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Abstract In an attempt to demonstrate that local hidden variables are mathemati-
cally possible, Pitowsky constructed “spin-1/2 functions” and later “Kolmogorovian
models”, which employs a nonstandard notion of probability. We describe Pitowsky’s
analysis and argue (with the benefit of hindsight) that his notion of hidden variables is
in fact just super-determinism (and accordingly physically not relevant). Pitowsky’s
first construction uses the Continuum Hypothesis. Farah and Magidor took this as an
indication that at some stage physics might give arguments for or against adopting
specific new axioms of set theory. We would rather argue that it supports the oppos-
ing view, i.e., the widespread intuition “if you need a non-measurable function, it is
physically irrelevant”.

1 No-Go Theorems

We briefly recall the notion on hidden variables and the two no-go theorems that
will be relevant in this paper: Bell’s theorem [1], the groundbreaking first proof that
local hidden variables are impossible; and the Greenberger-Horne-Zeilinger (GHZ)
theorem [6]. The GHZ theorem is simpler and stronger, as it shows that local hid-
den variables cannot be consistently assigned to a single system (of three particles);
whereas Bell’s theorem shows that certain statistical frequencies cannot be reproduced
by local hidden variables.

More details can be found e.g., in Mermin’s paper [12].
We will only consider systems of one, two or three spin-1/2 particles. σa denotes the

spin observable in direction a (with possible values ±1); if we are dealing with more
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than one particle, the observable for the i-th particle is called σ i
a. We will only investi-

gate idealized Gedanken experiments and do not care how they could be implemented
in reality.

1.1 Hidden Variables, Super-determinism

1.1.1 Local Hidden Variables

In quantum mechanics, a (pure) system is described by its state, a vector |�〉 in some
Hilbert space H. For our purposes we can assume H to be finite dimensional, which
somewhat simplifies notation. For a given state and an observable A, the result of
the measurement is generally not determined; we just get probabilities for certain
outcomes.

It is natural to ask whether there is a description of the system that provides deter-
ministic predictions. Let us call such a description “hidden variables”: A system in
hidden variable state v has predetermined results v(A) for all1 observables A. (In
particular we require predictions for observables A, B which do not commute; i.e.,
which cannot be measured simultaneously.)

Once we perform a measurement for A (resulting in v(A)) then the system will
change into a new hidden variable state v′; and if we then perform a measurement for
B we get the result v′(B). Generally there is no reason to assume that v(B) = v′(B).
Actually, it is obvious that for non-commuting observables, the hidden variable has to
change: Measuring first A, then B, and then A again will generally result in different
values for the two A measurements.

Let us call hidden variables non-contextual, if v(B) = v′(B) is satisfied for commut-
ing observables A, B; and local, if it is satisfied for spatially separated observables.2

In other words: if for a hidden variable state we “simultaneously” measure such A, B
we get the results v(A) and v(B).

It is widely accepted that the GHZ theorem (cf. Sect. 1.2) shows that local hidden
variables are impossible (assuming of course that quantummechanical predictions are
satisfied for all possible measurement combinations).

Pitowsky claims his model is even non-contextual.

1.1.2 Statistical Hidden Variables

A hidden variable model for a given quantum mechanical state |�〉 must predict the
results that are guaranteed by quantummechanics.3 But more generally, it should also
for other observables reproduce the predicted frequencies (i.e., frequencies other than
100% or 0%). So we cannot assign the same hidden variable to all systems in state

1 Or just: sufficiently many; finitely many are enough for our purposes.
2 Note that non-contextual implies local, as spatially separated observables have to commute (to prevent
superluminal communication).
3 I.e.: If |�〉 is eigenvector of A with eigenvalue a, the we require v(A) = a. Note that the GHZ theorem
shows that not even that can be done with local hidden variables.
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|�〉 (as there will be different results when measuring some A on different copies of
|�〉).

So it is natural to assume that a certain classical probabilistic mixture of different
hidden variables represents |�〉, and that we can represent a sequence of systems in
state |�〉 by “randomly” (i.e., according to the measure) picking hidden variables; and
we require that the resulting frequencies are those predicted by quantum mechanics.

More formally, we can require the following:

Assumption 1.1 ρ is a probability measure on the set of hidden variables. For all
observables A (that we consider), ρ({v : v(A) = a}) has to be equal to the quantum
mechanical probability to get result a when measuring A.

(In Pitowsky’smodel, aweaker notionρ will be used instead of the classical probability
measure.)

It is widely accepted that Bell’s theorem (cf. Sect. 1.3) shows that local statistical
hidden variables are impossible.

Non-local statistical hidden variables are possible: A very simple toy model (albeit
with rather weird and unpleasant properties) is given by Kochen and Specker [8]; a
more serious example is Bohm’s theory [2,3].

1.1.3 Super-determinism

Let us define as super-determinism the statement:

All future phenomena are determined by the present state (not just the measure-
ment results, but also the question which measurements are performed).

While this position might be philosophically reasonable or satisfying, it is useless for
physics: It is clear that there cannot ever be a feasible “universal theory” that predicts
which measurements will be performed. (We can make the measurements, i.e., the
setting of some detector, depend on the arrival of photons from distance galaxies, etc.)

From a super-deterministic point of view, hidden variables are irrelevant but possi-
ble: we know which measurements will be performed, and we can (but it makes little
sense to do so) assign any values we like to other measurements, and there is no reason
to assume that these bogus values should satisfy any quantum mechanical prediction.

Of course we can never prove that there are no hidden variables of this “perverted”
kind, as we cannot (for obvious reasons) disprove super-determinism.

Non-super-deterministic hidden variables should have the property that they pre-
dict reasonable outcomes (i.e., outcomes compatible with quantum mechanics) for
all possible measurements (and not just for some measurements that specifically fit
the hidden variable). I.e., the hidden variable should not determine or restrict which
measurement we are allowed to perform.

1.2 The Greenberger–Horne–Zeilinger (GHZ) Theorem

Consider a system of three spin-1/2 particles, and the operators listed in Fig. 1. For each
of the four lines ➊ to ➍, the operators in the line commute and have product+1. Also,
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Fig. 1 The GHZ pentagram

the four operators in the horizontal line commute and have product −1. We cannot
assign real numbers v(A) to the operators while satisfying these five requirements.4

(To see this, note that each node appears in exactly two lines. So the product over the
“line products”, which is 14 · (−1) = −1, has to be the product of all v(A) squared,
a contradiction.)

We now prepare the system in a simultaneous eigenstate (the so-called GHZ state)
for the operators in the horizontal line, with eigenvalue −1 for σ 1

x σ 2
y σ 3

y and+1 for the
rest. For each of the lines ➊ to ➍, call the product of the three remaining (single spin)
operators the “reduced product”. E.g., the the reduced product of ➊ is the product of
σ 1

x , σ
2
y and σ 3

y . So for the GHZ state, quantum mechanics predicts the value −1 for
the reduced product of ➊, and +1 for ➋–➍.

Also, the single spin operators are “spatially separated”, in the following sense: We
can choose which line from ➊ to ➍ we measure by choosing directions (x or y) for
each particle. For example, xyy results in ➊ and yyx in ➋. So if we assume that v is a
local hidden variable, the result of measuring σ 2

y will be v(σ 2
y ), irrespective of whether

we also measure σ 1
y and σ 3

x (i.e., we measure along ➋) or whether we measure σ 1
x and

σ 3
y (according to ➊).
Therefore, any local hidden variable will violate the quantum mechanically pre-

dicted value for the reduced product of at least one of the lines ➊ to ➍.
For later reference, let us rephrase this result using projection operators:

Fact 1.2 We cannot assign “yes” or ”no” to the six tests “Is σ i
a = +1?” such that all

four of the following requirements are met (which all follow from quantummechanics
for the GHZ state):

4 The “requirement corresponding to ➋” is v(σ 1
y ) · v(σ 1

y σ 2
y σ 3

x ) · v(σ 3
x ) · v(σ 2

y ) = 1, etc.
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➊ an even
➋ an odd
➌ an odd
➍ an odd

⎫
⎪⎪⎬

⎪⎪⎭

number of testing

⎧
⎪⎪⎨

⎪⎪⎩

σ 1
x , σ 2

y , σ 3
y

σ 1
y , σ 2

y , σ 3
x

σ 1
y , σ 2

x , σ 3
y

σ 1
x , σ 2

x , σ 3
x

⎫
⎪⎪⎬

⎪⎪⎭

for +1 results in “yes”.

Of course, for any given system we can only test one of the requirements ➊ to ➍.

1.3 Bell’s Theorem

We now consider a pair of spin-1/2 particles in the singlet state 1√
2
(|↑↓〉 + |↓↑〉).

For the singlet state, the probability to get the same result for σ 1
i and σ 2

j is pi, j =
sin2(θ/2), where θ is the angle between i and j . Fix three directions a, b, c in the plane
with angles of 120◦ between each two. So pa,b = pa,c = pb,c = 3/4.

We now consider a hidden variable, i.e., a function v that maps σ k
i to v(σ k

i ) = ±1
for k ∈ {1, 2} and i ∈ {a, b, c}.

If we assume that the hidden variable is local (and satisfies quantum mechanical
predictions), we get

v(σ 2
i ) = −v(σ 1

i ). (∗)

Not all three of the numbers v(σ 1
a ), v(σ 1

b ) and v(σ 1
c ) can be pairwise different.

So if (*) holds, then there is at least one pair i 
= j (call it “chosen pair”) such that
v(σ 1

i ) 
= v(σ 2
j ) (an event with quantum mechanical probability 1/4).

Now we consider a (finite or infinite) sequence of pairs in the singlet state; and
assume that the n-th pair is in some hidden variable state vn . Assume that (*) holds
(for each i ∈ {a, b, c}) with frequency at least 1 − ε. So with frequency ≥ 1 − 3ε,
(*) holds for all i simultaneously, and then there is at at least one “chosen pair”. And
as there are just three possible pairs, at least one pair i 
= j has to be chosen with
frequency at least 1/3 within the variables satisfying (*); i.e., with frequency at least
1/3 − ε within all variables. When we chose ε to be 0.04, say, this shows:

Fact 1.3 It is not possible to find a (finite or infinite) sequence of hidden variables5

vn such that the frequency6 f i, j of

vn(σ 1
i ) = vn(σ 2

j ) (1.1)

is, for all i, j ∈ {a, b, c}, within an error7 of at most 4%, equal to the quantum
mechanical predicted frequencies8 f ∗

i, j for

σ 1
i has the same result as σ 2

j . (1.2)

5 Here, vn can be any assignment from the set {σ k
i : k = 1, 2, i = a, b, c} to ±1.

6 In case of infinite sequences we might require the frequency (i.e., the limit) to exist.
7 I.e.,

∣
∣
∣ f i, j − f ∗

i, j

∣
∣
∣ < 0.04.

8 which are 3/4 for i 
= j and 0 for i = j .
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Assuming local hidden variables, (1.1) is the same as (1.2) (for each system in our
sequence).

2 Pitowsky’s Models

In a series of articles, Pitowsky tried to analyze whether one could escape Bell’s
theorem and get local models by using non-measurable functions. We investigate the
following articles: The first attempt [14], where he uses the Continuum Hypothesis
to construct a “spin-1/2 function” and a model for the singlet state. This attempt was
immediately criticised by Macdonald and, independently, Mermin [9,11]. Starting
with his response [15], Pitowsky formulated the idea of using a nonstandard notion
of probability, culminating in the so-called Kolmogorovian model ([13] , Sect. 5] (in
a construction which does not require the Continuum Hypothesis). This is a universal
model that works for all quantum mechanical systems.

2.1 Pitowsky’s First Attempt: The Singlet State

To understand Pitowsky’s analysis of Bell’s theorem, let us first give a consequence
of this theorem.

2.1.1 Spin 1/2 Functions

A“spin 1/2 function” is a function s0 from the sphere S2 to±1 satisfying the following:

• s0(−x) = −s0(x).
• Fix x and 0 < θ < π and set S = { y : y · x = cos(θ)} (a circle equipped
with the usual Lebesgue measure, with total measure 2π sin(θ)). Then the set
S ∩ { y : s0( y) = s0(x)} is Lebesgue measurable in S with relative measure
cos2(θ/2).

Such a function looks promising for constructing hidden variables for the singlet
state: We can define the “set of hidden variables” to be the orthogonal group O(3),
equipped with the normalized Haar measure θ . We then define for the hidden variable
g ∈ O(3) the measurement values g(σ 1

a ) = s0(g(a)) and g(σ 2
b ) = −s0(g(b)).

If s0 was additionally Lebesgue measurable, then these hidden variables would
actually work and violate Bell’s theorem. So there cannot be a Lebesgue measurable
spin 1/2 function.9 However, Piowsky shows in [14]:

9 In more detail: Assume towards a contradiction that s0 is a Lebesgue measurable spin 1/2 function.
We now calculate the probability pi, j for the event g(σ 1

i ) = g(σ 2
j ), i.e., for s0(g(i)) 
= s0(g( j)), i.e. for

the two measurements having different outcome. A “random” choice of g corresponds to first “randomly”
choosing a direction i ′ (which is g(i)), and then, again “randomly”, another direction j ′ such that i ′ and j ′
have the same angle θ as i and j (this j is g( j); note that g preserves angles). The probability that s0( j ′) =
s0(i ′) is, by the assumption, cos2(θ/2), so pa,b is sin

2(θ/2) as predicted by quantum mechanics. (Formally,
we have to calculate θ(X), the O(3) Haar measure of the set X = {g ∈ O(3) : s0(g(a)) 
= s0(g(b))}.)
So we can, e.g., pick randomly an infinite (or: sufficiently large) sequence of hidden variables. By the law
of large numbers, with probability one (or: sufficiently large, nonzero is enough) we will get the correct
frequencies (or: frequencies that are sufficiently close), contradicting Bell’s theorem.
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Theorem 2.1 Assuming the Continuum Hypothesis, there is a (non measurable) spin-
1/2 function.

Pitowsky then claims that the local hidden variables for the singlet state (defined
as above), work and do not suffer from Bell’s theorem.

It is not entirely clear to us from the paper [14] how he thought that this would
actually work out. Apparently he assumed that by “sabotaging” Bell’s proof (by using
non-measurable functions), and maybe using an intuition similar to the one outlined
in footnote 9, the problem would go away.

2.1.2 Criticism

But of course it does not. This was pointed out immediately [9,11]:
Let us paraphrase the criticism in concrete terms (we use the notation of Sect. 1.3):

Let us fix for example N = 50 000, and generate N many singlet states. Quantum
mechanics tells us that for each pair i, j from {a, b, c} the frequency of the event
“σ 1

i equals σ 2
j ” will (virtually certainly) be very close to the calculated probability

of 3/4. More concretely, with probability > 1 − 10−91 (i.e., “always”) the frequency
will be greater than f0 = 3/4 − 0.04. But Bell’s theorem shows that any sequence
of hidden variables, irrespective of whether they were created by a classical random
process, or some nonstandard method either gives a frequency < f0 for at least one
such pair i, j , or gives a frequency of > 0.04 to the (quantum mechanically outright
impossible) event “σ 1

i equals σ 2
i ” for some i .

2.1.3 Response, Towards the Universal Model

In response [15], Pitowsky indicated that the objections are based on the “classical”
notion of probability, which has to be modified. We need a new notion of probability
(let us call it Pitowsky probability). In this notion, it can happen that two sets (or:
events) A, B have Pitowsky probability one, but the intersection A ∩ B has “classical”
probability zero.

Actually, it turns out that the intersection even has to have small Pitowsky proba-
bility, as [16, p. 164] elaborates: According to his new notion of probability, it is no
problem if “90% all of the objects are red” and “90% all of the objects are small” but
“no object is small and red”.10

Note that Pitowsky’s spin 1/2 model features different notions of probability and
certainty: By design, σ 1

a = −σ 2
a always holds. Given σ 1

a = +1, the correct relative
frequency for for σ 1

b = +1 is provided by classical probability (i.e., Lebesgue mea-
sure). However, the absolute frequency for σ 1

a = +1 cannot be provided by classical
probability (as there is no measurable spin 1/2 function), instead Pitowsky evokes his
new notion of probability.

10 We will later even see the following form of the effect: “All objects are red” and “all objects are small”
but “no object is small and red”. This form was pointed out by [7, p. 1331], who quite poignantly described
the “paradoxical nonphysical nature” of the model and clarified some misunderstanding surrounding it. We
have not found Pitowsky explicitly acknowledging this form, but it is part of his treatment of the Bell-KS
Theorem in [13,16].
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It turns out that once you agree to use Pitowsky probabilities, and abandon the use
of classical Lebesgue measure for the relative frequencies as well, you get a much
simpler model, and furthermore a “universal” model (called Kolmogorovian model
by Pitowsky), that applies not only to the singlet state, but to any quantum mechanical
situation. This is what Pitowsy does in [13, Sect. 5]. The new construction does not
require the ContinuumHypothesis anymore (but Pitowsky uses the Axiom of Choice).

In this sense (also in Pitowsky’s presentation) the Kolmogorovian model replaces
the spin 1/2 function model for the singlet state, so we will concentrate on the Kol-
mogorovian model in the following.

2.2 Pitowsky’s Universal Kolmogorovian Model

In this section, we will present Pitowsky’s [13, Sect. 5] “universal” Kolmogorovian
model. This model deals with (orthogonal) projection operators only. I.e., instead of
predicting which real numbers will be the result of a measurement, we just predict
whether a test will result in “yes”.11

2.2.1 Kolmogorovian Models

Let us give us Pitowsky’s definition of a mixture and a Kolmogorovian model right
away: Fix a σ -algebra � of (not necessarily Lebesgue measurable) subsets of [0, 1].
• Amixture ρ : � → R is a monotone function such that ρ(X) is between the inner
and the outer Lebesgue measure of X .12

• A Kolmogorovian model consists of the following objects, with the following
properties:
I [0, 1] is the set of hidden variables. A hidden variable λ ∈ [0, 1] maps each
projection A to some λ(A) ∈ {0, 1} (the result of A whenmeasuring the system
in the hidden variable state λ). We set X A := {λ ∈ 
 : λ(A) = 1}; and require
that X A ∈ �.

II Given (a specific method to prepare) a quantum mechanical state |�〉, we fix
a mixture ρ (which tells us how the hidden variable states of the state � are
distributed; i.e., how likely a specific variable λ will occur).

III If A and B can be measured simultaneously (i.e., they commute), then

ρ(X A ∩ X B) + ρ(X A ∪ X B) = ρ(X A) + ρ(X B).

11 When investigating which kind of hidden variables might exist, the restriction to projections does not
make a substantial difference.
12 Not every X ⊆ [0, 1] is (Lebesgue) measurable (at least assuming the Axiom of Choice); but for every
X there is the inner measure m∗(X) and the outer measure m∗(X) with the following property: m∗(X)

is the maximal measure of any measurable subsets Y∗ of X ; and m∗(X) is the minimal measure of any
measurable Y ∗ containing X , i.e., Y ∗ ⊇ X . Of course m∗(X) ≤ m∗(X), and equality holds if and only if
X is measurable (and then the measure of X is m∗(X) = m∗(X)).
If X1 and X2 are disjoint, i.e., X1 ∩ X2 = ∅, and X1 has outer measure 1, then X2 has inner measure 0. To
see this, note that any Y∗ ⊆ X2 satisfies [0, 1] \ Y∗ ⊇ X1, so if Y∗ had measure ε > 0 then [0, 1] \ Y∗ had
measure 1 − ε < 1.
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IV In a “random sample” of copies of the state |�〉, the relative frequencies of the
outcome 1 for A (i.e., for λ ∈ X A) “approaches” ρ(X A) as the sample grows.

Contrast this definitionwith the “statistical hidden variables” of Sect. 1.1: Instead of
using a “classical” probability measure, ρ is now just a “mixture”. Also, for a measure
the item corresponding to IV is trivially satisfied (it is just a version of the law of
large numbers); while now IV is not even well defined13 (it is not clear what either
“random” or “approaches” actually mean; as we will see later “approaches” cannot
mean that a limit in the usual mathematical sense exists).

2.2.2 Generalized Kolmogorovian Models

Instead of directly presenting Pitowsky’s construction of a Kolmogorovian model, we
will first give a simpler (but really equivalent) construction for a modified notion.

Let us first note that it is physically irrelevant to require the hidden variables to
be real numbers (as opposed to, say, vectors in a Hilbert space); and to require that
ρ(X A) should have anything to do with inner or outer Lebesgue measures. Dropping
these artificial requirements, we get:

Definition 2.2 Fix an arbitrary set 
 (the set of hidden variables) and �, a σ -algebra
of subsets of 
.

• A generalized mixture ρ is a monotone function from � to R.
• A generalized Kolmogorovian model is a Kolmogorovian model that uses 


instead of [0, 1] as set of hidden variables and a generalized mixture instead of a
mixture.14

We can now (without using the Axiom of Choice or non-measurable sets) construct
a trivial (and, of course, physically useless) generalized Kolmogorovian model: We
fix a quantum mechanical system with Hilbertspace H, and a state |�〉.
• We let
 be the (pure) quantummechanical states (i.e., elements15 ofHwith norm
1).

• For a hidden variable λ ∈ 
 and an (orthogonal) projection A (which we identify
with its image HA), we set λ(A) = 1 if λ is eigenvector of A with eigenvalue 1, i.e.,
if λ ∈ HA. (And we set λ(A) = 0 otherwise.) Accordingly X A = {λ : λ(A) = 1},
which is the set of normalized elements of HA.

• We let � be the set of all subsets of 
.16

13 Pitowsky mentions that requirement IV is “not a mathematical theorem, it is merely a consistent claim”
[13, p. 163]. We would not even call it a claim, as the notions are undefined.
14 More verbosely, the definition is identical to the definition of Kolmogorovian model, where in Item I we
replace [0, 1] with 
 and in Item II “mixture” with “generalized mixture”.
15 We could instead use one-dimensional subspaces, but that would make the notation slightly less conve-
nient.
16 Or we could let � be the σ -algebra generated by the sets X A , it doesn’t matter.
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• For Y ∈ �, let 〈Y 〉 be the H-subspace generated by Y .17

We set ρ(Y ) to be the quantum mechanical probability (using the state |�〉) for
the orthogonal projection to the subspace 〈Y 〉 resulting in +1.
So ρ(X A) is the quantum mechanical probability for A resulting in +1.

It is easy to check that 
,�, ρ forms a generalized Kolmogorovian model:
ρ is a generalized mixture as it is monotone. I and II are obvious. III is satisfied as

well: Assume A and B commute. Then ρ(X A), ρ(X B), ρ(X A ∩ X B) and ρ(X A ∪ X B)

are the quantum-mechanically predicted vales for a positive outcome of A, B, “A and
B”, “A or B”, respectively; and therefore satisfy the equality in III.18

Remark Other than X A ∩ X B , X A ∪ X B is generally not the set of unit vectors of a
subspace of H.

2.2.3 From Generalized Kolmogorovian Models to Regular Ones

We now use 
,�, ρ to recover Pitowsky’s construction of a Kolmogorovian model
�′, ρ′ which satisfies the original definition (which, as we would like to stress again,
has the same physical contents as the generalized notion). For this, we just add a bit
of simple measure theory:

Fist note that the set 
 of states has size continuum. Write the interval [0, 1] as the
disjoint union of continuum many sets (Yi )i∈
 of outer Lebesgue measure 1. (Here
we use the Axiom of Choice.)

We now declare a real r ∈ [0, 1] to be a hidden variable. Such an r is element
of exactly one Yλ for λ ∈ 
; and we let r produce the same predictions as λ in our
generalized Kolmogorovian model r(A) = λ(A).

In particular, X ′
A = {r ∈ [0, 1] : r(A) = 1} = ⋃

λ∈X A
Yλ will contain some of the

“blocks” Yλ completely, and will omit others completely, more formally:

If r ∈ X ′
A and s is in the same block Yλ as r, then s ∈ X ′

A. (∗)

So we really just replace a single vector λ ∈ 
 with the block Yλ.
Let �′ be the σ -algebra generated by the sets X ′

A. Then every element X ′ of �

satisfies (∗) as well.19 In particular, whenever X ′ ∈ �′ is neither empty nor equal to
[0, 1], it has outer measure 1 and inner measure 0 (cf. the end of Footnote 12).

17 In the infinite dimensional case we might want to use “closed subspace” instead of “subspace”.
18 In more detail: Fix an orthonormal basisL of common eigenvectors for A and B. ThenL is the disjoint
union of Li for i = A ∩ B, A \ B, B \ A, ¬(A ∪ B), where LA∩B consists of 1-eigenvectors for both
A and B, LA\B consists of vectors that are 1-eigenvectors for A and 0-eigenvectors for B, etc. Then

〈X A ∩ X B 〉 = 〈LA∩B 〉, and thus ρ(X A ∩ X B ) is “the probability for 〈LA∩B 〉”, i.e., �v∈LA∩B
|〈�| 〉|2.

Similarly, 〈X A〉 = X A = 〈LA∩B ∪LA\B 〉, so ρ(X A) = �v∈LA∩B∪LA\B
|〈�| 〉|2. Analogously for X B .

And 〈X A ∪ X B 〉 = 〈LA∩B ∪ LA\B ∪ LB\A〉. So ρ(X A ∪ X B ) = �v∈LA∩B∪LA\B∪LB\A
|〈�| 〉|2.

19 � could be defined as closure under arbitrary unions instead of just countable ones, or even as the set of
all subsets of [0, 1]. In the latter casewe just have to redefineρ′(X ′) asmin

(
m∗(X ′),max

(
m∗(X ′), ρ(X)

))
.
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For X ′ ∈ �, we set X = {λ ∈ 
 : Yλ ⊆ X ′} and ρ′(X ′) = ρ(X). In particular,
ρ′(X ′

A) = ρ(X A), which is the quantum mechanical probability (assuming state |�〉)
for A resulting in +1.

�′, ρ′ is a Kolmogorovian model:
As ρ is monotone, so is ρ′. We have seen 0 = m∗(X ′) ≤ ρ′(X ′) ≤ m∗(X ′) = 1 for

nontrivial X ′ ∈ �, and for the trivial cases note that ρ′(∅) = 0 and ρ′([0, 1]) = 1. So
ρ′ is a mixture. I and II are obvious. For III, it is enough to note that X ′

A ∪ X ′
B consists

of the blocks Yλ that satisfy λ ∈ X A ∪ X B , and so ρ′(X ′
A ∪ X ′

B) = ρ(X A ∪ X B). The
same holds for ∩ instead of ∪. So the required equation in III for ρ′ follows from the
equation for ρ.

2.2.4 A Simple Example

Already a very simple example shows the strange nature of Pitowsky’s model:20

Let us look at a pair of spin-1/2 particles in the singlet state.We use the “generalized”
notation (a hidden variable is a state φ in the four dimensional Hilbert space), which
can trivially be translated into Pitowsky’s original notation (then the hidden variable
is a real r that gets mapped to φ).

The hidden variable φ will result in σ 1
a = +1 if and only if φ = |a 〉 ⊗ v for some

v ∈ H2 (the two-dimensional space of the second particle); and will result in σ 2
a = +1

if and only if φ = v ⊗ |a 〉 for some v ∈ H1.
Measuring σ 1

a will not interfere with the σ 2
a hidden-variable measurement, as the

hidden variable model is local.21

Let us denote with Xa the set of hidden variables that have the form either v ⊗ |a 〉
or |a 〉 ⊗ v. As we can perform both (spatially separated) measurements, and as the
Pitowsky-probabilities correspond to the quantum mechanically predicted probabili-
ties, we know that Xa has Pitowsky-probability 1 (i.e., ρ(Xa) = 1).

So for three different directions a, b and c the sets Xa ∩ Xb have at most two
elements while

Xa ∩ Xb ∩ Xc is empty. (2.1)

(Really empty, not just of probability 0.)
So, to paraphrase Pitowsky: All balls are red, and all balls are small, and all balls

are heavy, but no ball is small and red and heavy.
While this effect is most obvious in the Kolmogorovian model, similar effects

apply to the earlier model for the singlet state22 due to Bell’s theorem, as described in
sections Criticism and Response on page 5 and also in [7, p. 1331]; see also Czachor’s
paper [4].

20 An even simpler example for the same effect uses just a single spin-1/2 particle; where we have to use
non-contextuality instead of locality.
21 As explicitly claimed in [13, (b) on p. 169].
22 This specific example however does not work there, as σ 1

a = −σ 2
a always holds.
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3 Analysis of the Kolmogorovian Model

3.1 Kolmogorovian models are superdeterministic

3.1.1 The Weirdness of Quantum Mechanics

To work with another example,23 let us move from the singlet state to the GHZ state.
According to Fact 1.2, quantum physics implies that each of ➊–➍ is satisfied, and
that this cannot be done by fixing hidden parameter values ±1 for the six σ i

a (for
i ∈ {1, 2, 3} and a ∈ {x, y}).

So all deterministic hidden variables theories have to be “weird” in some way or
the other. They have to suffer from one of the following:

(a) Nonlocality. As mentioned, there are such non-local hidden variable models.
(b) Super-determinism. As mentioned, physically doubly irrelevant: Firstly super-

determinism is physically unfeasible, secondly hidden variables are pointless
within super-determinism.

(c) Non-classical logic. One could maybe claim that ➊–➍ can hold simultaneously
for suitable “yes/no” values, if we completely change our basic understanding of
logic and reasoning. We will ignore such positions here.

3.1.2 Pitowsky’s Probability

Pitowsky however claims to have found another way: supposedly one can move all the
weirdness into his nonstandard notionof statistics (Pitowskyprobability).He explicitly
claims [13, p. 169] that his model is local (even non-contextual) and classical, i.e.,
does not suffer weirdness (a) or (c). We will argue in the following that Pitowsky’s
model is in fact just super-deterministic.

Let A1 be the set of hidden Kolmogorovian variables satisfying ➊. As quantum
mechanics implies ➊, ρ(A1) = 1. In other words, the Pitowsky probability for a
hidden variable to be in the set A1 is 1. Analogously define A2, A3 and A4. So Ai all
are Pitowsky measure 1 sets; while the intersection

⋂
i=1,...,4 Ai = ∅ is empty.

For Pitowsky, this is a peculiar property of his notion of probability: ➊ is satisfied
with measure 1 (i.e., always) as Ai has measure 1; the same holds for ➋ etc. It is true
that no hidden variable can have all properties ➊–➍, but if we measure property ➊
on some sequence, then ➊ will be satisfied; and ➋ has to be measured on another
sequence so consistently we can assume that on this sequence ➋ is satisfied, etc.

While Pitowsky claims that this can be seen as an effect of a non-classical notion
of probability, it really is just a variant of super-determinism. This can be seen most
clearly if we just consider a single state three-particle system, which we first assume
to have hidden variable v. We know that v determines the six values used in the
requirements ➊–➍, and therefore we know that at least one of the requirements fail.

23 In [13] Pitowsky does not mention the GHZ Theorem, which was not yet known. However, he mentions
(and claims that his model deals with) the Bell–Kochen–Specker Theorem [1,8], which is very similar
to GHZ but requires not just locality, but non-contextuality of the hidden variables (which holds in the
Kolmogorovian model).
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Let us assume that ➊ fails. In other words: If we test ➊, we will get a contradiction to
quantum mechanics. However, ➊ will hold with Pitowsky probability 1, i.e., always.
So in the Pitowsky model, we will not measure ➊, i.e., our hidden variable excludes
certain measurements, i.e., is super-deterministic.

3.1.3 Isn’t A Single System Unrealistic?

One could object to the use of a single three-particle system: In real world experi-
ments, one has to deal with non-perfect measurements etc., and a violation of quantum
mechanic predictions in a single event would just be considered an outlier and ignored,
quite consistently with experimental data.

Of course, this argument does not help: Assume that we first create a sequence
of a million hidden variables. Each of the variables will violate at least one of the
requirements ➊–➍; so at least one requirement has to be violated in at least 25% of
the variables. Again, assume that is the case for ➊. If the Pitowsky setup were non
super-deterministic, we could now choose to test ➊ on the sequence, and get a success
rate of at most 75% (instead of the 100% predicted by quantum mechanics); which is
definitely not in line with real life experiments.

Two remarks:

• If each time we choose the one forbidden setting, we of course even get 100%
failure. But it seems hard to argue that we could guess a long sequence of forbidden
settings correctly.

• The argument relies on locality only; it is not required that the choice of a measure-
ment at position 1, say, will not affect the outcomes for subsequent measurements
at the same position 1. (However, in Pitowsky’s Model the outcome is in fact
independent). So we generally have to assume that the result for, e.g., the n-th
measurement of σ 1

x also depends on the measurement setting (x , y or z) of all the
previous n − 1 many measurements at position 1 (and the measurement results,
but they are determined anyway). This does not change the argument: Using only
locality, we can still argue that the hidden variables will give for given n, i , and
a the same results for testing σ i

a on the n-th particle for both appearances in the
equations ➊–➍.

3.1.4 The Singlet State

In the GHZ case, we have seen that at least one out of four measurement combinations
will be ruled out by the hidden variable. In the singlet state, super-deterministic nature
of the Kolmogorovian model is even more dramatic.

Let us first create a hidden variable state. Using the notation of (2.1), this state can
be in Xb (the states that are “OK” for b) for at most two directions, b1 and b2, say. So
whenever we afterwards chose to measure σ 1

c and σ 2
c for any direction c other than

b1 and b2, we get “not +1” both times, in a violation of quantum mechanics.
So if we have a device that can measure spins in � many directions, and if we use

two of these devices, spatially separated, and make sure both will measure the same
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direction,24 then for any given hidden variable state, at least �−2 out of the � possible
measurements will violate quantum mechanics.

3.2 From Super-determinism to the Kolmogorovian Model, Pitowsky’s Law of
Large Numbers

We have argued that Kolmogorovian models imply a form of super-determinism.
In turn, from a super-deterministic point of view, we can easily see how the Kol-

mogorovian model works. This will also shed light on how to interpret the notions in
assumption IV of the definition of the Kolmogorovian model:

“In a random sample of particles, whose statistical state is given by the mixture
ρ, the frequency of particles having property A approaches ρ(A) as the sample
grows.” [13, p. 163]

Recall that ρ(A) is just the quantum mechanical probability for A.
So let us assume a super-deterministic position. We know (since we know all) that

we will investigate a sequence of m many systems (in state |�〉), and that for each
copy of the system we will measure the sequence A1, A2, . . . , An of commuting25

projections. We know that the j-th system will give the results a j
1 , . . . , a j

n . If m is

large enough, then (with high probability) the a j
i will appear with frequencies close to

the quantum mechanically predicted sequences. For each j , there is a state φ j which
is simultaneous eigenvalue of Ai with eigenvalue a j

i . This is the j-th hidden variable
we chose.

So in this construction, where we start from super-determinism, the notions in
assumption IV are the following: “random” means according to our prescience (i.e.,
quite determined and not random at all). “Approaches” means the usual limit, but only
for those A that are actually measured. (Other observables A will feature frequencies
entirely different from ρ(A).)26

In this sense, Pitowsky’s model is logically consistent (just as super-determinism
is). Of course, this is not particularly satisfying; but as we have argued over and over,
we cannot do better.

Let us argue the same thing once again, from a slightly different point of view:
Classically, we have the following (which can be seen as a simple form of the law

of large numbers):

24 E.g., both devices look at the same distant star and use photons arriving from there to determines the
direction in a previously agreed way.
25 As mentioned, whenever we measure a non-commuting observable, we will have to change any hidden
parameter.
26 We could also choose the following alternative (but this is not what happens in the Kolmogorovian
model): We could, from the pre-determined sequence of hidden variables, define ρ(A) to be the frequency
for A as determined by the hidden variables. In that case, “approaches” will be the limit for all A, but the
value of ρ(A)will differ from quantummechanical predictions (in those observables A that are not actually
measured).
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Fix finitely (or countably) many Lebesgue measurable sets Ai ⊆ [0, 1] of mea-
sure ai . Generate a random27 sequence (rn)n∈N of elements of [0, 1]. Then with
probability 1, the frequency of rn ∈ Ai is ai for all i .28

Pitowsky observes that he cannot prove a similar law for his notion of probability;
and replaces it with Principle IV in his definition of Kolmogorovian models, quoted
above.

It is true that a “proper” Pitowsky law of large numbers would be sufficient to give
a realistic, local, non-super-deterministic hidden variable theory; but such speculation
is vacuous as it is easy to see that the “proper” law fails for Pitowsky probability. Let
us again use the GHZ notation:

Fix sets Ai ⊂ [0, 1] (i ∈ {1, 2, 3, 4}) such that⋂ Ai = ∅. They do not have to be
Lebesgue measurable (but we will assume they are “Pitowsky measurable” and
all have “Pitowsky measure” 1). Generate (by whatever process you like, e.g.,
a Pitowsky random process) an infinite sequence (rn)n∈N of elements of [0, 1].
Then for at least one i ∈ {1, 2, 3, 4}, the frequency of the property rn ∈ Ai is
not 1.
Actually, if all frequencies exist29 then for at least one i the frequency is ≤0.75.

The proof is entirely trivial: Fix any sequence rn , and assume that all frequencies
are defined and bigger than 0.75. I.e., for each i ∈ {1, 2, 3, 4} there is a Ni such that
for all n ≥ Ni the Ai -frequency of the finite sequence r1, . . . , rn is bigger than 0.75.
Let n be max(N1, N2, N3, N4). Then the finite sequence up to N has frequency bigger
than 0.75 for all i , a contradiction of the fact that

⋂
Ai = ∅.

Note that our observations in this section do not contradict anything Pitowsky
says directly. Rather, Pitowsky argues that we measure the different Ai on different
samples, and that on each sample we will get the correct frequency for the according
measurement. (As already mentioned, this is logically consistent, as it just means that
we are dealing with super-determinism.)

3.3 Set Theory and Physics

There has been some debate over the following question:

Could the choice of set theoretic axioms have any effect on the physical theories?
Or, from a different perspective: could physical knowledge imply that specific
set theoretic axioms should be preferred over others?

Of course we know that, e.g., the Axiom of Choice is required for many mathematical
theorems (such as: every vector space has a basis), which in turn can be applied in
physics. However, on closer inspection it turns out that for all concrete instances that

27 Using the “standard” notion of probability: We use independent and identically distributed random
variables, each using the uniform distribution. In other words, we use the product measure of countably
many copies of the Lebesgue measure on [0, 1].
28 I.e., limn→∞ |{1≤m≤n: rm∈Ai }|

n exists and is equal to ai .
29 I.e., if fi := limn→∞ |{1≤m≤n: rm∈Ai }|

n is defined.
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are used, the axiom of choice is not required. The same applies even for the existence
of an infinite set: One can use a very constructive, “finitary” form of mathematics
that is perfectly sufficient for physics. (It is a different question whether it is equally
practical and intuitive as the “usual” mathematics based on set theory.)

Pitowsky used the Continuum Hypothesis to construct a spin-1/2-function model.
Pitowsky suggested that the existence of such a function might not follow from the
usual axioms of set theory alone, which has recently been confirmed by Farah and
Magidor [5]. In the same paper, as well as in [10], it has been argued that the spin-1/2
model is an indication that physical considerations might provide input on which new
axioms should be adopted for set theory.

We do not share this opinion:

• Pitowsky’s spin-1/2-function is introduced just to “sabotage” a specific argument
in one of the possible proofs of Bell’s theorem: Using a non-measurable function
prevents proofs using the expected value of the function. Accordingly, the spin-
1/2-function alone does not give any model; the real point of the matter is the
dramatically altered basic notion of probability which has to be added on top of it
(let us call it Pitowsky probability).

• Once you adopt Pitowsky probability, the spin-1/2-function becomes unnecessary:
It is easy to give a universal model for all quantum mechanical systems (the Kol-
mogorovian model). Pitowsky uses the Axiom of Choice for this model, but we
think even that is unnecessary30, as argued in the section on generalized Kol-
mogorovian models in Sect. 2.2.

• But in the end, Pitowsky probability turns out to be just a variant of super-
determinism. Accordingly, the models are obviously consistent, but physically not
relevant. (And doubly so: super-determinism is physically unfeasible, and hidden
variables are pointless within super-determinism.)

So we come to quite the opposite conclusion as Farah and Magidor: Instead of
indicating connections between physics and set theory, Pitowsky’s attempts of hidden
variables rather seems to reaffirm the old intuition: “if nontrivial set theory, non-
constructive mathematics or a non-measurable set is used in an essential way, it cannot
be physically relevant”.
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