. Discuss. Math. Gen. Algebra Appl. 30,
147–171 (2010)

[37] Zhuk, D.N.: The lattice of the clones of self-dual functions in three-valued logic. In:
Proceedings of the symposium held in Tuusula, May 23–25, 2011, 41st IEEE
International Symposium on Multiple-Valued Logic ISMVL 2011, pp. 193–197. IEEE
Computer Society, Los Alamitos, CA (2011)

[38] Zhuk, D.N.: The cardinality of the set of all clones containing a given minimal clone
on three elements. Algebra Universalis 68, 295–320 (2012)

Mike Behrisch
Institut für Computersprachen, (currently at Institut für Diskrete Mathematik und
Geometrie), Technische Universität Wien, A-1040 Vienna, Austria
e-mail : behrisch@logic.at

28 M. Behrisch Algebra univers.

[3] Behrisch, M.: Clones with nullary operations. In: J. Power, C. Wingfield (eds.)
Proceedings of the Workshop on Algebra, Coalgebra and Topology (WACT 2013),
Electron. Notes Theor. Comput. Sci., vol. 303, pp. 3–35. Elsevier Sci. B. V.,
Amsterdam (2014)

[4] Behrisch, M.: Galois theory for semiclones. CoRR abs/1509.06355, 1–38 (2015).
URL http://arxiv.org/abs/1509.06355v1

[5] Bodirsky, M., Pinsker, M.: Minimal functions on the random graph. Israel J. Math.
200, 251–296 (2014)

[6] Bodirsky, M., Pinsker, M.: Topological Birkhoff. Trans. Amer. Math. Soc. 367,
2527–2549 (2015)

[7] Bodirsky, M., Pinsker, M., Pongrácz, A.: Reconstructing the topology of clones.
CoRR abs/1312.7699, 1–30 (2014)

[8] Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post
algebras. I. Cybernetics 5, 243–252 (1969)

[9] Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post
algebras. II. Cybernetics 5, 531–539 (1969)

[10] Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Теория Галуа для
алгебр Поста. I, II [Galois theory for Post algebras. I, II]. Kibernetika (Kiev) 5, 1–10;
ibid. 1–9 (1969)

[11] Bulatov, A.A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53, 66–120 (2006)

[12] Couceiro, M.: On Galois connections between external operations and relational
constraints: arity restrictions and operator decompositions. Acta Sci. Math. (Szeged)
7215–35 (2006)

[13] Couceiro, M., Foldes, S.: On closed sets of relational constraints and classes of
functions closed under variable substitutions. Algebra Universalis 54, 149–165 (2005)

[14] Couceiro, M., Lehtonen, E.: Galois theory for sets of operations closed under
permutation, cylindrification, and composition. Algebra Universalis 67, 273–297
(2012)

[15] Geiger, D.: Closed systems of functions and predicates. Pacific J. Math. 27, 95–100
(1968)

[16] Goldstern, M., Pinsker, M.: A survey of clones on infinite sets. Algebra Universalis
59, 365–403 (2008)

[17] Harnau, W.: Ein verallgemeinerter Relationen- und ein modifizierter
Superpositionsbegriff für die Algebra der mehrwertigen Logik. [A generalised notion of
relation and a modified notion of superposition for the algebra of multiple-valued
logic.]. Habilitation thesis, Universität Rostock (1983)

[18] Harnau, W.: Ein verallgemeinerter Relationenbegriff für die Algebra der
mehrwertigen Logik. I. Grundlagen [A generalised notion of relation for the algebra of
multiple-valued logic. I. Foundations.]. Rostock. Math. Kolloq. 28, 5–17 (1985)

[19] Harnau, W.: Ein verallgemeinerter Relationenbegriff für die Algebra der mehrwertigen
Logik. II. Relationenpaare [A generalised notion of relation for the algebra of
multiple-valued logic. II. Pairs of relations.]. Rostock. Math. Kolloq. 31, 11–20 (1987)

[20] Harnau, W.: Ein verallgemeinerter Relationenbegriff für die Algebra der
mehrwertigen Logik. III. Beweis [A generalised notion of relation for the algebra of
multiple-valued logic. III. Proof.]. Rostock. Math. Kolloq. 32, 15–24 (1987)

[21] Jablonskij, S.V.: Функциональные построения в k-значной логике [Functional
constructions in k-valued logic]. Trudy Mat. Inst. Steklov. 51, 5–142 (1958)

[22] Jablonskij, S.V., Gavrilov, G.P., Kudrjavcev, V.B.: Функции алгебры логики и
классы Поста [Functions of algebraic logic and Post classes]. Izdat. “Nauka”, Moscow
(1966)

[23] Janov, Ju.I., Mučnik, A.A.: О существовании k-значных замкнутых классов, не
имеющих конечного базиса [Existence of k-valued closed classes without a finite
basis]. Dokl. Akad. Nauk SSSR 127, 44–46 (1959)

[24] Kerkhoff, S.: A general Galois theory for operations and relations in arbitrary
categories. Algebra Universalis 68, 325–352 (2012)

Open Access� This� article� is� distributed� under� the� terms� of� the� Creative� Commons� Attribution� 4.0�
International� License� (http://creativecommons.org/licenses/by/4.0/),� which� permits� unrestricted� use,�
distribution,�and�reproduction�in�any�medium,�provided�you�give�appropriate�credit�to�the�original�author(s)�
and�the�source,�provide�a�link�to�the�Creative�Commons�license,�and�indicate�if�changes�were�made.


	Galois theory for semiclones
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Notation, functions and relations
	2.2. The Galois correspondence
	2.3. Local closure operators for functions and relation pairs

	3. Semiclones and the full iterative Post algebra
	4. Relation pair clones
	5. Characterisation of closures related to Polp - Invp
	5.1. The operational side
	5.2. The side of relation pairs
	5.3. Characterisation of local closures for relation pairs

	6. Special cases
	6.1. Proper semiclones
	6.2. Closed transformation semigroups

	7. Possible applications
	Acknowledgements
	References




