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Abstract Since every lattice effect algebra decomposes into blocks which are MV-algebras
and since every MV-algebra can be represented by a certain semiring with an antitone invo-
lution as shown by Belluce, Di Nola and Ferraioli, the natural question arises if a lattice
effect algebra can also be represented by means of a semiring-like structure. This question is
answered in the present paper by establishing a one-to-one correspondence between lattice
effect algebras and certain right near semirings with an antitone involution.

Keywords Effect algebra · Lattice effect algebra · Right near semiring · Antitone
involution · Effect near semiring

Effect algebras were introduced by Foulis and Bennett [8] in order to axiomatize unsharp
logics of quantum mechanics. Although the definition of an effect algebra looks elemen-
tary, these algebras have several very surprising properties. Concerning these properties the
reader is referred to the monograph [7] by Dvurečenskij and Pulmannová. In particular,
every effect algebra induces a natural partial order relation and thus can be considered as a
bounded poset. If this poset is a lattice, the effect algebra is called a lattice effect algebra.
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A representation of lattice effect algebras by means of so-called basic algebras was derived
in [2].

It was proved by Riečanová that every lattice effect algebra is built up by blocks which
are MV-algebras. A representation of MV-algebras by means of semiring-like structures,
so-called MV-semirings, was already published by Belluce et al. in [1] and it was fur-
ther developed by Di Nola and Russo in [6]. These facts encouraged us to try a similar
approach also for lattice effect algebras. The motivation for such a representation by means
of semiring-like structures is practically the same as in [1]. The fact that the binary operation
in effect algebras is only partial and that one cannot suppose that, whenever extended to a
total operation, it would remain commutative and associative, motivated us to use so-called
right near semirings instead of semirings. The concept of a right near semiring was intro-
duced by the authors in [3]. These algebras seem to be an appropriate tool when equipped
with an involution. Similarly as in [1], we ask them to satisfy six more natural axioms. We
will call such algebras effect near semirings.

In [5], lattice effect algebras were represented by couples of right near semirings con-
nected by a certain mapping. In this paper we present a representation of lattice effect
algebras by means of a single right near semiring which is equipped with an involution. It
turns out that this representation is one-to-one.

We start with the definition of an effect algebra.

Definition 1 An effect algebra is a partial algebra E = (E,⊕, 0, 1) of type (2, 0, 0)
satisfying conditions (E1) – (E4) for all x, y, z ∈ E:

(E1) If x ⊕ y exists, so does y ⊕ x and x ⊕ y = y ⊕ x;
(E2) if x⊕y and (x⊕y)⊕z exist, so do y⊕z and x⊕(y⊕z) and (x⊕y)⊕z = x⊕(y⊕z);
(E3) there exists a unique x′ ∈ E such that x ⊕ x′ is defined and x ⊕ x′ = 1;
(E4) If x ⊕ 1 exists then x = 0.

Since ′ is a unary operation on E it can be regarded as a further fundamental operation.
Hence in the following we will write E = (E,⊕, ′, 0, 1) instead of E = (E,⊕, 0, 1).

Let E = (E,⊕, ′, 0, 1) be an effect algebra and a, b ∈ E. The following facts are
well-known:

(F1) By defining a ≤ b if there exists some c ∈ E such that a ⊕ c exists and a ⊕ c = b,
(E,≤, ′, 0, 1) becomes a bounded poset with an antitone involution. We call ≤ the
induced order of E. E is called a lattice effect algebra if (E,≤) is a lattice.

(F2) a ⊕ b exists if and only if a ≤ b′.
(F3) a ⊕ 0 and 0 ⊕ a exist and a ⊕ 0 = 0 ⊕ a = a.
(F4) (a′)′ = a

We recall Proposition 1.8.6 from [7]:

Proposition 2 Let E = (E,⊕, ′, 0, 1) be a lattice effect algebra, ∨ and ∧ denote its lattice
operations and a, b, c ∈ E. If a ⊕ c and b ⊕ c exist then (a ∧ b) ⊕ c = (a ⊕ c) ∧ (b ⊕ c).

The concept of a right near semiring was introduced by the authors in [3] as follows (cf.
also [4] and [5]):

Definition 3 A right near semiring is an algebra R = (R,+, ·, 0, 1) of type (2, 2, 0, 0)
satisfying conditions (R1) – (R4):
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(R1) (R,+, 0) is a commutative monoid;
(R2) (R, ·, 1) is a groupoid with neutral element 1;
(R3) (x + y)z ≈ xz + yz;
(R4) x0 ≈ 0x ≈ 0.

R is called idempotent if it satisfies the identity x+x ≈ x. In this case (R,+) is a semilattice
which we will consider as a join-semilattice whose partial order relation ≤ will be called
the induced order of R. Observe that then x ≤ y is equivalent to x + y = y and that 0 is the
least element of (R,≤).

Now we define right near semirings with involution.

Definition 4 A right near semiring with involution is an algebra R = (R,+, ·, ′, 0, 1)
of type (2, 2, 1, 0, 0) such that its reduct R1 = (R,+, ·, 0, 1) is an idempotent right near
semiring and ′ is an antitone involution on (R,≤) where ≤ denotes the induced order of R1
which we will call the induced order of R, too.

Remark 5 The element 1 need not be the greatest element of (R,≤) which is 0′. If one
defines x + ′y := (x′ + y′)′ for all x, y ∈ R then (R,+, +′, ′, 0, 0′) is a bounded lattice
with an antitone involution where + denotes the supremum operation and +′ the infimum
operation.

Now we define our counterpart of lattice effect algebras.

Definition 6 An effect near semiring is a right near semiring R = (R,+, ·, ′, 0, 1) with
involution satisfying conditions (N1) – (N6) for all x, y ∈ R:

(N1) 0′ = 1;
(N2) x ≤ y if and only if xy′ = 0;
(N3) If x′y′ = 0 then xy = yx;
(N4) If x′y′ = 0 and (xy)′z′ = 0 then y′z′ = 0, x′(yz)′ = 0 and (xy)z = x(yz);
(N5) If xy = 0 then there exists an element z of R with xz = 0 and x′z′ = y;
(N6) x(yx′) = 0.

The following theorem shows that to every lattice effect algebra there can be assigned an
effect near semiring in some natural way.

Theorem 7 Let E = (E,⊕, ′, 0, 1) be a lattice effect algebra with lattice operations ∨ and
∧ and put

xy := ((x′ ∧ y) ⊕ y′)′

for all x, y ∈ E. Then xy is well-defined because of x′ ∧ y ≤ y and, moreover, R(E) :=
(E,∨, ·, ′, 0, 1) is an effect near semiring.

Proof Let a, b, c ∈ E. (E,∨, 0) is an idempotent commutative monoid. Since

a1 = ((a′ ∧ 1) ⊕ 1′)′ = (a′ ⊕ 0)′ = (a′)′ = a and

1a = ((1′ ∧ a) ⊕ a′)′ = ((0 ∧ a) ⊕ a′)′ = (0 ⊕ a′)′ = (a′)′ = a,
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(E, ·, 1) is a groupoid with neutral element. Moreover, using Proposition 2 we compute

(a ∨ b)c = (((a ∨ b)′ ∧ c) ⊕ c′)′ = ((a′ ∧ b′ ∧ c) ⊕ c′)′ = (((a′ ∧ c) ∧ (b′ ∧ c)) ⊕ c′)′ =
= (((a′ ∧ c) ⊕ c′) ∧ ((b′ ∧ c) ⊕ c′))′ = ((a′ ∧ c) ⊕ c′)′ ∨ ((b′ ∧ c) ⊕ c′)′ =
= (ac) ∨ (bc).

Clearly,

a0 = ((a′ ∧ 0) ⊕ 0′)′ = (0 ⊕ 1)′ = 1′ = 0 and

0a = ((0′ ∧ a) ⊕ a′)′ = (a ⊕ a′)′ = 1′ = 0.

Further, a ≤ b implies b′ ≤ a′, and we have (a′)′ = a. From this we conclude that a ≤ b

is equivalent to b′ ≤ a′. It remains to prove axioms (N1) – (N6) of Definition 6.

(N1) 0′ = 1 holds in E and hence also in R(E).
(N2) By (E3) we have that a′ ∧b′ = b′ implies b⊕ (a′ ∧b′) = b⊕b′ = 1 and, conversely,

if b ⊕ (a′ ∧ b′) = 1 then a′ ∧ b′ = b′. Hence the following are equivalent: a ≤ b,
b′ ≤ a′, a′∧b′ = b′, b⊕(a′∧b′) = 1, (a′∧b′)⊕b = 1, ((a′∧b′)⊕b)′ = 0, ab′ = 0.

(N3) According to (N2) the following are equivalent: a′b′ = 0, a′ ≤ b, a′ ⊕ b′ exists. In
this case ab = ((a′∧b)⊕b′)′ = (a′⊕b′)′. Hence a′b′ = 0 implies ab = (a′⊕b′)′ =
(b′ ⊕ a′)′ = ba.

(N4) Assume a′b′ = 0 and (ab)′c′ = 0. Then there exists a′ ⊕ b′, ab = (a′ ⊕ b′)′
and there exists (a′ ⊕ b′) ⊕ c′. Hence there exist b′ ⊕ c′ and a′ ⊕ (b′ ⊕ c′) and
(a′ ⊕ b′) ⊕ c′ = a′ ⊕ (b′ ⊕ c′). This shows b′ ≤ c, b′c′ = 0, (b′ ⊕ c′)′ = bc and
a′(bc)′ = 0. Therefore

(ab)c = ((a′ ⊕ b′) ⊕ c′)′ = (a′ ⊕ (b′ ⊕ c′))′ = a(bc).

(N5) If ab = 0 then a ≤ b′ according to (N2) and hence according to (F1) and (F2)
there exists some d ∈ E with a ≤ d ′ and a ⊕ d = b′ which shows ad = 0 and
a′d ′ = (a ⊕ d)′ = b.

(N6) We have a ≤ a ⊕ (b′ ∧ a′) = (b′ ∧ a′)⊕a = (ba′)′ and hence a(ba′) = 0 according
to (N2).

In the next proofs we will need the following result:

Lemma 8 Let R = (R,+, ·, ′, 0, 1) be an effect near semiring, ≤ denote its induced order
and a, b ∈ R. Then a ≤ b if and only if there exists some c ∈ R with a ≤ c and a′c = b′.

Proof If a ≤ b then ab′ = 0 according to (N2) and hence there exists some d ∈ R with
ad = 0 and a′d ′ = b′ according to (N5) whence a ≤ d ′ according to (N2). Conversely,
assume there exists some c ∈ R with a ≤ c and a′c = b′. Then ac′ = 0 according to (N2)
which shows a′c = ca′ according to (N3). From this we conclude b′ = ca′ and therefore
ab′ = a(ca′) = 0 according to (N6). This shows a ≤ b according to (N2).

Now we show that to every effect near semiring we can assign a lattice effect algebra in
some natural way.

Theorem 9 LetR = (R,+, ·, ′, 0, 1) be an effect near semiring,≤ denote its induced order
and for x, y ∈ R put

x ⊕ y := (x′y′)′, provided x ≤ y′.
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Then E(R) := (R,⊕,′ , 0, 1) is a lattice effect algebra with induced order ≤.

Proof Let a, b, c ∈ R.

(E1) Assume a ⊕b exists. Then a ≤ b′ according to the definition of ⊕ and hence ab = 0
according to (N2). Therefore there exists b ⊕ a and, according to (N3), a′b′ = b′a′
which implies a ⊕ b = (a′b′)′ = (b′a′)′ = b ⊕ a.

(E2) Assume a ⊕ b and (a ⊕ b) ⊕ c exist. Then a ≤ b′ and a ⊕ b ≤ c′ according to the
definition of ⊕. This implies ab = 0 and (a′b′)′c = 0 according to (N2) and the
definition of ⊕. Hence bc = 0, a(b′c′)′ = 0 and (a′b′)c′ = a′(b′c′) according to
(N4). Therefore b ≤ c′ and a ≤ b′c′. This finally implies that there exist b ⊕ c and
a ⊕ (b ⊕ c) and

(a ⊕ b) ⊕ c = ((a′b′)c′)′ = (a′(b′c′))′ = a ⊕ (b ⊕ c).

(E3) If a ⊕ b exists and a ⊕ b = 1 then a ≤ b′ and (a′b′)′ = 1 according to the definition
of ⊕ and hence a′b′ = 0 by (N1), i.e. a′ ≤ b according to (N2) which together with
b ≤ a′ implies b = a′ according the antisymmetry of ≤. On the other hand, a ≤ a

and a′ ≤ a′ and hence a ⊕ a′ exists and a′a = 0 according to the definition of ⊕ and
(N2) and therefore a ⊕ a′ = (a′a)′ = 0′ = 1 according to (N1). Hence a ⊕ b = 1 if
and only if b = a′.

(E4) If a ⊕ 1 exists then, using (N1), a ≤ 1′ = 0 and hence a = 0.

Hence E(R) is an effect algebra. Let≤1 denote its induced order. According to Lemma 8,
(R,≤) = (R,≤1). Since the first poset is a lattice, the same is true for the second one.

Next we show that the described correspondence between lattice effect algebras and
effect near semirings is one-to-one.

Theorem 10 Let E = (E,⊕, ′, 0, 1) be a lattice effect algebra. Then E(R(E)) = E.

Proof Let R(E) = (E,∨, ·, ′, 0, 1), E(R(E)) = (E,⊕1,
′, 0, 1) and a, b ∈ E. Then the

following are equivalent: a ⊕1 b exists, a ≤ b′, a ⊕b exists. If this is the case then a ⊕1 b =
(a′b′)′ = (a ∧ b′) ⊕ b = a ⊕ b.

Theorem 11 Let R = (R,+, ·, ′, 0, 1) be an effect near semiring. Then R(E(R)) = R.

Proof Let E(R) = (R,⊕, ′, 0, 1), R(E(R)) = (R,∨, ·1, ′, 0, 1), ≤ and ≤1 denote the
induced orders of R and E(R), respectively, and a, b ∈ R. Then ≤=≤1 according to
Lemma 8 and

a ∨ b = sup
≤1

(a, b) = sup
≤

(a, b) = a + b.

The last equality follows from the remarks in Definition 3. Moreover, b′b = 0 because
of b′ ≤ b′ and, finally,

a ·1 b = ((a′ ∧ b) ⊕ b′)′ = (a′ ∧ b)′b = (a ∨ b′)b = (a + b′)b = ab + b′b = ab + 0 = ab.

Remark 12 Every effect near semiringR = (R,+, ·, ′, 0, 1) is congruence distributive since
(R,+, +′) is a lattice and +′ is a term function of R.
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The representation of lattice effect algebras by means of effect near semirings enables us
to classify some important classes of effect algebras. The following concept was introduced
in [7].

Definition 13 A lattice orthoalgebra is a lattice effect algebraE = (E,⊕, ′, 0, 1) satisfying
condition (E5) for all x ∈ E:

(E5) If x ⊕ x exists then x = 0.

For the reader’s convenience, we recall the following well-known concept.
An orthomodular lattice is an algebra L = (L,∨,∧, ′, 0, 1) of type (2, 2, 1, 0, 0)

satisfying conditions (O1) – (O4):

(O1) (L,∨,∧, 0, 1) is a bounded lattice;
(O2) the operation ′ is an antitone involution of (L,≤);
(O3) x ∨ x′ ≈ 1 and x ∧ x′ ≈ 0;
(O4) x ∨ y ≈ x ∨ ((x ∨ y) ∧ x′).

If L = (L,∨,∧, ′, 0, 1) is an orthomodular lattice and x ⊕ y := x ∨ y if x ≤ y ′ then
E := (L,⊕, ′, 0, 1) is a lattice orthoalgebra (cf. [7]). Conversely, the underlying lattice of a
lattice orthoalgebra is orthomodular.

Now we can characterize lattice orthoalgebras by means of effect near semirings as
follows:

Theorem 14 A lattice effect algebra E = (E,⊕, ′, 0, 1) is a lattice orthoalgebra if and
only if its corresponding effect near semiring R = (E,+, ·, ′, 0, 1) is multiplicatively
idempotent, i.e. satisfies the identity xx ≈ x.

Proof If E is a lattice orthoalgebra then x ∧ x′ ≈ 0 (cf. Example 4.3 in [2]) and hence

xx ≈ ((x′ ∧ x) ⊕ x′)′ ≈ (0 ⊕ x′)′ ≈ (x′)′ ≈ x

according to (F3) and (F4) and if, conversely, R satisfies xx ≈ x, a ∈ E and a ⊕ a exists
then a ≤ a′ and hence a = aa = a(a′)′ = 0 according to (N2).

We can also characterize those lattice orthoalgebras whose underlying orthomodular lat-
tice is a Boolean algebra (thus characterizing the classicality of the corresponding physical
system). For this purpose we need some results on orthomodular lattices.

Recall that two elements a, b of an orthomodular lattice (L,∨,∧, ′, 0, 1) are said to
commute with each other (a C b, for short) if a = (a ∧ b) ∨ (a ∧ b′). It is well-known
that two comparable elements commute and that a C b implies b C a and a C b′. Also the
following theorem is well-known:

Theorem 15 (Theorem of Foulis-Holland) If (L,∨,∧, ′, 0, 1) is an orthomodular lattice,
a, b, c ∈ L, a C b and a C c then the sublattice of (L,∨,∧) generated by {a, b, c} is
distributive.

Now we are able to prove

Theorem 16 The underlying orthomodular lattice of a lattice orthoalgebra E =
(E,⊕, ′, 0, 1) is a Boolean algebra if and only if its corresponding effect near semiring
R = (R,+, ·, ′, 0, 1) satisfies the identity x + y ≈ (x′y′)′.
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Proof Let L = (L,∨,∧, ′, 0, 1) denote the orthomodular lattice corresponding to E. If L
is a Boolean algebra then

(x′y′)′ ≈ ((x′∨y)∧y′)′ ≈ ((x′∧y′)∨(y∧y′))′ ≈ ((x′∧y′)∨0)′ ≈ (x′∧y′)′ ≈ x∨y ≈ x+y.

If, conversely, R satisfies x + y ≈ (x ′y′)′ then

x ∧ y ≈ (x′ ∨ y′)′ ≈ (x′ + y′)′ ≈ (((x′)′(y′)′)′)′ ≈ xy ≈ (x ∨ y′) ∧ y,

z′ ≤ x ∨z′, and z′ ≤ y ∨z′ and hence z′C (x ∨z′) and z′C (y ∨z′) which implies zC (x ∨z′)
and zC (y ∨ z′) and therefore

(x ∨ y) ∧ z ≈ ((x ∨ y) ∨ z′) ∧ z ≈ ((x ∨ z′) ∨ (y ∨ z′)) ∧ z ≈
≈ ((x ∨ z′) ∧ z) ∨ ((y ∨ z′) ∧ z) ≈ (x ∧ z) ∨ (y ∧ z),

i.e., L is a Boolean algebra.

We recall that anMV-algebra is an algebraM = (M,+, ¬, 0) of type (2, 1, 0) satisfying
identities (M1) – (M6):

(M1) x + y ≈ y + x;
(M2) (x + y) + z ≈ x + (y + z);
(M3) x + 0 ≈ x;
(M4) ¬(¬x) ≈ x;
(M5) x + ¬0 ≈ ¬0;
(M6) ¬(¬x + y) + y ≈ ¬(¬y + x) + x.

Lemma 17 If M = (M,+, ¬, 0) is an MV-algebra, x ⊕ y := x + y if ¬x + ¬y = 1 and
1 := ¬0 then L(M) := (M,⊕, ¬, 0, 1) is a lattice effect algebra and x +y = (x ∧¬y)⊕y

for all x, y ∈ M (cf. [7] or Example 4.4 in [2]).

An interesting case of effect algebras are those which can be constructed as shown above.
Hence we define

Definition 18 AnMV-effect algebra (cf. [7]) is an effect algebra of the form L(M) with an
MV-algebra M.

As already mentioned, Riečanová [9] showed that every lattice effect algebra is the set-
theoretic union of maximal subalgebras which are MV-effect algebras, so-called blocks, and
therefore is itself an MV-effect algebra if and only if it consists of one block only. Recall
from [2] the following statement:

Proposition 19 (cf. Theorem 4.6 in [2]) If E = (E,⊕, ′, 0, 1) is a lattice effect algebra then
a, b ∈ E belong to the same block ofE if and only if a+b = b+a (where x+y := (x∧y′)⊕y

for all x, y ∈ E).

Now we can characterize MV-effect algebras by means of effect near semirings as
follows:

Corollary 20 A lattice effect algebraE = (E,⊕, ′, 0, 1) is an MV-effect algebra if and only
if its corresponding effect near semiring R = (E,+, ·, ′, 0, 1) is commutative, i.e. satisfies
the identity xy ≈ yx.
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Proof If E is an MV-effect algebra then

xy ≈ ((x′ ∧ y) ⊕ y′)′ ≈ (x′ + y′)′ ≈ (y′ + x′)′ ≈ ((y′ ∧ x) ⊕ x′)′ ≈ yx

and if, conversely, xy ≈ yx then

x + y ≈ (x ∧ y′) ⊕ y ≈ (x′y′)′ ≈ (y′x′)′ ≈ (y ∧ x′) ⊕ x ≈ y + x

and hence E is an MV-effect algebra by Proposition 19.

According to Proposition 19 and the proof of Corollary 20 two elements a, b of a lattice
effect algebra belong to the same block if and only if ab = ba in its corresponding effect
near semiring. Due to Riečanová’s theorem (cf. [9]) we conclude

Corollary 21 Every effect near semiring is the set-theoretic union of commutative effect
near semirings.
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