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1 Introduction

Gödel logics are an important class of intermediate logics
with connections tomany areas and applications of logic such
as temporal logic, Heyting algebras, fuzzy logic, and parallel
processing. In this paper, we present ten open problems in
the proof and model theories of Gödel Logic. The problems
can be seen to be ordered both thematically and by gener-
ality. Some of the problems have been open for more than
thirty years. The second author discussed many of them with
Franco Montagna, to whose memory this paper is dedicated.

2 Preliminaries

Gödel logics are extensions of intuitionistic logic that take
truth values in a closed subset of the interval [0, 1].We denote
by GV the Gödel logic whose truth-value set is V .

Definition 1 A valuation I for the Gödel logic GV is

1. a nonempty set U = UI, the ‘universe’ of I,
2. for each k-ary predicate symbol P , a function PI : Uk →

V,
3. for each k-ary function symbol f , a function f I : Uk →

U ,
4. for each variable v, a value vI ∈ U .

Communicated by A. Di Nola, D. Mundici, C. Toffalori, A. Ursini.

This research has been partially supported by FWF Grants
P-26976-N25, I-1897-N25, I-2671-N35, and W1255- N23.

B Juan P. Aguilera
aguilera@logic.at

1 Vienna University of Technology, Wiedner Hauptstraße 8-10,
1040 Vienna, Austria

Any interpretation I can be naturally extended to define
a value tI for any term t and a truth value I(A) for any
formula A of the language LU (obtained by extending the
base language with names for each element inU ). For a term
t = f (u1, . . . , uk) we define I(t) = f I(uI1 , . . . , u

I
k ). For

atomic formulaewe defineI(⊥) = 0 andI(P(t1, . . . , tn)) =
PI(tI1 , . . . , tIn ). For composite formulae A we set induc-
tively:

I(A ∧ B) = min{I(A),I(B)},
I(A ∨ B) = max{I(A),I(B)},

I(A → B) =
{
I(B) if I(A) > I(B),

1 if I(A) ≤ I(B).

I(∀x A(x)) = inf{I(A(u)) : u ∈ U }
I(∃x A(x)) = sup{I(A(u)) : u ∈ U }.

We call a formula valid with respect to V if it is mapped
to 1 for all valuations based on V . A formula is satisfiable
with respect to V if it is mapped to 1 for some valuation based
on V. The set of all valid formulae with respect to V is often
identified with GV .

¬A is often defined by A → ⊥. Thus, we have

I(¬A) =
{
0 if I(A) > 0,

1 otherwise,

The following formulae play an important role when
axiomatizing Gödel logics:

qs ∀x(C ∨ A(x)) → (C ∨ ∀x A(x))

lin (A → B) ∨ (B → A)

iso0 ∀x¬¬A(x) → ¬¬∀x A(x)
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where x is not free in C . Their names can be explained as
follows: qs stands for ‘quantifier shift,’ lin for ‘linearity,’
iso0 for ‘isolation axiom of 0.’

A few prototypical Gödel logics are worth defining. G iso0
denotes the logic with truth-value set {0}∪[ 12 , 1],G↑ denotes
the logic with truth-value set {1− 1

n+1 : n ∈ N}∪{1}, andG↓
denotes the logic with truth-value set {0} ∪ { 1

n+1 : n ∈ N}.
G[0,1] is axiomatized by adding axioms qs and lin to any
axiomatization of intuitionistic logic; G iso0 is axiomatized
by adding iso0 to an axiomatization of G[0,1] (see Baaz et al.
2008).

A Gödel logic GV can be extended by a projection oper-
ator Δ, to be interpreted as

I(
A) =
{
1 I(A) = 1,

0 I(A) < 1.

Whenever we do so, we denote the resulting logic by GΔ
V .

3 Problems

The first problems we discuss relate to the proof theory of
Gödel logics.

Problem 1 Provide an analytic calculus for G iso0 .

In this context, we might identify analyticity with exhibit-
ing an adequate subformula property. Recall that G iso0 is
recursively enumerable (see above).

A possible way to solve this problemmight be to first pro-
vide an analytic calculus for intuitionistic logic extended by
the schema iso0 and then embedding it into an analytic hyper-
sequent calculus deriving lin and qs (see Baaz et al. 1998).
Such an extension of intuitionistic logic could be based on
weakened eigenvariable conditions that are sound for classi-
cal logic by considering that every negated subformula of a
formula is classical in presence of iso0.

This approach seems promising, as a hypersequent cal-
culus based on intuitionistic logic has been shown to be an
adequate analytic calculus for G[0,1] (see Baaz et al. 2003).
Indeed, the logicG[0,1] is clearly better understood.Nonethe-
less, several questions about it are yet to be answered. An
example of this is the issue of interpolation.

Problem 2 Determine whether G[0,1] admits interpolation.

Propositional Gödel logic is one of the seven intermediate
logics that admit interpolation (Maksimova 1979).Moreover,
it admits strong interpolation, as propositional quantifiers
are eliminable in propositional quantifier logic. By a result
of Mints et al. (2013), intuitionistic logic augmented with
qs does not interpolate. In contrast to this, other extensive

fragments of G[0,1] do admit interpolation: let G−
[0,1] be the

fragment of G[0,1] consisting of all formulae of the form

∧
i

Ai →
∨
i

Bi , (1)

such that each Ai and Bi are prenex except perhaps for univer-
sal quantifiers on the left-hand side or existential quantifiers
on the right-hand side.We call those quantifiersweak quanti-
fiers. Ifϕ is of the form (1), we call its antecedent the negative
part of ϕ and its consequent the positive part.

Proposition 2 G−
[0,1] admits interpolation

Proof (Proof sketch.) Let ϕ be a formula of the form (1)
valid (and therefore derivable) in G[0,1]. First, we replace
strong quantifiers by adequate Skolem functions. We calcu-
late the Herbrand expansion of ϕ using cut-elimination of the
hypersequent calculus forG[0,1] (in the Herbrand expansion,
every universal quantifier on the negative part is replaced by
a conjunction and every existential quantifier on the positive
part is replaced by a disjunction). Calculate an interpolant for
this valid propositional formula. Finally, remove the Skolem
terms from the negative part (resp. positive) and the inter-
polant simultaneously in a way similar to the Second Epsilon
Theorem (see Hilbert and Bernays 1970).

A related problem is the following:

Problem 3 Develop a suitable Skolemization for G[0,1].

The prenex fragment of G[0,1] admits Skolemization
(Baaz et al. 2001). Intuitionistic logic with the addition
of an existence predicate also admits Skolemization (Baaz
and Iemhoff 2006). This Skolemization cannot be extended
directly to Gödel logics because the additional axioms lin
and qs used in a proof are in general not reducible to finitely
many universal formulae without extending the base lan-
guage.

Problem 4 Construct a conservative epsilon calculus rep-
resenting G[0,1].

The problem arises from the fact that the usual critical
formulae of classical logic A(t) → A(εx A(x)) (see Hilbert
and Bernays 1970) are not conservative, i.e., it is not the case
that only the translations of valid formulae are derivable. For
instance:

Proposition 3 The critical formulae imply the validity of
∃x(P( f (x)) → P(x)).

Proof The two critical formulae

P( f (εx P(x))) → P(εx P(x))

(P( f (εx P(x))) → P(εx P(x))) → (P ( f (e)) → P(e)) ,
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where

e = εx (P( f (x)) → P(x)).

by modus ponens imply P ( f (e)) → P(e), the translation
of ∃x(P( f (x)) → P(x)), which is not valid in G[0,1].

Our next problem deals with an extension of Gödel logic.
Specifically, consider a notion of identity extending interpre-
tations I such that

I(s = t) = 1 if, and only if, I(s) = I(t).

Proposition 4 TheupwardLöwenheim–Skolem theorem fails
for GΔ

V whenever V is infinite.

Proof Consider the formula

∀x∀y (¬Δ(x = y) → ¬Δ(P(x) ↔ P(y))) . (2)

If V is of infinite cardinality κ , then the formula has a
model of cardinality κ , but no model of higher cardinality.

According to the above proof, 2ℵ0 is an upper bound on
the cardinalities of models of (2). The following result is well
known (see, for example, Bell and Slomson 1969).

Proposition 5 (Hanf) For any language L whose sentences
form a set S, there exists a cardinal κ—the Hanf number of
L—such that for all ϕ ∈ S, if ϕ has a model of cardinality
λ ≥ κ , then ϕ has a model of arbitrarily large cardinalities.

Proof For each ϕ such that the cardinalities of models of ϕ

are bounded, let κϕ be the least upper bound. Then κ is the
supremum of the set of all κϕ .

Problem 5 Determine the Hanf number of GΔ
V , for V infi-

nite.

We remark that without the operator Δ, the Löwenheim–
Skolem theorem holds, because the Gödel logics correspond
to finite or countable linear Kripke frames with constant
domains (Beckmann and Preining 2007).

Problem 6 and Problem 8 below concern recursive enu-
merability of various Gödel logics.

Definition 6 Let GV be a propositional or first-order Gödel
logic. We define GP

V to be the extension of GV by proposi-
tional quantifiers ∀̇, ∃̇. Specifically, for any valuation I, we
set I(∀̇X A(X)) (resp. I(∃̇X A(X))) to be the infimum (resp.
supremum) of J(A(X)) taken over all valuations J that coin-
cide with I, except maybe on I(X). We use capital letters to
denote propositional variables.

Problem 6 Is first-order GP[0,1] recursively enumerable?

Wenote that first-orderGP[0,1] admits conversion to prenex
normal forms.

Proposition 7 Each formula in GP[0,1] is equivalent to a for-
mula in prenex normal form.

Proof It is easy to check that the following equivalences are
valid:

(∀x A(x) → B) ↔ ∀̇Z∃x(A(x) → Z ∨ Z → B)

(∀̇X A(X) → B) ↔ ∀̇Z ∃̇X (A(X) → Z ∨ Z → B)

(A → ∃x B(x)) ↔ ∀̇Z∃x(A → Z ∨ Z → B(x))

(A → ∃̇XB(X)) ↔ ∀̇Z ∃̇X (A → Z ∨ Z → B(X))

As all other classically valid quantifier shifts are valid in
all Gödel logics, the result follows.

A consequence of a positive solution to Problem 6 would
be that if one could show that first-order GP[0,1] admits Her-
brand disjunctions, then one could construct suitable Skolem
functionals for GP[0,1].

Propositional quantifiers are eliminable in propositional
GP[0,1] (Baaz and Veith 1998). This logic is the only quanti-
fied propositional Gödel logic with this property. However,
propositional G↑ (resp. G↓) admit propositional quantifier
elimination if an additional one-place connective is added
(Baaz et al. 2000; Baaz and Preining 2008), namely ◦Y =
∀̇X(

(X → Y ) ∨ X
)
(resp. ∀̇X(

(X → Y ) → X
)
). This

connective assigns to Y the immediate successor (resp. pre-
decessor) of its value.

Problem 7 Characterize the propositional Gödel logics that
admit quantifier elimination if an additional one-place con-
nective is added.

We can also restrict our attention to monadic fragments of
Gödel logic.

Problem 8 Characterize the Gödel logics whose monadic
fragments are recursively enumerable.

Clearly, the monadic fragments ofG[0,1] andG iso0 are r.e.
On the other hand, the monadic fragment of G↑ is not r.e.
as any nonvalid sentence has a finitely valued countermodel
and the monadic fragment of G↑ is undecidable (see Baaz
and Preining 2016). In particular, we might wonder:

Problem 9 Is there a Gödel logic that is undecidable when
restricted to its fragment with a single one-place predicate
symbol?

It is known that if we restrict ourselves to monadic frag-
ments with one predicate symbol, there are countably many
Gödel logics of increasing complexity (see Beckmann and
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Preining 2015). These fragments can be considered as quan-
tified propositional logics where the actual set of truth values
is determined by the interpretation.

Up to now, we have only discussed problems of validity.
The representation of Gödel logics with respect to validity
can be always reduced to the sets of valid sentences. How-
ever, if we speak of validity and satisfiability in parallel, this
representation is useless and we therefore have to refer to the
truth-value sets. This is unfortunate, as uncountably many
different Gödel logics with respect to truth-value sets corre-
spond to countably many sets of valid sentences (Beckmann
et al. 2008). The following problem is a particular instance
of this phenomenon.

Problem 10 There are Gödel logics which differ according
to the sets of their valid sentences whose sets of satisfiable
sentences coincide. For example, G iso0 has the same satisfi-
able sentences as classical logic. Does the converse hold?
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